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Abstract

Metabolic networks attempt to describe the complete suite of biochemical reactions available to an organism. One notable
feature of these networks in mammals is the large number of distinct proteins that catalyze the same reaction. While the
existence of these isoenzymes has long been known, their evolutionary significance is still unclear. Using a phylogenetically-
aware comparative genomics approach, we infer enzyme orthology networks for sixteen mammals as well as for their
common ancestors. We find that the pattern of isoenzymes copy-number alterations (CNAs) in these networks is suggestive
of natural selection acting on the retention of certain gene duplications. When further analyzing these data with a machine-
learning approach, we found that that the pattern of CNAs is also predictive of several important phenotypic traits,
including milk composition and geographic range. Integrating tools from network analyses, phylogenetics and comparative
genomics both allows the prediction of phenotypes from genetic data and represents a means of unifying distinct
biological disciplines.
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Introduction

An eventual goal of biology is to integrate our understanding of

evolution at the molecular level with that at the phenotypic. One

of the most challenging aspects of this problem is what has been

referred to as the genotype-phenotype map [1,2]. Even for very simple

biological systems such as RNA molecules, genetic distances (i.e.,

sequence variations) do not map onto phenotypic distances (i.e.,

secondary structure) in any uniform way [3]. One approach to this

question is to statistically associate natural genetic variation to

phenotypic variation, through approaches such QTLs [4] or

genome-wide association studies [5]. However, these techniques

do not define the nature of the association between a trait and its

associated genes. Another potential approach is suggested by the

new techniques of systems biology, which aims at predicting the

behavior of a biological system from the quantitative and dynamic

interactions of its components [6,7]. That there is considerable

interest in understanding phenotypes and their evolution is evident

from the continued study of the even most fundamental

phenotypic traits of organisms (body size, longevity, metabolic

rate and body temperature) and of mammalian-specific traits such

as milk composition. Among the cellular systems, metabolism is an

attractive target for a systems approach because, to a first

approximation, the central players are known (at least in model

species; [8,9,10,11]). As we will show in this work, metabolism

represents one way in which the evolution of phenotypes can be

linked to the evolution of their underlying genes.

The study of body size, temperature and metabolism is perhaps

best exemplified by the study of the allometric relationships

between these variables [12,13,14,15]. In general, researchers

have found that metabolic rate scales as a fractional power of the

basal metabolic rate, with at least some controversy as to the

magnitude of that scaling coefficient [12,14]. The temperature at

which this metabolism occurs (i.e., either body or environmental

temperature) also co-varies with body size and metabolic rate,

although the direction of causation is not entirely clear [13,16,17].

Similarly, aging and longevity are topics of considerable interest

to researchers, at least in part for reasons of human self-interest.

Experimental work on aging has tended to focus on identifying

genes and pathways responsible for, or protective from, aging [18].

One early theory, the rate of living hypothesis, proposed an inverse

relationship between metabolic rate and lifespan, more or less by

analogy to the breakdown of human tools with use. This idea can

be made more specific with the proposal that cellular damage may

result from side products of metabolism, namely reactive oxygen

species, or ROS [18,19]. Although both of these ideas suggest that

lifespan should decrease with increasing metabolic rate, another

hypothesis, uncoupling to survive makes the opposite prediction [20].

The key difference is the recognition that the strong proton

gradients in the mitochondrial intramembrane space that allow

high ATP synthesis also increase ROS production. Partly

uncoupling proton flow and ATP synthesis increases nutrient use

but also reduces ROS production [20]. The relationship of

metabolism and aging is also somewhat confused by the

observation that caloric restriction tends to increase lifespan

[21]. However, there is now evidence that this association is due

less to reduction of metabolic rate than to alterations in the

patterns of metabolic flux and mitochondrial usage [22].
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Naturally, aging and senescence also must be understood as

evolutionary phenomena and at least three such theories have

been proposed [23]. First, for organisms subject to environment

mortality (predation, disease, accident), natural selection cannot

act to extend lifespan well beyond the age at which the average

individual would be expected to have died due to external causes.

Second, there may be evolutionary tradeoffs between early fertility

and lifespan, which, coupled with environmental mortality, will

also tend to act against selection for long lifespan. Third and

related is the disposable soma theory, which suggests that metabolic

energy devoted to prolonging lifespan comes at the cost of energy

not devoted to reproduction and can be selected against [24].

The associations between aging and the allometric traits already

discussed suggest the potential for a unification of the evolutionary

and genetic theories of aging. The most recent analysis of these

variables suggests that lifespan is associated with body size,

possibly because of reduced predation on larger individuals, but

that there is no independent association of lifespan and metabolic

rate once body size is accounted for [25].

No single approach will yield complete understanding of

systems as complex as those above, and this work does not

attempt to do so. However, new data and approaches that fall

under the headings of systems biology and comparative genomics

do at least provide a novel perspective on these questions. A

particular feature of the metabolic network is the large number of

isoenzymes (i.e., distinct proteins that catalyze identical reactions).

While the existence of isoenzymes has long been known, their

evolutionary significance is still unclear. Although not all

isoenzymes are products of gene duplication, many are, and

possible explanations for their evolutionary persistence include

mutational buffering, differential regulation, increased gene

dosage, facilitation of evolutionary innovation and functional

diversification [26,27,28]. Among these possibilities, the impor-

tance of gene dosage is increasingly appreciated [29,30,31,32]. Thus,

in humans, high copy numbers of the starch digesting amylase

genes are associated with populations having high-starch diets

[33], suggesting a recent increase in the selective benefit of high

amylase activity. Such copy number variation contributes signif-

icantly to differences in transcript abundance among individuals

[34], and some copy number variations are driven to high

frequency by positive selection for increased expression of the

corresponding gene [33,35,36].

We have previously shown that there are considerable numbers

of gene duplications and losses in mammalian metabolic networks

[37]. Moreover, these copy number alterations (CNAs) are non-

randomly distributed in the network and show associations with

phenotypic traits of interest such as milk production. In this study,

we extend on this work, employing a greatly expanded set of

mammalian genomes, a new, phylogenetically-aware mapping

procedure and a machine-learning approach to associating

phenotypic traits with CNAs. In addition to the traits discussed

above (body weight, longevity, metabolic rate and body temper-

ature), we analyze milk characteristics (given our previous results),

as well as genomic characteristics (chromosome number and C-

value) and habitat.

Results

Enzyme orthology network construction
We used two independent reference metabolic networks in

order to provide some level of validation, those of Homo sapiens

(human) and Mus musculus (mouse). The human compartmental-

ized metabolic network of Duarte et al. [8] includes 3,188

metabolites, 3,742 reactions and 1,496 genes. Of the reactions,

2,307 are associated with at least one gene. We previously

described a reduction of the metabolic network into classes of

enzymes that we refer to as iso-enzyme groups [37]. These groups

represent sets of enzyme-coding genes involved in either the same

reactions or subsets of the same reactions. To create them, we

combine network reactions in three steps. We first group genes

coding for enzymes that catalyze identical reactions. We then

sequentially merge any groups where the reactions of one group

are a subset of reactions of a second group. The resulting iso-

enzyme groups contain genes that participate in a subset (possibly

complete) of the reactions associated with that group. Finally, we

define a new type of metabolic network where the nodes are these

iso-enyzme groups (Figure 1C). Two such nodes are connected if

any of the compounds involved in one node’s reactions are shared

with the compounds of the other node. Following this procedure,

we established 882 isoenzyme groups (Figure 1A): these are the

nodes referred to hereafter. The overall network included 4

isolated isoenzyme groups and a main connected component and

71,216 directed edges (as described in the Methods section,

currency metabolites were removed from the reference networks).

Network statistics: diameter: 6, average shortest path: 2.29,

density: 0.092. The mouse metabolic network of Selvarasu et al.

[9] includes 1,288 metabolites, 1,493 reactions and 777 genes. Of

the reactions, 1,092 are associated with at least one gene. We

defined 413 isoenzyme groups (Figure 1A). The overall network

included 2 isolated isoenzyme groups and a main connected

component and 20,337 directed edges. Network statistics: diam-

eter: 7, average shortest path: 2.188, density: 0.119. We compared

the two networks by mapping reactions from one network onto the

other, using the orthologous genes as links. The smaller mouse

network shares 70.2% of its nodes with the human network

(Figure 1B), while the human network shares 35.5% of its nodes

with the mouse. Reactions without assigned genes account for the

majority of these differences (data not shown).

Our goal was to study differences in enzyme copy number

among eighteen mammalian genomes. To do so, for each of the

other seventeen genomes, we first inferred orthologous genes

between these genomes and the reference genomes (H. sapiens and

M. musculus) using both sequence homology (inferred with

GenomeHistory [38]) and gene order (synteny) data, as described

previously [37]. We then used these orthology inferences to map

each metabolic network onto each target genome in three steps

[37]. First, orthologous genes from the new genome are assigned

to the metabolic network nodes of their counterparts in the

reference species. Second, any ‘‘orphan’’ genes that are homol-

ogous to members of exactly one iso-enzyme group are assigned to

that group. Finally, any remaining large gene families for which all

annotated members fall into a single iso-enzyme group are also

assigned to that group. The resulting mapping between the

reference network and the target genome then allows us to identify

gene CNAs between the target and reference metabolic networks

(e.g., duplications or gene losses in the enzyme-coding genes of one

genome relative to a second; Dataset S1).

The metabolic network of Duarte et al. [8] is annotated with

NCBI gene identifiers. In order to perform our comparative

genomics analyses, we translated these identifiers into Ensembl

IDs [39]. However, because both the NCBI and Ensembl

databases have been updated since our previous analyses, the set

of genes retrieved here differs slightly from those given previously

[37]. We spent a great deal of time manually refining this mapping

step, allowing us to add a few more genes to the network, which in

turn resulted in several previously distinct isoenzyme groups being

merged. Despite this slight reduction in the number of nodes (from

944 to 882), our current isoenzyme network is very similar to the

Metabolic Networks and Phenotypes in Mammals
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previous one in terms of global topology: the network density,

diameter and average shortest paths are essentially identical (data

not shown).

Ancestral-states networks
The mapping of metabolic networks onto individual genomes

(e.g., our enzyme orthology networks) represents only a snapshot

of these complex entities. In fact, all eighteen of these networks are

related to each other by the phylogeny shown in Figure 2A [40].

To address this fact, we used the established networks to infer the

evolutionary history of the CNAs in each isoenzyme group. We

used parsimony with the continuous character option to trace all

ancestral states on the mammalian phylogenetic tree (Figure 2A).

The result is a reconstruction of the ancestral states of each

isoenzyme group at all internal nodes in this phylogeny. We define

a CNA as any isoenzyme group possessing a different number of

included genes in the isoenzyme group as compared to that

number in its direct ancestor (Supplementary Data 2). With these

reconstructed ancestral networks, we can calculate the degree of

network change that has occurred on each branch of the

phylogeny, using an averaged distance between the networks at

each node in the tree (Figure 2B). This network evolutionary rate

(e.g., number of CNAs since a common ancestor) in the enzyme

orthology network is related to, but not solely a function of, the

divergence times of the species in question (Figure 2C).

Clustering
We previously found a tendency for CNAs to cluster in the

network, so we asked if this result held for these phylogenetically-

aware comparisons. For a given pairwise comparison of networks

in species A and B (MA and MB, respectively), we can, for each

node, ask whether the copy-number of the enzymes catalyzing that

reaction is the same or different in MA and MB. We can then use

our previously described tool [37] to detects clusters: this tool

works by first removing edges touching nodes that do not show

CNAs between MA and MB. The tool then calculates connected

components among the remaining nodes (which by definition

possess CNAs). We assessed the statistical significance of any

induced clusters by randomizing the position of these CNAs.

When we compared each extant network to its direct ancestor, we

did not find, for either network, significantly bigger clusters than

would be expected by chance (Table 1). This result is in contrast to

our previous analysis, but represents a comparison over a much

shorter divergence time (back to the most recent common ancestor

with another genome rather than the entire divergence between

that species and humans). When we examine the clustering of

CNAs between an extant genome and not the most recent

ancestor, but two or three ancestors back, there were indeed

several genomes showing clustering (Table 1).

Figure 1. H. sapiens and M. musculus metabolic networks. (A) Complete metabolic networks with cellular compartments (node and edge colors)
are shown. (B) The locations of the shared isoenzyme groups between the networks are illustrated with darkly shaded nodes; pale nodes are those
nodes that are not identified in the other network. For both panels currency metabolites have been removed. (C) A cartoon of our approach for
creating isoenzyme groups. Genes with identical reaction lists are first merged, followed by a step that combines genes that have only a subset of
these reactions. Nodes with overlapping but non-identical reaction lists are not merged.
doi:10.1371/journal.pone.0087115.g001

Metabolic Networks and Phenotypes in Mammals

PLOS ONE | www.plosone.org 3 January 2014 | Volume 9 | Issue 1 | e87115



Figure 2. Phylogeny of the species studied. (A) Phylogenetic tree showing the divergence times (in million years) between the species used in
this study [40]. The vertical line illustrates a split for these taxa into three large lineages that have similar ages (consistent with the separation
observed in Figure 3). (B) Topology of the tree in A, with branch lengths proportional to the network divergence (see Methods). Insert (C) Scatter plot
of the network divergence vs. divergence times. Regression line is in grey (log-log regression y = 10.86 x0.3018, R = 0.72).
doi:10.1371/journal.pone.0087115.g002

Table 1. Details of the CNAs clustering analysis.

Direct ancestor – Species Ancestor 2 – Species Ancestor 3 – Species

Components Degrees Components Degrees Components Degrees

Num. Size In Out Num. Size In Out Num. Size In Out

H. sapiens

P. troglodytes #

G. gorilla # . #

P. pygmaeus # # . # #

M. mulatta . # . # .
C. jacchus

R. norvegicus . # . # . #

M. musculus # # . #

C. porcellus

O. cuniculus

B. taurus . . . . .
S. scrofa . . .
C. familiaris .
A. melanoleuca . . .
E. caballus . . . . .
L. africana

M. domestica - - - -

O. anatinus . # . - - - - - - - -

For each species, an analysis of the CNA was conducted between its current state and that of 1) its direct ancestor, 2) two ancestors and 3) three ancestors back. The
results reported include the status of the number and size of the components formed by the CNAs in the enzyme orthology networks and the number (degree) of
outgoing (product) and incoming (reactant) metabolites. Bigger/more/higher (.); Smaller/fewer/lower (#) at a= 0.05.
doi:10.1371/journal.pone.0087115.t001
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Association of the network structure with diverse traits
Given the inferred networks and the phylogeny, it is possible to

explore the role of metabolic changes in the evolution of these

diverse mammals. We thus collected a dataset of 17 phenotypic

traits (maximum longevity, gestation and weaning times, adult

weight, body temperature, metabolic rate, milk composition, C-

value, chromosome number, average environmental temperature

of the home range, home range precipitation and dispersion from

the equator) from these 18 organisms (Table 2 and Table S1). We

first used principal component analysis (PCA) to visualize and

identify significant differences in these traits and to distinguish

which CNAs, if any, were driving those differences (Figure 3).

However, based on PCA and subsequent analysis of similarities

(ANOSIM), the primary signal appeared to be phylogenetic

(separation of primates from other mammals) rather than

functional (R = 0.41, P<0.001).

The poor performance of PCA suggests that the complex, non-

discrete, nature of the traits tested might pose difficulties with

standard statistical analyses. We thus adopted a machine learning

approach. The data for this approach consists of the number of

CNA events inferred along each branch of the tree in Figure 2 and

the corresponding numerical change in the trait inferred for that

branch. The use of changes along each branch ensures phyloge-

netic independence in our analysis and prevents the pervasive

common ancestry in the data from misleading us.

One might think that because both sets of values are drawn

based on the same underlying phylogeny that there would be, due

to common divergence times, a high correlation in the number of

CNAs along a branch and the amount of change in a trait.

However, this is not the case: the ‘‘branch lengths’’ taken from

CNAs and from traits are rarely highly correlated and occasionally

even show significant negative correlations (data not shown). We

used least median squares regression (see Methods) to compare

copy-number changes to the phenotype of interest. This approach

allowed us to estimate the correlation coefficient between the trait

values and the predictions of those values made using the CNAs

(Table 2). We assessed the statistical significance of these

correlation coefficients by randomization of the traits among the

nodes of the phylogeny and recalculating the associations (see

Methods). Note that our approach requires that any node selected

by the machine learning algorithm must perform well as a

predictor when omitting every possible species, meaning that it is

predictive regardless of the phylogenetic position of the trait being

predicted. In both networks, changes in CNAs in the enzyme

orthology network were significantly predictive of the milk fat (P#

0.04 after FDR correction). Similarly, there were significant

associations between C-value and the minimum distance from the

equator (FDR-corrected P#0.004; Table 2). There is also an

intriguing correlation between longevity and CNAs in the mouse

network, but the association in the human network is non-

significant after FDR correction (P = 0.07; Table 2).

Discussion

Using comparative genomics, we have mapped the H. sapiens

and M. musculus metabolic networks onto sixteen other mamma-

lian species, creating enzyme orthology networks for each. In the

process, we inferred the set of changes in enzyme copy-number

(CNAs) across this phylogeny (Dataset S1). Despite the fact that

mammalian genomes vary in both gene content and organization

[41], the network topology is relatively conserved across these

animals, likely as they are quite closely related relative to other

metabolic network comparisons that found greater changes in

network structure [42]. Nonetheless, there are reasonably large

numbers of CNAs observed (Dataset S2). Having two reference

metabolic networks allows us to cross-validate many of our

conclusions: even though the reaction coverage in the mouse

network is considerably lower, all the analyses provide the same

results for both networks (although statistical confidence is

sometimes lower for the mouse-derived analyses). Nonetheless,

there are caveats to our analyses: many reactions in the two

reference metabolic networks either do not require an enzyme to

catalyze them or the required enzyme is still unknown. While it is

unlikely that these reaction nodes, absent from our enzyme

orthology networks, would change our clustering results, it is

Figure 3. Results of PCA analysis of network CNAs. Components 1 & 3 explain 47.5% of the observed diversity. The three lineages highlighted
in Figure 2A/B (including current species and their ancestors) are shaded and show clear separation. Component 1 vs. Component 2 is less
interpretable (57.3% of the observed diversity).
doi:10.1371/journal.pone.0087115.g003
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possible that some of this missing information might have limited

the power of our phenotypic comparisons. Likewise, our approach

only considers the enzymes common to most or all mammals: if

there are species-specific enzymes that adapt a population to a

certain environment, our approach would not detect them.

Using this comparative data and the phylogenetic relationships

in Figure 2, we also reconstructed the ancestral enzyme orthology

networks and the most parsimonious gene copy number for each

isoenzyme group at all internals nodes of this tree. These

metabolic CNAs are not selectively neutral: they cluster in the

network, creating a large interconnected sub-network within the

core metabolic network. As we previously found with a subset of

these data [37], random distributions of CNAs do not mimic this

pattern, indicating that some form of natural selection has acted to

preserve duplications (or to favor gene losses) in the network.

However, deeper phylogenetic comparisons do not provide

significantly stronger associations once one has descended a few

nodes in the tree. The fact that CNAs are only loosely associated

with the phylogeny suggests that other forces might be driving

their evolution.

One such force is selection on phenotypic traits that are

products of the metabolic network. We selected a number of

potentially associated traits, based on the availability of data in a

broad range of organisms and on the potential for a metabolic

association. Using a machine-learning approach, we sought to

associate each trait with the patterns of CNAs across the enzyme

orthology networks and through the phylogeny. We find that we

can use pattern of network CNAs in the phylogeny to predict

range (minimum distance from the equator), milk chemistry and

the genomic C-value. There are also hints that traits like longevity

and environmental temperature may show associations, although

that association in one network was not significant after FDR

correction. Surprisingly, no association was identified between

CNAs and either the metabolic rate or the adult body weight.

However, we do note that the measurements of these two

phenotypic variables were taken by many different researchers

over several decades, meaning that all of the values might not be

strictly comparable. We were initially surprised at the association

between C-value and CNAs, but on reflection recognized that a

change in gene duplication rate in a genome would actually, at

least at some level, alter both values.

One trait that was not clearly associated with metabolic network

structure, longevity, is actually expected to show some relation.

Researchers have already sought to move beyond single gene

approaches to look at network-based [43,44] predictors of

longevity. The central role of metabolic processes in aging is

suggested by a number of lines of evidence, including a positive

association between mitochondrial activity and lifespan [22], the

potential for reactive oxygen species leaking from the respiratory

chain to damage cells and cause aging [18], the observation that

caloric restriction induces a number of changes in metabolic

regulation and a concomitant tendency toward increased lifespan

[45] and the influence of changes in the insulin-signaling pathways

on lifespan [46,47,48,49]. More refined metabolic models may

show an association between network changes and lifespan that

were not evident in our work.

Understanding the nature of the genotype-phenotype map is

still one of the most difficult problems in biology. The fact that

metabolic network structure is predictive of at least some aspects of

phenotype gives insight into the nature of this problem. In

particular, the fact that it is the patterns in the network as a whole

that are predictive argues again for the importance of genome-

scale approaches to understanding biology and suggests the

challenges inherent in trying to understand organismal complexity

from a strictly ‘‘bottom-up’’ approach.

Table 2. Trait correlation coefficients and P-values.

H. sapiens reference M. musculus reference

Trait Pred. correl. coefficient P-value Pred. Correl. t P-value

Avg. adult weight 0.92 0.03*{ 0.70 0.20

C-value 0.93 0.003* 0.78 0.04*

Chrom. number 0.82 0.03* 0.10 0.93

Gestation length 0.41 0.34 0.88 0.004*

Max. dist. equator 0.04 0.95 0.72 0.11

Maximum longevity 0.66 0.07 0.80 0.004*

Metabolic rate/mass 0.98 0.003*{ 0.65 0.29

Milk ash 0.68 0.23 0.73 0.12

Milk fat 0.94 0.003* 0.8678 0.004*

Milk lactose 0.64 0.13 0.01 0.99

Milk protein 20.29 0.61 0.53 0.21

Milk solids 0.88 0.003* 20.19 0.88

Min. dist. equator 0.90 0.003* 0.86 0.004*

Mean precip. 0.61 0.34 0.89 0.01*

Body temp. 0.49 0.44 20.02 0.99

Mean env. temp. 0.95 0.003* 0.78 0.10

Weaning 0.49 0.34 0.60 0.20

*Significant P-values after controlling for multiple testing (false discovery rate a= 0.05).
{Both weight and metabolic rate/mass vary by more than 10,000-fold over the animals studied, while none of the other traits vary by more than 100-fold. Analyses of
the log-transformed weights and metabolic rates suggested that these correlations are not robust to the log –transformation of these data.
doi:10.1371/journal.pone.0087115.t002
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Methods

Data collection and pre-processing
The complete genome annotations for 18 mammals, Ailuropoda

melanoleuca (giant panda), Bos taurus (cow), Callithrix jacchus

(marmoset), Canis familiaris (dog), Cavia porcellus (Guinea pig), Equus

caballus (horse), Gorilla gorilla (gorilla), Homo sapiens (human),

Loxodonta africana (elephant), Macaca mulatta (macaque), Monodelphis

domestica (opossum), Mus musculus (mouse), Ornithorhynchus anatinus

(platypus), Oryctolagus cuniculus (rabbit), Pan troglodytes (chimpanzee),

Pongo pygmaeus (orangutan), Rattus norvegicus (rat) and Sus scrofa (pig)

were acquired from Ensembl release 60 [39]. For the purposes of

homology/orthology assignment, we used the longest transcript

for each protein-coding gene, along with its genomic location. We

downloaded the H. sapiens metabolic network, MOD-

EL6399676120 [8] from the BioModels database [50]. The M.

musculus metabolic network was obtained from Selvarasu et al. [9].

The association between the NCBI gene identifiers in these models

and Ensembl gene IDs used for orthology analysis was made with

the NCBI gene2ensembl library. We used our previously described

orthology inference method [37] to map genes from other

genomes onto the human or mouse metabolic network (see

Figure 1C). To do so, we have introduced the concept of an

isoenzyme group. These groups are defined on the basis of sequence

similarity and nested metabolic functions [37] and represent the

nodes of the enzyme orthology networks employed here. Edges

between these nodes are defined by shared metabolites (taken from

the reference network) between the included reactions of the pairs

of isoenzyme group nodes. The network is directed: for irreversible

reactions if the product of one reaction is a reactant in the second,

we define a directed edge. Reversible reactions are treated

similarly, except that both directions of the reaction are allowed

and handled independently (Dataset S1). Thirteen currency

metabolites (H+, H2O, ATP, ADP, Pi, PPi, Na+, Co-enzyme A,

O2, NAD+, NADH, NADP+, NADPH) were removed from all

analyses in every compartment they occurred [51]. We then used

the reference networks to locate each metabolite in a cellular

compartment.

Comparing the networks
The gene orthology data from mouse and humans allowed us to

map nodes from each network onto the other, allowing us to infer

the overlap between the two networks.

Physical traits
We collected seventeen physical traits for each species (where

available): maximum longevity, metabolic rate [52], body

temperature [52,53], milk composition [54,55], maximal species

range (latitude), gestation and weaning times, adult average

weight, average environmental precipitation and temperature

[52,56], C-value and chromosome number [57]. A. melanoleuca

milk composition was taken from Nakamura et al. [58] and that of

O. anatinus from Oftedal and Iverson [59]. When multiple values

were available the median was used (Table S1). Free lactose levels

were used rather than lactose or sugar composition because the

presence of free lactose in the milk is a Eutherian novelty: neither

O. anatinus nor M. domestica produce it [60]. Species with no data

for a particular trait had it treated as missing data in that trait’s

parsimony reconstructions of ancestral nodes.

Ancestral-states
We used Mesquite v2.73 [http://mesquiteproject.org] to

reconstruct the ancestral-state for each isoenzyme group and for

the physical markers using the consensus mammalian phylogenetic

tree in Figure 2A [40] using continuous-state parsimony.

Network distance index
We can represent the state of the enzyme orthology network at

every node of the phylogeny as a vector v with 882 elements (413

for the mouse network, corresponding to the number of nodes or

reactions in the network). Each vector element vi gives the number

of genes associated with that isoenzyme group for that node in the

tree. Using these v’s, we calculated the Euclidean distance between

every pair of nodes A and B (e.g., end points of all branches) in the

phylogeny.

Principal component analysis
PCA was performed on the covariance matrix of all of the

inferred tip CNAs and of the physical traits with the vegan v1.17-8

[61] package for R v2.12.2 [62]. An analysis of similarities [63]

was then performed to test the plausibility of the groupings

inferred with PCA.

Machine-learning algorithm
The association between CNAs and absolute gene copy

numbers in the enzyme orthology network for each mammal on

the one hand and the measured traits for that mammal on the

other hand were modeled using the WEKA package [64]. The

Least Median Squares algorithm was used; it is a robust linear

regression method that minimizes the median (rather than the

mean, which might be biased by the non-normal nature of these

data) of the squared divergences from the regression line [65]. It

repeatedly applies standard linear regression to subsamples of the

data and outputs the solution that has the smallest median-squared

error [66]. It also replaces missing values (with median values) and

re-centers the data. Because irrelevant predictors (here CNAs)

have a negative impact on most machine learning schemes, prior

to learning, we applied an attribute selection stage that strives to

eliminate all but the most relevant CNAs [67]. Thus, the

predictive ability of each CNAs individually and the degree of

redundancy among them was assessed using the CfsSubsetEval

algorithm [68] that prefers sets of CNAs that are highly correlated

with the variable of interest but have low correlations amongst

themselves. Addition of new predictors continues until the

prediction quality is no longer improved with the addition of

two consecutive predictors, i.e., the BestFirst algorithm [64]. The

predictors used considered in the per-node changes in copy

number along the branches of the tree in Figure 1 and the target

predictions were the corresponding branch-wise trait changes.

Given this set of predictor nodes, we estimate the significance of

the association between network structure and traits by sequen-

tially remove each species from the training set and assigning its

trait value using the machine-learning algorithm. We then

compute the correlation between these assignments and the true

values of each trait. The significance of these correlation

coefficients was evaluated by comparing them to the distributions

of 1,000-reshuffled datasets where the values for the physical

marker were randomly reassigned among taxa and the attribute-

selection and machine-learning algorithm steps were repeated. As

shown in Table 2, the attributes we describe as having significant

associations with the enzyme orthology networks have correlations

that are significantly higher than that seen among randomized

datasets.
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Clustering tests
We used our previously described cluster-detection tool [37].

This approach first removes from the network all nodes without

CNAs and then calculates the number of connected components

among the remaining nodes. To assess whether these components

are bigger than expected, we randomize the position of CNAs in

the network and repeat the component calculation. (As an aside,

we note that randomization of the topology of a metabolic network

is a difficult problem [69]: fortunately we need only consider the

randomization of CNAs and not of the topology). We can use the

distribution of component sizes from 1,000 of these permutations

to determine whether the clusters in the real network are larger

than expected. The procedure was implemented in C++ using the

Boost Libraries [http://www.boost.org/]. The code is available

upon request.

Supporting Information

Table S1 List of reference of the traits. For each trait, the

references are provided. Missing data are marked by ‘?’.

(CSV)

Dataset S1 Inferred enzyme orthology networks (SBML
files).

(GZ)

Dataset S2 Interactive map of the CNAs for each species
(HTML files). For every node of the mammalian phylogeny, an

enzyme orthology network in provided with isoenzyme groups,

CNAs and reaction lists.

(GZ)
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