
("t., r l

Software Development and Continual Change:
A programmers attitude problem?

Philip Andrew Harwood

Depamnent of Computing Science and Mathematics

University of Stirling

Stirling FK9 4LA

This thesis has been submitted to the University of Stirling in partial

fulfilment of the requirements for the degree of Doctor of Philosophy.

August 1997

Abstract

Software fonns around a requirement. Defining this requirement is often regarded as the

hardest part of software engineering. The requirement however has an additional complexity

as, once defined, it will change with time. This change of requirement can come either from

the user, or from the rapid advances in 'computer' technology. How then can software

succeed to continue to remain 'current' both in tenns of requirements and technology in this

forever changing environment?

This thesis examines the issues surrounding 'change' as applied to software and software

engineering. Changing requirements are often deemed a 'curse' placed upon software

engineers. It has been suggested, however, that the problems associated with change exist

only in the attitude of software engineers. This is perhaps understandable considering the

training methods and tools available to supposedly 'help' them.

The evidence shows that quality of management and experience of personnel involved in

development contribute more significantly to the success of a development project than any

technical aspect. This unfortunately means that the process is highly susceptible to staff

turnover which, if uncontrolled, can lead to pending disaster for the users. This suggests a

'better' system would be developed if 'experience' was maintained at a process level, rather

that at an individual level.

Conventional methods of software engineering are based upon a defined set of

requirements which are detennined at the beginning of the software process . This thesis

presents an alternative paradigm which requires only a minimal set of requirements at the

outset and actively encourages changes and additional requirements, even with a mature

software product. The basis of this alternative approach is the fonn of the 'requirements

specification' and the capturing and re-use of the 'experience' maintained by the software

process itself.

Preface

This thesis is based upon a five year period of study part time at the University of Stirling.

In addition, the author has full time employment as a Software Engineering Manager with

a local Software House - TMS Software Systems Ltd, Alloa. It is from this base of

experience that many of the issues in this document are presented and discussed.

u

Declaration

I hereby declare that this thesis has been composed by myself, that the work reported

therein has not been presented for any university degree before, and the ideas that I do

not attribute to others are due to myself.

III

Philip A Harwood

August 1997

Acknowledgements

Mr Charles Rattray was my supervisor in this thesis. He has to be the most motivating

person I have met. There were many times during the past five years that this study

was close to abandonment but each time I went to his office I would leave with a

refreshing direction and desire to proceed. I appreciate all his effort and time spent

with me. Thank you.

I would like to thank Dr. Robert Clark who was my 'second' supervisor, his help

and comments on draft copies of this thesis are greatly appreciated.

Thorn Micro Systems (TMS) have provided me with the vel)' special opportunity of

having a 'real' test bed for trying out many of the ideas presented in this thesis. I hope

that the products and systems which I have developed for them over the past 11 years

justify the time and effort that they have allowed me to dedicate to the work for this

thesis.

The 'Elite' staff at TMS could not have been more dedicated and supportive to a

manager both 'work' related and 'thesis' related. Many of them have given their own

time to discuss ideas and implement solutions. I would like to give a special thank

you to Andy, Stephen, Helen and Craig.

It was during a presentation to Alan Steer and Phillip LaValle of Vesuvius Co that

the idea for formalising the Phase research (at that time called Foreman) was first

suggested. I would like to thank them and Prof. Leslie Wilson for allowing me this

opportunity .

I would like to thank Colin and Alan, two great friends who have provided

overwhelming enthusiasm for this thesis, their support has been appreciated.

A special thank you is due to Paulette whom I married earlier this year. She has

been full of support during these past five years and has sacrificed holidays to allow

this thesis to be completed. Thanks also to Gemma and Liam for their understanding.

I would like to dedicate this thesis to my parents, Geoff and Shirley Harwood.

They have always been there to support and encourage me in everything I have done. I

could not wish for better parents and I hope I make them as proud of me as I am of

them. Thank You.

IV

Contents

Abstract

Preface

1 Introduction

1.1 The Scope and Objective of the Thesis

11

1

4

1.2 What is Phase? 5

1.3 The Contribution of the Thesis 6

1.3.1 A Software Process for Ease of Change 7

1.3.2 Recording Design Experience 12

1.3.3 Monitoring and Validating Cbange to Software 13

1.4 Structure of the Thesis. 14

1.5 The Topics of the Thesis 17

2 Methods of Working and Related Work

2.l Introduction

2.2 Methods of Working

2.3 Related Work

2.3.1 Changing Requirements

2.3.2 Program Structures

2.3.3 RepositOJ)' Base Specification Systems

2.3.4 General Studies on Design Criteria

2.3 .5 Obtaining and Encapsulating Design Experience

2.3 .6 Inspection Techniques

2.3 .7 Summary

3 Software Requirements and Change

3.1 Introduction

3.2 The Software Process

3.3 Software Requirements Classification

v

18

18

19

19

20

21

21

22

23

24

24

25

25

26

27

3.3.1 The Source of Requirements 28

3.3.2 The Properties of Requirements 28

3.3.3 The Importance of Requirements 29

3.3.4 The Character of Requirements 30

3.3.5 A Requirements Classification Relationship Summary 31

3.4 Complexity of Software Requirements 31

3.5 Why do Requirements Change? .. 33

3.6 When do Requirements Change? ... 36

3.7 Requirements and Software Quality 39

3.8 The Cost of Changing Requirements 40

3.9 Current Technology .. 41

3.9.1 Specification ... 41

3.9.2 Dealing with Change ... 41

3.10 Conclusions.. 44

4 Changing Requirements : Two Case Studies 45

4.1 Introduction. 45

4.2 Case Study #1 : Change relating to Technological Factors................ 46

4.3 Observations .. , 50

4.4 Case Study #2 : Change relating to change in User Requirements 55

4.5 Observations... 58

4.6 Learning from the Observations .. 59

4.1 Towards a Practical Solution ... 60

4.1.1 The Pattem of Requirement Changes 60

4.7.2 Using the Pattern to form a Theol)' 62

4.8 A Simple Model.. 63

4.9 Conclusion... 64

5 The Phase Paradigm 65

5.1 Introduction. 65

5.2 Phase Software ... 66

5.2.1 The Class of Applications .. 66

5.2.2 An Exantple .. 67

5.3 Phase Software Structure ... 69

V1

5.3.1 The Phase Node Structure .. 72

5.3.2 The Phase Pnocedures 74

5.3.3 Other Phase Entities .. 75

5.3.4 Procedures Revisited ... 77

5.4 The Phase Kernel, Support Library & Repository 79

5.4.1 The Phase Kernel... 81

5.4.2 The Phase Code Generator 81

5.4.3 The Phase Support Library 82

5.5 Using Phase for Pnototyping .. 82

5.5.1 The Phase Pnototype Specification Language 83

5.6 Phase and Documentation .. 85

5.7 A Summary of the Phase Envinonment 86

5.8 Phase and the Process State Model 87

5.8.1 The Definition ofa Pnogram State 87

5.9 Conclusion... 88

6 Defining and Reusing Phase Experience 90

6.1 Introduction. 90

6.2 The Principle of Recording Design Changes.............................. 90

6.3 When is a State, Not a State? .. 91

6.4 The Example Data in this Chapter .. 92

6.5 The Phase History of Change Recording Development................... 93

6.5.1 Recording Design Changes : A First Attempt 93

6.5.2 Recording Design Changes : Adding the "why" Question 96

6.5.3 Recording Design Changes: Retiming the "why" Question 99

6.5.4 Recording Design Changes: Quality Inspection Documentation. 101

6.6 Retrieving and Manipulating the Data 105

6.7 Some Sample Data ... 107

6.7.1 Flow ofContnol Component...................................... 107

6.7.2 Data Item Component .. 108

6.7.3 Screen Component ... 108

6.7.4 Data Table Component ... 109

6.7.5 Algorithm Component.. 109

6.7.6 Procedure Component .. III

V11

6.8 Using the results to transfer 'experience' III

6.8.1 A Worked Example III

6.9 Conclusion. .. 113

7 The Phase Resistance to Change? 115

7.1 Introduction: How does the Phase Paradigm perform ? 115

7.2 Change of target language to the 'next generation' of the compiler........ 116

7.3 Change of target language to a different platform , 121

7.4 Change from a procedural language to an event driven language 122

7.5 Adding significant enhancements to a mature software program 125

7.6 Maintenance of software by non-original team members 126

7.7 Dynamic configuration at Run Time 127

7.8 Conclusion: Why is the Phase method a good method? 128

7.8.1 Run Time configuration of User Interface 128

7.8.2 High Coherence of Procedures 129

7.8.3 Use of Prototype Software.. 129

7.8.4 Ability to view the 'history' ofan entity within the repository 129

7.8.S Printing and checking of the Quality Inspection Record 129

7.8.6 Easy Availability of documentation 129

7.8.7 Mental model of an application represented by the Flow of Control 129
tree structure

7.8.8 Use of automatic code generation for repetitive tasks 130

7.8.9 Automatic hyperlinking of entities 130

7.9 Summary... 130

8 An Assessment of Phase 131

8.1 Introduction. 13 1

8.2 Phase as a Requirements Analysis Tool 132

8.2.1 Early Availability .. 132

8.2.2 Demonstratable I Executable 132

8.2.3 Construction.. 133

8.2.4 Commitment to Target System 133

8.2.S Documentation... 133

8.2.6 Automated Program Generation 134

Vlll

8.2.7 Further Use ... 135

8.2.8 Summary... 135

8.3 Phase as a Specification Representation System 135

8.3.1 Fonnality... 136

8.3.2 Constructability .. 136

8.3.3 Comprehensibility............. 138

8.3.4 Minimality ... 138

8.3.5 Wide Range of Applicability 139

8.3.6 Sca1eability... 140

8.3.7 Summary ... 140

8.4 Phase as a Software Designers Productivity Tool 140

8.4.1 Mental Model .. 141

8.4.2 Mental Execution ... 141

8.4.3 Opportunistic Development 142

8.4.4 Note Making ... 142

8.4.5 Summary... 142

8.5 Phase as a Software Project Management System 143

8.5.1 The Recognition of Process Milestones........................... 143

8.5.2 Auditability... 143

8.5.3 Team Development... 144

8.6 The Disadvantage of the Phase System 144

8.7

8.6.1 Close Relationship between Prototypes and Programs............ 144

8.6.2 Inflexible Screen and Flow of Control Structure 145

8.6.3 Inability to Build Previous Software Versions 146

8.6.4 Maximum Finite Size of Programs 146

8.6.5 Computer Resource Usage.. 146

8.6.6 Summary .. .

Conclusion

147

147

9 Summary 148

148

149

9.1 Introduction

9.2 The Nature of Requirements and Change

9.3 The Phase Paradigm.. 149

9.4 Maintaining Experience .. 150

IX

9.5

9.6

9.7

9.8

A Tried and Tested Theory .. .

An Appraisal of Phase

The Phase Repository and Project Management Techniques

Conclusion

10 Conclusions

150

150

151

151

152

10.1 The Contribution of this Thesis ... 152

10.2 Further Development ... 153

10.3 The Attitude to Change............. 154

Bibliography 155

A The Phase Repository Structure 161

B The Phase Development Process 168

B.I Introduction. 168

B.2 The Team Players .. 169

B.3 Design Documentation ... 170

B.4 The Control Documents .. 171

B.5 The Actions & Deadlines ... 172

C Acronyms 177

x

List of Figures

1.1 The Phase Concept 6

1.2 The layers ofmIS software 9

2.1 The Tedium System 21

3.1 Requirements Classification Relationship Summary 31

3.2 Requirements refmement with successive development iterations 42

3.3 Dealing with change during the implementation phase 43

4.1 History of product development 46

4.2 An ideal development path 48

4.3 Actual development path 48

4.4 Requirements and Programs 50

4.5 Factors influencing implementation of program P from 51
Specification S

4.6 The relationship between programs 52

4.7 The 'perfect' software migration solution 54

4.8 The paths for subsequent development 57

4.9 A Potts & Bruns design graph 58

4.10 Re-evaluating a design graph for different goals 59

4.11 A pattern of User related changes 61

4.12 A pattern of Technological changes 61

4.13 A 'slice' of requirements 63

4.14 A simple program state model 64

5.1 A Phase Menu Screen 68

5.2 A Phase Browse List Screen 68

5.3 A Phase Data EntryiRetrieval Screen. 69

5.4 A Phase Overlapping Windows Screen 70

5.5 The Flow of Control of a Phase program 71

5.6 A Flow of Control Node Diagram 72

Xl

5.7 Phase Procedures and Target Language Procedures............ 74

5.8 Entities in the example program 78

5.9 Example Procedures .. 79

5.10 The Phase Structure .. 80

5.11 The elements of a Phase repository 87

5.12 The components of a Phase state 88

6.1 The 'size' of the example application 93

6.2 The structure of a simple log file 94

6.3 General activity graph for a development 95

6.4 The structure of the 'why' table 96

6.5 Example Data Recorded 98

6.6 Example Quality Inspection Record 102

6.7a Analysis Tool : Component Selection 106

6.7b Analysis Tool: View Descriptions 106

7.1 Relationship between complexity factor and time for completion 119

7.2 Relationship between complexity factor and number of errors 120
reported .. .

7.3 Standard Phase SubModule 124

A.I Database table structure chart 150

B.1 Phase Lifecycle Table .. 156

xu

Chapter 1

Introduction

It was a NATO report in 1968 [NA T068] which first identified and documented a 'software

crisis' . In this report it states that, in general, software tends to be delivered over budget, over

schedule and under specification. Approaching 30 years hence, current literature still reports a

software crisis which relates to software being delivered over budget, over schedule and under

specification. This raises the question of what advances, if any, have been made in the

discipline of software engineering? This contrasts sharply with software's close companion -

the hardware upon which the software operates. A 'computer' which now exists in a single chip

smaller than a fingernail would have filled a jumbo jet in 1965. Advances in this technology

far exceed any previous engineering discipline.

It appears that much time has been spent dealing with what Brooks calls 'Accidents'

[Brooks8?]. These are elements of software engineering attributed to the technology of the day

and not the real 'essence' of software development. According to Brooks, the real essence of

building software is the hard part : the specification, design and testing of a conceptual

construct.

The existence of software was founded on, and its development continues as, a response to

the demands for computer 'tools' to help with some user 'needs'. The 'deliverable' in software

should be regarded as the 'satisfaction of a user need' rather than the tangible product

[Cosgrove?l]. The method of achieving this, according to Rowen in [Rowen90] has two major

obstacles for the software developer:

1

"The first problem is to get unambiguous requirements from the prospective user. The

second is to have a happy user when the software is delivered (exactly as specified in

the requirements}. "

These problems are not unique to software engineering, the same can apply to other

engineering disciplines.

The Engineering Process

All engineering disciplines share a common 'theme': to create a 'solution' from the

identification of a 'problem'. In civil engineering, the problem may be the need to cross a river,

the solution - a bridge; in mechanical engineering, the problem may be the need for power, the

solution - an engine; in electrical engineering, the problem may be the need for communication,

the solution - a radio. In software engineering, the problem may be the retrieval or analysis of

large amounts of information, the solution - a computer database program (software).

Each discipline has a series of activities which form together to become a 'process'. The

process therefore defines the set of activities which have been proven to take a particular form

of problem (or requirements) and create a solution. These activities, regardless of engineering

discipline follow a pattern : the identification of the requirements specification, the design of a

solution specification, the fabrication of the product to the design, the testing of the product

which (if successful) leads to delivery.

The software process is a sequence of software engineering activities, performed by a

'software engineer' (the term software engineer in this text is synonymous with 'developer' or

'programmer') or a team of software engineers. The activities begin with the identification of a

need (from a 'user') and concludes with the delivery of a software product (or software

application) that responds effectively to the need [Blum93]. The act of creating a software

product is known as 'development' or a 'project'. The effectiveness of a software process is a

measure of how well these sequence of activities achieve the software product in terms of

accuracy and speed of development.

2

Attitude to Requirements Change

In all engineering disciplines, the requirements are subject to change at any step in the process.

For reasons explained later, software is perhaps more susceptible to requirements change than

the rest. In addition, whilst it is recognised that changing requirements in other engineering

disciplines may involve major retooling or rebuilding costs, the lack of physical items leads to a

perceived ease with which software can be changed and the unwillingness to recognise the same

scale of cost.

The rate at which hardware technology is progressing is far greater than that of any other

engineering discipline. The performance-price gain has increased by six orders of magnitude in

the past 30 years [Brooks87]. This often results in systems being redundant, or at least

old-fashioned even before they are complete.

Whilst many existing software processes exist in today's technology that can be classed as

effective in terms of creating a product from a defined set of requirements, there are precious

few, if any, which remain effective when trying to keep the 'product' current in terms of the

changing requirements. Changing of requirements is therefore a source of exasperation for

software engineers and this can understandably result in a negative attitude to change.

The purpose of this thesis is to investigate why existing traditional software processes fail to

remain effective when requirements change, especially after a product is 'mature'. The result of

this investigation leads to an alternative paradigm and process for software engineering (or

development). The basis of this paradigm is in the method of defining requirements . This

leads to an abandonment of the traditional forms of a 'specification' . For reference, this process

is given the name Phase.

Experience of Software Development

The activities which form a process are based upon the 'experience' of developing similar

solutions to similar problems. Due to the fact the software engineering is only in its infancy,

aged perhaps only forty years compared to the hundreds of years in civil and mechanical

engineering, comparative experience in software engineering is lacking.

3

Experience is about being able to relate a current situation to a previous situation

encountered and, knowing the outcomes of the previous situation, being able to make a more

informed judgement on the action to take in the current situation. Unlike animals, humans have

an ability to share experience through communication via books, speech, video etc. These

methods, by their nature are a slow means of transferring knowledge . What would be ideal is

the ability to 'plug in' the experience of one human directly into another and transfer all the

relevant knowledge in an instant.

Whilst this thesis does not attempt any sort of physical 'wiring' of humans to transfer brain

thought processes, the fact that software can be developed by using other software means that

the power of the 'computer' can be used to help accelerate the 'learning' experience of software

activities. A method is proposed which allows the design decision processes to be

automatically recorded in such a form that it can be 're-run' in a multi-dimensional manner to

give an accelerated learning experience to new software developers.

1.1 The Scope and Objective of the Thesis

This thesis is primarily concerned with investigating how software can be developed and

remain 'current' in terms of satisfaction of user and technological requirements, considering that

these requirements may be poorly understood and subject to continual change. To accomplish

this, it was necessary to:

• assess the effectiveness of existing software processes in dealing with changing

requirements;

• study the way in which requirements change and identify patterns for when and why they

occur,

• analyse how the form of requirements can relate to the effectiveness of the software

process;

• develop a method of capturing and specifying requirements m a form which is

susceptible to changing requirements.

4

The result of this investigation is the Phase method of software development. This will be

presented, describing its:

• form of specification

• set of rules for translating this specification into resultant programs

• set of heuristics .

1.2 What is Phase?

Phase is a concept which combines several 'popular' aspects of Software Engineering.

Although it can be considered in several categories it is :

~ Not just another Prototyping Tool

~ Not just another Report Writer

~ Not just another Automatic Code Generator

~ Not just another Software Process

Phase is a (Program) Structure with the following attributes:

b2l The Phase Structure consists of seven simple definable Phase entities.

bZl The definition of the Phase entities specify a Phase Program Design.

b2l The Phase Design can be executed as a Phase Prototype.

bZl The Phase Prototype is a tool for extracting and refining requirements.

b2l The Phase Design entities can be used by automatic code generation routines to create

programs and documentation.

b2l The Phase Process is used to effectively manage the development of Phase programs.

bZl Phase CASE tools are required to develop Phase Programs.

bZl Phase captures 'experience'.

b2l Phase programs are resilient to the detrimental effect of changes in requirements.

Figure 1.1 illustrates the principle of Phase : To provide a software development system

which takes changes in requirements and maintains stable, mature software systems. This is

5

achieved by using a number of CASE tools which interact with the Phase Structure which

represents the design of the system.

Changes

Specification
& Manuals

In
Requirements

~ Phase Structure

Experience

Documentation
Flow Dlagram6 etc

Flow of Control I '
.---.... C:=:K---' J ,"",cutal>l' I Prototype

t

~ ________ ~ __ ~D_~
Automatic CodtJ

GentJmtion

•
Phase

Program

figure 1.1 The Phase Concept

1.3 The Contribution of the Thesis

This section summarises the contributions made by the thesis :

• propose a software process which facilitates ease of change

6

Case
Tools

, Requirements
Refinement

Stable
Mature
System

• propose a practical method of recording design information such that the experience is

reused.

• describe a generic method of monitoring and validating changes

The resultant effect is that software developed in this way is able to remain 'current' even

though its requirements are changing;

The first two contributions are a direct result of the initial intentions of study. The third

contribution is a by-product which is a result, almost by accident, of the methods used to collect

data throughout this study.

1.3.1 A Software Process for Ease of Change

There are three components of the Phase process which have a significant contribution to this

thesis:

• the form of the requirements specification;

• the approach to software prototyping;

• the automatic creation of software from the specification.

Requirements Specification

The major contribution of this thesis is in the form of the requirements specification. A

requirements specification has two roles . The first is to determine the goals which will satisfy a

user need. The second is to communicate these goals so that a software product can be

designed to meet the original user need. Traditionally the form of the requirements in software

engineering is based upon the form of requirements which is found in hardware requirements or

requirements for other engineering disciplines. This is, for example, a collection of drawings,

descriptions or mathematical formula. These must all be available before 'fabrication' is started.

The Phase system does not preclude these forms of requirements and in fact uses some of these

forms to communicate its requirements.

The Phase specification can exist only within the environment of a computer as it is a

multi-dimensional repository based system. The question occurs as to whether the Phase

7

specification is a requirements specification (of the problem) or a design specification (of a

solution)? A Phase specification is a combination of both. Simon observes that ' ... solving a

problem simply means representing it so as to make the solution transparent' [Simon69] .

Requirements which can be completely determined before fabrication can be called 'closed

requirements' [Blum93]. Closed requirements are well defined and stable. There are many

categories of software applications where requirements can seldom be completely determined

before any form of fabrication . One such category is Interactive Business Information Systems

(IBIS) especially where the application domain is relatively new to computerisation. In these

applications, the requirements can be called 'open' . Open requirements are poorly understood

and dynamic. It is specifically the mIS category of applications with open requirements that is

the prime concern in this study. Whilst requirements may be ill-defined, the technology for

realising these types of applications is relatively mature.

Open requirements cannot be pre-specified. A specification therefore exists only in parallel

with some form of system, either a finished system or a model of a system. A specification in

this circumstance can be considered as 'as built' .

mIS Software

mIS software is a generic term for all software which has the following properties :

• Interactive (as opposed to background 'batch-job' submissions)

• Interface with human users (as opposed to electronic or mechanical process control)

• Storage, retrieval and process of similar 'sets of data' (as opposed to highly

computational)

• Considered 'business critical' (as opposed to 'mission critical'). This means that failure of

the software will lead to monetary loss as opposed to life loss.

mIS software can be considered as having a structure with three main layers. This is

represented in figure 1.2.

8

figure 1.2 The layers ollBIS software

The layers or components of the mIS structure are:

• the Data Structure is the storage of infonuation;

• the Process Logic is the set of operations, which can be perfonned either directly on the

data structure, or in transfening the infonnation between the data structure and the user

interface;

• the User Interface is the two-way communication of infonnation between the software

and the human operators via various fonus of inputs and outputs.

Examples of mIS software are :

• Accounting systems

• Order Processing and Stock Control systems

• Clinical Infonnation systems

• Membership systems

This is by no means an exhaustive list.

Software Prototyping

Software prototyping in its various fonns [Floyd83] has proved to be a major contributor as a

method for refining requirements. The Phase process uses the rapid prototyping [Henderson86]

9

technique 'Front End Simulation' [Christensen et al 83] as a major method of refining

requirements and communicating the Phase specification between developers and users.

A prototype does not follow the same definition when relating to software as it does in other

engineering disciplines. In conventional engineering, a prototype is a 'first of a type'. Typically

this is a product with all the properties of the desired 'final product' but which has been

constructed in such a manner that it is a 'one-ofl' . The prototype is then examined for ways that

it can be mass produced efficiently.

With software, the only concept of mass production is the duplication of the distribution

media. A software prototype, in our sense, is a software model which has all the facilities of

the user-interface but no process logic or data structures. The Phase software prototype is an

execution of the Phase specification. It is concerned only with a subset of the specification : the

user interface. As it will be shown later, for IBIS software, the user interface is seen as the

key component in the specification. Whilst it can be used to determine the relationship between

the 'user need' and the 'design' it is also a major contributor to the definition of the derived

requirements as described in chapter 3 and in [Blum93].

A full comparison of the Phase prototyping scheme, in relation to its effectiveness in

achieving the 'requirements of a prototyping scheme', is contained in chapter 8.

Automated Creation of Programs from the Specification

It is one of the major aims of the software industry to be able to automatically create executable

machine instructions directly from a specification. This can be seen in the trend for higher and

higher level programming languages throughout the history of software engineering. This trend

can be summarised as :

• Original binary input of machine executable instructions;

• Development of assembly languages;

• Development of 'third generation' languages (3GL) and 'high level' compilers;

• Development of fourth generation languages (4GL) incorporating high level data

manipulation intrinsics;

• Development of 'code generators' from formal specifications

10

The fonnat of the specification in the Phase system is particularly suitable for machine

automated generation into third or fourth generation programming languages.

Implementations of the Phase Process

The Phase process has been in use (although initially informally) since 1986. The requirements

specification exists onJy within a computer repository; this insists, therefore, on a Computer

Assisted Software Engineering (CASE) mechanism to maintain it.

Two implementations of a CASE system have been developed, both based on identical

repository structures. There are however slight differences, described below. In the remaining

text, features described and experiences reported will be set in relation to the combined features

of the two systems without individual clarification. The thesis is based upon the Phase theory,

not the implementation of any single software tool.

The first CASE system executes on the Hewlett Packard HP3000 mini-computer using the

award winning, commercially available HPlImage database and HPNplus forms system. Eight

real applications (including itself) have been developed in this way. Four are still in

COmmercial use. This system has a full code generation system, automatically creating

error-free Pascal code from the repository specification. No 'experience' tracking facilities are

included. For distinction, the CASE tool is called the 'Foreman Development System' (FDS).1

The second CASE system, which started development in 1990, executes on high

perfonnance PC Networks using an open database system and internal forms system. Over

fifty real applications (including itself) have been developed in this way. Commercial

installation of the applications number about sixty sites. Each site is configured with between

one and twelve of the applications. Development of the applications are still on-going (as

requirements are still changing). This system has a more limited code generation system but

fun 'experience' tracking facilities. For distinction, this CASE tool is known as the 'Elite

Development System' (EDS).I

;---~~--
FDS and EDS are the commercial property ofThom Micro Systems Ltd.

11

The Role of the Author

Phase is an idea conceived by the author of this thesis. The author also designed the CASE

tools FDS and EDS and was personally responsible for their development. Implementation was

performed by a small team of developers working directly for the author.

1.3.2 Recording Design Experience

Recording design experience is a significant component of the Phase system. Although it is

very difficult to compute an individual contribution of any element of a development process to

the overall result of a software process, intuitively it is felt that the recording of design

experience contributes to about a fifth of the overall benefits .

Recording design experience is a concept whereby decisions which are made during the

development process, and the rationale supporting the decisions, can be recorded in such a

manner that they can be 're-run' at a later stage. The benefits of being able to do this effectively

are enormous .

Let us assume that an application is developed (using any software process) by an

experienced software engineer. An experienced person will make decisions on certain attributes

based upon, perhaps, years of encountering similar situations. Experience, by its definition, can

only be achieved by relating to similar situations and by only two methods:

• Relating to previous situations encountered personally;

• Relating to previous situations encountered by other people

Gathering experience personally can be a slow and painful process. The common phrase

'learn from your mistakes' attributes perhaps a greater learning from bad experience than from

good experience; however, the consequences of bad experiences may be extreme.

Experience is perhaps best learned from other people. It is passed on by speech, reading and

watching. These forms of communication can be extremely slow. An ideal situation, in

general terms, would be to 'wire in' the thought processes and experiences of one individual to

another, thus allowing experience to be transferred directly. This may be possible in the future,

but it is still science fiction in today's technology.

12

Experiments in this field have been conducted along two major fronts . The first is in the

recording of design rationale as decisions are taken~ the second is in the technology of artificial

intelligence where machines are being 'trained' to become expert systems. References to these

techniques are made later in this chapter.

The Phase system takes the approach that 'experience' is held within the development

process itself. This 'experience' is gathered by recording the action taken by software engineers,

and the reasons for the decisions, as they define and refine a specification. This provides an

automated technique which goes beyond simply knowing the final definition of some

specification element but also the reasons why an element has its defined properties .

In later activities, as requirements change and specification elements are re-evaluated, the

experience 'recorded' by the process about the element can be 'played back' to a software

engineer (who may, or may not be the engineer who had been involved previously) who is

considering change.

It will be shown later that this infonnation significantly improves the ability to incorporate

change into specifications and resultant software.

1.3.3 Monitoring and Validating Change to Software

A third contribution of this thesis, which can be considered as a by-product of the data

collection exercise of capturing 'experience', is a method of monitoring and checking changes

made to software. Although this technique has been applied to a Phase development strategy, it

is generic in its use and can be applied to any software process .

Most literature about software quality suggests that well-trained, highly skilled and qualified

staff provide the largest contribution to the quality of resultant software. These personnel are

costly compared to lower skilled and less qualified or experienced staff. The overall personnel

cost of development equals the average cost of the personnel multiplied by the number of

personnel. The economic law of diminishing returns [Smith72] can be used to fix the 'ideal'

number of personnel for a given task. Assuming that this number is fixed, the only methods of

reducing personnel costs is to lower the average cost of personnel . Whilst it would be regarded

as non-viable to reduce the cost of an experienced individual, it is possible to replace

13

experienced individuals with less qualified or experienced individuals, at a lower cost. This

poses the problem of maintaining quality.

The Phase process uses a technique called the Quality Inspection Register (QIR) to provide a

cost effective mechanism for checking and validating work carried out by less experienced

personnel. This is based upon the judgement of experienced personnel with regard to a

complexity of a 'change' task and the perceived ability of a less experienced software engineer.

It provides a demonstratable mechanism for monitoring change and maintaining the quality of

software.

1.4 Structure of the Thesis

This thesis has ten chapters and three appendices. Chapter I is this introduction. We now

briefly present the remaining chapters and the appendices.

Chapter 2. Methods of Working and Related Work. This chapter describes the background

for the methods used to collect and analyse data. It justifies the use of case studies and explains

why experiments are inappropriate for this study. Related work is presented. This falls into

three main categories : similar paradigms, recording experience and general comments on the

design process.

Chapter 3. Software Requirements and Change . This chapter expands the notion of the

software process in order to identify the role of software requirements within the process.

Requirements are classified to provide a definitive understanding of different ways in which

requirements affect a specification. This leads to a conclusion why traditional fonns of

specification can be unsuitable for certain classes of applications.

The notion of 'change' with respect to requirements is regarded as an essential issue in

software development. This chapter identifies why changes occur (using 'real' examples) and

the different timings in the software process where they are introduced. It is shown that with

existing software technology many of these changes do not pose any great problem. There is a

14

significant problem, however, when changes occur after a software product becomes 'mature'.

This sets the focus for the Phase process which is described in later chapters.

A definition of software quality is introduced and an examination is made on ways that

changing requirements affect software quality. The effect on cost of change is also considered.

Chapter 4. Changing Requirements: Two Case Studies. This chapter focuses on change of

software and considers options which may help eliminate or at least reduce its effect on the long

term development of software. This is done in relation to two case studies, one relating to

technological change and one relating to user requirements change. A simple model of the

software process is presented in the conclusion of this chapter.

Chapter 5. The Phase Paradigm. This chapter describes the Phase Paradigm. The Phase

Paradigm consists of a repository structure which is maintained via a CASE tool and a set of

activities which complete the definition of the Phase software process. The repository structure

and the relationship between its components are considered in context of the software

development activity. For comprehensibility, the development process is considered as a series

of 'states', each state representing the current point in the development of an application. At

each state there will be a specification and optionally a software product. The Phase process

activities are described in Appendix B. Examples of Phase software (the software which is

developed using this technique) are introduced.

Chapter 6. Defining and Reusing Phase Experience. This chapter presents how the design

decisions which are made during the Phase process are captured. The capture of design

decisions is based upon the recording of changes to the Phase specification automatically as

they occur. The basic data captured includes when, by whom and how often changes were

made. The usefulness (and reuse) of the information as 'experience' is increased by an order of

magnitude when the recording of changes includes why they were made.

This chapter includes a discussion on the practicalities of collecting the information. The

data collection technique was refined four times over a period of five years. During this time,

15

with each refinement, both the accuracy of the data collected and the infonnation content of the

data were improved.

This chapter concludes with examples of data collected and presents an analysis of how the

infonnation contributes to the overall goal of the Phase system facilitating ease of change. It is

this infonnation which facilitates experience gained during the development process to be

're-run' in the mind of software engineers in a similar manner to 'plugging in' the experience of

one engineer to another.

Chapter 7. The Phase Resistance to Change. This chapter asks a number of questions

about the Phase system in relation to its resistance to change. Many of the questions are

answered using actual experiments perfonned over the past few years. The experiments involve

change of technology and change of user requirements. The success of 'transferring experience'

is also considered.

Chapter 8. A Critical Appraisal of the Phase system. This chapter provides a critical

appraisal of the Phase system. The Phase system can be considered as:

• A requirements analysis tool

• A specification representation system

• A software designers productivity tool

• A software project management system

It will be shown how the Phase system scores against goals defined for each of these 'tools'.

The definition of the goals is taken from literature. Finally a number of disadvantages to the

Phase system are given.

Chapter 9. Summary. This chapter presents a summary of the preceding chapters which

sets the scene and limitations for the conclusions.

Chapter 10. Conclusions. This chapter states the conclusions of this work and identifies

possibilities for further development. Finally it will be shown how it is possible to change the

16

attitude of software developers to accept change by following a software process which does

not aim to complete a software product, but aims at the continual satisfaction of 'user needs' in

this ever-changing engineering technology.

Appendix A. The Phase Repository Structure. This Appendix includes a detailed

description of the Phase repository structure which is included for completeness.

Appendix B. The Phase Development Process Strategy. This Appendix is provided for

completeness. It details the set of activities which form the process model for software

development using the Phase Paradigm. This includes the identifiable milestones, working

practices and set of heuristics.

Appendix C. Acronyms. This appendix lists the abbreviations used in this thesis . Where

possible the use of acronyms has been kept to a minimum for clarity.

1.5 The Topics of the Thesis

The thesis discusses three main topics; the nature of requirements and change; the Phase system

and process; and rel.lse of design 'experience'. To learn about the Phase development process, it

is only necessary to read chapter 5 and Appendix B. The discussion of the technique and

results of reusing experience are contained completely in chapter 6. To understand the

philosophy behind the Phase system and its strengths and weaknesses, chapters 3,4,7 and 8

should be included.

17

Chapter 2

Methods of Working and Related Work

2.1 Introduction

This chapter provides a brief justification for the method used to investigate the impact of

changing requirements on software development and the attitude of software engineers. It will

discuss the two main methods of obtaining data for research: experimentation and case studies.

It will conclude that the most appropriate technique is case study.

A selection of related work is presented in this chapter. After a brief overview, the related

work is discussed in a manner structured according to the main topics of the thesis :

• Changing requirements

• Repository based specification systems

• Program structures

• General studies on design criteria

• Obtaining & encapsulating design experience

• Inspection techniques

The chapter concludes with a short summary.

18

2.2 Methods of Working

According to Pfleeger [pfleeger94] there are two primary methods of collecting information for

the purpose of evaluating new ideas : experimentation and case studies. The significant factor

in determining which method is more appropriate is the available 'level of control' . If it were

possible to say, produce two functionally similar applications, one using the Phase paradigm

and one using a more conventional technique, using application designers with comparable

ability, then the level of control would be high and an experimentation technique would be

appropriate. This would allow a direct comparison between the results of two 'experiments' in a

controlled manner.

Phase was developed within a commercial environment where it was not cost effective to

develop software purely for research. Although the development activity was guided by the

author, each application developed had to be commercially acceptable. This has resulted in the

chosen technique for capturing data relating to development being via case study. The

information is not any less valuable, however it must be acknowledged that any conclusions

made, must be placed within the context of the environment appropriate to the case study

software development company. This can be summarised as a company with between 10 and

15 full time development staff, each with software development experience ranging from

between 2 - 10 years. Some senior members are graduates, some junior members have no

formal academic training in software development.

2.3 Related Work

The "impact of changing requirements" is considered a very important issue and one which is

attracting attention here in the mid 90's. In 1993 it was the main topic of an International

Conference [RE93]. At this conference, strong arguments were proposed [Harker93 et all that

it was far too simplistic to assume that requirements could be captured at the beginning of a

project. They argue that requirements can only be defined through a process of examination

and interpretation, and emerging or changing requirements will be an outcome of greater

19

understanding of the problem. This simply highlights the case presented by Brooks as far back

as 1975 [Brooks75] and again in 1987 [Brooks87].

2.3.1 Changing Requirements

DTI / Proteus

One of the consequences of this conference however, was the instigation of a DTI funded

investigation into the impact of changing requirements [proteus93]. The Proteus project

included a series of case studies set up in order to analyse how organisations view the

requirements change problem, and to see what organisational structures, procedures and

software tools they use to cope with requirements change in ongoing projects . The findings of

this investigation suggest that current technology tools tend to be more concerned with the 'cost

of change' as opposed to 'management of change' or 'damage limitation' tools which are the

'real need'.

A very recent report [Chudge96] presents a model of the problem of changing requirements

in terms of responsibilities and communication between supplier (the developer) and the

customer (the user) using some of the interim results of the Proteus project discussed above.

The suggestion is made that the basic relationship between 'partners' in a software development

project is one of distrust, especially when it involves the 'costing' of changes in what was

originally a fixed price contract. Part of this distrust is a consequence of the 'fine line' between

what can be considered as further refinements of original ambiguous requirements and actual

changes, especially in the latter stages of a commercial software development project.

Parnas

Pamas [pamas79] is very concerned with changeability of software. He describes all changes

as extensions and contractions and proposes a structure of software based upon minimalist

subsets. This work tackles the problems of 'change' in a different manner to the Phase system

as it is still concerned with traditional methods of specification and structures of programs. The

use of minimal subsets is an extension to the concepts of structured programming.

20

2.3.2 Program Structures

Information Hiding / Object Oriented Systems

It is widely recognised that 'modem' program structures have had a significant contribution to

the impact on the quality of software during program maintenance. In particular the concepts of

'infonnation hiding' [pamas72b] and Object Oriented Systems [Booch91] have provided

perhaps the most significant improvements in recent years.

Although both of these topics make significant contributions, this thesis does not discuss

either of them in any detail. This is due to the vast quantity of discussions available in other

literature .

2.3.3 Repository based specification systems

Blum / Tedium

Blum [Blum91] [Blum93] presents a paradigm for representing requirements in a non

traditional manner. He justifies the 'as built' specification approach as being appropriate for

systems with open requirements and provides this fonn of specification in the Tedium system.

The Tedium development tool has a similar conceptual structure to the Phase system which is

summarised in Figure 2.l. This diagram is reproduced from [Blum93].

Application
Ki10wIedge

AppIlaation-ct.ee
kriOwl&:lee

ner Tedium Software-tool
~ ~ ~ Interface (Generatore)

1
Inte~

r-
--. ImplemmTtatlone t:=!--T1l m arget

I ~[-Machl
h': .. (·';'f.t~.;;:·."·('·''':;' ;;;;:.,.:..!

figure 2. I The Tedium System

21

The Tedium system uses an Integrated Engineering Environment to allow a designer to

record 'application knowledge' into an 'application database'. This information is used by a

number of generators to generate both documentation and implementations on different target

machines. The Phase system differs from the Tedium system in the form of the application

database. The Phase system contains more specific types of entities (as detailed later) than the

Tedium system which is based around a system more akin to a higher level procedural

specification language.

2.3.4 General Studies on design criteria

Reeves / Goose

The underlying philosophy of the Phase process which is presented in chapter 4 is that the

development follows a pattern consisting of a series of 'states'. The process of development is a

process of refining and modifying these states. Each state is broken down into a series of

entities or components. Conceptually, thinking about the requirements and design of a state

being the collection of requirements and designs of the components making up the state, is

similar to an idea discussed in the GOOSE system by Reeves et af [Reeves95]. This proposes a

design frameworlc which is native to system designers. The state of a system is denoted by a

D-Matrix which includes specific (although not process specific) entities which reflect the

behaviour, functional , structural and data modelling characteristics of a design and an end

product. The concepts behind this is one of capturing a non-implementation specific

specification in a form which can be validated against requirements and communicated to other

designers.

Yale University

Two experimental studies in an associated topic have been performed at Yale University. Both

of the studies are concerned with the 'thought processes' of maintenance programmers as they

maintain software with which they are unfamiliar. The first, [Letovsky87] is concerned with

the questions a maintenance programmer asks himself as he tries to become familiar with the

program code and concludes that there are regular patterns to the way in which a maintenance

22

programmer will learn about the design. Once this standard pattern of 'self learning' has been

determined, it can be used as a template for documentation.

The second study [Littman89] et al is concerned with the mental model that a maintenance

programmer creates when preparing to perform maintenance on a program with which he is

unfamiliar. These mental models relate to the structure of the program and the style of the

programmer who wrote it. The conclusion of these experiments is that a maintenance

programmers who takes the time to create full mental models will perform maintenance that is

less likely to interfere with the quality of the software, than a programmer who only creates a

mental model on an ad-needed basis .

2.3.5 Obtaining and encapsulating design experience

Potts & Bruns

The Potts and Bruns [potts88] [potts89] method of capturing and reusing design decisions is

relevant to the discussions in chapter 3. This work captures design deliberation and considers a

design history as a network consisting of artefacts and deliberation nodes. Artefacts represent

specifications or design documents; deliberations represent issues, alternatives or justifications

arising from these artefacts. A fundamental problem with this work is the practicality of

collecting this information and the analysis of the information as 'experience'. This work is

subsequently expanded by Lee [Lee91] where explicit goals are included in the representation .

Although this does not attempt to solve the data collection exercise, it adds significant

improvements to the analysis.

Design Patterns

Design patterns is a concept recently introduced to the software industry by Alexander

[Alexander92]. Design patterns is concerned with identifying and documenting features

common to any sort of design in a manner that they can be reused as building blocks. Whilst

this approach is commonplace in other engineering disciplines, this is the first time that tangible

'building blocks' for design have been documented. This work has been further enhanced by

23

[pree94] and [Gamma93] et al. where the building blocks are seen as a method of passing on

experience from designer to designer.

2.3.6 Inspection Techniques

Fagan Inspection

The Quality Inspection Register contribution to this thesis for maintaining software quality with

less-experienced personnel is similar in principle to the Fagan inspection technique [Fagan77]

for checking program source code although in the Phase system it is not source code which is

being inspected but changes to specifications.

2.3.7 Summary

The above list of related work is by no means exhaustive however they are major contributors

to the topics covered in this thesis.

24

Chapter 3

Software Requirements and Change

3.1 Introduction

Software requirements and their definition are commonly regarded as the most difficult element

in software engineering. This chapter describes the activities of any software process in order

to provide a context for requirements definition within the process.

Requirements are not homogeneous and a number of classifications of requirements are

discussed. This provides an understanding of different types of requirements and leads to a

conclusion why traditional fonns of specification can be unsuitable for certain classes of

applications.

There are elements of software engineering which are more complex than their counterpart

engineering disciplines. These are described to indicate why software engineering is more

susceptible to change than other forms of engineering. In software engineering, it is not simply

the form of the changes which are important but also the timing in terms of the point in the

process when they are introduced. Technology exists to deal with certain types of change at

certain points in the process. These will be presented. The major problem with changing

requirements occurs when a software product is considered mature.

A definition of software quality is introduced and an examination is made on ways that

changing requirements affect software quality. The cost of change is also considered.

25

3.2 The Software Process

The software process has been introduced as a series of activities which transfonn a 'concept' or

'need' into a software product and through to product retirement. This process is often referred

to the Software Life Cycle. A simple definition is given below. This definition is by no means

absolute and the boundaries between the activities are not always clear. The purpose of this

description is simply to place the requirements definition into context within the whole

development process. The standard process consists of five activities : analysis, design,

implementation, testing and maintenance. [IEEE91]

• Analysis is the study of a problem (or concept), prior to taking some action. During this

activity the properties which the software has to possess are established. This activity

defines what the software must do. The result of this activity is the requirements

specification.

• Design is concerned with how the system is going to accomplish what was defined

during the analysis activity. This is a two stage process. The first is where the overall

architecture is developed as a high level model of the solution. The second concentrates

on detennining the data structures and functions and how they are going to be

implemented. The design activity uses the requirements specification detennined from

the analysis activity as the starting point and as a result produces a design specification.

The differentiation between analysis and design is not always clear. Some software

processes (including the Phase process) combine analysis and design activities into one.

• Implementation is the activity which transfonns the results of the design phase into

instructions for the computer by using a 'programming language'. In the Phase system

(and some others) this activity is partially automated by the use of computer technology.

• Testing 'demonstrates' that the programs written in the implementation phase satisfy the

requirements specification. After successful testing the program is delivered to the users

and 'commissioned'.

• Maintenance represents an activity which continues from the point of delivery until the

point of retirement of the product, making changes to the product as a result of incorrect

26

implementation or changes to the requirements specification. As it will be shown below,

during this time, requirements will change and it is these changes which pose the greatest

problem for software developers. In this text, software which is in the maintenance

activity will be called 'mature' .

There are several methods to tackle each activity and move between activities. Each

documented set of methods forms a software process. Some processes are relatively simple,

other significantly complex.

The first and simplest of these models is known as the sequential waterfall process. This

was first introduced in [Benington56] and presents the activities as discrete and followed

sequentially. A revised process which incorporates feedback and allows iteration to previous

activities is more commonly considered as the first real software process. This is described as

the waterfall model in [Royce70]. By showing that specifications and implementations are

inevitably intertwined, Swartout and Balzer showed how this model was too simple for 'real'

development [Swartout82] .

Many refinements have been made to this process, the most popular being the spiral model

[Boehm86] which has the same basic activities as the waterfall model but permits continual

interleaving of the activities as identified by Swartout and Balzer. Here if the implementation

activity requires alterations to the specification, the design activity is re-opened, the design

modified and the changes propagated throughout the activities as appropriate. The Phase

process refines the above approaches even further by cyclically iterating the activities.

3.3 Software Requirements Classification

Software requirements are not homogeneous and may be categorised in many ways . This

section presents four classifications of requirements . These classifications are not mutually

exclusive, some real requirements can be considered under more than one classification. In

addition, it is recognised that other classifications of requirements may be equally valid. These

classifications are :

• The Source of Requirements

27

• The Properties of Requirements

• The Importance of Requirements

• The Character of Requirements

For the purpose of this text, the set of all requirements is known as the Global Requirements

for software.

3.3.1 The Source of Requirements

Software requirements have two sources. One source is the user (or groups of users), the other

source is the technology on which software will be implemented.

User requirements can be considered as a 'wish list' relating to desired properties for the

software to achieve the need. The remaining three classifications of requirements are all

sub-classifications of user requirements. In this text, user requirements will be called

'requirements for the software'. The term 'user' in this instance does not necessarily indicate a

single user but a 'class' of users. This class of users may include users who will eventually use

the software (,end-users'); users who may simply be domain experts; or any person with an

input into the requirements which can also include the developer.

Technological requirements are imposed by the environment surrounding either the

execution of the resultant software or the environment of the development process. For

example, the execution of the software is constrained by Operating System (OS) limitations e.g.

memory, resource availability; or peripheral specifications e.g. screen size or colour

availability, printer feature constraints. The development process requirements may state the

need for recalculation or data repair routines. In this text, technological requirements will be

called 'requirements of the software'.

3.3.2 The Properties of Requirements

The most common division of user requirements is with respect to the system properties they

specify. They are 'functional' and 'non-functional'.

Functional requirements establish the behaviour of the system. They establish the

objectives that the product is to meet or the functions that the product has to provide. Generally

28

functional requirements can be considered in a logical context and can be specified fonnally. In

the Phase system, functional requirements are defined in tenns of 'entities' and the 'processes'

affecting the entities. In this sense a comparison can be made to the Object Oriented (00)

tenninology where entities are 00 objects and processes are 00 methods .

Non-functional requirements define the conditions that the product must satisfy that are not

concerned with its behaviour. For example, the response time from user input to corresponding

output; the colour of menus; the standardisation of report headings. These requirements cannot

be considered in a logical context. In the Phase system many of these requirements e.g .

colours, structures (menu and report), have been recognised with all options to these

requirements available as preferences.

Functional and Non-functional requirements may be constrained by limits imposed by

external factors. For example, the functional requirement to calculate maternity pay in a payroll

system is constrained by the fact that it can only apply to a female employee (by current UK

regulations) . The non-functional requirement relating to speed of execution of a system will be

constrained by the limit of the clock cycle of the hardware upon which it is executed.

3.3.3 The Importance of Requirements

This classification organises requirements according to their relative importance. Three levels

are defined . These are Essential, Derived and Implicit.

Essential requirements specify all the properties of the software that must be included for the

product to be acceptable. According to (Lehman80], essential requirements are never complete

as completeness would over specify and consequently constrain the freedom of design. In the

Phase system, essential requirements are all specified in relation to the user interface.

Derived requirements specify features derived from the essential requirements. Derived

requirements are never explicitly included in a requirements specification, including them

would make them essential. In the Phase system, data table specifications are derived from the

user interface specifications.

ImpliCit requirements are assumed to be a by-product of 'sound engineering practice'. There

are always many requirements in this category, only those that demand particular attention are

29

mentioned. In these instances they are promoted to essential . Implicit requirements often pose

a particular problem: as they are never specified it is important that all concerned (the user and

the developer) have a similar understanding of implicit requirements. In practice this is

constrained by the different levels of knowledge about the application domain and the

capabilities of the software in the appropriate technology. In the Phase system, by the nature of

the maturity of the process, the capabilities of software can be demonstrated in advance. This

provides some degree of coherence in the understanding of implicit requirements.

In some way, implicit requirements exist before any project is initiated. Essential

requirements are the components of a specification which are found in 'traditional'

specifications. Derived elements are formulated during the design activity .

3.3.4 The Character of Requirements

The final classification scheme qualifies the character of requirements. Two of these definitions

have been described in the introduction to clarify the bounds of the application class for which

the Phase process has been developed. These are Closed, Open and Abstract [Blum93].

Closed requirements are well defined and stable. They can be completely determined before

fabrication commences. In many engineering disciplines there exists a notation in which to

express these requirement e.g . a mathematical notation can be used in mechanical engineering

applications. Due to the fact that these requirements can be specified precisely, the greatest

uncertainty in the development process is the ability of the final product to meet these

requirements. The Phase system can be used to develop applications with closed requirements,

however the potential of the Phase system is not realised in this instance.

Open requirements are poorly understood and dynamic. They cannot be determined before

fabrication (of some form) commences primarily due to the immaturity of the current level of

computerisation in the product domain in which the product is being developed. Due to the fact

that these requirements are uncertain and dynamic, the greatest uncertainty in the development

process is the ability of the final product to achieve the satisfaction of the 'real' needs of the

software. The potential of the Phase system is exploited when developing products with open

requirements.

30

Abstract requirements are concepts which have no concrete realisation, for example 'safety'

or 'security'. These concepts may be both functional and non-functional and a representation is

required to allow analysts to reason about them. The greatest uncertainties in the development

process are how effectively the representation scheme captures the concept and how thoroughly

the representation is investigated. The Phase system has no facilities for representing abstract

requirements.

3.3.5 A Requirements Classification Relationship Summary

Figure 3.1 summarises and demonstrates the relationship between the four classifications of

requirements.

Global Soft;ware Requirements

Source

Requirement5 for Soft;ware

Functional Eseential Cloeed

Non Functional Derlv~ Open

Implicit Abetract

Requirements of
Soft;ware

figure 3.1 ReqUirements Classification Relationship Summary

3.4 Complexity of Software Requirements

The problems inherent in defining requirements are well documented [Rowen90] [Royce70].

Whilst this can be true of almost any engineering discipline, software is typically regarded as

having four 'more difficult than usual' properties. Brooks identifies these as the notions of

complexity, conformity, invisibility and changeability.

31

One of the main reasons for complexity in software is the lack of repeating elements. Unlike

electronic, civil and mechanical engineering disciples, large projects are not made up by

repeating small 'building blocks' a large number of times. Software elements are interrelated in

a non-linear manner which means the complexity of a project increases at a much greater rate

than that of the physical size of the project.

Conformity of software adds considerable complexity to a system. This relates to the

number of interfaces in which a system tends to be involved. The user interface may have to

conform to the current 'flavour of the month', ranging from simple scrolling terminals to

complex Graphical User Interface (GUI) systems for a similar function. Interfaces to special

hardware systems or connected software modules impose rigorous structures which may not be

intrinsic to the development structure, thus adding considerable complexity.

Software is an invisible structure. There are numerous different representations of different

parts of software, e.g. Data Structures, Flow Diagrams etc. Each representation only views

software from a single angle. Overlaying each different representation on to a single model

which can be viewed or visualised before production or design is impossible. The overall

complexity is significantly more than any human can contain. In order to obtain usable models

it is necessary to abstract and simplify the complexity~ however, as the complexity is the

significant factor in software. abstracting in this way can be detrimental to the process.

The fourth factor present in software, and the one on which this thesis focuses is

changeability. This is not unique to the software industry as entities in almost all engineering

disciplines require change; however, there is a (user) perceived ease with which software can be

changed which encourages both requests for change and the unwillingness to recognise a large

cost associated with a change. It is readily accepted however that changing physical structures,

houses, circuit boaIds etc. will require extensive replanning or retooling and consequently

encounter the much higher cost. This is primarily due to the invisible nature of software.

With all this complexity, is it ever possible to produce a requirements specification which

contains all the 'user needs'? Brooks [Brooks75] states that it is really impossible for a client,

even working closely with a software engineer. to specify completely, precisely and correctly

32

the exact requirements of a modem software product before trying some versions of the

product.

3.5 Why do Requirements Change?

Software requirements will change with time. There are five major reasons identified why

requirements for software change. These are :

• If the real requirements are not satisfied ;

• If the real requirements are satisfied;

• A software system will change the environment in which it is used;

• The user of the software changes;

• Computer technology will change.

Real Requirements Not Satisfied

If delivered software does not satisfy the real needs of the user, regardless of the reason, the

requirement for change is obvious . In traditional software engineering, the problems could be

attributed to any of the process activities; the analysis could have been inadequate, the design

failing to meet the requirements, or the implementation failing to meet the design.

In the Phase process, as implementation is a proven computer task, the only place for error

is during the combined analysis/design activity. That has happened during the development of

Phase applications. One example that is prominent, was the development of a retailing system

for coal merchants. In this instance both the user and the developer were 'higher management'

who, although they had been involved in their respective businesses for over fifteen years, were

far removed from the actual day-to-day tasks in the application domain.

Real Requirements Satisfied

The user requirements will change once a system has been 'used'. If a software product is found

to be successful, people try it for new cases at the edge of, or beyond the original domain

33

[Brooks87]. The pressures for extended function come chiefly from users who like the basic

function and invent new uses for it.

A practical example of this recently occurred in an application for an 'Oil Industry' service

organisation who had a need for a 'fabrication-shop job costing' system to monitor costs and

charges for work. As soon as it was commissioned and the basic job information entered, the

potential of the system for shop-floor scheduling became apparent. The data already entered for

jobs included relevant fabrication start and finish dates and a breakdown of resource allocation

for costing. This information was so relevant to a planning system that the users tried to use

the information for the purpose of scheduling and work planning. At this task, the software was

poor (it had never been designed for this purpose) and the general satisfaction of the user was

diminished. Changes were made to the software and as a result, both planning and costing

functions are equally accepted.

Software Changes Environments

Programs interact with their environment and change the original environment by their

operation. This has the consequence that user's expectation of satisfactory performance changes

as he is exposed to and uses the software system [Giddings84]. Even before delivery, there is a

passage of time between requirements generation and system delivery. As users gain more

insight into the planned environment their goals and expectations change.

Recently an application was being commissioned for a bakery company with many shop

retail outlets. The current 'real problem' was the quick and accurate analysis of daily sales data

in order to make better management decisions regarding manufacturing quantities for products

with such a short shelf life. Collecting the daily sales figures was not a problem as they were

submitted on returns to head office at the start of every day. The application commissioned

matched the requirements in every way. Shortly after commissioning however, the user became

dissatisfied : although the analysis of the sales data was reduced from hours to seconds, the data

entry time of the sales returns had not changed (as there was no requirement for change at the

time of the analysis). It took one hour every day to enter the returns for all twenty sales outlets.

Using the 'old' system, this was only 20% of the total sales analysis time, with the new software

34

it was now 99% of the time. A requirement for change for automatic data entry from the sales

tills via modem resulted as a consequence of installing the software.

The User of the Software Changes

All software, like everything else, is subject to the human characteristic of individual taste .

This is excentuated if the software is particularly 'human oriented' (like ffiIS Software). Even

requirements which are defined by legislation still have elements open to interpretation, for

example, screen layouts and report styles. These cosmetic entities are subject to individual

appreciation and, like an opera, does not have universal appeal .

Changing users therefore has a significant impact on changing requirements. There are three

major instances where this is highlighted.

The first is where software is aimed at the mass-market as a 'standard package'. In this

instance there is an unknown quantity of users with unknown tastes and preferences. Software

aimed at this level (or ending up at this level due to popularity) will have to be suitable for the

general case in teImS of behaviour and 'middle of the road' in teImS of non-functional design.

Designing software like this inevitably leads to a 'Jack of all Trades, and Master of None'

syndrome leaving perhaps no user completely satisfied without continuous (although usually

minor) modification for increased flexibility. An example of this was the Elite Payroll software

module which has an installed base of 31 sites. Although the core requirements of payroll are

defined by legislation, 29 of the sites required at least I modification to enhance user

satisfaction. The majority of these changes were cosmetic, usually to reports. [It could be

argued that these changes were not absolutely necessary however for commercial sense,

incorporating these changes gave the client a greater feeling of 'Value for Money' at the prices

paid.]

The second main reason for change of users is when the 'user organisation' has a culture of

change. A major example of this is government institutions where users are elected or

reallocated on a regular cycle. In these instances the users will change (as will the legislation

based upon the different government manifestos) every few years. This was highlighted in the

Elite 'Homeless Persons' software module used by local councils to maintain registers and

manage the waiting lists and housing allocations for homeless people. The software had

35

maintenance performed in the period April-May every two years - the same period where

departments redeployed personnel as part of a continuous staff training and 'reshufile' program.

Even if a company does not have a culture for changing personnel on a regular basis there

will always be changes relating to either promotions or employees changing jobs. This is the

third major reason for change of users. This was highlighted during one Phase installation

where the main user was promoted two weeks before delivery of the software. His replacement

as head of the implementation team had very different ideas on the solution. As a result the

project was eventually abandoned.

Computer Technology Changes

Requirements of the software change according to the current technology of the hardware

platform or operating system. Changes in hardware technology have advanced at the fastest

rate of any engineering discipline [Brooks87]. Even if user requirements for software change

very little, the machine vehicle for which the software was first written will change, be it new

computers, or at least new disks, displays or printers as they come along.

An example of this is the subject of the first case study, presented in chapter 4.

3.6 When do Requirements Change?

The timing of introducing requirements change has a major impact to the complexity and cost

of incorporating these changes. The cost will be discussed later in this chapter.

From personal experience, changes introduced to software occur in different ways at three

definitive points in the life of the software. These are:

• during the main analysis and design activities;

• during the commissioning activity;

• after delivery and during the maintenance activity.

During Analysis and Design

It has been suggested by Giddings [Giddings84] that at the start of a software development

project, the user only has a vague idea of requirements. The requirements are open. At this

36

stage, requirements are conceptual, lack detail and do not fonn a precise, well thought-out plan

where the implications on the surrounding environment have been properly considered .

Requirements at this stage do not so much change as go through a process of refinement.

This is the basis of the Phase process and many examples could be discussed. One project,

concerned with software for housing associations has a total timetable covering three years.

This project was divided into six smaller applications. The 'users' in this instance were domain

experts but had little knowledge regarding the power of computerisation. Analysis and design

meetings were significantly longer than with more computer-literate users. At the start of the

project there were no written requirements.

After the first analysis meeting, six pages of notes were taken and the application was

conceived as 'easy'. At the second analysis meeting, based on a refinement of the first, an

additional eighteen pages of notes were taken and the application conceived as 'difficult'. The

third had an additional five pages of notes and the fourth an additional two. The overall

functionality of the software (its scope) did not increase during this time, the increased

specification related only to the level of detail defined .

During Delivery

When a project is being commissioned, actual changes can be more easily identified. Typically

they are in the form of additional points raised, based upon data which is at the periphery of the

existing requirements. As the requirements and/or design of a system are more fully defined

and understood, time and attention are available to consider examples of data which will not

exactly fit the system, but are so close that (seemingly) minor changes can allow them to be

incorporated.

This is fuelled by three elements :

• As mentioned earlier, due to the invisibility of software, true understanding of a system

is only achieved when the system is delivered. At this point the concept has a tangible

representation;

• Real data contains a much wider variety of examples than that usually considered in the

earlier stages;

37

• A wider variety of users are exposed to the software, each bringing a different viewpoint

and/or perception of how it should be.

To find an example of the first type of element it is necessary to return to development prior

to the Phase process. During the late 1980's before the creation of the EDS, development at

TMS on micro computers was more akin to the traditional software processes. One small

system, for a shipping company breaking into the property market required an application for

maintaining infonnation on leased property. A full analysis activity was performed and a

detailed requirements specification was prepared. This was accepted by the users who appeared

at the time to understand it. When the software was commissioned it was rejected by the users

as the 'conceptual picture' of the software in the minds of each user was different from the

application produced.

The problem of data has manifested itself a number of times. One example relates to a

specialised accounting application, created for a firm of accountants. This was developed

using the Phase process and resulted in a 'near perfect' specification. The problem related to an

implied requirement, the size of the data field for 'money' type data. The very first 'real' data

could not be entered, the assets of the 'client company' was £3,000,000,000.00, the maximum

size of the field was 10 characters.

Introducing new users to a system as it is being commissioned poses perhaps the greatest

source of requirements for change. This has been discussed in detailed earlier in this chapter.

Two additional examples are prominent:

The first relates to a project for a fabrication company who have multiple plants around the

world, each plant has an identical manufacturing process. The application software was

designed in conjunction with one of the (geographically local) plants with the intention of

providing the same software for all the other plants. The software was accepted by the local

plant and rejected by all the others.

The second example relates to a firm of electricians with a bead office and two subsidiary

offices. The application for a purchase ordering system was designed in conjunction with the

department at head office with the intention of the software being installed at a subsidiary office

with the premise 'that is how it (the way in which head office wanted the buying to be done) has

38

to be done' . Even with extensive changes during commissioning the application was made

redundant after one year.

After Delivery, During Maintenance

Changes to requirements occur, after the software has matured, largely as a victim of its own

success. With the completion of a project, consideration is given to the 'next phase'. This may

be in the form of postprocessing of data output from the system or preprocessing of data input

to the system. Whilst it can be argued that quality software should be regarded as a black box

and not affected by changes in the inputs and outputs, it is extremely likely that

• the form of the inputs or outputs will change to cater for different module interfaces

• additional information will be required to be collected from the inputs, to be passed to

the outputs simply for the postprocessor

In addition, changes to the user interface, hardware or operating platform may change

without a change in functionality at all.

An example of this type of change is the subject of the second case study in chapter 4.

3.7 Requirements & Software Quality

The quality of software has two major definitions. The traditional image of software quality

relates to the physical build of the software [Daily92] . In this definition, quality software

would have the characteristics of being well structured, properly commented, fully documented

etc. The second definition [Floyd83] [BTRL90] [Agostoni88] relates the quality of software to

the effectiveness of the software in meeting the users requirements. In this document the

quality of software will be related to the ability of the software to maintain a satisfaction of user

requirements as changes (both user and technological) occur without having to start afresh with

each generation

It has been argued [Floyd83] [BTRL90] that the quality of software can be thought to be

deteriorating duriIig maturity. Based upon the concept that software quality is related to the

'closeness' of software to its requirements, the fact that mature software is primarily static and

39

that requirements are changing, inevitively leads to the gap between software and its

requirements becoming wider. The concept of the "Software Death Cycle" [BTRL90] is an

interesting study concerned with monitoring this gap and measuring the cost-effectiveness of

standard maintenance techniques. It proposes a method for determining when software should

be considered as atthe end ofits useful life.

3.8 The Cost of Changing Requirements

It is common belief that 70% of the total costs of software are incurred after it has been

developed. This cost is spent in the correcting of errors and in the enhancement of the software

to meet needs which were not identified before delivery, either due to bad analysis or the

essential nature of change as previously discussed.

This poses two major problems:

• It has been shown that the cost of software change increases ten-fold with each activity in

the software process [Boebm88]. The fact that 70% of change is during maturity results

in a real cost being orders of magnitude greater than costs which could be encountered in

theoretical development and cost estimating.

• Commercially, although perhaps only 30% of effort is required before delivery, typically

80% to 90% of the software will be charged. This has the effect that when 70% of the

effort is being expended on software, there is an income of only 10% to 20%. It would

not make commercial sense to 'admit' that this 70% of work will happen after delivery .

Whilst this may show huge profits on software sales, the overall margins are significantly

lower.

These two factors contribute significantly to the 'bad reputation' generally associated with

the software industry as a whole.

40

3.9 Current Technology

This section summarises the current technology with respect to specifications and methods of

dealing with changing requirements. It is presented in general tenns, summarising the typical

industrial case only and included simply as an overview.

3.9.1 Specification

Typically requirements specifications consist of diagrams (e .g. data flow, entity relationship),

fonnal and logical proofs and subjective statements. Only user requirements are included,

technological elements are implied. There is a clear distinction between the functional and

non-functional requirements. A traditional specification identifies only the essential

requirements and identifies them as closed. Many real applications require complex products

which intrinsically include requirements which are open and abstract, these are generally

ignored. The choice of which requirements are explicit, derived or implied is subjective, the

selection being more akin to perceived current day priority than product-specific needs.

Specifications may be maintained manually or with the help of CASE tools. Even in the

latter instance, specifications are 'separate' from executable programs. This leads to 'drifting'

between specifications and programs. The more mature a program, the less likely that changes

made will be reflected in the specification, primarily due to the costlbenefit ratio of updating

specifications, and time pressures to install software. This in tum, leads to the only accurate

specification of a software product being contained within the complexity of the program

source code only.

This leads to the serious question of the suitability of traditional specifications to meet its

objectives within the role of developing quality software.

3.9.2 Dealing with Change

Change During Design

Many existing analysis techniques which are successfully in operation, iterate processes of

refinement until a more concrete requirements definition can be fonned . This is more concrete

41

in the minds of both the user and the developer. One of the most effective techniques is based

upon forms of software prototyping [Floyd83] which will be discussed in greater detail later in

this document.

Personal experience in commercial mIS software development using software prototyping

have resulted in a pattern where a 'usable' requirements definition is generally available after the

third iteration. In this sense, 'usable' equates to a cost effective balance between 'gains & effort

(cost)' of additional iterations. An intuitive representation of refinement of requirements is

given in the following diagram. This shows how each iteration correlates to the closeness of

the requirements definition to the actual user needs.

10010
IS)
~
t:
to
E
~
:::l
~
to 50% l\l

't
IS)
IS)
to
t:
to
IS)

C
U

2 :3 4 5 6
IteratIon

figu.re 3.2 Requirements refinement with successive development iterations

At this stage it is not relevant to discuss the form of this prototyping technique or why it is

possible to refine requirements in this way in three steps. Suffice to say, methods exist which

cope with this type of change.

Change During Delivery

Minimising the effects of change at this stage of the development process is largely down to

management techniques and being aware of the problems. The three major elements discussed

previously all have fairly straightforward answers (in theory).

42

Reason for Change Theoretical Solution

Understanding a system only after having Rapid Prototyping techniques help reduce this factor
hands on experience by allowing users access to a form of the software

earlier in the development cycle

Real data having a wider range of values Explicitly analysing real data reduces this problem
that typical test data

Introducing new users viewpoints into the Involve more users earlier. The use of rapid
system at a later stage prototyping helps here.

figure 3.3 : Dealing with change during the implementation phase

Again at this stage it is sufficient to note that the impact of these changes can be minimised.

Change During Maturity

Changes associated with software during the period of maturity pose the greatest problem of the

three types of changes discussed. To summarise again, the elements of this problem are :

• Changes in technology (User Interface, Operating Platform etc.)

• Integration to new add-on modules and subsystems

• Changes due to environmental changes

• The effort in understanding an existing program architecture

Change at this stage is clearly an essence of software engineering, the consideration of

which seems to have been relatively ignored in the literature. Perhaps this is one of the reasons

why progress has been slow.

It seems that change at this stage is left as a function for a maintenance programmer who

typically was not a member of the original development team and therefore possibly least

qualified or competent to consider all the implications of change; or systems become discarded

for new replacements systems which (depending upon any salvageable elements) cause a costly

duplication of previous effort without an increase in functionality.

43

3.10 Conclusions

Whatever the individual details of current development process models, the basic principle

exists of a 'requirements' which can be determined and subsequently transformed by some

(process dependant) method into a software product.

It is proposed that these software processes are fundamentally wrong for developing quality

software as they lead only to 'short term' solutions, principally because of their lack of due

consideration to the inevitable continual change of requirements .

Change is an essence of software engineering, the ignorance of which leads to unsatisfied

users and exasperated software engineers. The only way to alter this negative attitude is to

recognise the importance of changing requirements and develop software using a process which

focuses on changing requirements as a central issue.

One such process is the Phase process.

44

Chapter 4

Changing Requirements: Case Studies

4.1 Introduction

Two case studies are presented as a foundation for the Phase paradigm which is described in the

next chapter. These case studies provide objectives for improved software processes and justify

the structure of the Phase paradigm. Understanding the culture of 'change' is the first step in

controlling it.

In previous chapters, the essence of changing requirements In relation to software

development has been introduced. In particular the problem of change of a mature software

product is highlighted as a major issue in current software development technology. The reason

for change of a software product comes both from the need to keep up with technological

'improvements' and the need for additional functionality .

This chapter is divided into two sections each with a corresponding case study. The purpose

of the first case study is to illustrate how, in a commercial environment, computer technology

has forced software to be updated over a period of approximately ten years. This case study

examines how one commercial suite of software programs developed to incorporate

technological changes. This actual development strategy is related to an 'ideal' development

strategy and observations made on the differences. An analysis of these observations help

formulate a theory of how to migrate software for technological reasons.

45

The purpose of the second case study is to illustrate how, in a commercial environment,

changing user requirements can impact a software product. This demonstrates limitations in

existing development practices and provides some basic ideas for an improved software

process.

Conclusions from the case studies are used to highlight essential elements of software

development which are commonly excluded from current software process models. A simple

abstract model of the software process is described which explicitly incorporates these essential

elements. This leads to the underlying philosophy of the Phase paradigm.

4.2 Case Study #1 : Change relating to Technological Factors

This case study is concerned with the impact of technological changes on software and is used

to illustrate the essential difficulty in keeping software technologically 'up to date'. In order to

determine how technology, relating to small mIS software products, changed over a period of

ten years a study was made of the development strategy of a commercial software development

company. In this study the reasonable assumption was made that the software products

developed at any period in time reflected the requirements of the commercial market.

Figure 4.1 illustrates a 'product history' showing the major versions of an Accounting and

Costing package over a ten year period from 1981 to 1991.

'80 '81 '82 '83 84 '85 '86 '87 '88 '89 '90 '1 '92 '93 '94

figure 4. f : History of product development

46

The primary change factor in this instance is technological change concerned with hardware

platform and operating system changes. These are summarised below.

Version Reason for Change

R4 Original commercial version. Written in Interpreted BASIC.
Single User. OS limits program to 32K.

R5 Written in compiled BASIC : never released commercially

R6 Compiled BASIC using ASCII file structures. Multi-user
capability .

R260 Mini computer platform using relational database. True
multi-user

R3000 Small Mainframe computer using relational database. True
multiuser. Power for large number of users and database
transactions

R7 Written in PC 4GL using 'simple' database files. Language
became obsolete

R8 Re-write ofR7 in more powerful PC language with open
database structure files

ELITE Requirement for modular design for larger applications .
Colour standard interface.

It is important to note that the overall functionality of the package did not increase

significantly during this time. The general requirements of an accounting system are

reasonably well defined. What did change as an impact of changing technology, from a user

viewpoint was primarily :

• The overall structure of the program

• The form of the user interface

• The increased reporting capabilities due to better integration and accessibility of data

Typically the effort involved in the development of each version was approximately 18

man-months over a time period of between 6 months and a year. A heavy development

activity without achieving additional functionality would not have proved cost-effective. A

further study into the development of the package was performed to try and establish how each

version was produced.

47

An ideal sequence would be that each subsequent version would be based upon the

experience of the previous version where only the 'technological changes' would require

attention. An ideal progression would be as displayed in figure 4.2.

figure 4.2: An ideal development path

It was found, however, that the relationship between the versions was not sequential but

followed the pattern displayed in figure 4.3 .

. figure -1.3 : Actual development path

The circles (numbered II to 15) in the above diagram represent external design input from

individuals.

The original system R4 was a joint development between individuals 11 and 12. The

architecture of this system was based very closely to manual accounting ledgers replicating

existing forms one-on-one. Individual II had a background of experience in sales and was

'feature motivated'. He was very close to potential users before the development exercise was

started and consequently promised features (without perhaps realising the consequences on

structure and implementation of incorporating these features) in order to encourage the potential

48

user to buy. Individual 12 was from an engineering background and more methodical and

systematic in design. He concentrated on detailed design and detennined the constraints on the

features due to the current software and hardware technologies. In many ways he was

responsible for the 'built in' quality of the product. The combined approach of II and 12

resulted in a product with a practical compromise between features and quality. This product

was migrated to a new release R5 but abandoned due to the instigation of R6.

The development of R6 and subsequently R7 was perfonned primarily by II (feature

motivated). The absence of 12 meant that the equilibrium offeature and quality was unbalanced

(to the detriment of quality) with the result that R8 became a necessity. This incorporated the

architecture of R260 developed concurrently by 12 and 13 enhanced by some of the features of

R 7. 13 had practical experience in the domain application of accounts and as a result

readdressed the balance between features and quality.

R3000 was derived from R260 from a user viewpoint but enhanced architecturally by 14

who had experience in this new architecture.

15 who was originally responsible for the development of the Elite release (using the Phase

paradigm) had a background of computerised accounting packages which were supplied by

other software developers. He did not have either a detailed or a working knowledge of any of

the previous releases and therefore there was no direct relationship between R8 and Elite. Early

on in the development of Elite, the superiority of the aIChitecture of R3000 was recognised and

the combined experience ofl4 and 15 resulted in the current Elite version.

This shows that a number of versions were based upon the experiences of individuals and

not directly upon previous versions. In practice, the development of the other versions were

only based on previous versions as they had members on the development team who had been

involved with the previous versions.

This example seems typical of development of many versions of programs (possibly even

developed concurrently for different hardware platfonns), especially for smaller projects. This

common problem occurs due to the lack of a suitable 'specification'. There is no concept of

'company experience', simply the experience of many individuals.

49

4.3 Observations

This case study raises the following question:

If we develop a software program from a set of user requirements and a significant

change in technology forces a major development exercise, why is it difficult to have a

simple upgrade path from the existing system to the new one?

In order to fonnalise an answer, let us look firstly at a simple diagram showing the

relationship between requirements, programs and the impact of time; and then discuss the

factors involved in implementing a program P from a user specification 5 .

Requirements & Programs

5

Time

figure -I. <I : Requirements and Programs

Figure 4.4 provides the context for the following discussions on the factors influencing

implementation of a program from a specification. In this figure, the changes in the

requirements of a system is indicated by the line labelled 5 . This is purely illustrative, a more

50

detailed discussion on this line is given at the end of this chapter. In an ideal world, a program

P would satisfy the requirements 5 at all times. Experience however, shows that :

• there is a time delay to implement changes

• programs cannot be continually modified, eventually they will requirement abandonment

Programs can be treated as an instantiation of a set of requirements at a given period of time .

Continually satisfying requirements will require a number of different instantiations at different

periods of times (indicated by PI to P4 in figure 4.4).

To answer the question at the start of this section, we need to examine the factors

influencing an instantiation, the implementation of a program P from a specification 5 and the

relationship between successive programs.

Implementing P from requirements specification S

The following figure further details the factors influencing the implementation of a program P

from the specification s.

p

figure +.5 : Factors influencing implementation o/program Pfrom specification S'

Figure 4.5 introduces a number of components

• 5 is a specification, requirements for the software

• dR is a displacement of requirements which transform 5 into specification 5'

51

• S' is the actual user specification which is represented by program P which incorporates

the essential element of change

• T is the technological factors influencing the program requirements of the software

• I is the set of individual experiences of the developers who create the program.

• P is the resultant program

A program P is therefore the result of combining the components T and I with S' . S' is a

specification which has been transformed from S by dR. It should be noted that there are other

factors involved in software development e.g. the software process itself, however for

simplicity in the following text it shall be assumed that its effect is 'constant' and ignored.

The above illustration is expanded in figure 4.6 which shows two product developments P1

and P2. P2 represents a 'future' generation of P1 in a different technology. This figure will be

used to help analyse the expected relationships between the components.

figure .f.6 : The relationship between programs

In figure 4.6 a relationship is shown between P1 and P2 however no relationship is shown

between the components of P1 and P2. This is intentional . It would seem obvious that

relationships exists, however, the nature of the relationships are not as clear as may first be

thought. Possible relationships are examined below. In the following analysis, the assumptions

are:

52

• The specification 51 exists in a complete and usable form

• P2 must be 'derived' in some way from P1 as P2 is a future 'generation' of P1

• The specification 51 is common to P2 as well as P1

• Technology T2 is significantly different from T1

• Individual(s) 12 is/are possibly different from 11

• Requirement changes dR1 and dR2 will exist

Suggestion #1 : Specification 52 is the same as specification 51

If the specification 52 is the same as specification 51 then we do not have an 'ideal' program P2

because GlR1 (and thus 5'1) and 11 have been ignored. Their contribution to P1 is missing from

P2. T1 has also been ignored but as T2 directly replaces T1 this can be regarded as a benefit.

Suggestion #2 : Specification 52 is the same as specification 5 '1

If the specification 52 is the same as specification 5'1 then we have a 'better' relationship than

the previous suggestion however the contribution of 11 is still omitted. In the case study

example this is similar to the 'Elite' version which omitted all the contribution of 11 (as figure

3.3) which was present in four of the previous versions.

This suggestion also relies on the ability that dRl can be defined in a useful format. It is a

common adage among software developers that 'it takes 5 minutes to update a program, but an

hour to update the documentation'. This raises its own question on the documentation format of

dR1 .

Suggestion #3: Specification S2 is the same as program PI

In this suggestion it appears that we are incorrectly comparing an equivalence between two

different types of entities. For correctness suppose a new entity is created called A, where A

can be defined as the complete 'As built' specification of program P. Al is related to Pl , A2 is

related to P2 by the same definition. In this way 52 can be the same as A1 .

This appears to be an better solution, a perfect solution would be A 1 with the components of

T1 removed. This theoretically perfect solution is illustrated in figure 4.7.

53

Achieving such a solution depends principally on the ability to recognise and define T1 , 11

and A1 in such a way that they can be manipulated and re-used . Practical suggestions are not

obvious!

~ ..
. : S1 ':
. .

~ ..
. 5' . . 2'

. - .

P2

figure 4. - : The 'perfect'software migration solution

54

4.4 Case Study #2 : Change relating to change in User Requirements

The second case study was set up to examine the impact of change in user requirements. The

customer base of our example software development company was examined. At January 1996

there were 82 customers on the list who had purchased business software in the past two years.

When this list was compared with the customer base in January 1986, it was found that 8

customers were on both lists and had purchased additional business software modules during

this 10 year period of time. It was also found that in 7 of the 8 cases, existing software modules

had been upgraded due to technological reasons. Using the implementation history of these 8

customers provided information on the impact of changing software based on changing user

requirements.

The following table lists the changes in requirements of these customers.

Customer Business Existing Cbanges in
Software Requirements
Application

Offshore Oil Personnel Offshore Payroll Changes in Addition of Integration of Costing
Management Legislation Accounts with AccountsIPayroll

Electrical Contractor Accounts Addition of Addition of Purchase Invoice
Estimating Purchasing Integration of

Purchasing! Accounts

Sheet Metal Fabricator Estimating Addition of Addition of
Accounts Planning

Offshore Fabrication Costing I Addition of Integration of
AccOlmts Planning Shop Floor Data

Capture

Historic Castle Maintenance Accounts I Addition of lntegration of
Membership Purchasing Accounts!

Membership

Timber House Frame Stock Control Addition of
Manufacturer Estimating

Cardboard Box Manufacturer Accounts Addition of Addition of Addition of Purchasing
Stock Control Order

Processing

Steel Industry Ceramic Production Addition of
Manufacturer Stock Control

55

It can clearly be seen that the majority of changes in the above examples are based upon either:

• Additions of software modules

• Integration of new or existing software modules with existing software modules

In every instance, changes were required to the existing software applications . The degree

of change reflected the degree of integration. These can be summarised as :

• Collecting of additional information required by new module ego Information relating to

projects for costing as well as statutory accounts

• Changing the source of data from existing module to new module ego Purchasing Invoice

matching supplying information direct to existing accounts module as opposed to direct

input.

• Changing the structure of the information to be accessible by new module eg Estimating

information now affecting planning module

• Scrapping 'simple' parts of the system which were replaced by the 'complex' new module

eg Simple stock control replaced by full 'accounting' stock control.

Due to the problems inherent in retrofitting changes to software, in each instance the inbuilt

quality of the system would deteriorate.

A Detailed Example

The first entry in the above table, for the Offshore oil payroll management company is

examined in closer detail.

In this example, the user had a requirement for a specialised payroll system to handle the

complexities of offshore oil workers who are paid in an uncommon 4 weekly cycle. In 1985, a

computerised system was developed. Legislation changes were enforced by the government in

1991. As technology had improved significantly since 1985 and a multi-user input required,

the program was rewritten at this time. In 1992, a management accounts module was introduced

(replacing a manual system). Changes to the payroll system were minimal and reflected a

change in trial balance structure. In 1995 it was decided that a form of project costing was

required which would provide a greater degree of management information. This not only

involved further analysis of information output from the payroll system, but required additional

56

data to be input into the system. Within our example software development company, the same

technology was used from 1991 to 1996, therefore we can treat the development in 1991 as the

starting point for our analysis of changes affected by user requirements only. As the addition of

the accounts module had only minimal effect of the payroll system, these will be ignored from

the following example.

In figure 4.8 below, point A is the start of the development process (1991) .

Payroll

Payroll +
Project Coa"tln~

figure -1.8 : The paths for subsequent development

Point B indicates the system developed during 1991. The development strategy followed a

path AB where all design decisions were taken to achieve the goal at B. Point C indicates the

amended requirement to include project costing in 1995. Starting at point B the development

would follow the path BC; however, if C was the original goal the development would follow

the path Ae.

An Analysis

Intuitively, it is felt that the product C would be in some way 'better' if it had been developed

along AC than Be. 'Better' in this sense would mean 'less complex'. Undoubtedly, many of the

new elements required in C would have been 'bolted on' to product B as opposed to 'built in' if

the product had been developed along AC.

If this is expanding to points D,E and F, all representing additional changes in requirements,

it would surely result in a grossly inferior system than that developed in AD,AE and AF

respectively.

57

4.5 Observations

This case study raises the following question :

From the starting point of B, would it be better to return to point A to develop the

product C?

The 'immediate reaction' answer to the above question would almost certainly be that it

would not be better to return to position A, using the justification that there must surely be a

degree of commonality of the product B and the product C since there is no suggestion that the

'payroll' element of C is not identical to the payroll element of B. It would seem nonsensical to

throwaway B simply to redesign it.

Relating to Literature

Potts and Bruns [potts88] improved upon a previous idea to record the design process as a

series of artefacts. questions, alternative solutions and justifications to answers. The thesis

behind this was that a design could be retraced at a later stage, perhaps to find the root cause of

failure in some way or to use as a training exercise to educate less experienced software

designers, by communicating design decisions made by more experienced designers.

This model was later improved upon by Lee [Lee91] to include explicit goals which could

be used as a guide when making the design decisions. The concept behind this was that should

the goals be altered, the design could be re-run and each of the decisions re-evaluated in terms

of the new goals. A diagram of a design process can be represented as figure 4.9.

:F

: I :

figure .t.9: A Potts & Bnms de ign graph

58

In this diagram, the solid boxes represent stages in the design at which design decisions are

made. The lines leaving each box represent the alternative answers to a design question. Dotted

boxes indicate answers which were discarded .

In theory, when faced with the situation given in our second case study of changed

requirements, it would be possible to return to the original starting point and follow each of the

design points re-evaluating each alternative solution. In this instance re-use of a previous

design would be achieved. Eventually however a different alternative would be chosen and a

new path would then have to be 'trail blazed' as in figure 4.10.

: p

; E
. J : :
: ~ K

.figure -1.10: Re-evaluating a design graph for d~fJerent goals

4.6 Learning from the Observations

This chapter has described two case studies concerned with a common theme: changing

software requirements. Each study had an independent focus on two very different aspects of

requirements. The observations and resultant theories however have a common denominator:

the ability to record in some way, design information during a development project in a form

59

that it can be retrieved, interrogated and manipulated would have a significant contribution to

the ability to migrate and enhance future generations of a software product.

Earlier the following definition of experience was introduced:

''Experience is being able to relate a new situation to a situation previously

encountered, and, knowing the alternatives and outcomes from the previous situation,

being able to deduce the best alternative from the new situation".

This definition of experience, related in this case to human experience, has a similarity to the

common theoretical requirement observed from the case studies. H it is possible to practically

instantiate the theory, the result would be a software process which had 'built-in' experience.

This experience could be passed to future developers or perhaps automatically reused as a form

of artificial intelligence within the software process itself.

4.7 Towards a Practical Solution

The remainder of this chapter introduces an additional observation which leads to a theoretical

perception of the software process in such a way that a practical approach to maintaining

experience can be implemented.

4.7.1 The Pattern of Requirement Changes

An analysis was made of how changes in requirements altered in relation to time. It was

observed that the pattern of the impact of user related changes was different from the pattern of

the impact of technologically related changes. The patterns of user requirements is illustrated

in figure 4.11. The pattern of technological changes is illustrated in figure 4.12. The data used

to produce both these illustrations is not scientific but intuitive based upon personal experience.

60

The Pattern of User Requirements

nmo

figure 4.11 : A pattern of User related changes

For the pwpose of illustration, assume the height of the line A in figure 4.11 represents the

scope of all the functions ever included in the user requirements (Requirement For Software).

In a similar manner, the height of line B represents the scope of all functions ever removed

from the user requirements. The distance between line A and line B therefore represent the

actual scope of functional requirements at any instance in time. Time is indicated by the

horizontal axis.

The illustration in figure 4.11 indicates that changes in user requirements are regular but

individually small.

The Pattern of Technological Changes

- - ----r----'--.,-----'

B
I----l..-----.,----..J -- ___ _

A

TIme

figure 4.12 : A pattern o/Technological changes

61

Figure 4.12 schematically illustrates the Requirements Of Software for the same time period.

In this example the system will be required to operate on four different technologies . At the

start the system operates using technology A . After a period of time, two different technologies

are required in parallel (A and B). For a short time thereafter a third (C) is required followed by

a redundancy of technology A. Eventually technology D is required and technology B

becomes redundant. The technologies do not have to be radically different. The differences

may be as simple as User Language Options, Hardware Interfaces or may be as significant as

different platform requirements or program language alterations.

The illustration in figure 4.12 indicates that changes in technological requirements are 'block

like' in behaviour.

4.7.2 Using the Pattern to form a Theory

The patterns in figures 4.11 and 4.12 themselves do not contribute to the basis for

implementing a practical solution however their production was fundamental in recognising

how a solution could be created. Figure 4.13 is a reproduction of figures 4.11 and 4.12 aligned

62

for a common timescale and a 'slice' 5 drawn vertically to highlight an arbitrary time point.

s A

11m ..

figure 4.13 : A 'slice' of requirements

If it can be assumed that the pattern of requirements is identical to the pattern of the scope

of the actual software (albeit displaced by a time element equal to the time taken to implement a

set of requirements) then at time 5 there exists a fmite and identifiable state of a software

product. At a future time point 5' there will be another identifiable state of a software product.

The difference between 5 and 5' identifies the set of changes and possibly the set of design

decisions which have occurred between time 5 and 5'.

4.8 A Simple Model

A simple model can be created to represent the 'state structure' of a program. This is given in

figure 4.14. The state 5 shown as a vertical line in figure 4.13 is reproduced as an ellipse in

figure 4.14. The ellipses 5' , 5" and 5" represent states of the program at future times. The

63

arrows connecting the states indicate the 'set of changes' which represent the transformation

between states, they are labelled dR', dR" etc.

S S' S" S'"

figure 4. J 4 : A simple program ·tate model

If it is possible to identify the finite state of the software product in terms of tangible

attributes and record the changes made, with their rationale, to these attributes then it should be

possible to record the design decisions in such a way that they can be reused as experience.

4.9 Conclusion

The requirements for a software process which will help software developers with their attitude

towards changing requirements is :

• the ability to define a 'state' of a software product in finite attributes

• the ability to record changes to these states, and the design decisions for these changes

• the ability to retrieve and manipulate this information in a form of 'experience'

One such process is the Phase process.

64

Chapter 5

The Phase Paradigm

5.1 Introduction

This chapter describes the Phase paradigm and demonstrates how the state of a Phase program

can be defined in terms of finite attributes. During this chapter, the following questions will be

answered :

• What is a Phase specification ?

• How is Requirements Analysis performed ?

• What is a Phase program?

Structure of this chapter

This chapter begins by clarifying what is meant by Phase software. This includes a discussion

on the class of applications intrinsically suitable for developing with the Phase paradigm.

'Screen shots' of a typical Phase program are included to aid visualisation and will help in the

understanding of the underlying Phase paradigm.

An integral part of the Phase paradigm is the structure of a Phase program. This section will

introduce Phase terminology and demonstrate how the structure can be specified both

diagramatica1ly and textually.

65

At its lowest level, a Phase program is implemented in a target language eg Pascal . In a

similar manner to Procedures in a target language, the Phase paradigm uses Procedures for

specification. The relationship between the Phase procedures and the target language procedures

is described. This in tum introduces the elements of Phase procedures, the definition of which

is required to complete the specification.

The execution of a Phase program is controlled by two target language specific elements

called the Kemal and the Support Library. Understanding the basic algorithms for these

elements will complete the understanding of how a Phase program executes.

A major feature of the Phase paradigm is the repetition of a few simple algorithms. By

identifying the commonality of these algorithms and the method of parameterisation it will be

shown how the system is suited to the creation of rapid prototypes. Each algorithm can be

executed as a prototype by the use of a single command in the small prototype command

language.

Documentation is a very important part of any development paradigm and this chapter

describes the documentation relevant to (and for the most part, automatically generated by) the

Phase paradigm.

This chapter concludes with a summary of the Phase paradigm and explains how a program

can be specified as a whole, by specifying the individual elements of a Phase 'state'.

Associated with this chapter is Appendix B, which contains a full description of the way

Phase programs are developed, using the Phase process.

5.2 Phase Software

Phase software is software produced using the Phase paradigm. Before discussing its structure

or how the design is produced a brief overview is given describing the generic features and user

interface. This will place the details of the structure into context.

5.2.1 The Class of Applications

Phase software is not specifically designed for Interactive Business Information Systems (mIS)

applications, but it is with this class of applications that it has been tested and examined. A

66

description of the features of mIS software was introduced in chapter l. To summarise, these

applications are :

• Database Oriented

• Human Interactive

A suitable user interface for such applications may have the features :

• 'Form' based for data entry and retrieval

• Menu driven for flow of control

Phase Software incorporates the above user interface features and also :

• Overlapping 'windows' to highlight a 'drill down' detailing of information

• Browse lists to show single-line summaries of information

5.2.2 An Example

An example can be taken showing actual 'screen dumps' of software produced using the Phase

CASE tool EDS. This example is a subset of a 'Sales Ledger' program which is designed to

track invoices sent to customers and record the payments which are received. This shows the

format of:

• Menus

• Browse Screens

• Form Based Data EntrylRetrieval Screens

• Command Line Options

• Overlapping Windows

These examples clarify much of the discussions in the following text.

67

Menus

figu.re 5.1 : A Phase Menu creen

Menus are hierarchical in structure, nested to any level and with any number of options

available.

Browse Screens

figure 5.2 : A Phase Browse List creen

68

Selecting an option from a menu usually requires access to a data table, in Phase programs

the entries in the table are listed, sorted alphabetically to enable records to be found easily.

This is called a 'browse' screen.

Form Based Data EntrylRetrieval Screens

figure 5.3: A Phase Data Entry/Retrieval Screen

Selecting an option from a Phase browse list displays a form with details taken from

appropriate data tables. These forms are used both to display information from tables and allow

the user to add data or maintain data in the tables.

Command Line Options

Figure 5.3 also shows a second type of menu for flow of control through a Phase program . A

series of options are printed at the foot of the screen which can be selected in a similar manner

to a traditional menu. These are called 'command line options' .

Overlapping Windows

In this Sales Ledger example, the first option on the command line is "Transact", this displays

an overlapping windows showing a browse list of the invoices and payments making up the

balance on the customer account. This is shown in figure 5.4.

69

figure 5. -I : A Phase Overlapping Windows Screen

In this example, selecting an invoice from this browse list will display a further overlapping

window showing a detailed breakdown of an invoice .

5.3 Phase Software Structure

This process of traversing though a Phase program as Menu, Browse List, Data Form,

Command Option, Browse List, Data Form, Command Option etc. becomes an intrinsic part of

the software. It is clear to see that this structure can be represented in a directed graph as shown

70

in the example figure 5.5.

figure 5.5 : The How of Control of a Phase program

The diagram in figure 5.5 can be restructured by separating out the actual flow of control from

the functionality of a program. Ifwe consider any point in the structure, it can be divided into :

• What functionality do I perform at this point?

• What options can I select next ?

In Phase terminology the 'functionality performed at this point' is called a procedure and the

'options that can be selected next' is represented as a series of nodes and options. The nodes

and options combine to form the flow of control structure. A procedure is 'attached' to a node

to specify when it is called. Menu nodes do not have procedures attached . This is illustrated in

figure 5.6. Each procedure and node is given a unique reference name and identification

number.

71

5.3.1 The Phase Node Structure

Label Main Menu
Node Id 001
Node Name MAINMNU-SID-MENU
Procedure <none>
Optlone TyPe MENU

I I
Lauel ACGOunt Maintenance Label InvoIce ProCt:881ne
Nodeld 002 Nodeltl 003
Node Name ACCOUNT-STD-ROOT Node Name INVOICE-SID-ROOT
Procedure BROWSE_ACCOUNT Procedure BROWSE INVOICE
Options iyPe FSERIAL Optlone TyPe FSERIAL

I :
Lauel Dleplay Account :

Nodeld 009
Node Name ACCOUNT-STO-OISP
Procedure DISPLAY_ACCOUNT
Optlone iyPe SOFTKEY

I
I I

UJl7el Tran5llct Lal7el Enter
Nodeld 013 Node Id 015
Node Name TRANSACT-SID-ROOT Node Name ACCOUNT-STD-ENT
Procedure BROWSE_TRANSACT Procedure ENTEfZ..ACCOUNT
Optlone iyPe FSERIAL Options T yPt: NONE

.figure 5.6: A Mow o/Control Node Diagram

This structure can also be described :

When the program starts a menu will be displayed. This has the options:

• Account Maintenance, where new acCOWlts are set up and enquiries made on existing

• Invoice Processing, where invoices to customers are processed

• Payment Processing, where payments received from customers are processed

• etc.

Selecting the Account Maintenance option will display a list of all customer accounts

known to the system, the appropriate account can be selected from the list. The columns shown

are :

• Account Code

• Customer Name

72

• Current Balance

• Closed Item Balance (an 'odd' balance where payments received do not exactly equal

invoices)

When the account is selected a form will be displayed showing all the details known about

the customer, this includes the following information

• Account Code

• Customer Name

• Current Balance

• Credit Limit

• etc.

A number of options appear at the bottom of the screen, these are :

• Transact: View the invoices and payments which make up the current balance

• Enter : Add a new customer to the list of accounts

• Modify : Amend the current address and credit limit for the account

• etc.

Selecting the Transact option will display a list of all the invoices and payments processed

for the customer. An invoice or payment can be selected from the list and further details

displayed.

etc.

Node Options

There are a limited number of ways that options can be called from a node. These are :

• Menu (as shown in figure 5.1)

• Softkey (as shown in figure 5.3)

• Fserial (described below)

• None (a 'leaf' node with no suboptions.)

73

The Fserial option is used where there is only 1 option available from a node and this node

is selected automatically when the appropriate procedure has finished execution therefore

linking procedures together in a serial 'chain'.

5.3.2 The Phase Procedures

Phase procedures are 'blocks' of target language programs which execute as indicated at each

node of the flow structure. Each of the Phase procedures will be implemented as a target

language procedure call.

~
DleM1~Acco<I,.j._Co.Ie.l)

"l

Flow of Control U
Node

l t-D-'S-PIs-Y-_Acco- U-nt-i:/

Phase
Procedures

Level 2
Target Language
Procedures

""\

j

dI6M_GCI"Cm1(GCrdeOI

Support Library
Procedures

figure 5. 7: Phase Procedures and Target Language Procedures

There are some important issues to raise about these Phase procedures.

• A node may only call one Phase procedure.

• Phase procedures cannot have parameters in the usual sense of formal and actual target

language parameters as there is no parameter passing mechanism from nodes .

• Phase procedures cannot call any other Phase procedure

• A Phase procedure may be called from more than one node

74

• A Phase procedure is completely independent of any other procedure and cannot rely on

'knowing' where it is being called from.

• Where the complexity is such that the functionality cannot be efficiently implemented in

a single target procedure, a Phase procedure can call other non-Phase procedures as

described in figure 5.7. There additional procedures are called Level 2 procedures and

can contain all the characteristics allowed within the target language eg parameter

passing mechanism.

• Phase procedures and Level 2 procedures can call upon the services of the Support

Library procedures. This is described later in this chapter.

The functionality of Phase Procedures

At an abstract level, based upon the structure of a Phase program illustrated in figure 5.5 there

is a finite number of basic functions which can be performed by a procedure. These are :

• Display a Browse list of a data table

• Display a data retrieval form with suitable data

• Add data from a data entry form

• Modify data from a data entry form

• Delete data from a data table

• Print a report

• Perform a batch process

All Phase procedures therefore perform a function from the above list. The "perform a batch

process" option also includes any non-standard function from the rest of the list.

5.3.3 Other Phase Entities

Phase procedures have to be more specific than the general descriptions above. This is done in

relation to other entities in the Phase structure. These entities are :

• Screens

• Data Items

75

• Data Tables

• Algorithms

Screens

Screens are the data entry and retrieval forms which display data on the interactive

workstations. The consist of two separate parts:

• The 'image'

• The 'field specifications'

The image relates to all the non-field items on the screen including the border, the

background colour, graphical lines and the labels for the data fields .

The field specifications are areas of the screen which display actual data from a data table, or

where data is input for storage in a data table. Each field has a number of attributes including :

• type of data

• local processing to be perfonned e.g. Automatic upper case, Right Justify etc.

• data validation functions e.g. is the account code unique

• screen colour to display the field

A screen has one image item and any number of field specification items.

Data Items

Data items are the common link between fields and data tables. Each data item contains a

single piece ofinfonnation. It has a specific type and length .

Data Tables

Data tables relate to the data storage mechanism used by a particular Phase program. These

may be 'flat files' or relational databases.

Algorithms

An algorithm is the basic functionality of a procedure. This is identical to the list given earlier

in this chapter for example :

76

A basic algorithm exists to modify data in a data table using a particular screen, it would be

in the form (simplified for illustration) :

For data table [TABLE] and screen [SCREEN] for key [KEY]

locate in table [TABLE] the data for key [KEY]

match all fields common to [TABLE] and [SCREEN]

display screen [SCREEN]

wait for input

if not escape key

match all fields common to [SCREEN] and [TABLE]

store data in [TABLE]

endif

The elements in [] are parameters.

5.3.4 Procedures Revisited

Procedures exist to collate specific entities together. A procedure will typically have :

• A single algorithm for the basic functionality

• A single screen for data input and/or output

• A set of data items for data transmission

• A set of data tables for data storage

The actual number and type of entities will depend upon the algorithm.

To complete the example given earlier in this chapter assume we have the following

elements.

77

Screen Data Table Algorithm Data items

ACCOUNT dbACCOUNT DISPLAY Account Code

dbINVOICE ENTER Customer Name

MODIFY Current Balance

DELETE Credit Limit

BROWSE Address

Contact

Telephone No

Fax No

etc.

figure 5.8 : Entities in the example program

The procedure definitions would be :

PROCEDURE: Browse Account

[Screen Data Table Algorithm Data items

dbACCOUNT BROWSE Account Code

Customer Name

Current Balance

Closed Items

PROCEDURE : Display_Account

Screen Data Table Algorithm Data items

ACCOUNT dbACCOUNT DISPLAY Account Code

Customer Name

Current Balance

etc

78

PROCEDURE : Browse _Transact

IScreen Data Table Algorithm Data items

dbINVOICE BROWSE Period

Date

Invoice No

etc

figure 5.9: Example Procedures

5.4 The Phase Kernel, Support Library & Repository

To summarise, the following types of entities which are maintained in the Phase repository

have been introduced :

• Flow of Control Nodes

• Procedures

• Screens

• Data Items

• Data. Tables

• Algorithms

Previously: this chapter has described a Phase program and the structure which builds a

Phase program. This section describes the remainder of the Phase system which describes how

the structure 'works' for an executable program. There are three interrelated items :

• the Phase Kernel

• the Phase Support Library

• the Phase Repository.

The Phase Kernel is a library routine which is executed at the start of every Phase program.

This routine uses the flow structure maintained as part of the repository to determine the order

in which to call Phase procedures.

79

The Phase Support Library is a set of standard functions which are used to interface Phase

procedures to entities within the repository during the execution of the program. The Kernel

and the Support Library are implemented in the target language.

The Phase Repository is a large database containing all the entities which define a Phase

program. Some of these entities (nodes, procedures, screens etc.) have already been discussed,

others will be introduced later. The repository is target language independent.

The relationship between the Kernel, Support Library and entities in the repository are

shown in figure 5.10.

Flow of Control

Proceduree;

Algorithme;
Support Lll:7rary

l

UU
:>

l
Reports

UU
Data Base

figure 5.10: The Phase Stmcfure

80

5.4.1 The Phase Kernel

A Phase program is similar to many other types of program in that it consists of an executable

compiled program. The major difference between a Phase program and other programs is that

the relationships between procedures are maintained outside the program code, in a repository.

In order that this can be achieved, it is vital that the target language supports separately

compilable procedures and that procedure names can be detennined at run-time.

The kernel is a very simple program with an algorithm (suitably simplified) as shown below:

Program kernel

current_node = root node of structure

do while current_node <> $exit

select current_node from node structure

if procedure Is defined for node

execute the procedure

end if

display child nodes of current_node in appropriate menu structure

get user input for option selection

current_node = node_selected

end do

Implied in this algorithm (removed for simplicity) is that at any point, use of an <escape>

key will set the current_node pointer to the parent of the node and not the children. The special

pseudonode $exit is a virtual node which is the parent of the main menu.

In practice, the node structure does not have to conform to a tree, nodes can have any other

node as a parent node and a node can have any number of parent nodes. It is possible to have a

'cycle' of nodes where a child node can be linked to its parent (or grandparent etc). This adds

significant complexity to the algorithm which is required for flexibility of program design but

has been omitted for clarity.

5.4.2 The Phase Code Generator

Figure 5.10 introduced the Phase code generator. Use of the code generator is not intrinsic to

the structure of a Phase program but exists as a productivity tool for the developer. The

8]

commonality of program functions and the infonnation available with the repository entity is an

ideal candidate for automatic code generation. The parameterisation of the algorithms as

shown in the example earlier in this chapter allows target code to be created by simple

substitution similar to the technique found on many macro assemblers.

5.4.3 The Phase Support Library

The Phase Support Library exists as a set of functions which allow application procedures to

access elements within the repository at run-time. The main use of this is the access required

for the screen definitions and data table definitions.

The Phase Support Library, like the Phase Kernel is written in the target language. This

allows for easy migration of applications to different database and screen technologies.

5.5 Using Phase for Proto typing

Appendix B provides a complete process for designing software using the Phase paradigm,

however the principles of Phase prototyping are an important issue and discussed below.

A Phase prototype is a construction of the user interface using the entities within the

repository which demonstrates exactly how the final Phase programs will 'look and feel' . A

Phase prototype (and consequently a full set of documentation as described later) can be

produced before any target language program code is created .

A Phase prototype and its associated documentation provide an 'as built' specification of the

design.

A prototype exists as an 'execution' of the node, procedure, screen and data-item definitions

within the repository. As described earlier, for a Phase program, the node structure is

interpreted by a kernel program to dynamically create menu's and command options during

runtime. A 'prototyping' kernel exists which recreates these menus and command options using

an identical algorithm to the finished product. The menu and command options can therefore

be reproduced identically by either the prototyping kernel or the run-time kernel.

82

The remainder of the user interface is made up by screen definitions and browse definitions,

both of these entities are defined within the repository, however the problem exists to detennine

which screens and browse definitions to use at each point.

A finished program uses the Phase procedure definitions to perfonn the required

functionality in the fonn of executable target language code, these procedure definitions

provide a suitable mechanism for defining a prototype.

Earlier in this chapter it was stated that procedures can perfonn according to only a small set

of functions . Most of these functions involve a single screen (or browse definition). These

functions can be simulated for prototyping purposes by using a prototyping command set of

only four commands with a minimum number of parameters. These commands are :

• DISPLAY "<screen definition> <version>"

• BROWSE "<browse definition>"

• REPORT "<filename>"

• MESSAGE "<message>"

5.5.1 The Phase Prototype Specification Language

Display "<screen> < version>"

This command allows the Prototype Executor to fetch the <screen> definition from the

repository and display it on the workstation. A screen definition at this point may only consist

of the 'image'. In 'early' prototypes, field definitions may be substituted on the image in a

similar manner to graphics characters or field labels .

If, however, field definitions are included, data input and retrieval can be simulated during

prototype execution. This reaction of this, depends upon the second parameter for the

command. This is the 'version' parameter. Each screen can have up to 10 different 'versions'

numbered 1 to 10. Each version applies to the combination of fields which are 'read only' and

'data input'. For example, version 1 of a screen may have all the fields marked as 'read only'

and used in a 'display' type algorithm. Version 2 may have all the fields available for data input

and used for the creation of a new record using the 'enter' algorithm. Version 3 may have all

83

the fields available for data input except the key fields (which cannot be changed once the

record has been created) etc.

At this stage there is no concept of a data table. For simulation purposes, each field

definition has a 'dummy data' field into which any data input is stored. This provides a very

realistic method of simulating data entry.

Browse "<browse definition>"

This command simulates a browse screen using column headings defined within the repository.

For these screens there is no data available and all the columns appear blank. Although this

means that the simulation of the prototype gives a slightly different screen from the final

versions, the difference is insignificant.

Report "<filename>"

This command simply takes the <filename>, extracts the definition from the repository and

copies the information without modification to the print device. The <filename> has been

previously created as a sample report using a standard text editor. The data on the report

obviously has not been derived from anywhere in the system but simply 'typed in' .

Message "<Message>"

This option does little more that display the message on a "status" information line on the

screen. Execution then suspends for a given time period (say 5 seconds) and then control is

returned to the Prototype Executor to continue processing. This delay represents a process

being executed (although in reality nothing is done at all).

These four functions, together with the menu definitions allow for an extremely useful

prototype to be created and executed. Whilst being extremely simple in operation it provides

the user with the look and feel (including relevant pauses for process execution) of the final

application. This is the fundamental principle for Rapid Prototyping.

84

5.6 Phase and Documentation

The Phase prototype is the primary means of communication between users and developers .

The prototype, however, requires a computer for execution. There are additional benefits to be

gained by providing 'hardcopy' documentation which can be 'reviewed at leisure' and ideal for

annotating with comments. These annotations can be entered subsequently into the repository

using the appropriate editors within the system.

The Phase case tools provide a number of representations of the prototype. These are :

• Flow of control 'tree' structure

• Entity Relationship Diagram

• Hardcopy prototype.

• Database Structure

• Technical Reference Manual

Flow of Control 'Tree' Structure

This is an automatically produced diagram similar to figure 5.6 listing all the interconnections

of nodes in the form of a directed graph. It displa s a high level overview of a software design.

Entity Relationship Diagram

This is an automatically produced diagram which prints for selected entities within the

repository showing all the hyperlink type connections to associated entities. This is particularly

useful for finding the 'consequences' of change.

Hardcopy Prototype

This document prints a single A4 page for each node in the system. This can be used in

conjunction with the structure 'tree' diagram described above. Printed on each page is a 'screen

dump' of the screen which would be displayed during the execution of a prototype. At the foot

of the screen the options are listed and a full cross reference is made to the appropriate page

numbers. This document is ideal for use when reviewing a prototype as comments can be noted

within their context.

85

Database Structure

A traditional 'data dictionary' type report listing the structure and relationship of all the data

tables.

Technical Reference Manual

The technical reference manual is a document structured automatically by the flow of control

structure of the Phase prototype. It contains an appropriate selection of 'screen dumps'

complete with automatically generated comments taken from notes maintained with entities

within the repository. The is the basis for a user reference manual which can be distributed

with the final product.

5.7 A Summary of the Phase Environment

The term 'Phase Environment' is used as a generic term for entities within the Phase paradigm

which includes the features of the supporting CASE tools. This section lists all the features of

these tools for completeness as reference is made to them in later chapters.

• Entity Editors

Flow of Control Node Editor

Procedure Editor

Screen Painter and Editor

Database Dictionary Editor

Data Item Editor

Algorithm Editor

• Generators

Program Code Generator

Screen Definition Code Generator

'Reference Manual' Documentation Generator

Database Generator

• Project Management Features

Entity Modification Log

86

Request for Program Update (RPU List) "Wish List"

Completion Statistics and Status Reports

Node Structure Diagram

Entity Relationship Diagram

• Other

. Prototype Executor

5.8 Phase and the Process State Model

At the end of chapter 4, a simple program state model was introduced with three preconditions

for helping developers with their attitude towards change. These are reproduced here for

clarity.

The requirements for a software process which will help software developers with their

attitude towards changing requirements are :

• the ability to define a 'state' of a software product in finite attributes

• the ability to record changes to these states, and the design decisions for these changes

• the ability to retrieve and manipulate this infonnation in a fonn of 'experience'

This chapter has described part of the Phase paradigm, the remainder of this chapter will

show how this infonnation presented so far relates to the first precondition above.

S.S.l The Definition of a Program State

The elements of the Phase repository have been presented . They are listed in figure 5.11 below

together with symbols which will be used in later chapters.

87

Element Symbol

Flow of Control Node N

Data Item I

Screens 5

Data Table D

Algorithm A

Procedure p

figure 5.11 " The elements of a Phase ReposilO1y

Each entity can be individually identified with a unique identifier and each type of entity has

a finite set of attributes. A complete set of attributes is contained in Appendix A. The state 5

of figure 4.l4 can now be represented by the set of all the Phase entities defined for a particular

program as shown in figure 5.12.

{N1.N2.N3 NI}

{11.12.1:3 1i)

{51.52.5:3 51}

{D1.D2.D:3 DI}

{A 1.A2.A.'3 AI}

{P1.P2.rn Pi}

figure 5.12 ,' The components of a Phase state

These elements do not exist in isolation to one another but form a complex hierarchical

interrelationship. Each element can be related according to the following rules:

N -> {N} P

P -> A {D} {S}

D -> {D} {I}

S -> {I}

The symbol -> means "is hierarchically related to"

88

The symbol {} means "any number of'. The absence of {} indicates that only a single

relationship can exist between a discrete entity of these types.

5.9 Conclusion

The Phase paradigm uses a program structure which relies upon the definition of a set of

entities within a repository . These definitions can be 'executed' as a prototype to allow a user

review of the software before any application code is created. When final programs are

required, these same definitions can be used by the automatic code generators within the Phase

CASE tools to aid programmer productivity. The definitions can also be provided in

'hard-copy' form.

This repository structure of a program definition makes it possible to tangibly represent a

program state in the form indicated by the model presented in chapter 4.

Chapter 6 provides the Phase approach to the second and third preconditions attached to the

model, namely,

• The ability to record changes to these states, and the design decisions for these changes

• The ability to retrieve and manipulate this information in a form of 'experience'

89

Chapter 6

Defining and Reusing Phase Experience

6.1 Introduction

In chapter 5 , it was shown how the Phase paradigm relates to the model described in chapter 4

by providing a breakdown of a Phase program into tangible components or entities . The set of

all the entities defined at any time, together with their attributes is represented as a 'State' 5 in

the illustration given in figure 4.14.

The aim of this chapter is to describe how the Phase paradigm relates to the changing of

states, indicated in the illustration of figure 4.14 as dR, with the purpose of being able to

capture 'design experience' in a form which can be reused.

This chapter is split into three sections:

• A history of how the information dR was captured with accwacy

• A discussion on how the information can be retrieved and manipulated

• A discussion on how the information can be analysed to provide 'experience'

6.2 The Principle of Recording Design Changes

Recording changes to entities within a repository is obviously easy provided each editor that is

used to physically edit an entity can provide suitable information to a 'log' file each time an edit

90

is performed. The use of 'edit' in this sense also includes the creation of new entities and the

deletion of entities. What is not so obvious is what information should be logged and how

should this information be structured.

There are a number of observations which can be made:

• Information to be logged should be obtained 'automatically' and not require manual input

as 'human nature' will bypass manual input under pressure of time.

• The log should be maintained unobtrusively to prevent the logging interfering with the

productivity of the development

• The log should be as 'space efficient' as possible, as the number of entries will be large

• The information logged should refer to why information is changed as well as what

information has changed.

6.3 When is a State, Not a State?

In the illustration in figure 4.14, two development states are separated by a 'change in state' .

The question is asked :

What determines when a program is 'in a state', and can a program ever be 'between

states'?

Strictly speaking, every change which is made to an entity alters the state of the program.

Consider the circumstance that a change to an algorithm takes four attempts by a designer

before it correctly reflects a concept. Each of the first three steps were simply 'bad' attempts

and intermediary. They did not reflect design decision changes but simply the correcting of

errors. In this instance it is proposed not to 'recognise' these intermediate stages.

Consider also, where a single design decision may require a number of entities to be altered .

For example a decision may be taken to remove the concept of a 'telex' field from a contact

database (due the redundancy of telex machines over fax and email). This would almost

certainly affect :

• The data table where the telex field stored the data

91

• The screen where the text field displayed the data

• The redundancy of the data item 'telex'

• Any procedure which referred to the data item 'telex'

This would require a minimum of four edits in the repository, with a possible four changes

in program states. In this instance it is also proposed that only one change in state is

recognised.

In summary, it is possible that a program can be between states and that any number of

entity changes can be made between states. In reality, during these 'inbetween' states, the

program can be considered 'unstable' (as it almost definitely would not execute correctly due to

inconsistencies between entities). Consequently a state can be redefined as a point in time

where the program is stable (not unstable) and a set of related changes are considered

'complete' .

6.4 The Example Data in this Chapter

For the putposes of illustration, the remainder of this chapter uses examples taken from a Phase

project, the Sales Ledger application introduced in chapter 5. A brief introduction to this

application will place these examples in context.

The Sales Ledger application was first started in 1990, this was one of the first applications

to be developed using the EDS CASE tool. At this time there were !!Q logging facilities

enabled. This unfortunately means that there is no early design history available . This is not

detrimental to the examples.

This application is one of a suite of core programs for general business administration. It

integrates fully with the other programs in the suite and consequently has to 'know' about

external applications.

The 'size' of the application can be indicated by the number of entities in the repository. At

1996 these are shown in figure 6.1.

92

Element Type No ofItems

Flow of Control Nodes 163

Data Items 283

Screens 25

Data Tables 12

Algorithms 134

Procedures 246

.figure 6.1 : The 'size' of the example application

There are presently over 5000 log entries relating to changes made to individual entities

recorded in the period January 1991 to January 1996.

There are 28 commercial installations of the application with a total of over 40 users. Many

installations are networked on networks with a 50 user capacity.

6.S The Phase History of Change Recording Development

The methods by which change information was recorded by the Phase CASE tools altered four

times over the period of study. Each new method of recording was prompted by a lack of

rigour in the existing method, unreliable data does not result in reliable analysis. These four

methods of recording information, each one progressive, are presented in sequence. This

provides not only a justification for the final method, but provides an insight into the 'design

decisions' which were taken along the way.

In the reading ofthls chapter, by presenting the 'design decisions', the experience which was

learnt by me, the designer, will be passed to you, the reader. This is a practical demonstration

of the principle of 'experience passing' which is being proposed in this thesis.

6.5.1 Recording Design Changes: A First Attempt

A 'log' file was added to the EDS CASE tool in 1991. Figure 6.2 represents the structure of the

file:

93

Field Description

Date The date a change was made

Time The time a change was made

Usemame The Userld of the person making the change

Entity_Type Type of Entity eg Node, Screen, Data Table etc

Entity_Id The unique identifier for the entity

Remark The type of change made eg Created,Modified,Deleted etc

figure 6.2 : The stnlcture o/a simple logfile

Each entity editor in EDS was altered to create an entry in the log file whenever a change was

made to a repository entity. This satisfied three of the four observations made about logging

earlier in this chapter. It did not include any why information.

The method oflogging changes was active from January 1991 to the end of December 1991.

This very basic form of history logging simply showed which entities were being created or

amended and by whom.

At this early stage a significant amount of management information could be extracted. This

included:

• A definitive record of when entities were changed. This helped 'debugging' by knowing

which entities had been changed 'recently' around the time that a 'bug' had been first

noticed.

• An indisputable record of who changed entities . This put an end to the common 'I didn't

touch it' comments from developers.

• An indication of the amount of time expended on a project which could be translated into

a cost for a project.

• A high level 'activity' graph could be produced which gives a clear 'picture' of when

changes were made. An example is given in figure 6.3.

94

=
120

110

100

90
~

"5
~ 00

2
~ 70

ISl
s: eo
~

...s:
U !j()

40

50

I w

10 I I I

.1
I I

, I
I I I I

-25/11/91 -09/12/91 -06/01/92 -20/01/92

figure 6. 3 : General activity graph for a development

This activity graph shows the number of changes (the vertical axis) made to entities on each

day (the horizontal axis). This indicates that during the period end of November / beginning of

December there was a peak of activity. This was followed by a period of no activity (due in

this instance to the Christmas holidays).

By examining a number of these activity graphs, a pattern emerges.

• A block of activity appears around the time that a new installation takes place. This

implies that as new users obtain the software, new concepts are introduced (or existing

concepts altered). In the above example, a new installation was due in the middle of

January.

• A block of heavy activity is often followed by a tailoring of activity. This is indicative

of final debugging where the rate of changes slow down. In the example, this is shown

in the first part of the graph

95

The activity graphs are useful for high level analysis only. The major criticisms are :

• The lack of being able to separate out major developments from minor changes

• The activity is biased towards the nature of a developer. A developer who makes a

number of small changes, testing each change as it is made will have a much higher

'activity' shown than a developer who makes larger changes during the same edit session

and only saves the changes and tests as a 'whole' . In practice the actual effort expended

by the latter developer may be greater than the effort expended by the former. By

manually checking the infonnation in a log file, it was discovered that each individual

developer would have a pattern of entries and this pattern would be consistent throughout

the year. It proved to be valuable to extract information for a single developer for a

known scope ofwoIk and present it in a similar manner to figure 6.3. This pattern could

then be used as a 'base line' when monitoring the patterns of activity for the same

developer in the future and also used for comparing the patterns for different developers

for similar scopes ofwoIk.

6.5.2 Recording Design Changes : Adding the "why" Question

It was during January 1992 that additions where made to EDS to include information relating to

'why' entries were modified. This was done by manually creating an entry in a second data

table with a structure indicated in figure 6.4. This entry contained an identification number and

a textual description.

Field Description

RPU Ref A unique Reference Number

Description A text field containing information relating to 'why' changes occur. This
is simple free-format notes

figure 6 . .J: The structure of the 'why' table

The RPU _Ref was built on the acronym introduced to identify a 'why' entry called a Request

for Program Update (RPU). The fonnat of an RPU _Ref was a 2 digit mnemonic representing

%

the application and a numeric sequence number starting at the number 1001 e.g. SLI1234 would

be the 234th entry in the 'why'table for the Sales Ledger application.

Procedures were set in place along the following concepts:

• Changes to programs should only be made for a common reason. For example, when

adding features, add them one at a time and change all entities in the repository which

relate to this new feature, before starting the next one.

• When all changes have been made, create an entry in the 'why' table containing a textual

description of the change. At this point an entry will also be made in the history log

which 'date and time stamps' the 'why' table entry.

These procedures were left operational for a period of one year. It was decided that this

would be a minimum period required to allow a 'true' picture to be formed. Three benefits, over

and above the previous benefits were observed. These were :

• The reason why an entity was changed could now be determined by scanning the log file

for a 'why reason' entry. This knowledge could be used in a manner described later in

this chapter.

• Each change of state could now be identified using the unique RPU _ref field in the 'why'

table.

• Developers were now required to explicitly 'finish' a development exercise. Forcing this

issue had the benefit that it removed another common developers phrase - "its about 95%

complete" . If any entry appears in the 'why' table then it was complete. If no entry

appears than it was not complete.

An example of the data recorded is given in figure 6.5 .

Log Table

Date Time Userid Entity_Type Entity_id Remark

10/01/92 10:34 ALAN SCREEN ACCOUNT Item TELEX Removed

10/01/92 10:36 ALAN TABLE dbACCOUNT Item TELEX Removed

10101/92 10:37 ALAN PROCEDURE DISPLAY_ACCOUNT Modified

10/01/92 10:42 ALAN PROCEDURE MODIFY_ACCOUNT Modified

10/01/92 10:46 ALAN PROCEDURE ENTER_ACCOUNT Modified

97

10/01/92 10:52 ALAN DATA ITEM TELEX Deleted

10/01/92 11:36 ALAN RPU SU1234 Released

Why Table

RPU Ref Description

SU1234 Remove the concept of a telex number from the customer account as this
information is no longer available.

figure 6.5 : Example Data Recorded

In practice, the data collected was not acceptable for the following reasons :

• Concurrent development by more than one developer meant that entries in the log file

from two or more developers were mixed together. To search for the 'why' reason,

entries created by other developers had to be ignored.

• Developers would be tempted to 'fix small bugs' at the same time that major development

was being done. This meant that the reasons why an entity, which was changed under

the 'small bug' heading, would be lost and replaced with the 'major development'

heading.

• Programmers had a resistance to marking work as complete, perhaps until further testing

was completed. This meant that entries were not always created in the 'why' file at the

correct time. This meant that changes for the 'next' step in the development were often

included in the 'current' step in the development.

• Functional changes being made to programs varied dramatically in size. Some major

functional changes would take days, perhaps weeks. Others would be simple changes

taking perhaps minutes to complete. Timing became an important issue. If a major

development exercise was being performed, small changes realistically had to wait until

the 'why' entries for the major development had been completed

• There was no secure method of 'policing' the data to ensure accuracy and consistency of

adherence to the day-to-day procedures. Analysis of the log files was periodically

performed manually to determine their accuracy. The development team would be a

mixture of mature skilled personnel and new junior personnel. The analysis showed that

in general, the junior members would not mix changes for different reasons as often as

98

the senior members, primarily because they were trained in these procedures from the

start and also because they had smaller and more defined tasks to complete.

6.5.3 Recording Design Changes : Retiming the "why" Question

Direct action was required to improve the accuracy of the data collected before any attempt

could be made to use it for extracting 'design' information. The major issue was the problem of

concurrent development, either by different members of the development team or by a single

member working on more than one functional aspect at a time.

A feature being added to the EDS CASE tool at the start of 1993 was a Wish List' concept,

a common feature within program development environments. This wish list would record

requests for program changes in a central data table to allow a methodical means of logging

requests and reviewing possible changes at management design meetings . The structure of the

wish list table was seen as a superset of the 'why' table previously introduced, adding fields for :

• who requested the change

• when it was requested

• the benefit that the change would bring to the use of the program

• etc.

As this wish list was introduced, a simple addition and restructuring of the 'start-up'

sequence of EDS enforced the selection of an entry from the wish list before any changes could

be made to entities in the repository. This effectively meant that the 'why' question was asked

before any changes were being made replacing the previous system of asking the why question

after changes were made. The identifier for the 'why' question would be 'remembered' by the

CASE tool throughout the session. If no relevant entry was in the wish list, the developer

would be able to add a suitable entry before proceeding. This virtually eliminated any risk of

'cheating' caused by selecting 'any old entry' just to be allowed to make the change.

In addition, the RPU _Ref field was also added to the history log file and the 'why' identifier

recorded each time an entry was written to the log.

The following improvements were observed :

99

• Concurrent development could easily be accommodated as each developer could select

his/her own RPU to develop.

• It would be possible for more than one developer to work on the same RPU at the same

time (editing different entities) where, for example, a new feature being added was

sufficiently large or urgent for multiple developers to be cost effective.

• It was no longer necessary to complete an RPU before starting a new one. This meant

that small 'bug' fixes could be given their own RPU number and the changes made under

this number whilst a larger development exercise was still proceeding.

• It was still necessary to mark work done under an RPU as complete from a management

control point of view. This was done by changing the 'status' of the wish list entry and

allocating a 'release number'. This meant that 'states' were given a different numbering

system for identification purposes.

Data was collected in this way until the middle of 1994 when a further check on the

accuracy was performed. The result at this time was significantly improved. The system was

less 'stressful' to use as it was more intuitive to select and document 'reasons for change' at the

start of a session than at the end.

Other side benefits were noticed :

• Forcing programmers to document changes before they happened improved the general

efficiency of the development. It forced them to 'think through' the change before it

happened and prompted questions regarding the consequences of the change.

• It was now easily identifiable when a system was 'unstable' as it was represented by a list

of RPU's which had been started but not marked as complete. This gave reassurance and

additional control during the release of systems to users.

• Delegation of work to junior staff was easier as it was possible to list all the changes

relating to a specific RPU. This made it possible to 'police' changes which were being

made.

It was this third benefit which prompted a further refinement to the data collection exercise.

This is described below.

100

6.5.4 Recording Design Changes : Quality Inspection Documentation

After analysing the data in June 1994, the data being collected was about 85% accurate .

Accuracy in this case relates purely to the tagging of changes of entities to correct 'why' reasons

and was calculated by retrospectively manually checking each entry in the log file against its

'why' reason. This level of accuracy could have been regarded as sufficient but was

time-consurning to police. In order to improve the 'policing' the following refinement was

made. This refinement takes the accuracy to over 98% and is in use to the present day .

Working on the observations that :

• the system knows about every change made 'under an RPU'

• a 'why' reason has been given for the RPU before changes are made

• each application (phase program) will have a development staff member who is

'experienced' in the application, either because he/she was part of the original

development team or has been involved with development for a period of time . This

person is referred to as the 'application supervisor' and has overall responsibility for the

quality of the application

• generally it requires 'quality staff' to create a quality software product, but being able to

use junior developers effectively without compromising quality would provide a cost

benefit.

the formation of a 'Quality Inspection Record' (QIR) was introduced. A QIR is a form

produced by the EDS CASE tool before an RPU could be marked as released . An example is

show in figure 6.6.

The QIR is designed as a mechanism for policing changes made to a program repository. It

consists of three parts :

• The information relating to the 'why' information contained in an RPU

• A list of all the entities which have changed, marked with the RPU reference. This is a

summary from the history log file

• A signature box

101

Appllntlon : Sol" Ledger QUALITY 1.SP£ClION I£COIIO - 19/04/1996 Po .. No : 1

R...,"t : \l1Z Add IICIdltlanal contacts to the .It. _ ••• fll.

Motes : .Ml.Erilenc_nt

In order to lnereue the usability of the sIt. file, thr •• ICIdltlanal contacts fielda ".wlle _. Not. th.t th ... fl.lda .r. not 8Cc .. ud by _th.r -.1. at th'.
tfM.

Tills r...,ir .. utility USLCO'1S .-

Aet ; on : JOIII

Source : '"IL I Dote : 20/12/1995 I I. lease : C.03.15
,rlorlty : Z StetUl : C

Type Entity ActlonJR_k User Checked QC

Oat8bo .. SLADDRSS Added CONlACTZ PMIL
Added CONUCll PNIL
Added CONT.cT4 PNIL

It_ COIITAClZ Enteraltd PMIL
1Iod!fled PNIL

CONTAClJ Enter.d PMIL
lIodi fied 'MIL

COIITACT4 ["tared PNIL
lIod!fled PNIL

I18Cro Ua./SE_ADOIUS Edl ted FIl. 'NIL

D I SPLA'_ADOIlESS Edited FIl. PNll

ENTEI_ADOItESS EdIted FIl. 'MIL

MIlD 1fT _ADORESS EdIted FIl. 'Mil

-
screen ADDRESS saved PNIL

'IP\) C.Ol . 1S I.l ... ed 'MIL

AUtllorl • ..t to .. I :

QC SI_t !

figure 6.6 ,' Example Quality Impection Record

102

The Qm Request Information

At a time before the QIR, the 'why' information was held as unstructured text. The QIR has a

more structured format for the information which both:

• encourages the information to be entered

• makes 'computer' analysis of the information easier

Briefly, the information maintained is :

• The original request information. This is a short description, often in developers note

form summarising the changes required

• Technical notes and areas for consideration. This is a free format text note which

requires information from an 'experienced' developer to indicate potential problems and

conflicts. It is this 'experience' which it is hoped may eventually be available direct from

the Phase process itself.

• User information. This is the information which can be given to users as release notes to

inform them of the changes made. This description should be 'untechnical' .

• Source, Priority, Date Raised, Status and Action : A number of management information

fields used for presenting and analysing request information.

The QIR Change Log Information

The second part of the QIR lists all the entities which have been directly altered (or created. or

deleted) as part of this set of changes. This is pre-sorted by entity type and indicates

• The name of the entity

• The type of change made (added, modified, deleted)

• The name of the developer who made the change

An entry will appear on the list for every combination of these. For example, if an entity is

modified by two different developers then the names of both developers will be listed.

However if an entity is modified a number of times by the same developer then it only appears

once.

On the right hand side of the QIR. are two blank columns headed

103

• Checked

• Quality Control (QC)

These columns are used as described below.

Using the QIR

The QIR is used as follows :

• When a developer (Junior or Senior) decides that an RPU is ready for release, the QIR is

printed.

• The fonn is handed to the application supervisor (who may actually be the same

developer)

• The application supervisor looks at each entry on the fonn and makes a judgement based

upon :

• The complexity of the changes required

The ability of the person making the change

• The judgement is made to either check the work done or to accept that it has been done

properly (it should already have been tested by this time). If the change to an entity is

assumed correct then the "Checked" box on the fonn opposite the entity should be

'ticked'. If the change is physically checked (using a visual inspection) then the box is

'initialled' .

• The person checking will also be able to establish whether

• Entities have been changed which do not correspond to the description

Entities have not been changed which should have been

• If for any reason the person checking is not satisfied with the changes, the fonn will be

returned to the developer for rework. If everything is in order then it will be signed in

the "Authorised to Release" box. At this stage the RPU can be "Released". The release

number, which was allocated by the development system is then written onto the QIR

and filed .

This checking mechanism can also be policed. This policing can be done by any other

developer (not necessarily a senior member). It is policed by checking the judgement of the

104

application supervisor. If it is found that changes are always assumed to be correct and as a

result errors occur, then this is easily highlighted. Consequently, if visual inspections are

always performed, especially for 'simple changes' or changes done by experienced personnel,

then this suggests overcaution (and expense) .

Observations about the QIR

The QIR has been warmly appreciated by all members of development staff. In particular

• Senior members are :

. comforted by the auditability of changes made by juniors

. able to confidently delegate more work to juniors

• Junior members are :

comforted by the 'checking' mechanisms in areas where they feel insecure about
ability

appreciative that 'greater responsibility' tasks are delegated to them .

As a result, the number of recorded errors reported by users fell, at the time the QIR was

introduced, from 2.3 errors a month to 0.4 errors a month on average, per application. Prior to

the introduction of the QIR both logic and consistency errors were found in about equal

proportion. After the introduction of the QIR the majority of the errors were process logic

errors with consistency errors being almost eradicated.

6.6 Retrieving and Manipulating the Data

In order to analyse the data, a utility program was written which accesses the log file in an 'eas

to navigate' fashion . Due to the nature of the data and the fact that the same information is

reported from different viewpoints, printing the data on a hardcopy device would be impractical

except for one-off purposes. The analysis tool has the following two displays.

105

figure 6.7a "Analysis tool : Component Selection"

the sales ledger. could the batch report for cash receipts be called
ceipts batch l'epol't" and not "PaYl'lents batch l'epol't" as tl1is is
fu:siog_

figure 6.7b "Analysis Tool : View Descriptions"

This analysis tool allows the selection of a component type from the top left hand comer as

shown in figure 6.7a. A list of all the components of this type are then displayed in the lower

106

left hand part of the screen. The appropriate component is selected with the arrow keys, as a

component is selected the top right hand area of the screen shows the different RPU/QIR

references which contains a reference to this component. This contains the start and end dates

that entries were made, the names of the development staff making the changes and an indicator

which highlights if the entries were created, modified or deleted by this routine.

Moving the cursor to the RPU/QIR reference section expands the "why" descriptions on the

lower half of the screen (figure 6.7b). These are dynamically displayed as each entry is located

in tum. An option to print the complete design history is available.

6.7 Some Example Data

For the purpose of presenting the results, selected samples from the data will be used . These

samples are not chosen because of a 'best' result but to a 'typical' result A history from each of

the state components will be included. In the representations below only a selection of the

information available is included for reasons of clarity .

In the tables below, the dates refer to the dates between which changes were made to the

entity for the given reason. The type means "c" : Created "M": Modified "0" : Deleted.

6.7.1 Flow of Control Component

component Dates Type Reasons

MAINMNU-STD-MENU 25101/92- C Initial Program Development
25101192

12103194- M Routine added for Joumals. This routine used mainly for opening
14103194 balances and bad debt write-off

The information gathered about these type of components tended to be limited usually giving a

single entry for the creation of the routine and perhaps entries where major functionality is

added at a later stage. This makes 'sense' as these types of elements simply make menu

structures. These are possibly the least important parts of a design.

107

6.7.2 Data Item Component

Component Dates Type Reasons

INICVAL01 19/06195- C Add a "Cost Price" field , Sales Order References (Contract No, SO No, Del
19106195 Note No) and ten user definable fields to the sales invoice header and item

files to maintain compatibility with the integrated Sales Order Processing
module

The information gathered about these type of components again tended to be fairly limited. By

their very nature, data items are not subject to a high degree of change. What is important is

that reasons are now "automatically" appearing as to "why" these elements were added. In the

example above the reason being for integration purposes.

6.7.3 Screen Component

Component Dates Type Reasons

ACCOUNT 13101192- C Initial Program Development
20107192

26110192- M Make the balance forward field readonly and the turnover field modifiable
26110192

27110192- M """en setting a default nominal code, the detail code should be optional , even if
27110192 a detail code is required for the nominal ledger integration. This allows greater

flexibility during system start-up. The batch close routines will check this
anyway.

21110193- M Add a new discount field to the sales ledger account for prompt payment.
21110193

01112193- M Highlight trade and prompt payment discount fields when the sales ledger is not
01112193 linked to the nominal ledger

The information gathered about screen components begins to build a picture of the data and

becomes almost self-documenting. In the above descriptions, only one of the changes (Dec '93)

was a 'bug fix' . All the others were enhancements.

108

6.7.4 Data Table Component

Component Dates Type Reasons

SLEDGER 21/02/92- C Initial Program Development

24102192

15112192- M Add a new index to the Customer Master tile on the Name field . Add a 'find'

15112192 command to the account screen which does a browse using this index.

21/10/93- M Add a new discount field to the sales ledger account for prompt payment.

21110/93

09/12193- M Add five more user definable fields to the account. These are used as the

09/12193 default when raising sales invoices

21/08195- M Add a flag to the account maintenance page to be accessed by the Sales

21/08195 Order Processing module and to indicate that the customer requires delivery

notes to be posted to a single invoice.

Components of a Data Table type have a lot of similarity to Screen type components. In the

example above, two of the entries (October 93 and December 93) are identical. They are, in

fact, the same RPU. This makes logical sense as in the above example the screen component is

based on this particular Data Table with a result that where entries are made to the table they

are usually added to the screen. This is not always the case as in the entry August 95, here the

new field added to the table is accessed only from a different area.

6.7.5 Algorithm Component

Component Dates Type Reasons

CLOSE_INVOICE 29/01192- C Initial Program Development
16107192

26110/92- M Closing a Sales Invoice Batch. Even if the stock control posting is
26110/92 set to "N", the sales invoice details should still be posted to stock if

the path is set up and the identity exists.

01104193- M Tidy up batch close routines - if posting to a period other than the
01/04193 current period, update the current balance and turnover but not the

invoices or payments this period.

10/05193- M ClOSing the SL invoice batch; if the Sales Analysis path has been
10/05193 set up the program assumes that the Nominal Ledger path has

been set up and the databases opened.

15107193- M Implement Prompt Payment Discount. Also allow entry of discount
15107193 amount on the sales invoice items (i .e. override the percentage

calculation).

05l08I93- M Change posting from invoice batch routine to Sales Analysis. Field
05lO8I93 in SATRANS have been renamed.

109

Icomponent Dates Type Reasons

29/09193- M Post Sales Invoice value to Stock Audit Trail. Post cost price to
29/09193 Sales Analysis

05110/93- M Need to post the Product Group to Sales Analysis when closing a
05/10/93 sales invoice batch.

05110/93- M Post the Period Number to Sales Analysis when closing a sales
05110193 invoice batch.

25107194- M Batch close always updates the turnover figure. It should only be
25/07194 updated if posting to the current year.

04108194- M The invoice batch close routine should take into account the
04lO8I94 Summary lIags now maintained in the Nominal Ledger for VAT etc.

14112194- M Allocate transaction numbers from the intemal counter in globals

14112194 instead of adding 1 to the last transaction in the file as this can

cause problems in a multiuser scenario.

07104195- M The Sales Invoice batch close routine does not post a Cost Price
07/04195 if the invoice item does not have stock identity. It should post the

standard price from the stock master record.

12105195- M Post the Sales Invoice date to the stock control record and not the

12105195 current date.

19/06195 - M Add a "Cost Price" field, Sales Order References (Contract No,

19/06/95 SO No, Del Note No) and ten user definable fields to the sales
invoice header and item files to maintain compatibility with the
integrated Sales Order Processing module

11/08195- M Add automatic logging of changes to system parameters and batch

11108195 close routines.

02l11~ M Add the Sales Order Section number to the Sales invoice item file
02111195 and implement a new Invoice print routine which sorts the items on

this field.

21112195- M \MIen closing batches, validate the period number to stop 'wild'
21112/95 numbers from being entered.

21/12195- M Want the period number to appear on all batch reports
21/12/95

These types of components attract the most useful infonnation from the history log. In the

above example all changes made to a central "batch close" routine are listed. Some are bug

fixes, others are enhancements. What is highlighted here are peculiarities which may not be

easily understood from examining source code directly.

110

6.7.6 Procedure Component

Component Dates Type Reasons

STATEMENT_CREDIT 15111193- C Can we have an option in the Sales Ledger which prints
15111/93 statements for all customers with a credit balance.

Procedures by their nature will not attract a lot of modifications. Procedures are simply

convenient ways of linking Screens, Data Tables and Algorithms. All the modification tend to

be done at this lower level.

6.8 Using the results to transfer 'experience'

The remainder of this chapter describes how the data presented above is used as experience.

The aim is to transfer the knowledge which is gained by a developer when developing an

application to a developer who is subsequently modifying the application. The reason for

transferring this data is to provide the developer with enough information that he/she can

modify the program without causing consequential damage.

6.8.1 A Worked Example

This is best explained with an example. The example chosen is the algorithm taken from the

sales ledger called VIEW _ACCTRAN. There are two questions that can be asked :

• What is this routine meant to do?

• If it is changed, what are the possible consequences ?

Using the information extracted from the Phase repository, these questions can be answered

(albeit not necessarily completely).

111

The history log attached to this algorithm provides the following information :

Component Dates Type Reasons

VIEW_ACCTRAN 23106194- C Store each invoice printed to a file, referenced by invoice number, and be able
23/06/94 to view the invoice from the account transaction browse (SU1281)

03/11194- M VVhen using the view facility of a invoice, put the screen into condensed mode

03/11/94 (SU1292)

29/11194- M Add the option to print archived invoiced (presently only allowed to view them)

02112194 (SU1293)

The first entry in the log explains why the algorithm exists in the first place : To view an

invoice which had previously been printed. The second two entries provide further

information, the screen is in condensed mode and that there is an option to print.

For further information, it is possible to check which other entities in the repository were

affected at the time the algorithm was created or modified.

SU1281

Entity Type Entity Remark

Screen LSETUP Modified

Algorithm DISPLAY _SYSPARM Modified

MODIFY _SYSPARM Modified

PRINT_INVOICE Modified

V1EW_ACCTRAN Modified

Node ACCTRAN-STD-VIEW Created

Procedure ACCTRAN_ VIEW Created

Data Item INVPATH Added

Data Table SLGLOBAL Modified

This tells us that a data item (called INVPATII) was added to the data table (SLGLOBAL)

and is maintained via the algorithms DISPLAY_SYSPARM and MODIFY_SYSPARM using

the screen LSETUP. (This table, screen and these algorithms refer to the 'System Control' file

containing all the configuration parameters of a module). The data-dictionary remark for this

data item tells us that this item refers to a directory path where invoices are to be stored. The

only other routine affected is the PRINT_INVOICE algorithm. This is the routine which

112

creates a copy of the invoice, in the named directory, whenever the invoice is physically

printed.

Checking the log for the second alteration provides the following infonnation :

SU1292

Entity Type Entity Remark

Algorithm VI EW_ACCTRAN Modified

This tells us that no other entity was affected by changing the screen mode. This third

change is listed below.

SL/1293

Entity Type Entity Remark

Algorithm PRINT_ACCTRAN Modified

VI EW_ACCTRAN Modified

Node ACCTRAN-STD-PRNT Created

Procedure ACCTRAN_PRINT Created

This tells us that the 'Print' option is actually contained in a separate procedure with a

separate algorithm. The V1EW _ACCTRAN macro does not actually print the invoice but must

set a pointer to the invoice viewed which is used by the print routine.

From this information we now have an understanding of the functionality of this routine,

and we also know that changing this routine will not affect any other part of the program. This

prepares the developer for making any changes to the routine and will provide clarity when

reading and amending the algorithm code.

6.9 Conclusion

This chapter has described an implementation strategy for collecting infonnation relating to

changes made to a program developed using one of the Phase CASE tools. The infonnation

collected is simple : what has changed, and why has it changed .

113

An analysis tool has been designed for use by developers who are familiar with both the

application domain and the Phase paradigm. The information presented represents the history

of the development of a program, or components of a program and contains many of the

decisions made by previous developers. This information is extremely useful when modifying

or maintaining parts of a program, both in helping with an understanding of the construction of

an application and also the implications and consequences of change.

This chapter and the previous chapter have described the Phase paradigm, the functionality

of the CASE tools required to develop applications using this technique and examples of how

the information collected by the system can be passed on and used by developers. The next

chapter provides examples of studies based upon the use of the Phase paradigm in a commercial

environment. This provides an indication of how resilient applications developed in this way

are to the detrimental effects of changing mature programs.

114

Chapter 7

The Phase Resistance to Change?

7.1 Introduction: How does a Phase program perform?

The purpose of this chapter is to provide an answer to the question :

''How does the Phase paradigm score, in relation to the consequence of changes, when

applications which are developed using the technique are subject to change?".

To provide a tangible measure of success, two key measures have been monitored. These are :

• Tune taken to complete the change, measured in Programmer Hours (PH)

• Number of reported errors in the system after the time of 'release'

'The experiments used in this analysis are not laboratory exercises but 'real' examples taken from

applications developed in a corrunercial environment. The advantage of using these real

examples is that they reflect problems of a significant complexity and funding was available to

provide solutions to these problems. The disadvantage is that it is difficult to provide a direct

comparison of the consequence of change of a single system developed using different

methodologies.

Five examples are included in this chapter, three concerned with technological changes and

two concerned with major changes in user requirements. The conclusion to this chapter

115

includes an analysis of the contribution of the various specific elements of the Phase paradigm

to its overall success in resilience to the effects of change.

The examples are :

• Technological Change

Change of target language to the 'next generation' of the compiler

Change of target language to a different platfonn

Change from a procedural language to an event driven language

• User Requirements Change

Adding significant enhancements to a mature software program

Maintenance of software by non-original team members

7.2 Change of target language to the 'next generation' of the compiler

The software produced by EDS used a target language compiled by a 1987 version of a

compiler. This compiler was replaced by the 'owners' and became unsupported in 1992.

Dispite this, due to the effort of the development team on the functionality of Elite programs,

this target language was still used up to the first quarter of 1995 . It was the limitations of poor

memory management intrinsic to this technology which placed a practical limit on the ever

increasing functionality of the programs.

The successor to this target language compiler was not classed as 'backward compatible'. It

had a basic similarity in syntax to its predecessor however it had significant differences in the

way that programs could be structured in tenns of infonnation hiding capabilities. For

comparison, the differences were similar to the relationship between a Pascal program and a

Modula-2 program.

In 1995, the first real test was applied to the Phase Paradigm, to 'upgrade' all Elite modules

to the new compiler with the minimum of effort. A 1 month exercise was scheduled to 'learn'

about the new compiler and highlight the differences . This produced the following results .

116

• The existing syntax of all application code definitions could be regenerated to the new

target language by programming direct translation 'rules' into the code generator with few

exceptions.

• Manual changes to application code were minimal and due completely to 'bad

programming style' of the algorithm definitions

• A number of 'third party progrnm libraries' had to be replaced and the functionality of

these routines recoded either 'by hand' or by finding alternative libraries

• The Kernel routine required only minimal changes to take advantage of improved

memory configurations.

• No changes were required to the repository specification

After a period of initial testing, each module was moved to the new compiler. The

following table provides statistics for the 10 major modules.

Module Complexity Factor Time for Errors
Completion Reported

SL : Sales Ledger 1 9PH 1

PL : Purchase Ledger 1 7.5 PH 2

NL : Nominal Ledger l.3 6.5 PH 0

PY : Payroll l.7 10.2 PH 1

SO : Sales Order Processing 1.1 8.5 PH 2

PO : Purchase Order Processing 1.4 13.5 PH 0

ST : Stock Control 2J 7.5 PH I

SA : Sales Analysis 0.4 9.5 PH 0

PA : Purchase Analysis OJ 7.5 PH 0

JC : Job Costing 2 .1 12 PH 1

Complexity Factor

The Complexity Factor in the above table is a metric calculated to provide a guide for

comparing modules in terms of complexity, using the reference of the Sales Ledger, having a

117

complexity of 1. This complexity factor is a calculation based on the number and type of

algorithm entries in the repository. Algorithm entries can be split into two types :

• Type A1 . These relate to the standard Display, Enter, Modify, Delete, Browse procedures

as detailed in section 5.3 .2

• Type A2. These relate to the non-standard routines eg Batch Close, also described in

section 5.3 .2.

Monitoring the effort taken to implement, test and perform maintenance on procedures using

these algorithms over a period of a year provides a rule of thumb which estimates the effort

required for a procedure with a type A2 algorithm to be 5 times greater than the effort required

for a procedure with a type A1 algorithm.

The complexity factor for a module is calculated by the formula:

number of procedures using type A1 algorithms + (S x the number of procedures using type A2 algorithms)

base factor for the sales ledger

The base factor for the Sales Ledger is (using the 'size' factors given in Chapter 6) :

103 + (5 * 31) = 258

Example

The complexity factor for the Nominal Ledger using A1= 120 and A2 = 43 is :

120 + (5 * 42)

258

This equates to 1.3.

This figure does not have any real scientific meaning, however, it does provide a means of

comparing modules and provides an indication that the Nominal Ledger is about 30% more

complex than the Sales Ledger. The results produced by this simplistic formula are similar to

intuitive factors placed on the complexity of the above modules by programmers who are

familiar with the modules.

118

Time Taken for Completion

The time taken for completion was measured in Programmer Hours. These were 'clock hours'

recorded on manual timesheets to include the following :

• Execute the automatic translation routines

• Manually correct any syntax errors reported by the new compiler

• Recode routines which relied on 'old compiler technology' (regarded as bad practice)

• Relink all object files

• Execute a test set of data for all functions

• Execute each non-standard algorithm using 'real' data

Figure 7.1 plots the relationship between complexity and programmer hours.

15 . - r - t .
• PO

s::
a t r
~ 1 1 ..
~

10
. py

"'E... • SA E • 5L • t

a • 50 I .
U • PA • PL

~

• ST
L • NL
~

...

~
5 ~

E
~

o
0.5 1.0 1.5 2.0 2.5

Complexity Factor

.figure '7.1 : Relationship between complexity factor and time for completion

119

It can be seen that there was a minimum period of 7.5 programmer hours per module . This

represented the time taken mainly to execute the test set of data for all functions .

There is no direct relationship suggested between the complexity of a module and the

time taken to implement the module in the new target language.

Errors Reported

The number of errors reported referred to errors which caused the program to tenninate

abnonnally after the program was released to users . These are errors which 'slipped through'

the test data and test procedure. All the errors reported were due to 'bad programming style'

where programmers had not followed the standard code of practice when coding unstandard

algorithms. The relationship between the complexity factor and the number of errors reported

is shown in figure 7.2.

o
0.5

f'L
•• so

• SL

. py

1.0 1.5 2.0

Complexity Factor

• JC

• ST

2.5

figure 7. 2 : Relation hip between complexity/actor and number of errors reported

No direct relationship was found between the number of errors reported and the

complexity of the module.

120

Summary

From the data given in the above experiments it would suggest that changing technology to a

compiler of a similar structure is relatively easy to perfonn for programs written using the

Phase paradigm.

7.3 Change of target language to a different platform

The only time that software developed using the Phase paradigm has been changed to a

different platform was when FDS, a Pascal system on a mini computer, was rewritten as EDS, a

Clipper system on PC networks in 1990.

Unlike the previous exercise, the change in technology in this example was forced due to a

redundancy of the support of hardware and associated Operating System platform. The

commercial viability of proprietary mini computers was diminishing with the advent of the low

cost Personal Computer networks which were increasing in power at an alarming rate .

The 'conversion' exercise involved the following :

• Recoding of the Kernel with identical functionality in the new language

• Complete design of a 'Screen Editor' to replace the 'inbuilt' forms editor of the mini

computer

• Replacement of the true relational database structure with a non relational 'open' database

system

• Recoding of the algorithm syntax to have a closer resemblance to the different target

language structure

• Complete redesign of the code generation routines

No 'computer performed' translations were attempted as even basic file transfer between the

platforms was impractical, all the functions ofEDS were coded 'by hand'.

The Timetable

The complete conversion of FDS to EDS can be divided into two parts. FDS (and EDS) arc

both programs which are 'written in themselves' . They can be considered as simply an

121

application (with the functionality and purpose of a CASE tool) which is implemented using

the appropriate Kernel and Support Library.

To recode the Kernel and Support Library took approximately 210 Programmer Hours (over

a 3 month period). Much of this time however was experimental and included the learning

curve of a new language. It also included the creation of a screen editor as the intrinsic 'forms'

editor available with the mini computer was not available with the PC network.

Developing the application (EDS) using the new support library and Kernel took

approximately 120 Programmer Hours (over a 2 month period). This figure eventually rose to

430 Programmer Hours (over a 4 year period) as a number of enhancements to the system were

added.

Summary

The example above is indicative of a 'worst case' scenario, where no automatic re-use of

information is possible due to technological differences. The examples above also involved an

application with a very high complexity factor of 9.2 (as defined earlier in this chapter)

compared with the 'normal' range of complexity factors found with the previous examples. This

is due to the example being a CASE tool and not 'standard' IDIS software. In my opinion the

time taken to perform this transition is intuitively low compared with time taken in the past to

migrate software 'from scratch'.

7.4 Change from a procedural language to an event driven language

During the early 1990's, Microsoft introduced the Windows Operating System for the PC

environment. This provided a platform for Graphical User Interfaces (GUI) and event-driven

programming. Dispite an initial reluctance, the commercial market became dominated with

"Windows Software" around 1995, the use ofMSDOS programs diminishing.

Programming with the GUI environment had two significant problems :

• The use of 'forms' and screens had to conform to a defacto Windows standard

• Programs had an 'event driven' look and feel utilising the concurrent nature of the

operating system

122

Replacement of screens to 'Windows Standards'

A three month experiment was performed in the summer of 1996. The purpose of this

experiment was to replace the standard user interface of Elite programs to the defacto

(Microsoft) Windows standard. A constraint was added that no application code should be

altered.

This was possible due to the use of the Support Library for accessing the User Interface.

From an application code view point single function calls placed 'screen definitions' onto the

physical VDU. These were either 'detail screens' or 'browse screens' (as described in chapter 5)

. Menus and command options were part of the 'Kernel' routine and already separate from the

application code. The screen editor in EDS was modified to handle the graphics capabilities of

windows screens.

The experiment concluded that a transformation to a GUI was possible without changing

any application code and restricting all changes to the Kernel and the Support Library. The

level to which users accept the system as 'Windows Software' however has not been tested at

this time.

Replacement of Flow of Control from Procedural to Event Driven

No attempt has been made to alter applications to a true event driven environment due mainly

to the large cost implications. There is a lack of a 'ready made' suitable development tool and

the resources available for research and experimentation in the commercial organisation are

limited. It is predicted however that changing to an event driven paradigm would not be a

significant problem (at least no more significant that the conversion from FDS to EDS). The

remainder of this section describes how it would be attempted.

In Phase terminology, a collection of related flow of control nodes is called a SubModule.

For nodes to be a SubModule they must be a hierarchically related subtree in the main flow of

control structure and all perform 'actions' on a common data table or screen. For example, the

nodes to Display, Enter, Modify and Delete records in the customer file are a SubModule. This

has a very close relationship to an Event Driven (or Object Oriented) paradigm. A Submodule

would become an 00 Object and each node would become an 00 method acting on the object.

123

An Example

This can be clarified with the aid of an example (simplified) :

In Phase assume we have the table DBACCOUNT with the following structure :

Field Description

AC CODE Account Code

AC NAME Account Name

AC BALANCE Current Balance

AC TURNOVER Value of Sales Invoices in year ex VAT

AC VAT NO Account VAT number - -

In Phase, manipulation of data in this table would be represented by a flow of control structure :

Browse Account
List

Display
Account

I I
I Enter I I Modify I Delete I

figure 7. 3 : Standard Phase SubModule

In Object Oriented tenninology, this would be replaced with the Object Definition :

Define Object Account;

export methods Browse_Account,

Display-Account,

Enter_Account,

Modify_Account,

Delete_Account,
export structure Ac_code,

Ac_name,

Ac_balance,

Ac_tumover,

Ac_VAT_Number

124

All the information required to automatically generate these Object definitions is held within

the Phase repository structure.

Summary

As described above, there is a high degree of similarity between the structure described by the

Phase paradigm and the structure inherent in the Object Oriented paradigm. The discussions

above indicate that implementing a Phase program in an event driven manner would be

relatively straight forward.

7.5 Adding significant enhancements to a mature software program

The 'core' Elite applications (as previously defined) were first released in 1992. At this point

they were fully operational and could be considered as 'Mature'. In the period from July 1992

to July 1996, the number of changes made (where a 'change' in this instance relates to a set of

related entity changes or a 'state' in chapter 4) is calculated at 1435.

This number can be broken down into a number of categories:

Category No of Changes % of Total Average Time to
Complete

Major Enhancements 367 25.6% 15.75 PH

Minor Enhancements 612 42.6% 4 PH

Cosmetic Enhancements 272 19.0% 0.5 PH

'Bugs' as a result of the 147 10.2% 2.5 PH
original development

'Bugs' introduced during 37 2.6% 0.75 PH
maturity

• Major Enhancements relate to user requests which provide additional 'goals' for the

software over and above the requirements of the software at the time of initial release.

This is similar to the second case study example given in chapter 4. Typically, this

involved adding or changing more than 20 entities in the repository.

125

• Minor Enhancements relate to user requests which can be considered as 'refined'

requirements. The number of entities changed in the repository is between 5 and 20.

• Cosmetic Enhancements relate to user requests that do not change the functionality of the

system, but simply the layout of screens or reports . The number of entities changed in

the repository is less than 10.

• 'Bugs' as a result of initial development relate to errors found in the software which were

present (although undetected) in the system at the time of release. The number of entities

changed in the repository is usually low.

• 'Bugs' introduced during maturity relate to errors found in the software which were

introduced after the initial release, usually as a consequence of introducing

enhancements.

Summary

Programs developed using the Phase paradigm have been significantly modified after the initial

release. Intuitively the number of errors introduced into the system seem low compared with

historical developments of non-Phase applications of a similar (or smaller) size. The average

time taken to complete these changes is also intuitively low.

7.6 Maintenance of software by non-original team members

Of the 1435 changes made to the programs presented above, 72% of the changes were made b

programmers who were not involved in the original development of the modules . This was due

both to staff turnover and the reorganisation of the development team structure. As a general

point, it was a policy decision to 'move developers' between modules after a period of 6

months. This prevented anyone individual from having 'ownership' of a piece of software

which, from previous experience, ensured that any 'bad' programming style became apparent.

126

Summary

Programs developed using the Phase paradigm have been significantly maintained by

programmers who were not involved with the original development. The statistics have been

described in section 7.5 above and it has been shown that the number of errors introduced has

not been significant.

7.7 Dynamic Configuration at RunTime

During 1994, the advantage of the Support Library for all access to the repository was utilised

to its fullest potential. It was realised that as high a level as 80% of a users specific

requirements was based around 'jargon' and 'terminology'. As an example, in simple terms, the

functions of a commercial business can be summarised as follows :

• Generate Sales Leads from Customers

• Log a Sales Order

• Place Purchase Orders on Suppliers for 'Raw Materials' or Services

• Provide a product or service to your customer

• Send an Invoice & Receive Payment

• Provide Support

Whilst the general functionality is similar, the terminology and specific requirements are

not. Customer Orders may be called : Customer Orders, Sales Orders or Jobs. Orders may be

stock related, made to order or manufactured.

This led to the observation that whilst the functionality of the algorithms provided a

'standard set of functions' and rarely required alteration; menu labels, screens and reports

required a high level of alteration to suite particular users. As previously discussed, all these

aspects of the User Interface were driven though single calls to the Support Library.

By altering the Support Library routines and providing a 'Run Time' subset of the repository

containing the Screen, Browse and Menu Option Labels it became possible to alter these

entities for particular installations without changing any of the original repository entities . By

127

creating a run-time definition only for entities which were actually changed (or customised),

program updates could easily be accommodated .

Summary

A large number of configurations of a single Phase module can be accommodated using data

driven techniques without altering the base programs. This has the effect of removing a

significant load from the development teams as well as reducing the errors introduced by the

development activity.

7.8 Conclusion: Why is the Phase method a good method ?

From the above exercises, it can be concluded that Phase programs can be modified and

changed without extreme difficulty. The remainder of this chapter provides a closer

examination of the following question:

Why is a Phase program reasonably resilient to the detrimental effects of change ?

A focus group of developers using the Phase method was formed in order to establish a set

of issues which contributed to the success of the Phase method in being resilient to the

detrimental effects of change. The issues raised are listed below and presented in order of

decreasing importance.

7.8.1 Run Time configuration of the User Interface

Configuring the User Interface at Run Tune and external to a program, to reflect specific user

terminology and requirements removes a significant source of complexity from a program. A

major source of change is when software has to satisfy the needs of multiple users, each with

their own particular requirements. Using data-driven techniques each user can have a different

configuration of the same program.

128

7.8.2 High Coherence of Procedures

Procedures in a Phase program must be completely independent of any other procedure. The

only parameter passing mechanism is a 'current' entry in a data table . Changes to procedures

can be made in total isolation from any other procedure.

7.8.3 Use of Prototype Software

It has been observed that in order to achieve a reasonably stable requirement, a user needs

approximately 3 iterations of refinement. If prototypes are not done, these iterations are

(expensive) development exercises. Prototypes are very inexpensive to achieve using the Phase

paradigm and can be 'thrown away'.

7.8.4 Ability to view the 'history' of an entity within the repo itory

The advantage of knowing why entities have a particular set of attributes is significantl more

beneficial than simply knowing what the attributes are. This transfers vital knowledge betwe n

developers and is used to provide better information, allowing more informed design decisions

to be made during maintenance. It also aids the development of the conceptual model as

described earlier in this document.

7.8.5 Printing and checking of the Quality Inspection Record

The QIR enforces discipline on developers to both complete their task and check that what the

have changed within the scope of the requirement for the change.

7.8.6 Easy availability of documentation

Easy access to documentation provides vital information to developers quickl . This accurate

information reduces the 'guesswork' and subsequent errors.

7.8.7 Mental Model of an application represented by the Flow of ontrol
Tree Structure

The ability to present the 'mental model' of a system to developers provides a high 'comfort'

factor when trying to understand the functionality of a new module or program.

129

7.8.8 Use of automatic code generation for repetitive task

Automatic generation of code guarantees consistent programs. This also leaves much more

time for programmers to concentrate on the more complex and non-autogenerated functions.

7.8.9 Automatic Hyperlinking of Entities

The automatic hyperlinking of entities within the repository provides an automatic method of

knowing which entities will be affected by changes

7.9 Summary

This chapter has shown that programs developed using the Phase paradigm are more resilient to

the detrimental effects of change than similar programs developed historically using more

traditional methods by the example software development company. The main contributing

factors have also been discussed.

130

Chapter 8

An Assessment of Phase

8.1 Introduction

This chapter examines the Phase paradigm in relation to its original goals and obj ctives.

For analysis purposes, the Phase paradigm can be assessed for its effectiveness as

• A requirements analysis tool

• A specification representation system

• A software designers productivity tool

• A software project management system

The ultimate goal is the resilience of a Phase project to the impact of changing requi rements.

This chapter includes data, statistics and observations taken from Phase projects over a five year

period and assesses its effectiveness in relation to change. The attitude of software developers

towards change has been related directly to the tools which are available to them. The success

of the Phase paradigm in achieving its ultimate 'resilience to change' goal therefore has a di rect

correlation with the attitude of the developers who use it.

Each section in this chapter is introduced with the source of the evaluation criteria which is

taken from literature where appropriate .

131

8.2 Phase as a Requirements Analysis Tool

Phases uses a prototyping approach as an aid to requirements anal sis . Objectives of a

prototyping mechanism are given in [Floyd831 and it is these objectives that will be used as a

'benchmark' for comparing the effectiveness of the Phase prototyping properties. In her

analysis of 'ideal' prototyping features, Floyd proposes the foHowing major headings:

• Early Availability

• DemonstratablelExecutable

• Construction

• Commitment to Target System

• Documentulon

• Automated Program Generation

• Further Use

8.2.1 Early Availability

To allow maximum effectiveness, a prototype must be available as soon as possible after the

initial systems analysis has taken place. This provides maximum enthusiasm for a s stem as

users are provided with feedback at an early time. This helps avoid the problems of users

'forgetting what they have said' which happens in the time between the initial anal sis phase

and their feedback.

In the Phase system, due to its construction (see below) a prototype is cas to prepare. A

complete prototype can be created for a 'typical' project in a single da. At most, u ers

involved in a Phase development will expect to get feedback within 1 week.

8.2.2 Demonstratable/Executable

The prototype review is a critical part of any prototyping strategy. For maximum effecti enes

the prototype should execute in such a way that users can get a true 'feel' for the software before

it is developed.

132

In the Phase system the prototype specification is executed by interpreting the high level

prototyping instructions. These instructions will re-create menus, options screens and prompts

in an identical manner to the target program. Delay loops can be incorporated to give the

system a 'worldng feel' .

8.2.3 Construction

The construction of a Phase prototype is described in Chapter 4. To summarise, the structure of

the software is created by using a simple tool to create a data-driven directed graph. This graph

corresponds to menu options and command options. A simple prototype specification language

which consists of only four commands links the structure to the screen and report entities in the

specification. The screen painter and report defining tools complete the construction of the

prototype.

A Phase prototype is therefore very easy to construct.

8.2.4 Commitment to Target System

A prototype should be committed to its target system. This means that there should be a very

close relationship between the prototype (or execution of the prototype) and the e ecution of

the target system. This applies both to the look and executable 'feel' of the software.

The construction of the Phase prototype is such that the entities of the user interface are

stored in the repository. These entities that are used during the execution of the prototype for

analysis and are also used for the automatic creation of the program, either directly (as in code

generation) or indirectly (used during the run-time execution of the program)

The prototype in the Phase system is very committed to the target system. This howe er

leads to a major disadvantage which is discussed later in this chapter.

8.2.5 Documentation

As well as an executable prototype some traditional forms of documentation are also desirable.

This includes flow diagrams, data structure diagrams, reference and technical manuals.

The Phase system has a number of automatic documentation tools which have been

described in chapter 4. These are summarised as :

133

• Flow of Control Node Tree Structure Diagram. An automatically produced pictorial

representation of the structure of the menus and options within a software product. This

can be printed at various levels of abstraction, from a single A4 sheet where each 'node'

is simply numbered to the level where each node au tom ati cal I prints out the

corresponding screens. In the later case, the full diagram for a typical module, showing

all screen activity at every node can exist as a 14 metre by 3 metre chart. (Au tom ati cal 1

split into A4 pages).

• Database Definition Charts. Standard reference manuals detailing database structures,

indexes and relationships.

• Screen Defmition Technical Reference. A programmers reference for the information

and structure of screens defined using the screen painter.

• Module Technical Reference Manual. This is a hardcopy document which displays

screens and options combined with notes in a 'user oriented language' which can be used

for reference. This information is also available as an on-line context ensiti e help

within the run-time versions of the finished products.

• User Tutorial Manuals. These are 'how to do it' guides which contain te rt and links to

appropriate screens.

• Hard Copy Prototype Manual. This is a 'flat' hyperlink structure document which is

highly cross-referenced automatically between pages. This is ideal for recording notes

on the prototype as it is being executed to users.

The major advantage to all of these documentation fonns is the close integration to the

repository. Where elements are changed in the repository to alter functionality of a program,

the 'documentation' can be reprinted without further amendment.

8.2.6 Automated Program Generation

Automated program generation is desirable as a feature which should be available in all

prototyping systems. The prototype is a specification of the s stem which, if it has the

134

properties of commitment to target and is sound in structure, should have the capabili ty of

using this information as an input into a code generator.

The Phase system uses automatic code generation at two levels . The first uses the

information contained within each screen definition to create fast efficient target code fo r al l

screen manipulation. The second uses the information contained in the algorithmic code

specification to combine with the other entities in the repository to produce software in its

target language. The definitions of these translations are maintained within the system. This

allows different target languages to be used from the same specification.

8.2.7 Further Use

The information contained within a prototype specification system should have further use.

This has been implied in many of the previous headings in this chapter. Many of the entities

are reused as part of the automatic code generation, others are used at run-time accessed within

the program libraries for activities such as flow of control , security etc.

The only element in a specification which does not have some re-use is the small

prototyping instruction set which is used solely during the execution of the prototype and

automatic preparation of the documentation.

8.2.8 Summary

When compared with the objectives of Floyd it has been shown that the Phase paradigm is

effective as a requirements analysis tool. Whilst this thesis is not concerned directly v ith the

analysis methods, what has been provided is a mechanism for rapid prototyping which

generically is a recognised method for helping with analysis. It also provides a mechanism for

recording the results of the analysis in a structured and reusable manner.

8.3 Phase as a Specification Representation System

Although there are no standard evaluation criteria for a specification, several guidelin s

introduced in the 1970's identify some important criteria for the effectiveness of an

specification representation scheme. Pamas [pamas72] stated that the specification scheme

135

must provide to both the intended user and the implementer all the information needed b cach,

but nothing more (i.e. information hiding). He also asserted that the specification must be

formal so that it can conceivably be machine tested, and it must 'discuss the program in the

terms used by the user and implementer alike' (i.e. not some abstract formalism). Liskov and

Zilles extended the criteria as follows [Liskov75].

• Formality : It should be written in a notation that is mathematically sound. This is a

mandatory criterion.

• Constructability : One should be able to construct specifications without excess difficulty

• Comprehensibility : A trained person should be able to reconstruct the concept by

reading the specification.

• Minimality : The specification should contain the interesting properties of the concept

and nothing more.

• Wide range of applicability : The technique should be able to describe a large number of

concept classes easily.

• Scaleability : The technique should be applicable to applications regardless of size.

The Phase system will be assessed in relation to these criteria. In addition it ill be

demonstrated how the Phase system is scaleable and can be applied to applications of a

significant size.

8.3.1 Formality

The Phase method is not considered as a formal method [Liskov75] and therefo re it is

inappropriate to judge it on the basis of being mathematically sound. It has been tested and

demonstrated to produce reliable and consistent programs and therefore satisfies the und rlying

principle that Liskov and Zilles were trying to achieve - that it can produce sound programs.

8.3.2 Constructability

Constructability is the ability to construct specifications without excess difficul ty. There arc

two ways in which this can be measured.

• The time taken to specify a concept

136

• The number of times a concept specification is changed.

Time Taken

The time taken to specify a concept is influenced by a number of factors including

• The 'size' or 'scope' of the concept

• The complexity of the concept

• The skill of the system designers

It is therefore very difficult to have a suitable single metric for measurement. In general

however observations and studies have been made regarding the times taken to construct

specifications. A typical 'concept' with a four to six data table scope takes between 6 - lO hours

to develop. This is not dissimilar to non-Phase specifications however it has been observed that

Phase specifications can be created by less-experienced junior personnel that can otherwise be

expected.

Number of Specification Changes

The number of times a specification is changed in this section relates to the changes required to

specify a 'stable' concept, not changes which are due to technological or user requiremcnt

changes. The number of times a specification in a Phase system is changed is very eas to

identify due to the entity logging functions contained within the Phase editors.

Statistics have been taken and an average number of changes computed for each type of

entity within the Phase repository. These are listed in the tablc below.

Entity Type Average number of
Changes Made

Node 1.3

Procedure 0.2

Screen 3.4

Data Item 0.1

Data Table 1.3

Algorithm 4.1

137

The 'simple' entities (procedures and Data Items) are very rarely altered after their initial

definition. Screens and Algorithms are edited on average between 3 and 4 times after initial

definition, these entities are more complex. Upon further investigation screen entities are

changed mainly for cosmetic reasons, algorithms for further refinement.

In general the number of 'attempts' required to specify a requirement concept correct1 is

minimal.

8.3.3 Comprehensibility

Comprehensibility requires that a trained person be able to reconstruct the concept b 'reading'

the specification. In Phase, the conceptual model in the repository is viewed as a statement of

the problem and its solution, it should be 'close' to the designers mental models. Thus

Comprehensibility can be demonstrated if it can be shown that a designer who understands the

problems being addressed (i.e. domain knowledge) and the specification language (i.e. the

Phase system) has little difficulty in creating and revising specifications.

A measure of comprehensibility can be found in the relative ease that designers have in

modifying programs that they did not create initially. This can be monitored easil in the

Phase system due to the automatic logging of entity changes.

For a 'typical' program a study was made relating the number of changes made to entities

after they had first been released. It was observed that over 75% of all entities had changed in

the five year period after the first release. Of these over 62% were changed by a developer who

was not involved with the initial development. Some algorithms had changed up to 14 different

times over the same period by up to 6 different developers. It was also possible to identify the

number of changes made for anyone requirements change, the average number of changes for

algorithms (the significant entity) still remained at an average of 3.2 changes.

This data shows that the Phase requirements specifications are comprehensible.

8.3.4 Minimality

Liskov and Zilles defined minimality in the sense that Parnas defined information hiding. The

specification should provide only the necessary information and nothing more. In the 197 's

the concepts of interest were data abstractions. In the Phase environment the concepts to b

138

specified are computer supported responses to a need. Nevertheless, the goal remains the same

: to have the implementer specify the interesting properties of the concept and nothing more.

Phase addresses this challenge by providing:

• a holistic repository in which all concepts are shared within an application

• a specification command language with very few but very powerful commands

• loosely coupled but highly cohesive 'submodules' of infonnation

• a system style that augments the specification of the interesting properties with the

implicit and default properties expected in the implementation.

8.3.5 Wide Range of Applicability

One desirable property of a representation scheme is that it can apply to a wide range of

concepts. Phase has been optimised for interactive infonnation systems, but there is nothing in

its architecture that restricts it to this class of application. The basic design recognises that

requirements engineering is domain oriented, and no one environment (or speci fication

language) will suffice for all domains. Phase uses application-class knowledge to tailor th

system to a particular class of needs, and the architecture penn its the introduction of system

styles for new domains (e.g. real-time and embedded systems).

Even though Phase may be employed with multiple application classes, it has only been

primarily demonstrated in the domain of mIS software. This domain, however, is its If quite

broad; it includes standard Order Processing type applications; Automatic Data Collection

applications (Shop floor time recording, Aluminium Can recycling scale interfacing).

In addition to mIS software both the Phase CASE tools (FDS and EDS) have been

developed successfully using the Phase method. The application domain of a CASE tool is

significantly different from the application domains associated with IBIS software. The Phas

CASE tools are more 'database oriented' however than the more traditional concept of a A E

tool which tends to be highly graphical [Junk88].

139

8.3.6 Scaleability

To demonstrate the scale of an application that can be designed using Phase, the largest Phase

project was analysed. This project is the 'core' of the business information modules which are

implemented in over 30 sites. The core modules cover all the standard business appl ications

including accounts, payroll, order processing, stock control, costing, and estimating. This set

of modules (at 1996) includes over 150 data tables, 370 screens and 750,000 lines of algorithm

specification code. At the start of the five year period being studied, the size of core package

size was 54 data tables, 140 screens and 321,000 lines of algorithm code. Therefore over the

five year period the size of the project has increased almost three fold . This project was

maintained by a team of 4 developers who were also responsible for maintaining, installing and

supporting a number of other projects . During this time, the system was considered virtually

error free (the actual number of errors reported from users over the five year period was 37 an

average of 1 reported every 2 months).

This data demonstrates that a Phase project can be significant in size.

8.3.7 Summary

When compared to the guidelines given, it has been shown that the Phase paradigm is effective

as a specification representation system.

8.4 Phase as a Software Designers Productivity Tool

There have been many attempts at defining the requirements of the 'perfect' designers

productivity tool. The objectives used in this analysis are based upon the observations of

Davies and Castell [Davies 92]. They observed that designers follows a similar behaviour

pattern :

• Developers create a mental model of their design, however there is great difficult in

representing this model in tangible forms .

• Designers use mental execution of the design model as a technique for refining and

clarifying the design.

140

• Designers use opportunistic development which includes a mixture of top down and

bottom up approaches. Although an overall strategy may be adopted, different

techniques will be applied depending upon the particular concept being designed .

• Designers use extensive note-making which allow them to records ideas as the happcn

which may be associated with a different issue in the concept. These notes can be

revisited and refined at a later stage.

8.4.1 Mental Model

The mental model used by designers has the definite advantage that it is not constrained by an

syntactical issues. It is intuitive to the designer and it can be at different levels of abstraction .

Representing this mental model in a physical form requires syntactical constraints.

Experience in designing Phase projects does not preclude mental models however the

mental model is usually created along the intuitive flow of control structure of Phase projects.

Physically creating a flow of control structure within the Phase repository allows the "Flo" of

Control Tree Diagram" to be created. This diagram has a strong similarity to the mental model.

This has been proved by 'team driven' projects where the flow of control structure has been

created by an individual member, the structure chart printed and distributed to other team

members. Observing a team project meeting where the only physical information is this chart,

it is soon obvious that each team member creates his own mental model which, from th

discussions that follow, the mental models are similar. This proves a strong link betv cen

mental models and Phase flow of control charts.

8.4.2 Mental Execution

Mental execution of the mental model is an important part of the modelling proce s.

Experienced designers will be able to execute the mental model derived from the Phas flow of

control charts and use this execution to refine and define a design.

The Phase prototyping functions link together elements of the repository which represent the

design in a way that can be executed. This physical execution of the prototype can often be a

141

concrete representation of the mental execution of the model. This shows a strong link between

mental execution of models and execution of Phase prototypes.

8.4.3 Opportunistic Development

Opportunistic development involves concurrently using different approaches during design.

For example, high level structures may be created across a module, followed immediatel by a

detailed design of a particular screen. The process of defining the screen may 'spark' higher

level thoughts over the methods of obtaining the data associated with the screen and in tum

concentrate the mind on data structures.

Within the Phase repository there is no defined sequence for the creation of entities . Where

entities have a relationship, the relationships can be defined automatically. The level of detail

required for entities is set to allow the minimum of infonnation to be entered to create an entity

with the fuller details being filled in at a later stage. The supporting Phase CASE tools

therefore support opportunistic development.

8.4.4 Note Making

Note making is the most unstructured method of specification. It has the advantage of

unconstrained syntax but the disadvantage of ambiguity, limiting its use as a specification

medium.

The Phase repository system allows free format notes to be attached to any entity. These

notes can be 'tagged on' at any time during the design process. The notes are not used as part of

the fonnal 'specification' however they are available to add clarity to some aspects of the

design. In some circumstances, these notes are available as part of (and can be edited ia) the

on-line help in the prototype of the product. This allows the designer to record notes easily

during a prototype review with users. The notes are automatically linked to the relevant ntities

within the repository which are being simulated at the time.

8.4.5 Summary

When compared to the observations of Davies and Castell, it has been shown that the Phase

paradigm is effective as a software designers productivity tool.

142

8.5 Phase as a Software Project Management System

The complete Phase project management system is described in Appendix B. In literature,

there are considered to be three essential criteria for a project management system [Daily92l:

• The recognition of process milestones

• Auditability

• Team Development

8.5.1 The Recognition of Process Milestones

Often regarded as the most important requirement for a project management system is the

ability to determine 'milestones' against which progress can be reported. These milestones

should be in the form of ' de live rabies' . Typically these are linked with 'progress payments' in a

commercial situation.

The Phase system recognises four main 'deliverables' in the system. These are :

• The application overview (or Project Definition of Scope of Supply)

• Prototype Specifications

• Technical Specifications

• Finished Programs

These are described fully in appendix B.

8.5.2 Auditability

Any Quality System must be fully auditable [Daily92]. This is the basis for many of the

genernl IT standards that are emerging eg TickIT, AQAP, IS0900 I etc. Auditability tends to

be more associated with tracing the source of problems and the ability to replicate a standard

however 'good' that standard may be. Genernlly an auditable system contains accurate

documentation in the form of a project log, with appropriate forms requiring 'signing'.

143

The Phase system has automatic logging which is described fully in Chapter 5. This logging

provides a complete audit trail of every change made in the system. The QlR fonn also

described in Chapter 5, satisfies the requirements ofBS5750 and the TickIT standards

8.5.3 Team Development

Large programming systems requires development teams. The essence of good team building

is communication between team members. For software, due to its invisibility, communication

of concepts is not easy. Traditionally, diagrams such as data flow diagrams, structure diagrams

etc act as 'blue prints' for the software.

The Phase system has a number of diagrams as described earlier in this chapter. This makes

communication of a Phase specification manageable.

8.5.4 Summary

When compared to the criteria given by Daily, it has been shown that the Phase paradigm is

effective as a software project management system.

8.6 The Disadvantages of the Phase System

There are a number of disadvantages to developing with the Phase development strateg .

These are summarised as :

• Changing entities in a prototype changes the actual program

• 'Clever' screen displays cannot be created

• It is not possible to rebuild previous versions of programs

• There is a maximum finite size of programs

• Programs require a large of amount of computing resources

8.6.1 Close Relationship between Prototypes and Programs

Earlier in this chapter it was observed that there is a very close relationship between a prototype

and the target system. This was viewed as an advantage. This is also a major disadvantage.

144

Specifying changes to software requires changing the entities within the Phase repository which

in turn updates the execution of the prototype. However, the 'current' version of the program

may also use the same entities during its execution, the problem arises when an existing entity

is altered for a change in specification, the functionality of the existing program is altered .

The simplest example of this is the addition of a new option on a menu. Creating the

appropriate flow of control node within the repository will include this option on a prototype

menu however, as menus are formed at run time by the target program, this option will also

appear in the 'latest release' of the progmm.

A more significant example is where screen definitions are updated, again the screen layouts

are referred to at run time of a program. The change to the specification may be to include new

data items on a screen, this will cause the existing progmm to terminate abnormally.

In practice this requires careful timing of specification changes which cannot take place

when a progmm may be involved in a maintenance release. This can be a significant problem.

Incorporating version control would be a major contributor in eliminating these problems and is

discussed below.

8.6.2 Inflexible Screen and Flow of Control Structure

All Phase applications have a similar structure which gives a consistent look and feel to the

software. This is very advantageous from a user acceptance point of view as users who arc

familiar with one program can easily learn to operate new programs.

There are instances when the rigid structure of screen design and flow of control options can

be limiting. For example, screens cannot be altered based upon the contents of previous data

entered, the layout of a screen is fixed. This results in screens which may be over-complex.

with blank: fields which are not relevant in some instances.

There are instances when an overlapping windows user interface is not appropriate for an

application from a speed an simplicity point of view. One example of this was a Phase Till

interface program which uses a computer as a point of sale till . The overlapping windows

interface resulted in a program which was overcomplex for use on a shop counter with

145

relatively untrained staff. In practice, the Phase till system was replaced by a non-Phase till

program.

8.6.3 Inability to Build Previous Software Versions

The Phase repository structure includes only the latest version of any entity . An entry is made

in the 'entity change log' each time an entity is changed and, as discussed in chapter 5, the

reason why this change was made is recorded. The previous attributes of the entity are however

lost. This has the result that, should a new design be inappropriate it is impossible to retrace

the design back to its original position. It is also not possible to have different software 'builds'

of previous releases of a product. This can make replication of a users 'bug' very difficult to

achieve without keeping run-time copies of all released programs.

Incorporating version control was only omitted due to fact that initially the Phase method

was classed as experimental and therefore not a priority requirement. As Phase now has

commercial implications the priority of this requirement is such that it will be implemented in

the near future.

8.6.4 Maximum Finite Size of Programs

The structure of a Phase program requires a target language which can support separatel

compiled procedures linked into a single executable program file. This intrinsically limits the

size of a program to constraints within the target language. Using the two different CASE

tools, each with its own target language, these limitations have been reached for a number of

programs. The effect of this can be reduced with a better split of functionality between

programs, particularly where programs are used together as a 'suite'.

8.6.5 Computer Resource Usage

Phase programs require a subset of the Phase repository to be available during run-time. This

imposes an overhead in tenns of file-handles and execution efficiency for executable programs.

It is observed that much of this dynamic run-time access could be circumvented as once a

system has been configured the fact that additional configuration is available is superfluous

146

8.6.6 Summary

It has been shown that there are a number of recognised disadvantages to the Phase paradigm

however none of these can be considered critical . It is the intention to continue development

with the Phase paradigm to overcome some of the disadvantages discussed with further

maintenance.

8.7 Conclusion

When compared against literature, the Phase paradigm matches all the desirable features of all

four different categories. It can be considered therefore as a serious contender as : a

requirements analysis tool, a specification representation system, a software designers

productivity tool and a software project management system.

147

Chapter 9

Summary

9.1 Introduction

Brooks suggested that:

"altering the Software Engineers attitude to change, from being an annoyance to

accepting change as a way of life, would be a significant step in delivering quality

systems".

I suggest that the Software Engineers attitude towards 'change' is directly related to the methods

and tools available for designing and creating software. I also suggest that there are two

(perfectly reasonable) major factors for a 'bad attitude' :

• A sudden change in requirements can instantly make days, weeks or perhaps months of

'technically perfect' hard work suddenly become redundant

• Software that has been designed for a specific goal and written 'as a seamless work of art'

is tom apart and stitched together to satisfy some change of requirements. This

inherently leads to a detrimental effect on the quality of the software

'Bad attitude' leads to unsatisfaction. Unsatisfaction leads to staff turnover. Staff turnover

leads to the disappearance of staff experience. Loosing this experience is costly for the

commercial software developer.

148

9.2 The Nature of Requirements and Change

This thesis started by examining the nature of requirements. It states that requirements can be

split into Requirement for the Software (the 'User Requirements') and Requirements of the

Software (the Technological Requirements'). It has been studied and reported how and when

these sets of requirements change.

The first stage for control, is to monitor. The monitoring of change and the effects of

change were studied for a period of five years. As a result, a system for designing software

which would be more resilient to the detrimental effects of change, was created. The principle

behind this system was :

• Identify the state of the 'components' in a system

• Monitor and record the changes to the component states

This system is called Phase. The Phase system cannot exist without CASE tools which

provide a means for implementing the theories.

9.3 The Phase Paradigm

The Phase paradigm, presented in chapter 5, uses a central repository to store infonnation

relating to the design of a system using five simple types of entities . These entities reflect : The

flow of control, the user interface, the data storage, the functionality, the fifth being an entity

which links the previous four together. This repository becomes the 'specification' . This

specification can be executed as a 'prototype'. This easy-to-build prototype allows users to see

exactly how the resultant software will look and feel.

Experience demonstrates that typically a user will require at least three attempts at refining

requirements and each attempt is based upon actually using the results from the previous

attempts. Without prototyping, this implies that at least two full systems will be 'thrown out'

(by which time the Software Engineer is becoming fiustrated and upset), using this prototype

technique provides the same effect for the user without the same effect on the Software

Engineer.

149

The same specification which is demonstrated by the prototype is used to prepare the actual

program. The Phase paradigm is ideal for automatic code generation, tran lati ng the

specification into executable software. This is implemented using the CASE tools.

9.4 Maintaining 'Experience'

The Phase paradigm attempts to automatically record the design decisions made b de elopers

during the lifetime of the development activity. This information can be considered

capturing the 'experience' of these designers. By extracting and analysing this information th

'experience' can be retained, long after a turnover of staff, to be passed to futu re developers .

This is presented in Chapter 6.

9.S A Tried and Tested Theory

The Phase paradigm and a number of its associated CASE tools arc actively being u d for

commercial development of software. This provides a real 'test bad' for obtaining results. The

level to which Phase software has been modified, especially after its initial reI c to u , I

presented in Chapter 7. This demonstrates that there is a high degree of resilience to th

detrimental effects of change for Phase applications. It does not remove completel , al l the

'bad' effects of change. It is also possible to create 'bad' Phase programs as \ ell as 'good' Ph

programs.

9.6 An Appraisal of Phase

Chapter 8 presents an appraisal of the Phase paradigm. This is in relation to Phase as :

• A requirements analysis tool

• A specification representation system

• A software designers productivity tool

• A software project management system

150

This chapter also includes a list of points where the Phase paradigm and its A tools

could be improved.

9.7 The Phase Repository and Project Management Technique

A detailed statement of the Phase Repository is given as an Appendix. Also given is a ct of

working practices to provide an explanation of a 'Phase Program Lifecycle'. This pro id s a

step-by-step guide to project managing a Phase development.

9.8 Conclusion

This chapter has summarised the aims and contents of this thesis. The next chapter pre ents the

conclusions drawn from the period of research. Many of the conclusions have been previousl

presented earlier in this thesis.

151

Chapter 10

Conclusions

10.1 The Contribution of this Thesis

This thesis has proposed a paradigm for developing computer software called Ph c. Thi

paradigm is designed to tackle one of the highlighted essential cl ments of ftware

development often ignored in traditional development strategies: that requirements, ill chan .

Consequently, programs designed using this paradigm are more re ilient than traditional

programs, to the detrimental effects of change.

The reasons why Phase programs are more resilient to change is because the arc tructurcd

in such a manner that they combine many of the recognised properties of 'good programming

practice'. These are :

• Data Driven techniques allow for flexibility and 'customisation' v ithout requiring

programming changes. This dramatically reduces the complexity of a program.

• Procedures are extremely highly cohesive and extremely loosely coupled. Thi limi the

potential 'damage' of other procedures when changes are made.

• Prototypes of software are created very easily. The prototypes arc very cto • to the took

and feel of the resultant programs. This gives user the ability to 'throw ava' man

copies of the prototype as required without wasting valuabl soth are ogin 'enng

resources.

152

• Diagrammatic documentation is automatically produced. This allows for visual

representation of 'mental models' of a concept. These diagrams allow developers to share

and communicate their mental models and ideas.

• All entities in the system are related in a natural 'hyperlink' form of structure. This

provides the ability to easily check the implication of changes on other components in

the system.

• Automatic code generation is performed translating the specification into target language

code. This automatic code generation is based upon 'macro substitution' similar to the

techniques used in many assembly code assemblers.

In addition to the above features which have been used for many years, a number of new

techniques have been introduced. This is based upon the automatic recording of changes made

to entities within the system and the way in which this information is used .

• All changes made to entities are recorded automatically by the system. In addition to

who, and when, entities were changed, the reason why entities are changed is also

recorded. This represents the design decisions taken by developers during the lifetime of

the software.

• Using the logging of changes provides a method for easily checking work done by a

development team. This is presented as the Quality Inspection Record document and

inspection technique introduced in chapter 6.

It has been shown that this technique is successful for the commercial development of a class of

software known as Interactive Business Information Systems. Many of the techniques could

equally be applied to different classes of software.

10.2 Further Development

The Phase paradigm has been in existence in some form since 1986 as a direct result of a

Stirling University Computing Science honours project. This led to the implementation of the

Phase paradigm on a mini computer. During the past five years, technology forced a

replacement of the mini computer with powerful PC networks. Technology on PC networks is

153

such that an inevitable change will take place where all applications will have to conform to the

Windows GUI interface. A future enhancement will be to develop Phase applications adapted

for this technology. How this will be attempted has been introduced in Chapter 7.

Chapter 8 highlighted some of the current disadvantage and problems with the Phase system

and its supporting CASE tools. In particular, the problem caused by the prototype and the

runtime elements of a program accessing the same version of the entities in the repository

means that the ability to prototype additional functionality whilst maintaining a current version

of a program is impossible. In order to increase the usefulness of this system, some form of

version building will be required.

The analysis of the information logged as 'experience' is currently only presented to

developers when it is explicitly requested and it requires a fair level of knowledge before this

information can be classed as useful. Further enhancements to the system can include some

form of 'expert system' which will analyse the information and automatically guide the

developer through implications of changes.

10.3 The Attitude to Change

The question still remains :

What of the developer's attitude to change, is this still a problem?

There have been twelve developers who have used the Phase paradigm for developing software.

Of these twelve, six have stayed with the system since their first introduction. Of the remaining

six who left, four have returned having not found a better system, the other two left for further

education.

Some negative attitude to change still exists, a deeply bred culture takes years to change.

Personally, however, I know that my attitude towards change is better. It's going to happen, be

prepared for it : Users will be Users!

154

Bibliography

Agostoni88

Alexander92

Ambriola90

Balzer83

Basili75

Benington56

Blum91

Blum93

AGOSTONl, G. et al : "Managing software quality during the

complete lifecycle" . 1st European seminar on software quality

(Brussels, 1988)

ALEXANDER, C : "An introduction for Object-Oriented Designers" .
ACMSIGSOFT Software Engineering Notes 1994 Vol 19 No 1 pp
39-46

AMBRIOLA, V; et al : "The evolution of configuration management

and version control" Software Engineering Journal, Nov. 1990 Vol. 5

No. 6 pp 303-310

BALZER, R. et al : "Software Technology in the 1990's : Using a New

Paradigm," Computer, vol 16, no .11 , pp 39-45, 1983

BASILI, V.R. et al : "Iterative Enhancement : A Practical Technique

for Software Development, " IEEE Transactions on Software

Engineering, vol. SE-l , no. 4, pp. 390-396, 1975

BENINGTON, HD.: "Production oflarge computer programs" in

ONR Symposium on Advanced Program Methods for Digital

Computers, pp 15-27, June 1956

BLUM, B.I. : "Towards a unifonn structured representation for

application generation" Int. J Software Eng. Knowledge Eng. vol 1,

pp. 39-55, 1991

BLUM, B.1 : "Representing Open Requirements with a

Fragment-Based Specification" IEEE Transactions on Systems, Man,

and Cybernetics, vol 23, no. 3, pp.724-735, 1993

155

Boehm76

Boehm86

Booch91

Brooks75

Brooks87

BTRL90

Budgen94

Christensen83

Chudge96

Cosgrove71

Daily92

BOEHM, B.W.: "Software Engineering," IEEE Transactions on

Computers, vol C-25, no. 12, pp.1226-1241, 1976

BOEHM, B.W.: "A Spiral Model of Software Development and

Enhancements," Proceedings of an International Workshop on the

Software Process and Software Environments, Coto Do Caza,

Califonnia March 1985, published as Software Engineering Notes,

vol.l1, no. 4, 1986, pp. 22-42.

BOOCH, G.R.: 'Object Oriented Design with Applications'. Redwood

City, California: Benjamin / Cummings

BROOKS, F.P. Jr.: 'The Mythical Man-Month' Reading. MA:

Addison-Wesley, 1975

BROOKS, F.P. Jr.: 'No silver bullet: essence and accidents of software

engineering', Comput., 1987, (4), pp. 10-19

British Telecom Research Laboratories,UK. Rigby, P.l; Norris, M.T. :

"The Software Death Cycle". UK fl' 1990 Conference pp 8-14

BUDGEN, D.: Software Design. Addison - Wesley

CHRISTENSEN, N; et al : "Prototyping of User Interfaces" in

Approaches to Prototyping, Ed Budde,Kuhlenkamp, Mathiassen,

Zullighoven

CHUDGE, 1 ; FULTON, D. : "Trust and co-operation in system

development: applying responsibility modelling to the problem of

changing requirements." Software Engineering Journal. May 1996 pp

193 -204

COSGROVE, J. : "Needed: a new planning framework," Datamation,

17,23 (Dec. 1971) pp 37-39

DAILY, K. "Quality Management for Software" NCC Blackwell Ltd,

1992 ISBN 1-85554-082-7

156

Davies92

Dawson95

Fagan77

Floyd83

Gamma93

Giddings84

Halker93

Henderson86

IEEE91

DAVIES, S.P.; CASTELL, A.M. : "Contextualizing design: narratives

and rationalization in empirical studies of software design', Design

Stud., 1992, 13, (4), pp. 379-392

DAWSON, C.W.; DAWSON, R.J.: "Towards more flexible

management of software systems development using meta-models",

Software Engineering Journal, Vol. 10 No.3 May 1995

FAGAN, M.E. : "Design and code inspections to reduce errors in

program development", IBM Systems Vol. 3. 1977 pp 182-206

FLOYD, C.: "A systematic look at Prototyping", in Approaches to

Prototyping, Ed Budde,Kuhlenkamp, Mathiassen, Zullighoven

GAMMA, E., HELM, R., JOHNSON, R., VLISSIDES, 1. : "Design

Patterns: Abstraction and Reuse of Object-Oriented Design" in

Lecture Notes for Computer Science, ECOOP'93 - Object Oriented

Programming. July 1993

GIDDINGS, R.V.: "Accommodating uncertainty in software design,"

Commun. Ass Comput. Mach., Vol. 27, no 5, pp428-434, May 1984

HARKER, S.D., EASON, K.D., DOBSON, J.E. : "The change and

evolution of requirements as a challenge to the practice of software."

IEEE lot. Symp. on Requirements Change, 1993 (IEEE Computer

Society Press).

HENDERSON, P. : "Functional Programming, Formal Specification,

and Rapid Prototyping", IEEE Trans. on Soft.Eng. Vol SE-12 No.2

Feb 1986

IEEE: IEEE Standard Glossary of Software Engineering Termology.

10 situ of Electrical and Electronic Engineers, inc, New York, USA,

1991. Revision and Registration of IEEE SID 729-1983

157

Junk88

Lee91

Lehman80

Letovsky87

Liskov75

Littman87

McCracken78

NAT068

Pamas72

Pamas72b

Pamas79

Pamas86

JUNK. W.S. : More than just a diagramming tool. In IEEE Software,

March 1988 Software Reviews pp 97.

LEE, J : Extending the PottslBruns Model for Recording Design

Rational, 1991.

LEHMAN, M.M.: "Programs, life cycles, and the laws of software

evolution," Proc. IEEE, vol. 68. no 9, pp. 1060-1076, Sept 1980

LETOVSKY, S. : "Cognitive Processes in Program Comprehension"

The Journal of Systems and Software 7, 1987 pp 325-339

LISKOV, B.H.~ ZILLES, S.N. : "Specification techniques for data

abstraction," IEEE Trans. Software Eng., vol. SE-l pp 7-19, 1975

LITTMAN, D., PINTO, 1., LETOVSKY, S., SOLOWAY, E.

"Mental Models and Software Maintenance". The journal of Systems

and Software 7, 1987, pp 341-355

McCRACKEN, D.O.: "The changing face of applications

programming", Datamation, pp. 25-30, Nov. 15, 1978

Software Engineering, Report on a conference sponsored by the

NATO SCIENCE COMMITTEE Garmisch, Germany, 7th to II th

October 1968. Ed PeterNaur and Brian Randell, 1969

PARNAS, D.L.: "A technique for software module specification with

examples" Comm. ACM 15 pp.330-336, 1972

PARNAS, D.L.: "On the criteria to be used in decomposing systems

into modules" Comm. ACM 15(12), pp.1053-1058, 1972

PARNAS, D.L.: "Designing software for ease of extension and

contraction," IEEE Trans. Software Eng., Vol. SE-5, no. 2, pp.

128-137, Mar. 1979.

PARNAS, D.L.; CLEMENTS, P.C. : "A rational design process: how

and why to fake it", IEEE Trans., 1986, SE-12, pp. 251-257

158

Pfleeger94

Potts88

Potts89

Pree94

Proteus93

RE93

Reeves95

Ross77

Rowen90

Royce70

Shaw96

PFLEEGER, S.L.~ "Design and analysis in software engineering. Part

1: the language of case studies and fonnal experiments. ACM

SlGSOFT Software Engineering Notes 1994 19(4) pp16-20

POTIS, C.~ BRUNS, G.: "Recording the Reasons for Design

Decisions", 10th Internation Conforence on Software Engineering,

ApriI1l-15, 1988 pp 418 - 427

POTIS, C.~ BRUNS, G.: "A generic Model for Representing Design

Methods" 1989,ACM0270-5257 pp 217-226

PREE, W : "Design Patterns for Object Oriented Software

Development. Addison - Wesley

PROTEUS : "Understanding changing requirements". Proposal to

lEA TP Safety-Critical Systems Progmmme, September 17. 1993

IEEE Int. Symp. on Requirements Change, 1993 (IEEE Computer

Society Press).

REEVES, A.; MARASm, M.; BUDGEN D.: "A Software design

fmmework or how to support real designers", Software Engineering

Journal, July 1995 pp 141-155

ROSS, D.T.~ SCHOMAN, K.EJr : "Structured Analysis for

Requirements Definition", IEEE Trans. Soft. Eng. Vol. SE-3. No.1,

Jan. 1977

ROWEN, R.B. : "Software project management under incomplete and

ambiguous specifications", IEEE Trans., 1990, EM-37, (1), pp. 10-21

ROYCE, W.W.: "Managing the development oflarge software

systems: Concepts and techniques," in WESCON Tech. Papers, Aug

25-28, 1970, pp. A.l 1-9

SHAW, M., GAINES, B. : "Requirements Acquisition". Software

Engineering Journal, May 1996 pp 149 - 165

159

Simon69

Smith72

Sommerville93

Swartout82

Takahac;bi95

Williams88

SIMON, H.A.: "The Sciences of the Artificial." Cambridge, MA:MIT

Press, 1969.

SMITH, J : "Economics: A first course" Oxford University Press,

1972

SOMMERVILLE, I.: "Software Engineering" Addison Wesley 1993.

SWARTOUTW.; BALZER R.: "On the inevitable intertwining of

specification and implementation." Common. Ass. Com put. Mach.,

Vol. 25, no 7. pp. 438-440, July 1982.

TAKAHASHI, K., OKA, A., YAMAMOTO, S., ISODA, S. : "A

comparative study of structured and text-oriented analysis and design

methodologies" Journal of Systems and Software, 28: 49-58. 1995

WILLIAMS, L.G.: "Software Process Modelling: A Behavioral

Approach" ,10th International Conference on Software Engineering,

Aprilll-15, 1988, pp. 174-186

160

Appendix A

The Phase Repository Structure

This appendix contains the definitions for all the entities in the Phase repository. Each table is

individually listed with its contents. A data table diagram is included at the end to show how

each of the tables are related.

FMAcnON Each record contains a step in the life-cycle model

Field Name Type Description

ACTION C2 Step number

ACTION_TYP C1 Action or Deadline

ACTlON_DESC C30 Description

FMDBASE Each record contains the definition for a data table (excluding data items)

Field Name Type Description

DBASEID C10 Intemal identification number

DBASENAME C8 Name of data table

DBASEDESC COO Description

INXFILE01-15 15C8 Filenames of index files

INXKEY01-15 15COO Index expressions

DATE Date Date last modified

161

FMDBITEM Each record contains a link between a data table and a data item

Field Name Type Description

DBASEID C10 Intemal identification number of a data table

ITEMID C10 Intemal identification number of a data item

ORDER N3 The order the item appears in the table

DESCTEXT Memo Description

FMGLOBAL A single record table containing the configuration parameters

Field Name Type Description

PROGRAM C40 A descriptive name for the module

COMPANY C40 Company name of development company (used for report headings)

MACROPATH C30 Path name for algorithm definitions

FDSLlBPATH C30 Pathname for library algorithm definitions

GENPATH C30 Pathname for generated source code

USER NAME C8 Usemame of application supervisor

NODEID C10 Next node identification number to be allocated

PROCID C10 Next procedure identification number to be allocated

MACROID C10 Next algorithm identification number to be allocated

ITEMID C10 Next data item identification number to be allocated

DBASEID C10 Next data table identification number to be allocated

REQREF N6 Next RPU reference to be allocated

RELEASE C8 Current release number

DATE Date Date record last modified

COL_HEAD C44 Colour for the user interface 'header'

COL]OOT C44 Colour for the user interface 'footer'

UTILITY C8 Last data table upgrade utility executed

APPLIC C2 Two character mnemonic for the application for validation

FMlTEM Each record contains a data item definition

Field Name Type Description

ITEMID C10 Intemal identification number

ITEMNAME C16 Name of data item

ITEMDESC C70 Description

ITEMTYPE C1 Type of Item (Character/NumericlLogicaVDatelMemo)

ITEMLENGTH N4 Length of Item

ITEMDECPL N2 Decimal Places (Numeric Items)

PICTURE C60 Standard Data Input Template

VALID C60 Standard Data Input Validation Procedure

DATE Date Date last modified

DESCTEXT Memo Description

162

FMLINK Each record contains a link from a node to a child node

Field Name Type Description

NODEID C10 Intemal identification number of the parent node

CHILDID C10 Intemal identification number of a child node

OPTIONNO N2 Option number

FMLOG Each record contains a single entity modification

Field Name Type Description

DATE Date Date the change was made

USER NAME C8 Usemame of the developer making the change

LOG_SECT C8 Type of entity

LOG_NAME C16 Name of entity

REO_REF N6 Pointer to the 'why' table FMREOEST

LOG_REMARK C24 Description of type of change eg CreatedIModiliedlDeleted etc

TIME C8 Time the change was made

10 C10 Intemal identification number of the element to which the record is associated

FMMACRO Each record contains a pointer to an algorithm definition

Field Name Type Description

MACROID C10 Intemal identification number

MACRONAME C16 Name of the algorithm

LIBRARY C1 Library routine or Application only

DESC1-2 2C56 Description

PARAM01-10 1OC10 Parameters passed to algorithm at code generation time

DATE Date Date record last modified

LOCK-FLAG C1 Lock flag to prevent multiuser editing

LOCK-NAME C8 Usemame of person locking algorithm

FMMODULE Each record contains an entry for a SubModule (Used for the manual print)

Field Name Type Description

MODORDER C2 Logical order for implementation

SUBMODULE C7 Name of submodule

MODTIT1.E COO ChapterTrtle

MODTYPE C10 Type of submodule (Data Entry/Report/Enquiry)

DESCTEXT Memo Description

CHAPTER N3 Chapter number (when printing the manual)

163

FMNODE Each record contains a now of control node

Field Name Type Description

NODEID C10 Intemal identification number

NODENAME C16 Name of flow of control node

DESCTEXT Memo Description

PROCID C10 Intemal indenlification number of the called procedure

SELECTlYPE ca Selection type for options (MenulSoftkey/FseriaVNone)

LABEL C26 Menu or command select label

TITLE C2S Identification name

COLOR C20 Colour of menu

EXITID C10 Intemal identification number of the How of control node used when exiting

HELPLINE COO Short message required for onscreen help

DATE Date Date record last modified

ACCLEVEL C26 Security access level

FMONUNE Each record contains an online tutorial

Field Name Type Description

HELPCODE C4 Tutorial indentification number

FLAG C2 A grouping field

QUESTION C140 Trtle of the tutorial

ANS'M:R Memo Conlents of the tutorial

FMPROC Each record contains a procedure entity

Field Name Type Description

PROCID C10 Intemal identification number

PROCNAME C16 Name of the procedure

OVERLAY ca Name of source file when generating source code

LEVEL C1 Flag indicating if this is a configurable procedure or intemal procedure

DIRTYFLAG C1 Set true if any entity used by the procedure has been edited, cleared when
generated

FASL C200 Prototype definition command line

MACROID C10 Intemal identification number of the algorithm definition

MACRO C200 Name of the macro and actual parameters as a command string

DESCTEXT Memo Description

DATE Date Date record last modified

LOCK-FLAG C1 Set true to lock entry if it is being edited off-line

LOCK-NAME ca Username of developer locking the entry

ICD01-05 sca Username of developers responsible for developing the procedure

164

FMPROJ Each record contains an entry in the planned development timetable

Field Name Type Description

ACTION-COD C2 Code for the action

DLiNE-CODE C2 Code for the deadline

USER NAME C8 Usemame ofthe person responsible for the action/deadline

DUE-DATE Date Date the deadline is due

COMP-DATE Date Date the deadline actually reached

DESCTEXT Memo Description or notes

FMREQEST Each record contains the definition of a 'state'

Field Name Type Description

REQ_REF N6 Request identification number (RPU)

REQ_DESC1-3 3C76 Description

DATE Date Date request raised

REQ_SOURCE C10 Source of request (developer/client)

REQ_STATUS C1 Current Status

REQ_PRI C1 Priority

RELEASE C8 Release Number for completed requests

REQACTION C20 Work authorisation code

DESCTEXT Memo Release notes

FMSCRFOO Each record contains a screen item definition

Field Name Type Description

SCREENNAME C10 Name of the screen

FIELDNAME C16 Name of the field

ITEMID C10 Intemal identification number of the field

SOURCE C8 Data table containing field

ROW N3 Screen coordinate - row

COL N3 Screen coordinate - column

LENGTH N3 Screen length of field

PICTURE C40 Actual data input template

VALID C40 Actual data input validation procedure

SAYGETIYPE C10 Screen version identifier - Display only or Input/Output

ITEMTYPE C1 Type of data item

ITEMDECPL N2 Data item decimal places

BLOCK C2 Cursor order block

FlABEL C30 Field label (used for automatic documentation)

FDATA C30 Field data used on prototype of screens

DESCTEXT Memo Description

PALETIE N1 Colour palette of field

165

FMSCRJOO Each record contains the definition for a screen

Field Name Type Description

SCREEN NAME C10 Name of screen

TOP N2 Screen coordinate for window top margin

LEFT N3 Screen coordinate for window left margin

BOTTOM N2 Screen coordinate for window bottom margin

RIGHT N3 Screen coordinate for window right margin

IMAGE Memo Screen image (graphics characters, field labels etc)

DATE Date Date screen last modified

MODE N3 Screen mode (8Ox25, 8OxSO, 132x5O)

DIRTYFLAG C1 Set true if screen has been modified, cleared when generated

FMUSER Each record contains a user for each developer with access to the module

Field Name Type Description

USER C8 Usemame

ACCLEVEL C1 Access Level (Programmer/Support Only/Project Manager)

REO_REF N6 Current RPU being edited

FMXREF Each record contains a hyperlink cross reference between entities

Field Name Type Description

10 C10 Intemal identification number of the one side of the link

CHILOID C10 Intemal identification number of the other side of the link

166

Appendix A : Repository Data Table Structure Chart

The following chart show the relationships between the tables in the Phase repository as

described earlier in this appendix. Note that the links from FMLOG and FMXREF have been

omitted for clarity they link to the majority of the other tables.

FMMODULE r-------J FMREQEST
L_~ __

I

'-:: F~OG I
L _____ J

; J _,
FMMACRO I I FMSCRIOO II FMDBASE !
-- - J. ----r- - ----,-- -

l FM~IONJ
~

iFMPROJ J
'--- ---

~ ..=.-1, _

- FMSCRFOO i ifMDBITEM l
~~--r r-

J

L FMXREF J ~!MITE~ J
...,

FMGLOBAL j

figure A: Database table stnlcture chart

167

Appendix B

The Phase Development Process

This Appendix describes the Phase Development Process (or Lifecycle Model) which utilises

the power of the Phase paradigm implemented using the CASE development tools. It describes

the set of activities and the milestones used to transform a conceptual idea into a software

program. It is based upon a development team structure and details the relationship of the team

'players'. This model has been used to develop over 50 application programs.

B.I Introduction

The Phase Lifecycle model can be considered in terms of :

• The 'team players'

• The 'design documentation'

• The 'control documents'

• The 'Actions and Deadlines'

168

B.2 The Team Players

A 'team player' is a generic term for any person involved with the development of a Phase

application. The possible team players are :

• Customer

• Liaison Contact

• Project Manager

• Project Designer

• Programmers

• Implementation and Support Engineer

Customer

The 'customer' is the generic term for the 'End User' of the software. This person, or group of

people, have the basic 'need' and ideas for projects to increase their working efficiency. In most

cases it can be assumed that the customer has limited computer appreciation.

Liaison Contract

The 'liaison contact' is the person who will act on behalf of the customer in formulating the

ideas into the project. This person will be familiar with the overall concepts of computer

software development and will be able to perform enough systems analysis to determine the

feasibility and initial scope of a project.

Project Manager

The 'project manager' is the person who will assume overall responsibility of the project. This

includes the definitive scope of the application, the maintenance of the development schedules

and the quality assurance of the finished programs. The project manager will create the

Application Overview (the list and documentation of the SubModules) within the CASE tool.

It is essential that a project manager is totally familiar with the Phase development paradigm.

169

Project Designer

The 'project designer' will take the predefined scope of a program and create a prototype model

of the software which will best implement the requirements. This prototype will be reviewed

and refined until the design is accepted by the customer. The project designer is responsible for

system testing of the application.

Programmer

The programmer will implement the details of the prototype program specification using the

automatic code generators where possible. The programmer is responsible for the quality of the

finished programs.

Implementation and Support Engineer

The 'implementation and support engineer' will configure and support the software for the

customer. The implementation and support engineer will be responsible for all user

documentation and training.

B.3 The Design Documentation

The 'design documentation' refers to the tangible components produced throughout the

development process, representing the state of the design at various times. There are five major

'design documents' :

• Rough Notes

• Project Definition (Application Overview)

• Prototype Specification

• Technical Specification

• Finished Program

170

Rough Notes

'Rough Notes' are free format notes taken by the Liaison Contact during the numerous

discussions with the Customer. They will include block database diagrams, rough screen and

report layouts and general descriptions with data flow diagrams. Any number of tools can be

used for these notes e.g. Work Processors, Screen Designers etc. There is no fixed format.

Project Definition (Application Overview)

This is a list of major functional elements in the system and created as a list of SubModules

within the Phase CASE tools. This provides a 'scope' of work and is prepared as simple

paragraphs of text.

Prototype Specification

This is the main tool used for communication between players in the project team. It includes

every screen layout, database definition, flow of control information and report definition. A

hardcopy version of the prototype is available.

Technical Specification

The 'technical specification' is a document automatically produced by the Phase CASE tools . It

contains a complete definition of every entity defincd within the repository.

Finished Program

The finished program is the program supplied to the customer. This includes all the appropriate

documentation.

B.4 The Control Documents

The control documents are 'progress reporting' documents which provide a schedule and

timetable for the project. The control documents are :

• Project Control Log

• Implementation Control Document (ICD)

171

• Status Report

• Request for Program Update (RPU Log)

• Quality Inspection Record (QIR)

Project Control Log

The 'project control log' includes general information about the project, the team players, a log

of meetings, actions and deadlines (discussed below). It will always contain at least one current

action with a deadline.

Implementation Control Document (leD)

The 'implementation control document' is automatically prepared from the list of 'procedure

entities' within the repository. It lists each procedure and its implementation status e.g.

programmed, tested etc. It is used to provide a definitive 'status' of a program.

Request for Program Update (RPU Log)

This is used to monitor the support and ongoing development of an application after its initial

release. It corresponds both to a 'wish list' for user requests and also a 'release log' of completed

changes. The RPU log is explained in detail in Chapter 5.

Quality Inspection Record (QIR)

The 'quality inspection record' is produced by the programmer when completing a set of

changes. This is used as an audit trail for logging changes made to entities within the

repository. This is explained in detail, and an example form given, in Chapter 5.

B.5 The Actions & Deadlines

The following table represents the different phases that a development project will pass

through. A phase is divided into stages and each stage has an action with a resultant deadline.

This provides a method of monitoring an managing a project by providing tangible milestones.

The actions and deadlines are explained in the remainder of this appendix.

172

I Phase I Stage I Action I Stage I Deadline

I A 1 Project Discussions 1 Project Initiation Meeting

2 Initial Scoping 2 Project Investigation Meeting

3 Appointment of Team 3 Acceptance of Project Definition

I B I 1 I Prototype Specifications 1 Internal Design Meeting

2 External Design Meeting

3 Acceptance ofICD

I C I 1 I Program Coding 1 Implementation Meeting

2 Quality Assurance Meeting

3 Program Beta-Test Release

4 Program Release "c"

I D 1 Program in Use 1 Project RPU Meeting

2 Maintenance Programming 2 Maintenance Release

figure B.l : Phase Lifecycle Table

At any point in time, the development of an application can always be defined in tenns of an

action stage associated with a deadline stage within the same phase. For example: Program

Coding can be a current action, and it could have as a deadline any of the deadlines in this

phase i.e. Implementation Meeting, Quality Assurance Meeting, Program Beta-Test or Program

Release "C".

Note that the stages do not occur in a sequential manner and it is possible to move from

stage D to stage B etc. It is also possible that different parts of a development may be in

different stages and phases at the same time. For example, some aspect may be in program

coding (phase C) whilst another component of an application may just being developed (phase

B). The system therefore allows and encourages concurrent developments by different team

members.

173

Stage

Project Discussions - Action

Customer, Liaison Contact

The Customer approaches the Liaison Contact with ideas. These ideas are discussed and
rough notes taken. A feasibility study is undertaken and potential projects are conceived

Project Initiation Meeting - Deadline

Liaison Contact, Project Manager

The Liaison Contact approaches the appointed Project Manager and the rough notes are
discussed. An approximate budget price is agreed

Initial Scoping of Project - Action

Project Manager

The Project Manager takes the rough notes and create the application overview in the Phase
repository. The rough notes are translated into block diagrams and an application overview
document.

Project Investigation Meeting - Deadline

Liaison Contact, Project Manager, Customer

The Liaison Contact initiates a meeting to discuss the overview. The customer mayor may
not be present depending upon the initial analysis performed and the complexity of the
application.

Appointment of Project Design Team - Action

Project Manager, Project Designer

As the Application Overview is near completion, the Project Manager appoints a Project
Designer and presents the application overview.

Acceptance of Project Definition - Deadline

Liaison Contact, Customer, Project Manager, Project Designer

The Liaison Contact arranges a meeting with the Customer and the Project Manager. The
application overview is presented, discussed and finally accepted . This is the last
involvement of the Liaison Contact with respect to the analysis details of the project. The
Project Designer is introduced to the Customer.

174

Stage

Prototype Specification - Action

Project Designer

The Project Designer takes the application overview and rough notes and prototype
specification. This will be produced in two parts. Part 1 showing screen layouts only, Part 2
showing field definitions

Internal Design Meeting - Deadline

Project Designer, Project Manager

The Project Designer arranges an internal meeting with the Project Manager to discuss the
prototype specification

External Design Meeting - Deadline

Project Manager, Project Designer, Customer

The Project Manager arranges a project meeting with the customer and proposes the
implementation. The prototype is reviewed with the hardcopy prototype document being
updated by the Project Designer.

Acceptance of Prototype Specification - Deadline

Project Manager, Project Designer

The prototype specification is agreed by the customer

Acceptance of ICD - Deadline

Project Manager, Project Designer, Programmer

The Implementation Control Document is produced by the Project Designer and approved by
the Project Manager. The programmer is introduced to the project

Program Development - Action

Project Designer, Programmer

The Programmer translates the Phase specification into programs. As each procedure is
programmed the ICD is updated

The Designer tests each procedure for conformance to the specification. As each procedure us
tested the ICD is updated.

Implementation Meeting - Deadline

Programmer, Project Designer

The current development version of the software is copied into a test environment for the
Project Designer to perform a system test. The QIR is printed upon acceptance.

175

Stage

Quality Assurance Meeting - Deadline

Project Manager, Programmer, Project Designer

The application is presented to the Project Manager who perfonns a second system test.
Individual procedures can be checked against the Program Standard. The ICD is updated .

Program Beta-Release to Customer - Deadline

Project Manager, Project Designer, Customer, Support Engineer

The program is installed by the Project Manager or Project Designer and the Customer is
trained in its use.

Program Use - Action

Customer

The program is used by the customer and a list of program alterations produced. These are
logged in the RPU log by the Project Manager in the Phase repository.

Project RPU Discussion - Deadline

Project Manager, Project Designer

The RPU log is produced by the Project Designer and examined by the Project Manager. By
consultation with the Customer a definitive list of modifications is created.

Program Acceptance Release "c" - Deadline

Project Manager, Customer, Liaison Contact

A program version is reached where the number of alterations allowed in a system is limited
by the contractual agreement.

Maintenance Programming - Action

Programmer

This is called maintenance programming to indicate that it is done after the initial contractual
agreement is reached, however in the Phase system, unlike conventional system, changes at
this time are encouraged.

Maintenance Release - Deadline

Customer

The software is released to the Customer

176

Appendix C

Acronyms

This appendix contains a list of acronyms used in this thesis .

Acronym

3GL

4GL

BASIC

CASE

EDS

FDS

GUI

mIS

leo
NATO

00

OS

PC

PH

PHASE

QIR

RPU

TMS

Expansion

3rd Generation Programming Language

4th Generation Programming Language

Beginners All-purpose Symbolic Instruction Code (Programming
Language)

Computer Aided Software Engineering

Elite Development System

Foreman Development System

Graphical User Interface

Interactive Business Information Systems

Implementation Control Document

North Atlantic Treaty Organisation

Object Oriented

Operating System

Personal Computer

Programmer Hour

Philip Harwood's Approach to Software Engineering

Quality Inspection Record

Request for Program Update

Thorn Micro Systems Ltd

177

