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Abstract. 

 

Destabilising a biological system through periodic or stochastic forcing can lead to 

significant changes in system behaviour.  Forcing can bring about coexistence when 

previously there was exclusion, it can excite massive system response through resonance, 

it can offset the negative effect of apparent competition and it can change the conditions 

under which the system can be invaded.  Our main focus is on the invasion properties of 

continuous time models under periodic forcing.  We show that invasion is highly 

sensitive to the strength, period, phase, shape and configuration of the forcing 

components.  This complexity can be of great advantage if some of the forcing 

components are anthropogenic in origin.  They can be turned into instruments of control 

to achieve specific objectives in ecology and disease management, for example.  Culling, 

vaccination and resource regulation are considered.  A general analysis is presented, 

based on the leading Lyapunov exponent criterion for invasion.  For unstructured 

invaders a formula for this exponent can typically be written down from the model 

equations.  Whether forcing hinders or encourages invasion depends on two factors: The 

covariances between invader parameters and resident populations and the shifts in 

average resident population levels brought about by the forcing.  The invasion dynamics 

of a structured invader are much more complicated but an analytic solution can be 

obtained in quadratic approximation for moderate forcing strength.  The general theory is 

illustrated by a range of models drawn from ecology and epidemiology.  The relationship 

between periodic and stochastic forcing is also considered.  
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1.  Introduction. 

Most simple models of population dynamics and the spread of infectious diseases do not 

include any seasonal forcing.  However, in reality, particularly in wildlife systems, any of 

the parameters might be subject to changes over a course of a year, or even longer.  For 

example, birth rates are likely to be higher in spring and lower in winter, whereas death 

rates might be higher in winter and lower in summer.  Disease transmission rates are also 

likely to vary over a season, for a number of reasons.  A species may be more gregarious 

in spring and summer during the mating season, individuals may be less fit in the winter 

and therefore more susceptible to disease, or the disease might benefit from some 

environmental conditions rather than others.  Although seasonality is the most familiar 

example of periodic external forcing, affecting most regions of the world and most 

species, there are other examples that are specific to particular regions and particular 

species, for example El Nino, the North Atlantic oscillation and African rainfall patterns 

(Wichmann et al. 2003), all with multi-annual periods.  Species with multiple breeding 

cycles during a year and experiencing seasonal forcing can also be considered to be 

subject to multiple-period forcing if we take the measure of time to be the period of the 

breeding cycle rather than the forcing period.  There is a second type of “external” force 

arising, for example, when a species attempts to invade a resident community or web.  

Not only can this species be directly subject to natural external forces but it can also be 

subject to fluctuations in the resident population(s) generated either by the external forces 

or from within the community, i.e. endogenously.  As far as the invader is concerned, the 

resident community is part of the external environment.  There is also a third type of 

“external” force, the result of anthropogenic intervention to achieve objectives in 
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biodiversity, disease control or economic exploitation.  This type of forcing will be of 

particular interest to us in this study. 

The core problem is understanding how biological systems respond to the 

imposition of external periodic forcing.  After much research effort, it has now become 

clear that the response can be far from simple or intuitive.  For example, even weak 

forcing can have a major impact on a system when there is resonance between the system 

and the external forcing.  Resonance occurs when the forcing period and the natural 

period of the system match and gives rise to amplification of the otherwise weak 

population oscillations (Greenman et al. 2004, Dushoff et al. 2004, Altizer 2006).  With 

strong enough forcing the nonlinear structure of the system can be triggered, with the 

generation of subharmonic dynamical states (with periods that are integer multiples of the 

forcing period) and multiple attractors as resonance peaks overlap (Greenman et al. 

2004).  The relevance of nonlinear resonance to epidemiology was demonstrated by Dietz 

(1982), who explained the two yearly cycle of measles as an example of the subharmonic 

phenomenon, and by much subsequent work in the area of childhood diseases (e.g. 

Grenfell et al. 1995, Earn et al. 2000) and wildlife diseases (e.g. Ireland et al. 2004, 

Roberts and Kao 1998).  

 The impact that external forcing can have on a system is further illustrated by 

studies of particular nonlinear phenomena.  For example, apparent competition, mediated 

by a predator, was identified by Holt (1977, 1984) as a mechanism by which one prey 

reduces the population density of another prey, possibly to the point of extinction, even 

though the two prey do not compete directly but interact only via the predator.  This 

result holds when the (unforced) system is in stable equilibrium but if the equilibrium is 
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unstable, with the system executing endogenous cycles, then this negative effect may not 

operate (Abrams et al. (1998)).   It may also not operate if external forcing is applied to 

the system, even if it is otherwise in stable equilibrium (Brassil 2006). 

 Strong forcing can also influence when a species invades a resident subsystem, by 

raising or lowering the invasion threshold.  The position of the invasion threshold, in the 

absence of forcing, has been a major area of research for several decades with attention 

being focused particularly on epidemiology (Anderson and May 1981, 1986).  When the 

system is unforced it has been possible, in many cases of interest, to obtain an analytic 

expression for the infection invasion threshold.  For homogenous populations this is 

usually expressed in terms of the basic reproduction number  R0, an index that can be 

generalised in terms of the second generation matrix (Diekmann et al. 1990) when the 

vulnerable population is heterogeneous.  One recent interesting application of this 

generalisation has been the problem of how best to eradicate a disease shared by multiple 

hosts (Dobson 2004).  The theory has been extended to include periodic forcing (Farkas 

1994) in continuous time models in epidemiology (Heesterbeek and Roberts 1995b) and 

in ecology (Rinaldi et al. 1993) and developed to allow a biological interpretation of the 

mathematical entities involved and transparency in the calculations that need to be carried 

out for particular applications (Heesterbeek and Roberts 1995a, 1995b; Williams and Dye 

1997).  Invasion in discrete time systems has also been considered, both in general and in 

detail for a range of models when the forcing is stochastic (Chesson 1984, 1989).   

Whether the model is discrete or continuous or whether the forcing is periodic or 

stochastic, it is now clear that external forcing can have a major impact on the ability of a 

species or pathogen to establish itself within a resident community.  
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In this paper we seek greater understanding of how external forcing affects the 

invasion properties of a biological system, especially when there is more than one way in 

which the environment is influencing the system.  It is the interaction between these 

different influences that brings about diversity and complexity in the system response.   

We will mostly restrict attention to continuous time systems under periodic external 

forcing, carrying out the analysis in the rare invader approximation where it is assumed 

that the number of invaders entering the resident community is initially small.  The 

method of solution of the consequent dynamical equations depends on whether the 

resident and invading populations are structured or unstructured.  By unstructured we 

mean that the population in question can (to a reasonable approximation) be described by 

a single variable and its dynamics by a single equation.  A structured population is one 

modelled by at least two variables and two equations.  

In section 2 we look at models with unstructured resident and invader and 

determine whether and, if so, how the invasion threshold is affected by forcing.  The 

discussion is based on simple models from ecology and epidemiology with the general 

theory for (unstructured) invaders given in Appendices A, B.  In section 3 we reorientate 

our approach by imagining that some forcing components are anthropogenic in origin 

rather than environmental, allowing us to use the results of section 2 to tackle the 

problem of how to control a system through periodic forcing, in particular how to 

eliminate a pathogen or unwanted predator.  Vaccination, culling, resource management 

are strategies that will be considered.  In section 4 we tackle the mathematically more 

difficult problem where the invader is structured and the dynamics multidimensional. 

Models of infection with latent period and with multiple hosts are taken as examples.  In 
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section 5 we study the effect of forcing on apparent competition in a prey-prey-predator 

model and the effect on invasion of resonance in a resident prey-predator subsystem of 

this model.  Finally, in section 6 we argue that knowledge of the system response to 

periodic forcing across the full frequency range can give insight into the response of the 

system under stochastic forcing (Greenman and Benton 2005a, 2005b). 

 

2.  The effect of forcing on the invasion threshold.  

2.1  Fundamentals. 

We model periodic external forcing by simple sinusoidal variation acting through specific 

parameters.  Precisely, if a parameter is affected by forcing then this parameter is 

multiplied by the factor: 

 E(t) = 1 + δ cos((2πt/p) + φ)    (1) 

where (as always) t  denotes time while the amplitude  δ  measures the strength of 

forcing, p its period and  φ  its phase.  Parameter  δ  is limited to the range (0, 1).  Clearly 

the average of  E(t)  is 1 and the average of the forced parameter is its original value, 

when the average is taken over a cycle. The phase  φ  of the forcing is often of great 

significance.  If two forced parameters have phases  φ1, φ2  then they will be “in phase” if  

φ1 = φ2  and (exactly) “out of phase” if  φ2 = φ1 + π.  In the latter case there is a half cycle 

lag between forcing maxima. 

 We study periodic forcing over a wide range of periods since, as explained 

previously, it is not only seasonality that is of interest.  A biological system can 

experience multi-annual fluctuations generated environmentally while an invader can, in 

addition, be affected by high period cycles generated or mediated by the resident 



 8

subsystem.  The connection with stochastic forcing also requires understanding the 

system response across the full frequency (period) spectrum.  

In the rare invader approximation it is supposed that the number of individuals 

attempting invasion is initially so small that they have no significant impact on the 

resident community or web, the dynamics of which can, as a result, be considered 

independently of the invader.  Further, the invader equations can be linearised with 

respect to the invader populations but, with forcing, the parameters will be time 

dependent (i.e. the invader subsystem will be non-autonomous).  If the invader is 

unstructured (i.e. its equation is 1-dimensional) then the invader equation can be solved 

and, for Lotka-Volterra type models at least, the condition for invasion can be expressed 

in terms of averages of and covariances between time varying parameters and resident 

population(s) (Appendix B).  If the invader is structured then, in general, numerical 

methods have to be used to solve the coupled invader equations in order to determine 

whether invasion will take place (Hale 1969).  However, an approximate but analytic 

solution can be obtained for moderate strength forcing (Appendix D).  

We start off the analysis with the simplest case, restricting attention to systems 

where both invader and resident are unstructured, using formulae (B3), (B4) in the 

Appendix as the basis of the analysis. 

 

2.2  Forcing in ecological systems. 

Consider a predator attempting to invade a prey population in the absence of forcing on 

either population.  Invasion will take if the predator intrinsic growth rate ξ0 is positive.  In 

the simplest case  ξ0  takes the form: 
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  ξ0 = c0N0 – m0      (2) 

where  c0  is the predation parameter (measuring predation success), m0 predator 

mortality and  N0  the resident (prey) population in equilibrium at its carrying capacity 

level in rare invader approximation (Holt et al. 2003).  The term  c0N0 in (2) is, in effect,  

the predator per capita birth rate arising from predation.  (Note that the invasion condition  

ξ0 > 0 translates into the familiar  R0  condition:  R0 = c0N0/m0 > 1.) 

 If the system is periodically forced then the condition for invasion becomes ξave > 

0 where: 

  ξave = (c N)ave – mave     (3) 

Here, the average (“ave”) is to be taken over a population cycle, N is the (possibly 

varying) prey population, c is the (possibly varying) predation parameter with average  c0  

and mave = m0. (See Appendix B for justification of (3).)   In general, if both  c  and  N 

vary in time then growth rates  ξ0  and  ξave  will differ in value and, as a consequence, 

invasion will be affected by the forcing.  (The situation with both c, N varying is of 

biological relevance.  Seasonally varying predation is exemplified (in the extreme) by 

winter hibernation while seasonally driven prey oscillations can occur in a variety of 

ways as we will see later.)  

To illustrate how external forcing can bring about a change in invasion behaviour 

consider the simplest nontrivial case where the prey population, N, oscillates sinusoidally 

about its unforced level with the same period and amplitude, δ, as the external force on 

predation (c) and in phase with that force.  (See (1) and Appendix C for definition of the 

forcing parameters.)  A straightforward evaluation of (3), given in Appendix C, shows 

that: 
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  ξave = c0 N0(1 + δ2/2) – m0    (4a).  

So forcing aids invasion through an enhanced average predator per capita birth rate (cf 

(2)).  How this comes about can be seen from Fig 1a which shows graphically how birth 

rate varies over a cycle.  On the up part of the cycle there is a double (nonlinear) effect 

with higher prey numbers together with higher predation success raising the predator 

“birth rate” at its peak to four times its value with no forcing, if for definiteness we take δ 

= 1.  On the down part of the cycle lower success and lower prey numbers reduces the 

“birth rate” to zero at its lowest point (when δ = 1) but, overall, there is a net increase in 

births in each cycle (compared to the no forcing case).  This behaviour is reminiscent of 

the “storage” effect (Chesson  1984). (See Appendix C for the algebra behind Fig 1a.) 

 If forcing on c and N is out of phase then  ξave  becomes: 

  ξave = c0 N0(1 - δ2/2) – m0    (4b). 

Forcing now impedes invasion by lowering the predator average per capita birth rate.  In 

fact this birth rate is reduced at (almost) all points in the cycle (Fig 1b).  The mismatch 

between lower (higher) predation success but higher (lower) prey numbers always results 

in a loss of predation “births” compared to the unforced case.   (Again see Appendix C 

for the algebra.) 

 In the calculations leading to (4a, 4b) we looked at cases where forcing did not 

change the average of the varying prey population but this is not likely to be the case if 

forcing is strong (although there are exceptions to be discussed later).  To separate out 

this effect we expand the master formula (3) to read as: 

  ξave = ξ0 + c0(N1 – N0) + (c, N)cov   (5) 
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where  ξ0  is the unforced growth rate given in (2),  N1 (N0)  is the average prey 

population with (without) forcing and (c, N)cov is the covariance between variations in the 

predation parameter and prey population (Chesson 1989). (See Appendix B for details).  

 The equations for the invasion threshold (separating the regions in parameter 

space where invasion can and cannot take place) is given by ξ0 = 0 in the absence of 

forcing and by  ξave = 0  with forcing.   If  ξave > 0  when  ξ0 = 0  there is no invasion 

unless the system is forced.   So forcing makes invasion easier and we say that the 

threshold has been lowered.  If, on the other hand,  ξave < 0  when  ξ0 = 0  invasion is not 

possible with forcing but without forcing the system is on the “threshold” of being 

invaded.  Invasion has been made more difficult by the forcing, i.e. the threshold has 

been raised.  

Whether the threshold is raised or lowered depends on the sign of the sum of the 

two terms giving the change in growth rate (ξave – ξ0) in (5).  Typically the first term is 

negative (N1 < N0) due to the “spiked” nature of the time series generated by strong 

forcing, with the prey spending only short periods at high levels, spending most of the 

time at low levels.  The covariance in the last term of (5) is related to the phase between 

the forcing components on  c  and  N.  If the forcing is in phase (out of phase) the 

covariance is likely to be positive (negative) as (4a), (4b) show.  

 

2.3  Forcing configurations. 

To show how different forcing configurations on a system lead to different invasion 

outcomes, let us consider, for definiteness, the predator prey Model 1 defined in Table 1.  

In rare invader approximation the prey is logistic, satisfying the equation: 
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  dN/dt = r N(1 – N/K)     (6)   

where  N  denotes the prey population,  r  the prey intrinsic growth rate and  K  the prey 

carrying capacity.  Suppose that only the growth rate  r  is  forced with  K  fixed.  (This 

would be the case if  K  models, say, physical limitations on a prey habitat (e.g. cliff or 

island).)  In the long run there will be no variability in the prey population since any 

oscillation that occurs will be damped by the density dependent factor (1 – N/K) in (6).  

So by (5), with  N  constant at its carrying capacity level (i.e. N1 = N0), there will be no 

shift in the threshold whether or not the predation parameter  c  is forced. 

 Suppose, instead, that both  r  and  K are forced in such a way that the ratio s = 

r/K  is, to a good approximation, constant in time (Bowers et al. 2003, Rinaldi et al. 

1993).  (This synchrony might be achieved, for example, if forcing is seasonal and K is a 

proxy for food supply.)  Then one can show that  N1 = N0  (i.e. the average prey 

population does not change under forcing) and so, by (5), it is the sign of the covariance 

between  c  and  N  that determines the direction of the threshold shift (Table 2, columns 

A, B). 

If, thirdly, the prey is forced only through  K  then the average prey population is 

depressed (i.e.  N1 < N0) and so the last two terms in (5) both contribute.  As a 

consequence the threshold is raised (i.e. invasion is made more difficult) if  c  and  K  are 

out of phase (Table 2, column D) since the last two terms in (5) are both negative.  If they 

are in phase then there can be a raising or a lowering of the threshold, depending on the 

magnitudes of the last two terms in (5), now having opposite signs.  Table 2, column C 

shows that their sum depends on the period and that increasing the period can switch the 
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system from a raised to a lowered threshold with the final (positive) term in (5) becoming 

dominant. 

Finally, we note that there can be a shift in the threshold even if  c  is not forced 

provided the prey is forced only through  K.  Then the second term in (5) contributes but 

not the third.  

 

2.4  Forcing in epidemiological systems. 

The results obtained for the predator prey Model 1 (Table 1) apply equally to the SIRS 

compartment model of microparasite infection defined by Model 2 in Table 1.  This 

model separates the population into susceptibles, S, infectious, I, and recovereds, R, with 

the possibility of loss of immunity and reversion to the susceptible state.  The total 

population is denoted by  H  where  H = S + I + R.  For pathogen invasion the 

susceptibles form the resident population and the infectious population the invader.  In 

the rare invader approximation the susceptible population, like the prey population in 

Model 1, satisfies the logistic equation.  The equation for the infectious population is 

identical to the predator equation in Model 1 when   c  is replaced by the transmission 

rate  β  and mortality  m  by the loss rate, d, from the infectious state.  (Note that the 

equation for the invader does not depend on the recovered population  R  and so the 

equation for  R can be ignored as far as invasion is concerned.)  Because of the identical 

structure of Models 1, 2 in rare invader approximation the average invader growth rate 

for Model 2 can be written down immediately from (3), (5) as:  

 ξave = (βS)ave – dave; ξave = ξ0 +β0(S1 – S0) + (β, S)cov  (7) 

with obvious notation.  
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 From the predator prey results we infer that there will be no change in the position 

of the infection invasion threshold (relative to the position where the varying parameters 

in the model are replaced by their average values) when  K  is fixed nor when both  r/K 

and  β  are fixed.  Otherwise the infection invasion threshold is raised or lowered 

depending on forcing strengths, phases and configuration.  The results shown in Table 3 

(columns A, B, C), for example, are in line with those of Table 2 (columns A, B, D) for 

the predator prey model.   

 

2.5  Extensions. 

Throughout the discussion so far we have assumed that the interaction between invader 

and resident has been mass action.  (Note that Begon et al. (2002) use the term “density 

dependent” and de Jong et al. (1995) “pseudo mass action” for this type of interaction.  

However we will continue to use the term “mass action” for its simplicity and to avoid 

other conflicts in the use of terminology.)  If the interaction is not mass action how is 

invasion affected?  Suppose the interaction in the predator prey Model 1 is of the form  

f(N)P  where  f  is a positive decelerating function with positive gradient (e.g. Holling 

type II), modelling consumption per predator.  Formula (5) still holds provided  N  is 

replaced by  Z = f(N).  The analysis of the amended formula proceeds as before.  As with 

mass action, there is no shift if  K  is fixed but unlike mass action there is a shift if  r  is 

varied with both r/K and c fixed.  This is because the amended second term in (5) is no 

longer zero, becoming negative because of the nonlinearity of the consumption function  

f  (Ruel and Ayres 1999).   So, certainly in this case, saturation in predator consumption 

makes invasion more difficult.  
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The form of the interaction also matters in the SIRS model.  There are strong 

arguments that, at least in some disease systems, the infection transmission term is not 

mass action (as in Model 2) but is frequency dependent, i.e. of the form β f(S, H) I where  

f(S, H) = S/H (Hethcote et al. 2005).  Such a remodelling would have a major impact on 

infection invasion since, in the rare invader approximation, f(S, H) = 1 and so all 

variation is averaged out.  However the frequency dependent form of the transmission 

term is not biologically valid at low susceptible population levels, the situation for much 

of the cycle under strong forcing.  There is therefore not likely to be much of a difference 

when saturation is present in the interaction.  This can be checked out by supposing that 

the transition between high and low population levels can be captured by the interaction 

term: βg(H)SI/H  where  g(H) = H/(1 + hH).  (See Dietz (1982).)  The results, with h = 

0.1 and with the scenario defined in column B in Table 3, are listed in column D of that 

table. 

One should also note that, certainly for the SIRS model, it matters how self 

regulation through density dependence is introduced into the model.   If density 

dependence works through mortality rather than reproduction, i.e. b = b0 + b1H, then 

there will be an extra term appearing in (5) if there is variation in both population  S (~ 

H) and parameter  b1.  We can absorb this extra contribution in the transmission term, 

thereby amending the transmission rate  β.  The situation is different for the predator prey 

Model 1.  If there is density dependence in predator mortality, i.e. m = m0 + m1P (where  

P  is the predator population)  there is no consequent additional shift in threshold since 

any variation in  m0  is averaged out and the m1 term can be ignored in the rare invader 

approximation.  
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3.  Control of environmentally forced systems. 

3.1  Ecological control. 

We can use the results we obtained (Table 2) for the predator prey Model 1 (Table 1) to 

address the problem of whether we can control a predator prey system when some 

components of the forcing are anthropogenic in origin rather than environmental.  For 

example, suppose that the prey carrying capacity is periodically forced by human 

intervention, through, for example, varying resource availability in a wildlife or 

laboratory setting while predation continues to be environmentally forced.  In these 

circumstances the analysis suggests that it may be possible to control or eliminate the 

predator by raising its invasion threshold (Table 2, column D) if, for whatever reason, it 

is not possible to directly control the predator.  To achieve this, there has to be a large 

enough phase difference between control and environmental forcing. 

Alternatively it may be possible to control a predator population by periodic 

culling of the prey.  This possibility relates to the first calculation we carried out where 

parameters  r  and  c  are varied while r/K  is kept fixed (Table 2, column B).  The 

threshold shift is quite small for low periods but increases with period, in contrast to the 

response to resource management where there is a decrease with period (Table 2, column 

D).  The shift at low periods can be increased by modelling culling more accurately by 

varying prey mortality rather than net growth.  This will have most effect when per capita 

mortality and birth rates are comparable so that the intrinsic growth rate, r, is negative 

over a substantial part of the cycle.  Control can be further enhanced if the culling is 
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“pulsed”, i.e. it happens after every so many years.  This strategy can be modelled by 

using the exponential factor:   

C exp(δ2 cos((2πt/p) + φ))    (8)  

rather than the sinusoidal form (1) (Anderies and Beisner 2000).  The scaling factor  C  in 

(8) is chosen to normalise (8) to unity over a cycle.  The greater the parameter  δ2  the 

closer this forcing factor is to a pulse every  p  “years”.  The effect of pulsing can be seen 

in Table 2, columns E, F when the second parameter set in Table 1 (Model 1) is used.   

  

3.2   Epidemiological control. 

There are various ways of tackling the problem of eliminating a pathogen, vaccination 

being the one most widely used when feasible.  For childhood diseases this is typically 

carried out at or within a few years of birth.  However the proportion of children that 

have to be vaccinated can be very high, as in the case of measles.  An alternative strategy, 

instead of or as well as vaccination “at” birth, is to vaccinate a proportion of the 

susceptible population periodically (Shulgin et al. 1998, Moneim and Greenhalgh 2005a).  

This can be considered to be an example of external periodic forcing with vaccination 

moving susceptibles, S, to a redefined “immune” class, R, consisting of individuals that 

have been vaccinated or have recovered from the disease and have (at least) temporary 

immunity.  The resident is now structured, consisting of both S and R populations, 

because of the link between these classes through vaccination.  An “extreme” form of 

periodic vaccination is to vaccinate a given proportion of the susceptible population on 

the same day of the year every so many years.  We can approximate this “pulse” 

vaccination strategy by the function:  v(t) = C exp(δ2cos(2πt/(mp)+φ)) which is scaled, 
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through factor  C, to achieve a given overall vaccination target.  The vaccination period, 

mp, is an integer multiple, m, of the environmental forcing period  p.  The larger  δ2  the 

sharper the pulse. 

 To determine the effect of periodic forcing through vaccination, in addition to 

direct environmental forcing on the transmission rate  β,  we use formula (7) where the 

susceptible population S is found by numerically solving the two coupled dynamical 

equations for the resident subsystem (S, R).  For the parameter values specified in Table 

1 (Model 2) we obtain the results listed in Table 3 (columns E, F) giving the critical 

(threshold) values of the (average) transmission rate  βave  against forcing period.  Table 3 

shows the efficacy of periodic vaccination (column E) in raising the invasion threshold 

but this effect falls off when the frequency of the vaccination is less (column F) or when 

the environmental forcing period is higher (columns E, F).  

 Two alternatives to vaccination in the control if not prevention of a disease have 

been suggested in the discussion of the predator-prey model: Culling (in non-human 

populations) (Roberts and Kao 1998) and resource accessibility management, but the 

timing of any intervention has to be well-judged for the threshold to be raised.  In 

practice a hybrid strategy is likely to be adopted with periodic control coupled with 

additional measures to reduce parameter and population averages.  Pulsed vaccination 

together with vaccination at birth is an example of how this can be carried out to 

advantage (Shulgin et al. 1998). 

  

4.  Structured invaders. 

4.1 Inclusion of a latent state in the SIRS model. 
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Mathematically, the analysis takes on a different form if a latent (exposed) stage, E, in 

which the population is infected but not (yet) infectious, is added to Model 2, yielding the 

SEIRS Model 3 of Table 1.  For this model the invader is structured, now consisting of 

populations E, I satisfying the differential equations: 

  dE/dt = βIS – (γ + b)E     (9a) 

  dI/dt = γE – (µ + b + α)I    (9b). 

with the susceptible population, S, in (9a) found separately, in rare invader 

approximation.  The two invader equations are linear in populations E, I but, under 

forcing, their parameters are time dependent (i.e. the equations are non-autonomous).  

This means that, in general, they cannot be solved explicitly in terms of time averages or 

covariances.  In particular they cannot be solved by replacing the time varying parameters 

by their time averages nor can the R0 condition for invasion be obtained by replacing the 

terms in the unforced expression for R0 by their time averages although in some 

situations this might provide a good approximation (Moneim and Greenhalgh 2005b, 

d’Onofrio 2002).  So these equations have to be solved numerically, either by simulation 

to find the long term behaviour or, equivalently, reduced to a discrete time problem by 

taking snapshots of the invader after each successive cycle.  Invasion occurs if the matrix, 

Q, that moves the invader along its trajectory in state space between snapshots becomes 

unstable.  This matrix, related to the Fundamental Matrix of the invader equations, is 

found by solving these equations over a population cycle (Farkas 1994).  (See Appendix 

B for details.)  The critical value of  β, indicating the onset of invasion, occurs when the 

dominant eigenvalue of matrix Q, takes value 1. 



 20

The results obtained for the SEIRS model, using the parameter values of Table 1 

(Model 3), are qualitatively similar to those for the SIRS model for the forcing 

configurations of Table 3 although the phase differences that maximise the threshold shift 

are substantially perturbed.  The SEIRS model does, however, exhibit new behaviour.  

The threshold can be raised when there is forcing only on the transmission rate β  (with  S  

not varying).  This contrasts with no shift at all for the SIRS model.  Increased 

dimensionality allows oscillations to develop within the structured invader subsystem, 

oscillations that affect the onset of invasion. 

This result can be strengthened if we take a quadratic approximation in the 

forcing strength  δ, enabling invader equations (9a,b) to be solved analytically (Appendix 

D).  In this approximation one can show that the threshold is always raised.   

 

4.2  Two host single pathogen model under forcing. 

An important problem, arising from recent examples of the spread of disease amongst 

wildlife and livestock, is how best to eliminate a pathogen by controlling some but not all 

of the hosts sharing the pathogen.  Such a situation might arise because of cost, 

accessibility or some other restricting circumstance (Dobson 2004).  Here we look at a 

simplified version of this problem with just two hosts but with the added complication of 

external forcing.  The model we use is set out as Model 4 in Table 1 and has been fully 

analysed, when unforced, in Greenman and Hudson (1999).  In this model we suppose, 

for simplicity, that there is only one stage in the progression of the disease, i.e. there is no 

latency and no immunity.  When unforced the dynamical equations for invading 

populations I1, I2 are given by:    
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  dI1/dt = K1(β11 I1 + β12 I2) – d1I1   (10a) 

  dI2/dt = K2(β21 I1 + β22 I2) – d2I2   (10b) 

with the susceptible populations at their carrying capacity levels, Ki, in the rare invader 

approximation.  The matrix of coefficients, M, of  I1 and I2  in (10a, b) is related to the 

second generation matrix frequently used in analysing invasion in heterogeneous 

populations (Diekmann et al. 1990, Dobson 2004).  When unforced, invasion occurs 

when the leading eigenvalue of  M  has positive real part.   

Equations (10a, b) still hold if there is forcing only on the intra- and inter-

transmission rates  βij. Precisely:    

 βij = βij(ave) Ei  where   Ei = 1 + δi cos((2πt/p) + φi),     (i = 1, 2),  φ1 = 0.0.   

The equation system (10a, b) now has to be solved numerically, without the advantage of 

eigenvalue theory, since, as with the SEIRS model, the invader subsystem is non-

autonomous and has dimensionality greater than one.  For the parameter set in Table 1 

(Model 4) we find a lowering of the threshold for all values of  φ2 considered, especially 

when the forcing terms are out of phase (φ2 = π) (Table 4, columns A, B).  (Again one 

can show that these results hold, whatever the parameter values, in quadratic 

approximation.)  However if forcing is also applied to the growth rate of just host 1 (with 

the density dependent coefficient  r/K  kept fixed), i.e. 

  r1 = r1(ave) E3   where  E3 = 1 + δ3 cos((2πt/p) + φ3)    

then the lowering of the threshold can be reversed and the threshold raised if the forcing 

on  r1 is out of phase with the forcing on the transmission rates (Table 4, column D), an 

effect that increases with forcing period.  (With the forcing in phase the threshold 

remains lowered (Table 4, column C).)  The impact can be increased at low forcing 
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periods if it is the carrying capacity, K1, that is controlled (Table 4, column E).  These 

results suggest that single host periodic culling and resource manipulation are possible 

ways of managing a disease shared by two hosts, made worse by the presence of 

environmental forcing on disease transmission. 

 We noted that for Models 1, 2 with just one prey and predator and just one host 

and pathogen (resp.) there was an identity of structure that led to identical invasion 

behaviour under forcing.  However, models describing two hosts with shared pathogen 

(Model 4, Table 1) and two prey with shared predator (Model 5, Table 1) do not have a 

common structure even in rare invader approximation.   As we have seen, the pathogen 

invader in Model 4 is structured while in Model 5 the predator invader is unstructured.  

The contributions of the two prey to the predator “birth rate” in Model 5 are additive.  

There is, as a result, no shift in the predator invasion threshold if forcing is only on the 

predation parameters, c1, c2, in contrast to Model 4 where there is a shift if forcing is only 

on the transmission rates.  

 

5.  External forcing and apparent competition. 

5.1   A predator-prey-prey model. 

To study apparent competition we continue the analysis of Model 5 in which two (non-

competitive) prey share a single predator.  We note first that there are invasion thresholds 

for each of the component populations.  Their typical positions and the nature of the 

dynamics in the regions defined by them are shown in Fig 2 when there is no forcing.  

Fig 2 shows the cross-section of parameter space defined by the predation parameters  c1, 

c2 (with the other parameters fixed).    
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In region R of Fig 2 the predator is unable to invade; in Region S the predator 

coexists with both prey; in regions T and U only one prey can persist in the long run, prey 

1 in region T and prey 2 in region U.  Boundary  b1b1 (between regions R, S) is the 

predator invasion threshold, boundary  b2b3b4 the invasion threshold for prey 2 while 

boundary b5b5 is the threshold for prey 1.   Regions T, U illustrate the “extreme” form of 

apparent competition, mediated by the predator: One prey can exclude the other prey 

even though there is no direct competition between them (Holt 1977).  More generally, 

invasion of one prey will have a negative impact on the other prey, through apparent 

competition, by lowering its population level without necessarily forcing it to extinction 

(region S) (Holt 1984). 

 To study apparent competition under external forcing we first focus on section 

b3b4 of the prey 2 invasion threshold (Fig 2).  The interacting resident populations, prey 1 

and the predator, can generate quite complex dynamics but the single invader equation 

for prey 2 (in rare invader approximation) can be solved to yield the prey 2 average 

growth rate:   

  ξave = ξ0 – c2ave(P1 – P0) - (c2, P)cov   (11). 

P  is the predator population, P1  its average under forcing and  P0  without forcing.   

If the predation parameter  c2  is unforced but there is forcing on the prey intrinsic growth 

rates, r1, r2, then the threshold is lowered since, in (11), P1 < P0 and the covariance is zero.  

(Note that the resident is no longer logistic.)  This means that the forcing is offsetting 

apparent competition by allowing prey coexistence when, without forcing, this would not 

be possible.  In geometric terms, external forcing is expanding the coexistence region S 

by pushing out the b3b4 boundary in Fig 2 into region T.   As a numerical example we list 
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in Table 5 (column A) the (critical) threshold values of  c1  for the parameter values listed 

in Table 1 for Model 5  (when forcing is only on the prey intrinsic growth rates).  

 If forcing is applied to the predation parameters as well as the prey growth rates 

then the third term in (11) contributes to the threshold shift.  Its sign is very sensitive to 

the phase between the two forcing terms.  For example, for the parameter set of Table 1 

(Model 5) and with the forcing on the growth rates lagging behind the forcing on 

predation by a quarter cycle there is reinforcement with the threshold further lowered 

(Table 5, column C).  If, instead, the forcing terms are in phase then there is little or no 

shift in the threshold position (a result not shown in Table 5).   

 

5.2   The implications of nonlinear resonance. 

The lowering of the threshold shown in Table 5 (columns A, C) depends in an unsmooth 

manner on the forcing period.  This is a consequence of resonance in the resident 

subsystem. To understand the connection, we first review the essential features of 

nonlinear resonance. 

 Resonance is a phenomenon well known to occur in linear systems when the 

period, p, of an external force is close to the natural period, p0, of the dominant decay 

mode of the stable system to which it is applied (Greenman et al. 2004).  Its presence is 

revealed in the response curve of the system, in which the maximum reached by one of 

the populations defining the system is plotted against forcing period.  There will be a 

peak in this curve about the natural period, its prominence increasing the slower the 

decay mode to which it relates.  So resonance implies amplification of the population 

oscillations when the forcing and natural periods match.    
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If the system is nonlinear but the forcing is weak then the system can be linearised 

about its equilibrium and the peak is then symmetric about the natural period.  However, 

if the forcing is increased then nonlinearities in the system lead to distortion of the peak 

which progressively leans to the right (to higher forcing periods) as its height increases 

(Fig 3a), eventually overlapping with itself to create multiple attractors (Fig 3b).  At the 

same time a second peak emerges from the point at p = p0/2 (on the period axis of the 

response curve) and grows with the strength of the forcing, also suffering asymmetric 

distortion in the process (Fig 3b).   This second peak corresponds to oscillations that have 

period twice that of the external forcing, i.e. they define a “subharmonic” of the forcing.   

  The peaks “rooted” at p = p0, p0/2  are just two of a hierarchical family of “peaks” 

that emerge as the forcing strength is increased.  Details of their shape and structure can 

be found in Greenman et al. (2004).  Of particular interest is the fact that, through 

distortion, different peaks can overlap, indicating the presence of another level of 

multiple attractors, with both large and small amplitude oscillations possible.  Switching 

between these different modes can happen through external shocks.  

We now have an explanation for the results of Table 5.  The prey1-predator 

resident subsystem in Model 5 is experiencing strong resonance under the impact of 

external forcing.  The prey 1 response curve is shown in Fig 4 based on a natural period 

of  p0 ~ 12 with forcing on just the prey growth rates. We note the presence of a 

subharmonic with period twice the forcing period, over the range  5 < p < 11.  The 

distortion of the peak of this subharmonic is so great that overlapping occurs with the 

creation of two possible dynamic states for forcing period p ~ 11.  The shift in the prey 2 

invasion threshold value of  c1  under forcing is superimposed on Fig 4 and shows strong 
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negative correlation with the prey 1 response curve.  The larger the amplitude of the 

resident oscillations the more the threshold is lowered.  

We have observed in previous models that changing the phase between forcing 

terms can significantly alter the dynamics of invasion.  Model 5 shows that this can also 

be the case if we vary the strength of forcing.  For example if, when the external forces 

on predation parameters and growth rates are in phase, we reduce the strength of the 

growth rate forcing then the overall very weak threshold effect (previously mentioned) is 

transformed into a strong uplift in the threshold.  Further reduction in strength however 

leads to a switch to a lowered threshold due to the double period (2p) subharmonic being 

triggered in the resident subsystem.  In between, there is an overlap of resonance peaks 

with the possibility of the system switching between lowered and raised threshold states.  

This happens, for example, for the model parameter set listed for Model 5 in Table 1 and 

forcing parameters (δ1, δ2, p) = (0.35, 0.95, 10) where  δ1, δ2  are the forcing strengths on 

growth rates and predation parameters (resp.).  

 We have been considering boundary b3b4 in Fig 2.  On the remainder of the prey 2 

invasion boundary, b2b3, resonance, certainly for just growth rate forcing, is weak and 

there is only a small shift in the threshold and very little period dependency.  However a 

remarkable phenomenon happens if we apply forcing on both the carrying capacities and 

the predation parameters but not on the growth rates.  Then there is a strong response in 

terms of the amplitude of the resident oscillations but a weak response in terms of 

resonant “peak” structure.  For low periods (p < 15) this leads to the gap between b2b3 

and b3b4 disappearing (with zero now the critical value of c1), i.e. there is coexistence 

throughout much of the prey 2 exclusion region T in Fig 2. 
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6.  Stochastic forcing. 

We have seen that periodic forcing of ecological and epidemiological systems can have a 

substantial impact on the system, not least in the repositioning of invasion thresholds 

within parameter space.  The question naturally arises as to whether stochastic forcing 

(i.e. external noise) can affect the behaviour of a system in similar ways.  For simplicity 

we discuss only white noise, i.e. noise which has no correlation over time and, as a result, 

has a power spectrum spread evenly across the allowed frequency range (Caswell 2001, 

Hamilton 1994).  (When there is correlation over time the spectrum has structure and the 

noise is said to be coloured (Kaitala et al. 1997).  For example, correlation occurs when a 

dry summer is more likely to be followed by another dry rather than wet summer.  The 

noise is then said to have a reddish hue.)  The homogeneous spectrum for white noise 

suggests that the response of the system to white noise is an “average” of its responses to 

periodic forcing across the full frequency range.   We test this hypothesis on the predator-

prey Model 1.       

To correctly handle white noise in continuous time models requires a high degree 

of technical skill (Arnold 1999).  To side-step the issues involved we approximate white 

noise by assuming constancy over each successive time interval of length  h  where  h  is 

small and determined by the short term correlations implicit in the environmental 

fluctuations.  Precisely, we take the environmental forcing factor to be: 

  E(t) = 1 + δ φ(t)     (12) 

where  φ(t)  is drawn from a random variable  φ  with homogeneous distribution in the 

range (-1, 1) at the beginning of each time interval.  For stochastic forcing and for the 



 28

distributions we are using, the invasion exponent, ξave, defined by (B1) in the Appendix 

holds for a realisation of the random variable defining the white noise, with the average 

taken over a long time (i.e. as  t  tends to infinity) rather than over a periodic cycle 

(Caswell 2001, Ferriere and Gatto 1995).  As a consequence, the arguments that led to no 

shift in the invasion threshold for Model 1 lead to the same conclusion for white noise.  

However a shift occurs for the forcing configurations of columns A to D of Table 2 with 

stochastic as well as periodic forcing.  The results for these scenarios when the forcing 

terms have correlation +1 (columns A, C) or correlation -1 (columns B, D) are given in 

the last row of Table 2.  They are consistent with the hypothesis that white noise averages 

the periodic response (taking into account the lower variance for forcing (12)).  In 

particular the critical threshold value in column C is the average of a strong uplift in 

threshold for low periods and a modest lowering of threshold for all other periods. 

 The significance of the difference in correlation between the different pathways 

by which noise affects a system can be understood more clearly when there are two 

species involved.  One might expect the forcing on these species to be highly correlated 

but there are situations when this may not be the case since the species may have 

different responses to the forcing, even if the forcing is affecting the same trait in the two 

species.  For example, if the forcing is mediated through temperature one species might 

respond to higher temperature with higher reproduction but the other species might have 

the opposite reaction, i.e. the responses are then negatively correlated. 

 One way to model the difference between forcing and the biological response to 

that forcing is to introduce pre-filters (Laakso et al. 2004)) with lags if the filtering 

process introduces significant delays in the impact of the forcing.  As an approximation 
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one could include such a lag as a phase in the forcing term (1) for periodic forcing.  For 

white noise such a lag is likely to lead to low or zero correlation between forcing 

components because of the absence of temporal correlation in white noise.       

 

7.  Discussion. 

With a few important exceptions, external periodic forcing leads to a shift in the invasion 

threshold of a predator, prey, pathogen or infected species attempting to invade a resident 

community.  The sign of the shift (i.e. whether the invasion threshold is raised or lowered 

relative to the unforced position) is clearly of importance when there is concern about 

maintaining biodiversity within an ecological system, about threats to economically 

valuable plant or animal species or about the spread of disease within and between 

human, livestock and wildlife communities.   The sign of the shift is found to be very 

sensitive to the relative strengths and phase differences of the components of the forcing 

as they affect different aspects (i.e. different model parameters) of the system.  For  

predator prey Model 1 and microparasite Model 2 we found that by changing the phase 

we could change the sign of the shift.   For the two host SIS Model 4, forcing one host 

growth rate as well as the transmission rates can reverse the sign of the threshold shift if 

the added forcing is out of phase.  For the predator two prey Model 5, the change in sign 

can be brought about by reducing the forcing strength on the prey growth rate.  

 This ability to change the sign of the shift in threshold by changing the forcing 

parameters has important consequences for the control of ecological and epidemiological 

systems.  If one or more of the components of the forcing is under “management control” 

rather than being driven environmentally then it might very well be the case that 
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sufficient controls are available to achieve management objectives, for example 

eradication of an infection or the survival of a species in an ecological web.  To this end 

we used the Models 1, 2, 3 as a testbed to compare different methods of disease control 

suggested by different configurations of the forcing. In the more complex Model 4 we 

showed how infection might be eliminated by control of some but not all of the hosts 

while in Model 5 we showed that the negative effect of apparent competition could be 

reversed with external forcing.  So the diversity and complexity of behaviour that arise 

when there are multiple channels through which forcing impacts on a biological system 

should be viewed positively, in providing an opportunity to be exploited in the control of 

such systems. 

Model 5 also illustrates the complexity that can arise when the resident (predator-

prey) subsystem is experiencing nonlinear resonance under external forcing.   Not only is 

the magnitude of the threshold shift highly sensitive to the forcing period as a result but 

there can be multiple resident states due to overlapping of the resonance peaks.  This can 

mean that there is more than one path along which the invader can invade.  For one of 

these paths we found that the threshold is lowered and, for the other, raised. 

The analysis has been based on Lyapunov theory (Ferriere &Gatto 1995) with 

invasion taking place if the leading Lyapunov exponent is positive (Appendix B).  This 

exponent generalises the notion of leading eigenvalue of the matrix describing invasion in 

the rare invader approximation to those situations where there is time dependence in the 

model parameters.  For unstructured invaders this exponent is equal to the average over a 

cycle of the invader intrinsic growth rate which can usually be written down immediately 

from the invader equations.  For structured invaders the leading exponent is the dominant 
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eigenvalue of the Fundamental Matrix of the invasion subsystem evaluated over a 

population cycle (Farkas 1994)(Appendix B).  To find this matrix means solving 

(numerically) the invader equations over a population cycle.   However one can obtain an 

analytic but approximate solution when forcing is of moderate strength by taking a 

quadratic expansion in that forcing strength. 

The conventional way to express the condition for invasion in an unforced system 

is in terms of index  R0  for an unstructured system and the spectral radius of the second 

generation matrix for structured systems.  These can be derived from the exponent 

methodology and so can be generalised when forcing is present.  The unity of our 

approach through the use of the Lyapunov exponent has enabled us to cross-link ideas 

and methods between ecology and epidemiology, particularly with respect to control and 

to explore the similarities and differences in behaviour resulting from differences in 

model structure between these two areas of application. 

 The richness of behaviour evident in the analysis and numerical exploration of the 

models of Table 1 warrants further examination.  This is especially so for the structured 

Models 4 and 5 and the issues they address.  In particular it is important to gain a greater 

understanding of how time dependence can change the behaviour of the linear dynamical 

system describing the invasion process.  Also needed is a much more detailed study of 

the relationship between periodic and stochastic forcing.  We have seen that there are 

interesting connections between these two types of forcing but have noted that system 

behaviour under stochastic forcing is particularly sensitive to how the biological response 

to the forcing is modelled and the nature of the forcing itself, in particular whether it has 

significant temporal correlation.  
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In this paper we have not considered the situation where the resident community, 

when alone, is unstable, executing endogeous periodic cycles.  External forcing on the 

resident community can convert these fluctuations into quasiperiodic or period-locked 

cycles (or possibly chaotic dynamics) (Greenman et al. 2004).  Analysis of invasion in 

this situation is handeable within the exponent methodology but involves tackling such 

questions as to how forces with different periods interact.  Except in the case of 

subharmonic generation, the analysis we have carried out here has assumed forces with a 

common period. 

 We have only considered smooth transitions across the invasion threshold, 

activated by a transcritical bifurcation.  Invasion can also occur through a saddle-node 

bifurcation which leads to the sudden (discontinuous) emergence and persistence of a 

(possibly) sizeable population.  Crossing such a threshold in the reverse direction results 

in the sudden extinction of a population even though its size might suggest that the risk of 

extinction is low.  This second mechanism occurs in the simplest (Lotka-Volterra) two 

species direct competition model and is therefore likely to occur in more complex 

models, given the right set of circumstances.   
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Appendix. 

A.  The rare invader approximation: 
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Suppose the resident community (or web) is described by the population vector  x(t)  and 

the species, community or web attempting to invade by  y(t).  Suppose further that the 

populations satisfy the dynamic equations: 

  dx/dt = f(x, y, t),  dy/dt = g(x, y, t)  (A1). 

If the invading population is sufficiently rare then we can approximate these equations 

by:  dx/dt = f(x, 0, t),  dy/dt = G(x, 0, t).y  (A2), 

where matrix  G  is the first partial derivative of vector function  g  with respect to  y, i.e  

Gij = ∂gi/∂yj .   Matrix  G  is evaluated at  y = 0.  The effect of external forcing on the 

invader can therefore be felt in two ways: Indirectly through the resident population  x  

and directly through its effect on the invader (as shown by the  t  dependence in matrix 

G).  The resident equations in (A2) are decoupled from the invader equations and can 

therefore be solved independently.  The invader equations, which are linear in  y  but with 

time dependent parameters (i.e they are in general non-autonomous) can then be solved 

by substituting the solution for  x.   

 As an example, consider the predator-prey model: 

  dx/dt = r x(1- x/K) – c1x y 

  dy/dt = c x y – m y      (A3). 

Here  x  denotes the prey and y the predator population.  The biological meanings of the 

parameters in (A3) are explained in Table 1 (Model 1).  The rare invader approximation 

yields: 

 dx/dt = r x(1 – x/K),  dy/dt = (c x – m)y   (A4). 
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The (resident) prey population satisfies the logistic equation and the (invading) predator 

population satisfies a non-autonomous linear equation if the resident population  x  or one 

or more of the predator parameters is time varying. 

 

B.  The condition for invasion.  

Define the exponent  ξave by: 

 ξave = lim((ln ||y(t)||)/t)      (B1) 

where  y(t)  is the solution of (A2) for random initial vector and ||y(t)||  denotes the 

Euclidean length of vector  y(t).   The limit in (B1) is taken for large  t (i.e. as  t  increases 

to infinity).  Exponent  ξave is the (leading) Lyapunov exponent and generalises the 

concept of leading eigenvalue for a non-autonomous linear system.  (By leading 

eigenvalue we mean the eigenvalue with largest real part.)  Invasion will take place if  

ξave > 0  but not otherwise.  If  y(t)  is in fact scalar, i.e. the invader is unstructured, then 

equation (A2) for y(t) can be solved by integration and (B1) written as: 

 
ξave = lim(

1
t
(ln(

y(t)
y(0)

)) = lim(
1
t

G(x(u)
0

t

∫ ,0,u)du)
  (Β2) 

If, in addition, y(t) is periodic and G in (A2) is linear in the resident populations (i.e. G = 

a0 + Σaixi) then: 

ξave = a0ave +  Σ(aixi)ave       (B3) 

where the average is taken over a population cycle.  For example, for Model 1 (Table 1), 

a0 = - m and a1 = c.  

We can rewrite the second term in (B2) using the identity: (aixi)ave = (ai, xi)cov + 

aiavexiave where the first term is the covariance between predation parameter  ai  and 
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resident population  xi.  If  xi0  denotes the ith resident (stable) population level when 

there is no forcing then (B3) can be rearranged as: 

 ξave = ξ0 + Σaiave(xiave– xi0) + Σ(ai, xi)cov    (B4) 

where  ξ0 = a0ave + Σaiavexi0, namely the exponent when there is no forcing.  

 If the invader is structured than an explicit solution for invader  y(t) (in terms of 

average values) is in general not possible.  Non-autonomous linear equations can only 

rarely be solved explicitly (Hale 1969).  If forcing is periodic and the invader structured 

then one approach is to solve the equations for the Fundamental Matrix: Φ(t) (Farkas 

1994): 

  dΦ/dt = G(x(t), 0, t)Φ(t) 

subject to the initial condition  Φ(0) = I  where  I  is the identity matrix.  If  p  is the 

period of the population cycles then the eigenvalues (Floquet multipliers) of  Φ(p)  

determine whether invasion takes place.  The standard criterion applies: If the dominant 

eigenvalue of  Φ(p)  has magnitude greater than one then there will be invasion.  In the 

text, matrix Φ(p) is labelled as Q. 

 

C: The storage effect: 

If in formula (3) we take  c = c0Ε1, N = N0Ε2  where  Ε1 = Ε2 = (1 + δ cos(2πt/p)) then: 

            
ξave = (c0N 0)

1
p

(1 +α 0
0

p

∫ cos(2πt/p) +α1 cos2 (2πt/p))dt − m0                    (C1)
 

where α0 = 2δ, α1 = δ2.  Integration in (C1) yields (4a).  The integrand in (C1) is plotted 

in Fig 1a.  If c, N are out of phase, i.e. Ε2 = (1 + δ cos((2πt/p) + π)) = (1 – δ cos(2πt/p)) 
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then α0 = 0, α1 = -δ2.  The integrand then has the graph shown in Fig 1b and (C1) gives 

(4b). 

 

D. The quadratic approximation. 

Suppose the invader equations can be written as: dI/dt = M.I  where  I = (I1, I2)T,  T  

denotes the transpose operation and:  

    
M =

A B
C D

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ .

 

The elements of M are in general time dependent.  Define  X = I1, Y = I2/I1  then: 

 d(ln X)/dt = A + B Y      (D1),     dY/dt = C + (D – A)Y – BY2           (D2). 

Equation (D2) for Y is uncoupled but nonlinear.  Substitute in (D2) the expansion for Y 

in powers of the forcing strength  δ: 

Y = Y0 + δ Y1 + δ2 Y2 + …. 

to generate a sequence of analytically solveable forced linear differential equations with 

constant coefficients for the components Y1, Y2, …  Equation (D1) for X then yields an 

approximation for the leading Lyapunov exponent to any desired power of  δ.  This 

solution can be generalised when square matrix M is of arbitrary size. 
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Figure Captions: 

Figure 1:  Variation of the predator “birth rate” over a cycle when prey oscillations and 

forcing on predation are (a) in phase (b) out of phase.  δ = 1, c0N0 = 1. (See Appendix C 

and compare with results (4a), (4b).)  

Figure 2:  Model 5: areas of exclusion and coexistence.  Vector label: (prey1, prey2, 

predator): 1=persists, 0=excluded.  For example, (101) means all populations persist 

except prey2. 

Figure 3:  Typical response curves for a system under periodic forcing.  (a) Forcing 

strong enough to produce asymmetry in resonance peak at A.  (b)  Further increase in 

forcing strength leads to (i) overlap of peak A with itself, creating two attractors at p ~ 

2.9 (Dotted line indicates region where a third dynamic state is unstable) (ii) emergence 

of subharmonic B with double the forcing period (2p), sufficiently distorted to create 

multiple states at p ~ 1.3. (Graph labelling: 1p, 2p denote the period of the population 

cycle.)  

Figure 4:  Strong negative correlation between prey 1 response curve and downward 

prey 2 threshold shift (Model 5).  Forcing (on growth rates) sufficiently strong to create 

multiple states for subharmonic at p ~11.  Threshold shift is scaled to facilitate 

comparison.  
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Table Captions:  

Table 1: Equations for models discussed in the main text.  “expt” identifies the parameter 

that is varied in searching for the invasion threshold position. 

Table 2: Threshold values of predation parameter  c1  for predator prey Model 1.  Entries 

(rows 2 to 5) are threshold values of parameter  c1  in Model 1 (Table 1) at the predator 

invasion threshold (ξave = 0) when forcing has period  p, to be compared with the 

threshold value of c1 (row 6) when unforced (i.e. at ξ0 = 0).  The threshold is lowered 

(raised) if the forced threshold value of c1 is less (greater) than the unforced value.  The 

first parameter set (Table 1, Model 1) applies to columns (scenarios) A, B, C, D; the 

second set to scenarios E, F when exponential forcing is used with  δ2 = 10.0.  (See (8) in 

text.)  The last row refers to stochastic forcing and gives the threshold values of  c1  for 

white noise under scenarios A to D.   

Table 3:  Infection threshold values of transmission rate  β for SIRS Model 2.  Entries 

are forced threshold values of  β  for Model 2.  Average parameter values given in Table 

1, Model 2.  Unforced and unvaccinated threshold at β0 = 1.25.  m = (vaccination 

period/forcing period). Parameters  γ, α  kept fixed throughout.  vacc = vaccination.  In 

column D, disease transmission is frequency dependent (cf with column B).  In columns 

E, F there is vaccination with  δ2 = 10.0.  To check similarity of behaviour, compare 

columns A, B, C (Table 3) with columns A, B, D (Table 2).  

Table 4:  Infection threshold for multi-host Model 4.  Entries are forced threshold values 

of s1 = β21/β11 for Model 4.  Parameter values given in Table 1, Model 4.  Columns C, D, 

E relate to control through host 1 only. 
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Table 5: Invasion and Resonance in predator-prey-prey Model 5.  Columns A, C: entries 

are forced threshold values of  c1 ; columns B, D: maximum values of prey 1 during a 

cycle. Parameter values given in Table 1, Model 5.  

   

 

 

 

 

 

 

 

 

 

 

 

 

 


