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A B S T R A C T

This thesis presents a study into conflicts that emerge amongst sensor device rules when such

devices are formed into networks. It describes conflicting patterns of communication and

computation that can disturb the monitoring of subjects, and lower the quality of service. Such

conflicts can negatively affect the lifetimes of the devices and cause incorrect information to

be reported. A novel approach to detecting and resolving conflicts is presented.

The approach is considered within the context of home-based psychiatric Ambulatory

Assessment (AA). Rules are considered that can be used to control the behaviours of devices

in a sensor network for AA. The research provides examples of rule conflict that can be found

for AA sensor networks.

Sensor networks and AA are active areas of research and many questions remain open

regarding collaboration amongst collections of heterogeneous devices to collect data, process

information in-network, and report personalised findings. This thesis presents an investigation

into reliable rule-based service provisioning for a variety of stakeholders, including care

providers, patients and technicians. It contributes a collection of rules for controlling AA

sensor networks.

This research makes a number of contributions to the field of rule-based sensor networks,

including areas of knowledge representation, heterogeneous device support, system per-

sonalisation, and in particular, system reliability. This thesis provides evidence to support

the conclusion that conflicts can be detected and resolved in adaptable rule-based sensor

networks.
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Part I

A M B U L AT O RY A S S E S S M E N T, S E N S O R N E T W O R K S ,

R U L E S A N D C O N F L I C T S



1
I N T R O D U C T I O N

The main technical challenge [of digital healthcare] remains

being able to monitor and analyse

activities of daily living to inform decisions

about changes in patterns of activity

to bring health benefits.

— The Royal Society [Society, 2006]

1.1 introduction

This thesis presents a study of conflicts that can emerge amongst low-level sensor device rules

when such devices are formed into networks to perform complex tasks such as Ambulatory

Assessment (AA). The thesis has been written in consideration of a body of work in areas

including Feature Interaction (FI) for call control, home automation, and AA. In particular, the

underlying research was carried out in collaboration with the Personalised Ambient Monitor-

ing (PAM) project. PAM was an Engineering and Physical Sciences Research Council (EPSRC)

funded pilot study that involved researchers from the University of Stirling, the University of

Southampton and the University of Nottingham. The project team investigated the feasibility

of reducing the incidence of debilitating psychiatric episodes through personalised ambient

monitoring of patients in their homes. The study involved an infrastructure composed of

on-body and environmental sensors that performed longitudinal monitoring of subjects.

This research began as a study into how Wireless Sensor Network (WSN)s could be used in

AA. Assessment personalisation was selected as a key concept, and the research concentrated

2
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on questions concerning rule-oriented programmability of system rules. The work further

concentrated on detecting and resolving conflicts that could emerge between device rules. An

approach based on the Event Calculus (EC) (described in chapter 2) was developed to improve

device reliability. This thesis contributes this approach including device rules for tasking a

WSN with monitoring and information processing duties. It also provides analytical tools for

discovering potential inconsistencies in the usages of the rules.

The starting point for the approach presented in this thesis is work conducted as part of

the PAM project to perform ambient monitoring for the mentally ill and in particular those

with Bipolar Disorder. Rule-based sensor network infrastructure was developed to monitor

with the explicit consent of the patients. Moreover it is expected to report its findings to the

patient and so all the data facts and rules regarding the monitoring components are open

to inspection by the patient and support staff. The infrastructure was developed to allow

various devices for individuals and to be registered with the network and change over time

as an individual’s mental state changes. The approach presented in this thesis is an attempt

to consider the nature of conflicts that can emerge in a rule-based sensor network and to

describe how some of these can be minimised or resolved.

The approach presented in this thesis is part of the PAM project’s feasibility study. It is

not to be taken on the order of a full clinical trial, but rather on the examination of a small

technical trial of equipment that the PAM team performed on themselves and a small-scale trial

involving a single patient. The approach is a justified response to the particular characteristics

of the type of monitoring required by the users of the PAM project.

Performing reliable behaviour monitoring is a research challenge of our age, as the quotation

at the beginning of this chapter suggests. The social sciences and medical professions have

long used interviews and questionnaires as the gold-standard collection instruments for their

studies, but as Stone et al. [2007] pointed out, a growing number of researchers have rejected

these in favour of more reliable instruments. The problem with interviews and questionnaires

is that they rely on human recall, which has been shown to be untrustworthy. People can

intentionally lie and cheat. Usually, however, they make mistakes owing to biases in their

memories, confabulations, and failures to follow procedures accurately. If scientific inquiry
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into how people think, feel, and behave was limited to using questionnaires, then what it

means to be human might never be understood very well. Fortunately, questionnaires are not

the only tools available to researchers anymore.

A newly emergent set of methods called AA analyses behaviours, physiological changes,

experiences and environments of people as they go about their daily lives. Mobile and sensor

technologies are being used independently to study the health and safety of people in their

natural environments. The combination of mobile phone technology with home monitoring

devices, may however, be able to provide us with greater understanding of subject mood and

behaviour.

1.2 conceptual overview

This section provides an initial overview of topics that will be explored in more detail in the

rest of the thesis.

Heterogeneous devices are capable to some degree of sensing, computing, storing data, and

communicating with each other (and the outside world) as part of an ad hoc network1. Such

devices may be mobile or stationary, and they may draw power from a variety of sources.

When networked together each device can be thought of as a node in a network. Each device

has an Operating System (OS) programmed in a low-level language to control hardware. Some

of the nodes are capable of supporting rule engines to control their behaviours along with the

behaviours of the less capable nodes.

Figure 1 shows an example network for monitoring subject behaviour and physical activity.

The figure combines the hardware infrastructure elements (PAM-i) with software architecture

(PAM-a) elements to depict four interlinked monitoring environments for on-body, environ-

mental, mobile phone and personal computer monitoring. The figure shows that each of the

four areas has a device capable of communicating with one or more of the other devices. The

mobile phone is shown to support a rule engine and is programmed through its rules.

1 In addition, nodes may also actuate changes in the environment (such as opening and shutting windows). Actuation,
however, is outside the scope of this thesis and only information processing capabilities are considered here.
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Figure 1: WSN for personalised monitoring.

Declarative languages may be used to express device rule programs, which can be intuitive

for domain expert use. For instance, a rule for monitoring a room might be expressed as

“Stop monitoring if the subject is not present”. Collections of such rules can be formed into

programs to control the devices in a WSN but conflicts may emerge amongst the device rules.

This thesis shows that five types of conflicts (Sequential Action Interaction (SAI), Looping

Interaction (LI), Missed Trigger Interaction (MTI), Shared Trigger Interaction (STI) and Multiple

Action Interaction (MAI)) of concern to the FI community can arise in such WSNs.

A novel approach to programming sensor networks is presented herein that uses rules

written in a declarative language called the EC to load actions into devices. This approach

requires access to all the device rules in the network in order to analyse them in such a

way as to minimise the risk of various forms of conflicts when collectively capturing and

processing data. This thesis considers the analysis approach using example rules for device

control, contextual monitoring and notification.
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To contextualise sensor networks for behaviour monitoring, consider a scenario involving

researchers interested in studying the impact of Bipolar Disorder on subjects conducting their

usual activities of daily living. Bipolar disorder is a severe psychiatric disorder characterised

by patients being in patterned (possibly cyclic and/or recursive) affective states, including

mania, hypomania, eurythmia, depression and mixed states. Not only may the quality of their

lives may be reduced significantly by the disorder, but, according to Yatham et al. [2004] and

Das Gupta & Guest [2002], there are also high costs for society to pay.

Sensor networks can be used by researchers to better understand the patterns of a person’s

behaviour. Researchers, for instance, may be interested in observations relating to prodromes

that lead to manic or depressive episodes, as well as the frequency and duration of episodes.

They can place small inter-communicating sensors in the homes of subjects and provide them

with wearable sensors and mobile phones. These devices may be independently programmed

by various team members using different rules to control data sampling frequencies, commu-

nication, analysis and storage. This thesis discusses the importance of personalisable device

configurations in AA because subject reactivity to devices causes skewed or inaccurate data.

Reactivity occurs when subjects vary their behaviours owing to reactions to the monitoring

methods according to Fahrenberg [2006]. Reactivity problems can be reduced through the use

of device configurations personalised to the subjects. For instance, subject schedules could be

taken into account when prompting for information. Whilst earlier approaches to AA provided

mechanisms for setting certain configuration options, the approach presented in this thesis

goes further by suggesting a rule-orientated device programming method that can be used to

personalise a greater range of system aspects.

1.3 research questions

Given the views presented above this work examines the following questions.

1. What rules can be used to control the behaviours of devices in a sensor network for AA?

2. Can examples of rule conflict be found for AA sensor networks?
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3. How can AA sensor network rule conflicts be detected and resolved?

1.4 thesis statement and research objectives

This thesis proposes an approach to detect and resolve conflicts in rule-based sensor networks

where device control rules, knowledge management rules, conflict detection rules and device-

level priority rules are loaded into an analytical framework. The framework evaluates the

control and knowledge rules against the conflict rules to determine which of the evaluated

rules conflict with each other. To resolve the conflicts, device-level priority statements are

loaded into the analytical framework and evaluated to determine which of the conflicting

rules should be disabled in a given situation.

It is claimed that a conflict detection and resolution approach to the configuration of sensor

networks, based on device rule evaluation, provides network design, implementation and

usage benefits and is a suitable approach to modelling rule conflicts and resolutions.

To answer the previously stated research questions, the objectives of this research are:

• To determine and describe rules necessary and sufficient for AA sensor networks

• To examine AA sensor network examples for rule conflict

• To demonstrate and evaluate an approach to detecting and resolving rule conflicts within

AA sensor networks

1.5 contributions

This thesis contributes a study into detecting and resolving five types of conflicts (SAI, LI, MTI,

STI and MAI) that can occur in WSNs. The thesis also contributes rule conflict investigation

tools developed from the EC, a logic language that can be used to reason about temporal

activities. This thesis presents a study into how these tools can be used to detect and resolve

conflicts for digital healthcare and other complex monitoring tasks.The conflict investigation
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tools were developed to test the hypotheses described in the previous section. These were

used to support positive conclusions about the hypotheses. Evidence is provided that shows

that independently programmed device rules may lead to conflicts, but that it is possible to

detect and correct them.

This work is the first to study rule conflicts in AA WSN systems. AA concerns provide novel

and interesting challenges for WSN conflict detection. AA has gained ground as a method

used in the behavioural sciences, however researchers such as Collins & Muraven [2007] have

described technological barriers that have limited previous AA research. Device interaction is

a threat that has heretofore been ignored by such researchers because of their focus on the use

of individual devices. Given the increasing availability of sensors, it is reasonable to foresee

that researchers will want to interconnect a variety of such devices in order to gain greater

insights into their subjects. This, in fact, is the vision proposed by Intille [2007] of Context

Sensitive Ecological Momentary Assessment (CS-EMA) which is discussed further in chapter 3.

Device conflicts will increasingly become problematic in AA as researchers rely on a greater

number of devices for their studies. Previous FI solutions, however, have not been used with

these systems, and new approaches to establishing their reliability are required.

1.6 thesis organisation

This thesis is organised in two parts: Ambulatory Assessment, Sensor Networks, Rules and Con-

flicts and Conflict Detection and Resolution. In addition, appendices are provided with support-

ing documentation .

The complexities of AA WSN systems are introduced in part I. Concepts in the areas of rule

programming, EC, conflict analysis, WSN, and AA are reviewed in chapter 2. These concepts

lay the foundation for the following chapters. Chapter 3 identifies AA rules for latter analysis.

Chapter 4 provides details of the rules, describes their organisation into device control and

knowledge exchange groups, and provides examples of conflicts that can emerge from their

usage.
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Part II examines a solution to conflict problems in WSN systems. Chapter 5 describes the

theory behind conflict detection and resolution for WSN systems. Chapter 6 provides evaluation

details of the conflict detection and resolution. Chapter 7 summarises the thesis and describes

future work.

1.7 summary

Performing reliable behaviour monitoring of subjects as they go about the activities of their

daily lives is an important goal for society. Devices may be combined into WSN solutions to

perform AA. In doing so, we must ensure that they are personalisable and work together in a

manner that minimises conflicts between them.

This thesis presents an approach to detecting and resolving conflicts that can arise in such

systems. It shows how rule sets can fulfill the goals of AA, but that these can conflict unless

detected and resolved.



2
B A C K G R O U N D

2.1 introduction

This chapter describes background information concerning the concepts used in the rest of

the thesis. In particular it describes rule-based programming, conflict detection and resolution,

the Event Calculus (EC), Wireless Sensor Network (WSN) programming and Ambulatory

Assessment (AA).

2.2 rule-based programming

Rules can be used to control sensor networks and can simplify the reasoning processes about

the network and the subjects of inquiry. The following is an examination of the meaning of

rules and the benefits they bring to sensor network programming.

The term “rules” is short for the term “production rules”. These were originally used to

define formal grammars. In addition, rules have long been used to program intelligent systems

as reported by Negnevitsky [2002], to program expert systems such as those discussed by

Gonzalez & Dankel [1993] and Jackson [1999], along with, more recently, to program sensor

networks, such as was reported by Terfloth et al. [2006]. Rules for all of these purposes are

axioms of first-order predicate calculus used in connection with other axioms. They contain

two parts: an antecedent and a consequent. These parts are connected within an inferential

if-then framework such that if an antecedent is true then the consequent should also be inferred as

true.

10
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A declarative approach to programming systems can be used to chain inferences together

to come to conclusions given starting facts about the world of discourse. Facts and rules

are generally stored in accessible knowledge bases. In addition to reasoning, declarative

approaches may descend from the realm of pure logic to actuate changes in the world, such

as through specialised if-then frameworks like the one described by Fei & Magill [2008]. These

type of rules are often viewed as event-orientated and, if so, are known as Event-Condition-

Action (E-C-A) rules. Although syntax for various systems may differ, they can usually be read

as: for a given event, if a condition (or situation) is true then a particular action should be performed.

The perspective of what a rule is (E-C-A or Antecedent-Consequent (A-C)) may seem trivial,

but it impacts on the flexibility of the rule system. The perspective also influences whether or

not a system requires a hierarchy of rule types (as was used in the goals and policies work

reported by Turner & Campbell [2009]), or whether rule composition suffices to describe a

complete system. The work in this thesis mainly concentrates on the latter, more traditional

approach.

There are alternative forms for expressing rules. For instance, the purely logical form is:

The consequents c1 or c2or . . . or cm are to be inferred if the antecedents a1 and a2 and . . . and am

are true.

This can also be expressed in clausal form as:

c1 or c2 or . . . or cm ←− a1 and a2 and . . . and am.

The Horn clause subset, as described by Kowalski [1974], limits the number of consequents

of a rule to, at most, one. This has a number of benefits regarding the simplification of the

logic such as reducing the state space. In clausal form this looks like:

c1 ←− a1 and a2 and . . . and am.

The Prolog programming language is used throughout this document. The authors of

Prolog, Colmerauer & Roussel [1996], reported that their initial goal was to develop a tool

that could use first-order predicate logic to analyse the syntax and semantics of the French

language. What they developed became a system that is able to both represent knowledge

(facts and rules) and interpret execution of rules given facts. Prolog uses certain conventions

which will be adhered to in this document, including that known atoms begin with lower
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case letters as distinct from variables (logical placeholders) that begin with an upper case

letter or an underscore. In addition, Horn clause subset rules are used in Prolog, and these

are represented by replacing←− with “:-” as in:

c1:- a1 and a2 and . . . and am.

2.3 conflict detection

Rules controlling multiple interacting devices can conflict with each other, that is to cause each

other to behave in manners that violate their requirements, specifications, or the assumptions

of their users. Such conflicts are not software bugs in the traditional sense, since the rules are

operating correctly within the context of the individual devices. Detecting and resolving these

conflicts within sensor networks is the main concern of this thesis, and has been informed

by a form of system feature conflict of concern to researchers since the 1980s, called Feature

Interaction (FI). FI researchers are concerned with problems within systems that are exposed

when services and features are composed. FI was originally discussed by Bowen et al. [1989]

with regard to telecommunication systems. Subsequently, FI has been extended into other

domains such as the examination of Internet applications by Crespo et al. [2007] and home

automation by Wilson et al. [2007] and Nakamura et al. [2009].

A feature is defined by Calder et al. [2003a] as “. . . a component of additional functionality

– additional to the core body of software.” The core body of the software can be viewed as

the services offered by the software; each service offering groups of features. Marples [2000]

defined FI as: “The change in operation of any Feature which can be attributed in part or in

whole to the presence of any other Feature within the operational environment.” Marples

goes on to point out that this definition ignores the FI quality1.

Diagrams based on UML 2 activity diagrams are used throughout this document to depict

examples of FI and rule conflict. These diagrams may contain the following elements:

• A single circle marks the initial state

1 The quality of FI is the degree to which the FI brings advantages or disadvantages to the system.
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Figure 2: The Interaction of OCS with CFB.

• Black bars mark the splits or joins of concurrent activities

• Rounded-edged ovals represent activities

• Diamonds indicate optional paths

• Arrows represent the ordering of the activities

• Labelled invariant conditions within square brackets above arrows

• Dashed arrows indicate missing action caused by a conflict or interaction

• Double-edged circles mark the final states

A classic example of FI in telecommunications is depicted in figure 2. The example involves

the user Alice subscribed to the feature Originating Call Screening (OCS), screening out calls to

the user Charlie. The user Bob is subscribed to the feature Call Forwarding when Busy (CFB),

forwarding calls to Charlie when busy. As is clear from the figure, an interaction occurs when

Alice calls Bob when Bob is busy, because either the call from Alice is forwarded to Charlie,

thereby invalidating OCS, or else the call is blocked, thereby invalidating CFB. In either case, the

operation of one of the two features is invalidated by the presence of the other. This example



2.3 conflict detection 14

demonstrates that multiple agents may be involved in FI. However this is not a requirement,

and other examples are discussed that involve single devices or single users.

FI causation is reported in Cameron et al. [1994]. The main categories of causes are: violation

of assumptions, network support limitations, and problems native to all distributed systems.

Although that paper concentrates on call control networks, many of the lessons can be adapted

for the types of sensor networks investigated in this work. For instance Cameron et al. pointed

out that there may be timing problems (such as race conditions), and resource access problems.

Certainly, modern sensor network designers need to be aware of these types of problems.

Features are often added by different developers at various stages of the software life

cycle, which is problematic because features tend to be tested in isolation rather than in full

integration with active environments. FI, therefore, requires more considered solutions than

manual inspection of programming instructions or unit testing features. Three groups of

FI solutions are described by Calder et al. [2003a]: focused software or service engineering

approaches, offline formal methods for requirements or specification analysis, and online

detection and resolution techniques. In addition a fourth group of solutions is offered that

uses a hybridisation of offline and online techniques, which was further investigated by Calder

et al. [2003b].

Online approaches are necessary in order to support extensible systems that are future

proofed. They are, however, usually tightly connected to a given network, have trouble dealing

with distributed logic, and they lack a priori knowledge. Such difficulties can lead to high

resource usage when resolving a large number of feature conflicts. Online approaches, such

as that of Kolberg [2004] have often had service privacy as a key goal and have attempted to

avoid the direct exchange of sensitive business information. In contrast, the approach in this

thesis requires direct access to the rules, however this is justified given that the envisioned

device network pertains to AA, and therefore, the various device rules should be open for

inspection by the subject and care providers.

Marples [2000] defined two categories of online techniques that can be used in FI analysis:

feature managers and negotiation strategies. Feature managers are message analysis agents

that review all messages of a network and determine actions to be taken (such as message
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passing or destruction). Feature managers tend to be centralised, although Calder et al.

[2003a] hypothesised that distributed architectures for feature managers were also possible.

Negotiation strategies allow features to inter-communicate in order to resolve interactions that

may emerge through their usage. Wilson [2005] also suggested that indirect and arbitrated

negotiations were possible such that a third party could be part of the negotiations.

Various types of FI have been reported. This thesis considers an extended form of Marples’

FI taxonomy as described by Wilson et al. [2007]. It consists of five types of interactions: Shared

Trigger Interaction (STI), Sequential Action Interaction (SAI), Looping Interaction (LI), Multiple

Action Interaction (MAI) and Missed Trigger Interaction (MTI). The following describes them

in more detail.

2.3.1 Shared Trigger Interactions

STI can be defined as the antecedents of multiple features being satisfied such that they each

perform actions in response to the the same triggering event, and the operation of one or more

of the features is different from how it would have reacted had it been the sole responder.

For example, STI will occur in the AA example depicted in figure 3. If Alice’s mobile phone is

subscribed to Data Storage Unconditional (DSU) and Data Storage Through Processing (DSTP)

then, when data arrives from Alice’s wearable health monitor, the operation of one of the

features will not be executed since either the raw data or the processed data would be stored in

the database. The type of data (raw or processed) to be stored is unclear, and the determination

will result from a race condition involving the speed that the two features receiving their data

and performing their operations.

Multiple features, however, do not always interfere when responding to the same triggering

event. In the above example, for instance, if the features write to separate databases, no

operational problems will arise from them both reacting to the same triggering event.
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Figure 3: AA STI example. A mobile phone is subscribed to the competing features DSU and DSTP leading
to STI.

2.3.2 Sequential Action Interactions

The definition of SAI is the operation of a feature triggered in response to the actions of

another feature. Such chaining of features may indeed be qualitatively desirable, however they

are still a form of FI. An example of SAI is depicted in figure 4. In this example, the mobile

phone belonging to Alice (the user) is subscribed to the feature DSU. Alice wears a device

called a Wearable Health Monitor (WHM) which is subscribed to the feature Automatic Data

Transfer (ADT) configured to send data to Alice’s mobile phone. When a signal is detected

by the WHM, the device’s ADT feature sends the data to the mobile phone, triggering its DSU

feature. Whilst a desirable example, it is nevertheless an interaction between the features.

This potential for desirability, along with the interaction being spread across multiple devices,

makes SAI difficult to resolve.
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Figure 4: AA SAI example. A mobile phone is subscribed to the feature DSU and a wearable health
monitor is subscribed to feature ADT. This leads to SAI.

2.3.3 Looping Interactions

LI can be defined as a special case of SAI whereby the operation of the chained features leads

to a redundant cycle. That LI is a special case of SAI is in agreement with Wilson [2005], who

explained that SAI can potentially be beneficial, but LI will never be.

An example of LI in AA is given in figure 5. Here, the user Alice’s mobile phone is subscribed

to the feature Data Forward Unconditional (DFU) such that when Alice is at home the data

stored on the mobile phone is forwarded to a data sink. The data sink is subscribed to the

feature Data Transfer On Unavailable (DTOU) which is configured so that data sent to an

unavailable sink will be redirected to Alice’s mobile phone for temporary storage. In this

case, an infinite loop occurs whereby DFU causes the phone to send data to the sink, which

is unavailable and thus DTOU returns the data to the phone. This results in an unnecessary

flooding of the network and the storage capabilities of the phone.



Figure 5: AA LI example. A mobile phone is subscribed to the feature DFU and a home data sink is
subscribed to feature DTOU. This leads to LI

18
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Figure 6: AA MAI example. A mobile phone is subscribed to the features DNNU and TS. This leads to
MAI.

2.3.4 Multiple Action Interactions

If multiple features attempt to provide instructions for the same device, then the features are

said to interact by way of MAI. In some cases the interaction may be benign, such as when

both services send the same instruction to the device. Alternatively the interaction may be

intolerable, such as when the services send conflicting instructions. An example of the latter

is displayed in figure 6. In this example, a mobile phone is registered with services for not

disturbing the user and for time synchronisation. If Do Not Notify Unconditional (DNNU) is

activated then the Time Synchronisation (TS) message cannot be activated. Alternatively, if

activation occurs, then the DNNU is not being respected. These services interact because they

are both trying to control the same device at the same time.

2.3.5 Missed Trigger Interactions

The definition of a MTI is the operation of a feature that prevents the triggering of another

feature.

MTI detection and resolution have escaped previous online and hybrid approaches to

resolve FI. The closest result in the literature was made by Kolberg [2004]. He reported that
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MTI was theoretically detectable, but it was not detected at run time owing to limitations in

the underlying system architecture used for his experiments.

2.4 pairwise and n-way interactions

The study of feature interaction originally examined telephony call control features. Numerous

methods of analysis were developed, some of which focused on pairwise (or 2-way) interac-

tions, while others attempted to elaborate to 3-way or more generally n-way interactions.

3-way or greater interactions are hardly ever observed in telephony, as noted by Calder &

Miller [2006]. Furthermore, many n-way interactions can be described using combinations

of pairwise interactions. For example, in the contest results reported by Kolberg et al. [2000],

the entry by Plath & Ryan [2000] shows that only one possible grouping of the given features

could allow for a 3-way interaction possibility where pairwise had not previously been found.

This was the combination of the features call waiting, terminating call screening and voice

mail. However, no combination of these features leads to a 3-way interaction. Outside of

telephony, 3-way or greater interactions are also rarely reported. Tsang et al. [1997] provides 3

examples of 3-way interactions, however these can still be detected using pairwise analysis.

Given these considerations, the work presented in this thesis has concentrated on pairwise

analysis.

2.5 policy conflict

Policy conflict is an area relating to FI. Policies are statements of general principles that

govern system wide behaviour in reaction to conditions and events. They differ from the work

presented in this thesis in that they apply to a system as a whole, whereas, the work in this

thesis concentrates on low-level device rules. Still, an examination of policy conflict analysis is

of interest as some of the issues are of concern to both areas.
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Chomicki et al. [2003] describe an E-C-A based policy description language and a conflict and

resolution system for it. For them, a policy is in conflict when its set of actions cannot occur

together as defined by the policy author. This is limiting in two ways. Firstly, it says nothing

about conflicts that can emerge between multiple policies. Secondly, the form of conflict is

similar to MAI described below, but ignores other forms of conflicts that can emerge such

as MTI. They describe priority ordering applied to the actions of policies to resolve conflicts.

While, the work in this thesis also applies priorities it is important to note that the two systems

are not similar. Applying priorities to actions from a single policy implies that the policy

author is aware that the actions may conflict with each other. It is therefore better for said

authors to compose non-conflicting actions in the first place. On the other hand device rule

authors may wish to express priorities for their devices knowing that rules on their device

may conflict with other rules, but without knowing about the other conflicting rules.

Authorisation policies are appropriate for an organisation, but make little sense within an AA

context where the resources belong to a self-monitored individual. Such works which include

those by Masoumzadeh et al. [2007] that focus too extensively on detecting and resolving

authorization policy conflicts, are of little interest to the focus of this thesis. Obligation policies

are little more than E-C-A rules defining what should happen and when. The types of conflicts

that they examine are constrained to their authorisation/obligation model and tend to focus

exclusively on modality conflicts, which can be considered alternate forms of MAI. Wang &

Turner [2008] describe policy conflicts in an area more in line with AA, which is home care.

They describe using E-C-A authorisation and obligation policies to perform domestic health

monitoring and home automation. Their policy system is reminiscent of that described by

Lupu and Sloman and no case is made as to why one would wish to use authorisation and

obligation policies in a home care setting. They describe three additional forms of conflict

not considered by Lupu and Sloman. Two of these suggest that alternative calculi may be

better choices for their rule systems; the EC may be a better choice for concerns regarding

Dependency among Situations and Interactions between Actions over Time. It is unclear that the

third concern, Multiple Stakeholders, is a conflict. Rather it is perhaps a root cause of conflicts,

but is not a concern of the work in this thesis. It may be that policy conflict detection models,
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such as those described in Blair & Turner [2005], are better for organisational domains such as

telephony, whereas domains similar to AA may require a different way of thinking about rules

than focusing on authorisation and obligation.

Lupu & Sloman [1999] concern themselves with conflicts in policies for distributed systems.

They use a management agent approach that concentrates on two types of policies, those

that authorise (or forbid) a manager to perform activities on a set of resources and those that

oblige the manager to do a set of things. By agent, they mean an automated component that

interprets policies. From this point of view the mediator component discussed in this thesis

can be seen as an agent that interprets rules. However, this view is perhaps overly liberal.

Jennings [2000], based on the work of Wooldridge [1997] describes agents to be computer

systems within a particular environment with enough problem solving and environmental

reactivity capabilities to accomplish autonomously tasks within the environment. Although

advances in agent based programming have been made to the point where they are being

deployed in home care settings, examples such as Isern et al. [2011] show that the autonomy

envisioned by Jennings and Woolridge are not mature yet. The work in this thesis is at a

similar level in that rules are programmed to control devices and allow the devices to respond

via reified actions determined by the rules.

2.6 the event calculus for conflict analysis

The EC is related to the Situation Calculus described by McCarthy & Hayes [1969]. The

greatest difference between them is that the EC was designed for use with time periods,

whereas the Situation Calculus maintains a perspective of global states. Kowalski & Sergot

[1986] discussed that they originally designed the EC to circumvent the frame problem of the

Situation Calculus. The frame problem refers to the difficulty of handling dynamism in a

domain without enumerating conditions unaffected by actions. The solution most commonly

used in the EC is called circumscription, which is sometimes also called the rule of inertia.

This rule states that a fluent that holds at a given point in time will continue to hold until
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a point in time when it is explicitly made not to hold. There have also been attempts to

rectify the frame problem through extensions to the Situation Calculus, yet some differences

remain between the approaches. For instance, Provetti [1996] argued that whilst the extended

Situation Calculus and the EC may agree in large part, the EC has a more intuitive terminology

for event-driven applications. Given this argument the EC was chosen over the Situation

Calculus for investigation in this thesis. The form of the EC used in this thesis was derived

from Wilk [2004].

The EC consists of three main concepts: fluents, actions (or events), and time points. Fluents

are properties of the universe of discourse that can change in time. These properties may

either take a form such as “the subject is in the house” or a quantifiable form, for instance

the level of ambient sound in a room. A fluent can hold at a given point in time if it was

previously initiated by an action and has not been subsequently terminated. Actions occur

at points in time and can modify fluents. Time points provide a narrative based structure

independent of any particular action.

The EC also provides the predicates listed in Table 1. In addition, uniqueness of names

was supposed for fluents and actions to neutralise problems that otherwise might arise from

identicality. The core of EC applications therefore contain the following:

1. Domain dependent sentences (Σ) describe the effects of actions on fluents at given time

points.

2. Domain independent axioms (EC) are the backbone of the EC. These are used to reason

about whether or not fluents hold at given time points.

3. A narrative (∆) provides a list of the events that occur and defines the temporal ordering

(such as, given time points τ1 and τ2 , τ1 occurred before τ2 ).

4. An initial situation (∆0) describes the fluents at the earliest time point.

5. Unique names ( Ω) for fluents and actions.

6. A goal (Γ ) is queried to determine whether a fluent holds at a given time point. A goal Γ

is modelled by Σ ∧(∆∧∆0)∧EC ∧Ω.
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Table 1: Concepts of the Simple EC

Taxonomy Id Predicate Definition

Σ Initiates(α, β, τ) Action α initiates fluent β which will begin to

hold after time τ

Σ Terminates(α, β, τ) Action α terminates fluent β which will cease to

hold after time τ

EC Clipped(τ1, β, τ2 ) Fluent β is terminated between τ1 and τ2

EC Declipped(τ1β, τ2 ) Fluent β is initiated between τ1 and τ2

EC HoldsAt(β, τ) Fluent β holds at time point τ

∆ Happens(α, τ) Action α happens at time point τ

∆0 Initallyp(β) Fluent β holds at the first time point

∆0 Initallyn(β) Fluent β does not hold at the first time point

This form of the EC is used to look for interactions in rules for the work in this thesis. For

example, the interaction of rules for OCS and CFB (see figure 2) can be described in EC as

follows.

1. The initial situation (∆0) is:

• Initallyp(alice_can_make_call).

• Initallyp(bob_busy).

• Initallyn(connection).

• Initallyn(connected _to_charlie).

2. The domain dependent sentences (Σ) are:

• Terminates(alice_call_bob, connection, t) :- HoldsAt(connected _to_charlie,t). This

is the rule for OCS.

• Initiates(alice_call_bob, connected _to_charlie, t) :- HoldsAt(bob_busy, t). This is

the rule for CFB.
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• Initiates(alice_call_bob, connection, t) :- HoldsAt(bob_busy, t).

3. The narrative (∆) is :

• Happens(call, t0).

4. The goal (Γ ) is:

• HoldsAt(connection, t1).

Unfortunately, Γ can be satisfied with either true or false. Here the priority of the Initiates and

Terminates sentences influences whether the connection is established. Searching for such

conflicts in the EC forms of the narratives can lead to the discovery of conflicts amongst rules.

Previously others have applied EC-based approaches to model conflict analysis in distributed

systems. Efstratiou et al. [2002] modelled obligation policies using the EC and had future

plans to detect conflicts amongst them. Bandara et al. [2003] developed methods to transform

policies and top-down views of system-wide behaviour into EC notation, in order to abduce

conflict types. They introduced a considerable number of additional predicates in order to

model domain objects and whole system behaviour. Such additions could make it difficult

for domain experts to understand the underlying behaviour of the system. Laney et al. [2007]

adapted requirements, domain information, and specifications into EC format. These were

used with a feature composition controller at run-time to handle inconsistencies. Thus, a

motivating interest for this thesis is the usage of the EC for conflict detection and resolution

for device control.

There are some commonalities, but also some differences, in how this work compares with

others in the field. Montangero et al. [2008], for instance, held a similar view to Lupu et al.,

and went as far as proposing conflict detection and resolution for distributed policy-based

systems. The biggest difference between that work and the approach here is the policy-level

orientation versus the lower-level rule orientation. As Montangero et al. point out this is a

difference of the detail at which the system is studied: policies can be seen as top-down

control of a system as a whole, whereas the rules discussed here only control a single feature.

In their approach, Montangero et al. specified policies in the APPEL language, then translated

these into ∆DSTL(X) temporal logic format for conflict detection. An advantage that the work
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in this thesis has over theirs is that the rules are written in the EC and these are used directly

in conflict assessment, thus simplifying the stages of design, development and verification.

Such a united approach makes it easier for the end users to understand how the rules in their

system operate and problems that can arise from them. Another advantage that this work

has over theirs is in how conflicts are described and determined. Montangero et al. defined

conflict as being the case when two policies are applicable at the same time and their actions

conflict. This is broadly similar to the notion of STI, but leaves no room for handling additional

conflict types such as MTI and SAI.

Another approach that involves temporal logics is presented by Calder et al. [2009]. In that

work, a MATCH Activity Monitoring (MAM) hub is modelled in the PROMELA verification

modelling language. These hubs are rule-based pervasive systems, however the rules are less

expressive and powerful than the ones presented in this thesis. The MAM rules are simple

if->then statements that cannot support complexities such as recursion. Furthermore, the

EC-based rule system presented here is advantageous because it provides the writer (and

reader) with a sense of the temporal flow of the happenings of actions, rather than simply

a listing of ifs and thens. In other words it provides the rule author with a more flowing

mental model of what can transpire in the network, and therefore will be more complete

and representative of the problems being addressed. Calder et al. [2009] presented two forms

of verification procedures to look for redundant rules (rules that overlapped, which can be

seen to be MAI). The first translated the PROMELA rules into Linear Temporal Logic (LTL)

properties which are then fed into the SPIN model checker. Verification by this method is

shown to be too slow for use within a volatile network. The second approach fed the LTL

model into the miniSAT SAT solver which detects redundancies in a reasonable amount of

time. Such an approach, however, has not been shown to detect MTI or STI.

The Horn clause subset of first-order predicate logic is used to define a family of frameworks,

known collectively as the EC, in order to represent and reason about actions and their effects

in time. The EC was originally designed to reason about database applications, according

to Kowalski & Sergot [1986]. Since then, as Miller & Shanahan [1999] pointed out, the EC

has been applied to a number of different application areas such as: agent belief modelling,
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planning, and cognitive robotics. In addition, it is used in work flow management systems by

Wilk [2004], by Chen et al. [2008] for reasoning about behaviour in smart homes, for analysing

policy and system behaviour specifications by Bandara et al. [2003], and by Broda et al. [2009]

for sensor information reasoning and actuation. Charalambides et al. [2005] performed policy

analysis using the EC which could be useful if one were attempting to resolve organisational

policies.

A number of variations of the EC have been used, but the core of the framework (represented

as the predicates in Table 1) is mainly consistent across formulations, and the predicates used

for this thesis are the same as those used by Wilk [2004]. Since the Horn clause subset has

been used in the definition of EC, it is relatively straightforward to implement the EC in a

declarative programming language such as Prolog.

2.7 interaction resolution

Interaction resolution has previously been considered in works such as Marples [2000],

Reiff-Marganiec [2002], Wilson [2005], and Nakamura et al. [2009]. Each offered alternative

approaches, but these can be summarised as reliance on human intervention, reliance on

heuristics or reliance on priorities/preferences.

Marples [2000] relied extensively on human intervention to customise approaches at the

per-interaction-type level and at the interaction level. These solutions are summarised in table

2. The resolution choices offered by Marples boiled down to deciding which rules to disable

(not allow to run) at any time. Marples’ solution in some circumstances (such as for STI )

requires a priori knowledge about the interaction which may not be available until run time.

Of note as well, is that in some cases of SAI human intervention is required. The view of the

work in this thesis however is that device rule conflict resolution should allow for a level of

human oversight but must also supply default resolution behaviour until a human has had

time to determine the best resolution strategy to take.
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Table 2: Summary of resolution types discussed in Marples, 2000

Interaction Type Resolution strategy

STI Disable one of the rules. The choice as to which one is

determined in advance. For instance for interactions between

Call Forwarding Unconditional (CFU) and Do Not

Disturb (DND), CFU is allowed to succeed.

SAI These types of interactions required human intervention. A

table of ignorance is maintained because of the beneficence of

many of these kinds of interactions. System operators are

notified when new interactions are detected and they may

add the interaction to the table if the interactions are

perceived as benign. No explanation is given for what would

happen to offensive interactions.

LI The rules are disabled.

MTI No strategy is used since the system could not detect MTI.

Reiff-Marganiec [2002] relied on heuristics to extract a resolution space from a solution

space. He distinguished rules that are independent of the semantics of the messages sent

between conflicting rules from those that are not. Reiff-Marganiec attempted to determine

which features to allow to run, and which to disable like Marples did. The heuristics used

included:

• Favour solutions involving the largest number of communicating rules (note that this

does not necessarily mean the greatest amount of communication)

• Favour rules with the lowest number of connections

• When all things are equal, choose deterministically rather than randomly

Lupu & Sloman [1999] also provide heuristics to resolve conflicts, for instance to favour

negative authorisation over positive ones and to favour more specific policies over less specific
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ones. They criticise explicit priorities on the grounds that it is difficult for users to assign these

without them becoming arbitrary. However, the same criticism can be leveled at the heuristic

approach. Ultimately the choice of which heuristics to use represent the priorities of system

designers. The results of such heuristic application can only ever be validated against user

preference so it is favourable to allow users to specify priorities, but to do so in a way that

allows them to consider the consequences of their decisions.

Wilson [2005] describes a priority-oriented resolution strategy. Features are disabled (by

not allowing them to receive triggering messages) when interactions are detected. Wilson’s

solution is somewhat like the one proposed by Marples for handling SAI. Wilson’s protocol,

however, requires the assignment of priority levels to services. The determination of which

feature to grant authority of action to, therefore, can be delayed to a run-time assessment

of the priority levels of interacting services, which has the benefit of not relying on a priori

interaction knowledge. Another interesting point raised by Wilson is the notion of smart

services. When particular features are blocked, services can attempt to run alternative features

to accomplish their goals in the hope that the alternatives will not interact. Wang & Turner

[2008] use a preference system to prioritise policies to resolve conflicts. Their preference

system indicates how strongly the policy specifier feels about the given policy, but this is done

with disregard to any context within which the policy is used.

Most resolutions disable services, features, rules or actions. Nakamura et al. [2009] point

out that disabling a feature may be too heavy-handed a resolution for some situations. They,

assign priorities to their features, although they discuss the possibility of using heuristics like

Reiff-Marganiec did to determine the priorities on the fly. They distinguish between the total

disabling of a feature and the suspension of parts of the feature (what they called methods).

They expect service developers to assign flags to their methods indicating which of them are

mandatory. When interactions occur, lower priority services may suspend non-mandatory

methods and continue to run in compromised states. Whilst their idea that complete feature

abortion is overly relentless for some situations has intuitive appeal, they did not show that

running a compromised system is indeed a feasible solution. A compromised service may

create even greater degrees of negative interaction than one that disables features.
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2.8 sensor networks

Sensor networks are collections of devices that have one or more of the following capabilities

(to some degree): data sensing, data processing, communications, and data storage. Each

device may specialise in any of the capabilities or may perform all of them. The capabilities of

devices are provided by different types of components including communications transceivers,

sensors, and ultra small computing boards. These boards feature power sources, have limited

memory, and have input and output connections. Sensors transduce signals from physical

phenomena (such as thermal, electrical, or magnetic radiation) into forms that can be used

in a digital system. When devices communicate unattached by wires (such as transmission

over radio) the network is said to be a WSN. WSNs have been reviewed in a number of articles

including Yick et al. [2008], Akyildiz et al. [2002], Mottola & Picco [2010]. Whilst agreeing for

the most part with these descriptions, the view of sensor networks in this thesis follows Römer

[2004] in relaxing the wireless communication requirement for the devices (communication

may be wireless or wired).

Each device is considered to be a node in a network. There are three fundamental types of

nodes: sensor nodes, sink nodes, and gateway nodes. The first two of these are described by

Akyildiz et al. [2002]. Gateway nodes can be considered as those which transfer information

between a sensor network and external networks. A node may have characteristics of one or

more of the types (for instance a node could store data and act as a gateway).

The communications infrastructure of a sensor network tends to be ad hoc or minimal, as was

pointed out by Yick et al. [2008]. There are two fundamental approaches to the design of sensor

network architectures according to Zhao & Guibas [2004]: Data Collection System (DCS)2 and

CSIP. They describe that signal data in a DCS were transferred from sensors to sink nodes

at the edges of the networks, then processed at some later point in time. The authors also

discussed how data are processed intelligently in a CSIP and aggregated in-network. Mottola

& Picco [2010] describe how these architectural differences arise from alternative goals where,

2 Zhao & Guibas [2004] defined Collaborative Signal and Information Processing (CSIP) but did not provide a name for
traditional sensor networks. Therefore in this thesis the alternative has been labeled DCS.
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in the former case, designers may only be interested in sensing primary data, whereas in the

latter case, the designers may be interested in both sensing and reacting to the data. They

considered CSIP superior to DCS because goals could be better achieved through greater device

communication, collaboration, and coordination.

The domain of interest, AA in this case, has an impact on design considerations such as

the degree to which connectivity is supported, along with system lifetime issues and service

quality constraints. Yick et al. [2008] describe a number of application domains that were

explored using sensor networks. Some of these include health monitoring applications, home

automation, military usages, environmental monitoring, commercial projects, and industrial

interests. The application area may impact real-world deployment issues (such as device

form factor and resource constraints) which are important considerations in the design of

the networks. System lifetime issues, such as deployment characteristics, maintenance and

longevity of network are considered in chapter 3.1, along with additional AA specific WSN

concerns.

2.8.1 WSN Programming Approaches

This thesis is the first to consider sensor network programming models specifically with

regard to AA sensor network requirements. Earlier works provided general characteristics for

alternative sensor network domains. Coordinating a collection of heterogeneous devices to

sense and report findings requires a programming architecture (also known as middleware).

Aspects of middleware for WSN are described by Römer et al. [2002]. They suggest that the

key purpose of WSN middleware is to use power-efficient, robust and scalable techniques to

split up sensing and reporting tasks among devices. The authors also discuss how application

knowledge needs to be distributed and accessible within the network, and how the network

must self-configure and run unattended. Hadim & Mohamed [2006] add security and quality

of service concerns to the list of sensor network programming issues.



2.8 sensor networks 32

Various approaches to designing middleware for sensor networks have been documented.

A number of these are presented by Römer [2004] including sensor network as database (such

as TinyDB discussed by Madden et al. [2005]), mobile agent programming, event-oriented pro-

gramming, distributed virtual machines (VM), and object tracking. These different approaches

trade off ease-of-use for expressiveness to varying degrees. Yu et al. [2004] describe a virtual

machine-based layered architecture for cluster-based middleware. Techniques described by

Hadim & Mohamed [2006] include approaches that tightly couple the network protocol stack

with the applications, message-oriented middleware (MOM), and macroprogramming the sen-

sor network as a whole. They compare various implementations, focusing on power awareness,

openness, scalability, mobility, heterogeneity, and ease-of-use. VM-based and agent-based

approaches fared the best in their analysis. Henricksen & Robinson [2006] cited a Linda

in a Mobile Environment (LIME)-based tuple-space approach to WSN programming called

TinyLime (further described by Curino et al. [2005]). They conclude that the implementation

does not adequately connect the nodes into a single distributed tuple-space, but that such

an approach would be valuable. Costa et al. [2007] compared another LIME-based approach

called TeenyLIME with TinyLime. The difference between the two, they state, is where the

intelligence in the system occurs. In TinyLime the decision making happens in the sink nodes

whereas, in TeenyLIME, the intelligence emerges from node-to-node interactions inside the

network. Another tuple-space oriented platform is the EQUATOR Universal Platform (EQUIP),

discussed by Greenhalgh [2002], but the platform was too heavyweight to be used as mid-

dleware for sensor-based applications. Sugihara & Gupta [2008] describe how programming

models can be considered low-level and platform-centric if their focus is on the node level,

whilst a focus on node grouping or the network level is considered high-level and application-

centric. Dedecker et al. [2005] describe Ambient-oriented programming (Am-OP) as a class

of languages that can deal with connection volatility, ambient resources, device autonomy

and the natural concurrency arising from mobile networks. Surveys of programming models

have compared various WSN implementations. Horré et al. [2007] classified over 40 solutions

across different WSN layers (hardware abstraction layer, distributed programming layer, service

layer, and management layer) and WSN middleware tiers (sensor operation system tier, sensor
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network tier, gateway tier, and back end tier for long-term data storage and access). The

FACTS middleware (described in detail in Terfloth et al. [2006]), for example, was classified

as a programming abstraction layer of the sensor network tier, and Open Services Gateway

Initiative (OSGi) was classified as a gateway middleware platform.

Currently, no consensus has been reached in the research community as to the best approach

to programming sensor networks to meet these various issues. Rule-based middleware for

sensor networks (discussed in more detail in the next section) has been used in a number of

projects. A rule-based approach was chosen for the work in this thesis because of advantages

including, according to Sen & Cardell-Oliver [2006], having simplified programming and

concurrency models that make program correctness easier to prove, they are power efficient,

and rule-based systems remain sufficiently expressive at high conceptual levels. Furthermore,

according to Terfloth et al. [2006], thinking about WSN from an event paradigm applies better

to sensor networks than thinking about the system using an imperative paradigm. Rule

orientation, they argue, is a more natural way to express programs for sensor networks. In

addition, Fei & Magill [2008] show that application developers using rule-based middleware

are protected from complexities arising from tight real-world integration, network dynamics,

and resource limitations. An interesting remaining area of concern is to what degree rules in

sensor networks conflict, which will be explored further throughout this thesis.

Middleware programming models have been evaluated using different criteria, although no

standard set of criteria has yet been identified against which to judge the solutions. Sugihara

& Gupta [2008] measure a number of models against energy efficiency, network scalability,

failure resistance, and node collaboration criteria. They describe implementation mechanisms

for handling these criteria, but do not provide metrics for comparing their models against the

given criteria. Hadim & Mohamed [2006], however, use metrics that are divided into three

levels: full, partial, little or no support to compare programming models against a variety of

criteria. These include power awareness, openness (system extensibility and modifiability),

scalability, mobility, heterogeneity, and ease of use (the degree to which the middleware

interface hides the low-level APIs of the devices). Performance metrics are grouped by Pawar

et al. [2008] into network performance, vertical handover performance (signal detection to
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actuation delay), and mobile device resource utilisation. Network performance measures the

maximum throughput of the network (in bytes), the number of signals transferred over the

network during a monitoring session, and the latency of the network. The vertical handover

performance measures the delay between the occurrence of an event and the notification of the

event. Mobile device resource utilisation measures the memory and the processor utilisation

of a device such as a PDA or phone whilst processing data or acting as a gateway. Application

performance is measured by Heinzelman et al. [2004]. They assign different levels of QoS

for each studied variable to each type of sensor (or sensor grouping), and then review the

sensor (or grouping) reporting the data. Design principles identified by Masri & Mammeri

[2007] offer many of the previously mentioned points, but also add application knowledge

representation, network robustness, and real-world integration. These criteria are divided into

three levels: full, partial, or no support. End-to-end latency is a metric used by Dressler et al.

[2009] to measure the time between when an event occurs and when an action in the network

responds to the event.

2.9 ecologically valid assessment and care

The following introduces key ideas about mobile assessment and care. A number of different

but related concepts are used with care at a distance:

• Health definition from World Health Organization 1946: “A state of complete physical,

mental and social well-being and not merely the absence of disease or infirmity.”

• Telemedicine definition from House of Commons Health Committee 2005: “Electroni-

cally mediated interaction between doctor and patient, synchronously or asynchronously.”

• Telehealthcare definition from House of Commons Health Committee 2005: “Electron-

ically mediated interaction between patients and health professionals, often nurses. . . primarily

work to collect diagnostic or other data for doctors, to manage an illness by means of advice, or

triage work intended to decide whether a patient warrants admission to hospital.”
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• Telecare definition from House of Commons Health Committee 2005: “Highly portable

systems for monitoring the health status of people with chronic (eg diabetes and asthma) and

degenerative (eg respiratory and cardiovascular) diseases. . . Such devices measure physiological

status and other data, present this data to individual users, and transmit it for review by service

providers using either mobile or conventional telephony.”

• Telepsychiatry definition from apa [1998]: “Telepsychiatry is the use of electronic communi-

cation and information technologies to provide or support clinical psychiatric care at a distance.

This definition includes many communication modalities such as phone, Fax, email, the Inter-

net, still imaging and live interactive 2-way audio-video communication. Live interactive 2-way

audio-video communication videoconferencing is the modality addressed in the following report.

Videoconferencing has become synonymous with telemedicine involving patient care, distant

education, and administration.”

• m-Health definition from Istepanian et al. [2005]: “Emerging mobile communications and

network technologies for healthcare.”

• Ambulatory Assessment (AA) definition from Ebner-Priemer [2010]: “Ambulatory As-

sessment comprises the use of field methods to assess the ongoing behavior, physiology, experi-

ence and environmental aspects of humans or non-human primates in naturalistic or uncon-

strained settings. Ambulatory Assessment designates an ecologically relevant assessment per-

spective that aims at understanding biopsychosocial processes as they naturally unfold in time

and in context.”

• Ecological Momentary Assessment (EMA) definition from Stone et al. [2007]: “EMA

methods are characterized or defined by the repeated collection of real-time data on participants’

momentary states in the natural environment.”

The last two terms are of particular interest to this thesis. This work has been informed by the

author’s research on the Personalised Ambient Monitoring (PAM) project, which fits under the

auspices of AA and Ecological Momentary Assessment (EMA). Fahrenberg [2006] discussed

a number of related terms. AA was distinguished from ambulatory monitoring, defined as
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the observation of free-moving patients for illness diagnosis and medication adjustment.

Fahrenberg argues that ambulatory monitoring is only one of various goals for AA (such as

behaviour observation for the study of developmental psychology), however, ambulatory

monitoring is the key AA goal for the purposes of the work described in this thesis. In addition,

other related terms such as Context Sensitive Ecological Momentary Assessment (CS-EMA)

from Intille [2007], and Experience Sampling Method (ESM) (discussed in Christensen et al.

[2003]) are subsumed in this thesis by the term AA. There are many similarities between AA

and Mobile Healthcare (m-health). Mature projects in the latter category have also informed

this thesis. Studies of particular interest include emergency response, as described by Malan

et al. [2004], assisted living, and geriatric rehabilitation described in Wood et al. [2006] and

Sixsmith et al. [2007]. Similar technologies have been extended into the field of mental health

care under the auspices of AA.

AA, according to Ebner-Priemer & Trull [2009], is a better approach to answering particular

questions in mental health studies than traditional clinical questionnaire/interview based

studies. The traditional self-report approach is reliant upon patient memory to vividly and

accurately recall what has transpired over a relatively long period of time (from weeks to

months), whereas AA avoids recall issues. The problem with recall, Ebner-Priemer and Trull

argue, is that memories are often distorted during their storage and recollection processes.

Remembering is constructive and therefore error-prone according to the Research Board of

the British Psychological Society [BPS-Research-Board, 2010]. The environment can influence

recall, memories may lack details, and they may have gaps in them.

A number of factors influence the recall of information, such as personal bias towards

information associated with positive affect. Furthermore, survey respondents are particularly

poor at reporting the frequency of behaviour and the intensity of experience according

to Schwarz [2007]. Recollection also misses important types of data such as physiological

conditions and contextual information. Another introduction of uncertainty is that subjects

are able to cheat self-monitoring protocols. Back-filling, for example, occurs when subjects

complete missing items close to a scheduled interview. Such distortions in the measurements

of clinical variables reduce the quality of the conclusions. In contrast AA protocols can be used
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to avoid recollection bias. The concern regarding whether or not researchers can even trust

reports from subjects about their current experience is dismissed by Stone et al. [2007] where

they cite evidence that shows that it is still beneficial to ask subjects about their current or

very recent experiences.

AA also provides unadulterated continuous multi-modal data from ecologically valid

settings in contrast with laboratory based assessments. There are two fundamental types of

lab studies, according to Stone et al. [2007], the attempt to model the real world in the lab,

and asking people to summarise the real world in the lab. Each of these types of studies has

deficiencies in comparison with sampling real world experience and behaviour. In the first

case, the data may not be consistent with real world experience owing to the artificial nature

of the experiments. The second types of experiments have similar problems as self-reporting,

that is they rely on retrospection.

AA is not without its limitations as a method, however. Subjects, for instance, may be

burdened by the monitoring technologies and procedures of data capture. Such burden, as

described by Collins & Muraven [2007] and Fahrenberg [2006], is of concern to researchers for a

number of reasons. Firstly, it impacts on the selection criteria for studies, reducing the numbers

of participants. Stone et al. [2007] point out that the method may be inappropriate for use

with individuals whose physical or mental states are in direct conflict with the technologies

being used to perform the studies. Secondly, the burden may keep compliance rates low and

may even lead to subjects dropping out of studies. Finally, there are study generalisability

concerns because the compliant subjects willing to participate in AA studies may not be

wholly representative of the population being studied. Fahrenberg points out three aspects of

monitoring burden using AA methods: subject acceptance of the technology, subject compliance

with the correct use of the technology and subject reactivity to the technology. Acceptance

issues relate to how ready subjects are to use the technology appropriately. Compliance

issues cover areas such as recording data at the correct time and complying with the overall

study protocols. Whilst lack of compliance can lead to missing data, technological failure

may also cause data loss. These two types of failure should be distinguished from each other.

Fahrenberg describes three types of reactivity: motivational (changes to a subject’s willingness
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to comply), behavioural (changes to a subject’s behaviour resulting from being monitored)

and procedural (changes to the subject’s routine to facilitate the monitoring). Reactions may

involve avoiding particular settings or behaviours, or manipulating the technology.

Performing AA is a motivating factor for the work in this thesis. AA is an interesting area of

research that has not had a great deal of attention from the Wireless Sensor Networks (WSNs)

community. Sensor networks for AA require a high degree of transparency and personalisation,

as well as minimising the number of devices used for monitoring. This is to help lower the

subject burden and keep them and their care providers informed about how the subject is

being monitored. This thesis is the first to consider conflicts that can arise in rule-based WSNs

for AA. More detail is provided in the next chapter regarding the particular devices, features

and rules that can be used for AA WSNs.

2.10 related work review

The approach that this thesis presents is related to previous works in the following ways:

• The declarative rules presented in this thesis use A-C form rather than an E-C-A form

common to many of the rules and policy-based systems reported above. Device and

knowledge management rules are written using the EC. This is the first work to analyse

EC-based device rules for the five forms of conflicts described above.

• The approach in this thesis requires direct access to all of the device rules, unlike

online FI solutions. This however, is justified because of the high degree of transparency

required by AA. In addition, having access to all the rules helps the approach detect all

five forms of conflicts described above.

• A pairwise approach is used in this thesis to analyse the device rules as n-wise ap-

proaches have not been shown to have significant benefits.

• A priority system is used in this approach to deal with rule conflicts. The two-stage

priority system presented here is an attempt to aid users to assign priorities in a more

considered way than previous approaches involving only one level of priority.



2.11 summary 39

• The approach presented in this thesis is informed by WSNs with a particular focus on

performing AA. AA WSNs require a high degree of transparency as they are used to mon-

itor subjects in their homes. They require a relatively smaller number of (personalisable)

device nodes than some forms of WSNs to increase subject acceptance and compliance,

as well as to lower subject reactivity. The approach presented here has been designed to

suit problems of single subject monitoring using a relatively low number of devices, and

therefore may not be useful for searching for conflicts in WSNs involving large numbers

of nodes, such as smartdust envisioned by Kahn et al. [1999].

2.11 summary

This chapter introduces background material on AA, WSN, FI and EC. This work is motivated

by the reliable delivery of AA services in WSNs. The combination of AA and WSN is further

considered in chapters 3 and 4. FI problems have been reviewed in a number of areas,

however rule-orientated WSN in general and WSN for AA in particular are ignored. These

areas offer researchers interesting and novel problems to handle, particularly with respect

to the expression of rules and conflict. The EC is introduced as the basis for a solution when

hunting for device conflicts. The approach to using the EC for conflict detection is addressed

in chapter 5.
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A M B U L AT O RY A S S E S S M E N T S E N S O R N E T W O R K F E AT U R E S A N D

R U L E S

3.1 introduction

This chapter reviews Ambulatory Assessment (AA) projects to determine necessary and

sufficient rules for analysis in subsequent chapters. This review includes state of the art in

AA, along with considerations of future directions for AA from the literature. The contribution

of this chapter is the determination of the features necessary and sufficient for AA sensor

networks and to list the rules that can be used to control the behaviours of devices in a sensor

network for AA.

3.2 state of the art technology

The type of system under consideration is one which can be used to perform micro-longitudinal

studies that involve sampling moments in a subject’s life. The core service of such systems is

sampling events over time and storing them. Sampling has tended to be achieved through

momentary assessment by using mobile devices to prompt subjects for answers to questions.

A number of additional features are described in the AA literature that can extend this service,

including:

• Mechanisms to adjust prompting schedules

• Collecting physiological and environmental data in addition to momentary assessments

• Combining event-based, time-based, subject state-based and contextual triggers

40
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• Adding data-orientated conditional questioning to momentary assessment

• Presenting assessment information to subjects and care providers

The advantages of AA over traditional forms of assessment are discussed in section 2.9. Smyth

& Stone [2003] report that reducing the reliance on retrospective recall is the chief benefit of

using AA systems. AA systems also offer greater generalisability of the studies in comparison to

laboratory studies, owing to their ecological relevance and greater ability to monitor dynamic

processes as they unfold in time. Additional benefits, according to Le et al. [2006], include

higher compliance rates than traditional paper-based surveys, improved survey structures,

and real-time provisioning of data access to researchers.

A number of systems exist for performing AA, some of which are reviewed by Ebner-Priemer

& Kubiak [2007] and Fischer [2009]. Below is an examination of commonly available systems:

Experience Sampling Program (ESP), discussed by Feldman et al. [2001], Purdue Momentary

Assessment Tool (PMAT), documented in Weiss et al. [2004], and MyExperience, discussed in

Froehlich et al. [2007].

These systems allow researchers to set up diary study protocols on Personal Digital Assis-

tants (PDA) and mobile phones. Only one of the systems (MyExperience) provides appropriate

access to external sensors. Even this is limited to the mobile environment. Therefore, Alarm-

Net, discussed by Wood et al. [2006], is also included in the examination below in order to

describe an existing system that captures and responds to data at home. Alarm-Net, however,

does not support the mobile environment and does not have the rich questionnaire facilities

of some of the other systems. As such, there was no solution available at the time of writing

that combined sensor and questionnaire data collection from mobile and home environments.

3.2.1 Experience Sampling Program (ESP)

ESP, discussed in Feldman et al. [2001], was the first open-source software developed for

PDAs to provide AA capabilities. The Palm OS based software is used to display surveys

and questionnaires, and to record responses and response times. Intel Experience Sampling
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Program (iESP), discussed by Consolvo & Walker [2003], is a modified version of the software

that has gone dormant subsequent to publication; however, many of its features have been

subsequently added to ESP.

ESP has a number of interesting features. It has two question display interval modes,

branching questions, and probabilistic questioning capabilities. Response times are recorded

along with the responses. Alternative response types are available which are used to provide

feedback to subjects about study progress. The software supports two question display interval

modes: automatic mode, in which the questions are asked at either fixed rate intervals or

random intervals, and manual mode, in which subjects can answer questions at their own

convenience. Multiple questions can be prompted, either in sequential ordering or using

branching logic. Each question in a question set is numbered, and the branching logic uses

goto statements (labeled %NEXT) to jump to particular questions. Questions can also be set to

have a probability of occurrence. Branching control was added to make sure that the correct

following question is displayed based on whether or not the former question is displayed.

A limited amount of study feedback was available, but this includes notifications about the

completion of studies.

ESP also has a number of limitations as an AA vehicle. Fischer [2009] wrote that the greatest

limitation of the software was that it is designed for an outdated platform. There are other

limitations, however. Firstly, question sets are fixed in the memory of the device, with no

method of automatically updating the questions. Therefore, although the questions can be

chosen from sets randomly or in fixed order, the questions themselves are not chosen based

on the context of the individual. Other limitations include the inability to support contextual

information in the questioning, the inability to adjust the questioning protocol to the context

of the subject, and the inability to allow the subject to annotate responses with contextual

information. The branching logic is somewhat limited as well. It is possible to generate infinite

loops in the questioning, and it is not possible to branch from a question in one question set

to one in another question set. Finally, another limitation is that the data are stored within the

software and require special software to download them.
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3.2.2 PMAT

PMAT, developed by the Military Family Research Institute at Purdue University is Java-based

software for Palm OS. It provides a number of additional features that are not available in

ESP, as described by Le et al. [2006]. These include more advanced prompting schedules and

advances in data storage, as well as descriptions of future directions for AA technology.

Advanced scheduling features are available in PMAT. These include being able to set up

alternative prompting schedules and question sets for different days, combine signal and

event recording in the same study, alert the subject to prompts at fixed or random intervals

within a time window, do not disturb capabilities, and randomization at the question set level.

However, PMAT is limited in that it cannot be used to set up randomization within a question

set. Although it supports question branch logic, the logic is restricted to one level off the main

trunk.

PMAT provides some data storage features. For example it saves data to a memory card in

addition to the PDA memory, a capability unsupported by ESP. However, the memory card

data backup schedule is fixed to back up at midnight every night that a card is present. In

addition PMAT data can be exported to Comma Separated Value (CSV) format for analytical

purposes.

There are additional features that Le et al. [2006] would have liked to have been developed. In

particular, these features include on-the-fly scheduling changes, the ability to assign one device

to multiple subjects, being able to combine data from multiple sources (such as questionnaire,

images and sound), and being able to access data instantly.

3.2.3 MyExperience

MyExperience is open source sampling software for mobile phones and PDAs used to

develop studies that incorporate quantitative data from sensor readings and qualitative survey
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responses, according to to Froehlich et al. [2007]. It also supports a variety of sense and

response features.

The sensor, trigger and action system is of interest in regards to this thesis’s focus on such

rules. Survey user interface options and behaviour in MyExperience are defined in XML

as collections of actions, conditionally triggered by sensor readings. Sensors can be either

hardware-based, such as microphones, or software-based such as device usage information

(for example key stroke analysis) or context data (such as calendar entries). A number of

sensors are built into MyExperience and researchers can add additional ones as plug-ins.

The most recent version of MyExperience supports more than 140 sensor event types from a

range of categories including communication, application usage, media capture, user context

and environmental sensing. Triggers can be written in C# or the Simkin scripting language

to respond to sensor events. Triggers can also respond to sensor metadata to handle user

state conditions (such as the first time a subject entered a location or after the user had been

in a location for a designated amount of time), or to detect the failure of sensors if they

do not respond within a given time frame. Trigger logic controls the execution of actions.

Action types include the launching of external applications, database synchronisation, user

notification across different user interfaces, screenshot recording, sending text messages, and

displaying surveys.

MyExperience also supports interesting data collection and handling features. All data

are automatically stored locally in SQL Server 2005 Mobile Edition (SQL Mobile) databases.

On-device databases can be synchronised with SQL databases running on remote back end

connections if the mobile devices are connected over Evolution-Data Optimized (EVDO), 802.11

wireless or General Packet Radio Service (GPRS), however operations for offline sensing and

local data storage are also supported.

A number of MyExperience features handle survey display and response. Survey questions

can be specified based on previously collected data using dynamic parameters completed

by scripts executed immediately prior to displaying questions. Scripts can also be executed

following subject response in order to handle complex branching and response activities. Also,
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survey prompts can be closed manually by the user or automatically after a given amount of

time.

MyExperience has limitations with regards to action chaining and action triggering logic.

Actions cannot activate sensors and then chain. Furthermore, whilst multiple actions may

be activated by the same trigger, the results of these cannot cause additional actions to be

performed. Of greatest concern, however, is that MyExperience has functionality that can

conflict, yet no system is in place to detect or correct them. Multiple action interactions, for

instance, may arise from the use of multiple triggers. The reliability of MyExperience for

long-term monitoring is questionable given the possibility of conflicts amongst its features.

3.2.4 Alarm-Net

Wood et al. [2006] discuss a Wireless Sensor Network (WSN) used to perform residential

monitoring in assisted living situations called Alarm-Net. This WSN integrates heterogeneous

sensors for monitoring physiological and environmental variables. Physiological readings

are collected using PDAs, but these are expected to be used only on site. Alarm-Net uses a

network protocol to support various devices and individuals to query for current information

about the states of the variables. The devices are capable of processing data on-the-fly and

caching data. A gateway application is configured to process incoming data from all of the

nodes in real time in order to determine the circadian activity patterns of the subjects under

observation.

The gateway uses the query protocol and results from activity analysis to perform node-level

power and privacy management. Activity analysis is used in power management to determine

which sensor nodes should be disabled in order to conserve power based on the probable

habits of the subjects. Data aggregation strategies were also incorporated to reduce power

consumption in the network. Wood et al. [2006] describes an example in which aggregated

pulse rate information is reported every second from data collected five times a second.

Furthermore, the reporting system allows reports to be generated only when thresholds are
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exceeded, for instance only reporting a pulse-rate above 130 beats per minute. In addition,

users can provide policies to the power manager that directly enable and disable sensors.

Therefore, the device states are controlled by commands based on a mixture of analysed

activity patterns, user defined policies, and query reports. Commands are issued with priority

values in order to reduce conflicting commands. A command has to have higher priority than

a previous one in order for it to override the previous one.

Alarm-Net is a step in the right direction for AA systems. It combines environmental and

physiological readings, provides real-time data analysis, and modifies the network on-the-fly

based on the activity patterns of the subjects. However, Alarm-Net does not incorporate data

from subjects taken outside the residential facility, nor can the system incorporate qualitative

data from the subjects. More importantly, however, is that whilst an attempt was made to

reduce conflicting commands, the priority system did not solve device conflicts altogether.

For instance, missed trigger interaction can still emerge. Consider, for example, what would

happen if a high-priority message disabled a device that was programmed to send data to

another device. This other device would be starved of information and would possibly not

trigger actions as a result of the disabled one.

3.3 future directions of ambulatory assessment

Intille [2007] presented a vision of Context Sensitive Ecological Momentary Assessment

(CS-EMA). He imagined that incoming multimodal data streams are continuously collected,

analysed, stored, and trigger alterations to the collection process. Collection processes are

automatically personalised to subjects and situations that they experience. Intille proposed

that the combination of data on subject location, physical activity, proximity to others, and

self reports on psychological state is superior to previous behavioural monitoring systems.

One benefit of this, for instance, is to lower the burden subjects feel when being questioned

electronically. By converting raw sensor data into meaningful activity labels (such as walking

or working) the questioning of subjects can be reduced and contextualised such that only
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meaningful questions are asked given a particular activity. Intille provides two example

scenarios to highlight the types of studies that this form of system could benefit including:

1. Exploring relationships between TV watching and sedentary behaviour using TV view-

ing data and accelerometer data

2. Exploring relationships between sedentary behaviour, the built environment and driving

using car sensors, GPS, accelerometers, and questions based on the subject’s given

activity (such as walking or sitting)

CS-EMA requires the combination of self-reported qualitative data with physiologically mea-

sured quantitative data. Raw data, therefore, must be processed on-the-fly, in order to estimate

subject activity. Subjects may still be prompted about their thoughts, feelings, and activities,

but these prompts are contextualised from the physical information. Furthermore, questions

alter in response to historic data, or if the data deviate from statistical norms.

Another change called for by Intille [2007] is to reduce reactivity by allowing subjects

to adjust their questioning frequencies. Previously, Intille et al. [2003] showed that sensing

devices could be programmed to provide context-sensitive triggering, such that particular

questions were asked only when the subject was in a specific state (physiological, emotional,

local or behavioural) or when the environment was in a particular context (noise levels, light

levels, diurnal patterns, etc.). Another concept from those examples is that features of the

subjective sampling system are desirable in addition to the contextual triggering. Such features

include complex question and answer flow, question aggregation, allowing subjects to specify

when they do not want to be disturbed, precise time-based triggering for certain questions

(including the capability for recurrence), randomisation of questioning, and bounded timing

limits to querying.

System adaptation is necessary to meet CS-EMA challenges and is one of the motivating

aspects of this thesis. The long-term study of people using mobile and environmental devices

implies that, as new technologies become available, they must be integrated into existing

frameworks. Limitations reported in the literature on existing AA studies support a view

that it is important to move from reliance on static timing and event mechanisms (such as
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sampling every hour), towards studies that are able to dynamically collect data from a variety

of intermixed sources. For instance, Collins & Muraven [2007] are concerned with an over-

reliance concerning subject self-reporting, and the lack of handling control conditions. They

report technological barriers to being able to enhance their self report data with behavioural

and physiological information. This, however, is already technologically feasible as reported by

Blum & Magill [2010], given their experiences with the Personalised Ambient Monitoring (PAM)

project. They collected data streamed from a variety of sources for offline analysis. The Data

Collection System (DCS) approach, unfortunately, was inappropriate for determining control

conditions in a live environment. With adaptation, however, comes the concern of minimising

device conflicts. Like other complex adaptive systems such as call control systems, conflicts

can emerge that degrade the integrity of the network. These conflicts must be guarded against

in future AA systems.

3.4 derived feature rules

The previous sections show that the core service of AA is to display survey questions, and to

record responses and response times. The features described above in the various projects,

including ones derived from their limitations, are shown together in table 3.4.1. Rules that are

sufficient or necessary to describe these features, or parts thereof, are used in the following

chapters in conflict analysis examples. The ones that are used are described in the Rule column

of the table and described in greater detail in the next chapter. The notation used is Group:Rule,

where Group is the group that the rule belongs to. Rule groupings are described in the next

chapter.
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3.4.1 Ambulatory Assessment Features

Project Feature Rule

ESP Alternative question display

interval modes (such as fixed

rate, random, probabilistic

and manual entry)

Device

Management (DeM):Data

Recording Frequency (DRF)

Alternative response options Subject Interaction

(SI):Prompt (Prompt)

Providing subject feedback SI:Prompt, SI:Alert (Alert)

Providing notifications to

subject (such as end of

study)

SI:Alert

PMAT Prompt scheduling DeM:DRF, SI:Prompt

Question set scheduling DeM:DRF

Combine signal and event

recording

Data

Management (DaM):Data

Storage Unconditional (DSU)

Sliding window prompting DeM:DRF, SI:Prompt

Do not disturb Do Not Disturb (DND):Do

Not Notify

Unconditional (DNNU),

DeM:Deactivate

Immediate (DI)

Save data to memory card as

well as device memory

DaM:DSU
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Backup schedule (fixed) DaM:Automatic Data

Transfer (ADT)

Export data to csv DaM:ADT

PMAT Desired

improvements

On-the-fly scheduling

changes

Context Detection

Service (CDS):Context

Triggering System (CTS),

State Detection

Service (SDS):State Triggering

System (STS)

Allow single device to be

used by multiple participants

DaM:Inbound Data

Screening (IDS),

DaM:Outbound Data

Screening (ODS)

Combine data from multiple

sources

DaM:Redirect Data

Stream (RDS)

Instant data access DaM:ADT

MyExperience Combine sensor readings

with survey responses

DaM:Data Storage Through

Processing (DSTP)

Actions triggered by sensor

readings

CDS:CTS, SDS:STS

Trigger scripting DeM:DRF

Sensor metadata triggering CDS:CTS, SDS:STS

Notification across various

interfaces

CDS:CTS, SDS:STS, SI:Alert

Automatic SQL storage DaM:ADT

Database synchronisation DaM:ADT, DaM:RDS
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Send text message DaM:ADT

Question parameterisation

and dynamic completion

from data or survey response

CDS:CTS, SDS:STS, SI:Prompt

AlamrNet Query for variable states Data Quality

Control (DQC):Report Device

States All (RDSA)

Processing data DaM

Caching data DaM

Circadian pattern

recognition

DaM:DSTP

Node-level power and

privacy management

DeM:Power

Management (PM)

Activity analysis DaM:DSTP

Data aggregation DaM:DSTP

Threshold-based reporting CDS:CTS, SDS:STS, SI:Alert

Future

Directions

Continuous collection,

analysis and storage of

multi-modal data

DaM, DeM

Trigger collection procedure

changes

CDS:CTS, SDS:STS

Subject personalisation SDS:Report Subject

State (RSS), SDS:STS
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Combination of data on

subject location, physical

activity, proximity and self

report

CDS:CTS, CDS:Environment

Detection (ED),CDS:Report

Location (RL), SDS:RSS,SDS:STS

Contextualised prompting CDS:CTS, CDS:ED,CDS:RL,

SDS:RSS,SDS:STS

Questions altered in

response to historic data or

deviations from norms

CDS:CTS, SDS:STS, SI:Prompt

Context sensitive triggering CDS:CTS, CDS:ED,CDS:RL

3.5 summary

The purpose of this chapter is to describe necessary and sufficient rules for AA WSNs. The state

of the art in AA projects and their limitations reveal a number of rules that have the potential

to conflict when a variety of sensing and information processing devices are interconnected.

This will continue to be the case as more complex aspects of CS-EMA are routinely incorporated

into AA studies. This chapter has documented features necessary and sufficient for AA sensor

networks and provided a list of the rules that can be used to control the behaviours of devices

in a sensor network for AA. The rules documented here are described in detail in the next

chapter and form the basis for examining rule conflict in latter chapters.



4
A M B U L AT O RY A S S E S S M E N T R U L E S A N D C O N F L I C T S

4.1 introduction

This chapter examines patterns of behaviour that can emerge from the use of a variety of

devices and rules. The distinctive contributions of this chapter include fuller descriptions

of the rules presented in the previous chapter, and an examination of the Ambulatory

Assessment (AA) sensor network rules for examples where they can conflict. It begins by

describing an example scenario where device rules conflict. Example sensor network devices

are presented in detail. Devices are chosen based on the requirements for AA sensor networks

discussed in the previous chapter. A subset of the devices and rules for AA are selected from

the literature review of the last chapter and are listed below. These rules are analysed to

determine whether or not they can be combined into logical rule sets. They are grouped into

two main types of services: those for device control (such as time synchronisation, sensor

polling and automated data storage), and those for acquiring and acting upon knowledge

about the subjects and their contexts. Rules are listed for each of these types in tables 4 and 5.

This chapter also presents a series of examples that show conflicts that can emerge from us-

age patterns across collaborating devices. The collaboration between devices is considered for

how it may lead to conflicts. The examples presented below show that conflicts corresponding

to each of the interaction types discussed in section 2.3 of chapter 2 can emerge. These are a

threat to real-time behaviour monitoring systems. Their detection and avoidance is the subject

of the next chapter.
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4.2 example of conflict : a brief visit home

This example of device conflict involves three sensors used to monitor a subject with bipolar

disorder. A LocationMonitor node (such as a wearable Global Positioning System (GPS) unit)

monitors where the subject is in the world, an ActivityMon node monitors activities in which

the subject is engaged in (perhaps using a custom application on a mobile phone), and a

HomeMonitor node collects information from a variety of sensors in the subject’s home. Nodes

rely on each other to better perform their roles, but such reliance may cause undesirable

conflicts.

Device behaviours are controlled through rules on each device. For example, rule 1 of Brief

Visit Home (BVH), programmed on the HomeMonitor, stipulates that the HomeMonitor should

be active only when the subject is located at home, since the subject lives with other people.

Rule 2, for the ActivityMon, defines that when the subject is at home the ActivityMon should

be limited to only selecting from relevant home activities. Rule 3, also for the ActivityMon,

dictates that if the subject is performing the activity “travelling”, then only the start and end

locations of the journey should be recorded in order to conserve SLI node resources. Rule 4

(on the activity node) governs the length of the “travelling” activity as distinct from other

activities. This value could be learned from user behaviour and could change in time. Here,

rule 4 is set such that if the user enters the car, drives, makes a “micro stop” (such as buying

milk at the convenience store) and arrives at a “macro stop” (for instance the gym, or place of

work), it is all considered as part of the same travelling activity.

This type of example can expose rule conflicts that may lead to unreliable behaviour. In this

particular case Missed Trigger Interaction (MTI) can emerge. This can happen when the subject

travels from home, returns home briefly, then sets off again. When the subject initially leaves

home, the HomeMonitor is deactivated and the other two nodes enter their travelling states.

When the subject returns home briefly (a behaviour not initially considered by the researchers),

the HomeMonitor remains off (a trigger to turn on is not sent by the ActivityMon) and does
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not capture any further abnormal behaviour patterns, resulting in a loss of data. When the

subject re-departs, normal system data capture ensues.

Conflicts such as these are often subtle. They are not necessarily obvious to anyone program-

ming individual devices, especially when the programmers are unaware of the behaviours of

all of the devices in the network. The rest of this chapter describes a variety of devices, rules,

and examples that can be used to reason about the detection and resolution of these types of

conflicts.

4.3 ambulatory assessment devices

The examples in the following sections describe AA rules running on a variety of devices. The

devices are a representative subset of those presented in the previous chapter. A home gateway

device is added for the coordination of some home devices and to bridge communications

between the home Local Area Network (LAN) and the Body Sensor Network (BSN). The

following is a description of the various example devices. Some of these may be considered

stand-alone equipment whereas others may be considered as components used by other

devices. The devices may have enough capabilities to perform the activities themselves, or act

as slave nodes to other devices that do.

Accelerometer

Accelerometers are sensor components used to measure the magnitude and direction of

acceleration of the containing device, which is assumed to be worn or carried by the monitored

subject. These are proposed for use in BSN for health monitoring by Jovanov et al. [2005] and

examined by [Amor & James, 2009] for use in AA as part of the Personalised Ambient

Monitoring (PAM) project. Amor and James show how accelerometer data can be processed to

extract information about subject activity.
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GPS receiver

GPS receivers calculate their geographic location from data received from multiple satellites

that orbit the Earth. These can be used to provide subject location data to a sensor network

when worn or carried by a subject. GPS receivers may be sensing components of mobile

phones or may be stand-alone devices that communicate with a network over communication

protocols such as Bluetooth.

Heart rate monitor

Heart rate monitors can be used to measure the number of heart beats per minute and transmit

the data to a sensor network. Heart rate has been described as an important indicator of

psychiatric state and is thus a useful measure of the state of subjects. For example, Henry et al.

[2010] show that bipolar disorder patients have decreased heart rate variability during manic

phases of the disease.

Home gateway

A home gateway is a device (typically a PC) that can be used to interconnect home LAN devices.

A home gateway can also communicate with mobile gateway devices to share information

between LANs and BSNs.

Light meter

Light meters measure the amount of light in the environment. Changes in the amount of light

that a subject experiences may influence circadian rhythms and mood disorders, as described

by Hill [1992].
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Mobile phone

For the purposes of this thesis, mobile phones are portable devices with relatively high

computing capabilities that can exchange data over a variety of communication protocols.

Subjects are assumed to carry their mobile phones with them when they are in transit and

away from home. Their mobile phones can act as BSN gateway nodes and communicate with

other BSN devices and home gateway nodes. An example mobile phone used in the PAM

project which is shown in figure 7a.

Power meter

Power meters report the amount of battery life remaining in battery-powered devices, such as

mobile phones.

Calendars, clocks and timers

Some devices are able to keep track of the current date and time using internal calendars

and clocks. Timers may also be available to devices in order to execute actions after a given

amount of time.

Wearable health monitor

Wearable health monitors are BSN nodes that are worn or carried by subjects. These can

communicate with other BSN nodes such as mobile phones to report data about subject state

or context. An example of a wearable health monitor is the one used in the PAM project which

is shown in figure 7b. It contains a light meter, sound meter and accelerometer. The device

communicates data to a mobile phone over Bluetooth, and exposes an API to control its sensor

data capture rates.
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(a) Typical Mobile Phone used in the PAM project. (b) Wearable Device for Recording Accelerometer,

Light and Sound Data.

Figure 7: Various Devices Used in the PAM Project. Photos provided courtesy of Pawel Prociow.

4.4 device rules

Various aspects of AA Wireless Sensor Networks (WSNs) that incorporate numerous devices

across BSNs and LANs are presented in the previous chapter. Such AA WSNs support the

collaboration of devices and are presented in the following sections.

The kinds of rules for this type of system have been grouped into two categories: device

control rules and knowledge rules. Device control rules handle the way that devices sense and

manage data, handle programming updates, and interact with subjects. Knowledge rules are

used in the examination of the data to determine the states and contexts of the subjects, along

with being used in the analysis of the quality of the data. A number of rules are presented

below for both of these categories. They are grouped into rule sets and include discussions

with respect to AA and Wireless Sensor Network (WSN) literature, along with usage examples.
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4.5 device control rule group

Device control rules are used to manage how devices operate to collect and manage data,

and interact with users. These rules are at the core of being able to collect, store and provide

access to physiological and environmental data, as well as to present information to subjects,

and prompt them for responses. Five rule groupings have been identified as shown in table

4: Data Management (DaM), Device Management (DeM), Do Not Disturb (DND) and Subject

Interaction (SI). Each of the groups is described in the following subsections.

Table 4: Device Control Rules

Group Rule

Data Management (DaM)

Automatic Data Transfer (ADT)

Data Storage Through Processing (DSTP)

Data Storage Unconditional (DSU)

Redirect Data Stream (RDS)

Inbound Data Screening (IDS)

Outbound Data Screening (ODS)

Retry Data Transfer On

Unavailable (RDTOU)

Device Management (DeM)

Deactivate Immediate (DI)

Data Recording Frequency (DRF)

Power Management (PM)

Time Synchronisation (TS)

Do Not Disturb (DND)



4.5 device control rule group 60

Do Not Notify Unconditional (DNNU)

Subject Interaction (SI)

Alert (Alert)

Prompt (Prompt)

4.5.1 Data Management (DaM)

DaM rules are used to control the flow of information within a network. The rules may be

written from the point of view of the sender of data, or from the receiver’s point of view.

Each device may use one or more of these rules to react to situations in which it receives

data (either as a sensor source or as a recipient from another device). Reactions may involve

processing, storing, or forwarding the data. These rules also determine to a large extent how

individual devices respond to changes in the network. For instance, a rule may be used to

determine where a particular device should send data when the device it normally sends data

to becomes unavailable.

Data management rules are described below, including: ADT, DSTP, DSU, IDS, ODS, RDS and

RDTOU. These rules may be used in a variety of combinations. For example a location monitor

might use ADT to automatically report location data to an activity monitor. An activity monitor,

in turn, may use DSTP to limit the amount of data it stores by aggregating them before their

storage.

These rules are selected from Ambulatory Assessment (AA) requirements and through

consideration of general network operation. Some AA tools (such as Experience Sampling

Program (ESP) and Purdue Momentary Assessment Tool (PMAT) which are described in section

3.2) do not require these types of rules since the collection and storage of their data occurs in

hard coded locations on the sampling devices. This situation is suboptimal as it means that

device failure leads to data loss, and researchers have to wait until the devices are returned

before they have access to the data.



4.5 device control rule group 61

Tools require these types of rules once they extract data from devices at run time. However,

this is often done statically with rules unchanging in time. MyExperience, for instance, uses

a single rule exclusively, called “opportunistic synchronisation”. It automatically forwards

data from a database on a device to a central storage database. This is similar to the ADT rule

presented here.

Automatic storage may not be appropriate in all circumstances. Alarm-Net (described in

section 3.2.4), for example, did not just automatically store data, but, instead uses alternative

processing rules to aggregate data and perform circadian rhythm analysis upon it. The rule

DSTP is included here to accommodate such data processing. In addition to data processing,

systems like Alarm-Net may support security policies, which are also included herein as IDS

and ODS.

There are similarities between some data management rules and some call control features

from classic Feature Interaction (FI) literature. For example Originating Call Screening (OCS)

is used in call control and a similar concept is used here called ODS. There are not, however,

exact matches in all cases. For instance, the data management rule DSTP has no counterpart in

call control.

Automatic Data Transfer (ADT)

ADT transfers data from the device to a predefined recipient when the devices come within

communications range. For instance, a mobile phone may automatically upload data via

Bluetooth to a PC when they come into proximity of each other. Consider a sequence for a

successful data transfer between the subscribing device (the sender) and a recipient device,

and a connection failure case. The sender is the device where the rules are activated. The

sender attempts to connect to the recipient. If the connection fails (for instance because the

two devices are not within communication range), the sender waits a period of time before

attempting to connect again. Once a connection is established, the data is uploaded from the

sender to the recipient. The rule is terminated when the data transfer is complete. The sender

begins in a listening state ready to receive connections. It streams data after a connection is

made and then returns to a listening state after all of the data is transmitted.
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This rule may be used in many cases, such as scenarios involving data being automatically

transferred from a mobile phone to a home gateway. In these scenarios the mobile phone

periodically attempts to connect and transfer data to the home gateway. The mobile phone may

not be able to connect all the time if the communications protocol being used is temporarily

unavailable (such as if the two are communicating over Bluetooth and the distance between

the devices is out of range).

Data Storage Through Processing (DSTP)

The recipient of new incoming data uses DSTP to process and then store the data. The recipient

waits listening for a connection. When one comes in, data is streamed and collected. This data

is processed using appropriate algorithms once the streaming has completed. The processed

data is stored and the device goes back to listening for more connections. From the sender’s

viewpoint, it is a simple matter of uploading the data. If a connection is established, the data

is uploaded and the connection is terminated upon data transfer completion. Otherwise, if a

connection fails to be established, the rule is terminated. The sender might be subscribed to

additional rules that allow for alternative connection establishments or reconnection attempts.

Previous projects such as Alarm-net demonstrated the value of processing data in order

to reduce network resources, and for determining context and states of subjects. Another

usage example, derived from the Personalised Ambient Monitoring (PAM) project, involves a

mobile phone that receives data from wearable health monitors, including accelerometer data

streamed at rates above 20 readings per seconds. It is more power and memory efficient to

store processed data instead of storing each reading.

Data Storage Unconditional (DSU)

Using DSU, the receiver of a new incoming data stream stores the raw data, either directly

to a file or to a database. A subscriber listens for a connection from another device. The

subscriber streams and stores the data when a connection is established, after which it goes

back to listening for connections. If the sender fails to connect to the target recipient, the rule

terminates. Alternatively, on success it uploads the data and completes the data transfer.
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DSU is the basic data management rule available in most AA solutions. Any device with

sufficient storage capacity may use this rule. For instance a mobile phone might record to

a database all questionnaire responses and all streamed data from additional Body Sensor

Network (BSN) devices used in long term studies.

Inbound Data Screening (IDS)

IDS blocks data delivery from a predetermined sender. The data recipient is the rule subscriber.

It listens for connections, screens the sender against a list of known illegal senders, then listens

again for legitimate device connections. The sender attempts a connection which succeeds or

fails depending on whether it is screened by the recipient. If the sender is not screened then it

transfers the data.

This rule can be used in security policies to make sure that devices are passed data from

legitimate sources. Alternatively, it can be used to manipulate data routing, especially if

devices are broadcasting data to multiple receivers. For instance, multiple gateways may be

used in a home to screen data sent from a subject’s mobile phone and prevent the data being

duplicated in the home environment.

Outbound Data Screening (ODS)

ODS blocks data transfer from a subscribing sender device to a predetermined recipient device.

The sender is the rule user and it attempts to connect to a recipient. At that point the subscriber

screens the recipient to make sure it can legitimately receive the data. Standard data transfer

ensues if a connection is established. If the recipient is screened then the connection is never

established. The recipient will not receive a message indicating that screening transpired.

Instead, it will listen for connections and stream data upon establishing them.

This rule might be used to maintain network integrity, prevent data flooding, and to handle

certain data security concerns. An example of its usage is a scenario involving a mobile phone

screening a particular home data gateway in order for the mobile unit to only upload to

another device. This may be useful if the former mobile phone is less secure than the receiving

device.
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Redirect Data Stream (RDS)

Using RDS, the receiver of a new incoming data stream redirects data to another device. Here

the subscriber device is both a data receiver and sender, and two other devices are shown. The

first device sends data to the subscribed device. Assuming a successful connection and data

transfer, the subscriber then attempts to send the data to another device. If that connection is

successful then the subscriber goes back to listening after completing the data transfer. If the

connection to the third device fails, the subscriber waits for a period of time specified in the

rules, and retries the connection.

This rule is useful in scenarios involving home gateways, environmental sensors, and

mobile devices. In such scenarios, environmental sensors may pass data to home gateways

that forward data to mobile phones. Alternatively, the data flow might begin with the mobile

phones and flow to the gateways, followed by transfer to the environmental devices.

Retry Data Transfer On Unavailable (RDTOU)

RDTOU allows the sender to retry a data transfer. This rule attempts to connect, and terminates

on successful data send. If a connection failure occurs then the sender periodically retries the

connection. Rules can limit the number of retries to be attempted or the amount of time until

stopping retry attempts. The recipient device listens for a connection and downloads data

once connected.

4.5.2 Device Management (DeM)

Device management rules are used to control common settings such as the device clock times

and frequencies at which sensor readings are captured. The ones chosen for analysis include:

Activate Immediate (AI), DRF, PM, and TS. AI controls when a device should be on or off. Each

device may have access to a number of sensors, and their data recording frequencies may

be controllable, along with the time that the sensors should be activated. In addition, power
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management can be used to make sure that battery operated devices do not expend energy

unnecessarily.

Activate Immediate (AI)

AI allows a device such as a sensor to become active immediately. The recipient device is

subscribed to the rule. It listens for a connection. If the sender connects and sends an activation

command the subscriber will perform the given activity immediately.

Data Recording Frequency (DRF)

DRF determines how often a particular device, such as a sensor, will collect data. For example

this rule may be used to set an accelerometer to collect data at a rate of 20 readings per

second. Setting such data recording frequencies statically had been the mechanism used

in most previous systems. Personalisation (the value of which is discussed in the previous

chapter), however, requires adjustable frequencies. Logic rules may be used to set frequencies

dynamically. The accelerometer might be set to generate 20 readings per second for standard

behaviour, for instance, but then raised to a higher level if the subject’s heart rate increases

above a certain threshold.

The subscriber to the rule listens for a connection. It receives data once a connection is

established and it calculates a new recording frequency based on its rules and the data it

received. Then it alters the device frequency. The sender conducts a data upload sequence but

does not know what happens when it sends the data.

Power Management (PM)

Power can be a scarce resource for some nodes in AA Wireless Sensor Networks (WSNs) but

not all of them. Home gateway nodes, for example, may be plugged into the mains of the

home so have greater access to power.

A variety of power management routines are suggested for the nodes that do have power

consumption concerns, as described by Akyildiz et al. [2002]. They cite a number of different

power saving rules such as lowering communication availability and reducing processing
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performance. For AA purposes, lowering communication availability can be translated into

having the device use DND:DNNU. Lowering notifications allows the device to continue to

gather and report data without the overhead of processing, and possibly storing, messages

from external sources. Storing data to flash memory is shown by Blum & Magill [2010] to

have a high power consumption cost for mobile devices.

Consider, for example, a mobile phone that uses a power management rule. When its power

levels get below a certain threshold the power management rules can be activated allowing

the device to continue to collect data from internal sensors but not from external sources such

as might be sent from other BSN nodes. The loss of their data may be undesirable; however,

these would be lost anyway if the mobile phone battery run down. Alternatively, the other

nodes in the BSN might store the data and then forward it to the phone once it stopped using

the power management rule. A subscriber to the power management rule will continue to

stream data until power management is turned on. At that point the connection between the

sender and receiver of data will break.

Time Synchronisation (TS)

Synchronised time amongst devices in a Wireless Sensor Network (WSN) is paramount for

the smooth running of the network. Many rules such as device activation delay and data

aggregation depend on a consistent view of time across the nodes. Time synchronisation

is not trivial in sensor networks owing to unreliable network characteristics. For instance

some of the nodes are mobile and subject to intermittent connectivity. Time synchronisation is

discussed extensively by Römer et al. [2005].

The Pair-wise Synchronisation algorithm, presented by Van Greunen & Rabaey [2003],

is a method of time synchronisation that can be used for AA sensor networks. Pair-wise

Synchronisation can be used in single-hop and multi-hop networks to synchronise pairs of

nodes. Upon establishing a connection, the initial sender transmits its local time as time stamp

t1. The time stamp t2 is calculated by the subscribing device. This is calculated, according

to Van Greunen & Rabaey [2003], by adding the time of message transmission (based on the

distance between the nodes and the propagation characteristics of the links between them)



4.5 device control rule group 67

and the offset between the two clocks to t1. The initial sender then receives a message with t1,

t2 and a time stamp t3 from the subscriber. It calculates t4 by adding the message transmission

time to t3 and subtracting the offset. This value is then passed to the subscriber.

This rule is useful, for instance, in maintaining synchronisation between the clocks of a home

gateway and a mobile phone. The phone may subscribe to the rule and periodically receive

time synchronisation messages from the gateway. These devices then go on to synchronise the

rest of the devices within their respective BSNs and Local Area Network (LAN)s.

4.5.3 Do Not Disturb (DND)

DND rules are important in AA systems and are comparable to features in call control systems.

These types of features began to appear in early AA systems such as in PMAT for subject

questionnaire prompting, being disabled temporarily whilst the subject performs an activity

such as attending a meeting. In call control scenarios this type of rule allows a subscriber to

block incoming messages notifying that a call is coming in.

Sensor network systems can require additional rules to handle the fine granularity of control.

Firstly, there is a distinction made between monitoring and notification. It may be the case that

a subject does not want to be disrupted by notifications, but finds ongoing ambient monitoring

acceptable. Alternatively, both may be intolerable. It may also be the case that some devices

ought to refrain from monitoring or notification whilst others may remain enabled. The DNNU

rule is chosen for conflict analysis.

Do Not Notify Unconditional (DNNU)

DNNU prevents the subscribing device from receiving notifications. The rule subscriber is in a

blocked state instead of a listening state. Therefore connection attempts to this device from

data senders automatically fail. This may be used, for instance, on a mobile phone if a subject

wanted to exclude message passing to the device which might be desirable if the phone is

engaged in other network activities such as online gaming. In addition, preventing notification

to the device may be used to reduce subject interaction such as alerts about sensor reading
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threshold. If rules are set up to alert the subject about exceeding these thresholds, then the

subject may suspend such alerts temporarily by using DNNU.

4.5.4 Subject Interaction (SI)

AA systems may be required to interact with the subjects being monitored. The original

intention of Experience Sampling Method (ESM) systems, such as ESP, is to repeatedly prompt

subjects for responses to questionnaires over the courses of their days. Over time, richer

prompting schedules involving alternative question flows are built into the systems to support

more detailed studies.

WSNs provide mechanisms for conducting ambient monitoring such that there need be very

minimal interaction with the subjects. This has lead to naturalistic studies and may also be

valuable in AA studies. The aim, therefore of SI rules should be to supply researchers with a

range of interaction options.

Two types of SI rules have been identified. The Alert rule allows researchers to notify subjects

to the occurrence of events or states. These may pertain to a subject, for instance if their

anxiety levels are above a certain threshold, or to the network, for instance if a particular

sensor in their home is out of communication with the rest of the system for too long. The

Prompt rule allows researchers to solicit feedback from the subjects. These can be brief single

promptings or they can be strung together to form into questionnaires.

The rules discussed here allow the question sets and alert messages to be customised to

the individual. A number of issues about interfaces used for subject interaction (including

accessibility and internationalisation) are beyond the scope of this thesis. Alerts and prompts

in this work are based on standard user interface widgets (such as pop-up alert boxes, text

fields, check boxes, sliders and radio buttons) presented on hand-held devices or personal

computers. According to Stone et al. [2007], this type of monitoring is appropriate for subjects

that are visually unimpaired, have adequate fine motor and cognitive skills, and are willing

to engage with the technologies. It should be noted however, there is no known theoretical
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limit to the way the information is presented, so alternative interfaces may be used such as

television sets, or special actuators in the environment such as speakers and microphones.

Alert

The Alert rule can be used to notify subjects of events or state changes. Some AA systems

provide the ability to personalise the alert messages and their output options. MyExperience,

for example allows researchers to customise “MessageAction” and “NotificationAction” action

types. These display message boxes with customised messages and fonts. In addition the

latter action provides options for playing sounds, vibrating the device, forcing the back light

of the device on, as well as providing a snooze rule whereby the alert might disappear for a

period of time before reappearing.

A notifier device displays alerts to a subject and another one sends data to it. Upon

connection and data transmission, the notifier formulates the message, determines the output

options and displays the alert. Message formulation uses rules to embed the data into friendly,

subject-personalised wording. Output options include personalised rules for whether or not to

use alert sounds, what font types to use in the messages and how long to display the alert for.

Prompt

One of the key rules of the next generation of AA system is to embed subject context and

state sensitivity into the question sampling – what Intille [2007] called Context Sensitive

Ecological Momentary Assessment (CS-EMA). The Prompt rule allows researchers to solicit

responses to questions from subjects. These can be chained together to form questionnaires for

in-moment surveys. For example, a home gateway might determine that there is missing data

and send a message to a mobile phone so that the phone can query the subject for annotation

describing whether the device failed or whether the subject decided to not comply with the

study protocol.

A device is set up to prompt for questionnaire responses. Upon connection and data

transmission it formulates a question based on the data, determines the response options and

displays the prompt. Question formulation uses rules to determine the correct question to
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ask in response to the data received. Response options may be used to determine whether

responses are free-form or whether they should be selected from a list (either as a single

selection or as multiple selections). Response options may also determine the action to perform

subsequent to the response, such as displaying a follow on question or displaying a completion

message. This therefore allows question chaining and branching. Personalised rules control

how the question and response options are displayed in a similar manner to the notification

rule.

4.6 knowledge rules

Knowledge rules are used to analyse subject state and context, and allow the devices to

react to such information. Three groups of the rules have been identified as shown in table 5:

Context Detection Service (CDS), State Detection Service (SDS) and Symptom Analysis (SyA).

These rules are described in the following sections.

Table 5: Knowledge Rules.

Group Rule

Context Detection Service (CDS)

Context Triggering System (CTS)

Environment Detection (ED)

Report Location (RL)

State Detection Service (SDS)

Report Subject State (RSS)

State Triggering System (STS)

Data Quality Control (DQC)

Query for Missing Information (QMI)

Report Device States All (RDSA)
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4.6.1 Context Detection (CDS)

Context detection allows an Ambulatory Assessment (AA) Wireless Sensor Network (WSN) to

monitor and adapt to variables describing the environment that the subject is in at any given

point in time. These variables include ambient qualities such as light and sound levels, the

time of day, and the location of the subject. Three rules are identified pertaining to contextual

detection: CTS, which determines the reaction to detected changes of context, ED, which allows

for the monitoring of variables pertaining to environment, and RL for handling location data.

Context Triggering System (CTS)

The CTS rule allows a subscribing device to respond to changes in contextual information.

Actions are associated with changes to contextual data variables. These actions are triggered

when the variables are within bounds The subscriber listens for data connections. The sender

reports contextual data upon establishing a connection. The subscriber receives the data and

checks to see if it is within triggering bounds. If it is, the actions are performed and the

device goes back to listening for additional connections. This type of rule can be useful for

responding to changes in the environment. For example, a scenario involves a mobile phone

receiving data about how bright it is in the area around a subject. A researcher may want to

trigger a questionnaire on the mobile phone to ask a question about how the subject is feeling

if the subject starts spending a greater amount of time in the dark than usual.

Environment Detection (ED)

ED allows the subscriber to publish environment variable data to recipient devices. The pub-

lisher attempts to transmit information to the recipients. The recipient listens for connections

and then receives environmental contextual data. The publisher then attempts to connect and

if it is successful reports the data.



4.6 knowledge rules 72

Report Location (RL)

RL sends the location of the subject from one device to another. The location publisher attempts

to transmit location information to recipients. The sender attempts to connect. The report

location rules terminate if the connection fails. Otherwise, once connected, the sender reports

the location then completes the data transfer, upon which the rules terminate. The recipient,

meanwhile, listens for data connections. When one is made, the recipient receives the location

data and then returns to listening for connections.

The usage of this rule, for example, can be seen in a scenario involving Global Positioning

System (GPS) data captured on a mobile phone (either using an internal sensor or received

from an external device). A home gateway device may register itself to receive such reports.

When the mobile phone reports the location data, the home gateway receives the data and

turns the sensors it controls on or off depending on the reported location of the subject in

order to improve network efficiency by only recording data when the subject is present.

4.6.2 State Detection (SDS)

State detection provides an AA WSN with capabilities to monitor and adapt to variables

describing the physiological, emotional and behavioural state of the subject. Two rules are

identified pertaining to state detection: RSS, which reviews the state of the subject and STS for

performing specific actions dependent on the states.

Report Subject State (RSS)

RSS transmits state variables describing the subject from one device to another. A sender device

attempts to connect to a recipient. If the connection fails the report location rules terminate.

Otherwise, once connected the sender reports the state data then completes the data transfer,

upon which the rules terminate. The recipient, meanwhile, listens for data connections. When

one is made, it receives the data and then returns to listening for connections. Other rules
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can determine what should happen to the data (such as processing, storing, or forwarding it)

when they are received.

The usage of this rule, for example, can be seen in a scenario involving a mobile phone that

publishes data on how a subject is feeling captured from a questionnaire on the phone. The

mobile phone may report the data to a home gateway that alters its recording or actuation

depending on the mood of the subject.

State Triggering System (STS)

The STS rule allows a subscribing device to respond to changes in state information. Actions

are associated with changes to state data variables. Such actions are triggered when the

variables are within bounds. The subscriber listens for data connections. The sender reports

contextual data upon establishing a connection. The subscriber receives the data and checks

to see if it is within triggering bounds. If it is, the actions are performed and the device goes

back to listening for additional connections. This type of rule might be useful for responding

to changes in subject state. For example a scenario involves triggering an action to change

accelerometer data capture frequency depending on physiological variables received by a

mobile phone.

4.6.3 Data Quality Control (DQC)

DQC provides rules to maintain the integrity of the data being captured across the network.

Query for Missing Information (QMI)

The QMI rule provides a subscribing device with a mechanism to take action if expected

data is missing. For instance a scenario involves a home gateway using the rule to activate

a questionnaire on a mobile phone to request a response from a user as to why expected

environmental data is not being received. The subscriber listens for data connections. The

sender reports data upon establishing a connection. If no connection is established for a given

period of time then the subscriber will perform a particular action defined in its rules.
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Report Device States All (RDSA)

The RDSA rule transmits all device state information from one device to another. This data

includes variables for all devices connected to the given sending device. Device data is useful

for maintaining the network. If a connection fails after the sender attempts to connect, then

the report location rules terminate. Otherwise, once connected, the sender reports the device

data and completes the data transfer. The recipient, meanwhile, listens for data connections.

When one is made, it receives the data and then returns to listening for connections. Other

rules may decide how the data can be processed, stored, or forwarded when they are received.

4.7 conflict examples

An important research question addressed in this thesis is whether or not WSN rules can

conflict with each other. Here it is shown that conflicts can emerge.

Feature Interaction (FI), described in chapter 2, occurs when the operation of one feature is

influenced by the operation of another one. Five types of interactions are presented: Shared

Trigger Interaction (STI), Sequential Action Interaction (SAI), Looping Interaction (LI), Multiple

Action Interaction (MAI) and Missed Trigger Interaction (MTI). Examples of rule conflicts

corresponding to each of these types of interactions are described below. These examples

show that rule-orientated systems are susceptible to each of the five types of conflict unless

precautions are taken.

The examples describe situations that may occur when performing AA using a sensor

network system. They use combinations of rules selected from the device control services and

knowledge services, discussed earlier in this chapter. Two or more rules are used per example.

Some of the examples show conflicts occurring on a single device and others show conflicts

across devices. In addition, some of the examples highlight conflicts that occur within the same

rule group (intra-service interaction), while others show conflicts occurring between multiple

groups (inter-service interaction). Each description includes rules that conflict, devices upon
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which the rules operate, and state transitions that lead to the conflicts. UML state machine

diagrams are shown for each example. These use the standard diagram format except for some

of the MTI examples in which dashed arrows are used to indicate missed trigger transitions.

4.7.1 Shared Trigger Examples

Conflicts caused by multiple rules sharing a trigger occur when actions are performed by

multiple rules in response to the same triggering event, and one or more of the actions are

different from how they may have behaved if only one rule had responded to the trigger.

4.7.2 Example 1: CDS:CTS vs. SDS:STS

This example is characterised by the use of rules that run on the same device which is

shown in figure 8. In this case a mobile phone has rules for CDS:CTS, SDS:STS and Subject

Interaction (SI):Prompt (Prompt). CTS has rules to trigger the prompting about what activity the

subject is engaged in when leaving home. Similarly, rules have been set up using STS to prompt

the subject about the emotional state being experienced when the subject’s behavioural state

changes from sitting to walking. A conflict can occur when the subject walks away from home.

Here, both rules are triggered, however only one can prompt for a response to its question.

4.7.3 Sequential Action Examples

When one rule is triggered in response to the actions of another it is said that a conflict of type

SAI has occurred. Side-effects of these types of conflict are not always harmful. The examples

described here show a mixture of beneficial and non-beneficial conflicts.
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Figure 8: CDS:CTS vs SDS:STS Interaction Diagram

Example 1: SI:Prompt vs. CDS:RL

This example is an of example of SAI involving a single device with two rules from different

groups running on it. Figure 9 shows that a mobile phone has rules for SI:Prompt and CDS:RL.

The rules of SI:Prompt indicate that it should prompt for a particular question when the subject

is in a particular location. SI:Prompt is activated when CDS:RL reports that the subject is in the

correct location. Here the SAI is beneficial since SI:Prompt intentionally relies upon CDS:RL.

Example 2: Data Management (DaM):Redirect Data Stream (RDS) vs. DaM:Automatic Data Transfer

(ADT)

This is an example of a conflict involving two rules which come from the same group but run

on two separate devices. Figure 10 shows that the devices involved are a mobile phone, a

Wearable Health Monitor (WHM), and a home gateway. The phone has the rule DaM:RDS and

the WHM has the rule DaM:ADT. DaM:ADT is programmed to transfer data to a home gateway.

SAI occurs because the ADT rule leads to the sequential activation of the RDS rule.



Figure 9: SI:Prompt vs CDS:RL Interaction Diagram

Figure 10: DaM:RDS vs DaM:ADT Interaction Diagram
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Figure 11: SDS:STS vs DeM:DRF Interaction Diagram

Example 3: SDS:STS vs. Device Management (DeM):Data Recording Frequency (DRF)

The trouble determining the quality of SAI is exemplified in this example. The example shown

in figure 11 looks beneficial. Here, a mobile phone is subscribed to SDS:STS with rules that

ensure that if the subject’s heart rate exceeds a particular threshold, then the capture rate of

the accelerometer in the phone is adjusted. In addition the phone is subscribed to DeM:DRF

which will perform the adjustment on receiving a signal. STS will signal DRF in a normal

working condition. Consider, however, what should happen if the phone also had been set up

with CDS:CTS in a manner akin to STI example 1. In that case then it could be possible that a

race condition could arise such that it would be uncertain whether the actions of STS would

be performed, and therefore DRF would also be uncertain of firing.

4.7.4 Looping Examples

LI occurs when rules are chained such that the calling of one of them leads to the calling of

another, and this in turn leads to a sequence whereby the original is called again.
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Figure 12: DaM:ADT vs DaM:RDSInteraction Diagram

Example 1: DaM:ADT vs. DaM:RDS

This example shows how two rules from the same group may be used on different devices

and lead to LI. Figure 12 shows that a mobile phone has the ADT rule set up to send data to

the home gateway. The home gateway has RDS set up to redirect data streams to the mobile

phone. This, for instance, could be necessary if a home gateway is partially offline for repairs.

This configuration of rules across devices leads to a loop when the mobile phone attempts to

transfer data to the home gateway and automatically receives back the sent data.

Example 2: DaM:Retry Data Transfer On Unavailable (RDTOU) vs. DaM:Inbound Data Screening (IDS)

Figure 13 shows that this example involves rules running on a mobile phone and a gateway.

The mobile phone has a rule for RDTOU. The home gateway has the IDS rule and has restricted

itself from receiving data connections from the mobile phone. This results in a RDTOU loop

because IDS blocks the connection.
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Figure 13: DaM:RDTOU vs DaM:IDS Interaction Diagram

4.7.5 Multiple Action Examples

MAI occurs when different rules attempt to control the same device at the same time.

Example 1: DaM:Data Storage Unconditional (DSU) vs. DaM:Data Storage Through Processing (DSTP)

This example, shown in figure 14, is characterised by the use of rules from the same group

running at the same time on a single device. Two rules on the mobile phone control what

should happen to new data. Both indicate that something should happen to the same data, one

to store the raw data, and the other to process the raw data and store the result. This result may

be benign, such as if both are storing to different locations. If, however, the storage location is

the same for both rules, and metadata are not used to differentiate raw and processed data,

then this conflict will corrupt the data store. It is possible that data may be sent to the same

location multiple times or, worse, data may be written by the execution of the first rule and
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Figure 14: DaM:DSU vs DaM:DSTP Interaction Diagram

then overwritten by the second one. The problems are compounded because race conditions

arise as to which data is written first.

Example 2: DaM:ADT vs. DaM:Outbound Data Screening (ODS)

This example involves the use of DaM:ADT and DaM:ODS rules running on the same mobile

phone. Figure 15 shows that ADT establishes that data should be transferred from the phone

to the home gateway but ODS has a rule blocking connections from the phone to the home

gateway. When new data comes in from a WHM to the mobile phone, one of the two rules is

invalidated by the other. Either the data will be transferred or the connection will be blocked.

A race condition would decide which rule has precedence.

Example 3: Do Not Disturb (DND):Do Not Notify Unconditional (DNNU) vs. DeM:Time Synchronisa-

tion (TS)

Figure 16 shows that this example uses rules from two different groups running on the same

mobile phone. DND:DNNU and DeM:TS are set up on the mobile phone. If a time synchronisation

message is sent from the home gateway to the mobile phone, the execution of one rule will

invalidate the other. Either the data will be received or the connection will be blocked. A race

condition would decide which rule has precedence.



Figure 15: DaM:ADT vs DaM:ODS Interaction Diagram

Figure 16: DND:DNNU vs DeM:TS Interaction Diagram
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Figure 17: SI:Prompt vs DND:DNNU Interaction Diagram

4.7.6 Missed Trigger Examples

MTI occurs when one rule operates such that it prevents the triggering of the operation of a

second one.

Example 1: SI:Prompt vs. DND:DNNU

This example shows that the use of rules from different groups operating on the same device

can lead to MTI. Figure 17 shows that a mobile phone has rules for SI:Prompt and DND:DNNU.

When DNNU is active on the mobile phone it prevents SI:Prompt from being triggered.

Example 2: SDS:STS vs. CDS:CTS vs SI:Prompt

In this example MTI occurs such that a rule is allowed to operate, but then prevents itself from

being called a second time. Figure 18 shows that a mobile phone has rules for SDS:STS, CDS:CTS

and SI:Prompt. The sequence shown depicts that STS calls SI:Prompt when the subject enters a

particular state. CTS also calls SI:Prompt whilst the subject is in the middle of completing the

questionnaire from the first prompt. This blocks the Prompt rule called by CTS since only one

prompt can be displayed at a time.



Figure 18: SDS:STS vs CDS:CTS Interaction Diagram
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Figure 19: CDS:CTS vs DeM:AI Interaction Diagram

Example 3: CDS:CTS vs. DeM:Activate Immediate (AI)

This example presents the Brief Visit Home (BVH) example discussed in section 4.2. It shows

that MTI can arise when identical rules are used on multiple devices. Figure 19 shows that MTI

occurs when the CTS rules contain delays in its transmission of an activation message to the

home gateway.

4.8 example discussion

The examples presented in this chapter show that the use of multiple rules within and across

devices can cause a variety of conflicts.

These examples present devices individually controlled by rules that may interact in such a

way as to make them susceptible to each of the five types of interactions discussed in chapter

2. Conflicts in such systems arise from conflicts within the same service, or from different

services. Wilson [2005] has previously shown that multiple types of interactions can emerge

by the use of intra-service features. It is shown here that multiple types of conflicts can also
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be caused by rules across groupings. For example, STI example 1 and MTI example 2 use the

same rules which all come from different groups.

The examples show that problems can arise regardless of whether all of the rules are

operating on a single device or spread across devices. For example, MTI example 1 uses

multiple rules on the same device whereas MTI example 3 used rules on different devices.

4.9 summary

This chapter makes two important contributions to the thesis. It describes device and knowl-

edge management rules that are distributed across multiple nodes in a sensor network. It also

shows that the use of such programmable rule sets can lead to conflicts. This chapter lists

sample devices for AA along with network services and rules. These are used in a number of

examples that described how five types of conflict may emerge through their usage. Examples

are given that exemplify inter-service and intra-service conflict for multiple rules running

on a single device or on multiple devices. The examples also show that multiple types of

conflicts may be caused by the same rules. Rule conflict is a problem that can afflict rule

based interacting devices. The following chapters build on this one to provide an approach to

detecting and resolving such interactions in a live environment. They describe the approach

and the test infrastructure, and provide data that shows how the examples do lead to problems

if left unresolved.
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5
D E T E C T I N G A N D AV O I D I N G L O W- L E V E L R U L E C O N F L I C T

5.1 introduction

Personalising devices and networks to monitor subjects in situ exposes the need to use

adaptable programming approaches. Reliability concerns, however, are shown in the previous

chapter to arise because rules can conflict. Such conflict may impact on system functionality

and decisions affecting subject lives.

This chapter presents a novel conflict detection and resolution system for sensor network sys-

tems called CoLlaborative Information Processing Protocol and Extended Runtime (CLIPPER).

It builds on the rules from previous chapters and attempts to resolve the five conflict types

previously discussed. A mixture of techniques are presented for analysis, conflict detection,

and resolution. Subsequent chapters present the evaluation of these methods. The distinctive

contribution of this chapter is the description of an approach to detecting and resolving five

forms of rule conflict within Ambulatory Assessment (AA) sensor networks.

This chapter begins with a review of concerns regarding approaches to conflict detection

and resolution. This is followed by the description of novel detection strategies and resolution

techniques. The chapter is concluded with a description of how the approaches can be

automated for run time analysis and resolution.

5.2 goals, assumptions , and choices

A variety of issues were considered in the development of the conflict detection and resolution

system. Some of these included: fitting analysis into the development life cycle, the degree of

88



5.2 goals, assumptions, and choices 89

user involvement in the analysis process, the level of detail that rules should operate on and

how to handle various data types.

The development life cycle is discussed by Calder et al. [2003a] and Kolberg [2004]. Calder

et al. [2003a] describe how Feature Interaction (FI) detection and resolution may be appro-

priately handled at different stages of the system life cycle. They highlight four types of FI

analysis: software engineering techniques, formal methods, online approaches, and hybrid

approaches. In certain cases it may be possible to perform offline analysis at design time

to analyse system specifications using software engineering techniques or formal methods.

This, however, requires a considerable amount of knowledge about the users, the devices, the

services, and the run-time environments. All of this information may not be available to any

single development team member during development, or at all. Therefore, run time analysis

and resolution may also be required. Consider, for example, the Brief Visit Home (BVH) Missed

Trigger Interaction (MTI) example 3 in section 4.7.6. The example demonstrates that rules may

belong to different groups and run on various devices.

Kolberg [2004] uses an offline approach to minimise interactions before deployment given

the information at hand, then online techniques post-deployment to further maintain the

integrity of the network as it changes over time. CLIPPER may be used for offline analysis. It

may also be used post-deployment for analysis when device rules are changed (such as if a

rule is inserted, modified or removed). This allows CLIPPER users to make decisions based

on run-time environment information when changes occur. CLIPPER requires direct access

to the rules, which online techniques in telephony Feature Interaction have attempted to

avoid because telephony networks involve multiple providers that are unable or unwilling

to share information with each other. However, the form of AA sensor network that CLIPPER

was developed for requires a high degree of transparency regarding the stored data about the

subjects and the device rules that are used to collect and maintain the data.

The main users of AA systems are the subjects of analysis. For these users, CLIPPER follows

the notion from Wilson [2005] that users should not be involved in detecting and resolving

interactions. Device administrator are another type of user in charge of deploying devices

into subject environments. CLIPPER provides details of the analysis and resolution process to
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device administrators, in order that they can make informed decisions to minimise conflicts

amongst the devices.

The approach embodied by CLIPPER can be seen to combine software engineering elements

with formal methods along the lines described in Turner [1993]. Device rules and conflict

rules are formally described in the Event Calculus (EC). CLIPPER analyses low-level device

behaviour rules by examining execution sequences of combinations of declarative sensor

network device rules. CLIPPER can be run offline purely as a formal analytical engine for the

rules. However, the software engineering side of CLIPPER also allows these rules to result

in action statements that can be reified into actual device behaviour when the rules are in

concordance. Rule formats are presented below for device programming, as well as conflict

detection programming. No assumptions are made as to the semantic typing of the data for

use with these rules, since the rules are to be used to exchange, process and store a variety of

data types (such as sensor readings, questionnaire responses and data aggregates). CLIPPER

uses mediators to ensure that devices communicate with each other in a stable way. Mediators

are similar in nature to the notion of feature managers discussed by Marples [2000], described

in chapter 2.

5.3 conflict detection approach characteristics

This section describes an approach to using the EC to perform rule conflict detection in CLIPPER.

It describes techniques and details specific to the detection of detecting each of the five types of

conflicts discussed in chapter 2. Here, conflict means rules that contain Σ, EC or ∆ clauses that

are reached or ignored as a consequence of querying another rule within the same executing

logic program.

CLIPPER finds instances of different forms of conflict amongst collections of device rules. It

does so by triggering devices rules and passing messages to them. Rule execution sequences

are analysed to determine whether they lead to conflicts. It ignores the contents of the
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messages and the semantic meanings of the rules. CLIPPER requires that the syntactic structure

of testable rules and the rule clauses are presented in the EC format.

CLIPPER resolves goals in the following manner. It begins by loading the device rules and

then proceeds to check for conflicts between pairs of rules (including checking rules against

themselves). Checking a pair of rules involves two phases: initialisation and detection.

The initialisation phase resets the Prolog environment by removing all assertions from it. It

then adds a number of time points (establishing a linear order amongst them) and initialises a

fluent that represents a message that can be sent to the rules.

The detection phase involves passing device rules, time points and messages to conflict

detection rules. The conflict detection rules are then used to evaluate whether or not the

device rules are concordant or conflict, and to record evaluation results.

5.3.1 Device Rule Notation

The rules describing device operation are written using the form of the EC presented in chapter

2. These rules are written using Prolog rule syntax and are composed of a head followed by

conditions containing initial situation (∆0) sentences, domain dependent sentences (Σ), and

narrative (∆) sentences. The rule heads are limited to the form rule_name(Trigger,T), where

rule_name is the name of the device rule, Trigger is the triggering message and T is the initial

time point. Although Trigger and T are the only arguments of the rule, it is possible that

additional variables are used within the rule. These variables may be instantiated by assertions

from other rules or the triggering environment. This allows the rules to be written in a generic

format with variables that can be instantiated as appropriate for the device and its context,

with a similar outcome as Blair & Turner [2005] policy variables.

∆0 sentences can be used to describe initial state constraints. These terms may be useful

in cases where rules are only activated when they are in particular states. For instance, the

activation of screening in Inbound Data Screening (IDS) requires that the sender (Alice) be on

the screening list of the recipient (Bob). This fact can be asserted into the initial situation as:
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• Initially_p(bob_screen(alice)).

Σ sentences describe actions that may be taken by rules. For example processing data can

occur as a result of Data Storage Through Processing (DSTP) (see page 62 for DSTP description).

This can be described in a Σ sentence as:

• Initiates(receive_data,process(data),T2).

∆ sentences describe the activity sequences of the rules. A sender attempting to connect to a

recipient device, for example, is an activity of IDS. This can be described in the EC terminology

as:

• Happens(sender_attempts_connection,T1).

5.4 clipper analysis

The analysis components of CLIPPER is a Prolog program that is spread across four core files.

Other files are needed as well to describe the conflict rules and device rules being analysed.

These components are extensible and can be used as the basis for programs to analyse types

of rules other than the ones presented here, by modifying the conflict rules and device rules

to match the domain of interest. The following sections describe each of the core files, along

with the conflict rules and the device rule files.

The core analysis files consist of detection.pl, utility.pl, eventCalc.pl and rules.pl. The

detection.pl file contains the starting goal term, which loads the other necessary files as part

of its resolution. The source code for these files is presented in Appendix A.

The goal resolution flow is shown in figure 20. It shows that after the files are loaded the

groups of rules are analysed until no permutations remain. To analyse the groups, CLIPPER

does some initialisation and sets up the rules with the correct message and time values. It then

uses the given conflict rule to check for conflicts between the device rules, and then writes the

output. When no more permutations of rules remain, a completion message is written and

the goal is satisfied.
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Detection

The predicates of detection.pl are shown in listing A.1. These are used for the main goal

which is “analyseConflicts”. The “singleCheck” predicate is of particular interest since it is

the one that is repeatedly called with the various rules. This predicate initialises the world

of discourse and device rules. It then calls the conflict detection rule and passes in to it the

device rules, a message, and the starting time points for the device rules. The conflict rule

used in the listing is for Sequential Action Interaction (SAI), and some others are commented

out to show that they can be used instead.

Utility

The predicates of utility.pl are shown in listings A.2. These predicates are used for two main

purposes: to permutate through lists of device rules and conflict rules, and to control output

strings. The output of CLIPPER can be written to the screen and/or to file.

EventCalc

The core EC predicates are presented in listings A.3. These present a simple form of the EC.

The “initEC” rule may be of particular interest as it is not directly part of the EC core rule set,

Figure 20: Goal resolution flow diagram for the rule interaction analytical framework.
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but rather insures that a consistent environment for the EC is maintained. Device rules assert

EC sentences when they are called. The “initEC” predicate ensures that these are retracted

prior to conflict detection for particular sets of device rules.

Rules

The rules.pl file, described in listing A.4 shows an example of device rules that will be

analysed. The listing shows that the Looping Interaction (LI) analysis rules are being used,

but any other rules can be used by consulting the appropriate file and adding the rules to the

“Rules” list.

5.4.1 Conflict Detection Rule Notation

The conflict detection rules are written using EC goal (Γ ) sentences along with additional

clauses for ordering test sequences and writing output. The Γ sentences are used to ensure

that particular fluents hold at given points in time. The fluents that should hold are dependent

on the nature of the interactions being analysed. MTI analysis, for instance, uses Γ sentences

to check whether the contents of a message continue to exist when they are passed between

rules. For example, a Γ sentence can be written as:

• holdsAt(message(Content),T2).

In order to perform conflict detection, CLIPPER requires conflict rules and device rules in

addition to the core rules described above. Various rules are presented in chapter 5. These are

presented in a simplified format for explanatory purposes. Listing A.5 depicts the expanded

form of the conflict detection rules.
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5.5 conflict detection algorithms

Five forms of conflict analysis are chosen for consideration as discussed in the previous

chapter. The following sub-sections describe algorithms for each of these using the conflict

detection rule notation.

5.5.1 Missed Trigger Detection

Detecting MTI can be accomplished by testing rules sequentially to ensure that a common

fluent holds before being passed to each of the tested rules. The fluent can be considered as a

type of triggering message that should remain in a consistent state between rules. Such an

approach need not make any assumptions about the contents of the message, nor about the

actions that should be performed by the rules, nor about what the rules do upon receiving a

message.

Figure 21 depicts MTI detection. The analytical framework evaluates a MTI concordance rule

with arguments that consist of a pair of feature description rules, time points for the start

times of each of the rules, and the message fluent. The fluent initially holds prior to being

passed to the first rule. Rules conflict if the fluent becomes clipped prior to the execution of a

rule.

Feature description rules satisfy two qualities: successfulness and destructiveness. Regarding

successfulness, conditions of a rule may or may not allow it to complete all of its predicates.

If it does complete them then the rule is said to be successful, otherwise it is considered a

failure. As for destructiveness, a rule may or may not alter a given message by destroying

the message or modifying it in such a way as to invalidate it. Modifying a message is seen

as terminating it at a given time point and initiating a new message at either the same time

point or at a later one. A destructive rule may be described in the EC terminology by saying

that it terminates the message at a given time point, and a passive rule as one that does not.

Rules can therefore be described as belonging to one of the four combinations of these types:
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Figure 21: MTI Detection algorithm diagram

Passive-Failure, Passive-Successful, Destructive-Failure, and Destructive-Successful. Feature

rules conflict by MTI when the initial rule is a destructive one.

The MTI detection algorithm has two phases, an initialisation phase followed by a detection

phase. The initialisation phase resets the universe of discourse to a basic state whereby there

are four distinct points in time. This phase also asserts that some action occurs at time point

zero and generates a message at that point. The detection phase determines whether or not

the message will trigger an action at time point three following its passage from the first

rule at time point one to the second at time point two. If the message will trigger an action

the rules are said to concord, otherwise they are said to conflict. The detection algorithm is

described in listing 5.1. This code listing, along with the rest in this chapter, shows Prolog

code that has been simplified for explanatory purposes. Such simplification removes user

output information and reduces the instructions that portray inert events (such as writing

output to file).
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An example of potentially conflicting rules is given in listing 5.2. Both of these rules (R1 and

R2) receive variables for the triggering message fluent and the time points for when they are

respectively executed. R1 is destructive because it terminates the triggering message, whereas

R2 is passive because it does not terminate the triggering message. The results of analysing

these rules for MTI are shown in table 6. The table shows that if R1 is used prior to a second

usage of the rule or the use of R2 then MTI occurs. Two instances of R2, on the other hand will

concord if they are used together, as will R2 called before R1.

Listing 5.1: Rule describing MTI conflict detection algorithm.

1 % Are Rule1 and Rule2 MTI free using a Message at times T1 and T2?

2 % Rule1 and Rule2 con�ict if the �rst one sets a message into a state such

3 % that the second one does not operate correctly.

4 mti(Rule1,Rule2, Message, T1,T2) :−

5 % Make sure that T1 < T2

6 ( before(T1,T2);!, fail ),

7 % Make sure the message holds when the �rst rule receives the message.

8 ( holdsAt(message(Message),T1); !, fail ),

9 % Perform the �rst rule and make sure it succeeds.

10 ( Rule1; !, fail ),

11 % Make sure that the message holds at the time the �rst rule completed.

12 % If the message does not hold there has been a con�ict.

13 ( holdsAt(message(Message),T2); !, fail ),

14 % If the second rule succeeds then the rules concord.

15 ( Rule2; !, fail ).

Listing 5.2: Abstract feature rules for MTI testing.

1 r1(M,T1) :−

2 T2 is T1 + 1,

3 assert(happens(action,T1)),

4 assert(initiates(action,trigger(M),T1)),

5 assert(terminates(action,message(M),T1)),
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Table 6: MTI detection results for two abstract rules (R1 and R2).

Rule 1 Rule 2 Result

R1 R1 MTI

R1 R2 MTI

R2 R1 Concordance

R2 R2 Concordance

6 assert(terminates(action,trigger(M),T2)).

7

8 r2(M,T1) :−

9 T2 is T1 + 1,

10 assert(happens(action,T1)),

11 assert(initiates(action,trigger(M),T1)),

12 assert(terminates(action,trigger(M),T2)).

5.5.2 Shared Trigger Detection

Shared Trigger Interaction (STI) occurs when multiple actions are performed in response

to the same triggering event, and the behaviour of one or more of the actions is different

from the behaviour arising from a single rule response to the trigger. Testing for STI can be

accomplished by querying a feature rule, then resetting the query environment, querying

a second rule, then querying the first rule again. If there are differences in the Σ sentences

between the first and second instances of the first rule then the first and second rule conflict

by STI.

The analytical framework can perform STI detection as shown in figure 22. It loads an STI

detection rule along with arguments that consist of a pair of feature rules, but ignores the

time points and the message fluent arguments. The fluent initially holds prior to being passed
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Figure 22: STI Detection algorithm diagram

to the first rule and the second rule. Rules conflict if a check of the initiated actions from the

first instance of the first rule does not match the second instance’s initiated actions.

The initialisation phase is performed twice for STI detection. Both initialisations perform the

same activities. They ensure that all EC assertions (such as those for Σ sentences) are retracted,

insert time points, and set ∆0 to include an initially set message fluent.

The STI detection phase, described in listing 5.3, involves the following steps:

1. Query the first rule

a) Capture its Σ sentences as Σ0

2. Re-initialise

3. Query the second rule

a) Capture its Σ sentences as Σ1

4. Re-query the first rule

a) Capture its Σ sentences as Σ2

5. Check for differences in the Σ sentences. The rules conflict if there are differences

a) Concordance is defined as Σ0 - Σ2 - Σ1 = 0.
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Listing 5.4 provides an abstract example of two potentially conflicting rules which receive

the same time point for activation, but the message fluent they receive may or may not be

active at that time point. The first rule (R1) initiates an action in response to a trigger only if

the triggering message holds at the given time point. The second rule (R2) always terminates

the triggering message regardless of the state of the trigger.

Table 7 shows the results of analysing these rules for STI. The table shows an interesting

pattern of detection. Here, two instances of the same rule conflict, but instances of different

rules do not.

Listing 5.3: Rule describing STI conflict detection algorithm.

1 % Are Rule1 and Rule2 STI free using a Message at time T1 (T2 is unused)?

2 % Rules A & B con�ict by STI when actions are performed by them both in response to the same

3 % triggering event, and the list of actions is di�erent from how it would be if

4 % only one feature had responded to the trigger.

5 sti(Rule1,Rule2, _, _, _) :−

6 % Perform the �rst rule

7 Rule1,

8 domainDependentSentences(F1),

9 % Reset world

10 resetWorld,

11 % Perform the second rule

12 Rule2,

13 domainDependentSentences(F2),

14 % Perform the �rst rule

15 Rule1,

16 domainDependentSentences(F3),

17 subtract(F3,F2, Di�erence1),

18 subtract(F1,Di�erence1, Di�erence2),

19 length(Di�erence2,Len),

20

21 %Write result of check of rule conccordance
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22 (

23 (

24 Len=0,

25 addConcord(sti, Rule1, Rule2),

26 write(’ Yes.\n’)

27 );

28 (

29 addFi(sti, Rule1, Rule2), write(’ No.\n’)

30 )

31 ).

32

33 domainDependentSentences(Res) :−

34 �ndall([B,C],initiates(_,B,C),Find1),

35 �ndall([B,C],terminates(_,B,C),Find2),

36 append(Find1, Find2, Find3),

37 subtract(Find3,[[null, null]], Res).

Listing 5.4: Abstract rules that conflict with themselves but not each other.

1 % Initiate an action in response to a trigger if it's triggering message holds

2 r1(Trigger,T) :−

3 T2 is T+1,

4 assert(happens(Trigger,T)),

5 (

6 (

7 holdsAt(message(Trigger), T),

8 assert(initiates(Trigger,action,T))

9 );

10 assert(happens(ignore,T2))

11 ).

12

13 % Terminate a triggering message



5.5 conflict detection algorithms 102

Table 7: STI detection results for two abstract rules (R1 and R2).

Rule 1 Rule 2 Result

R1 R1 STI

R1 R2 Concordance

R2 R1 Concordance

R2 R2 STI

14 r2(Trigger,T) :−

15 assert(happens(Trigger,T)),

16 assert(terminates(Trigger,message(Trigger),T)).

5.5.3 Multiple Action Detection

The occurrence of Multiple Action Interaction (MAI) is caused by the attempted control of a

single device by multiple rules at the same time. The given framework does not distinguish

device types and has no knowledge of where the rules are triggered. Adding such information,

though possible, will yield little benefit as it amounts to a declaration that the rules are

triggered on the same device. If such a declaration is desirable, then one only needs to assume

that the rules are triggered on the same device. Given that assumption, MAI can be detected

using the STI detection rules.

Listing 5.7 shows two abstract rules used for an example of MAI detection. These rules

are presumed to run on the same device. Table 8 shows that these rules always conflict. In

contrast, table 9 shows the result of using the rules from the STI example above (listing 5.4).

These rules only conflict with themselves, but not with each other.
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Table 8: MAI detection results for two abstract rules (R1 and R2).

Rule 1 Rule 2 Result

R1 R1 MAI

R1 R2 MAI

R2 R1 MAI

R2 R2 MAI

Table 9: MAI detection results for the abstract rules (R3 and R4) from the STI example.

Rule 1 Rule 2 Result

R3 R3 MAI

R3 R4 Concordance

R4 R3 Concordance

R4 R4 MAI

5.5.4 Sequential Action Detection

SAI can be detected by testing to determine if a feature rule performs an action that leads to

the performance of actions by a second rule. This can be accomplished by triggering rules

sequentially within the framework and checking for α sentences that describe actions that

will be performed as a result of the firing of the two rules.

The analytical framework performs the procedures shown in figure 23 and described in

listing 5.6. It uses the standard initialisation phase and then loads the SAI detection rule. This

begins by ensuring the correct ordering of the time points. It then performs the first feature

rule, stores its α sentences, and then re-initialises the world. Then it performs the second

feature rule and stores its α sentences whereupon it re-runs the first rule and subtracts the

second rule’s actions from its actions. The remaining α sentences are compared with the

actions from the initial run of the first rule. If they are the same, the second rule results in no

additional actions, therefore the rules concord; otherwise they conflict by SAI .
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Figure 23: SAI Detection algorithm diagram

Table 10: SAI detection results for two abstract rules.

Rule 1 Rule 2 Result

R1 R1 SAI

R1 R2 Concordance

R2 R1 SAI

R2 R2 Concordance

Listing 5.5 shows two abstract rules were used to show an example of the algorithm. The

first rule (R1) checks if the triggering message still holds and then depicts that some event

happens that terminates the triggering message. The second rule (R2) also checks if the

triggering message still holds, but then it only describes that some event occurs afterward,

without explaining any actions that may come of the event.

The results of testing the rules in the analytical framework using the SAI detection rule are

shown in table 10. Sequential actions were detected when either R1 or R2 followed a previous

call of R1.
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Listing 5.5: Abstract rules used to explain SAI.

1 r1(Trigger,T) :−

2 (

3 holdsAt(message(Trigger), T),

4 assert(happens(event1,T)),

5 assert(terminates(event1,message(Trigger),T))

6 );

7 true.

8

9 r2(Trigger,T) :−

10 (

11 holdsAt(message(Trigger), T),

12 assert(happens(event2,T))

13 );

14 true.

Listing 5.6: Detection rule describing SAI conflict.

1 % Are Rule1 and Rule2 SAI free using a Message at times T1 and T2?

2 % Rules A & B con�ict if a rule 2 occurs before rule 1 and alters

3 % what happens in rule 1.

4 sai(Rule1,Rule2, _, T1,T2) :−

5 % Make sure that T1 < T2

6 before(T1,T2),

7 % Determine what happens in rule 1 if rule 2 is not �red �rst

8 Rule1,

9 �ndall([B,C],happens(B,C),F1),

10 % Reset world

11 resetWorld,

12 % Perform the second rule

13 Rule2,
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14 �ndall([B,C],happens(B,C),F2),

15 % Determine what happens in rule 1 after rule 2 is �red

16 Rule1,

17 �ndall([B,C],happens(B,C),F3),

18 subtract(F3,F2, Di�erence1),

19 (

20 % A con�ict occurs if what happens in rule 1 after rule 2 is

21 % di�erent than what happens in rule 1 before rule 2

22 (

23 F1\=Di�erence1,

24 addFi(sai, Rule1, Rule2)

25 );

26 (

27 addConcord(sai, Rule1, Rule2)

28 )

29 ).

5.5.5 Loop Detection

LI occurs when one rule triggers another which in turn causes the first one to be re-triggered.

LI, therefore, is a special case of SAI that can be defined as SAI leading to the triggering of the

first rule’s actions. This can be detected by performing SAI checks on the rules and examining

the output for cases where two rules have SAI regardless of whether they are the first or second

rule.

For SAI to be detected a rule must trigger a change in behaviour of another at a given point

in time. The time points and the rules are called by the framework which then checks for

differences in the way that a rule executes, whether it runs before or after another rule. If its

operation is the same in both cases then SAI is not detected.
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Table 11: LI detection results for sample abstract rules.

Rule 1 Rule 2 Result LI Case

R1 R1 SAI LI(i)

R1 R2 SAI LI(ii)

R2 R1 SAI LI(ii)

R2 R2 SAI LI(iii)

Table 11 presents three cases of LI being detected between two abstract rules. The rules are

listed in listing 5.7. Here loops emerge when both rules are instances of the same type or

instances of different types.

Listing 5.7: Abstract rules used to explain MAI and LI detection.

1 r1(Trigger,T) :−

2 (

3 holdsAt(message(Trigger), T),

4 assert(happens(event1,T)),

5 assert(terminates(event1,message(Trigger),T))

6 );

7 true.

8

9 r2(Trigger,T) :−

10 (

11 holdsAt(message(Trigger), T),

12 assert(happens(event2,T)),

13 assert(terminates(event2,message(Trigger),T))

14 );

15 true.
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5.6 resolution strategies

Having shown that it is possible to detect conflicts, it is now important to consider what may

be done about them. This section describes strategies that may be applied to deal with the

conflicts. It also describes how the decisions of which to use can be reached and how these

can be applied to cases of the five interaction types previously discussed.

The approach to resolution in this thesis focuses on the use of priorities rather than human

intervention or heuristics for the reasons described in chapter 2 specify priorities, but to do so

in a way that allows them to consider the consequences of their decisions.

5.6.1 Device Priorities

CLIPPER uses a rule-based device priority system to handle conflict resolution. The resolu-

tion rules determine which of the conflicting rules have precedence, and which are to be

temporarily disabled in order to avoid the interaction.

Device and network-wide priorities are combined to determine rule precedence. Device-

level and system-wide priorities are described as facts that are taken into account during

resolution. These priorities are guiding principles for each device.

Device priorities have a considerable benefit in handling the heterogeneity of sensor net-

works. For example, the priorities of a gateway device that is drawing power from the home

and has a high-speed Internet connection will be considerably different to those of a mobile

phone with limited storage capacity and bandwidth concerns. The mobile phone may pri-

oritise data processing, whereas the gateway may prioritise data integrity since it has ample

power and data storage facilities. If the MAI interacting rules Data Storage Unconditional (DSU)

and DSTP are present on each device then the appropriate resolution for the wearable device

is to disable DSU, but the appropriate resolution for the gateway is to disable DSTP. For the

resolution system to decide, the mobile phone administrator could set a device level priority

for data integrity to a high value and set DSTP to a higher priority over DSU with respect to
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data integrity. The gateway administrator can do similar for the gateway priorities but giving

a higher priority to DSU. The outcome would therefore depend on the device in question and

its priorities.

In this approach the resolution system always disables rules with the lowest priority.

Multiple rules with the same lowest priority (including no priority) are all disabled. This

allows a system to gracefully handle conditions that can occur where priorities are not present

or do not pertain to the interacting rules. In some cases, such as the LI example 2 in section

4.7.4, interactions may occur between rules across devices which results in multiple priorities

of the same order. In that example the mobile phone has transference of data as its highest

priority and the home gateway has security as its highest priority.

The priority system of CLIPPER works by consulting the priority files associated with each

device, the core conflict analysis and resolution files and the conflict detection report file.

Variables from each of the conflicts found in the conflict report are passed in to the resolution

system’s resolve rule. The variables include the type of conflict (such as MAI) and each device

and device rule that conflicted. Each rule is checked to see if a priority has been applied to

them. If both have priorities they are checked to see which has precedence. The rule with the

lowest precedence is disabled as are rules that have no priorities applied to them. If two rules

have equal precedence then they are both disabled.

5.7 clipper simulation architecture

A mediator-based approach is used in this research to simulate how network devices can

behave when influenced by conflict detection. This approach uses a mediator to analyse device

rules and load appropriate actions into devices.

CLIPPER, uses object-oriented programming to automate conflict analysis. Automated

CLIPPER-based applications run on physical devices using key concepts defined for devices,

mediators, their rule engines, and actions performed by the devices. The devices are controlled

though logic rules and facts. Actions, rules, and facts are loaded and unloaded into devices and
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knowledge bases at run-time. This allows networks of devices running CLIPPER applications

to change and react to new information. The Java source code for CLIPPER is provided at

http://code.google.com/p/clipper-cd/.

Figure 24: Overview of CLIPPER class architecture showing relationships among main classes.

Figure 24 shows an overview of the main architectural elements of simulation applications

which include:

• Device classes represent physical devices such as mobile phones and gateways. Multiple

Devices can be added to an application. Devices are provided with a path to files

containing rules specifying their behaviour. Devices are loaded with Actions by Mediators

and execute them in sequence.

• A Mediator loads device rules into a Rule Engine, passes the rules to a conflict Detector,

and loads Actions into Devices.

• Rule Engines query declarative logic facts and rules given goals.

• Detectors perform conflict detection by loading the device rules files and CLIPPER core

analysis logic files into a Rule Engine and query it for a conflict goal.

• Action classes implement EC actions (or events) from device rules into Action objects.

For instance, a rule for Automatic Data Transfer (ADT) might have a happens sentence

which includes an action for attempt_connection. An Attempt_connection action class is
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required to handle the connection attempt over a particular network protocol. Actions

are executed by their containing Devices.

• Action Factories reify Action classes given a complementary EC rule name supplied by a

Mediator.

In CLIPPER, device objects observe and react to stimuli input into a physical device. Device

objects are programmed to watch for input into the physical device. They register with

mediators and report to them when new data enter the system.

New devices can be added to the application by registering with a mediator. Adding new

devices to the system requires three steps:

1. Identify existing action classes, and/or program new ones and register them with the

action factory.

2. Register the device with a mediator.

3. Add rules regarding the device and actions it should perform to the rule set.

Mediators ensure that rule conflict is checked on device registration and removal. Mediators

do so by passing the device rule file paths to their detectors. Detectors detect conflict by

preparing a temporary directory with the CLIPPER core analysis logic files, a logic file that

it generates containing the files to consult, and a generated rule listing the device rules to

analyse. Detectors load the generated file into a rule engine which interface with SWI-Prolog

using the JPL library. The rule engine uses Prolog to consult the analysis and device rules

files and then perform conflict detection as described in 5.4. Conflicts are written as facts to a

detection report file describing the type of conflict (such as MTI ), and the pair of conflicting

rules.

Mediators control the system-level logic as to what system-wide actions should take place in

response to input. The mediators also control inter-device communication. When devices are

updated (such as when new readings are sensed) they notify their mediators of occurrences of

events. Mediators then make calls to rule engines to determine actions to be carried out. These

actions are loaded into devices for execution. Conflict resolution should be performed by a
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mediator after it has checked for conflict. It should only load the actions of non-conflicting

rules, or rules that have higher priority over rules of lower priority that conflict. To do so, it

can use the device priority logic system described above with the conflict detection report file

and device priorities files to ascertain the appropriate actions to load into devices, ignoring

low priority conflicting ones.

Rule engine objects query knowledge base facts and rules. Satisfied queries return the

names and parameters of actions to perform, along with the identities of devices to perform

the actions. These queries return from the rule engine to the calling mediators. The mediators

use action factory objects to generate action objects which are loaded into the appropriate

devices. Enqueued actions are executed by devices. Rules, facts and actions can be loaded

and unloaded into the rule set and action factory at run-time. This allows actions to load new

facts and rules into the rule set.

Figure 25: Standard CLIPPER usage sequence.

A standard usage sequence is depicted in figure 25. In the figure two devices register with

a mediator. Some time later one of the devices sends an update message to the mediator. The

mediator’s rule engine is called to determine the actions that should be performed. A given

action is then reified by the action factory. The action is passed back to the mediator which

loads the action into the device that should perform it. The action is then performed by the

device, ending the sequence. In this diagram, the number of devices shown, along with the



5.8 summary 113

decision to have the first one generate the update message and the second one perform the

action are arbitrary.

An example using such a sequence involves a mobile phone and a wearable GPS unit. The

phone can act both as a mediator and as a device. When the wearable GPS unit sends new

data to the mobile phone, it can call rules to determine actions to take based on the given

location. An action such as one to ask a question about the subject’s current activity can then

be returned by the rule engine to the mediator on the phone which may then be loaded into a

questionnaire application on the phone.

5.8 summary

This chapter contributes a novel approach to rule conflict detection and resolution. Such

conflicts are shown to emerge when various devices are programmed independently but rely

on each other. Design goals, assumptions and decisions regarding the solution are discussed

along with the presentation of a novel solution that can be used to detect and resolve five

forms of conflict.

Key concepts are presented here including the device rule and conflict rule notations

based on the EC, logic-based detection algorithms for MTI, STI, MAI, SAI and LI, and resolution

strategies derived from device priorities. These concepts are used in the next chapter, which

describes an assessment and analysis of the approach.



6
A P P R O A C H A S S E S S M E N T

6.1 introduction

Previous chapters of this thesis describe how the use of rules can lead to conflicts within

devices and across device networks. Conflicts that emerge from device rules to perform

Ambulatory Assessment (AA) are presented in chapter 4. Chapter 5 describes conflict detection

and resolution strategies for sensor network systems. This Approach Assessment chapter

presents an evaluation of the methods from chapter 5 against the examples discussed in

chapter 4.

This chapter contributes evaluations that show that conflicts can indeed arise in device

control rules, and that the analysis engine can reliably detect and resolve the five forms of

rule conflict previously discussed. Results from two methods of evaluation are presented,

including a reference testbed system used to show the emergence of conflicts, and the results

of an assessment of the analysis approach.

This chapter begins with a description of the results of running CoLlaborative Information

Processing Protocol and Extended Runtime (CLIPPER) within a test harness to show that

conflicts can emerge. That is followed by the presentation of the results from using the

analysis engine to determine resolution against the various examples described in chapter 4.

The chapter concludes with a discussion of the results.

114
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6.2 testbed configuration and testing

The following discusses a CLIPPER-based testbed example that shows the emergence of con-

flicts. The example illustrates conflict that can arise between rules. This is shown using an

environmental monitor (Env_Mon) reporting data to a gateway. The environmental monitor

uses the Data Management (DaM):Automatic Data Transfer (ADT) rule to report all data to the

gateway. For different tests the gateway subscribes to either, or both, the DaM:Data Storage

Unconditional (DSU) and DaM:Data Storage Through Processing (DSTP) rules (the use of both

causes an MAI as described in chapter 4). Figure 26 shows a class diagram depicting the

classes used in the example. A home gateway is the concrete device class which registers with

a mediator containing a rule engine. The rule engine can call out to a rule manager capable of

testing for Multiple Action Interaction (MAI). The available action classes that are shown are

derived from the ∆ predicates of the DaM:ADT, DaM:DSU, and DaM:DSTP rules.

Three tests show the emergence of conflict. In the first test the gateway subscribes only to

DaM:DSU, in the second it subscribes only to DaM:DSTP1, and in the third it subscribes to both,

but the mediator does not use conflict detection or correction. In all cases, the following run

time behaviour takes place:

1. The mediator is instantiated with a new rule engine.

2. The actions shown in figure 26 are added to the action factory.

3. The gateway and environmental monitor devices are instantiated, their rules are loaded

into them, and registered with the mediator.

4. A virtual environmental monitor device is programmed to capture 20 light meter

readings per second and one sound reading per second.

5. Each test runs for 60 seconds.

1 For these tests the storage and processing actions are simplified to eliminate possible interference resulting from
more complex schemes, and to clearly show the conflict. The storage actions wrote the type and value to the same
file, and the processing actions annotated the raw data with a “processed” message. The conflict can be avoided if
multiple files are used for storage (different ones for each rule), butt that is not a long term solution, as it is not
possible to enforce such a division, and it could have deleterious effects for any down-stream actions that expect data
to be found in a particular location.
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The rules files used in the tests along with the resulting data files can be downloaded from

http://www.cs.stir.ac.uk/~jmb/clipper/data/mai/00000000/.

Figure 26: CLIPPER class overview diagram for MAI interaction online analysis example.

A well behaved system

A normal pattern of behaviour is observed as a result of the first two tests. Manually comparing

the log files with the data storage files shows that the environmental monitor generates more

than 1000 readings per test. The data is stored correctly by the gateway as per the given rules:

in the first test the raw data is stored, and in the second test the processed data is stored.

Samples of the data for test 1 and 2 are shown in tables 12 and 13 respectively.

Conflict

The resulting data from the third test shows that an undesirable rule conflict takes place (as

expected). More than 1000 readings are generated and stored. Half of them, however, are

stored with raw values and the other half are stored with processed values. This situation is

http://www.cs.stir.ac.uk/~jmb/clipper/data/mai/00000000/
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Table 12: Sample Stored Data from First Test

Reading Type Reading Value

light 3

light 13

sound 19

light 7

Table 13: Sample Stored Data from Second Test

Reading Type Reading Value

light 3 – PROCESSED

light 14 – PROCESSED

light 2 – PROCESSED

sound 18 – PROCESSED

clearly undesirable since the non-homogeneity of the data will invalidate further analysis. A

sample of the data for this test is shown in table 14.

Table 14: Sample Stored Data from Third Test

Reading Type Reading Value

light 8

light 3 – PROCESSED

sound: 14

light 10 – PROCESSED
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6.3 detection & resolution examples

A number of examples are described in chapter 4. The following subsections describe the

rules for each of these cases and the results from testing each one using the conflict analysis

and resolution engine. Each subsection contains a results table. Each table lists the rules used

in the test along with the conflict detection results and resolution proposals. A summary of

the results is shown in table 26.

The resolution proposals are based on a set of priorities configured for the resolution system,

shown in listing B.1. These are set by the author based on likely settings for all of the rules

used in the examples. Each of the aforementioned tables contains a resolution column. Entries

are only included in this column for conflict results (they are left blank for concordance

results), and entries mean that the given rules should be either enabled (E) or disabled (D).

The choice of whether to enable or disable a rule depends on the type of conflict that is

detected. If the type is Missed Trigger Interaction (MTI), then the rule should be enabled,

otherwise the rule should be disabled. This follows from the notion that it would not make

sense to disable a rule that is already being blocked by another rule. A rule will, however,

only be enabled if it has a higher priority than the blocking rule. This allows, for instance, a

high priority security rule to quite rightly cause a low priority user notification message to

miss its trigger.

Possible resolution entry values include a named rule, “either”, or “both”. The term “either”

means that either of the given rules may be disabled. Following the principle, “When all

things are equal, choose deterministically rather than randomly” from Reiff-Marganiec, 2002,

always the first, or always the second rule should be disabled. The term “both” means that

both of the rules should be disabled.
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6.3.1 Shared Trigger Example 1

The rules used for Shared Trigger Interaction (STI) example 1 can be found in listing B.2. These

rules are Context Detection Service (CDS):Context Triggering System (CTS) and State Detection

Service (SDS):State Triggering System (STS).

The CDS:CTS rule has ∆ sentences that describe its activities. It also has Σ sentences that will

be activated if the message fluent holds at the subsequent time point to rule activation. This is

a destructive rule because the message fluent is terminated at the activation time point by this

rule.

Two forms of the rule SDS:STS are presented. Normally, only one form of a rule is used,

however here two are given to highlight possible differences in the way Σ sentences may be

written. The first form of the rule (form A) depicts an active response to changes in data. In

the interests of space, the rule depicted here calls the CDS:CTS rule since the two rules are

similar in nature. The second form of the rule (form B) uses the same ∆ sentences as the other

two rules, but it is passive and does not contain any Σ sentences.

Table 15 shows the results of analysing these rules for STI. The table shows that form B of

SDS:STS is in concordance with the other rules, but the other rules conflict with themselves and

each other. Rows two and four are of particular interest as they show that the rules conflict

with each other.

For rows two and four, the resolution system determines that SDS:STS should be disabled.

This results from the relative priorities of CDS:CTS and SDS:STS (the former having a higher

data collection priority). The choice of priority between these two rules is arbitrary, and

would require a domain expert to make this choice in a concrete setting. Further testing with

the priorities shows that inverting the data collection priorities leads to the recommended

disabling of CDS:CTS. Setting both data collection priorities to the same value results in the

recommendation of disabling both rules.



6.3 detection & resolution examples 120

Table 15: STI Detection results for STI example 1.

Rule 1 Rule 2 Result Resolution (D)

CDS:CTS CDS:CTS STI Both

CDS:CTS SDS:STS A STI SDS:STS(A)

CDS:CTS SDS:STS B Concordance

SDS:STS A CDS:CTS STI SDS:STS(A)

SDS:STS A SDS:STS A STI Both

SDS:STS A SDS:STS B Concordance

SDS:STS B CDS:CTS Concordance

SDS:STS B SDS:STS A Concordance

SDS:STS B SDS:STS B Concordance

6.3.2 Sequential Action Example 1

Sequential Action Interaction (SAI) example 1 involves the rules presented in listing B.3 which

lists the rules CDS:Report Location (RL) and Subject Interaction (SI):Prompt (Prompt). Table 16

shows two occurrences of SAI.

The first of these (CDS:RL followed by SI:Prompt) is of particular interest since it shows that

the expected conflict from the example occurs. The detection of this does not mean that

there is necessarily a problem, it means that caution should be taken when using these rules

together. This is because it is possible that CDS:RL can become disabled owing to the resolution

of some other conflict. If that is the case, then SI:Prompt would also be disabled in this instance,

which may interfere with data collection protocols. Should one wish to resolve this conflict for

certain, then the resolution of this conflict should to be to disable SI:Prompt.



6.3 detection & resolution examples 121

Table 16: SAI Detection results for SAI example 1.

Rule 1 Rule 2 Result Resolution (D)

CDS:RL CDS:RL Concordance

CDS:RL SI:Prompt SAI SI:Prompt

SI:Prompt CDS:RL Concordance

SI:Prompt SI:Prompt SAI SI:Prompt

6.3.3 Sequential Action Example 2

The rules used in SAI example 2 are shown in listing B.4. The rules DaM:ADT and DaM:Redirect

Data Stream (RDS) are described. The results of testing the rules in the analytical framework

using the SAI detection rule are shown in table 18.

Sequential actions are detected between two instances of DaM:ADT, as well as between

DaM:ADT and DaM:RDS. DaM:RDS does not cause SAI when two instances of it are used. The

system is validated against this example since it is expected that a SAI between DaM:ADT

followed by DaM:RDS would be detected. The resolution of this conflict is to disable DaM:RDS.

6.3.4 Sequential Action Example 3

SAI example 3 contains rules for Device Management (DeM):Data Recording Frequency (DRF)

and SDS:STS listed in listing B.5. The same two forms of the rule SDS:STS presented in STI

example 1 are presented here as well.

The results of testing the rules in the analytical framework using the SAI detection rule are

shown in table 17. This shows that SAI is detected in all rule pairings. Rows 4 and 7 confirm

that SAI is detected. In these cases the resolution system determines that SDS:STS should be

disabled. This occurs because there is a preference for battery life over data collection.
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Table 17: SAI Detection results for SAI example 3.

Rule 1 Rule 2 Result Resolution (D)

DeM:DRF DeM:DRF SAI Either

DeM:DRF SDS:STS A SAI SDS:STS A

DeM:DRF SDS:STS B SAI SDS:STS B

SDS:STS A DeM:DRF SAI SDS:STS A

SDS:STS A SDS:STS A SAI Both

SDS:STS A SDS:STS B SAI SDS:STS A

SDS:STS B DeM:DRF SAI SDS:STS B

SDS:STS B SDS:STS A SAI SDS:STS A

SDS:STS B SDS:STS B SAI Both

6.3.5 Looping Example 1

Looping Interaction (LI) is detected when examining DaM:ADT and DaM:RDS as shown in table

18. The same rules are used as in Sequential Action example 2 (listing B.4).

The table presents two cases of SAI in which LI is also found. The first row depicts DaM:ADT

leading to an SAI with another instance of itself. This may result in an infinite call loop.

The second loop that is detected occurs because SAI is detected between DaM:ADT and

DaM:RDS in both orderings of rule calls. The detection of this second case of LI validates the

system against the example. The resolution for this loop is to disable either the ADT rule or

the RDS rule depending on which rule is detected in the loop first.

6.3.6 Looping Example 2

Table 19 shows the analysis of the second LI example. The rules for DaM:Inbound Data

Screening (IDS) and DaM:Retry Data Transfer On Unavailable (RDTOU) are listed in listing B.6.
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Table 18: SAI Detection results for SAI example 2 and LI example 1.

Rule 1 Rule 2 Result LI Case Resolution (D)

ADT ADT SAI LI(i) Either

ADT RDS SAI LI(ii) RDS

RDS ADT SAI LI(ii) ADT

RDS RDS Concordance No

Table 19: SAI Detection results for LI example 2.

Rule 1 Rule 2 Result LI Case Resolution (D)

IDS IDS Concordance No

IDS RDTOU Concordance No

RDTOU IDS SAI No Both

RDTOU RDTOU SAI Yes Both

The table shows that a loop is detected when instances of DaM:RDTOU are used as both the

first and second rule. This loop results from DaM:IDS blocking the connection between devices,

even though DaM:IDS does not lead to SAI with DaM:RDTOU. The resolution system determines

that the solution to the loop is to block both instances of DaM:RDTOU. This exposes a subtle

limitation in the resolution system since it would only be necessary to block one instance

DaM:RDTOU to prevent a loop. Blocking the first instance would result in an inherent block of

the second (the same as blocking both), but blocking just the second instance would terminate

the loop without the need to block the first one.

6.3.7 Multiple Action Example 1

The rules for the first MAI example are given in listing B.7. It presents rules for DaM:DSU and

DaM:DSTP which are presumed to be running on the same device.
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Table 20: MAI Detection results for MAI example 1.

Rule 1 Rule 2 Result (D) Resolution

DaM:DSU DaM:DSU MAI Both

DaM:DSU DaM:DSTP MAI DaM:DSTP

DaM:DSTP DaM:DSU MAI DaM:DSTP

DaM:DSTP DaM:DSTP MAI Either

Table 20 shows the results of the analysis. All four combinations of rules result in MAI,

including the middle two rows, which validates the system against the example.

The resolution system determines that DaM:DSTP should be disabled in both of the middle

rows. This results from a preference for data integrity over device battery life. Regarding

battery life, a case can be made that DaM:DSTP is superior to DaM:DSU because, saving data

to flash memory and transmitting it wirelessly are large power drains, as shown by Blum

& Magill [2010]. Storing (or transmitting) the results of a discrete amount of processed data

should therefore increase battery life.

6.3.8 Multiple Action Example 2

This example involves checking if MAI is detected between DaM:ADT and DaM:Outbound Data

Screening (ODS). The rules are listed in listing B.8. Two forms of DaM:ODS are presented in the

listing to see the detection behaviour when the device is on the screening list versus when it

is not.

The results of this example analysis are shown in table 21. ODS (A) is the unscreened rule

and ODS (B) is the screened one. The system is validated against this example as shown

in rows two and three because DaM:ADT conflicts with the screened instance but not the

unscreened one (MAI is only detected in row three).

The resolution system determines that DaM:ADT should be disabled based on the importance

of security to the system.
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Table 21: MAI Detection results for MAI example 2.

Rule 1 Rule 2 Result Resolution (D)

DaM:ADT DaM:ADT MAI Both

DaM:ADT DaM:ODS (A) Concordance

DaM:ADT DaM:ODS (B) MAI DaM:ADT

DaM:ODS(A) DaM:ADT Concordance

DaM:ODS (A) DaM:ODS (A) MAI Both

DaM:ODS (A) DaM:ODS (B) MAI DaM:ODS (A)

DaM:ODS(B) DaM:ADT Concordance

DaM:ODS (B) DaM:ODS (A) Concordance

DaM:ODS (B) DaM:ODS (B) MAI Both

6.3.9 Multiple Action Example 3

Listing B.9 describes conflicting rules from MAI example 3. The conflict between the rules

DeM:Time Synchronisation (TS) and Do Not Disturb (DND):Do Not Notify Unconditional (DNNU)

shown in row two of table 22 validates the system against the example. The resolution system

determines that the DNNU rule should be disabled in this case. This results from the value of

data integrity over user interaction.

Table 22: MAI Detection results for MAI example 3.

Rule 1 Rule 2 Result Resolution (D)

DeM:TS DeM:TS MAI Both

DeM:TS DNNU MAI DNNU

DNNU DeM:TS Concordance

DNNU DNNU MAI Both
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Table 23: Detection results for MTI example 1.

Rule 1 Rule 2 Result Resolution (E)

DNNU DNNU MTI Both

DNNU SI:Prompt MTI DNNU

SI:Prompt DNNU MTI DNNU

SI:Prompt SI:Prompt MTI Both

6.3.10 Missed Trigger Example 1

Table 23 shows the results from running MTI analysis against the rules in listing B.10. The

rule DND:DNNU causes MTI with SI:Prompt as expected in the example. A consequence of such

a conflict would be that rules that relied upon for subject prompting responses would also be

missed.

The resolution system recommends enabling DNNU in this case which means that the MTI

would not be avoided. This is because it has a higher priority than SI:Prompt. This priority

setting generally makes sense as users tend to want their notification preferences respected.

For instance, a user might be in a meeting and therefore not want notifications. Quite rightly,

any prompt should miss its triggers in this setting. It is possible, however, for an unusual

data collection protocol to assign SI:Prompt higher priority than DNNU. In such situations, the

resolution system recommends enabling SI:Prompt and thereby avoids MTI.

6.3.11 Missed Trigger Example 2

This example uses the rules in listing B.11, which include the ones from shared trigger example

1 as well as SI:Prompt. The last row of table 24 shows that SI:Prompt causes MTI with a second call

to it, as is predicted in the example. The resolution system determines that both the SI:Prompt

rules should be enabled, ensuring that one prompt does not inhibit the triggering of the other.



Table 24: MTI Detection results for MTI example 2.

Rule 1 Rule 2 Result Resolution (E)

CDS:CTS CDS:CTS MTI Both

CDS:CTS SDS:STS A MTI CDS:CTS

CDS:CTS SDS:STS B MTI CDS:CTS

CDS:CTS SI:Prompt MTI CDS:CTS

SDS:STS A CDS:CTS MTI CDS:CTS

SDS:STS A SDS:STS A MTI Both

SDS:STS A SDS:STS B MTI SDS:STS B

SDS:STS A SI:Prompt MTI SDS:STS A

SDS:STS B CDS:CTS Concordance

SDS:STS B SDS:STS A Concordance

SDS:STS B SDS:STS B Concordance

SDS:STS B SI:Prompt Concordance

SI:Prompt CDS:CTS MTI CDS:CTS

SI:Prompt SDS:STS A MTI SDS:STS A

SI:Prompt SDS:STS B MTI SDS:STS B

SI:Prompt SI:Prompt MTI Both
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Table 25: Detection results for MTI example 3.

Rule 1 Rule 2 Result Resolution (E)

CDS:CTS CDS:CTS MTI Both

CDS:CTS DeM:AI MTI DeM:AI

DeM:AI CDS:CTS Concordance

DeM:AI DeM:AI Concordance

6.3.12 Missed Trigger Example 3

This example validates the Brief Visit Home example at the beginning of chapter 4. The

example expected MTI between CDS:CTS and DeM:Activate Immediate (AI) if the latter followed

the former with a delay in it. The rules are shown in listing B.12.

Row two of table 25 shows the detection of this conflict, thereby validating the system

against the example. The resolution system determines that DeM:AI should be enabled thereby

avoiding the MTI.

6.4 analysis and discussion

The previous sections contain two key points. Firstly, the results from the testbed indicate

that conflicts occur in the networks under consideration. Conflicts must be detected to ensure

that the recorded data remains reliable. Secondly, as can be seen in table 26, the example

tests showed that the conflict detection and resolution analysis reported as expected, lending

weight to the justification of the approach.

The example tables also show a number of results for cases that are not specifically looked

for. These have been included to give an overall impression of how well the various rules work

together. Certain rules, such as those in table 17, showed a high degree of conflict whereas

those in table 15 has a higher degree of concordance.



Table 26: Example Analysis Results

Study Title Involved Rule Detected? Resolved?

STI 1 CDS:CTS ,

SDS:STS A

Yes Yes

SAI 1 CDS:RL,

SI:Prompt

Yes Yes, but may

not be wise to

do so.

SAI 2 DaM:ADT,

DaM:RDS

Yes Yes

SAI 3 SDS:STS (A and B),

DeM:DRF

Yes Yes

LI 1 DaM:ADT,

DaM:RDS

Yes Yes

LI 2 DaM:RDTOU,

DaM:RDTOU

Yes Yes, but may be

too

heavy-handed.

MAI 1 DaM:DSU,

DaM:DSTP

Yes Yes

MAI 2 DaM:ADT,

DaM:ODS

Yes Yes

MAI 3 DND:DNNU,

DeM:TS

Yes Yes

MTI 1 DND:DNNU,

SI:Prompt

Yes Yes

MTI 2 SI:Prompt,

SI:Prompt

Yes Yes

MTI 3 CDS:CTS,

DeM:AI

Yes Yes
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Figure 27: The number of STI conflicts for 17 rules. The median is 22 and IqR is 18.

The rules were analysed to determine which were the most and least conflict prone. In

total, all of the 17 rules presented above were assessed against each other as both the first

and second rules in the analysis approach. Out of a total of 867 tests (all of the rules were

tested for STI, SAI and MTI), 410 conflicts were detected. Many of the rule combinations may

only rarely occur (if at all), but it is useful to look at such a wide spread of cases in order to

identify patterns that can help author rules to minimise conflicts.

6.4.1 Shared Trigger

A high number of shared trigger conflicts were discovered amongst the rules, so an investi-

gation is used to understand how best to write the rules in order to maximise concordance.

Figure 27 shows that the rule with the largest number of STI conflicts is the screened form of

DaM:ODS and the fewest is shared by CDS:RL and DeM:AI. The range of STI conflicts is from 0 to

23, with a median of 22 and inter-quartile range of 18.

The rules are categorised in table 27. Five categories are identified:
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1. Those showing high numbers of conflicts in both the first and second rules

2. Those that have a high number of conflicts in the first rule only

3. Those that conflict only with themselves and one other,

4. Those that conflict only with themselves

5. Those that do not conflict

Ten rules fit category 1. Those rules conflict only with each other when they are the first rules

but not with the rules in the other categories. When the rules in category 1 are second rules,

however, they conflict with themselves as well as those in category 2. When category 2 rules

are first rules, they conflict with all of the rules in category 1 as well as with themselves (but

not each other). One of the category 2 rules (DeM:TS) also conflicts with a category 3 rule

(DaM:RDS). Some of the rules such as DaM:ODS Screened are inherently conflict prone. This rule

is designed to prevent the operation of other rules for security reasons, so it is understandable

that it alters the patterns of behaviour for so many other rules when they share a trigger.

Further analysis was conducted to understand the high number of conflicts involving other

rules.

Analysis of rule categories 1 and 2 reveal that the high number of conflicts is caused by

clauses that alters the states of the triggering message fluents. The difference between the

rules in categories 1 and 2 is that those rules in the former category always alters the states of

the triggering message fluents, whereas those in the latter category have branching conditions

that alter the states only under certain circumstances.

The reason that the category 5 rule does not conflict with the others is that it is an inert

rule that does not initiate the triggering of any other activity. It entirely lacked Σ sentences

and therefore the rule may never take part in a situation involving shared triggers. Since the

detection algorithm does not detect shared triggers, the behaviour is correct. A naïve response

to this might be to develop systems in which the rules never initiate or terminate fluents in

order to fully avoid shared triggers. A Data Collection System (DCS) would be an example of

such an approach. When the goal, however, is to have automated responses to sensed data,

then shared triggers may emerge.
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The ideal then is to minimise the conflicts such as can be seen in categories 3 and 4. Those

cases only conflict with other instances of themselves. For example, if two rules to activate a

device do share a trigger, only one of them would be able to activate it because of the binary

nature of device activation. These rules lend themselves therefore to the notion that rules

work best when they avoid altering their triggering message fluents.

6.4.2 Sequential Action

Figure 28 shows that DaM:ADT has the largest number of SAI conflicts and the unscreened form

of DaM:ODS has the fewest. The median number of SAI conflicts is 15 with a range between

0 and 24, and an inter-quartile range value of 13. From these, 8 categories of conflicts are

identified for analysis, as shown in table 28:

1. Those that have a medium or high number of conflicts as the first rules and as the

second rules

2. Those that have a high number of conflicts as the first rules but medium as the second

rules

3. Those that have a medium number of conflicts as both the first and second rules

4. Those that have high number of conflicts as the first rules but none as the second rules

5. Those that have no conflicts as the first rules, but a medium number as the seconds

6. Those that conflict only with one other rule

7. Those that do not conflict at all

The low impact rules of categories 6 and 7 provide insights into minimising conflicts. DaM:ODS

Not Screened is the only rule does not conflict at all (category 7), because the firing of this rule

does not change the actions that occur for the other rules. Unscreened rules fire as normal.

Furthermore, the other rules do not impact on what happened to it.

Another interesting rule is DaM:RDS. It only conflicts with the rule DaM:ADT (both as first

and second rule) since the two rules shared a common fluent. The modification of the state



Table 27: STI conflict review

Cat. Rule # Conf. First

Rule

# Conf.

Second Rule

Total

Conf.

1 DaM:ODS Screened 10 13 23

1 CDS:CTS 10 12 22

1 DaM:DSTP 10 12 22

1 DaM:DSU 10 12 22

1 DeM:DRF 10 12 22

1 DND:DNNU 10 12 22

1 DaM:IDS 10 12 22

1 DaM:RDTOU 10 12 22

1 SDS:STS Active 10 12 22

1 SI:Prompt 10 12 22

2 DeM:TS 12 2 14

2 DaM:ADT 11 1 12

3 DaM:RDS 2 2 4

3 DaM:ODS Not Screened 2 1 3

4 CDS:RL 1 1 2

4 DeM:AI 1 1 2

5 SDS:STS Inert 0 0 0
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of the fluent allows or disallows actions to transpire. From the examination of these rules it

is apparent that rules in general will not conflict if they limit their shared fluents, thereby

limiting the impact on what happens to each other.

Examining the three category 5 rules reveals that they each conflict with the rules: CDS:RL,

DaM:ADT, DeM:TS, DeM:AI, DaM:RDTOU, and SI:Prompt.

The category 5 rules prevent the normal functioning of other rules. For instance one of

the conflicts that is detected is that DND:DNNU would prevent SI:Prompt from firing as normal.

This is a very common pattern for devices such as mobile phones that are put into a silent

mode, thereby preventing prompting. Some AA cases, however, require strict adherence to

prompting schedules. Such common behaviour may be overlooked by protocol developers

and it is important to tune any priority system in order to decide which rule should have

priority.

The category 4 rules conflict with ones that terminate a common fluent. The timing of the

termination is important. A conflict will emerge if it occurs earlier than the category 4 rule

performing a check on it for branching logic. These rules also do not initiate or terminate any

common fluents themselves, therefore they do not cause any conflicts. Minimising actions on

common fluents can help reduce these types of conflicts.

The only category 3 rule is SDS:STS Inert, and it exposes 8 false positive instances. Conflicts

are reported when there are two instances of this rule because the rule only contained ∆

sentences without any branching statements. This is clearly an instance of a false positive. It

arises because the rule is written to include two instances of the action “listen_for_connection”

(the initial and terminal actions) and the SAI conflict rule filters one of them out. When the

terminal action is removed from the rule and the conflict check is re-performed, the two

instances are in concordance. This new form of the rule, furthermore, concords with all other

rules when it is used in the second instance, reducing it to a category 5 rule. The removal of

repeated actions is not a long-term solution for conflict detection, however, because it would

be possible for rule authors to include such repetitions. Instead, future work should adjust the

algorithm to filter out such cases.
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Figure 28: The number of SAI conflicts for 17 rules. The mean is 13.06. SD is 7.

Category 2 rules conflict in the same manner as category 4 rules when they act as first

instances, but they conflict in the same manner as category 5 rules when they are second

instances. The category 1 rules also conflict in the same way as category 4 rules when they act

as first instances. They conflict with the rules as category 5 rules do when they are second

instances, and include 6 additions. Inspection of the 6 additions reveal that they are false

positive results for the same reason as the category 3 ones are.

6.4.3 Missed Trigger

Looking at MTI in figure 29 and table 29 shows that there are two categories of rules. The

first category contained 10 of the rules, and these are conflict prone as both the first and

second rules. The other 7 are only involved in conflicts as second rules with those of the first

category. The median number of MTI conflicts is 27 with a range between 10 and 27, and an

inter-quartile range of 17. The 10 rules of category 1 are destructive whereas the others are



Table 28: SAI conflict review.

Cat. Rule # Conf. First

Rule

# Conf.

Second Rule

Total

Conf.

1 DaM:ADT 12 12 24

1 CDS:CTS 7 12 19

1 DaM:DSTP 7 12 19

1 DaM:DSU 7 12 19

1 DeM:DRF 7 12 19

1 SDS:STS Active 7 12 19

2 SI:Prompt 12 6 18

2 DaM:RDTOU 10 6 16

3 SDS:STS Inert 7 8 15

4 DeM:AI 12 0 12

4 CDS:RL 11 0 11

4 DeM:TS 11 0 0

5 DaM:ODS Screened 0 6 6

5 DND:DNNU 0 6 6

5 DaM:IDS 0 6 6

6 DaM:RDS 1 1 2

7 DaM:ODS Not Screened 0 0 0
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Figure 29: The number of MTI conflicts for 17 rules.

passive. Destructive rules should be minimised in order to reduce missed trigger conflicts.

Given these forms of the rules, however, the conflict detection algorithm detected results

correctly.

6.4.4 Timing Analysis

Additional testing was performed to determine conflict detection algorithm timing. These

tests used the SWI-Prolog “time” statistics feature, and were run on a 2.53 GHz Intel Core

2 Duo CPU with 1.85 GB of RAM. These tests confirm that the conflict algorithms have a

complexity of O(n2).

Analysis shows that conflict detection for 17 rules takes on average under a tenth of a

second per conflict type. The rule set is doubled six times (to a total of 1088 rules) in order

to view execution times for larger data sets. For each doubling of the number of rules the

analysis time increased by around a factor of four. The analysis times vary depending on the

conflict type being searched for, owing to the complexity of the analysis rules. In addition,



Table 29: MTI conflict review.

Cat. Rule # Conf. First

Rule

# Conf.

Second Rule

Total

Conf.

1 CDS:CTS 17 10 27

1 DaM:DSTP 17 10 27

1 DaM:DSU 17 10 27

1 DaM:ODS Screened 17 10 27

1 DeM:DRF 17 10 27

1 DND:DNNU 17 10 27

1 DaM:IDS 17 10 27

1 DaM:RDTOU 17 10 27

1 SDS:STS Active 17 10 27

1 SI:Prompt 17 10 27

2 CDS:RL 0 10 10

2 DaM:ADT 0 10 10

2 DaM:ODS Not Screened 0 10 10

2 DaM:RDS 0 10 10

2 DeM:TS 0 10 10

2 DeM:AI 0 10 10

2 SDS:STS Inert 0 10 10
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machine-dependent factors (such as other tasks performed by the CPU in the background)

influence the timings. To deal with such irregularity, multiple tests were run and average

values are reported. Designers can apply a heuristic such that doubling the number of rules

may quadruple the time it takes to perform conflict analysis.

Figure 30 presents data for timing tests along with a chart of the data points. The figure

shows that MTI detection performed the best, while MAI and STI tended to perform a little

slower. The increase in the time it takes to complete the conflict analysis for double the number

of rules ranged between 2.33 and 6.26, with a median value of 4.08. A chart of the frequency

of the increases is shown in figure 31. This shows that the combined values of timing increases

for the five conflict algorithms tended to cluster around 4. The following are the individual

ranges and median values of increases per conflict type:

• SAI:

– Range: 3.33 – 4.35

– Median: 4.02

• MTI

– Range: 2.33 – 4.25

– Median: 3.89

• STI

– Range: 3.63 – 5.33

– Median: 4.17

• MAI

– Range: 3.79 – 4.84

– Median:4.05

• LI

– Range: 3.67 – 6.26

– Median: 3.95



# Rules SAI Avg.

Time (Sec.)

MTI Avg.

Time (Sec.)

STI Avg.

Time (Sec.)

MAI Avg.

Time (Sec.)

LI Avg.

Time (Sec.)

17 0.045 0.03 0.03 0.035 0.025

34 0.15 0.07 0.16 0.155 0.095

68 0.505 0.25 0.58 0.625 0.595

136 1.99 0.96 2.51 2.54 2.185

272 8.655 3.79 10.28 9.62 8.31

544 36.02 15.495 42.815 38.075 34.005

1088 147.58 65.915 178.4 184.15 139.905

(a) Timing test results.

(b) Timing results chart.

Figure 30: Timing Analysis.
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Figure 31: Timing increase frequencies for doubling the number of rules

6.5 evaluation of the approach

The following discusses advantages and limitations of the Event Calculus (EC)-based rule

programming paradigm, and detection and resolution approaches that are presented earlier.

6.5.1 Advantages

The approach presented in this work is one of bottom-up device programming that allows

multiple providers to offer services and to form ad hoc reliable networks. Furthermore, the

network is expected to change in time with devices coming and going, owing to replaced

technologies, new discoveries, and device reliability issues (such as battery life). This work

has significant advantages.

A significant contribution of this work is an approach that detects and resolve all five

forms of conflict that are looked for; something the author is unaware of other systems

accomplishing. In contrast, as is shown in chapter 2, works developed from Marples [2000]

are not able to detect MTI and Event-Condition-Action (E-C-A) based authorisation/obligation

policy work chiefly tends to focus on detecting and resolving MAI-like conflicts.
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The rules presented in this work provide greater support for AA protocol designers than

previous systems such as Experience Sampling Program (ESP) and Purdue Momentary Assess-

ment Tool (PMAT), including:

• Studies can mix event-based, time-based, subject state-based and contextual triggers

• Subjects may be prompted for questionnaire assessment in dynamic response to the

concurrent collection of on-body and environmental data

• Thorough data handling and provision mechanisms

• Rule-based presentation of information

• Automatic conflict detection and resolution

These advantages may greatly aid the uptake of AA. Larsen [2007], for instance, pointed out

the primacy of research questions over data collection and analysis. The above items provide

researchers with greater abilities to pursue their questions, and allow them to be flexible in

their approaches to their collection and analysis methods. Furthermore, these points lead

strongly towards realising Intille [2007]’s CS-EMA+10 vision of of AA future developments,

including supporting the data collection procedures he outlined for longitudinal studies such

as data-reactive subject prompting.

6.5.2 Limitations

This thesis supports areas to do with reliable behaviour monitoring. As such it is able to

show that conflicts can emerge in Wireless Sensor Network (WSN) comprising relatively small

sets of nodes. It provides a mechanism for describing rules and conducting conflict detection

and resolution for the particular type of WSN under investigation. The study is limited to

aspects relating to service description access, network scale, focus on particular types of

conflict, run-time behaviour, example extrapolation, heavy-handedness of resolution, and

timing issues.
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An important issue for the approach presented here is that it requires access to rules for all

of the devices that are participating in the network. The approach assumes that the mediator

will be trusted by all participants and vendors, and that they will be amenable to writing rules

and actions in the formats presented herein. Some other approaches, such as that of Kolberg

[2004], are able to perform a degree of analysis without such requirements. The requirements

are justified for care systems, however, because transparency is vital to the form of clinical

analysis that these technologies are subject to.

A limitation of the conflict analysis approach is that it compares all of the rules against each

other for each of the conflict types, and therefore is of O(n2) complexity. This type of approach

works with a number of devices and rules that is appropriate for care networks, which is on

the order of a dozen or so devices that have access to a couple of dozen rules. Under these

conditions, the algorithms complete within acceptable time constraints. For every doubling of

the number of rules used, however, there is an approximate four-fold increase in the time it

takes to perform conflict analysis. Such an approach, therefore, will not be appropriate for

systems that interconnect large numbers of sensors that use vast numbers of rules to guide

their behaviours.

System testing is constrained to run-time simulation rather than the run-time analysis of a

real-world WSN. This has the advantage of allowing different virtual devices to inter-operate

without particular constraints, such as limited support for the Prolog and Java languages on

mobile devices. The testing is also limited by the selection of the rules and priorities. The rules

are selected from a process that involved reviewing literature on AA and Feature Interaction (FI),

as well as from experience working on the Personalised Ambient Monitoring (PAM) project.

This selection process is not exhaustive, but rather is intended to be representative of rules

that may be used in a number of care settings. The rules are translated by the author from

literature-based descriptions into their diagrammatic and EC based forms. In only a very few

cases (such as for DeM:TS) did the descriptions in the literature include working algorithms.

Interpretations of the descriptions are necessary. The author intended to represent the rules

accurately in their EC rule forms, but at times alternative interpretations are possible (such as



6.5 evaluation of the approach 144

having multiple forms of the rule SDS:STS). In contrast, other approaches such as Calder et al.

[2009] are able to analyse rules directly from log files of running systems.

System testing is also constrained to the examination of the analysis and resolution system

as discrete elements. This separation of concerns is chosen in order to focus on the nature of

the rule conflicts specifically. Further real-world testing of WSN for care networks that have

conflict analysis built into them is a strong recommendation for future work. It is felt, however,

that the current level of testing showes that conflicts in the rules can be detected and that

appropriate resolution steps can be triggered in response.

The priorities are also interpreted by the author. Alternative priorities are conceivable, and

such alternatives can be beneficial as part of the personalisation of any system for real-world

subjects. The system presented herein is able to accept other conflict detection rules, but

no assertions are made regarding how well any other conflict rules will perform. Some of

these, however, may work better than others. Their success will be based on how well their

algorithms match the concerned conflict types and on their focus on the comparison of

rules with each other. The resolution approach may also not be appropriate for all types of

applications. As noted, for instance, in the Looping 2 example results, both conflicting rules

may be affected by the resolution system, when only one of the two may need to be. Future

work may concentrate on developing a more subtle resolution approach.

The results of the study are impacted by the detection of false positives in one of the conflict

detection algorithms, as well as by the number of examples used in the testing. Eight false

positive results are detected in SAI analysis. The detection of these results arises in a very

unusual circumstance, and the other conflict analysis results are not impacted by this. The

algorithm for detecting SAI may be improved in future work to eliminate this cause of false

positive results by filtering cases where multiple rules share the same α sentences. No false

negative results are detected in the examples, however this is limited by the number or type of

examples chosen for testing. The examples are chosen as reasonable instances of conflict that

fit within previously established FI testing constraints. Analysis of the SAI and STI algorithms

revealed them to be orientated to reporting worst-case results. These algorithms are limited

because they are not capable of determining the quality (goodness or badness) of the type
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of conflict. As such the numbers of conflicts that are detected in chapter 6 should be viewed

with discretion since, firstly, some of these conflicts may only arise very rarely (if at all) in a

running system and, secondly, that these conflicts may actually be seen to be beneficial by

some designers and users of such systems.

The MTI algorithm is sensitive to the ordering of events. A question arises regarding the

information that is known to CLIPPER when it checks rules, since it resets its known Σ, ∆ and

∆0 predicates prior to its analysis (although any other state information is left within the

system). The potential problem is that a rule may need to be called multiple times before a

conflict occurs, owing to stated assertions that it can make. Such a limitation can be overcome

in CLIPPER in at least two ways. Firstly, a recursive call to the given rule can allow it to be

called multiple times, allowing it to assert state information that is not reset prior to checks,

and thereby alter its behaviour. For example, consider the “state_destro” rule in listing B.13.

On its first call, the “perform_activity” fluent checks to see if it holds. It will not, because

nothing will initiate it, so the second block of the rule will be entered. In this block the fluent

will be initiated and then the rule will be re-called. The subsequent call allows the first block

to proceed, which will then lead to the termination of the message fluent. This process makes

this a state-oriented destructive rule. A second related method to assert state into the system

is by composing rules that call other rules (what is called here a macro rule). Two such macro

rules are presented in listing B.13
2. It should be noted that the results are the same regardless

of the ordering of the rule calls within the macro rule when testing “macroA” and “macroB”

for MTI against the “passive” rule, as shown in table 30. It should be further noted that the

testing of the example rules did not involve the pre-population of such state information and

as such is not of concern for this process.

2 There are instances of macro rule usage in chapter 6 in order to test of the screening rules using alternative states
(that a device is or is not screened)
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Table 30: MTI detection results for abstract rules (macroA, macroB, and passive).

Rule 1 Rule 2 Result

macroA macroA MTI

macroA macroB MTI

macroA passive MTI

macroB macroA MTI

macroB macroB MTI

macroB passive MTI

passive macroA Concordance

passive macroB Concordance

passive passive Concordance

6.6 possible applications of approach

The approach described in this thesis can be used for other applications besides ambulatory

assessment. The base set of rules may be appropriate for other sensor network monitoring

tasks such as environmental monitoring or multi-sensory robotics.

Alternatively, the rule set may be extended to support additional features. For instance, this

approach could be used in a call control environment that requires a response to personalisable

and dynamic rules. Such a situation can potentially arise in a loosely federated system of

services across various Voice Over IP solutions. In this scenario it may be interesting to add a

"teenline" feature that restricts outbound calls from a subscriber’s phone during particular

times of day. To add such a rule, begin by modelling its activities and sequences. Then

axiomatise the activity model into EC notation. For the “teenline” example, activities may

include events for attempting to connect and checking connection, and there may be fluents

for the particular restricted time of day.
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Additional conflict rules may also be written to extend the approach. Beginning with

a diagram of the algorithm type is useful. The algorithm should be based on firing rules

sequentially or in parallel and examining the asserted EC predicates. There is potential to

look for conditions such as resource starvation, race conditions, deadlocks, and so forth.

6.7 rule authoring advice

Rules are composed by converting a starting notion of the rule, possibly as a textual description,

into its EC format. Use the predicates from Table 1 in the following ways to compose a rule.

Begin with a unique name for the rule and ensure it is of arity 2, with the two arguments

being a triggering message and an initial time point. The next predicates are, optionally, any

additional time points that the rule will require for sequencing the events that happen in time.

Multiple events may share the same time point within happens predicates. Next assert the

events that happen in the rule. Finally, assert predicates to describe how the events initiate

and terminate fluents. A holdsAt predicate may be used along with parentheses to describe

conditions under which initiations and terminations may differ depending on fluent states.

When composing rules consider the rule writing heuristics described in this chapter. In

particular the fluent sharing with other known rules should be kept to a minimum and the rule

should be kept passive (it should not alter the triggering message) unless there is a particular

reason for doing so. Once a rule is written, it may be immediately analysed to see if it conflicts

with other known rules, or alternatively action classes may be encoded in order to implement

the rule in the run-time environment. Some rules are inherently designed to conflict. Security

rules, for instance, can prevent the firing of other rules. The main trouble is with rules that

can be daisy chained. Preventing a rule from firing can have unintended consequences down

the line. Sampling protocol designers should maintain a degree of awareness that rules may

not always fire as expected for such reasons. They should take precautions to protect their

protocols.
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Rule authors are encouraged to write passive rules whenever possible. An underlying

message passing system should handle message destruction, rather than leaving it to high

level application protocols. They are also encouraged to limit the amount of fluent sharing

between rules. The locking mechanism of Wilson [2005] is one such attempt. Future work

to develop a similar approach for the mobile device realm may help to alleviate some of

these difficulties. Some cases, however, will remain when fluents will be shared. If this is the

case then it will be important that rule authors are aware of termination timings and take

precautions to prevent conflicts that can emerge from these.

6.8 summary

This chapter has made two contributions to the thesis. Firstly, it presents evaluations of

the analysis approach against examples discussed in chapter 4. Secondly, it explains why a

number of conflicts occur between rules that highlight the dangers of blindly programming

devices independently of each other.

The examples are of particular interest because they are able to show that no false negative

results are found. The results of each of these tests are as expected. The study is limited to

some degree by the number of examples. Future work may expand these to include additional

examples.

The three core conflict algorithms were also tested to ascertain false positive results. None

are found for STI nor MTI. A small number of false positive results were discovered for SAI

detection. The cause of this has to do with an unexpected circumstance in which multiple

rules share the same α sentences. Future work may involve an investigation into refining the

SAI detection to filter out such cases.

In addition, four rule writing heuristics are presented from the analysis of the conflicts: con-

flict by design, minimise destructive rules, limit shared fluents, be aware of fluent termination

timings.

The next chapter presents a short review of the thesis and a discussion of future work.



7
C O N C L U S I O N S

7.1 introduction

An approach to handling device conflicts in rule-based ambulatory assessment sensor net-

works has been considered in this thesis. This chapter reviews the work of this thesis as

a whole. Section 7.1 provides a summary of the work. Section 7.2 evaluates the research

objectives and questions. Section 7.3 provides a discussion of future work.

7.2 summary of work

This thesis presents a study into conflicts that emerge amongst low-level sensor device rules

when such devices are formed into networks to perform complex tasks such as Ambulatory

Assessment (AA). Background information about rule-based programming, conflict detection

and resolution, Event Calculus (EC), Wireless Sensor Network (WSN) programming and AA

are provided in chapter 2.

Rules to control the behaviours of devices in a sensor network for AA are determined

from literature described in chapter 3 and categorised in chapter 4. This includes rules that

are necessary and sufficient for AA Wireless Sensor Networks (WSNs). EC-based forms of

these rules are presented that can be analysed for conflict. Chapter 3 reviews AA projects

to determine necessary and sufficient rules for analysis in subsequent chapters. This review

includes state of the art in AA, along with considerations of future directions for AA from

the literature. Along with descriptions of device and knowledge management rules for AA,

chapter 4 shows that the use of the rules together can lead to conflicts. Examples describe

149
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how five types of conflict may emerge through their usage. Examples are given that exemplify

inter-service and intra-service conflict for multiple rules running on a single device or on

multiple devices. The examples also show that multiple types of conflicts may be caused by

the same rules.

Chapter 5 describes an approach for rule conflict detection and resolution. Key concepts are

presented for EC logic-based detection algorithms for Missed Trigger Interaction (MTI), Shared

Trigger Interaction (STI), Multiple Action Interaction (MAI), Sequential Action Interaction (SAI)

and Looping Interaction (LI), and resolution strategies derived from device priorities. Chapter

6 presents evaluations of the approach against examples discussed in chapter 4 and explains

why a number of conflicts occur between rules. It also describes four rule writing heuristics

that can be used to minimise rule conflict.

7.3 thesis achievements

This section reviews the research questions and objectives presented in chapter 1 and describes

what has been achieved in the thesis. The research questions are:

• What rules can be used to control the behaviours of devices in a sensor network for AA?

• Can examples of rule conflict be found for AA sensor networks?

• How can AA sensor network rule conflicts be detected and resolved?

The corresponding research objectives are:

• To determine and describe rules necessary and sufficient for AA sensor networks

• To examine AA sensor network examples for rule conflict

• To demonstrate and evaluate an approach to detecting and resolving rule conflicts within

AA sensor networks

The points are addressed here with a view to show the distinctive contribution this work

makes towards advancing the state of scientific knowledge.
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7.3.1 What rules can be used to control the behaviours of devices in a sensor network for AA?

This thesis presents an investigation into the state of the art and future directions for AA, as

described in chapter 3. It has shown numerous rules can be used to describe the features

that are present in these works. The rules are categorised in chapter 4 into groups for device

control and knowledge management. This work is the first to formally describe rules necessary

and sufficient for AA and does so using an approach based on the EC logic language.

Chapter 3 presents a review of state of the art AA projects. Rules were derived from these

examples. AA has grown out of asking subjects questions in ambulatory settings. However,

there are additional features now to support sensor data, processing and response. Underlying

these additional features are important device and knowledge management capabilities

from time synchronisation and data storage to context and state detection. Rules have been

documented in this thesis that formally describe these capabilities. These rules are necessary

and sufficient for the future of AA.

7.3.2 Can examples of rule conflict be found for AA sensor networks?

This thesis presents a number of examples of AA sensor network rule conflicts that can

emerge. The examples are found from a search for five types of conflict described in Feature

Interaction (FI) literature. The examples are presented in chapter 4. Examples are given that

exemplify inter-service and intra-service conflict for multiple rules running on a single device

or on multiple devices. The examples also show that multiple types of conflicts may be caused

by the same rules. Rule conflict is a problem that can afflict rule based interacting devices.

The examples describe conflicts of pairs of rules. For example, to test the MTI detection

rules, the example describes a rule that delays a message that would interfere with another

device. Using similar examples 410 conflicts were detected within 867 tests across 17 rules.

Investigation into each of the types of conflict revealed different categorisations of rules.

Many but not all the rule conflicts included rules as both the first and second rules in the
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analysis. Looking at the patterns of conflict showed how rules can be categorised by where

they conflict and by how much.

7.3.3 How can AA sensor network rule conflicts be detected and resolved?

This thesis contributes a novel method to detecting and resolving AA sensor network rule

conflicts. Chapter 4 describes CoLlaborative Information Processing Protocol and Extended

Runtime (CLIPPER) which is assessed in chapter 6.

In brief, this work contributes methods that work as follows. Instances of different forms

of conflict amongst collections of device rules are detected by triggering devices rules and

passing messages to them. Rule execution sequences are analysed to determine whether

they lead to conflict. Device rules are checked for conflicts between pairs of rules (including

checking rules against themselves). Checking a pair of rules involves two phases: initialisation

and detection. Device rules, time points and messages are passed to conflict detection rules.

The conflict detection rules are used to evaluate whether or not the device rules are concordant

or conflict, and to record evaluation results. Priority files associated with each device, the core

conflict analysis and resolution files, and the conflict detection report file are consulted to

determine the correct resolution for the conflicts. Variables from each of the conflicts found in

the conflict report are passed in to the resolution system’s resolve rule. The variables include

the type of conflict (such as MAI) and each device and device rule that conflicted. Each rule

is checked to see if a priority has been applied to it. If both have priorities they are checked

to see which has precedence. The rule with the lowest precedence is disabled as are rules

that have no priorities applied to them. If two rules have equal precedence then they are both

disabled.

A significant contribution of this work is an approach that detects and resolves all five

forms of conflict that are looked for; something the author is unaware of other systems

accomplishing. In contrast, as is shown in chapter 2, works developed from Marples [2000] are
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not able to detect MTI. Event-Condition-Action (E-C-A) based authorisation/obligation policy

works chiefly tend to focus on detecting and resolving MAI-like conflicts.

7.4 additional areas of research

A number of areas of future research have been identified. These include: simplifying rule

development by developing rule writing tools, developing systems of abduction and model

finding from automated ∆ predicates, testing the approach within a larger-scale future version

of the PAM network architecture to provide a more responsive system, adding additional

device types and rules, and improving the SAI algorithm.

Device rule writing and action class development are still manual processes. It will be

beneficial to develop rule writing tools with alerts built-in to help guide users and point out

the heuristics mentioned above. A visual editor could be designed that allows users to specify

their rules graphically and auto-generate the ∆ and Σ predicates from these.

Another way to simplify rule development may be to use alternative forms of reasoning

such as abduction or model finding. The approach described in this thesis is deductive,

however it has previously been shown by Mueller [2006] and others that EC descriptions may

be used for other forms of reasoning. For instance, an abductive planner could be added to

auto-generate rules given initial and terminal fluents. It may also be interesting to attempt

to perform rule generation by collecting system log files, such as were used by Calder et al.

[2009], and generating rules from discovered fluents and events.

Other important future work involves testing the approach within a larger-scale future

version of the Personalised Ambient Monitoring (PAM) network architecture. This testing

should involve additional device types and it will be of interest to test the conflict detection

system against these. Such testing should unite the separated parts of the analysis and

resolution system to test it as a whole. A larger scale system should be rolled out for use with

more patients and involve the approaches discussed here to maintain the device network and

provide services. Such an infrastructure and deployment can allow for a greater amount of
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user studies. Such user studies would be of importance for reviewing priorities in particular.

Alternative priorities to those presented in this thesis should be determined and reviewed.

Future work may concentrate on developing a more subtle resolution approach. As described

in chapter 2, Nakamura et al. [2009] suggested that disabling rules as a whole may be too

heavy handed. It would be of interest to see whether the resolution system could be refined

to disable only some actions from within a rule but in such a way as to maintain the integrity

of a sensor network.

The system presented herein is able to accept other conflict detection rules, but no assertions

are made regarding how well any other conflict rules will perform. Some of these, however,

may work better than others. Their success will be based on how well their algorithms match

the concerned conflict types and on their focus on the comparison of rules with each other.

A small number of false positive SAI detection results are noted in chapter 6, owing to

multiple rules sharing the same α sentences. Future work could involve refining the SAI

detection algorithm to filter out such cases. Such filtering can be added to the rule writing

tool discussed above.

System testing is constrained to run-time simulation rather than the run-time analysis

of a real-world WSN. This had the advantage of allowing different virtual devices to inter-

operate without particular constraints, such as limited support for the Prolog and Java

languages on mobile devices. The testing is also limited by the selection of the rules and

priorities. The rules are selected from a process that involved reviewing literature on AA

and FI, as well as from experience working on the PAM project. This selection process is not

exhaustive, but rather is intended to be representative of rules that may be used in a number

of care settings. The rules are translated by the author from literature-based descriptions

into their diagrammatic and EC based forms. In only a very few cases (such as for Device

Management (DeM):Time Synchronisation (TS)) did the descriptions in the literature include

working algorithms. Interpretations of the descriptions are necessary. The author intended to

represent the rules accurately in their EC rule forms, but at times alternative interpretations

are possible (such as having multiple forms of the rule State Detection Service (SDS):State

Triggering System (STS)). In contrast, other approaches such as Calder et al. [2009] are able to
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analyse rules directly from log files of running systems. Although intriguing, such an approach

begs the question as to where the rules originated from to begin with. In addition, Calder

et al.’s work examined a particular conflict type (rule redundancy) that is not specifically

addressed by the work in this thesis. The thesis concentrates on detecting and correcting

five types of conflict, although there are some conceptual parallels between the notion of

redundancy (in action) and that of MAI. These five are selected from previous literature in FI

and chosen because of their likelihood to affect such types of networks.

7.5 summary

This chapter concludes the thesis with a review of the work as a whole, a reflection on its

contributions in respect to the research questions and provides a description of future work.

The thesis describes rules to control the behaviours of devices in a sensor network determined

from literature into AA.These have been described by the author in a EC-based format for

conflict analysis. The author has contributed an approach to detecting and resolving conflicts

amongst the rules. Examples are given describing how five types of conflict may emerge

through their usage. The thesis presents an evaluation of the approach showing numerous

conflicts that can be found amongst AA sensor network rules. This chapter has shown that

the three main research questions have been answered and that future work can continue to

investigate issues arising from this work.



Part III

A P P E N D I C E S



A
A N A LY S I S S O U R C E C O D E L I S T I N G S

The following presents the source code listings for the CoLlaborative Information Processing

Protocol and Extended Runtime (CLIPPER) core analysis files described in section 5.4.

Listing A.1: The detection.pl predicates.

1 % ***** Routines for the analysing rule interaction *****

2

3 % Initialises the world state

4 initialise(T1, T2, Some_message) :−

5 initEC,

6

7 %Timepoints

8 T0 is 0,

9 T1 is T0+1,

10 T2 is T1+1,

11 assert(timepoint(T0)),

12 assert(timepoint(T1)),

13 assert(timepoint(T2)),

14

15 %Action and Message

16 Some_message = true,

17 assert(initially_p(message(Some_message))).

18

19 % Main entry point for testing for interactions

20 analyseCon�icts(Type) :−

21 assert(�Type(Type)),

157
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22 write(’****** Checking for conflict in rules.pl file using conflict rule: ’), write(Type), writeln

(’ ******’),

23 getList(Rules),

24 not(singleCon�ictCheckList(Rules)),!,

25 writeln(’****** Completed conflict search. ******’).

26

27 % Checks whether or not the rules E1 and E2 con�ict or concord

28 singleCheck(E1, E2) :−

29 initialise(T1, T2, M),

30 �Type(Type), !,

31

32 % Pass the message and the time values to the rules

33 %MTI

34 (

35 (

36 Type=mti,

37 aRule(E1,M,T1),

38 aRule(E2,M,T2)

39 );

40 %STI or MAI

41 (

42 (

43 Type=sti;

44 Type=mai

45 ),

46 aRule(E1,M,T1),

47 aRule(E2,M,T1)

48 );

49 %SAI or LI

50 (

51 Type=sai,
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52 aRule(E1,M,T2),

53 aRule(E2,M,T1)

54 )

55 ),

56

57 %Get rule names for documentation and write them to the output

58 current_predicate(X,E1), current_predicate(Y,E2),

59 write(’Does Rule1 (’), write(X),write(’) concord with ’), write(’Rule2 (’), write(Y),write(’)?\

n’), !,

60

61 % Check for con�icts

62 ( % ??MAI, LI??

63 (

64 Type=mti,

65 mti(E1, E2, M, T1, T2)

66 );

67 (

68 (

69 Type=sti;

70 Type=mai

71 ),

72 sti(E1, E2, M, T1, T2) % can be used for MAI as well

73 );

74 (

75 Type=sai,

76 sai(E1, E2, M, T1, T2)

77 )

78 ).

Listing A.2: The utility.pl predicates.

1 %***** Utitlity Predicates *****
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2

3 % Delete item X from a list.

4 del(X,[X|T],T).

5 del(X,[Y|T],[Y|T1]) :−

6 del(X,T,T1).

7

8 % X1 is a member of a list of rules with arity 2. M is the �rst arg.

9 aRule(X1,List,M,T1) :−

10 member(X1,List),

11 aRule(X1,M,T1).

12

13 % X1 is a predicate with arity 2. M is the �rst arg and T1 is the second arg.

14 aRule(X1,M,T1) :−

15 arg(1,X1,M),

16 arg(2,X1,T1).

17

18 % Gets a sorted list of rules

19 getList(L) :−

20 getRules(L1),

21 msort(L1,L).

22

23 % Permutates through a list checking each item against itself and the remainder of the items

24 singleCon�ictCheckList(L1) :−

25 getList(L2),

26 member(X,L1),

27 singleCon�ictCheckList(X,L2),

28 del(X,L1,L3),

29 compare(L3).

30

31 % Compares an item to another list of items

32 singleCon�ictCheckList(Item,List) :−
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33 member(X,List),

34 singleCheck(Item,X),

35 del(X,List,L2),!,

36 singleCon�ictCheckList(Item, L2).

37

38 getCon�ictRules(Rules) :−

39 current_predicate(no_msg_mod_con�ict,X),

40 %Rules = [X].

41 current_predicate(always_con�ict,Y),

42 current_predicate(never_con�ict,Z),

43 Rules = [X, Y, Z].

44

45 % Gets a sorted list of con�ict rules

46 getCList(L) :−

47 getCon�ictRules(L1),

48 msort(L1,L).

49

50 % C1 is a predicate with arity 5. The rest are the argument values

51 init_con�ict_rule(C1, E1, E2, M, T1, T2, T3) :−

52 arg(1,C1,E1),

53 arg(2,C1,E2),

54 arg(3,C1,M),

55 arg(4,C1,T1),

56 arg(5,C1,T2),

57 arg(6,C1,T3).

58

59 % ***** Routines for writing the output �le *****

60

61 % Initialise the XML �le

62 initOutputFile(ID) :−

63 path(X),
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64 open(X, write, Stream),

65 write(Stream, ’detectionReport(’),

66 write(Stream, ID),

67 write(Stream, ’).’),

68 nl(Stream),

69 close(Stream),!.

70

71 closeOutputFile(Result) :−

72 path(X),

73 open(X, append, Stream),

74 write(Stream, ’completedDetectionSearch(’),

75 write(Stream, Result),

76 write(Stream, ’).’),

77 close(Stream),!.

78

79 % Result is expected to either be � or concord

80 writeResult(Result, TestType, R1, R2) :−

81 path(X),

82 open(X, append, Stream),

83 write(Stream, Result),

84 write(Stream, ’(type(’),

85 write(Stream, TestType),

86 write(Stream, ’),’),

87 writeRule(R1,Stream),

88 write(Stream,’,’),

89 writeRule(R2,Stream),

90 write(Stream,’).’),

91 nl(Stream),

92 close(Stream),!.

93

94 writeRule(X, Stream) :−
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95 write(Stream, ’rule(’),

96 write(Stream, X),

97 write(Stream,’)’).

98

99 writeResults(Id) :−

100 initOutputFile(Id),

101 ( (

102 detection_result(�,B,C,D),

103 writeResult(�,B,C,D),fail

104 );true

105 ),

106 ( (

107 detection_result(concord,B,C,D),

108 writeResult(concord,B,C,D),fail

109 );true

110 ),

111 closeOutputFile(success).

112

113 addFi(Type, R1, R2) :−

114 assert(detection_result(�, Type, R1, R2)).

115

116 addConcord(Type, R1, R2) :−

117 assert(detection_result(concord, Type, R1, R2)).

Listing A.3: The eventcalc.pl predicates.

1 % ***** Predicates of the Event Calculus *****

2

3 %A �uent holds at some time t if it was initially true and has not been

4 holdsAt(F, T) :−

5 initially_p(F),

6 \+ clipped(0, F, T).
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7

8 % A �uent holds at some time t2 if an action happens before t3 which initiates

9 % the �uent and the �uent is not terminated during the action (clipped).

10 holdsAt(F, T2) :−

11 happens(A, T1),

12 initiates(A, F, T1),

13 before(T1,T2),

14 \+ clipped(T1, F, T2).

15

16 % A �uent does not hold at some time t if it initially did not hold and was

17 % not initiated (declipped)

18 notHoldsAt(F,T) :−

19 initially_n(F),

20 \+ declipped(0,F,T).

21

22 % A �uent does not hold at some time T if an action happens before T which

23 % terminates the �uent and the �uent is not initiated during the action.

24 notHoldsAt(F,T) :−

25 happens(A,T1),

26 terminates(A,F,T1),

27 before(T2,T),

28 \+ declipped(T1,F,T2).

29

30 %***Clipped(t1,ÿ,t2) Fluent ÿ is terminated between t1 and t2

31 clipped(T1,F,T2) :−

32 happens(A,T),

33 before(T1,T),

34 before(T,T2),

35 terminates(A,F,T).

36

37 %***Declipped(t1,ÿ,t2) Fluent ÿ is initiated between t1 and t2
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38 declipped(T1,F,T2) :−

39 happens(A,T),

40 before(T1,T),

41 before(T,T2),

42 initiates(A,F,T).

43

44 %***Time 1 is before Time 2

45 before(T1,T2) :−

46 timepoint(T1),

47 timepoint(T2),

48 T1 < T2.

49

50 %*** Initialise scenario variables

51 initEC :−

52 retractall(initiates(_,_,_)),!,

53 retractall(terminates(_,_,_)),!,

54 retractall(initially_p(_)),!,

55 retractall(initially_n(_)),!,

56 retractall(timepoint(_)),!,

57 retractall(happens(_,_)),!,

58

59 assert(initiates(null,null,null)),

60 assert(terminates(null,null,null)),

61 assert(initially_p(null)),

62 assert(initially_n(null)),

63 assert(timepoint(0)),

64 assert(initihappens(null,null)).

Listing A.4: The rules.pl predicates.

1 % ***** Setup rules to use during analysis *****

2



analysis source code listings 166

3 :− consult(csip_rules).

4

5 getRules(Rules) :−

6

7 %To run rules

8 %current_predicate(dam_adt,A),

9 %current_predicate(dam_rds,B),

10

11 Rules = [A,B].

12

13 % consult all the components

14 doConsults :−

15 consult(’C:/jmb/thesis/classic_thesis_lyx_jmb/sourceCode/

collaborationErrorDescription/csiplFeatures2/eventCalc’),

16 consult(’C:/jmb/thesis/classic_thesis_lyx_jmb/sourceCode/

collaborationErrorDescription/csiplFeatures2/conflict_rules’),

17 consult(’C:/jmb/thesis/classic_thesis_lyx_jmb/sourceCode/

collaborationErrorDescription/csiplFeatures2/utility’),

18 consult(’C:/jmb/thesis/classic_thesis_lyx_jmb/sourceCode/

collaborationErrorDescription/csiplFeatures2/detection’),

19 consult(’C:/jmb/thesis/classic_thesis_lyx_jmb/sourceCode/

collaborationErrorDescription/csiplFeatures2/outputFileWriter’).

20

21 path(X) :−

22 X=’C:/detectionReport.pl’.

23

24 :− doConsults.

Listing A.5: The conflictRules.pl predicates.

1 % ***** Examination of con�ict using event calculus *****

2
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3 % Are Rule1 and Rule2 MTI free using a Message at times T1 and T2?

4 % Rules A & B con�ict if the �rst one sets a message into a state such that

5 % the second one does not operate correctly.

6 mti(Rule1,Rule2, Message, T1,T2) :−

7 % Make sure that T1 < T2

8 (before(T1,T2);write(’ Received timepoints are out of order. Conflict check cannot

complete.\n’), !, fail ),

9 % Check to make sure that the message holds at the time the �rst rule receives the message

10 (

11 holdsAt(message(Message),T1);

12 write(’ Message (’), write(Message), write(’) does not hold at time: ’), write(T1),

write(’\n’), !, fail

13 ),

14 % Perform the �rst rule

15 (

16 Rule1;

17 %

18 writeln(’ Rule 1 failed.\n No.’), !, fail

19 ),

20 % Check to make sure that the message holds at the time the �rst rule completed

21 % If the message does not hold there has been a con�ict.

22 (

23 holdsAt(message(Message),T2);

24 addFi(mti, Rule1, Rule2),

25 write(’ Message (’), write(Message), write(’) does not hold at time: ’), write(T2),

write(’\n No.\n’), !, fail

26 ),

27 % Perform the second rule or report failure.

28 (Rule2; writeln(’ Rule 2 failed.\n No.’), !, fail),

29

30 % If no con�ict then we expect that the message was triggered.



analysis source code listings 168

31 % If all is well then notify the user that the rules are in concordance

32 %(if not then the noti�cation was written out in mti)

33 %(

34 addConcord(mti, Rule1, Rule2),

35 write(’ Yes.\n’).%holdsAt(trigger(Message),T3), write(' Yes.\n'),!;

36 %write(' Message('), write(Message), write(') not triggered.\n No\n'), !, fail

37 %).

38

39 % Are Rule1 and Rule2 STI free using a Message at time T1 (T2 is unused)?

40 % Rules A & B con�ict by STI when actions are performed by them both in response to the same

41 % triggering event, and the list of actions is di�erent from how it would be if

42 % only one feature had responded to the trigger.

43 % Algorithm for checking for STI:

44 % Perform �rst rule

45 % A = does action get performed

46 % Reset world

47 % Perform second rule

48 % Perform �rst rule

49 % B = does action get performed

50 % Rules concord if A == B

51 sti(Rule1,Rule2, _, _, _) :−

52 % Perform the �rst rule

53 Rule1,

54 domainDependentSentences(F1),

55 % Reset world

56 resetWorld,

57 % Perform the second rule

58 Rule2,

59 domainDependentSentences(F2),

60 % Perform the �rst rule

61 Rule1,
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62 domainDependentSentences(F3),

63 subtract(F3,F2, Di�erence1),

64 subtract(F1,Di�erence1, Di�erence2),

65 length(Di�erence2,Len),

66 write(’F1: ’), writeln(F1),

67 write(’F2: ’), writeln(F2),

68 write(’F3: ’), writeln(F3),

69 write(’sub(F3,F2): ’), writeln(Di�erence1),

70 write(’sub(F1,Dif): ’), writeln(Di�erence2),

71 write(’Len: ’), writeln(Len),

72 %Write result of check of rule conccordance

73 (

74 (

75 Len=0,

76 addConcord(sti, Rule1, Rule2),

77 write(’ Yes.\n’)

78 );

79 (

80 addFi(sti, Rule1, Rule2), write(’ No.\n’)

81 )

82 ).

83

84 domainDependentSentences(Res) :−

85 �ndall([B,C],initiates(_,B,C),Find1),

86 �ndall([B,C],terminates(_,B,C),Find2),

87 append(Find1, Find2, Find3),

88 subtract(Find3,[[null, null]], Res).

89

90 actionSentences(Find1) :−

91 �ndall([B,C],happens(B,C),Find1).

92



analysis source code listings 170

93 resetWorld :−

94 initEC,

95 T0 is 0,

96 T1 is T0+1,

97 T2 is T1+1,

98 assert(timepoint(T0)),

99 assert(timepoint(T1)),

100 assert(timepoint(T2)),

101 assert(initially_p(message(true))).

102

103 % Are Rule1 and Rule2 SAI free using a Message at times T1 and T2?

104 % Rules A & B con�ict if the �rst one sets a message into a state such that

105 % the second one is caused to operate.

106 sai(Rule1,Rule2, _, T1,T2) :−

107 % Make sure that T1 < T2

108 (before(T1,T2);write(’ Received timepoints are out of order. Conflict check cannot

complete.\n’), !, fail ),

109 % Perform the �rst rule

110 Rule1,

111 actionSentences(F1),

112 % Reset world

113 resetWorld,

114 % Perform the second rule

115 Rule2,

116 actionSentences(F2),

117

118 Rule1,

119 actionSentences(F3),

120 subtract(F3,F2, Di�erence1),

121

122 %write('F1: '), writeln(F1),
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123 %write('F2: '), writeln(F2),

124 %write('F3: '), writeln(F3),

125 %write('Di�erence1 = sub(F3,F2): '), writeln(Di�erence1),

126 %writeln('Does F1 == Di�erence1?'),

127

128 ( (F1\=Di�erence1,

129 addFi(sai, Rule1, Rule2), write(’ No.\n’));

130 (

131 addConcord(sai, Rule1, Rule2),

132 write(’ Yes.\n’)

133 ) ).



B
T E S T F E AT U R E R U L E S

The following presents the code listings for the facts and rules tested in this thesis.

Listing B.1: Priority rules used in the examples.

1 % Device priorities. The lower the number the higher the priority (our �rst priority is...)

2

3 % Priority/3 (X,Y,Z) Device X has priority Y at level Z.

4 priority(wearable,data_transfer,1).

5

6 priority(mob_phone,security,1).

7 priority(mob_phone,data_integrity,2).

8 priority(mob_phone,battery_life,3).

9 priority(mob_phone,data_collection,4).

10 priority(mob_phone,user_interaction,5).

11

12 priority(gateway,security,1).

13 priority(gateway,data_integrity,2).

14

15 % Priority/4 (A,B,C,D) For device A, the priority B has rule C at priority level D.

16 priority(wearable,data_integrity,dam_adt,1).

17 priority(mob_phone,data_integrity,dem_ts,1).

18 priority(mob_phone,data_integrity,dem_drf,2).

19 priority(mob_phone,data_integrity,dam_dsu,3).

20 priority(mob_phone,data_integrity,dem_ai,4).

21 priority(mob_phone,data_integrity,dam_adt,5).

22 priority(mob_phone,data_integrity,dam_rds,6).

172
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23 priority(mob_phone,data_integrity,dam_rdtou,7).

24 priority(mob_phone,data_integrity,dam_dstp,8).

25 priority(mob_phone,battery_life,dam_dstp,1).

26 priority(mob_phone,battery_life,dem_drf,2).

27 priority(mob_phone,security,dam_ods_B,1).

28 priority(mob_phone,security,dam_ids,2).

29 priority(mob_phone,data_collection,cds_cts,1).

30 priority(mob_phone,data_collection,sds_sts_inert,2).

31 priority(mob_phone,data_collection,sds_sts_active,3).

32 priority(mob_phone,data_collection,cds_rl,4).

33 priority(mob_phone,user_interaction,dnd_dnnu,2).

34 priority(mob_phone,user_interaction,si_p,1).

Listing B.2: Feature rules used in STI example 1.

1 % respond to changes upon receiving contextual information

2 cds_cts(Trigger,T) :−

3 T2 is T+1,

4 assert(happens(listen_for_connection,T)),

5 assert(happens(make_connection,T)),

6 assert(happens(receive_data,T)),

7 assert(happens(checks_data,T)),

8 assert(happens(listen_for_connection,T2)),

9 ((

10 holdsAt(message(Trigger), T2),

11 assert(initiates(checks_data,prompt(Trigger),T)),

12 assert(terminates(checks_data,message(Trigger),T))

13 );

14 assert(terminates(checks_data,message(Trigger),T))).

15

16 % Form A: responds to changes upon receiving state information

17 sds_sts_active(Trigger,T) :−
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18 cds_cts(Trigger,T).

19

20 % Form B: doesn't respond to changes upon receiving state information

21 sds_sts_inert(_,T) :−

22 T2 is T+1,

23 assert(happens(listen_for_connection,T)),

24 assert(happens(make_connection,T)),

25 assert(happens(receive_data,T)),

26 assert(happens(check_data,T)),

27 assert(happens(listen_for_connection,T2)).

Listing B.3: Feature rules used in SAI example 1.

1 % Display a prompt when triggered

2 si_p(Trigger,T) :−

3 assert(happens(listen_for_connection,T)),

4 (

5 (

6 holdsAt(message(Trigger), T),

7 assert(happens(make_connection,T)),

8 assert(happens(receive_data,T)),

9 assert(initiates(receive_data,prompt,T)),

10 assert(happens(formulate_quesition,T)),

11 assert(happens(determine_response_options,T)),

12 assert(happens(determine_display_options,T)),

13 assert(happens(display_prompt,T))

14 );

15 (

16 assert(happens(connection_failure,T)),

17 assert(initiates(connection_failure,fail_connection,T))

18 )

19 ),
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20 assert(terminates(display_prompt,message(Trigger),T)).

21

22 % sends data about the location of the subject

23 cds_rl(Trigger,T) :−

24 assert(happens(attempt_connection,T)),

25 (

26 (

27 holdsAt(message(Trigger), T),

28 assert(happens(make_connection,T)),

29 assert(happens(report_location,T)),

30 assert(initiates(report_location,complete_transfer,T))

31 );

32 (

33 assert(happens(connection_failure,T)),

34 assert(initiates(connection_failure,fail_transfer,T))

35 )

36 ).

Listing B.4: Feature rules used in SAI example 2.

1 dam_adt(Trigger,T) :−

2 T2 is T+1,

3 T3 is T+2,

4 T4 is T+3,

5 assert(timepoint(T2)),

6 assert(timepoint(T3)),

7 assert(timepoint(T4)),

8 assert(happens(attempt_connection,T)),

9 (

10 (

11 holdsAt(disconnect, T3)

12 );
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13 (

14 (

15 holdsAt(message(Trigger), T2),

16 assert(happens(make_connection,T2)),

17 assert(initiates(make_connection,connected,T2)),

18 assert(happens(upload_data,T3)),

19 assert(initiates(upload_data,data,T3)),

20 assert(terminates(make_connection,message(Trigger),T2))

21 );

22 (

23 assert(happens(connection_fail,T3)),

24 assert(initiates(connection_fail,dam_adt(Trigger,T2),T2))

25 )

26 )

27 ).

28

29

30 % Receiver of new incoming data transfers the raw data to another device

31 dam_rds(Trigger,T) :−

32 T1 is T+1,

33 T2 is T+2,

34 T3 is T+3,

35 T4 is T+4,

36 T5 is T+5,

37 T6 is T+6,

38 assert(timepoint(T1)),

39 assert(timepoint(T2)),

40 assert(timepoint(T3)),

41 assert(timepoint(T4)),

42 assert(timepoint(T5)),

43 assert(timepoint(T6)),
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44 assert(happens(listening,T)),

45 (

46 (

47 holdsAt(connected,T1),

48 assert(happens(download_data,T2)),

49 assert(terminates(download_data,message(Trigger), T2)),

50 assert(happens(attempt_connection,T4)),

51 assert(happens(upload_data,T5)),

52 assert(happens(complete_transfer,T6))

53 );

54 (

55 assert(happens(close_connection,T2)),

56 assert(terminates(close_connection,message(Trigger), T2)),

57 assert(initiates(close_connection,disconnect,T2))

58 )

59 ).

Listing B.5: Feature rules used in SAI example 3 and LI example 1.

1 % Form A: responds to changes upon receiving state information

2 sds_sts_active(Trigger,T) :−

3 T2 is T+1,

4 assert(happens(listen_for_connection,T)),

5 assert(happens(make_connection,T)),

6 assert(happens(receive_data,T)),

7 assert(happens(checks_data,T)),

8 assert(happens(listen_for_connection,T2)),

9 ((

10 holdsAt(message(Trigger), T2),

11 assert(initiates(check_data,prompt(Trigger),T)),

12 assert(terminates(check_data,message(Trigger),T))

13 );
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14 assert(terminates(checks_data,message(Trigger),T))).

15

16 % Form B: doesn't respond to changes upon receiving state information

17 sds_sts_inert(_,T) :−

18 T2 is T+1,

19 assert(happens(listen_for_connection,T)),

20 assert(happens(make_connection,T)),

21 assert(happens(receive_data,T)),

22 assert(happens(check_data,T)),

23 assert(happens(listen_for_connection,T2)).

24

25 % Data Recording Frequency

26 dem_drf(Trigger,T) :−

27 T2 is T+1,

28 assert(happens(listen_for_connection,T)),

29 assert(happens(make_connection,T)),

30 assert(happens(receive_data,T)),

31 assert(happens(calculate_frequency,T)),

32 assert(terminates(receive_data,message(Trigger),T)),

33 assert(happens(listen_for_connection,T2)).

Listing B.6: Feature rules used in LI example 2.

1 % Retry Data Transfer On Unavailable

2 rdtou(Trigger,T1) :−

3 T2 is T1+1,

4 assert(timepoint(T2)),

5 assert(happens(attempt_connect,T1)),

6 (

7 holdsAt(message(Trigger),T1),

8 assert(happens(connect,T1)),

9 assert(happens(upload_data,T1)),
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10 assert(happens(transfer_complete,T1)),

11 assert(terminates(connect,message(Trigger),T1))

12 );

13 (

14 assert(happens(connect_fail,T2)),

15 (

16 assert(happens(rdtou(Trigger,T2),T2))

17 )

18 ).

19

20 % Inbound Data Screening

21 ids(Data,T1) :−

22 assert(happens(sender_attempts_connection,T1)),

23 assert(happens(recipient_screens_sender,T1)),

24 assert(terminates(recipient_screens_sender,message(Data),T1)),

25 assert(initiates(recipient_screens_sender,sender_connection_failure_date,T1)).

Listing B.7: Feature rules used in MAI example 1.

1 % The receiver of a incoming data stores them.

2 dam_dsu(Trigger,T) :−

3 T2 is T+1,

4 assert(happens(listen_for_connection,T)),

5 assert(happens(make_connection,T)),

6 assert(happens(receive_data,T)),

7 assert(happens(listen_for_connection,T2)),

8 ((

9 holdsAt(message(Trigger), T2),

10 assert(initiates(receive_data,store(Trigger),T)),

11 assert(terminates(receive_data,message(Trigger),T))

12 );

13 assert(terminates(checks_data,message(Trigger),T))).
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14

15 % the receiver of incoming data processes them then stores them

16 dam_dstp(Trigger,T) :−

17 T2 is T+1,

18 assert(happens(listen_for_connection,T)),

19 assert(happens(make_connection,T)),

20 assert(happens(receive_data,T)),

21 assert(happens(process_data,T)),

22 assert(happens(listen_for_connection,T2)),

23 ((

24 holdsAt(message(Trigger), T2),

25 assert(initiates(process_data,prompt(Trigger),T)),

26 assert(terminates(process_data,message(Trigger),T))

27 );

28 assert(terminates(process_data,message(Trigger),T))).

Listing B.8: Feature rules used in MAI example 2.

1 dam_adt(Trigger,T) :−

2 T2 is T+1,

3 T3 is T+2,

4 T4 is T+3,

5 assert(timepoint(T2)),

6 assert(timepoint(T3)),

7 assert(timepoint(T4)),

8 assert(happens(attempt_connection,T)),

9 (

10 (

11 holdsAt(disconnect, T3)

12 );

13 (

14 (
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15 holdsAt(message(Trigger), T2),

16 assert(happens(make_connection,T2)),

17 assert(initiates(make_connection,connected,T2)),

18 assert(happens(upload_data,T3)),

19 assert(initiates(upload_data,data,T3)),

20 assert(terminates(make_connection,message(Trigger),T2))

21 );

22 (

23 assert(happens(connection_fail,T3)),

24 assert(initiates(connection_fail,dam_adt(Trigger,T2),T2))

25 )

26 )

27 ).

28

29 % outbound screening

30 dam_ods(Trigger,T) :−

31 assert(happens(attempt_connection,T)),

32 assert(happens(screen_recipient,T)),

33 (

34 (

35 holdsAt(recipient, T),

36 assert(terminates(screen_recipient,message(Trigger),T)),

37 assert(initiates(screen_recipient,deny,T))

38 %writeln('ods:recipient_holds')

39 );

40 (

41 assert(initiates(screen_recipient,proceed,T))

42 %writeln('ods:recipient_not_holds')

43 )

44 ).

45
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46 dam_ods_screened(Trigger,T) :−

47 assert(initially_p(recipient)),

48 dam_ods(Trigger,T).

49

50 dam_ods_not_screened(Trigger,T) :−

51 assert(initially_n(recipient)),

52 dam_ods(Trigger,T).

Listing B.9: Feature rules used in MAI example 3.

1 % Suppress prompts when triggered

2 dnd_dnnu(Trigger,T) :−

3 (

4 (

5 holdsAt(message(Trigger), T),

6 assert(initially_p(block))

7 );

8 (

9 assert(initially_n(block))

10 )

11 ),

12 assert(happens(attempt_connection,T)),

13 assert(happens(block_recipient,T)),

14 (

15 (

16 holdsAt(block, T),

17 assert(terminates(block_recipient,message(Trigger),T)),

18 assert(initiates(block_recipient,deny,T))

19 );

20 (

21 assert(initiates(block_recipient,proceed,T))

22 )
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23 ).

24

25 % Time Synchronisation

26 dem_ts(Trigger,T1) :−

27

28 T2 is T1+1,

29 T3 is T1+2,

30 T4 is T1+3,

31 T5 is T1+4,

32

33 assert(timepoint(T2)),

34 assert(timepoint(T3)),

35 assert(timepoint(T4)),

36 assert(timepoint(T5)),

37

38 assert(initially_p(t_o�set)),

39 assert(initially_n(clock_dif)),

40

41 assert(happens(listening,T1)),

42 (

43 (

44 holdsAt(message(Trigger), T2), % whether or not the connection occurs

45 assert(happens(record(Trigger, TS1),T2)),

46 assert(happens(calculate(t_o�set, TS1, TS2),T3)),

47 assert(happens(upload(TS1, TS2, T3),T4)),

48 assert(happens(receive(clock_dif),T5)),

49 assert(initiates(receive_clock_dif,clock_dif,T5)),

50 assert(terminates(record(Trigger, TS1),message(Trigger),T3))

51 );

52 assert(initiates(notholdsAt(message(Trigger), T2),blocked,T4))

53 ).
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Listing B.10: Feature rules used in MTI example 1.

1 % Display a prompt when triggered

2 si_p(Trigger,T) :−

3 assert(happens(listen_for_connection,T)),

4 (

5 (

6 holdsAt(message(Trigger), T),

7 assert(happens(make_connection,T)),

8 assert(happens(receive_data,T)),

9 assert(initiates(receive_data,prompt,T)),

10 assert(happens(formulate_quesition,T)),

11 assert(happens(determine_response_options,T)),

12 assert(happens(determine_display_options,T)),

13 assert(happens(display_prompt,T))

14 );

15 (

16 assert(happens(connection_failure,T)),

17 assert(initiates(connection_failure,fail_connection,T))

18 )

19 ),

20 assert(terminates(display_prompt,message(Trigger),T)).

21

22 % Suppress prompts when triggered

23 dnd_dnnu(Trigger,T) :−

24 (

25 (

26 holdsAt(message(Trigger), T),

27 assert(initially_p(block))

28 );

29 (

30 assert(initially_n(block))
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31 )

32 ),

33 assert(happens(attempt_connection,T)),

34 assert(happens(block_recipient,T)),

35 (

36 (

37 holdsAt(block, T),

38 assert(terminates(block_recipient,message(Trigger),T)),

39 assert(initiates(block_recipient,deny,T))

40 );

41 (

42 assert(initiates(block_recipient,proceed,T))

43 )

44 ).

Listing B.11: Feature rules used in MTI example 2.

1 % respond to changes upon receiving contextual information

2 cds_cts(Trigger,T) :−

3 T2 is T+1,

4 assert(happens(listen_for_connection,T)),

5 assert(happens(make_connection,T)),

6 assert(happens(receive_data,T)),

7 assert(happens(checks_data,T)),

8 assert(happens(listen_for_connection,T2)),

9 ((

10 holdsAt(message(Trigger), T2),

11 assert(initiates(checks_data,prompt(Trigger),T)),

12 assert(terminates(checks_data,message(Trigger),T))

13 );

14 assert(terminates(checks_data,message(Trigger),T))).

15
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16 % Form A: responds to changes upon receiving state information

17 sds_sts_active(Trigger,T) :−

18 cds_cts(Trigger,T).

19

20 % Form B: doesn't respond to changes upon receiving state information

21 sds_sts_inert(_,T) :−

22 T2 is T+1,

23 assert(happens(listen_for_connection,T)),

24 assert(happens(make_connection,T)),

25 assert(happens(receive_data,T)),

26 assert(happens(check_data,T)),

27 assert(happens(listen_for_connection,T2)).

28

29 si_p(Trigger,T) :−

30 assert(happens(listen_for_connection,T)),

31 (

32 (

33 holdsAt(message(Trigger), T),

34 assert(happens(make_connection,T)),

35 assert(happens(receive_data,T)),

36 assert(initiates(receive_data,prompt,T)),

37 assert(happens(formulate_quesition,T)),

38 assert(happens(determine_response_options,T)),

39 assert(happens(determine_display_options,T)),

40 assert(happens(display_prompt,T))

41 );

42 (

43 assert(happens(connection_failure,T)),

44 assert(initiates(connection_failure,fail_connection,T))

45 )

46 ),
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47 assert(terminates(display_prompt,message(Trigger),T)).

Listing B.12: Feature rules used in MTI example 3.

1 % respond to changes upon receiving contextual information

2 cds_cts(Trigger,T) :−

3 T2 is T+1,

4 assert(happens(listen_for_connection,T)),

5 assert(happens(make_connection,T)),

6 assert(happens(receive_data,T)),

7 assert(happens(checks_data,T)),

8 assert(happens(listen_for_connection,T2)),

9 ((

10 holdsAt(message(Trigger), T2),

11 assert(initiates(checks_data,prompt(Trigger),T)),

12 assert(terminates(checks_data,message(Trigger),T))

13 );

14 assert(terminates(checks_data,message(Trigger),T))).

15

16 % Activate immediate

17 dem_ai(Trigger,T) :−

18 assert(happens(listen_for_connection,T)),

19 (

20 (

21 holdsAt(message(Trigger), T),

22 assert(happens(make_connection,T)),

23 assert(happens(receive_activate_command,T)),

24 assert(initiates(receive_activate_command,perform_activity,T))

25 );

26 true

27 ).
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Listing B.13: Rules used to describe how state may affect CLIPPER.

1 destro(Trigger,T) :− % Pure destructive rule

2 assert(happens(make_connection,T)),

3 assert(terminates(make_connection,message(Trigger),T)).

4

5 state_destro(Trigger,T) :− % State−preserving destructive rule

6 (

7 holdsAt(perform_activity, 2),

8 assert(terminates(make_connection,message(Trigger),T))

9 );

10 (

11 assert(happens(make_connection,1)),

12 assert(initiates(make_connection,perform_activity,1)),

13 state_destro(Trigger,T)

14 ).

15

16 % Macro rule that calls multiple rules before clipper is reset

17 macroA(Trigger,T) :−

18 passive(Trigger,T),

19 destro(Trigger,T).

20

21 % Macro rule that calls multiple rules before clipper is reset

22 macroB(Trigger,T) :−

23 destro(Trigger,T),

24 passive(Trigger,T).

25

26

27 passive(_,_) :− % Pure passive rule

28 assert(terminates(make_connection,perform_activity,1)),

29 true.
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