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Emergent phenomena occur due to the pattern of non-linear and distributed local interactions be-
tween the elements of a system over time. Surprisingly, agent based crowd models in which the
movement of each individual follows a limited set of simple rules often re-produce quite closely the
emergent behaviour of crowds that can be observed in reality. An example of such phenomena is the
spontaneous self-organisation of drinking parties in the squares of cities in Spain, also known as “El
Botellón” [22]. We revisit this case study providing an elegant stochastic process algebraic model in
Bio-PEPA amenable to several forms of analyses among which simulation and fluid flow analysis.
We show that a fluid flow approximation, i.e. a deterministic reading of the average behaviour of the
system, can provide an alternative and efficient way to study the same emergent behaviour as that
explored in [22] where simulation was used instead. Besides empirical evidence also an analytical
justification is provided for the good correspondence found between simulation results and the fluid
flow approximation. Scalability features of the fluid flow approach may make it particularly useful
when studying models of more complex city topologies with very large populations.

1 Introduction

In modern society the formation of crowds, intended as large concentrations of people, is a phenomenon
that occurs frequently. Well known examples are crowds at large entertainment events in cities or other
open-air facilities such as sport stadiums, but also crowds at large airports and train stations. Fortunately,
such crowds usually occur and dissolve without serious problems. However, in some cases accidents
happen with possibly major consequences such as loss of lives and a large number of injuries [24].

There is an ever stronger interest in being able to prevent such disasters and there exists an extensive
literature on numerous approaches to the study of crowd formation, crowd management and emergency
egress [23]. Simulation models play an important role in these approaches. In particular, agent based
modelling has become popular in recent years because it may provide valuable information about the
dynamics of systems that contain non-linear elements, chaos and random cause and effect. Several
works in this area, e.g. work by Still [24], show that a crowd of people in which each individual follows
a limited number of simple rules produces quite closely the emergent behaviour that can be observed
in real human crowds. Emergent phenomena are known to occur due to the pattern of non-linear and
distributed local interactions between the large number of elements of a system over time. In particular,
work by Still shows that such simple local rules are in many cases sufficient to produce the observed
behaviour and that no complicated rules of group behaviour or psychological parameters are necessary.
His work and that of others have led to the development of several professional tools, based on agent
simulation, for the realistic analysis and prediction of crowd behaviour in emergency situations. Such
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analyses may help to detect architectural or organisational problems that may potentially cause loss of
lives in the event of emergency situations occurring in, for example, airports, sport stadiums and open-air
festivals.

However, for very large crowds, analysis via simulation may become time-consuming since each
execution of the model produces only a singe trajectory through the state space whereas many executions
are needed to reach statistically relevant conclusions. Therefore, the costs of simulation based analysis
often becomes prohibitive in situations in which a quick analysis is required to compare the consequences
of different design options or when a large number of slightly different scenarios need to be analysed.

In a completely different field of research, namely that of the analysis of bio-chemical reactions, it
has been shown that under certain conditions, such as the presence of a sufficiently large population, a
deterministic continuous interpretation of models composed of many similar small independent compo-
nents provide a good approximation of the average behaviour of the overall model. In the context of
stochastic process algebras this insight has led to the development of an alternative formal fluid flow
semantics for PEPA first and later for Bio-PEPA, a variant of PEPA originally devised for modelling
biochemical processes, based on the generation of sets of ordinary differential equations (ODE) [16, 10].
An application of PEPA with this alternative semantics in the context of emergency egress [20, 5] has
shown very good correspondence with results from the literature on evacuation times and node profiles,
i.e. the average number of people present in a particular part of the building over time during egress. In
that work only linear differential equations have been considered.

In this paper we revisit the case of self-organisation of crowds in a city as described by Rowe and
Gomez in [22]. This case differs from that of emergency egress mentioned before because of the presence
of non-linear aspects where the behaviour of the individual agents depends directly on other, similar
agents present in the same environment. We show that with Bio-PEPA a fluid flow approximation can
provide an alternative and computationally efficient way to study the same emergent behaviour as that
explored in [22] where simulation was used instead. In that work the movement of a crowd in a city
is studied under various assumptions about the likelihood that people remain in a square. The work
was inspired by a typical social phenomenon observed in Spanish cities, on summer nights, called “El
Botellón”, when crowds of youngsters wander between city squares in search of a party. Such self-
organised parties sometimes lead to heavy drinking and noisy behaviour until late at night. It turned out
to be hard to predict when and where a large party would take place. The aim of the work by Rowe and
Gomez was to gain insight into the conditions under which parties self-organise. In their study agents
follow two basic rules. The first rule defines when agents remain in a square, which depends on the “chat-
probability”, i.e. the likelihood to meet someone in the square to chat with. The second rule defines how
agents move between squares.

Rowe and Gomez develop an analytical model to approximate the threshold of this chat-probability
below which people are freely moving through the city and above which large crowds start to form. They
validated their theory by the simulation of a multi-agent model for a ring topology of 4 squares and up
to 80 agents. Both the theory and the simulation results show that for a value of the chat probability
c = n/N, where n is the number of squares and N the number of agents, a clear phase-transition can be
observed between a steady-state situation in which agents are evenly distributed over the squares (when
c is below the threshold) and a situation in which agents spontaneously gather in one or a few squares
(when c is a above the threshold).

In this paper, we approach the modelling of crowds by adopting the Bio-PEPA stochastic process
algebra [11]. Bio-PEPA embeds a notion of spatial location, intended to model compartments, suitable
to describe the city topology and locate agents within it. Moreover, the agent behaviour can be expressed
as a function of the current state of the system, such as the number of people present in a square, an
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abstraction of the act of sensing the environment, common to standard agent models. Such a function
may contain non-linear elements, which makes Bio-PEPA also particularly interesting for the analysis of
some forms of emergent behaviour, as we will see in later sections. The fluid flow results obtained with
the Bio-PEPA model correspond surprisingly well to the simulation results obtained with the the same
model and to those published by Rowe and Gomez [22]. Informally speaking, for models where the rates
can be expressed as functions of the average density of the population this phenomenon is well known
(assuming that the populations are sufficiently large), see e.g. Kurtz [18] and in the context of mean
field analysis Le Boudec et al. [2]. However, the rate functions in the crowds model addressed in this
paper cannot be expressed this way. We provide an alternative analytical explanation for the observed
correspondence which is partially based on recent work by Hayden and Bradley [14] on PEPA.

By adopting this modelling and analysis approach, we gain an expressive linguistic description of
agent behaviour from process algebras, which can be thought of modularly, can be easily revised, is
grounded on a neat formal semantics also encompassing the stochastic aspects, and is supported by
a suite of computational tools. Fluid flow approximation aims at tackling the state space combinatorial
explosion that arises as a consequence of interleaving the behaviour of the many independent individuals.
Fluid flow relies on an abstract quantitative description of the system, i.e. variables represent amounts of
agents with independent but “homogeneous” behaviour, and on the approximating hypothesis that such
quantities vary continuously over time.

Furthermore, with this approach, the agent view and the stochastic modelling are retained within
a single framework, allowing the analysis of averaged and non-averaged behaviour to be carried out
using the same model. For instance one may wish to understand and even tune the average behaviour
of the system and then deepen some particular cases of interest. This may be particularly advantageous
whenever the computational costs of stochastic simulation may only be justified when a final system
design is considered, but would be prohibitive when exploring many design options and conditions during
early phases of design. The analysis of the threshold for the self-organisation of crowds in a city is an
example of such explorative analysis that would require many simulations to obtain an accurate view
of the phase-transition. This is even more so when more complex city-topologies and a large number
of agents are considered. A preliminary version of this work has been presented at the PASTA 2010
workshop [21].

The paper is organised as follows. Section 2 recalls the crowd model used in the case study by
Rowe and Gomez [22]. Section 3 gives a brief overview of Bio-PEPA and its analysis environment.
Section 4 describes the Bio-PEPA model of the collective behaviour of crowds in a city. Sections 5
and 6 provide both simulation and fluid flow results and compares them with the original results in [22].
Section 7 illustrates an extension of the model in which squares have different attractiveness. Finally,
in Section 9 conclusions are presented and an outline of future research is given. Annex A presents the
full specification of a Bio-PEPA model for a topology of four squares. Annex B illustrates the derivation
of the set of ODEs associated with the model of Annex A. Annex C presents an analytical assessment
of the formal relationship between the CTMC based formal semantics of the model and its fluid flow
approximation.

2 Rowe and Gomez Model of Crowd Dynamics

In this section we briefly recall the model of movement of crowds between squares in a city as pre-
sented by Rowe and Gomez in [22]. Assume a city with n squares represented as a graph with vertices
{1,2, . . . ,n}. People are simulated by “agents” that are following a simple set of rules. The number of
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agents in square i, with i ∈ {0,1, . . . ,n}, at time t, with t representing discrete time steps, is represented
by pi(t). The state of the system at t is given by the number of agents present in each square modelled
by the vector p(t) = (p1(t), p2(t), . . . , pn(t)). The total number of agents N at any time t is constant:
N = ∑

n
i=1 pi(t).

Agents are located in squares. The rules guiding agents’ behaviour are the following. The probability
that an agent decides to remain in a square depends on how many other agents are present in the same
square. If a square i contains pi > 0 agents, the probability that an agent leaves the square is given by
(1−c)pi−1. The parameter c (representing the chat probability, 0≤ c≤ 1) is the probability that an agent
finds another one to talk to and thus remains in the square. Consequently, if the population of square i is
pi then the probability for an agent to find nobody to talk to is (1− c)pi−1. Note that when there is only
one agent in the square, it decides to leave with probability 1, since there is nobody else to talk to. If an
agent decides to move, it moves with equal probability to any neighbouring square reachable by a street.
Considering an analytical model of the above discrete behaviour the expected number of agents that will
leave square i at a given time step t is given by the function:

fi(t) = pi(t)(1− c)pi(t)−1

This models the fraction of the population in square i that does not find anyone to talk to in that
square1. The probability that an agent, which decided to leave square j, moves to the adjacent square i is
given by the matrix Ai j:

Ai j = coni j/d j

where d j is the degree of vertex j, i.e. the number of streets departing from square j, and coni j denotes
that square i is connected to square j:

coni j =
{

1 if i is connected to j
0 otherwise

Clearly, coni j = con ji and we assume that adjacent squares are connected by at most one street. The
expected distribution of agents over squares at time t +1 can now be defined as:

p(t +1) = p(t)− f(t)+Af(t)

Clearly, from this formula it follows that a steady-state behaviour is reached when f(t) = Af(t). In
other words, when the number of people entering a square is equal to the number leaving the square.
Rowe and Gomez show that there are two possibilities for such a stable state. In one case the agents
freely move between squares and their distribution is proportional to the number of streets connected to
each square. In the second case agents gather in large groups in a small number of squares corresponding
to emergent self-organisation of parties. Which of the two situations will occur depends critically on the
value of the chat probability c. In case all squares have the same number of neighbouring squares a
phase shift occurs at about c = n/N where n is the number of squares and N the number of agents. For
c < n/N people freely move between squares whereas for c > n/N agents self-organise into large groups.
Simulation of the model confirms in an empirical way that this estimate for c is quite accurate when the
population is large enough where large means about 60 agents or more in a 4-square topology.

1Note that in this analytical model the number of agents pi(t) in square i is now approximated by a real number: the expected
number of agents in square i at time t.
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For topologies where each square has the same number of streets the critical value of c can be
estimated in an analytical way. For less regular topologies and in case different squares have different
chat probabilities and not all directions leaving from a square are equally likely to be taken by people
it is very difficult to identify such critical values in an analytical way. Usually, in such cases simulation
is used to analyse the models. However, when a large number of agents is involved, simulation may be
extremely time consuming. In Section 4 we show that a combined process algebraic agent modelling and
fluid flow approximation based on ODEs may provide a much faster way to obtain similar information
for this class of models.

3 Bio-PEPA and Fluid Flow Analysis

In this section we give a short description of Bio-PEPA [10, 11, 9], a language that has recently been
developed for the modelling and analysis of biochemical systems. The main components of a Bio-PEPA
system are the “species” components, describing the behaviour of individual entities, and the model
component, describing the interactions between the various species. The initial amounts of each type of
entity or species are given in the model component.

The syntax of the Bio-PEPA components is defined as:

S ::= (α,κ) op S | S +S |C with op = ↓ | ↑ | ⊕ | 	 | � P ::= P ��
L

P | S(x)

where S is a species component and P is a model component. In the prefix term (α,κ) op S, κ is the
stoichiometry coefficient of species S in action α . This arises from the original formulation of the process
algebra for modelling biochemical reactions, where the stoichiometric coefficient captures how many
molecules of a species are required for a reaction. However it may be interpreted more generally as the
multiples of an entity involved in an occurring action. The default value of κ is 1 in which case we simply
write α instead of (α,κ). The prefix combinator “op” represents the role of S in the action, or conversely
the impact that the action has on the species. Specifically, ↓ indicates a reactant which will be consumed
in the action, ↑ a product which is produced as a result of the action, ⊕ an activator, 	 an inhibitor and
� a generic modifier, all of which play a role in an action without being produced or consumed and have
a defined meaning in the bio-chemical context. The operator “+” expresses the choice between possible
actions, and the constant C is defined by an equation C=S. The process P ��

L
Q denotes synchronisation

between components P and Q, the set L determines those actions on which the the components P and Q
are forced to synchronise, with ��

∗
denoting a synchronisation on all common action types. In the model

component S(x), the parameter x ∈ IR represents the initial amount of the species.
A Bio-PEPA system with locations consists of a set of species components, also called sequential

processes, a model component, and a context (locations, kinetics rates, parameters, etc.). The prefix term
(α,κ) op S@l is used to specify that the action is performed by S in location l. The notation α[I → J]�S
is a shorthand for the pair of reactions (α,1)↓SI and (α,1)↑SJ that synchronise on action α and where
SI denotes the population of agents in location I and SJ that in J. This shorthand is very convenient when
modelling agents migrating from one location to another as we will see in the next section. Bio-PEPA
is given an operational semantics [11]. In that context species amounts are abstracted by discrete levels,
representing intervals of values. There are two relations over the processes: the capability relation,
which supports the derivation of qualitative information, and the stochastic relation, defined in terms of
the capability relation and equipped with rates for the associated action types. There is a rate function rα

associated with each action type α and its value is calculated in each state according to the current state
of the system and its context. In modelling biochemistry this rate function is often the so-called mass



6 A Combined Process Algebraic, Agent and Fluid Flow Approach to Emergent Behaviour

action law which stipulates that the rate of the reaction is the product of the amounts of its reactants and a
rate constant. At each time instant each action is assumed to be governed by an exponentially distributed
random variable which determines its duration: the rate function gives the parameter of this distribution.
This gives rise to an underlying continuous time Markov chain (CTMC). The dynamic behaviour of
processes is determined by a race condition: all actions which are enabled attempt to proceed but only
the fastest succeeds.

In the models in this paper the rate function is not the mass-action law but is a functional rate re-
flecting the rate with which people leave a square. As in the original model by Rowe and Gomez, the
functional rate depends on the number of people present in a square and the chat-probability, leading to a
non-linear rate function. However, also in this case this function provides the parameter of an exponential
distribution leading to an underlying CTMC.

The Bio-PEPA language is supported by a suite of software tools which automatically process Bio-
PEPA models and generate internal representations suitable for different types of analysis [11, 8, 3].
These tools include mappings from Bio-PEPA to differential equations (supporting fluid flow approxi-
mation), stochastic simulation models [13], CTMCs with levels [10] and PRISM models [19].

3.1 Fluid Flow

As mentioned above, the Bio-PEPA semantics allows for the application of different analysis and evalu-
ation techniques including fluid flow analysis originally defined in terms of the related stochastic process
algebra PEPA. We give a very brief summary of the approach here; for details see [16, 6, 10]. The method
to derive a set of ordinary differential equations for a Bio-PEPA model is illustrated in Appendix B for
the crowd model that will be presented in the next section.

A Bio-PEPA model consists of a number of sequential components each of which represents a num-
ber of entities in a distinct state. The result of an action is to increase the number of some entities and
decrease the number of others, these adjustments reflecting the stoichiometry with respect to the action.
Thus we can represent the total state of the system at any time as a vector with entries capturing the
counts of each species component. This gives rise to a discrete state system which undergoes discrete
events. The idea of fluid flow analysis is to approximate these discrete jumps by continuous flows be-
tween the states of the system. This approximation becomes good when entities are present in such high
numbers as to make the frequency of actions high and the relative change from each single event small.
In this case we can derive a set of ordinary differential equations (ODEs) which approximate the average
behaviour of the CTMC.

4 Modelling Crowd Movement with Bio-PEPA

Let us consider the same small city topology with 4 squares, as in Rowe and Gomez and as shown in
Fig. 1, allowing bi-directional movement between squares. The first five lines of the Bio-PEPA specifica-
tion below define this topology. The first line defines the default compartment top that contains all other
compartments. The next four lines define square A to D. In this context size is used to denote a capacity
in terms of number of agents. The size of the squares, defined by parameter normal square = 100, is
defined in such a way that all agents, 60 in this case, would fit in any single square and does not impose
any further constraints.
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A

C D

B

Figure 1: City plan with four squares

location top : size = 1000, type = compartment;
location sqA in top : size = normal square, type = compartment;
location sqB in top : size = normal square, type = compartment;
location sqC in top : size = normal square, type = compartment;
location sqD in top : size = normal square, type = compartment;

The model, which we will henceforth refer to as the ‘crowd model’, has two further parameters. The
parameter c defines the chat-probability and the parameter d the degree or number of streets connected
to a square. In the topology presented in Fig. 1 d = 2 for all squares.

normal square = 100;
c = 0.05;
d = 2;

The activities modelling agents moving from square X to square Y will be denoted by fXtY .
The associated functional rate (indicated by the keyword “kineticLawOf”) is defined in analogy

to [22]. As explained in Section 2 there the setting is that of a discrete time model in which the expected
number of agents that will leave square i at a given time step t is given by the function:

fi(t) = pi(t)(1− c)pi(t)−1

Since the only information on the probability distribution available is the expected number of agents
leaving a square per time unit, this same information can also be modelled as the rate parameter of an
exponential distribution. In particular, letting P@sqX model the number of people currently in square X ,
such a rate is:

P@sqX ∗ (1− c)(P@sqX−1)



8 A Combined Process Algebraic, Agent and Fluid Flow Approach to Emergent Behaviour

This models the rate of people leaving square X via any of its connecting streets leading to a neigh-
bouring square.

If one also considers the uniform distribution of people over the outgoing streets of the square then
the above rate needs to be divided by its degree d when agents leaving through a particular street are
considered. In the four square ring topology the value of d is 2 for all squares. So the general rate with
which agents leave square X via a particular street is:

(P@sqX ∗ (1− c)(P@sqX−1))/d

This leads to the following functional rates for the crowd model, one for each direction of movement:

kineticLawOf fAtB : (P@sqA∗ (1− c)(P@sqA−1))/d;
kineticLawOf fBtA : (P@sqB∗ (1− c)(P@sqB−1))/d;
kineticLawOf fBtD : (P@sqB∗ (1− c)(P@sqB−1))/d;
kineticLawOf fDtB : (P@sqD∗ (1− c)(P@sqD−1))/d;
kineticLawOf fAtC : (P@sqA∗ (1− c)(P@sqA−1))/d;
kineticLawOf fCtA : (P@sqC ∗ (1− c)(P@sqC−1))/d;
kineticLawOf fCtD : (P@sqC ∗ (1− c)(P@sqC−1))/d;
kineticLawOf fDtC : (P@sqD∗ (1− c)(P@sqD−1))/d;

Indeed, the actual rate of the action also depends on the number of people currently in a square X,
besides the factor (1− c)(P@sqX−1), with c ∈ [0,1]. Note that this reduces the rate of outgoing agents the
larger the population P@sqX becomes.

The sequential component P below specifies the possible movements of a typical agent between
squares. For example, f AtB[sqA → sqB]�P means that an agent present in square A moves to square B
according to the functional rate defined for the action f AtB.

P = fAtB[sqA → sqB]�P+ fBtA[sqB → sqA]�P+
fAtC[sqA → sqC]�P+ fCtA[sqC → sqA]�P+
fBtD[sqB → sqD]�P+ fDtB[sqD → sqB]�P+
fCtD[sqC → sqD]�P+ fDtC[sqD → sqC]�P;

Finally, the model component defines the initial conditions of an experiment, i.e. in which squares
the agents are located initially, and the relative synchronisation pattern. Initially, there are 60 agents
in square A. This is expressed by P@sqA[60] in the composition shown below. All other squares are
initially empty (i.e. P@sqX [0] for X ∈ {B,C,D}). The fact that moving agents need to synchronise
follows from the definition of the shorthand operator →.

(P@sqA[60] ��
∗

P@sqB[0]) ��
∗

(P@sqC[0] ��
∗

P@sqD[0])

The total number of agents P@sqA +P@sqB +P@sqC +P@sqD is invariant and amounts to 60 in
this specific case.

5 Results for a Model with Four Squares

This section reports the analysis results for the model with four squares. The figures report both analysis
via Gillespie stochastic simulation (G) [13], averaged over 10 independent runs, and fluid flow analy-
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(a) Simulation results for c=0.005.
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(b) Fluid flow results for c=0.005.
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(c) Simulation results for c=0.10.
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(d) Fluid flow results for c=0.10.

Figure 2: Results for four squares with 60 agents in A initially

sis based on the adaptive numeric solution of sets of ODEs based on the adaptive step-size 5th order
Dormand-Prince ODE solver [12].2

Figure 2(a) shows stochastic simulation results for a model with 60 agents initially in square A and
for a value of c = 0.005 which is below the analytically estimated threshold of c = n/N = 4/60 =
0.06666. The results show that a dynamic equilibrium is reached, i.e. all agents distribute evenly over
the four squares, which confirms the discrete event simulation results reported by Rowe and Gomez.
Figure 2(c) shows the results of stochastic simulation for the same model, but for c = 0.10, a value above
the threshold. The figure shows that the population settles rather quickly in a steady state in which almost
all agents remain in square A. This is the second type of steady state observed also by Rowe and Gomez.
Interestingly, the fluid flow analysis of the same model, for both values of c (Fig. 2(b) and Fig. 2(d))
show very good correspondence to the respective simulation results (Fig 2(a) resp. Fig. 2(c)).

Since these results show that both types of steady state emerge in this stochastic version of the crowd
model and for both types of analysis, the question naturally arises whether fluid flow could be used as

2All analyses have been performed with the Bio-PEPA Eclipse Plug-in tool [8] on a Macintosh PowerPC G5.
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(a) ‘Steady state’ results for square A.
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(b) ‘Steady state’ results for all squares.

Figure 3: ‘Steady state’ results at t=200 and varying chat probabilities.

an efficient technique to investigate the behaviour of the model for various values of the chat-probability
c, in particular those close to the critical threshold. To this purpose we have performed a fluid flow
analysis for different chat probabilities ranging from 0.01 to 0.2 with steps of 0.01, except between 0.05
and 0.065 where the value is increased by steps of 0.001. Each fluid flow analysis takes less than a
second independently of how many agents are considered in the model. If stochastic simulation would
be used instead, the time for analysis would grow exponentially with the number of agents due to their
interleaving behaviour. The results are shown in Fig. 3(a) for the number of people in square A on the
long run (effectively at t = 200) starting with 60 people in square A initially. The figure shows clearly
that for a chat probability below 0.05 in the steady state there are approximately 15 people in square
A. In fact, in Fig. 3(b), where the steady state populations of all squares are shown, it is clear that for
c < 0.05 the population is evenly distributed over the four squares.

For c > 0.05 the situation changes sharply. For these higher values of c the agent population tends to
concentrate in square A, the square from which they started. All other squares remain essentially empty.
A similar emergent behaviour is observed when the population is initially more evenly distributed over
the squares, for example with 30 agents in A, and 10 each in B, C and D as shown in Figs. 4(a) and 4(b)
for c = 0.005 and in Figs. 4(c) and 4(d) for c = 0.10. This shows that the grouping of agents in A also
happens when starting from a configuration in which not all agents were already present in square A.

The results in Fig. 3 show a clear case of spontaneous self-organisation or emergent behaviour. In
other words, it shows the phenomenon that a structure or pattern appears in a system without being
imposed by a central authority or any external element. Note that the results have been obtained by a
series of numerical solutions of the ODEs derived from the Bio-PEPA model (fluid flow analysis) for
various values of c instead of via stochastic simulation. The results in Fig. 3(b) closely correspond to
those obtained by simulation by Rowe and Gomez [22], apart from a re-normalisation factor for the
size of the population. The ease and computational efficiency with which these accurate results can be
produced by means of fluid flow analysis opens up a promising perspective on how process algebraic
fluid flow analysis could be used as an alternative, efficient, scalable and formal approach to investigate
emergent behaviour in the vicinity of critical parameter values for this class of models.
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(a) Simulation results for c=0.005.
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(b) Fluid flow results for c=0.005.
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(c) Simulation results for c=0.10.
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(d) Fluid flow results for c=0.10.

Figure 4: Results for four squares with initially 30 agents in A, and 10 each in B, C and D.

An impression of how the distribution of agents over the four squares evolves for values of c that
are close to the threshold of c = 0.05 is shown in Fig. 5. For c = 0.05 and c = 0.051 the agents still
distribute uniformly over the four squares, though this takes a bit more time than for lower values of c.
For c = 0.052 this situation is changing, and for c = 0.053 and higher clearly a different steady state is
reached early on in which most agents group in the single square A. Note that for c = 0.052 a stable state
has not yet been reached at time t = 200. However, this does not influence the overall picture. In general
of course the idea is to collect data when a stable situation is reached.

Since the theory on the stability of fixed-points predicts that the steady state behaviour for values of
c > n/N = 4/60 = 0.066666 is unstable (see [22]), we expect this to show up in the stochastic simulation
and fluid approximation of our crowd model as well. Instability in this case means extreme sensitivity to
the initial values of the number of agents in each square. If the agents are initially distributed perfectly
evenly over the squares, any of the four squares is equally likely to be the square where agents will gather
in the long run. This is illustrated by the results in Fig. 6 where single simulation runs are shown for the
same model starting with 30 agents in each square initially and for c = 0.1. Fig. 7 shows the results for
two experiments, comprising stochastic simulations of 100 runs each, with the same initial distribution
of agents and with c = 0.1. In this case it will take longer before an average steady state is reached.
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Figure 5: Fluid flow results for square A (and partially B) for varying chat probabilities around the critical
value 0.05.
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(a) Simulation results for c=0.1.
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(b) Simulation results for c=0.1.

Figure 6: Two single simulation runs for the same model with initially 30 agents in each square

For a sufficiently high number of runs one would expect that in the steady state the graph would show
that there are on average 30 agents in each square. Such an outcome in this case does not mean that for
c = 0.1 on average an equal distribution of agents over squares is reached, but rather that, on average,
every square has the same probability (0.25 in this case) to have all agents gathered in it in the long run.
This is a subtle but very important point. This interpretation of the fluid flow results is confirmed by the
simulation results in Fig. 8 which shows a convergence of the population in each square to 30 on average
over 100,000 simulation runs. Note the different scales for the population in these figures with respect
to those in Fig. 6 and Fig. 7. The fluid flow approximation of the model with initially 30 agents in each
square is shown in Fig. 8(c).

Although so far we have considered models with a relatively low number of agents the numerical
approximation algorithms for ODEs are essentially insensitive, in terms of efficiency, to the size of the
population considered as long as these populations are sufficiently large to guarantee sufficient precision.
We have used 60 agents in this study to be able to compare our results with those obtained by Rowe and
Gomez.
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(a) Simulation results for c=0.1.
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(b) Simulation results for c=0.1.

Figure 7: Two simulations of 100 runs each for the same model
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(a) Simulation results for c=0.1.
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(b) Simulation results for c=0.1.
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(c) Fluid flow results for c=0.1.

Figure 8: Two simulations of 100,000 runs each for the same model, and a fluid flow approximation
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(a) Fluid flow results for A=31, B=30, C=29 and D=30
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(b) Fluid flow results for A=31, B=30, C=30 and D=30

Figure 9: Fluid flow results for different initial population values for c=0.1

Figs. 9 (a), (b) and (c) show the results of a closer investigation of the effect of slight changes in the
initial agent population values for chat-probability c = 0.1. The results seem to confirm that it is more
likely that the agents gather in the square that has the highest initial population, even if its population is
only marginally higher than that of the other squares.

In this section we have shown empirical evidence for the good correspondence between results ob-
tained via simulation and those obtained via fluid flow approximation for the crowd model. In Ap-
pendix C an analytical motivation is provided for this correspondence.

6 Some Results for Nine Squares

This section shows a few results for a model with nine squares in the shape of a 3×3 grid. Such a model
can be obtained in a straightforward way extending the four squares model. The squares are numbered
sqi j where 0 ≤ i, j ≤ 2 with i denoting the row index and j the column index.

Fig. 10(a) shows the result of a Fluid Flow analysis for c = 0.02 and 60 people in square sq00 initially.
For these parameter values agents are distributing more or less evenly over the squares. The square with
the highest degree, i.e. the one in the middle, gets relatively more agents. This is directly related to the
degree of that node (4). The more streets are connected to a square, the more people it attracts simply
because more people happen to pass by such a square. In fact, in [22] it is shown that the average number
of people present under such circumstances is proportional to the number of streets connected to the
square.

Fig. 10(b) shows the result for c = 0.15. All agents group in node sq00 and all other nodes remain
empty. This is in line with results in [22] obtained via simulation.

7 Squares with Different Attractiveness

The four squares model presented in Section 4 can be enriched with a further parameter, an attractiveness
factor, that models that some squares are more attractive than others, for example, due to the presence
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(a) Fluid Flow analysis, c=0.02. (b) Fluid Flow analysis, c=0.15.

Figure 10: Nine squares, 60 agents in square sq00 initially.

of bars. The idea is that the presence of bars has an impact on the probability that an agent remains in
such a square. In the model with bars the agents follow two more rules: (1) the probability of an agent to
remain in a square with a bar is higher than in a square without bar, (2) when agents leave a square they
are more attracted by a neighbouring square with a bar than by one without bar.

The model in Section 2 can be adapted to include the above two rules in the following way. First
the formula for the number of people expected to leave a square i with attractiveness αi is adapted as
follows:

fi(t) = pi(t)(1−αic)(pi(t)−1)

where αi > 0 is such that 0 ≤ αic ≤ 1. In order to model rule (2) the probabilities of agents moving to
adjacent squares need to be defined. Note that in this case an agent that decides to leave a square may
move with a higher probability to one adjacent square rather than to an other one. However, the total
probability of such an agent to move to any of the adjacent squares needs to be equal to 1. This leads
to the following matrix with elements Ai j denoting the probability that an agent moves from square j to
square i:

Ai j =
coni jαi

∑k conk jαk

The probability to move from square j to square i now depends on the relative attractiveness αi of that
of square i (connected to j) w.r.t. the total attractiveness ∑k conk jαk of the adjacent squares of square j.
Note that indeed the sum of the probabilities to go to any of the adjacent squares i of square j is 1:

∑
i

Ai j = ∑
i

coni jαi

∑k conk jαk
= 1

It can easily be shown that also in this case there is a fixed point satisfying Af = f. In particular the
vector v =(v1,v2, . . . ,vn) is such an eigenvector of A (with bars) with eigenvalue 1, where vi is defined as
vi = αi ∑ j coni jα j:



16 A Combined Process Algebraic, Agent and Fluid Flow Approach to Emergent Behaviour

(Av)i = ∑ j Ai jv j

= {Def. of Ai j and v j }∑ j
coni jαi

∑k conk jαk
α j ∑h con jhαh

= {For all i, j : coni j = con ji}∑ j
coni jαi

∑k con jkαk
α j ∑h con jhαh

= {Replace k with h}∑ j
coni jαi

∑h con jhαh
α j ∑h con jhαh

= {Algebra}∑ j coni jαiα j

= αi ∑ j coni jα j

= vi

The form of the fixed point vi shows that there is relatively more traffic through attractive squares
but also through squares in the vicinity of attractive ones (assuming that the attractiveness values are
larger than 1). As a consequence it could be expected that there are also more people in squares of high
attractiveness. In this case it is more difficult to analyse the stability of this fixed point and to find an
analytical estimate for the critical transition value of c. However, as before, we can develop a Bio-PEPA
model capturing squares with attractions and use fluid flow analysis to investigate phase transitions and
to obtain an estimate for the critical transition value of c.

To obtain the new Bio-PEPA model we only need to adapt the functional rates of the model presented
in Section 4. In the functional rate definition the chat-factor c is multiplied by the attractiveness factor
αi for any square i. Moreover, instead of dividing by the degree of the node we now multiply by the
probability to go from square i to square j. This probability depends on the relative attractiveness of
the squares adjacent to i and for square j is α j/∑k conikαk. For example, in the four square topology of
Section 4 the functional rate f AtB to go from A to B is:

(P@sqA∗ (1−αAc)(P@sqA−1))∗ (αB/(αB +αC))

This leads to the following Bio-PEPA model assuming that square D has attractiveness factor 2 and
all other squares factor 1:

location top : size = 1000, type = compartment;
location sqA in top : size = normal square, type = compartment;
location sqB in top : size = normal square, type = compartment;
location sqC in top : size = normal square, type = compartment;
location sqD in top : size = normal square, type = compartment;

normal square = 100;
c = 0.05;

αA = 1;
αB = 1;
αC = 1;
αD = 2;



M. Massink, et al. 17

kineticLawOf fAtB : (P@sqA∗ (1−αAc)(P@sqA−1))∗ (αB/(αB +αC));
kineticLawOf fBtA : (P@sqB∗ (1−αBc)(P@sqB−1))∗ (αA/(αA +αD));
kineticLawOf fBtD : (P@sqB∗ (1−αBc)(P@sqB−1))∗ (αD/(αA +αD));
kineticLawOf fDtB : (P@sqD∗ (1−αDc)(P@sqD−1))∗ (αB/(αB +αC));
kineticLawOf fAtC : (P@sqA∗ (1−αAc)(P@sqA−1))∗ (αC/(αB +αC));
kineticLawOf fCtA : (P@sqC ∗ (1−αCc)(P@sqC−1))∗ (αA/(αA +αD));
kineticLawOf fCtD : (P@sqC ∗ (1−αCc)(P@sqC−1))∗ (αD/(αA +αD));
kineticLawOf fDtC : (P@sqD∗ (1−αDc)(P@sqD−1))∗ (αC/(αB +αC));

P = fAtB[sqA → sqB]�P+ fBtA[sqB → sqA]�P+
fAtC[sqA → sqC]�P+ fCtA[sqC → sqA]�P+
fBtD[sqB → sqD]�P+ fDtB[sqD → sqB]�P+
fCtD[sqC → sqD]�P+ fDtC[sqD → sqC]�P;

(P@sqA[60] ��
∗

P@sqB[0]) ��
∗

(P@sqC[0] ��
∗

P@sqD[0])

Fig. 11(a) shows a single simulation run of the model with c = 0.05, and αD = 2 and αX = 1 for
X ∈ {A,B,C}. Initially there are 60 agents in square A and the other squares are empty. The figure
clearly shows that the agents are attracted to square D for this value of c. This behaviour is confirmed by
the results of a simulation with 1000 independent runs shown in Fig. 11(b) and a fluid flow approximation
shown in Fig. 11(c). The correspondence between the simulation results and the fluid flow approximation
is again good. Fig. 11(d) shows a fluid flow approximation of the same model, but with a much smaller
value c = 0.005. This indicates that also for this model for values of c below a certain threshold the agents
distribute more or less evenly over the squares. However, more attractive squares, and those adjacent to
those squares get relatively more agents.

In Fig. 12(a) the effect of the value of c is explored for the model with bars with αD = 2 and αX = 1
for X ∈ {A,B,C}. The other initial values are as for the model without bars, so 60 agents in A and
none in B,C and D. In Fig. 12(a) a kind of double phase-shift can be observed. For very small values of
c < 0.0001 the steady state of the model shows a distribution of agents over squares that is approximately
proportional to the values in the eigenvector of the model which is (2,3,3,4). In fact, for so small values
of c the average number of agents in square A is (2/12) ∗ 60 = 10, and similarly for the other squares.
With the increase of the chat-factor this distribution of agents in the steady state is slowly changing
towards one in which there is a clear tendency of agents to stay in the attractive square D. Around the
value c = 0.07 another much more abrupt transition can be observed. Simulations show that for values
of c between approximately 0.07 and 0.1 the fixed point is unstable which means that sometimes the
agents group in square D and sometimes in square A in the long term. With the value of c getting closer
to 0.1 the agents group more and more often in A rather than in D. For values of c > 0.1 agents do no
longer group in the attractive square D in the long run, but remain in their initial square A. Fig. 12(b) and
Fig. 12(c) show two single simulation runs for the same model with c = 0.08. They illustrate that in one
case agents group in square D whereas in the other case the agents remain mainly in square A.
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(a) Simulation, 1 run, c = 0.05
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(b) Simulation, 1000 runs, c = 0.05
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(c) Fluid flow, c = 0.05
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(d) Fluid flow, c=0.005

Figure 11: Attraction of agents to square D with αD = 2

8 Scalability

In this section we provide some data illustrating the scalability of a fluid flow analysis with respect to
stochastic simulation for two crowd models. Table 1 shows the evaluation times for the crowd model
of the simple ring topology with four squares (4SQ) for Gillespie’s stochastic simulation with 10 inde-
pendent runs (GIL(10)) and fluid flow (ODE) respectively. For a population of 60 agents initially in one
of the squares, c = 0.005 and over a period of 200 time units simulation takes 241 ms. whereas fluid
flow analysis takes 11 ms. For a very large population of 600,000 agents, stochastic simulation takes
approximately 39 minutes whereas fluid flow analysis takes only 6 ms., which is even faster than for a
population of 60. The latter can be explained by the fact that the numerical algorithm for fluid flow has
an adaptive step-size. Often a larger population of individual independent agents shows more smooth
behaviour, allowing for larger steps taken by the algorithm thus saving evaluation time.

Table 2 shows the evaluation times for the crowd model of nine squares placed in a 3 by 3 grid as in
Sect. 6 (9SQ). Evaluation times of fluid flow for this larger model are still extremely low and essentially
constant with respect to the size of the population. The evaluation time for simulation in this table
now refers to a single run and, in case of a population of 600,000 agents, amounts to approximately 27
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(a) Fluid flow for various values of c
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(b) Simulation single run for c = 0.08
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(c) Simulation single run for c = 0.08

Figure 12: Phase transitions for model with bars

minutes.
The results have been obtained with the Bio-PEPA plugin tool for Eclipse Helios on a MacPro4,1.

9 Conclusions and Further Work

The modelling and analysis of crowd dynamics appears to be an active and open research topic. We have
explored the application of the stochastic process algebra Bio-PEPA to model a simple but interesting
case study. This concerns the emergent self-organisation of parties in the squares of a city where people
moving between squares are modelled as independently behaving agents following a few simple local
rules. Bio-PEPA is enhanced with various analysis techniques among which stochastic simulation, but
in particular an efficient and scalable fluid flow approximation. Such an approximation provides a very
efficient method to obtain the average number of agents in a particular state over time. In the case study at
hand fluid flow approximation provides an analysis of the number of people, on average, that are present
in the various squares when time evolves.

We have shown how this approach can be used to investigate non-linear emergent behaviour that
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Population period c GIL (10) ODE
60 200 0.005 241 ms. 11 ms.

600 200 0.0005 2,359 ms. 10 ms.
60,000 200 0.000005 237,854 ms. 8 ms.

600,000 200 0.0000005 2,357,161 ms. 6 ms.

Table 1: Evaluation times for SQ4 over 200 time units.

Population period c GIL (1) ODE
60 500 0.005 155 ms. 21 ms.

600 500 0.0005 1,673 ms. 20 ms.
60,000 500 0.000005 165,415 ms. 20 ms.

600,000 500 0.0000005 1,627,018 ms. 20 ms.

Table 2: Evaluation times for 9SQ over 500 time units.

arises from the distributed local interaction between agents. The results are shown to correspond well to
those found in the literature where they were obtained by means of more elaborate and time-consuming
discrete event simulation. We have also modelled and analysed an extension of the crowd model with
squares that have different attractiveness. Also this extended model shows non-linear behaviour and fluid
flow analysis has shown to be a viable approach to identify the critical threshold value in a pragmatic and
efficient way compared to traditional analytical or simulation based methods.

The advantage of the fluid flow approximation with respect to simulation is that it is much faster
than simulation if one is interested in the average, possibly non-linear, behaviour of a system over time.
Furthermore, Bio-PEPA is based on a modular, high-level language providing notions of locality and
context dependency. These features make Bio-PEPA a promising candidate for the modelling of a class
of systems that goes beyond the bio-molecular applications it was originally designed for [5, 11, 1].
Besides providing empirical evidence of the correspondence between simulation and fluid flow results
we also provided an analytical analysis that explains this correspondence.

Future work is developing along a few main directions. We are interested in developing further lin-
guistic abstractions to more precisely describe the dynamics of systems with a large number of mobile
agents displaced in a, possibly open, physical environment. We are furthermore interested in conducting
more fundamental research on the fluid flow approach and its relationship to emergent non-linear be-
haviour, in particular its relation to mean field analysis [7] and the formal relationship between discrete
and continuous models. Along these lines we are currently studying a version of the crowd model with
density dependent functional rates in which agents consider only a fraction of the total population in a
square in order to decide to stay or leave the square.
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Appendix

A Bio-PEPA Model for Four Squares

location top : size = 1000, type = compartment ;
location sqA in top : size = normal_square, type = compartment ;
location sqB in top : size = normal_square, type = compartment ;
location sqC in top : size = normal_square, type = compartment ;
location sqD in top : size = normal_square, type = compartment ;

normal_square = 100 ;
c = 0.05 ; // chat-probability or conservatism factor
d = 2 ; // degree of node

kineticLawOf fAtB : (P@sqA * (1-c)^(P@sqA-1))/d ;
kineticLawOf fBtA : (P@sqB * (1-c)^(P@sqB-1))/d ;
kineticLawOf fBtD : (P@sqB * (1-c)^(P@sqB-1))/d ;
kineticLawOf fDtB : (P@sqD * (1-c)^(P@sqD-1))/d ;
kineticLawOf fAtC : (P@sqA * (1-c)^(P@sqA-1))/d ;
kineticLawOf fCtA : (P@sqC * (1-c)^(P@sqC-1))/d ;
kineticLawOf fCtD : (P@sqC * (1-c)^(P@sqC-1))/d ;
kineticLawOf fDtC : (P@sqD * (1-c)^(P@sqD-1))/d ;

P = fAtB[sqA->sqB](.)P + fBtA[sqB->sqA](.)P +
fAtC[sqA->sqC](.)P + fCtA[sqC->sqA](.)P +
fBtD[sqB->sqD](.)P + fDtB[sqD->sqB](.)P +
fCtD[sqC->sqD](.)P + fDtC[sqD->sqC](.)P ;

(P@sqA[60] <*> P@sqB[0]) <*> (P@sqC[0] <*> P@sqD[0])

http://pastaworkshop.org/proceedings/
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fAtB fBtA fAtC fCtA fBtD fDtB fCtD fDtC
PsqA -1 +1 -1 +1 0 0 0 0 xPsqA

PsqB +1 -1 0 0 -1 +1 0 0 xPsqB

PsqC 0 0 +1 -1 0 0 -1 +1 xPsqC

PsqD 0 0 0 0 +1 -1 +1 -1 xPsqD

Table 3: Matrix D associated with the crowd model.

B The Crowd Model as a Set of Ordinary Differential Equations

The Bio-PEPA model can be translated into a set of ODEs following a similar method as that described
by Calder et al. for PEPA (reagent centric view) in [6] and adapted to Bio-PEPA by Ciocchetta and
Hillston in [10]. There the method is explained in terms of biochemical reactions which is the field of
application for which Bio-PEPA was originally designed. Here we present the same method in more
neutral terms using the specification in Section 4 as a running example.

The first step we perform is to replace the shorthand notation used in the model in Section 4 by a
notation in plain Bio-PEPA. This way we obtain separate definitions for the population in each of the
four squares. The species components become:

PsqA = ( f AtB,1)↓PsqA+( f AtC,1)↓PsqA+
( f BtA,1)↑PsqA+( fCtA,1)↑PsqA

PsqB = ( f BtA,1)↓PsqB+( f BtD,1)↓PsqB+
( f AtB,1)↑PsqB+( f DtB,1)↑PsqB

PsqC = ( fCtA,1)↓PsqC +( fCtD,1)↓PsqC+
( f AtC,1)↑PsqC +( f DtC,1)↑PsqC

PsqD = ( f DtB,1)↓PsqD+( f DtC,1)↓PsqD+
( f BtD,1)↑PsqD+( fCtD,1)↑PsqD

The model component becomes:

(PsqA[60] ��
∗

PsqB[0]) ��
∗

(PsqC[0] ��
∗

PsqD[0])

Also in the definitions of the functional rates we need to replace P@sqX by PsqX for all X in
{A,B,C,D}.

The derivation of the set of ODEs from the Bio-PEPA specification is now based on the following
three steps:

1. The first step is the definition of a matrix D of (n×m). Here n is the number of species components,
in this case there are four: PsqA, PsqB, PsqC and PsqD. The size m is the number of actions, in
this case there are eight: f AtB, f BtA, ..., fCtD. The elements of the matrix Di j indicate whether
species component i increases or decreases when action j is performed, and how many elements
of species component i are involved when the action is performed. For example, if i = PsqA and
j = f AtB then we observe in the model definition that when f AtB is performed the number of
agents in square A reduces by 1. In the matrix this is presented as ‘-1’ at place Di j. The matrix D
is also called the stoichiometry matrix in the context of biochemistry. For the crowds model we
obtain the matrix in Table 3 where each species component Ci is also associated with a variable xi.
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2. The second step is the definition of the functional rate vector (m× 1) v f r. This vector contains
the functional rate as defined by the kinetic laws for each action. Note that the kinetic laws in
this model are a function of time since they depend in the number of agents present in a particular
square at time instant t. For the crowd example we obtain the vector:

vT
f r(t) = ( f AtB(t), f BtA(t), f AtC(t), fCtA(t), f BtD(t), f DtB(t), fCtD(t), f DtC(t))

where T indicates the transpose of the vector. Note the slight overload of names f XtY to stand
both for the action as for its associated functional rate.

3. Finally, the vector of species variables (n×1) x is defined, which for the crowds example becomes:

xT (t) = (xPsqA(t),xPsqB(t),xPsqC(t),xPsqD(t))

The system of ODEs can now be obtained as:

dx(t)
dt

= D×v f r(t)

For the crowd model we obtain the following set of ODEs:

dxPsqA(t)
dt = − f AtB(t)+ f BtA(t)− f AtC(t)+ fCtA(t)

dxPsqB(t)
dt = + f AtB(t)− f BtA(t)− f BtD(t)+ f DtB(t)

dxPsqC(t)
dt = + f AtC(t)− fCtA(t)− fCtD(t)+ f DtC(t)

dxPsqD(t)
dt = + f BtD(t)− f DtB(t)+ fCtD(t)− f DtC(t)

If we the substitute the functional rates by their definition and consider the crowd model for a 2 × 2 grid
of squares then we obtain the following ODE for xPsqA, the other equations are similar:

dxPsqA(t)
dt = −(xPsqA(t)∗ (1− c)(xPsqA(t)−1))/2

+(xPsqB(t)∗ (1− c)(xPsqB(t)−1))/2
−(xPsqA(t)∗ (1− c)(xPsqA(t)−1))/2
+(xPsqC(t)∗ (1− c)(xPsqC(t)−1))/2

Note that this set of ODEs is non-linear for this model. In fact, as shown by Rowe and Gomez in [22],
the system gives rise to stable and unstable fixed points depending critically on the value of c.

The automatic derivation of sets of ODE from Bio-PEPA specifications is available via the experi-
mental Bio-PEPA plug-in tool [8] developed at the University of Edinburgh.

C Formal Relationship Between CTMC and ODE Interpretation

The results in the previous sections show a very good correspondence between the results obtained via
fluid flow approximation and those obtained, on the one hand, with Gillespie’s stochastic simulation
algorithm applied on exactly the same Bio-PEPA specification and, on the other hand, with discrete
event simulation results found by Rowe and Gomez [22]. In this section we provide a justification for
this correspondence from an analytical perspective.

There exist several theories that address the relation between the interpretation of the model as a
large set of individual, independently behaving and interacting agents, as is the case for simulation, and
a continuous deterministic interpretation of the same model as occurs with a fluid flow approximation.
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Perhaps the most well-known is the theory by Kurtz [18]. Informally speaking, Kurtz shows an exact re-
lation (in the limit when the population goes to infinite) between the two above mentioned interpretations
when the rate-functions can be expressed in terms of the average density of the population. A similar
requirement needs to be satisfied in the context of the theory of mean field analysis in for example recent
work by Le Boudec et al. [2]. Unfortunately, in the crowd model the rate-functions cannot be expressed
in terms of the density of the population because the exponent of the factor (1− c)(PX−1) requires the
absolute number PX of agents present in square X .

A third approach, by Hayden and Bradley [14], has recently been applied to assess the quality of the
fluid approximation for (grouped) PEPA models. In that approach the Chapman-Kolmogorov forward
equations (C-K) are derived from a typical central state of the aggregated CTMC3 associated to a PEPA
model. These equations are then used in the moment generating function from which, by partial differ-
entiation, ordinary differential equations are obtained for the expected value over time of each sequential
component in the PEPA model. In this section we adapt the approach to the Bio-PEPA crowds model
which is characterised by non-linear rate functions.

(pA, pB, pC , pD)

(pA + 1, pB − 1, pC , pD) (pA, pB, pC − 1, pD + 1)

(pA − 1, pB + 1, pC , pD) (pA, pB, pC + 1, pD − 1)

(pA + 1, pB, pC − 1, pD)

(pA − 1, pB, pC + 1, pD) (pA, pB + 1, pC , pD − 1)

(pA, pB − 1, pC , pD + 1)

fBtA fCtD
fAtB
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Figure 13: A central state of the crowds model.

Let pA, pB, pC and pD denote the number of agents in square A, B, C and D, respectively. A central
state of the aggregated CTMC4 of the crowds model is shown in Fig. 13. Let prob(pA,pB,pC,pD)(t) denote
the transient probability of being in the aggregated CTMC state with pX agents in square X , for X in
{A,B,C,D} at time t. From the Bio-PEPA model in Sect.4 it follows that the Chapman-Kolmogorov for-
ward equations, governing the evolution of the state probabilities over time of the underlying aggregated

3For a formal definition see for example [14].
4For a definition see for example [14].
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CTMC can be presented as follows:

d prob(pA,pB,pC ,pD)(t)
dt = ((pA +1) · (1− c)pA)/2 · prob(pA+1,pB−1,pC,pD)(t)

+((pB +1) · (1− c)pB)/2 · prob(pA−1,pB+1,pC,pD)(t)
+((pC +1) · (1− c)pC)/2 · prob(pA,pB,pC+1,pD−1)(t)
+((pD +1) · (1− c)pD)/2 · prob(pA,pB,pC−1,pD+1)(t)
+((pA +1) · (1− c)pA)/2 · prob(pA+1,pB,pC−1,pD)(t)
+((pC +1) · (1− c)pC)/2 · prob(pA−1,pB,pC+1,pD)(t)
+((pB +1) · (1− c)pB)/2 · prob(pA,pB+1,pC,pD−1)(t)
+((pD +1) · (1− c)pD)/2 · prob(pA,pB−1,pC,pD+1)(t)
−((pA) · (1− c)pA−1)/2 · prob(pA,pB,pC,pD)(t)
−((pA) · (1− c)pA−1)/2 · prob(pA,pB,pC,pD)(t)
−((pB) · (1− c)pB−1)/2 · prob(pA,pB,pC,pD)(t)
−((pB) · (1− c)pB−1)/2 · prob(pA,pB,pC,pD)(t)
−((pC) · (1− c)pC−1)/2 · prob(pA,pB,pC,pD)(t)
−((pC) · (1− c)pC−1)/2 · prob(pA,pB,pC,pD)(t)
−((pD) · (1− c)pD−1)/2 · prob(pA,pB,pC,pD)(t)
−((pD) · (1− c)pD−1)/2 · prob(pA,pB,pC,pD)(t)

(1)

Each of the eight first summands in Equation (1) appears only when the state (pA, pB, pC, pD) has the
corresponding incoming transitions in the aggregated state space.

Let us now consider as an example, following the approach outlined in [15, 14], how an ODE for the
function PA(t) can be obtained. First note that the expected value of PA(t) is given by:

E [PA(t)] = ∑
(pA,pB,pC,pD)

pA · prob(pA,pB,pC,pD)(t) (2)

where the sum ranges over all possible states of the model. This leads to the following derivation:

dE[PA(t)]
dt = {By def. of expected value}

d ∑(pA,pB,pC ,pD) pA·prob(pA,pB,pC ,pD)(t)
dt = {By distribution of differentiation}

∑(pA,pB,pC,pD) pA ·
d prob(pA,pB,pC ,pD)(t)

dt = {By definition of C-K equations}
∑(pA,pB,pC,pD)[ ((pA−1) · pA · (1− c)(pA−1))/2 · prob(pA,pB,pC,pD)(t)

+((pA +1) · pB · (1− c)(pB))/2 · prob(pA,pB,pC,pD)(t)
+(pA · pC · (1− c)(pC−1))/2 · prob(pA,pB,pC,pD)(t)
+(pA · pD · (1− c)(pD−1))/2 · prob(pA,pB,pC,pD)(t)
+((pA−1) · pA · (1− c)(pA−1))/2 · prob(pA,pB,pC,pD)(t)
+((pA +1) · pC · (1− c)(pC−1))/2 · prob(pA,pB,pC,pD)(t)
+(pA · pB · (1− c)(pB−1))/2 · prob(pA,pB,pC,pD)(t)
+(pA · pD · (1− c)(pD−1))/2 · prob(pA,pB,pC,pD)(t)
−(pA · pA · (1− c)(pA−1)) · prob(pA,pB,pC,pD)(t)
−(pA · pB · (1− c)(pB−1)) · prob(pA,pB,pC,pD)(t)
−(pA · pC · (1− c)(pC−1)) · prob(pA,pB,pC,pD)(t)
−(pA · pD · (1− c)(pD−1)) · prob(pA,pB,pC,pD)(t) ]
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If (PA(t),PB(t),PC(t),PD(t)) is the state of the aggregated CTMC at time t, then by cancelling terms in
the above equation one obtains:

∑(pA,pB,pC,pD)[ −pA · (1− c)(pA−1) · prob(pA,pB,pC,pD)(t)
+(pB · (1− c)(pB−1) · prob(pA,pB,pC,pD)(t))/2
+(pC · (1− c)(pC−1) · prob(pA,pB,pC,pD)(t))/2

This yields in terms of expectations the following ODE for PA(t)5:

dE[PA(t)]
dt = −E[PA(t) · (1− c)(PA(t)−1)]

+(E[PB(t) · (1− c)(PB(t)−1)])/2
+(E[PC(t) · (1− c)(PC(t)−1)])/2

(3)

If at this point, as shown in [14], the functions (1−c)(X−1) where just constant rates, then expectation
would just distribute over multiplication and one would obtain an equation in terms of expectations of
populations. However, in our case the rate is a more complicated function and, in general, expectation
does not distribute over an arbitrary function, i.e. E[φ(X)] 6= φ(E[X ]). This means that exact equality
cannot be obtained this way. As an alternative we consider whether E[PA(t)](1− c)(E[PA(t)]−1) could be
expected to approximate E[PA(t) · (1− c)(PA(t)−1)]. To address this question we recall Jensen’s work [17]
from which it is known that for strictly convex functions φ the following inequality holds:

E[φ(X)]≥ φ(E[X ])

with equality when φ is linear or when it is a constant. The reverse inequality holds in case φ is strictly
concave. So this requires a closer investigation of the particular function at hand. In Fig. 14 graphs
are shown of the function φ(x) = x(1− c)x for values of x ∈ [0 . . .60] and for various values of chat
probability c. It can be observed that for very small values of c the function is almost linear for the
number of agents considered. For larger values of c the function is mostly concave and tends to an
almost constant value. This implies that, informally speaking, any hypothetical probability distribution
of the values of x would be mapped on an increasingly “shrinking” version of the distribution of φ(x).
This means that E[PA(t)](1− c)(E[PA(t)]−1) approximates E[PA(t) · (1− c)(PA(t)−1)] indeed rather well.

Distributing expectation over the function the following ODE for the expected value of PA(t) is
obtained:

dE[PA(t)]
dt = −E[PA(t)](1− c)(E[PA(t)]−1)

+(E[PB(t)](1− c)(E[PB(t)]−1))/2
+(E[PC(t)](1− c)(E[PC(t)]−1))/2

(4)

This ODE is identical to the one obtained in the previous section for variable xPsqA(t). In a similar
way the ODEs for the other stochastic variables can be obtained. This explains why the results obtained
in this paper for fluid flow and for stochastic simulation correspond so closely.

The above approximation shown in Equation (4) can also be obtained as a first order approximation
of the time-dependent Taylor expansion (see [4]) of the function Φ(X(t)) = X(t)(1− c)(x(t)−1) around
the average value E[X(t)]. Of course, also in this case further inspection of the function Φ is required in
order to get an idea of the quality of this approximation.

5An alternative way to obtain Equation (3) from Equation (2) is described by Bortolussi in [4]. There the well-known Master
Equation is used which is an equation very similar to the Chapman-Kolmogorov forward equations.
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Figure 14: Function x(1− c)x for up to 60 agents and different chat probabilities.
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