
Lynne Blair and Kenneth J. Turner. Handling Policy Conflicts in Call Control.
In Stephan Reiff-Marganiec and Mark D. Ryan, editors, Proc. International
Conference on Feature Interaction VIII. IOS Press, Amsterdam, May 2005.

Handling Policy Conflicts in Call Control

1 Carried out while on sabbatical from Computing Dept, Lancaster University, Lancaster LA1 4WA

Lynne Blair 1, Kenneth J. Turner
Computing Science and Mathematics, University of Stirling, Stirling, FK9 4LA

lb@comp.lancs.ac.uk, kjt@cs.stir.ac.uk

Abstract. Policies are becoming increasingly important in modern computer
systems as a mechanism for end users and organisations to exhibit a level of
control over software. Policies have long been established as an effective
mechanism for enabling appropriate access control over resources, and for
enforcing security considerations. However they are now becoming valued as a
more general management mechanism for large-scale heterogeneous systems,
including those exhibiting adaptive or autonomic behaviour.

In the telecommunications domain, features have been widely used to provide
users with (limited) control over calls. However, features have the disadvantage
that they are low-level and implementation-oriented in nature. Furthermore,
apart from limited parameterisation of some features, they tend to be very
inflexible. Policies, in contrast, have the potential to be much higher-level, goal-
oriented, and very flexible.

This paper presents an architecture and its realisation for distributed and
hierarchical policies within the telecommunications domain. The work deals
with the important issue of policy conflict – the analogy of feature interaction.

1. Introduction

Features have long been used as units of client-valued functionality within the
telecommunications industry. One key benefit is their ability to facilitate evolutionary
development, for example accommodating new requirements or functionality in
existing systems by incorporating new features. Feature-driven development is also
popular in software product-lines, where a product is structured in a way that allows
common units of development (e.g. features) to be shared, thus enhancing flexibility
and software re-use, and ultimately reducing development costs [Nyholm02].

Inherent in such feature oriented systems is the problem of feature interactions, where
the presence of one feature in a system affects the behaviour of another. Whilst this
behaviour may be a desirable effect for some features, there are other instances where
the interaction causes undesirable behaviour. Many examples of this have been
identified within telecommunications systems, along with numerous techniques for
the detection and resolution of such interactions. These are well documented in the
series of “Feature Interactions in Telecommunications and Software Systems”
proceedings, e.g. [Calder00] and [Amyot03]. Within this domain, surveys of feature
interaction analysis techniques can be found in [Keck98] and [Calder03].

However, feature interaction is only one small part of a much more general problem
of interactions, or conflicts, throughout the overall software development life-cycle.

The study of requirements interactions [Robinson03], rule or goal conflicts
[vanLamsweerde98] and policy conflicts [Lupu99][Dini04] are all areas of research in
their own right. In this paper we focus on the use of policies for call control, and on
issues surrounding the resolution of conflicts between such policies. Of necessity,
simple examples are used to illustrate the approach. However as can be seen from
related publications, the policy system is capable of great expressiveness and subtlety
– well beyond what traditional features can achieve.

2. The Use of Policies for Call Control

Policies, within the computing domain, are generally regarded as being a high-level,
user-oriented and flexible mechanism for controlling a system or a set of system
parameters. Policies have proven beneficial in many different areas, including
managing access control or security concerns, controlling collaborative systems,
managing acceptable limits for quality of service parameters, or more generally
managing networks.

Recently, researchers have also started to investigate the use of policies (or scripts) to
facilitate call control, e.g. [Bertino02], [Chentouf03] and [Nakamura03]. As discussed
above, control in the communications domain has traditionally been achieved by a
more technology-driven approach, e.g. through low-level and fairly inflexible units of
functionality known as features. More recently, service-oriented approaches have
placed the emphasis on the service provided to the user rather than on the features
needed to support the service. Policies do not replace these, but rather can be viewed
as an overlay on them, providing users with a mechanism to configure and manage
their own call control environment. The ACCENT project (Advanced Call Control
Enhancing Network Technologies) has focused on the use of policies in this way.

In the following section we provide background information on the architecture
developed to support the use of policies in call control, and then return to examples of
policies in sections 3 and 4.

Policy System Architecture

Although this paper discusses policy support related to call control, the architecture is
generic and has been designed for ready extension to other application domains. Any
reasonable communications layer can be used. So far, policy support has been
developed for various forms of Internet telephony: SIP (Session Initiation Protocol)
[Rosenberg02], H.323 [ITU00] and PBX (Private Branch Exchange) [Mitel04].
Extensions to other forms of telephony are possible, e.g. the IN (Intelligent Network)
and mobile telephone networks. Investigations into policy support for H.323 (carried
out in parallel with the ACCENT project) are reported in [Huang05].

The policy system is supported by the (extensible) policy language APPEL (ACCENT
Project Policy Environment/Language) [Reiff-Marganiec04c]. The core of APPEL is
common to many applications. APPEL is then extended with application-specific
vocabularies. In the work described here, the extension is specific to call control.

The policy system architecture is shown in figure 1. In this figure, double-headed
arrows indicate that many instances of a system may appear at this end. For example,
one policy server may support many communications servers. In turn, one policy

store may support many policy servers. All the arrows represent socket connections,
so the system can be truly distributed. The systems are logically separate, but may be
one physical system. Further details of the policy system architecture can be found in
[Reiff-Marganiec04b], and other aspects of the ACCENT project in [Reiff-
Marganiec04a], [Reiff-Marganiec04d] and [Turner04].

The novelty of this paper over these previous publications lies in the use of APPEL not
only for basic call control, but also for the resolution of policy conflicts. As will be
explained, resolution policies are processed in an almost identical way to call control
policies, and importantly are handled within the same policy system architecture.

The architecture maintains a clear separation between three layers: the
communications systems layer containing the raw networks, the policy system layer
dealing with policy storage and execution, and the user interface layer providing
direct end user support.

Communications System Layer. Minimal assumptions have to be made about the
networks to be enhanced with policies. It is presumed that each network will have
communications servers where calls are processed. Communications servers take
various forms such as a proxy server for SIP, a gatekeeper for H.323, or an SSP/SCP
for the IN. A policy module needs to be written for each communications server using
its API; so far, four communications server modules have been developed for policy
support. Such a module maps between network-specific messages and neutral policy
messages. Environment information is extracted from call requests as they are
processed (e.g. caller, callee, call subject). This information is sent in a generic format
to the associated policy server, which responds with generic actions, taken from the
policies, as to how the call should be handled (e.g. continue as normal, add a party to
the call, fork the call).

Policy System Layer. The policy database contains relatively static information
such as the mapping between network terms and policy terms. The policy store
contains dynamic information about policies and their activation. Although the same
kind of technology could be used for both, it is convenient to use a conventional
RDBMS for the policy database and an XML database (tuple space server) for the
policy store (since policies and policy-related information are represented in XML).

Fig. 1. Policy System Architecture

User Interface Layer. The policy wizard is used to create and edit policies in a user-
friendly fashion. The wizard is web-based and multi-lingual. The context system is
used to link presence and availability services to the policy system. For example, this
allows policies to be triggered by someone’s presence or availability (e.g. as indicated
by an active badge system or a computerised appointment system).

3. Policy Server Operation

We illustrate the operation of the policy server through of a worked example. Initially,
we present a policy written in APPEL, an XML-based policy language developed as
part of the ACCENT project, and explain the relevant features of this language as we
go along. Complete details of the language can be found in [Reiff-Marganiec04c].

3.1. A First Policy

Suppose that lb is a user of the policy server and has a single call control policy,
named fwdLateCallsVM, stating: from 10th to 14th January 2005, user lb would
prefer all incoming calls received after 3pm to be forwarded to voicemail.

The basic action associated with this call control policy is forwarding of a call to
voicemail – clearly achievable without policies. However, this simple example
illustrates some of the power and flexibility associated with policies. Policies are
user-defined not network-defined, so the user is not limited to a generic network
implementation. Policies permit fine-grained and flexible control over calls, allowing
exactly what the user requires (generally not possible with traditional features or
services). In this example, the user specifies a valid from and valid to date for the
policy, and chooses only to apply the policy after 15:00 during this range of dates.
Significantly, policies may have a preference. In the example above, the use of
prefer indicates the strength of feeling associated with this policy. As will be
discussed later in the paper, this provides us with one basis for the resolution of
conflicts. The above policy can be expressed in APPEL as follows:

<policy owner="lb@cs.stir.ac.uk" applies_to="lb@cs.stir.ac.uk"
id="fwdLateCallsVM" enabled="true" changed="2004-12-22T16:10:00"
valid_from="2005-01-10T00:00:00" valid_to="2005-01-14T23:59:00">
 <preference>prefer</preference>
 <policy_rule>
 <trigger>connect_incoming</trigger>
 <condition>
 <parameter>time</parameter>
 <operator>gt</operator>
 <value>15:00</value>
 </condition>
 <action arg1=":voicemail">forward_to(arg1)</action>
 </policy_rule>
</policy>

The policy tag specifies the attributes such as the owner of the policy, who the policy
should apply to, a unique user identifier for the policy, whether is it currently enabled
and a timestamp (in XML schema format) to identify when the policy was last

changed. Also included here are the optional attributes valid_from and
valid_to, stating how long a policy should remain valid.

The second tag states a preference level that is to be applied to the policy. A range of
preferences may be applied as follows (in decreasing order of strength of feeling):
must, should, prefer. There are also negative forms of these preferences:
must_not, should_not, prefer_not. Alternatively, a policy writer may
choose to omit a preference, meaning indifference about how strongly the policy
should be enforced.

The third tag states the policy rule itself. Our rules follow a traditional event-
condition-action (ECA) style, but we refer to the triggering events of the policy
simply as triggers. In order for a policy action to be fired, a policy’s triggers will need
to match the triggers associated with the current call, as well as having conditions that
hold true. Policy variables (with a colon-prefixed name) may be defined
independently of a policy, typically through the policy wizard interface. This allows
general policies to be defined, but be specialised as required. In the policy above, the
variable :voicemail will be separately set to a particular voicemail address.

The process of selecting and applying policies is discussed in section 3.3 below. The
range of vocabulary for the component parts of a policy rule is given in table 1.

Table 1. APPEL vocabulary for call control

Element Call Control
Trigger absent(address), available(address),

bandwidth_request, connect, connect_incoming,
connect_outgoing, disconnect, disconnect_incoming,
disconnect_outgoing, event, no_answer(period),
no_answer_incoming(period), no_answer_outgoing(
period), present(address), register, register_
incoming, register_outgoing, unavailable(address)

Condition active_content, bandwidth, call_content, call_type,
callee, caller, capability, capability_set, cost,
date, destination_address, device, location, medium,
network_type, priority, quality, role, signalling_
address, source_address, time, topic, traffic_load

Action add_caller(method), add_medium(medium),
add_party(address), confirm_bandwidth,
connect_to(address), fork_to(address),
forward_to(address), log_call(URL),
note_availability(topic), note_presence(location),
play_clip(URL), reject_call(reason),
reject_bandwidth(limit), remove_medium(medium),
remove_party(address), send_message(URL,message)

3.2. An Example SIP Communication

It is the role of a SIP proxy module to intercept messages at the SIP proxy server, and
to process them by extracting key information as a list of variable-value pairs. This
information is then passed to the policy server.

Suppose we have two users: kjt@abc.com and lb@cs.stir.ac.uk and that
user kjt@abc.com places a call to lb@cs.stir.ac.uk. This call is initially
passed to the policy server associated with user kjt (as an outgoing call). Suppose
that at this stage the communication server informs the policy server that the call can
be tagged as having been made from a PDA, and has been identified as being a long-
distance call.

The call is then passed to any further policy servers en route, and finally reaches the
policy server associated with the end user lb (as an incoming call). On intercepting
this message, the terminating SIP proxy module extracts all relevant information and
passes it to the policy server. The policy server determines which protocol is being
used, in this case SIP, and then consults a terminology mapping database in order to
translate protocol-specific terminology into common terms used by the policy server.

The policy server stores the extracted information, now in a protocol-independent
format, in a hashtable (known as the environmental hashtable). This information
consists of a set of field–value pairs as follows (dir is the call direction):
SERVER_NAME d254196.cs.stir.ac.uk
user lb@cs.stir.ac.uk
dir in
caller [kjt@abc.com]
callee [lb@cs.stir.ac.uk]
triggers [connect, connect_incoming]
device [PDA]
call_type [long-distance]

A variety of other fields may exist in the message and can be extracted and stored in
the hashtable, e.g. to mirror the different terms that may be used as conditions (see
table 1).

3.3. Applying Policies

A core task of the policy server is to determine which policies, if any, should be
considered with respect to the current call. In our example, we have seen a single
policy, fwdLateCallsVM, that we can see intuitively should be applied to the
above call. The policy server breaks this decision down into four sequential stages
discussed further below:

1. consider policies that are enabled;

2. determine if a particular policy applies to the current call, based on the user or
domain information;

3. determine if a policy is triggered by the current call, based on call and
environmental information; if so, the policy’s actions are identified;

4. if there is a choice of actions to be taken, apply a conflict resolution
mechanism.

1. Is a policy enabled?

This is straightforward to determine directly by reading the relevant attributes of the
policy description. These are the enabled attribute, and the (optional)
valid_from and valid_to fields. A further optional attribute states a user’s

current profile. If the user selects a particular profile, e.g. at home, on holiday, or
busy, a policy for a profile must match this to be enabled. A policy without a profile is
enabled in all cases.

2. Does a policy apply to the current call?

To determine if a policy applies to the current call, it is necessary to compare the
applies_to attribute of the policy’s description with the user field of the
environmental hashtable. Since this latter field was set to lb@cs.stir.ac.uk
above, both values match. Consequently, this policy is said to apply to the current
call. Note that the policy’s applies_to attribute may refer to a domain instead of
an individual user, meaning that the policy should be applied to all users within that
domain.

3. Is a policy triggered by the current call?

It is necessary here to establish that both the event (trigger) and the condition hold
before determining whether the action(s) should be applied. The policy server must
first compare the trigger field(s) of the policy with the trigger(s) identified in the
environmental hashtable. In this example, we see that both the policy and the current
call refer to an incoming call. With respect to the policy’s condition, the policy will be
triggered if the current time is greater than 15:00. We will suppose here that it is later
than 15:00, and hence the policy will be triggered by the current call.

4. What are the appropriate policy action(s) for the current call?

Finally, the policy server must determine which triggered (and enabled) policies
should be applied. If no policies were found to be triggered, the policy server needs to
take no further action for the current incoming call. The policy server intervenes no
further in the call and control is left to the underlying communications layer.

In our example, we have presented a single policy and shown this to be enabled and
triggered. In this instance, the policy server’s action is simple: the policy
fwdLateCallsVM will be applied, and its action forward_to(:voicemail)
will occur. The policy server will issue a message to this effect to the underlying
communication layer, via the SIP proxy module, in this case instructing the SIP
protocol to forward the current call.

Identifying the appropriate action will unfortunately not always be so straightforward.
It is possible that a user will have a number of policies that are all triggered for a
particular call, some of which may conflict with one another. In such a case, the
policy server analyses all possible policies and selects the most appropriate resolution.

Having presented an overview of how the policy system processes a policy in the
context of a call, the rest of the paper will now focus on the last stage of this process,
handling the resolution of conflicts.

4. Handling Conflict on a Single Policy Server

There are two very distinct situations in which call control policies may conflict. The
first is in conflicts between policies known to a single policy server. The second is the

more complex case of policies in a distributed environment, i.e. where conflicts occur
between policies associated with two or more policy servers. This section addresses
the simpler ‘localised’ case; section 5 will progress to issues of conflict in a
distributed setting.

In order to illustrate how conflicts are handled by the policy server, we present a
second simple policy that conflicts with the first policy (seen in section 3.1).

4.1. A Second (Conflicting) Policy

This second policy is intentionally similar in style to the first policy, since the focus
here is on the conflict handling mechanism rather than the range of policies
expressible using APPEL. A variety of policy examples can be found in [Huang05]
[Reiff-Marganiec04c].

Suppose that user lb specifies a policy, fwdLDCallsHome, stating: all long-
distance evening calls after 6pm must be forwarded to lb’s home address.

This is expressible in APPEL as follows:

<policy owner="lb@cs.stir.ac.uk" applies_to="lb@cs.stir.ac.uk"
id="fwdLDCallsHome" enabled="true" changed="2004-12-
22T16:15:00">
 <preference>must</preference>
 <policy_rule>
 <trigger>connect_incoming</trigger>
 <conditions>
 <and/>
 <condition>
 <parameter>call-type</parameter>
 <operator>eq</operator>
 <value>long-distance</value>
 </condition>
 <condition>
 <parameter>time</parameter>
 <operator>gt</operator>
 <value>18:00</value>
 </condition>
 </conditions>
 <action arg1="lb@lbhome.org.uk">forward_to(arg1)</action>
 </policy_rule>
</policy>

In this policy, we have an unrestricted period of validity for the policy (since the
valid_from and valid_to attributes have been omitted). The preference level
has been stated as must, indicating that the user feels very strongly that, if triggered,
this policy must be applied. Whilst the triggering condition (connect_incoming)
is identical to our original policy, an extra condition has been included: in addition to
a condition guarding the time, the policy also checks whether the call type has been
tagged as being long distance. Finally, both policies specify a forwarding action, with
the destination target differing in each.

If lb receives a long-distance incoming call after 18:00, both fwdLateCallsVM

and fwdLDCallsHome are enabled and apply to the call (w.r.t. the user).
Furthermore both policies are triggered by the call, i.e. the triggers and conditions
hold for each policy.

Consequently, the policy server has a choice of actions:
forward_to(:voicemail) and forward_to(lb@lbhome.org.uk). In
general, a policy server may ask the communications layer to apply multiple actions
to the call if they do not conflict with one another, e.g. adding an additional party to a
call and also adding a video channel. Note also that a policy server will filter
duplicate actions, should they be encountered, to ensure that a given action is only
carried out once regardless of how many policies request it.

Returning to our example, the two actions we encountered above can be seen as
conflicting, since it is only possible to forward to a single destination (alternative
functionality that allows forwarding to multiple destinations is provided by the action
fork_to(address)). Determining and handling such conflicts is the role of the
policy server’s conflict resolution handler, as discussed in the following section.

4.2. Conflict Resolution Handling

The key design decision in conflict handling is whether the detection and resolution
processes should be internalised, with functionality embedded within the policy
server, or whether it should be externalised, thus allowing user-level control of the
resolution process. The latter approach was taken, in keeping with ACCENT’s overall
aim of providing a user-oriented and totally flexible approach to call control.

In a similar way to which policies are used to specify how a user can achieve control
over a call, resolution policies can be specified by a user (or system administrator) to
state under what conditions, and in what way, a policy server should react to conflicts.

The specification of resolution policies

A characteristic of the extensible nature of our policy language, APPEL, is that
resolution policies can be specified using the same basic language as our call control
policies. The structure of both types of policy is identical, the only difference being in
the vocabulary used. Even here, much vocabulary is shared, although it may be used
in a different context. For example, resolution policy triggers share a vocabulary with
policy actions: a particular combination of call control policy actions will become a
resolution policy’s trigger.

Resolution policies are distinguished from call control policies by the use of a
different tag, namely a <resolution> tag in place of a <policy> tag.

As with all event-condition-action style rules, resolution policies specify trigger(s)
and condition(s) under which the specified action(s) should occur. In this case, the
triggers and conditions identify a situation that the policy server will consider as a
conflict, and the policy action provides the resolution to be enforced.

Various types of action are possible within the resolution process; these can be
categorised as being one of two types, either a regular action or a relative action.

Regular actions versus relative actions

Regular actions are the simplest of these two styles of action, since they require no
further processing on behalf of the policy server and require no new vocabulary. Such
actions share the vocabulary of triggers (and hence call control policy actions). For
example, a resolution policy may request one or more of the actions add_medium(
medium), forward_to(address) or reject_call(reason). Note that the
resolution action need not necessarily match one of the resolution triggers.

In contrast, relative actions require a little more processing by the policy server and
require a small extension to our vocabulary. An obvious example here is in processing
the preferences that have been specified for our regular policies above. So, in the case
of our two conflicting forward events, we wish to choose the policy with the highest
preference level. To achieve this we can specify a resolution policy that, under
specified triggers and conditions, will perform the relative action:
apply_preference. An example of this, incorporated into a full policy in APPEL,
is provided below.

Other relative actions implemented so far include specifying whether the resolution
should apply a policy with a negative/positive preference, or one associated with the
caller/callee, or the newest/oldest policy, or simply even the first policy encountered
(see also below). These actions are all prefixed by the keyword apply (to clearly
distinguish them from regular actions). This is followed by one of the following
keywords: neg_preference, pos_preference, caller, callee, newest, oldest, first. We
have also implemented an additional default resolution scheme, apply_default,
that steps through a sequence of pre-defined relative actions in order to find a
resolution. Should this sequence still fail to find a resolution, apply_default
selects the first policy encountered to be the resolution.

Applying resolution policies

The process of applying resolution policies is almost identical to the process of
applying call control policies, as described in the four steps of section 3.3.

In order to handle resolution policies, the fact that they are identical in format to the
regular policies allows us to reuse exactly the same first three steps (omitting only
what would be a recursive call to the fourth resolution step). The only difference is in
the parameterisation of the three processes: instead of evaluating the normal policies
with respect to the call information (information stored in the environmental
hashtable), resolution policies are evaluated with respect to the list of actions waiting
to be resolved. The resolution process is thus as follows:

1. consider resolution policies that are enabled;

2. determine if the resolution policy applies to the conflicting policies, based on
the user or domain information;

3. determine if the resolution policy is triggered by the conflicting policies, based
on policy and environment information.

Both types of policy may make use of environment information e.g. time of day or
user availability.

An example resolution policy

The following policy, noMultipleFwds, is an APPEL resolution policy for the
conflict described above. It applies to everyone in the cs.stir.ac.uk domain.
The policy provides a resolution for the occurrence of two forwarding events where
the forwarding targets are different. More specifically, it is also necessary to consider
if the preferences (associated with each event) have opposite signs, that is if one
preference is negative (e.g. must_not) and the other preference is positive (e.g.
should). These cases are illustrated in the following table:

Table 2. Combinations of forwarding destinations and preferences that cause conflict

Forwarding Destination Preferences Conflict or no conflict
Different Opposite signs No conflict

- e.g. must_not fwd(A) and should fwd(B)
Different Same signs Conflict

- e.g. must fwd(A) and prefer fwd(B)
Same Opposite signs Conflict

- e.g. must_not fwd(A) and prefer fwd(A)
Same Same signs No conflict

- e.g. should fwd(A) and prefer fwd(A)

There are two rows in this table that indicate conflicting conditions; these are folded
into a single resolution policy using a boolean combination of conditions as follows:

<resolution owner="lb@cs.stir.ac.uk" applies_to="@cs.stir.ac.uk"
id="noMultipleFwds" enabled="true" changed="2004-12-
22T16:20:00">
 <policy_rule>
 <triggers>
 <and/>
 <trigger arg1="VAR1">forward_to(arg1)</trigger>
 <trigger arg2="VAR2">forward_to(arg2)</trigger>
 </triggers>
 <conditions>
 <or/> <!-- rows 2/ 3 condition give conflict -->
 <conditions>
 <and/> <!-- different destination, same signs -->
 <condition>
 <parameter>VAR1</parameter>
 <operator>ne</operator>
 <parameter>VAR2</parameter>
 </condition>
 <condition>
 <parameter>preferences</parameter>
 <operator>ne</operator>
 <value>opposites</value>
 </condition>
 </conditions>
 <conditions>
 <and/> <!-- same destination, opposite signs -->

 <condition>
 <parameter>VAR1</parameter>
 <operator>eq</operator>
 <parameter>VAR2</parameter>
 </condition>
 <condition>
 <parameter>preferences</parameter>
 <operator>eq</operator>
 <value>opposites</value>
 </condition>
 </conditions>
 </conditions>
 <actions>
 <orelse/>
 <action>apply_preference</action>
 <action>apply_newest</action>
 </actions>
 </policy_rule>
</resolution>

This policy’s triggers are two forward_to actions. One point to note here is the use
of variables in the parameters of actions, e.g. forward_to(VAR1). This feature
enhances the expressibility of the resolution policies, allowing the variables to be
bound to real values at run-time, i.e. identifying the target destination as the resolution
policies are actually evaluated. In this example, the two variables VAR1 and VAR2 are
bound at run-time to the voicemail address and to lb@lbhome.org.uk
respectively.

The resolution policy’s conditions checks whether:

• the targets of these two forward actions are different and the preferences
have the same sign, i.e. that a conflict exists in simultaneously trying to
forward to two different destinations, or

• the targets of these two forward actions are the same and the preferences
have opposite signs, i.e. that a conflict exists between a negative preference
and a positive preference for the same forwarding action.

In our example, the values of the two variables are different (the voicemail address is
different to lb@lbhome.org.uk) and the preferences are both positive, i.e. have
the same sign (prefer and must). Therefore, the first condition holds.

The policy’s resolution action combines two alternative actions with the orelse
operator. This operator ensures that the first action is tried first, i.e. the preference
associated with the two policies should be compared. If this fails to provide a
resolution, then the second action should be considered, i.e. the timestamps of the two
policies should be compared and the newest one selected.

In the case of the resolution policy still being unable to draw a distinction between the
call control policies, as may occur with the use of relative resolution actions, generic
resolution policies may be applied, as will be discussed below. If this still fails to
resolve a conflict, the actual action to be taken will be determined by the policy server
implementation: a method is called that corresponds to the apply_default
relative action (described above) to ensure a resolution is reached.

For the example above, it is sufficient to choose the first relative action, i.e. resolving
conflict on the basis of the policy preferences. The first call control policy,
fwdLateCallsVM, has preference level prefer whilst the second call control
policy, fwdLDCallsHome, has preference level must. In this instance, the first
policy will obviously lose out to the stronger preference of the second policy.
Consequently, the action associated with the second policy will be selected and the
policy server will notify the communications layer to apply
forward_to(lb@lbhome.org.uk) to the current incoming call.

If a situation arose involving a further conflicting action, specified with a must
preference and a timestamp of 2004-12-22T16:05:00, the second resolution action,
apply_newest would come into play. Having determined that the first action,
apply_preference, could not provide a resolution, the policy server would
evaluate the conflicting policy timestamps. This would result in the second policy
being chosen.

Specific resolution policies versus generic resolution policies

We refer to the above style of resolution as a specific resolution policy since it relates
to a specific combination of triggers, namely a conflict between two forwarding
events. Our experience in writing such policies has shown that it is not always
straightforward to correctly enumerate all required conditions in order to guarantee a
resolution is reached.

Precisely because of these difficulties, a set of generic resolution policies have also
been written, covering a range of possible conflicts and providing suggested
resolution action(s). The resolution is, of course, able to be tailored (specialised) by
the user as required. The term generic is used here in the sense that these policies do
not relate to a specific combination of triggers; there are in fact no explicit triggers for
such policies, only conditions and actions. These policies can still be specified using
APPEL, by simply omitting the trigger tags. However, the policy server treats generic
policies differently to specific resolution policies. In order to be triggered correctly,
i.e. not triggered for unrelated actions, generic resolution policies can be viewed as
having an implicit trigger that checks if the base-name (discounting any parameters)
of a call control action matches the base-name of another action, e.g. if there are two
add_medium actions or two reject_call actions. Also, due to their generic
nature, the policy server ensures that generic resolution policies are only ever applied
after all specific resolution policies have been applied.

In our current implementation, all identified generic conflicts have been grouped
together into five generic resolution policies. These five sets of conflicts cover the
following conditions: preferences are exact opposites, preferences are opposites but
not exact opposites, preferences are not opposites, preferences are the same and
timestamps are different, and preferences and timestamps are the same.

Finally, it is also worth pointing out that all of our resolution policies, whether
specific or generic, can be applied at design time as well as at run-time, although their
use at design time has not yet been implemented. At design-time, as soon as the user
uploads policies via the policy wizard, the policy server can check for conflicts
against a set of provided resolution policies. Should a conflict be detected, any

triggered resolution policies will be identified to the user, allowing him/ her to
specialise the resolution actions as desired.

5. Handling Conflict in a Distributed Setting

The policy server architecture shown in figure 1 requires multiple policy servers to
cooperate in a distributed environment. This presents us with a number of different
ways in which we could perform conflict resolution across multiple policy servers.

5.1. An Example of Conflicting Distributed Policies

Suppose we have the following two distributed policies that are triggered for the same
call from user kjt to user lb. The first policy, noAddPartyOutgoing, is applied
to an outgoing call by the caller’s policy server and states that under no condition
must an additional party be added to the call:

<policy owner="kjt@abc.com" applies_to="kjt@abc.com"
id="noAddPartyOutgoing" enabled="true" changed="2004-12-
22T16:25:00">
 <preference>must_not</preference>
 <policy_rule>
 <trigger>connect_outgoing</trigger>
 <action arg1="">add_party(arg1)</action>
 </policy_rule>
</policy>

The second policy, addPartyHead, is applied further down the communication
chain, at the callee’s policy server. This policy states that for incoming calls from
kjt, lb would prefer an additional party, head@cs.stir.ac.uk, to be
conferenced into the call:

<policy owner="lb@cs.stir.ac.uk" applies_to="lb@cs.stir.ac.uk"
id="addPartyHead" enabled="true" changed="2004-12-22T16:30:00">
 <preference>prefer</preference>
 <policy_rule>
 <trigger>connect_incoming</trigger>
 <condition>
 <parameter>caller</parameter>
 <operator>eq</operator>
 <value>kjt@abc.com</value>
 </condition>
 <action arg1="head@cs.stir.ac.uk">add_party(arg1)</
action>
 </policy_rule>
</policy>

Clearly these two policies conflict with each other, one preventing another party being
added to the call, the other requesting the addition of another party. Glancing at the
preferences for the two policies indicates that an easy solution is available here, since
the must not precedence of the first policy is stronger than the prefer precedence of
the second policy. However, automating this in a distributed setting provides a
number of challenges.

5.2. Distributed Conflict Resolution

Design issues

Many approaches to the run-time resolution of conflicts make use of a centralised
resource, such as a centralised negotiator [Griffeth94], a tuple space [Amer00] or a
distinct component such as a feature interaction manager [Jia03] (although
communication in the latter approach is via a distributed tuple space).

A major design decision in the development of the resolution technique for the
ACCENT project has been to avoid any such centralised approach. This mirrors our
actual environment where end-users are clearly distributed across communication
servers and subsequently call control and resolution policies are distributed across
policy servers. So, rather than having a single interaction manager, all policy servers
are capable of performing conflict resolution. Unfortunately, distributed policy
servers cannot operate independently of one another, since the policies they enforce
are intended to apply end-to-end over a call. An illustration of this will be given
below. Therefore some mechanism is needed for distributed communication in order
to reach an agreed resolution for conflicting policies in a distributed environment.

One possible solution would be to allow policy servers to communicate directly with
one another. (In fact, policy servers have pre/post-negotiation hooks for this purpose.)
However, this could fail to preserve the layered architecture of the policy system. The
role of the policy server is to intercept and, where necessary, amend messages from
the underlying communications layer. It is the role of the communications layer to
determine call routing, i.e. deciding which server will be visited next in the
communication chain. Providing routing information for policy servers to
communicate directly would not be appropriate in a layered architecture.

A further solution would be to employ a distributed tuple space for communication, as
in the approach of [Jia03]. However, our architecture already has a (non-distributed)
tuple space associated with each policy server, acting as a policy store. Consequently,
our solution to distributed conflict resolution takes advantage of this fact: one of the
tuple spaces along the call’s route, e.g. the tuple space located at the originating end,
acts as a temporary store (blackboard) for information relevant to the resolution
process for that particular call. This can be considered a decentralised resource.
Although a single blackboard is used for the duration of a call, its location will differ
on a call-by-call basis.

In summary, our approach:

• avoids a totally centralised resource;

• empowers each policy server to perform conflict resolution;

• uses the tuple space (policy store) associated with a particular policy server
as a blackboard for temporary storage of resolution information for the
duration of a call; such blackboards are established on a call-by-call basis.

Problems with sequential (independent) resolutions

Before detailing our chosen approach, we believe it is worth explaining problems that
would arise should a sequence of independent resolutions be applied across the

communication chain. The reasons why this approach is not suitable become relevant
later in the discussion.

With this approach, on intercepting a call each policy server would perform its own
conflict resolution independently of any other policy servers. This would result in a
set of policies being enforced for the call at its current local location.

In the example above, the caller’s policy server would enforce the
noAddPartyOutgoing policy. Since this is a negative policy, and the policy
server has no other requests to perform any other actions, just passing control back to
the underlying communications layer actually enforces this policy locally: no party is
added. On reaching the destination, however, the second policy, addPartyHead,
would request that an additional party is added; this would be enforced since there are
no conflicting policies locally.

In this case, it could be argued that the initial policy has been applied too soon in the
communication chain and should have been deferred, being considered in conjunction
with the second policy at the destination policy server. Had this been the case, a
simple resolution mechanism based on preferences would have ensured the
appropriate resolution.

The problem of employing policies too soon is not restricted to this particular
example. Forwarding, forking and blocking actions are particularly problematic here,
since they alter the route of a communication. For example, if policy servers
independently enforce forwarding actions (locally) en route, the route of the call may
be altered by the first such policy; subsequent policy servers from the original route
may never be reached. Thus there is never any chance for a consolidated global
resolution process. Instead there is an implicit priority of policies depending on the
policy server’s location in the communication chain.

Clearly, therefore, there needs to be distributed communication in order to reach an
agreed resolution for conflicting policies in a distributed environment.

Achieving distributed communication

In our approach, the policy store associated with the first policy server with a
triggered policy assumes the role of blackboard for the duration of the call. Policy
servers make use of this resource as follows:

• On intercepting a call, the caller’s policy server determines which policies
are enabled and are triggered by the call. Rather than resolving any conflicts
directly, all possible actions are deferred, being written to and accumulated
on the blackboard. All policies are labelled with a unique call identifier (e.g.
the SIP call identifier). All enabled resolution policies from that policy
server are also written to this store, again identified by the call identifier.
Finally, the call data itself is modified to carry a reference to the caller’s
tuple space. This ensures that all subsequent policy servers can access and
store resolution information on the blackboard that relates to the current
call. The mechanism for carrying the blackboard reference depends on the
communications layer. In SIP or H.323, for example, it is carried as an
extension header field.

• On reaching the callee’s policy server, the server consults local policies and

identifies those that are enabled and are triggered by the call. This policy
server consults all call control policies from the blackboard, and a list of
possible actions is generated. The server starts the resolution process by
analyzing this set of accumulated policy actions. In the case of any
conflicts, all accumulated resolution policies are considered. The chosen
resolution is then enforced by passing relevant information to the
communication layer via the SIP proxy module as discussed before. Note
that this process takes place at the callee’s policy server, i.e. before the call
actually reaches the end user. Only if a resolution can be reached will the
call be established and the policies activated.

5.3. Discussion: Issues Associated with Distributed Conflict Resolution

A number of issues remain with the distributed resolution of conflicts:

Immediate versus deferred actions

The issue of choosing between immediate actions, a result of an independent
(localised) resolution approach, versus deferred actions, as occurs with the proposed
blackboard approach, is unfortunately not straightforward. We have already given a
justification of avoiding immediate actions on the grounds of preventing the implicit
priority of policies based on the policy server’s location in the communication chain.
However, the deferral of actions also causes potential problems.

As mentioned earlier, policy actions involving forwarding, forking or blocking are
particularly problematic in that they affect the route of communication. As a
consequence, they also potentially influence the chain of policy servers visited and
hence the policies encountered en route. If such actions are deferred to the destination
of the call, suppose the policy action selected by the resolution process involves
forwarding (or forking) to a new location. This may have the effect of visiting one or
more new policy server(s) and applying new policies to the call. There is clearly no
way that these policies can be included in the first round of negotiations, hence a
second round of negotiation must take place when this new location is reached.
Obviously this could theoretically occur repeatedly depending on the policy action
selected at the new location.

A rather complex solution could make use of the forking functionality offered by the
communications layer, to offer an ‘anticipatory’ style of resolution strategy. On
encountering a potential forwarding action, both the original route and the forwarding
route could be tentatively followed, i.e. without committing to a particular
communication route at this stage. Note that policies stored on the blackboard after
any such forking would need to be distinguished by means of a suffix on the call
identifier. Since multiple ‘end’ policy servers are now contacted, due to the earlier
forwarding action, the resolution module must decide which is the most appropriate
destination device based on the accumulated information. However, one further
complication remains concerning which of the end policy servers should actually
instigate the resolution process. The blackboard can again be used as a common
resource to allow policy servers to make this decision; it simply adds further
complexity to an already complex solution.

A similar process could be followed on encountering a potential forking action.
However a key difference exists between this and the forwarding process above. With
traditional forking, each of the end devices is contacted: the first one to answer will be
connected. This implies that each ‘end’ policy server should perform resolution for
its own communication route, and will access the blackboard in order to analyse the
accumulated policies for the route in question. If the policies do not prevent the
communication, the end device of each route is contacted. In this way, the resolution
process is acting as a filter, where the final ‘resolution’ is determined in favour of the
device answered first.

Increasing the complexity of the resolution process to take into account the above
complications has the advantage of avoiding taking any actions that, with a global
view of the system (and/ or the benefit of foresight), could be deemed to be
premature. However, the clear disadvantage is that the call setup process is
significantly complicated, potentially unnecessarily (e.g. if no future conflict actually
exists and the action could be taken immediately with no future adverse effect).

Triggers that rely on environmental information

The solution that we have proposed above (section 5.2) concludes with the
recognition that conflict resolution occurs at the ‘end’ policy server, i.e. before the
end device is actually contacted. A drawback of this approach concerns policies
(specifically triggers) that rely on certain types of environment information. For
example, the APPEL language contains a no_answer trigger, designed to allow a
policy to specify that a subsequent action can be attempted should a phone remain
unanswered for a particular number of rings. However, this information is only
obtainable if the end device is actually contacted.

It would be possible to follow a similar ‘anticipatory’ forking strategy as described
above in order to explore potential conflicts should this route be followed. However,
as above, potential benefits are not deemed sufficient to justify the added complexity.

6. Conclusions

This paper has explored the use of policies for the provision of user-oriented and
flexible control of calls in a telecommunications domain. The potential benefits of
policies are great, with policies able to:

• replace (or at least complement) the more traditional features and services
as mechanisms for achieving call control;

• be arranged hierarchically, to allow the specification of policies for
individual users, their organisations and their service providers as well;

• be specified as having distributed effect, e.g. permitting a caller’s policy to
provide some level of control as a call arrives at its destination.

The ACCENT policy system architecture has been presented, showing how policies are
handled by policy servers. These intercept, interpret and (as necessary) alter call
messages in the communications layer. The issue of resolving conflicts that arise
between policies has been discussed and illustrated through a number of examples.

Our approach has a number of distinctive advantages. The APPEL language allows the

use of ECA-style policies for call control, with preferences supporting resolution. A
policy wizard allows non-technical users to create and amend policies in a user-
friendly manner. Specialised policies, also written in APPEL, allow flexible control of
the resolution process. A distinction is drawn between two possible styles of
resolution action, namely regular and relative actions, and also between specific and
generic resolution policies. A policy store’s tuple space doubles as a blackboard
(established on a call-by-call basis) during the resolution process.

Importantly, the issue of achieving resolution in a truly distributed setting (in the
absence of a global view of policies) has been shown to be far from trivial. Several
research issues remain. Although our proposed approach suffers from a number of
limitations, alternative solutions involve a significant step up in complexity (and
hence inefficiency) for relatively little gain.

Finally, the issue of the performance of our approach has still to be fully investigated.
The implementation of the policy server architecture and the basic resolution
mechanism is now largely complete. Early indications suggest that the delay imposed
in the call setup process will fall within an acceptable range. However, work still
remains in evaluating the performance of our architecture in the more difficult cases
described in section 5, and also in evaluating the system when fully connected in a
distributed environment.

Acknowledgements

The work reported in this paper was financially supported by the Engineering and
Physical Sciences Research Council (under grant GR/R31263) and by Mitel Networks
Corporation. Stephan Reiff-Marganiec (originally University of Stirling, now
University of Leicester) designed and implemented the base policy system. Jianxiong
Pang (University of Stirling) integrated policy support with the Mitel 7000 ICS. The
authors warmly thank Tom Gray (Mitel), Peter Perry (Mitel) and Joe Ireland (MKC
Networks) for their continued support and technical advice.

References

[Amer00] M. Amer, A. Karmouch, T. Gray, S. Mankovskii, “An Agent Model for the
Resolution of Feature Conflicts in Telephony”, In Journal of Network and Systems
Management, 8(3), 2000.

[Amyot03] D. Amyot, L. Logrippo (eds), “Feature Interactions in
Telecommunications and Software Systems VII”, Ottawa, Canada, IOS Press,
Amsterdam, 2003.
[Bertino02] D. Bertino, M. Cochinwala and M. Mesiti, “UCS-Router: A policy engine
for enforcing message routing rules in a universal communication system”,
Proceedings Mobile Data Management, January 2002.

[Calder00] M. Calder, E. Magill (eds), “Feature Interactions in Telecommunications
and Software Systems VI”, Glasgow, Scotland, IOS Press, Amsterdam, 2000.

[Calder03] M. Calder, M. Kolberg, E.H. Magill, S. Reiff-Marganiec, “Feature
Interaction: A Critical Review and Considered Forecast”, Computer Networks, 41(1),
pp 115-141, January 2003.

[Chentouf03] Z. Chentouf, S. Cherkaoui, A. Khoumsi, “Experimenting with Feature
Interaction Management in a SIP Environment”, Journal of Telecommunication
Systems: Modelling, Analysis, Design and Management, Vol. 24, Kluwer Academic
Publishers, 2003.

[Dini04] P. Dini, A. Clemm, T. Gray, F.J. Lin, L. Logrippo, S. Reiff-Marganiec,
“Policy-enabled Mechanisms for Feature Interactions: Reality, Expectations,
Challenges”, Computer Networks, Vol. 45, pp 585-603, Elsevier, 2004.

[Griffeth94] N. Griffeth, H. Velthuijsen, “The Negotiating Agents Approach to Run-
time Feature Interaction Resolution”, In Feature Interactions in Telecommunications
Systems, L.G. Bouma, H. Velthuijsen (eds), IOS Press, Amsterdam, May 1994.

[Huang05] T. Huang, K.J. Turner, “Policy Support for H.323 Call Handling”,
Computer Standards and Interfaces, February 2005 (in press).

[ITU00] Packet-Based Multimedia Communication Systems, ITU-T H.323,
International Telecommunications Union, Geneva, Switzerland, November 2000.

[Jia03] Y. Jia, J.M. Atlee, “Run-time Management of Feature Interactions”,
Proceedings 6th ICSE Workshop on Component Based Software Engineering:
Automated Reasoning and Prediction, I. Crnkovic, H. Schmidt, J. Stafford, K.
Wallnau (eds), Portland, Oregon, 2003.

[Keck98] D.O. Keck, P.J. Kühn, “The Feature and Service Interaction Problem in
Telecommunications Systems: A Survey”, IEEE Transactions on Software
Engineering”, Vol. 24, pp 779-796, 1998.

[Lupu99] E.C. Lupu, M. Sloman, “Conflicts in Policy-Based Distributed Systems
Management”, IEEE Transactions on Software Engineering, Vol. 25, No. 6, 1999.

[Mitel04] Mitel 7000 ICS (Integrated Communications Server) Technical Guides,
Mitel Networks Corporation, September 2004.

[Nakamura03] M. Nakamura, P. Leelaprute, K. Matsumoto, T. Kikuno, “Detecting
Script-to-Script Interactions in Call Processing Language”, In D. Amyot and L.
Logrippo (eds), Proceedings 7th Feature Interactions in Telecommunications and
Software Systems, pp. 215-230, IOS Press, Amsterdam, June 2003.

[Nyholm02] C. Nyholm, “Product Line Development – an Overview”, Extended
Report for “Building Reliable Component-Based Systems”, I. Crnkovic, M. Larsson
(eds), Artech House, July 2002. ISBN 1-58053-327-2.

[Reiff-Marganiec02] S. Reiff-Marganiec, K.J. Turner, “Use of Logic to Describe
Enhanced Communications Services”, In D.A. Peled and M.Y. Vardi (eds),
Proceedings Formal Techniques for Networked and Distributed Systems, LNCS 2529,
pp. 130–145, Springer, Berlin, Nov. 2002.

[Reiff-Marganiec03] S. Reiff-Marganiec, K.J. Turner, “A Policy Architecture for
Enhancing and Controlling Features”, In D. Amyot and L. Logrippo (eds),
Proceedings 7th Feature Interactions in Telecommunications and Software Systems,
pp. 239–246, IOS Press, Amsterdam, June 2003.

[Reiff-Marganiec04a] S. Reiff-Marganiec, “Policies: Giving User Control over
Calls”, In M.D. Ryan, J.-J. C. Meyer, and H.-D. Ehrich (eds), Objects, Agents and
Features, LNCS 2975, pp. 189–208, Springer, Berlin, May 2004.

[Reiff-Marganiec04b] S. Reiff-Marganiec, K.J. Turner, “The ACCENT Policy Server”,

Technical Report CSM-164, Computing Science and Mathematics, University of
Stirling, UK, August 2004.

[Reiff-Marganiec04c] S. Reiff-Marganiec, K.J. Turner, “APPEL: The ACCENT Project
Policy Environment/ Language”, Technical Report CSM-161, Computing Science
and Mathematics, University of Stirling, UK, August 2004.

[Reiff-Marganiec04d] S. Reiff-Marganiec, K.J. Turner, “Feature Interaction in
Policies”, Computer Networks, 45(5):569–584, August 2004.

[Robinson03] W.N. Robinson, S.D. Pawlowski, V. Volkov, “Requirements
Interaction Management”, ACM Computing Surveys (CSUR), Vol. 35, Issue 2, pp
132-190, June 2003.

[Rosenberg02] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnson, J. Peterson,
R. Sparks, M. Handley, E. Schooler (eds), “SIP: Session Initiation Protocol”, RFC
3261, The Internet Society, New York, USA, June 2002.

[Turner04] K.J. Turner, “The ACCENT Policy Wizard”, Technical Report CSM-166,
Computing Science and Mathematics, University of Stirling, UK, August 2004.

[vanLamsweerde98] A. van Lamsweerde, R. Darimont, E. Letier, “Managing
Conflicts in Goal-Driven Requirements Engineering”, IEEE Transactions on Software
Engineering”, Vol. 24, pp 908-926, 1998.

