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Abstract

Software forms around a requirement. Defining this requirement is often regarded as the
hardest part of software engineering. The requirement however has an additional complexity
as, once defined, it will change with time. This change of requirement can come either from
the user, or from the rapid advances in 'computer' technology. How then can software
succeed to continue to remain 'current' both in terms of requirements and technology in this
forever changing environment?

This thesis examines the issues surrounding 'change' as applied to software and software
engineering. Changing requirements are often deemed a 'curse' placed upon software
engineers. It has been suggested, however, that the problems associated with change exist
only in the attitude of software engineers. This is perhaps understandable considering the
training methods and tools available to supposedly 'help’ them.

The evidence shows that quality of management and experience of personnel involved in
development contribute more significantly to the success of a development project than any
technical aspect. This unfortunately means that the process is highly susceptible to staff
turnover whi;:h, if uncontrolled, can lead to pending disaster for the users. This suggests a
"better’ system would be developed if 'experience' was maintained at a process level, rather
that at an individual level.

Conventional methods of software engincering are based upon a defined set of
requirements which are determined at the beginning of the software process. This thesis
presents an alternative paradigm which requires only a minimal set of requirements at the
outset and actively encourages changes and additional requirements, even with a mature
software product. The basis of this alternative approach is the form of the 'requirements
specification' and the capturing and re-use of the 'experience' maintained by the software

process itself.
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experience that many of the issues in this document are presented and discussed.
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Chapter 1

Introduction

It was a NATO report in 1968 [NATO68] which first identified and documented a 'software
crisis'. In this report it states that, in general, software tends to be delivered over budget, over
schedule and under specification. Approaching 30 years hence, current literature still reports a
software crisis which relates to software being delivered over budget, over schedule and under
specification. This raises the question of what advances, if any, have been made in the
discipline of software engineering? This contrasts sharply with software's close companion -
the hardware upon which the software operates. A 'computer’ which now exists in a single chip
smaller than a fingemail would have filled a jumbo jet in 1965. Advances in this technology
far exceed any previous engineering discipline.

It appears that much time has been spent dealing with what Brooks calls 'Accidents'
[Brooks87]. These are elements of software engineering attributed to the technology of the day
and not the real 'essence' of software development. According to Brooks, the real essence of
building software is the hard part : the specification, design and testing of a conceptual
construct.

The existence of software was founded on, and its development continues as, a response to
the demands for computer 'tools' to help with some user 'needs'. The 'deliverable’ in software
should be regarded as the 'satisfaction of a user need' rather than the tangible product

[Cosgrove71]. The method of achieving this, according to Rowen in [Rowen90] has two major
obstacles for the software developer:



"The first problem is to get unambiguous requirements from the prospective user. The
second is to have a happy user when the software is delivered (exactly as specified in

the requirements)."”

These problems are not unique to software engineering, the same can apply to other

engineering disciplines.
The Engineering Process

All engineering disciplines share a common 'theme'! to create a 'solution' from the
identification of a 'problem'. In civil engineering, the problem may be the need to cross a river,
the solution - a bridge; in mechanical engineering, the problem may be the need for power, the
solution - an engine; in electrical engineering, the problem may be the need for communication,
the solution - a radio. In software engineering, the problem may be the retrieval or analysis of
large amounts of information, the solution - a computer database program (software).

Each discipline has a series of activities which form together to become a 'process’. The
process therefore defines the set of activities which have been proven to take a particular form
of problem (or requirements) and create a solution. These activities, regardless of engineering
discipline follow a pattern : the identification of the requirements specification, the design of a
solution specification, the fabrication of the product to the design, the testing of the product
which (if successful) leads to delivery.

The software process is a sequence of software engineering activities, performed by a
'software engineer' (the term software engineer in this text is synonymous with 'developer’ or
'programmer’) or a team of software engineers. The activities begin with the identification of a
need (from a 'user) and concludes with the delivery of a software product (or software
application) that responds effectively to the need [Blum93)]. The act of creating a software
product is known as 'development' or a 'project’. The effectiveness of a software process is a
measure of how well these sequence of activities achieve the software product in terms of

accuracy and speed of development.



Attitude to Requirements Change

In all engineering disciplines, the requirements are subject to change at any step in the process.
For reasons explained later, software is perhaps more susceptible to requirements change than
the rest. In addition, whilst it is recognised that changing requirements in other engineering
disciplines may involve major retooling or rebuilding costs, the lack of physical items leads to a
perceived ease with which software can be changed and the unwillingness to recognise the same
scale of cost.

The rate at which hardware technology is progressing is far greater than that of any other
engineering discipline. The performance-price gain has increased by six orders of magnitude in
the past 30 years [Brooks87]. This often results in systems being redundant, or at least
old-fashioned even before they are complete.

Whilst many existing software processes exist in today's technology that can be classed as
effective in terms of creating a product from a defined set of requirements, there are precious
few, if any, which remain effective when trying to keep the 'product' current in terms of the
changing requirements. Changing of requirements is therefore a source of exasperation for
software engineers and this can understandably result in a negative attitude to change.

The purpose of this thesis is to investigate why existing traditional software processes fail to
remain effective when requirements change, especially after a product is 'mature’. The result of
this investigation leads to an alternative paradigm and process for software engineering (or
development). The basis of this paradigm is in the method of defining requirements. This
leads to an abandonment of the traditional forms of a 'specification'. For reference, this process

is given the name Phase.
Experience of Software Development

The activities which form a process are based upon the 'experience' of developing similar
solutions to similar problems. Due to the fact the software engineering is only in its infancy,
aged perhaps only forty years compared to the hundreds of years in civil and mechanical

engineering, comparative experience in software engineering is lacking.



Experience is about being able to relate a current situation to a previous situation
encountered and, knowing the outcomes of the previous situation, being able to make a more
informed judgement on the action to take in the current situation. Unlike animals, humans have
an ability to share experience through communication via books, speech, video etc. These
methods, by their nature are a slow means of transferring knowledge. What would be ideal is
the ability to 'plug in' the experience of one human directly into another and transfer all the
relevant knowledge in an instant.

Whilst this thesis does not attempt any sort of physical 'wiring' of humans to transfer brain
thought processes, the fact that software can be developed by using other software means that
the power of the 'computer’ can be used to help accelerate the 'leamning' experience of software
activitics. A method is proposed which allows the design decision processes to be
automatically recorded in such a form that it can be 're-run' in a multi-dimensional manner to

give an accelerated learning experience to new software developers.

1.1 The Scope and Objective of the Thesis

This thesis is primarily concemed with investigating how software can be developed and
remain 'current’ in terms of satisfaction of user and technological requirements, considering that
these requirements may be poorly understood and subject to continual change. To accomplish
this, it was necessary to:

e assess the effectiveness of existing software processes in dealing with changing

requirements;

¢ study the way in which requirements change and identify pattems for when and why they
occur;
¢ analyse how the form of requirements can relate to the effectiveness of the software

process;

e develop a method of capturing and specifying requirements in a form which is
susceptible to changing requirements.



The result of this investigation is the Phase method of software development. This will be
presented, describing its:

e form of specification
e set of rules for translating this specification into resultant programs

e set of heuristics .

1.2 What is Phase?

Phase is a concept which combines several 'popular’ aspects of Software Engineering.
Although it can be considered in several categories it is :

X Not just another Prototyping Tool

X Not just another Report Writer

X Not just another Automatic Code Generator
® Not just another Software Process

Phase is a (Program) Structure with the following attributes :

2 The Phase Structure consists of seven simple definable Phase entities.
The definition of the Phase entities specify a Phase Program Design.
The Phase Design can be executed as a Phase Prototype.

The Phase Prototype is a tool for extracting and refining requirements.

RINESKIESE N SN

The Phase Design entities can be used by automatic code generation routines to create

programs and documentation.
2 The Phase Process is used to effectively manage the development of Phase programs.
4 Phase CASE tools are required to develop Phase Programs.
4 Phase captures 'experience’.
4 Phase programs are resilient to the detrimental effect of changes in requirements.

Figure 1.1 illustrates the principle of Phase : To provide a software development system

which takes changes in requirements and maintains stable, mature software systems. This is



achieved by using a number of CASE tools which interact with the Phase Structure which

represents the design of the system.

Specification
Manuals

Phase Structure

__Requirements

Experience
P Refinement

Stable
| Mature

Phase System
Program

figure 1.1 : The Phase Concept

1.3 The Contribution of the Thesis

This section summarises the contributions made by the thesis :

* propose a software process which facilitates ease of change



e propose a practical method of recording design information such that the experience is

reused.
* describe a generic method of monitoring and validating changes

The resultant effect is that software developed in this way is able to remain 'current' even
though its requirements are changing;
The first two contributions are a direct result of the initial intentions of study. The third
contribution is a by-product which is a result, almost by accident, of the methods used to collect
data throughout this study.

1.3.1 A Software Process for Ease of Change

There are three components of the Phase process which have a significant contribution to this
thesis:

o the form of the requirements specification;
 the approach to software prototyping;

» the automatic creation of software from the specification.

Requirements Specification

The major contribution of this thesis is in the form of the requirements specification. A
requirements specification has two roles. The first is to determine the goals which will satisfy a
user need. The second is to communicate these goals so that a software product can be
designed to meet the original user need. Traditionally the form of the requirements in software
engincering is based upon the form of requirements which is found in hardware requirements or
requirements for other engineering disciplines. This is, for example, a collection of drawings,
descriptions or mathematical formula. These must all be available before 'fabrication' is started.
The Phase system does not preclude these forms of requirements and in fact uses some of these
forms to communicate its requirements.

The Phase specification can exist only within the environment of a computer as it is a

multi-dimensional repository based system. The question occurs as to whether the Phase



specification is a requirements specification (of the problem) or a design specification (of a
solution)? A Phase specification is a combination of both. Simon observes that '...solving a
problem simply means representing it so as to make the solution transparent’ [Simon69].

Requirements which can be completely determined before fabrication can be called 'closed
requirements' [Blum93]. Closed requirements are well defined and stable. There are many
categories of software applications where requirements can seldom be completely determined
before any form of fabrication. One such category is Interactive Business Information Systems
(IBIS) especially where the application domain is relatively new to computerisation. In these
applications, the requirements can be called 'open’. Open requirements are poorly understood
and dynamic. It is specifically the IBIS category of applications with open requirements that is
the prime concem in this study. Whilst requirements may be ill-defined, the technology for
realising these types of applications is relatively mature.

Open requirements cannot be pre-specified. A specification therefore exists only in parallel
with some form of system, either a finished system or a model of a system. A specification in

this circumstance can be considered as 'as built'.
IBIS Software
IBIS software is a generic term for all software which has the following properties :
e Interactive (as opposed to background 'batch-job' submissions)
¢ Interface with human users (as opposed to electronic or mechanical process control)

e Storage, retrieval and process of similar 'sets of data' (as opposed to highly
computational)

* Considered business critical' (as opposed to 'mission critical'). This means that failure of

the software will lead to monetary loss as opposed to life loss.

IBIS software can be considered as having a structure with three main layers. This is

represented in figure 1.2.



figure 1.2 : The layers of IBIS software

The layers or components of the IBIS structure are:

e the Data Structure is the storage of information;

o the Process Logic is the set of operations, which can be performed either directly on the
data structure, or in transferring the information between the data structure and the user
interface;

o the User Interface is the two-way communication of information between the software
and the human operators via various forms of inputs and outputs.

Examples of IBIS software are :

¢ Accounting systems

Order Processing and Stock Control systems

Clinical Information systems
* Membership systems

This is by no means an exhaustive list.
Software Prototyping

Software prototyping in its various forms [Floyd83] has proved to be a major contributor as a
method for refining requirements. The Phase process uses the rapid prototyping [Henderson86)



technique 'Front End Simulation' [Christensen er a/ 83] as a major method of refining
requirements and communicating the Phase specification between developers and users.

A prototype does not follow the same definition when relating to software as it does in other
engineering disciplines. In conventional engineering, a prototype is a 'first of a type'. Typically
this is a product with all the properties of the desired 'final product' but which has been
constructed in such a manner that it is a 'one-off'. The prototype is then examined for ways that
it can be mass produced efficiently.

With software, the only concept of mass production is the duplication of the distribution
media. A software prototype, in our sense, is a software model which has all the facilities of
the user-interface but no process logic or data structures. The Phase software prototype is an
execution of the Phase specification. It is concerned only with a subset of the specification : the
user interface.  As it will be shown later, for IBIS software, the user interface is seen as the
key component in the specification. Whilst it can be used to determine the relationship between
the 'user need' and the 'design' it is also a major contributor to the definition of the derived
requirements as described in chapter 3 and in [Blum93].

A full comparison of the Phase prototyping scheme, in relation to its effectiveness in

achieving the 'requirements of a prototyping scheme', is contained in chapter 8.
Automated Creation of Programs from the Specification

It is one of the major aims of the software industry to be able to automatically create executable

machine instructions directly from a specification. This can be seen in the trend for higher and

higher level programming languages throughout the history of software engineering. This trend

can be summarised as :
e Original binary input of machine executable instructions;
* Development of assembly languages:
e Development of 'third generation' languages (3GL) and 'high level' compilers;
e Development of fourth generation languages (4GL) incorporating high level data
manipulation intrinsics;

* Development of 'code generators' from formal specifications

10



The format of the specification in the Phase system is particularly suitable for machine

automated generation into third or fourth generation programming languages.

Implementations of the Phase Process

The Phase process has been in use (although initially informally) since 1986. The requirements
Specification exists only within a computer repository; this insists, therefore, on a Computer
Assisted Software Engineering (CASE) mechanism to maintain it.

Two implementations of a CASE system have been developed, both based on identical
repository structures. There are however slight differences, described below. In the remaining
text, features described and experiences reported will be set in relation to the combined features
of the two systems without individual clarification. The thesis is based upon the Phase theory,
hot the implementation of any single software tool.

The first CASE system executes on the Hewlett Packard HP3000 mini-computer using the
award winning, commercially available HP/Image database and HP/Vplus forms system, Eight
real applications (including itself) have been developed in this way. Four are still in
Commercial use. This system has a full code generation system, automatically creating
error-free Pascal code from the repository specification. No 'experience' tracking facilities are
included. For distinction, the CASE tool is called the 'Foreman Development System' (FDS) !

The second CASE system, which started development in 1990, executes on high
Performance PC Networks using an open database system and intemal forms system. Over
fifty real applications (including itself) have been developed in this way. Commercial
installation of the applications number about sixty sites. Each site is configured with between
one and twelve of the applications. Development of the applications are still on-going (as
Tequirements are still changing). This system has a more limited code generation system but
full 'experience’ tracking facilities. For distinction, this CASE tool is known as the 'Elitc

Development System' (EDS).!

FDS and EDS are the commercial property of Thom Micro Systems Ltd.
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The Role of the Author

Phase is an idea conceived by the author of this thesis. The author also designed the CASE
tools FDS and EDS and was personally responsible for their development. Implementation was

performed by a small team of developers working directly for the author.

1.3.2 Recording Design Experience

Recording design experience is a significant component of the Phase system. Although it is
very difficult to compute an individual contribution of any element of a development process to
the overall result of a software process, intuitively it is felt that the recording of design
experience contributes to about a fifth of the overall benefits.

Recording design experience is a concept whereby decisions which are made during the
development process, and the rationale supporting the decisions, can be recorded in such a
manner that they can be 're-run’ at a later stage. The benefits of being able to do this effectively
are enormous.

Let us assume that an application is developed (using any software process) by an
experienced software engineer. An experienced person will make decisions on certain attributes
based upon, perhaps, years of encountering similar situations. Experience, by its definition, can
only be achieved by relating to similar situations and by only two methods:

* Relating to previous situations encountered personally;
* Relating to previous situations encountered by other people

Gathering experience personally can be a slow and painful process. The common phrase
'learn from your mistakes' attributes perhaps a greater learning from bad experience than from
good experience; however, the consequences of bad experiences may be extreme.

Experience is perhaps best leamed from other people. It is passed on by speech, reading and
watching. These forms of communication can be extremely slow. An ideal situation, in
general terms, would be to 'wire in' the thought processes and experiences of one individual to
another, thus allowing experience to be transferred directly. This may be possible in the future,
but it is still science fiction in today's technology.
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Experiments in this field have been conducted along two major fronts. The first is in the
recording of design rationale as decisions are taken; the second is in the technology of artificial
intelligence where machines are being 'trained' to become expert systems. References to these
techniques are made later in this chapter.

The Phase system takes the approach that 'experience' is held within the development
process itself. This 'experience’ is gathered by recording the action taken by software engineers,
and the reasons for the decisions, as they define and refine a specification. This provides an
automated technique which goes beyond simply knowing the final definition of some
specification element but also the reasons why an element has its defined properties.

In later activities, as requirements change and specification elements are re-evaluated, the
experience 'recorded' by the process about the element can be 'played back' to a software
engineer (who may, or may not be the engineer who had been involved previously) who is
considering change.

It will be shown later that this information significantly improves the ability to incorporate

change into specifications and resultant software.

1.3.3 Monitoring and Validating Change to Software

A third contribution of this thesis, which can be considered as a by-product of the data
collection exercise of capturing 'experience’, is a method of monitoring and checking changes
made to software. Although this technique has been applied to a Phase development strategy, it
is generic in its use and can be applied to any software process.

Most literature about software quality suggests that well-trained, highly skilled and qualified
staff provide the largest contribution to the quality of resultant software. These personnel are
costly compared to lower skilled and less qualified or experienced staff. The overall personnel
cost of development equals the average cost of the personnel multiplied by the number of
personnel. The economic law of diminishing returns [Smith72] can be used to fix the 'ideal’
number of personnel for a given task. Assuming that this number is fixed, the only methods of
reducing personnel costs is to lower the average cost of personnel. Whilst it would be regarded

as non-viable to reduce the cost of an experienced individual, it is possible to replace
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experienced individuals with less qualified or experienced individuals, at a lower cost. This
poses the problem of maintaining quality.

The Phase process uses a technique called the Quality Inspection Register (QIR) to provide a
cost effective mechanism for checking and validating work carried out by less experienced
personnel. This is based upon the judgement of experienced personnel with regard to a
complexity of a 'change' task and the perceived ability of a less experienced software engineer.
It provides a demonstratable mechanism for monitoring change and maintaining the quality of

software.

1.4 Structure of the Thesis

This thesis has ten chapters and three appendices. Chapter 1 is this introduction. We now

briefly present the remaining chapters and the appendices.

Chapter 2. Methods of Working and Related Work. This chapter describes the background
for the methods used to collect and analyse data. It justifies the use of case studies and explains
why experiments are inappropriate for this study. Related work is presented. This falls into
three main categories : similar paradigms, recording experience and general comments on the

design process.

Chapter 3. Software Requirements and Change. This chapter expands the notion of the
software process in order to identify the role of software requirements within the process.
Requirements are classified to provide a definitive understanding of different ways in which
requirements affect a specification. This leads to a conclusion why traditional forms of
specification can be unsuitable for certain classes of applications.

The notion of ‘change' with respect to requirements is regarded as an essential issue in
software development. This chapter identifies why changes occur (using 'real' examples) and
the different timings in the software process where they are introduced. It is shown that with

existing software technology many of these changes do not pose any great problem. There is a
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significant problem, however, when changes occur after a software product becomes 'mature’.
This sets the focus for the Phase process which is described in later chapters.
A definition of software quality is introduced and an examination is made on ways that

changing requirements affect software quality. The effect on cost of change is also considered.

Chapter 4. Changing Requirements : Two Case Studies. This chapter focuses on change of
software and considers options which may help eliminate or at least reduce its effect on the long
term development of software. This is done in relation to two case studies, one relating to
technological change and one relating to user requirements change. A simple model of the

software process is presented in the conclusion of this chapter.

Chapter 5. The Phase Paradigm. This chapter describes the Phase Paradigm. The Phase
Paradigm consists of a repository structure which is maintained via a CASE tool and a set of
activities which complete the definition of the Phase software process. The repository structure
and the relationship between its components are considered in context of the software
development activity. For comprehensibility, the development process is considered as a series
of 'states', each state representing the current point in the development of an application. At
each state there will be a specification and optionally a software product. The Phase process
activities are described in Appendix B. Examples of Phase software (the software which is
developed using this technique) are introduced.

Chapter 6. Defining and Reusing Phase Experience. This chapter presents how the design
decisions which are made during the Phase process are captured. The capture of design
decisions is based upon the recording of changes to the Phase specification automatically as
they occur. The basic data captured includes when, by whom and how often changes were
made. The usefulness (and reuse) of the information as 'experience’ is increased by an order of
magnitude when the recording of changes includes why they were made.

This chapter includes a discussion on the practicalities of collecting the information. The

data collection technique was refined four times over a period of five years. During this time,
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with each refinement, both the accuracy of the data collected and the information content of the
data were improved.

This chapter concludes with examples of data collected and presents an analysis of how the
information contributes to the overall goal of the Phase system facilitating ease of change. It is
this information which facilitates experience gained during the development process to be
're-run’ in the mind of software engineers in a similar manner to 'plugging in' the experience of

one engineer to another.

Chapter 7. The Phase Resistance to Change. This chapter asks a number of questions
about the Phase system in relation to its resistance to change. Many of the questions are
answered using actual experiments performed over the past few years. The experiments involve
change of technology and change of user requirements. The success of ‘transferring experience’

is also considered.

Chapter 8. A Critical Appraisal of the Phase system. This chapter provides a critical
appraisal of the Phase system. The Phase system can be considered as :

* A requirements analysis tool

* A specification representation system

* A software designers productivity tool
¢ A software project management system

It will be shown how the Phase system scores against goals defined for each of these ‘tools'.
The definition of the goals is taken from literature. Finally a number of disadvantages to the

Phase system are given.

Chapter 9. Summary. This chapter presents a summary of the preceding chapters which

sets the scene and limitations for the conclusions.

Chapter 10. Conclusions. This chapter states the conclusions of this work and identifies
possibilities for further development. Finally it will be shown how it is possible to change the
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attitude of software developers to accept change by following a software process which does
not aim to complete a software product, but aims at the continual satisfaction of 'user needs' in

this ever-changing engineering technology.

Appendix A. The Phase Repository Structure. This Appendix includes a detailed

description of the Phase repository structure which is included for completeness.

Appendix B. The Phase Development Process Strategy. This Appendix is provided for
completeness. It details the set of activities which form the process model for software
development using the Phase Paradigm. This includes the identifiable milestones, working

practices and set of heuristics.

Appendix C. Acronyms. This appendix lists the abbreviations used in this thesis. Where

possible the use of acronyms has been kept to a minimum for clarity.

1.5 The Topics of the Thesis

The thesis discusses three main topics; the nature of requirements and change; the Phase system
and process; and reuse of design 'experience’. To learn about the Phase development process, it
is only necessary to read chapter 5 and Appendix B. The discussion of the technique and
results of reusing experience are contained completely in chapter 6. To understand the
philosophy behind the Phase system and its strengths and weaknesses, chapters 3,4,7 and 8
should be included.
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Chapter 2

Methods of Working and Related Work

2.1 Introduction

This chapter provides a brief justification for the method used to investigate the impact of
changing requirements on software development and the attitude of software engineers. It will
discuss the two main methods of obtaining data for research : experimentation and case studies.
It will conclude that the most appropriate technique is case study.

A selection of related work is presented in this chapter. After a brief overview, the related
work is discussed in a manner structured according to the main topics of the thesis :

¢ Changing requirements

* Repository based specification systems

e Program structures

¢ General studies on design criteria

¢ Obtaining & encapsulating design experience
* Inspection techniques

The chapter concludes with a short summary.
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2.2 Methods of Working

According to Pfleeger [Pflecger94| there are two primary methods of collecting information for
the purpose of evaluating new ideas : experimentation and case studies. The significant factor
in determining which method is more appropriate is the available 'level of control'. If it were
possible to say, produce two functionally similar applications, one using the Phase paradigm
and one using a more conventional technique, using application designers with comparable
ability, then the level of control would be high and an experimentation technique would be
appropriate. This would allow a direct comparison between the results of two 'experiments' in a
controlled manner.

Phase was developed within a commercial environment where it was not cost effective to
develop software purely for research. Although the development activity was guided by the
author, each application developed had to be commercially acceptable. This has resulted in the
chosen technique for capturing data relating to development being via case study. The
information is not any less valuable, however it must be acknowledged that any conclusions
made, must be placed within the context of the environment appropriate to the case study
software development company. This can be summarised as a company with between 10 and
15 full time development staff, each with software development experience ranging from
between 2 - 10 years. Some senior members are graduates, some junior members have no

formal academic training in software development.

2.3 Related Work

The "impact of changing requirements" is considered a very important issue and one which is
attracting attention here in the mid 90's. In 1993 it was the main topic of an International
Conference [RE93]. At this conference, strong arguments were proposed [Harker93 et al] that
it was far too simplistic to assume that requirements could be captured at the beginning of a
project. They argue that requirements can only be defined through a process of examination

and interpretation, and emerging or changing requirements will be an outcome of greater
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understanding of the problem. This simply highlights the case presented by Brooks as far back
as 1975 [Brooks75] and again in 1987 [Brooks87].

2.3.1 Changing Requirements

DTI / Proteus

One of the consequences of this conference however, was the instigation of a DTI funded
investigation into the impact of changing requirements [Proteus93]. The Proteus project
included a series of case studies set up in order to analyse how organisations view the
requirements change problem, and to see what organisational structures, procedures and
software tools they use to cope with requirements change in ongoing projects. The findings of
this investigation suggest that current technology tools tend to be more concerned with the 'cost
of change' as opposed to 'management of change' or 'damage limitation' tools which are the
‘real need'.

A very recent report [Chudge96] presents a model of the problem of changing requirements
in terms of responsibilities and communication between supplier (the developer) and the
customer (the user) using some of the interim results of the Proteus project discussed above.
The suggestion is made that the basic relationship between 'partners’ in a software development
project is one of distrust, especially when it involves the 'costing' of changes in what was
originally a fixed price contract. Part of this distrust is a consequence of the 'fine line' between
what can be considered as further refinements of original ambiguous requirements and actual

changes, especially in the latter stages of a commercial software development project.

Parnas

Pamas [Pamnas79] is very concemed with changeability of software. He describes all changes
as extensions and contractions and proposes a structure of softwarec based upon minimalist
subsets. This work tackles the problems of 'change' in a different manner to the Phase system
as it is still concemed with traditional methods of specification and structures of programs. The

use of minimal subsets is an extension to the concepts of structured programming.
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2.3.2 Program Structures

Information Hiding / Object Oriented Systems

It is widely recognised that 'modem' program structures have had a significant contribution to
the impact on the quality of software during program maintenance. In particular the concepts of
'information hiding' [Pamas72b] and Object Oriented Systems [Booch91] have provided
perhaps the most significant improvements in recent years.

Although both of these topics make significant contributions, this thesis does not discuss
either of them in any detail. This is due to the vast quantity of discussions available in other
literature.

2.3.3 Repository based specification systems

Blum / Tedium

Blum [Blum91] [Blum93] presents a paradigm for representing requirements in a non
traditional manner. He justifies the 'as built' specification approach as being appropriate for
systems with open requirements and provides this form of specification in the Tedium system.
The Tedium development tool has a similar conceptual structure to the Phase system which is
summarised in Figure 2.1. This diagram is reproduced from [Blum93].

lcation Ication-cla
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figure 2.1 : The Tedium System
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The Tedium system uses an Integrated Engineering Environment to allow a designer to
record ‘application knowledge' into an ‘application database'. This information is used by a
number of generators to generate both documentation and implementations on different target
machines. The Phase system differs from the Tedium system in the form of the application
database. The Phase system contains more specific types of entities (as detailed later) than the

Tedium system which is based around a system more akin to a higher level procedural

specification language.
2.3.4 General Studies on design criteria

Reeves / Goose

The underlying philosophy of the Phase process which is presented in chapter 4 is that the
development follows a pattern consisting of a series of 'states'. The process of development is a
process of refining and modifying these states. Each state is broken down into a series of
entities or components. Conceptually, thinking about the requirements and design of a state
being the collection of requirements and designs of the components making up the state, is
similar to an idea discussed in the GOOSE system by Reeves ef al [Reeves95]. This proposes a
design framework which is native to system designers. The state of a system is denoted by a
D-Matrix which includes specific (although not process specific) entities which reflect the
behaviour, functional, structural and data modelling characteristics of a design and an end
product. The concepts behind this is one of capturing a non-implementation specific

specification in a form which can be validated against requirements and communicated to other

designers.
Yale University

Two experimental studies in an associated topic have been performed at Yale University. Both
of the studies are concened with the ‘thought processes' of maintenance programmers as they
maintain software with which they are unfamiliar. The first, [Letovsky87] is concemed with
the questions a maintenance programmer asks himself as he tries to become familiar with the

program code and concludes that there are regular pattems to the way in which a maintenance



programmer will leam about the design. Once this standard pattern of 'self learning' has been

determined, it can be used as a template for documentation.

The second study [Littman89] ef al is conceed with the mental model that a maintenance
programmer creates when preparing to perform maintenance on a program with which he is
unfamiliar. These mental models relate to the structure of the program and the style of the
programmer who wrote it. The conclusion of these experiments is that a maintenance
programmers who takes the time to create full mental models will perform maintenance that is
less likely to interfere with the quality of the software, than a programmer who only creates a
mental model on an ad-needed basis.

2.3.5 Obtaining and encapsulating design experience

Potts & Bruns

The Potts and Bruns [Potts88] [Potts89] method of capturing and reusing design decisions is
relevant to the discussions in chapter 3. This work captures design deliberation and considers a
design history as a network consisting of artefacts and deliberation nodes. Artefacts represent
specifications or design documents; deliberations represent issues, alternatives or justifications
arising from these artefacts. A fundamental problem with this work is the practicality of
collecting this information and the analysis of the information as 'experience'. This work is
subsequently expanded by Lee [Lee91] where explicit goals are included in the representation.
Although this does not attempt to solve the data collection exercise, it adds significant

improvements to the analysis.

Design Patterns

Design patterns is a concept recently introduced to the software industry by Alexander
[Alexander92]. Design patterns is concerned with identifying and documenting features
common to any sort of design in a manner that they can be reused as building blocks. Whilst
this approach is commonplace in other engineering disciplines, this is the first time that tangible
'building blocks' for design have been documented. This work has been further enhanced by



[Pree94] and [Gamma93] et al. where the building blocks are seen as a method of passing on

experience from designer to designer.

2.3.6 Inspection Techniques

Fagan Inspection

The Quality Inspection Register contribution to this thesis for maintaining software quality with
less-experienced personnel is similar in principle to the Fagan inspection technique [Fagan77]
for checking program source code although in the Phase system it is not source code which is

being inspected but changes to specifications.

2.3.7 Summary

The above list of related work is by no means exhaustive however they are major contributors

to the topics covered in this thesis.
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Chapter 3

Software Requirements and Change

3.1 Introduction

Software requirements and their definition are commonly regarded as the most difficult element
in software engineering. This chapter describes the activities of any software process in order
to provide a context for requirements definition within the process.

Requirements are not homogeneous and a number of classifications of requirements are
discussed. This provides an understanding of different types of requirements and leads to a
conclusion why traditional forms of specification can be unsuitable for certain classes of
applications.

There are elements of software engineering which are more complex than their counterpart
engineering disciplines. These are described to indicate why software engineering is more
susceptible to change than other forms of engineering. In software engineering, it is not simply
the form of the changes which are important but also the timing in terms of the point in the
process when they are introduced. Technology exists to deal with certain types of change at
certain points in the process. These will be presented. The major problem with changing
requirements occurs when a software product is considered mature.

A definition of software quality is introduced and an examination is made on ways that

changing requirements affect software quality. The cost of change is also considered.
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3.2 The Software Process

The software process has been introduced as a series of activities which transform a 'concept’ or
'need' into a software product and through to product retirement. This process is often referred
to the Software Life Cycle. A simple definition is given below. This definition is by no means
absolute and the boundaries between the activities are not always clear. The purpose of this
description is simply to place the requirements definition into context within the whole
development process. The standard process consists of five activities : analysis, design,
implementation, testing and maintenance. [IEEE91]

* Analysis is the study of a problem (or concept), prior to taking some action. During this
activity the properties which the software has to possess are established. This activity
defines what the software must do. The result of this activity is the requirements
specification.

e Design is concemed with how the system is going to accomplish what was defined
during the analysis activity. This is a two stage process. The first is where the overall
architecture is developed as a high level model of the solution. The second concentrates
on determining the data structures and functions and how they are going to be
implemented. The design activity uses the requirements specification determined from
the analysis activity as the starting point and as a result produces a design specification.
The differentiation between analysis and design is not always clear. Some software

processes (including the Phase process) combine analysis and design activities into one.

o Implementation is the activity which transforms the results of the design phase into
instructions for the computer by using a 'programming language'. In the Phase system

(and some others) this activity is partially automated by the use of computer technology.

e Testing 'demonstrates' that the programs written in the implementation phase satisfy the

requirements specification. After successful testing the program is delivered to the users

and 'commissioned'.

* Maintenance represents an activity which continues from the point of delivery until the

point of retirement of the product, making changes to the product as a result of incorrect



implementation or changes to the requirements specification. As it will be shown below,
during this time, requirements will change and it is these changes which pose the greatest
problem for software developers. In this text, software which is in the maintenance
activity will be called 'mature'.

There are several methods to tackle each activity and move between activities. Each
documented set of methods forms a software process. Some processes are relatively simple,
other significantly complex.

The first and simplest of these models is known as the sequential waterfall process. This
was first introduced in [Benington56] and presents the activities as discrete and followed
sequentially. A revised process which incorporates feedback and allows iteration to previous
activities is more commonly considered as the first real software process. This is described as
the waterfall model in [Royce70]. By showing that specifications and implementations are
inevitably intertwined, Swartout and Balzer showed how this model was too simple for 'real’
development [Swartout82].

Many refinements have been made to this process, the most popular being the spiral model
[Bochm86] which has the same basic activities as the waterfall model but permits continual
interleaving of the activities as identified by Swartout and Balzer. Here if the implementation
activity requires alterations to the specification, the design activity is re-opened, the design
modified and the changes propagated throughout the activities as appropriate. The Phase
process refines the above approaches even further by cyclically iterating the activities.

3.3 Software Requirements Classification

Software requirements are not homogeneous and may be categorised in many ways. This
section presents four classifications of requirements. These classifications are not mutually
exclusive, some real requirements can be considered under more than one classification. In

addition, it is recognised that other classifications of requirements may be equally valid. These

classifications are :

e The Source of Requirements
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¢ The Properties of Requirements
e The Importance of Requirements

e The Character of Requirements

For the purpose of this text, the set of all requirements is known as the Global Requirements

for software.

3.3.1 The Source of Requirements

Software requirements have two sources. One source is the user (or groups of users), the other
source is the technology on which software will be implemented.

User requirements can be considered as a 'wish list' relating to desired properties for the
software to achieve the need. The remaining three classifications of requirements are all
sub-classifications of user requirements. In this text, user requirements will be called
'requirements for the software’. The term 'user’ in this instance does not necessarily indicate a
single user but a 'class' of users. This class of users may include users who will eventually use
the software (‘end-users'); users who may simply be domain experts; or any person with an
input into the requirements which can also include the developer.

Technological requirements are imposed by the environment surrounding either the
exccution of the resultant software or the environment of the development process. For
example, the execution of the software is constrained by Operating System (OS) limitations e.g.
memory, resource availability; or peripheral specifications e.g. screen size or colour
availability, printer feature constraints. The development process requirements may state the
need for recalculation or data repair routines. In this text, technological requirements will be
called 'requirements of the software'.

3.3.2 The Properties of Requirements

The most common division of user requirements is with respect to the system propertics they
specify. They are 'functional' and 'non-functional'.

Functional requirements establish the behaviour of the system. They establish the
objectives that the product is to meet or the functions that the product has to provide. Generally
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functional requirements can be considered in a logical context and can be specified formally. In
the Phase system, functional requirements are defined in terms of ‘entitics' and the 'processes’
affecting the entities. In this sense a comparison can be made to the Object Oriented (O0)
terminology where entities are OO objects and processes are 00 methods.

Non-functional requirements define the conditions that the product must satisfy that are not
concerned with its behaviour. For example, the response time from user input to corresponding
output; the colour of menus; the standardisation of report headings. These requirements cannot
be considered in a logical context. In the Phase system many of these requirements e.g.
colours, structures (menu and report), have been recognised with all options to these
requirements available as preferences.

Functional and Non-functional requirements may be constrained by limits imposed by
external factors. For example, the functional requirement to calculate maternity pay in a payroll
system is constrained by the fact that it can only apply to a female employee (by current UK
regulations). The non-functional requirement relating to speed of execution of a system will be

constrained by the limit of the clock cycle of the hardware upon which it is executed.

3.3.3 The Importance of Requirements

This classification organises requirements according to their relative importance. Three levels
are defined. These are Essential, Derived and Implicit.

Essential requirements specify all the properties of the software that must be included for the
product to be acceptable. According to [Lehman80], essential requirements are never complete

as completeness would over specify and consequently constrain the freedom of design. In the

Phase system, essential requirements are all specified in relation to the user interface.

Derived requirements specify features derived from the essential requirements. Derived
requirements are never explicitly included in a requirements specification, including them
would make them essential. In the Phase system, data table specifications are derived from the
user interface specifications.

Implicit requirements are assumed to be a by-product of 'sound engineering practice'. There

are always many requirements in this category, only those that demand particular attention are
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mentioned. In these instances they are promoted to essential. Implicit requirements often pose
a particular problem: as they are never specified it is important that all concerned (the user and
the developer) have a similar understanding of implicit requirements. In practice this is
constrained by the different levels of knowledge about the application domain and the
capabilities of the software in the appropriate technology. In the Phase system, by the nature of
the maturity of the process, the capabilities of software can be demonstrated in advance. This
provides some degree of coherence in the understanding of implicit requirements.

In some way, implicit requirements exist before any project is initiated. Essential
requirements are the components of a specification which are found in ‘'traditional'

specifications. Derived elements are formulated during the design activity.

3.3.4 The Character of Requirements

The final classification scheme qualifies the character of requirements. Two of these definitions
have been described in the introduction to clarify the bounds of the application class for which
the Phase process has been developed. These are Closed, Open and Abstract [Blum93].

Closed requirements are well defined and stable. They can be completely determined before
fabrication commences. In many engineering disciplines there exists a notation in which to
express these requirement ¢.g. a mathematical notation can be used in mechanical engineering
applications. Due to the fact that these requirements can be specified precisely, the greatest
uncertainty in the development process is the ability of the final product to meet these
requirements. The Phase system can be used to develop applications with closed requirements,
however the potential of the Phase system is not realised in this instance.

Open requirements are poorly understood and dynamic. They cannot be determined before
fabrication (of some form) commences primarily due to the immaturity of the current level of
computerisation in the product domain in which the product is being developed. Due to the fact
that these requirements are uncertain and dynamic, the greatest uncertainty in the development
process is the ability of the final product to achieve the satisfaction of the 'real' needs of the
software. The potential of the Phase system is exploited when developing products with open

requirements.
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Abstract requirements are concepts which have no concrete realisation, for example 'safety’
or 'security'. These concepts may be both functional and non-functional and a representation is
required to allow analysts to reason about them. The greatest uncertainties in the development
process are how effectively the representation scheme captures the concept and how thoroughly
the representation is investigated. The Phase system has no facilities for representing abstract

requirements.

3.3.5 A Requirements Classification Relationship Summary

Figure 3.1 summarises and demonstrates the relationship between the four classifications of

requirements.

Global Software Requirements

uirements of
chulmncntaforSofnvam : qus i
Funcﬂoml Eaeonﬂal :
Nonﬁmcuoual Derlvcd v "open'
' lmpllcn: el B ! Abstract

figure 3.1 : Requirements Classification Relationship Summary

3.4 Complexity of Software Requirements

The problems inherent in defining requirements are well documented [Rowen90] [Royce70].
Whilst this can be true of almost any engineering discipline, software is typically regarded as
having four 'more difficult than usual' properties. Brooks identifies these as the notions of

complexity, conformity, invisibility and changeability.
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One of the main reasons for complexity in software is the lack of repeating elements. Unlike
electronic, civil and mechanical engineering disciples, large projects are not made up by
repeating small ‘building blocks' a large number of times. Software elements are interrelated in
a non-linear manner which means the complexity of a project increases at a much greater rate
than that of the physical size of the project.

Conformity of software adds considerable complexity to a system. This relates to the
number of interfaces in which a system tends to be involved. The user interface may have to
conform to the current 'flavour of the month', ranging from simple scrolling terminals to
complex Graphical User Interface (GUI) systems for a similar function. Interfaces to special
hardware systems or connected software modules impose rigorous structures which may not be
intrinsic to the development structure, thus adding considerable complexity.

Software is an invisible structure. There are numerous different representations of different
parts of software, e.g. Data Structures, Flow Diagrams etc. Each representation only views
software from a single angle. Overlaying each different representation on to a single model
which can be viewed or visualised before production or design is impossible. The overall
complexity is significantly more than any human can contain. In order to obtain usable models
it is necessary to abstract and simplify the complexity; however, as the complexity is the
significant factor in software, abstracting in this way can be detrimental to the process.

The fourth factor present in software, and the one on which this thesis focuses is
changeability. This is not unique to the software industry as entities in almost all engineering
disciplines require change; however, there is a (user) perceived ease with which software can be
changed which encourages both requests for change and the unwillingness to recognise a large
cost associated with a change. It is readily accepted however that changing physical structures,
houses, circuit boards etc. will require extensive replanning or retooling and consequently
encounter the much higher cost. This is primarily due to the invisible nature of software.

With all this complexity, is it ever possible to produce a requirements specification which
contains all the 'user needs'? Brooks [Brooks75] states that it is really impossible for a client,
even working closely with a software engineer, to specify completely, precisely and correctly
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the exact requirements of a modern software product before trying some versions of the
product.

3.5 Why do Requirements Change?

Software requirements will change with time. There are five major reasons identified why
requirements for software change. These are :

o If the real requirements are not satisfied ;

If the real requirements are satisfied;

A software system will change the environment in which it is used;

The user of the software changes;

Computer technology will change.

Real Requirements Not Satisfied

If delivered software does not satisfy the real needs of the user, regardless of the reason, the
requirement for change is obvious. In traditional software engineering, the problems could be
attributed to any of the process activities; the analysis could have been inadequate, the design
failing to meet the requirements, or the implementation failing to meet the design.

In the Phase process, as implementation is a proven computer task, the only place for error
is during the combined analysis/design activity. That has happened during the development of
Phase applications. One example that is prominent, was the development of a retailing system
for coal merchants. In this instance both the user and the developer were 'higher management'
who, although they had been involved in their respective businesses for over fifteen years, were
far removed from the actual day-to-day tasks in the application domain.

Real Requirements Satisfied

The user requirements will change once a system has been 'used'. If a software product is found

to be successful, people try it for new cases at the edge of, or beyond the original domain
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[Brooks87]. The pressures for extended function come chiefly from users who like the basic
function and invent new uses for it.

A practical example of this recently occurred in an application for an 'Oil Industry' service
organisation who had a need for a 'fabrication-shop job costing' system to monitor costs and
charges for work. As soon as it was commissioned and the basic job information entered, the
potential of the system for shop-floor scheduling became apparent. The data already entered for
jobs included relevant fabrication start and finish dates and a breakdown of resource allocation
for costing. This information was so relevant to a planning system that the users tried to use
the information for the purpose of scheduling and work planning. At this task, the software was
poor (it had never been designed for this purpose) and the general satisfaction of the user was
diminished. Changes were made to the software and as a result, both planning and costing
functions are equally accepted.

Software Changes Environments

Programs interact with their environment and change the original environment by their
operation. This has the consequence that user's expectation of satisfactory performance changes
as he is exposed to and uses the software system [Giddings84]. Even before delivery, there is a
passage of time between requirements generation and system delivery. As users gain more
insight into the planned environment their goals and expectations change.

Recently an application was being commissioned for a bakery company with many shop
retail outlets. The current 'real problem' was the quick and accurate analysis of daily sales data
in order to make better management decisions regarding manufacturing quantities for products
with such a short shelf life. Collecting the daily sales figures was not a problem as they were
submitted on returns to head office at the start of every day. The application commissioned
matched the requirements in every way. Shortly after commissioning however, the user became
dissatisfied : although the analysis of the sales data was reduced from hours to seconds, the data
entry time of the sales returns had not changed (as there was no requirement for change at the
time of the analysis). It took one hour every day to enter the returns for all twenty sales outlets.

Using the 'old' system, this was only 20% of the total sales analysis time, with the new software
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it was now 99% of the time. A requirement for change for automatic data entry from the sales

tills via modem resulted as a consequence of installing the software.

The User of the Software Changes

All software, like everything else, is subject to the human characteristic of individual taste.
This is excentuated if the software is particularly 'human oriented' (like IBIS Software). Even
requirements which are defined by legislation still have elements open to interpretation, for
example, screen layouts and report styles. These cosmetic entities are subject to individual
appreciation and, like an opera, does not have universal appeal.

Changing users therefore has a significant impact on changing requirements. There are three
major instances where this is highlighted.

The first is where software is aimed at the mass-market as a 'standard package'. In this
instance there is an unknown quantity of users with unknown tastes and preferences. Software
aimed at this level (or ending up at this level due to popularity) will have to be suitable for the
general case in terms of behaviour and ‘'middle of the road' in terms of non-functional design.

Designing software like this inevitably leads to a 'Jack of all Trades, and Master of None'
syndrome leaving perhaps no user completely satisfied without continuous (although usually
minor) modification for increased flexibility. An example of this was the Elite Payroll software
module which has an installed base of 31 sites. Although the core requirements of payroll are
defined by legislation, 29 of the sites required at least 1 modification to enhance user
satisfaction. The majority of these changes were cosmetic, usually to reports. [It could be
argued that these changes were not absolutely necessary however for commercial sense,
incorporating these changes gave the client a greater feeling of 'Value for Money' at the prices
paid.]

The second main reason for change of users is when the 'user organisation' has a culture of
change. A major example of this is government institutions where users are elected or
reallocated on a regular cycle. In these instances the users will change (as will the legislation
based upon the different government manifestos) every few years. This was highlighted in the
Elite "Homeless Persons' software module used by local councils to maintain registers and

manage the waiting lists and housing allocations for homeless people. The softwarc had
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maintenance performed in the period April-May every two years - the same period where
departments redeployed personnel as part of a continuous staff training and 'reshuffle’ program.
Even if a company does not have a culture for changing personnel on a regular basis there
will always be changes relating to either promotions or employees changing jobs. This is the
third major reason for change of users. This was highlighted during one Phase installation
where the main user was promoted two weeks before delivery of the software. His replacement
as head of the implementation team had very different ideas on the solution. As a result the

project was eventually abandoned.
Computer Technology Changes

Requirements of the software change according to the current technology of the hardware
platform or operating system. Changes in hardware technology have advanced at the fastest
rate of any engineering discipline [Brooks87]. Even if user requirements for software change
very little, the machine vehicle for which the software was first written will change, be it new
computers, or at least new disks, displays or printers as they come along.

An example of this is the subject of the first case study, presented in chapter 4.

3.6 When do Requirements Change?

The timing of introducing requirements change has a major impact to the complexity and cost
of incorporating these changes. The cost will be discussed later in this chapter.

From personal experience, changes introduced to software occur in different ways at three

definitive points in the life of the software. These are:
e during the main analysis and design activities;
e during the commissioning activity;
e after delivery and during the maintenance activity.

During Analysis and Design

It has been suggested by Giddings [Giddings84] that at the start of a software development
project, the user only has a vague idea of requirements. The requirements are open. At this
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stage, requirements are conceptual, lack detail and do not form a precise, well thought-out plan
where the implications on the surrounding environment have been properly considered.
Requirements at this stage do not so much change as go through a process of refinement.

This is the basis of the Phase process and many examples could be discussed. One project,
concemned with software for housing associations has a total timetable covering three years.
This project was divided into six smaller applications. The 'users' in this instance were domain
experts but had little knowledge regarding the power of computerisation. Analysis and design
meetings were significantly longer than with more computer-literate users. At the start of the
project there were no written requirements.

After the first analysis meeting, six pages of notes were taken and the application was
conceived as 'easy'. At the second analysis meeting, based on a refinement of the first, an
additional eighteen pages of notes were taken and the application conceived as 'difficult’. The
third had an additional five pages of notes and the fourth an additional two. The overall
functionality of the software (its scope) did not increase during this time, the increased
specification related only to the level of detail defined.

During Delivery

When a project is being commissioned, actual changes can be more easily identified. Typically
they are in the form of additional points raised, based upon data which is at the periphery of the
existing requirements. As the requirements and/or design of a system are more fully defined
and understood, time and attention are available to consider examples of data which will not
exactly fit the system, but are so close that (seemingly) minor changes can allow them to be
incorporated.

This is fuelled by three elements :

e As mentioned earlier, due to the invisibility of software, true understanding of a system

is only achieved when the system is delivered. At this point the concept has a tangible
representation;

* Real data contains a much wider variety of examples than that usually considered in the
carlier stages;
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¢ A wider variety of users are exposed to the software, each bringing a different viewpoint

and/or perception of how it should be.

To find an example of the first type of element it is necessary to return to development prior
to the Phase process. During the late 1980's before the creation of the EDS, development at
TMS on micro computers was more akin to the traditional software processes. One small
system, for a shipping company breaking into the property market required an application for
maintaining information on leased property. A full analysis activity was performed and a
detailed requirements specification was prepared. This was accepted by the users who appeared
at the time to understand it. When the software was commissioned it was rejected by the users
as the 'conceptual picture' of the software in the minds of each user was different from the
application produced.

The problem of data has manifested itself a number of times. One example relates to a
specialised accounting application, created for a firm of accountants. This was developed
using the Phase process and resulted in a 'near perfect' specification. The problem related to an
implied requirement, the size of the data field for ‘'money’ type data. The very first 'real' data
could not be entered, the assets of the 'client company' was £3,000,000,000.00, the maximum
size of the field was 10 characters. '

Introducing new users to a system as it is being commissioned poses perhaps the greatest
source of requirements for change. This has been discussed in detailed earlier in this chapter.
Two additional examples are prominent:

The first relates to a project for a fabrication company who have multiple plants around the
world, each plant has an identical manufacturing process. The application software was
designed in conjunction with one of the (geographically local) plants with the intention of
providing the same software for all the other plants. The software was accepted by the local
plant and rejected by all the others.

The second example relates to a firm of electricians with a head office and two subsidiary
offices. The application for a purchase ordering system was designed in conjunction with the
department at head office with the intention of the software being installed at a subsidiary office
with the premise ‘that is how it (the way in which head office wanted the buying to be done) has
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to be done'. Even with extensive changes during commissioning the application was made

redundant after one year.
After Delivery, During Maintenance

Changes to requirements occur, after the software has matured, largely as a victim of its own
success. With the completion of a project, consideration is given to the 'next phase'. This may
be in the form of postprocessing of data output from the system or preprocessing of data input
to the system. Whilst it can be argued that quality software should be regarded as a black box
and not affected by changes in the inputs and outputs, it is extremely likely that

o the form of the inputs or outputs will change to cater for different module interfaces

e additional information will be required to be collected from the inputs, to be passed to
the outputs simply for the postprocessor

In addition, changes to the user interface, hardware or operating platform may change
without a change in functionality at all.

An example of this type of change is the subject of the second case study in chapter 4.

3.7 Requirements & Software Quality

The quality of software has two major definitions. The traditional image of software quality
relates to the physical build of the software [Daily92]. In this definition, quality software
would have the characteristics of being well structured, properly commented, fully documented
etc. The second definition [Floyd83 ] [BTRL90] [Agostoni88] relates the quality of software to
the effectiveness of the software in meeting the users requirements. In this document the
quality of software will be related to the ability of the software to maintain a satisfaction of user
requirements as changes (both user and technological) occur without having to start afresh with
each generation

It has been argued [Floyd83] [BTRL90] that the quality of software can be thought to be
deteriorating during maturity. Based upon the concept that software quality is related to the

'closeness' of software to its requirements, the fact that mature software is primarily static and
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that requirements are changing, inevitively leads to the gap between software and its
requirements becoming wider. The concept of the "Software Death Cycle" [BTRL90] is an
interesting study concerned with monitoring this gap and measuring the cost-cffectiveness of
standard maintenance techniques. It proposes a method for determining when software should
be considered as at the end of its useful life.

3.8 The Cost of Changing Requirements

It is common belief that 70% of the total costs of software are incurred after it has been
developed. This cost is spent in the correcting of errors and in the enhancement of the software
to meet needs which were not identified before delivery, either due to bad analysis or the
essential nature of change as previously discussed.
This poses two major problems :
e It has been shown that the cost of software change increases ten-fold with each activity in
the software process [Boehm88]. The fact that 70% of change is during maturity results
in a real cost being orders of magnitude greater than costs which could be encountered in

theoretical development and cost estimating.

e Commercially, although perhaps only 30% of effort is required before delivery, typically
80% to 90% of the software will be charged. This has the effect that when 70% of the
effort is being expended on software, there is an income of only 10% to 20%. It would
not make commercial sense to 'admit’ that this 70% of work will happen after delivery.
Whilst this may show huge profits on software sales, the overall margins are significantly

lower.

These two factors contribute significantly to the 'bad reputation' generally associated with
the software industry as a whole.



3.9 Current Technology

This section summarises the current technology with respect to specifications and methods of
dealing with changing requirements. It is presented in general terms, summarising the typical

industrial case only and included simply as an overview.

3.9.1 Specification

Typically requirements specifications consist of diagrams (¢.g. data flow, entity relationship),
formal and logical proofs and subjective statements. Only user requirements are included,
technological elements are implied. There is a clear distinction between the functional and
non-functional requirements. A traditional specification identifiecs only the essential
requirements and identifies them as closed. Many real applications require complex products
which intrinsically include requirements which are open and abstract, these are generally
ignored. The choice of which requirements are explicit, derived or implied is subjective, the
selection being more akin to perceived current day priority than product-specific needs.

Specifications may be maintained manually or with the help of CASE tools. Even in the
latter instance, specifications are 'separate’ from executable programs. This leads to 'drifting'
between specifications and programs. The more mature a program, the less likely that changes
made will be reflected in the specification, primarily due to the cost/benefit ratio of updating
specifications, and time pressures to install software. This in turn, leads to the only accurate
specification of a software product being contained within the complexity of the program
source code only.

This leads to the serious question of the suitability of traditional specifications to meet its

objectives within the role of developing quality software.

3.9.2 Dealing with Change

Change During Design

Many existing analysis techniques which are successfully in operation, iterate processes of

refinement until a more concrete requirements definition can be formed. This is more concrete
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in the minds of both the user and the developer. One of the most effective techniques is based
upon forms of software prototyping [Floyd83] which will be discussed in greater detail later in
this document.

Personal experience in commercial IBIS software development using software prototyping
have resulted in a pattern where a 'usable' requirements definition is generally available after the
third iteration. In this sense, 'usable' equates to a cost effective balance between 'gains & effort
(cost)' of additional iterations. An intuitive representation of refinement of requirements is
given in the following diagram. This shows how each iteration correlates to the closeness of

the requirements definition to the actual user needs.

100%

Closeness of Requirements

TR S
Iteration

figure 3.2 : Requirements refinement with successive development iterations

At this stage it is not relevant to discuss the form of this prototyping technique or why it is
possible to refine requirements in this way in three steps. Suffice to say, methods exist which
cope with this type of change.

Change During Delivery

Minimising the effects of change at this stage of the development process is largely down to
management techniques and being aware of the problems. The three major elements discussed
previously all have fairly straightforward answers (in theory).

42



Reason for Change Theoretical Solution

Understanding a system only after having  |Rapid Prototyping techniques help reduce this factor
hands on experience by allowing users access to a form of the software
carlier in the development cycle

Real data having a wider range of values Explicitly analysing real data reduces this problem
that typical test data

Introducing new users viewpoints into the  |Involve more users earlier. The use of rapid
system at a later stage prototyping helps here.

figure 3.3 : Dealing with change during the implementation phase

Again at this stage it is sufficient to note that the impact of these changes can be minimised.
Change During Maturity

Changes associated with software during the period of maturity pose the greatest problem of the
three types of changes discussed. To summarise again, the elements of this problem are :
e Changes in technology (User Interface, Operating Platform etc.)

e Integration to new add-on modules and subsystems
o Changes due to environmental changes
e The effort in understanding an existing program architecture

Change at this stage is clearly an essence of software engineering, the consideration of
which seems to have been relatively ignored in the literature. Perhaps this is one of the reasons
why progress has been slow.

It seems that change at this stage is left as a function for a maintenance programmer who
typically was not a member of the original development team and therefore possibly least
qualified or competent to consider all the implications of change; or systems become discarded
for new replacements systems which (depending upon any salvageable elements) cause a costly

duplication of previous effort without an increase in functionality.
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3.10 Conclusions

Whatever the individual details of current development process models, the basic principle
exists of a 'requirements' which can be determined and subsequently transformed by some
(process dependant) method into a software product.

It is proposed that these software processes are fundamentally wrong for developing quality
software as they lead only to 'short term' solutions, principally because of their lack of due
consideration to the inevitable continual change of requirements.

Change is an essence of software engineering, the ignorance of which leads to unsatisfied
users and exasperated software engineers. The only way to alter this negative attitude is to
recognise the importance of changing requirements and develop software using a process which
focuses on changing requirements as a central issue.

One such process is the Phase process.



Chapter 4

Changing Requirements : Case Studies

4.1 Introduction

Two case studies are presented as a foundation for the Phase paradigm which is described in the
next chapter. These case studies provide objectives for improved software processes and justify
the structure of the Phase paradigm. Understanding the culture of 'change' is the first step in
controlling it.

In previous chapters, the essence of changing requirements in relation to software
development has been introduced. In particular the problem of change of a mature software
product is highlighted as a major issue in current software development technology. The reason
for change of a software product comes both from the need to keep up with technological
'improvements' and the need for additional functionality.

This chapter is divided into two sections each with a corresponding case study. The purpose
of the first case study is to illustrate how, in a commercial environment, computer technology
has forced software to be updated over a period of approximately ten years. This case study
examines how one commercial suite of software programs developed to incorporate
technological changes. This actual development strategy is related to an 'ideal' development
strategy and observations made on the differences. An analysis of these observations help
formulate a theory of how to migrate software for technological reasons.
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The purpose of the second case study is to illustrate how, in a commercial environment,
changing user requirements can impact a software product. This demonstrates limitations in
existing development practices and provides some basic ideas for an improved software
process.

Conclusions from the case studies are used to highlight essential elements of software
development which are commonly excluded from current software process models. A simple
abstract model of the software process is described which explicitly incorporates these essential

elements. This leads to the underlying philosophy of the Phase paradigm.

4.2 Case Study #1 : Change relating to Technological Factors

This case study is concemed with the impact of technological changes on software and is used
to illustrate the essential difficulty in keeping software technologically 'up to date'. In order to
determine how technology, relating to small IBIS software products, changed over a period of
ten years a study was made of the development strategy of a commercial software development
company. In this study the reasonable assumption was made that the software products
developed at any period in time reflected the requirements of the commercial market.

Figure 4.1 illustrates a 'product history' showing the major versions of an Accounting and
Costing package over a ten year period from 1981 to 1991,
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figure 4.1 : History of product development



The primary change factor in this instance is technological change concemed with hardware
platform and operating system changes. These are summarised below.

Version Reason for Change

R4 Original commercial version. Written in Interpreted BASIC.
Single User. OS limits program to 32K.

RS Written in compiled BASIC : never released commercially

R6 Compiled BASIC using ASCII file structures. Multi-user
capability.

R260 Mini computer platform using relational database. True

multi-user

R3000 Small Mainframe computer using relational database. True
multiuser. Power for large number of users and database

transactions

R7 Written in PC 4GL using 'simple’ database files. Language
became obsolete

RS Re-write of R7 in more powerful PC language with open
database structure files

ELITE Requirement for modular design for larger applications.
Colour standard interface.

It is important to note that the overall functionality of the package did not increase
significantly during this time. The general requirements of an accounting system are
recasonably well defined. What did change as an impact of changing technology, from a user
viewpoint was primarily :

e The overall structure of the program

e The form of the user interface
» The increased reporting capabilities due to better integration and accessibility of data

Typically the effort involved in the development of each version was approximately 18
man-months over a time period of between 6 months and a year. A heavy development
activity without achieving additional functionality would not have proved cost-effective. A
further study into the development of the package was performed to try and establish how each

version was produced.
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An ideal sequence would be that each subsequent version would be based upon the

experience of the previous version where only the 'technological changes' would require

attention. An ideal progression would be as displayed in figure 4.2.

R4 * R5 » R6 ‘R260‘—'i » R7 » R Elite

figure 4.2 : An ideal development path

It was found, however, that the relationship between the versions was not sequential but

followed the pattern displayed in figure 4.3.

R& Elite

figure 4.3 : Actual development path

The circles (numbered 11 to I5) in the above diagram represent external design input from
individuals.

The original system R4 was a joint development between individuals I1 and 12. The
architecture of this system was based very closely to manual accounting ledgers replicating
existing forms one-on-one. Individual I1 had a background of experience in sales and was
'feature motivated'. He was very close to potential users before the development exercise was
started and consequently promised features (without perhaps realising the consequences on

structure and implementation of incorporating these features) in order to encourage the potential
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user to buy. Individual 12 was from an engineering background and more methodical and
systematic in design. He concentrated on detailed design and determined the constraints on the
features due to the current software and hardware technologies. In many ways he was
responsible for the 'built in' quality of the product. The combined approach of 11 and 12
resulted in a product with a practical compromise between features and quality. This product
was migrated to a new release RS but abandoned due to the instigation of R6.

The development of R6 and subsequently R7 was performed primarily by 11 (feature
motivated). The absence of 12 meant that the equilibrium of feature and quality was unbalanced
(to the detriment of quality) with the result that R8 became a necessity. This incorporated the
architecture of R260 developed concurrently by I2 and I3 enhanced by some of the features of
R7. 13 had practical experience in the domain application of accounts and as a result
readdressed the balance between features and quality.

R3000 was derived from R260 from a user viewpoint but enhanced architecturally by 14
who had experience in this new architecture.

I5 who was originally responsible for the development of the Elite release (using the Phase
paradigm) had a background of computerised accounting packages which were supplied by
other software developers. He did not have either a detailed or a working knowledge of any of
the previous releases and therefore there was no direct relationship between R8 and Elite. Early
on in the development of Elite, the superiority of the architecture of R3000 was recognised and
the combined experience of 14 and IS resulted in the current Elite version.

This shows that a number of versions were based upon the experiences of individuals and
not directly upon previous versions. In practice, the development of the other versions were
only based on previous versions as they had members on the development team who had been
involved with the previous versions.

This example seems typical of development of many versions of programs (possibly even
developed concurrently for different hardware platforms), especially for smaller projects. This
common problem occurs due to the lack of a suitable 'specification'. There is no concept of

‘company experience', simply the experience of many individuals.

49



4.3 Observations

This case study raises the following question:

If we develop a software program from a set of user requirements and a significant
change in technology forces a major development exercise, why is it difficult to have a

simple upgrade path from the existing system to the new one?

In order to formalise an answer, let us look firstly at a simple diagram showing the
relationship between requirements, programs and the impact of time; and then discuss the

factors involved in implementing a program P from a user specification S.

Requirements & Programs

P

S oo—th ol F

Requirements

Time
figure 4.4 : Requirements and Programs

Figure 4.4 provides the context for the following discussions on the factors influencing
implementation of a program from a specification. In this figure, the changes in the

requirements of a system is indicated by the line labelled S. This is purely illustrative, a more
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detailed discussion on this line is given at the end of this chapter. In an ideal world, a program
P would satisfy the requirements S at all times. Experience however, shows that :
e there is a time delay to implement changes

e programs cannot be continually modified, eventually they will requirement abandonment

Programs can be treated as an instantiation of a set of requirements at a given period of time.
Continually satisfying requirements will require a number of different instantiations at different
periods of times (indicated by P1 to P4 in figure 4.4).

To answer the question at the start of this section, we need to examine the factors

influencing an instantiation, the implementation of a program P from a specification S and the

relationship between successive programs.
Implementing P from requirements specification S

The following figure further details the factors influencing the implementation of a program P

Ao

from the specification S.

figure 4.5 : Factors influencing implementation of program P from specification S

Figure 4.5 introduces a number of components

e S is a specification, requirements for the software

* dR is a displacement of requirements which transform S into specification S*
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e S is the actual user specification which is represented by program P which incorporates

the essential element of change

e T is the technological factors influencing the program requirements of the software

» | is the set of individual experiences of the developers who create the program.

e P is the resultant program

A program P is therefore the result of combining the components T and | with S'. S’ is a
specification which has been transformed from S by dR. It should be noted that there are other
factors involved in software development e.g. the software process itself, however for
simplicity in the following text it shall be assumed that its effect is ‘constant' and ignored.

The above illustration is expanded in figure 4.6 which shows two product developments F1

and P2. P2 represents a 'future’ generation of P1 in a different technology. This figure will be
used to help analyse the expected relationships between the components.

e @ ®

51 e

figure 4.6 : The relationship between programs

In figure 4.6 a relationship is shown between P1 and P2 however no relationship is shown
between the components of P1 and P2. This is intentional. It would seem obvious that
relationships exists, however, the nature of the relationships are not as clear as may first be

thought. Possible relationships are examined below. In the following analysis, the assumptions

are:
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e The specification S1 exists in a complete and usable form

e P2 must be 'derived' in some way from P1 as P2 is a future 'generation’ of P1
e The specification 51 is common to P2 as well as P1

e Technology T2 is significantly different from T1

¢ Individual(s) 12 is/are possibly different from 1

* Requirement changes dR1 and dR2 will exist

Suggestion #1 : Specification S2 is the same as specification 51

If the specification 52 is the same as specification 51 then we do not have an 'ideal' program P2
because dR1 (and thus 5'1) and 1 have been ignored. Their contribution to P1 is missing from
P2. T1 has also been ignored but as T2 directly replaces T1 this can be regarded as a benefit.

Suggestion #2 : Specification 52 is the same as specification 51

If the specification 52 is the same as specification 5'1 then we have a 'better’ relationship than
the previous suggestion however the contribution of 11 is still omitted. In the case study
example this is similar to the 'Elite' version which omitted all the contribution of 11 (as figure
3.3) which was present in four of the previous versions.

This suggestion also relies on the ability that dR1 can be defined in a useful format. Itis a
common adage among software developers that 'it takes 5 minutes to update a program, but an
hour to update the documentation'. This raises its own question on the documentation format of

dR1.

Suggestion #3 : Specification S2 is the same as program P1

In this suggestion it appears that we are incorrectly comparing an equivalence between two
different types of entities. For correctness suppose a new entity is created called A, where A
can be defined as the complete 'As built' specification of program P. A1 is related to P1, A2 is
related to P2 by the same definition. In this way S2 can be the same as Al.

This appears to be an better solution, a perfect solution would be A1 with the components of
T1 removed. This theoretically perfect solution is illustrated in figure 4.7.
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Achieving such a solution depends principally on the ability to recognise and define T1, I1
and A1 in such a way that they can be manipulated and re-used. Practical suggestions are not

obvious!

X -

Fo

figure 4.7 : The 'perfect’ software migration solution



4.4 Case Study #2 : Change relating to change in User Requirements

The second case study was set up to examine the impact of change in user requirements. The
customer base of our example software development company was examined. At January 1996
there were 82 customers on the list who had purchased business software in the past two years.
When this list was compared with the customer base in January 1986, it was found that 8
customers were on both lists and had purchased additional business software modules during
this 10 year period of time. It was also found that in 7 of the 8 cases, existing software modules
had been upgraded due to technological reasons. Using the implementation history of these 8
customers provided information on the impact of changing software based on changing user
requirements.

The following table lists the changes in requirements of these customers.

Customer Business Existing Changes in
Software Requirements
Application
Offshore Oil Personnel Offshore Payroll | Changes in Addition of Integration of Costing
Management Legislation Accounts with Accounts/Payroll
Electrical Contractor Accounts Addition of Addition of Purchase Invoice
Estimating Purchasing Integration of
Purchasing/Accounts
Sheet Metal Fabricator Estimating Addition of Addition of
Accounts Planning
Offshore Fabrication Costing / Addition of Integration of
Accounts Planning Shop Floor Data
Capture
Historic Castle Maintenance |Accounts / Addition of Integration of
Membership Purchasing Accounts/
Membership
Timber House Frame Stock Control  |Addition of
Manufacturer Estimating
Cardboard Box Manufacturer | Accounts Addition of Addition of Addition of Purchasing
Stock Control Order
Processing
Steel Industry Ceramic Production Addition of
Manufacturer Stock Control
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It can clearly be seen that the majority of changes in the above examples are based upon cither:

» Additions of software modules

e Integration of new or existing software modules with existing software modules

In every instance, changes were required to the existing software applications. The degree
of change reflected the degree of integration. These can be summarised as :

» Collecting of additional information required by new module eg. Information relating to

projects for costing as well as statutory accounts

¢ Changing the source of data from existing module to new module eg. Purchasing Invoice
matching supplying information direct to existing accounts module as opposed to direct
input.

e Changing the structure of the information to be accessible by new module eg Estimating

information now affecting planning module

e Scrapping 'simple' parts of the system which were replaced by the 'complex’ new module

eg Simple stock control replaced by full 'accounting' stock control.

Due to the problems inherent in retrofitting changes to software, in each instance the inbuilt
quality of the system would deteriorate.

A Detailed Example

The first entry in the above table, for the Offshore oil payroll management company is
examined in closer detail.

In this example, the user had a requirement for a specialised payroll system to handle the
complexities of offshore oil workers who are paid in an uncommon 4 weekly cycle. In 1985, a
computerised system was developed. Legislation changes were enforced by the government in
1991. As technology had improved significantly since 1985 and a multi-user input required,
the program was rewritten at this time. In 1992, a management accounts module was introduced
(replacing a manual system). Changes to the payroll system were minimal and reflected a
change in trial balance structure. In 1995 it was decided that a form of project costing was
required which would provide a greater degree of management information. This not only

involved further analysis of information output from the payroll system, but required additional
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data to be input into the system. Within our example software development company, the same
technology was used from 1991 to 1996, therefore we can treat the development in 1991 as the
starting point for our analysis of changes affected by user requirements only. As the addition of
the accounts module had only minimal effect of the payroll system, these will be ignored from

the following example.

In figure 4.8 below, point A is the start of the development process (1991).

Payroll +

Start of Project Project Costing

Payroll

figure 4.8 : The paths for subsequent development

Point B indicates the system developed during 1991. The development strategy followed a
path AB where all design decisions were taken to achieve the goal at B. Point C indicates the
amended requirement to include project costing in 1995. Starting at point B the development
would follow the path BC; however, if C was the original goal the development would follow
the path AC.

An Analysis

Intuitively, it is felt that the product C would be in some way 'better' if it had been developed
along AC than BC. 'Better' in this sense would mean 'less complex'. Undoubtedly, many of the
new elements required in C would have been 'bolted on' to product B as opposed to 'built in' if
the product had been developed along AC.

If this is expanding to points D,E and F, all representing additional changes in requirements,
it would surely result in a grossly inferior system than that developed in AD,AE and AF

respectively.
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4.5 Observations

This case study raises the following question :

From the starting point of B, would it be better to return to point A to develop the

product C?

The 'immediate reaction' answer to the above question would almost certainly be that it
would not be better to return to position A, using the justification that there must surely be a
degree of commonality of the product B and the product C since there is no suggestion that the
'payroll' element of C is not identical to the payroll element of B. It would seem nonsensical to

throw away B simply to redesign it.
Relating to Literature

Potts and Bruns [Potts88] improved upon a previous idea to record the design process as a
series of artefacts. questions, alternative solutions and justifications to answers. The thesis
behind this was that a design could be retraced at a later stage, perhaps to find the root cause of
failure in some way or to use as a training exercise to educate less experienced software
designers, by communicating design decisions made by more experienced designers.

This model was later improved upon by Lee [Lee91] to include explicit goals which could
be used as a guide when making the design decisions. The concept behind this was that should
the goals be altered, the design could be re-run and each of the decisions re-evaluated in terms

of the new goals. A diagram of a design process can be represented as figure 4.9.

J‘\.K

figure 4.9 : A Potts & Bruns design graph
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In this diagram, the solid boxes represent stages in the design at which design decisions are
made. The lines leaving each box represent the alternative answers to a design question. Dotted
boxes indicate answers which were discarded.

In theory, when faced with the situation given in our second case study of changed
requirements, it would be possible to retumn to the original starting point and follow each of the
design points re-evaluating each alternative solution. In this instance re-use of a previous
design would be achieved. Eventually however a different alternative would be chosen and a

new path would then have to be 'trail blazed' as in figure 4.10.

figure 4.10 : Re-evaluating a design graph for different goals

4.6 Learning from the Observations

This chapter has described two case studies concemed with a common theme: changing
software requirements. Each study had an independent focus on two very different aspects of
requirements. The observations and resultant theories however have a common denominator:

the ability to record in some way, design information during a development project in a form



that it can be retrieved, interrogated and manipulated would have a significant contribution to
the ability to migrate and enhance future generations of a software product.

Earlier the following definition of experience was introduced:

"Experience is being able to relate a new situation to a situation previously
encountered, and, knowing the alternatives and outcomes from the previous situation,

being able to deduce the best alternative from the new situation”.

This definition of experience, related in this case to human experience, has a similarity to the
common theoretical requirement observed from the case studies. If it is possible to practically
instantiate the theory, the result would be a software process which had 'built-in' experience.
This experience could be passed to future developers or perhaps automatically reused as a form

of artificial intelligence within the software process itself.

4.7 Towards a Practical Solution

The remainder of this chapter introduces an additional observation which leads to a theoretical

perception of the software process in such a way that a practical approach to maintaining

experience can be implemented.

4.7.1 The Pattern of Requirement Changes

An analysis was made of how changes in requirements altered in relation to time. It was
observed that the pattern of the impact of user related changes was different from the pattern of
the impact of technologically related changes. The pattems of user requirements is illustrated
in figure 4.11. The pattern of technological changes is illustrated in figure 4.12. The data used

to produce both these illustrations is not scientific but intuitive based upon personal experience.



The Pattern of User Requirements

Time

figure 4.11 : A pattern of User related changes

For the purpose of illustration, assume the height of the line A in figure 4.11 represents the
scope of all the functions ever included in the user requirements (Requirement For Software).
In a similar manner, the height of line B represents the scope of all functions ever removed
from the user requirements. The distance between line A and line B therefore represent the
actual scope of functional requirements at any instance in time. Time is indicated by the

horizontal axis.

The illustration in figure 4.11 indicates that changes in user requirements are regular but
individually small.

The Pattern of Technological Changes

adoog
£33

Time

figure 4.12 : A pattern of Technological changes
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Figure 4.12 schematically illustrates the Requirements Of Software for the same time period.
In this example the system will be required to operate on four different technologies. At the
start the system operates using technology A. After a period of time, two different technologies
are required in parallel (A and B). For a short time thereafter a third (C) is required followed by
a redundancy of technology A. Eventually technology D is required and technology B
becomes redundant. The technologies do not have to be radically different. The differences
may be as simple as User Language Options, Hardware Interfaces or may be as significant as
different platform requirements or program language alterations.

The illustration in figure 4.12 indicates that changes in technological requirements are 'block
like' in behaviour.

4.7.2 Using the Pattern to form a Theory

The pattems in figures 4.11 and 4.12 themselves do not contribute to the basis for
implementing a practical solution however their production was fundamental in recognising

how a solution could be created. Figure 4.13 is a reproduction of figures 4.11 and 4.12 aligned



for a common timescale and a 'slice' S drawn vertically to highlight an arbitrary time point.

D) A
/

e

Time

figure 4.13 : A 'slice’ of requirements

If it can be assumed that the pattern of requirements is identical to the pattern of the scope
of the actual software (albeit displaced by a time element equal to the time taken to implement a
set of requirements) then at time S there exists a finite and identifiable state of a software
product. At a future time point S' there will be another identifiable state of a software product.
The difference between S and S identifies the set of changes and possibly the set of design
decisions which have occurred between time S and S°.

4.8 A Simple Model

A simple model can be created to represent the 'state structure' of a program. This is given in
figure 4.14. The state S shown as a vertical line in figure 4.13 is reproduced as an ellipse in

figure 4.14. The ellipses S, S and S™ represent states of the program at future times. The



arrows connecting the states indicate the 'set of changes' which represent the transformation

between states, they are labelled dR’, dR™ etc.

Oﬁ@ﬁ -

5 5, 5” 5’”

figure 4.14 : A simple program state model

If it is possible to identify the finite state of the software product in terms of tangible
attributes and record the changes made, with their rationale, to these attributes then it should be

possible to record the design decisions in such a way that they can be reused as experience.

4.9 Conclusion

The requirements for a software process which will help software developers with their attitude

towards changing requirements is :
» the ability to define a 'state' of a software product in finite attributes
= the ability to record changes to these states, and the design decisions for these changes
o the ability to retrieve and manipulate this information in a form of 'experience'

One such process is the Phase process.



Chapter 5

The Phase Paradigm

5.1 Introduction

This chapter describes the Phase paradigm and demonstrates how the state of a Phase program
can be defined in terms of finite attributes. During this chapter, the following questions will be
answered :

e What is a Phase specification ?

e How is Requirements Analysis performed ?

e What is a Phase program?

Structure of this chapter

This chapter begins by clarifying what is meant by Phase software. This includes a discussion
on the class of applications intrinsically suitable for developing with the Phase paradigm.
'Screen shots' of a typical Phase program are included to aid visualisation and will help in the
understanding of the underlying Phase paradigm.

An integral part of the Phase paradigm is the structure of a Phase program. This section will

introduce Phase terminology and demonstrate how the structurc can be specified both
diagramatically and textually.
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At its lowest level, a Phase program is implemented in a target language eg Pascal. In a
similar manner to Procedures in a target language, the Phase paradigm uses Procedures for
specification. The relationship between the Phase procedures and the target language procedures
is described. This in turn introduces the elements of Phase procedures, the definition of which
is required to complete the specification.

The execution of a Phase program is controlled by two target language specific elements
called the Kemal and the Support Library. Understanding the basic algorithms for these
clements will complete the understanding of how a Phase program executes.

A major feature of the Phase paradigm is the repetition of a few simple algorithms. By
identifying the commonality of these algorithms and the method of parameterisation it will be
shown how the system is suited to the creation of rapid prototypes. Each algorithm can be
executed as a prototype by the use of a single command in the small prototype command
language.

Documentation is a very important part of any development paradigm and this chapter
describes the documentation relevant to (and for the most part, automatically generated by) the
Phase paradigm.

This chapter concludes with a summary of the Phase paradigm and explains how a program
can be specified as a whole, by specifying the individual clements of a Phase 'state’.

Associated with this chapter is Appendix B, which contains a full description of the way

Phase programs are developed, using the Phase process.

5.2 Phase Software

Phase software is software produced using the Phase paradigm. Before discussing its structure
or how the design is produced a brief overview is given describing the generic features and user

interface. This will place the details of the structure into context.

5.2.1 The Class of Applications

Phase software is not specifically designed for Interactive Business Information Systems (IBIS)

applications, but it is with this class of applications that it has been tested and examined. A



description of the features of IBIS software was introduced in chapter 1. To summarise, these
applications are :
e Database Oriented

e Human Interactive

A suitable user interface for such applications may have the features :

e 'Form' based for data entry and retrieval
e Menu driven for flow of control

Phase Software incorporates the above user interface features and also :

e Overlapping 'windows' to highlight a 'drill down' detailing of information

¢ Browse lists to show single-line summaries of information

5.2.2 An Example

An example can be taken showing actual 'screen dumps' of software produced using the Phase
CASE tool EDS. This example is a subset of a 'Sales Ledger' program which is designed to
track invoices sent to customers and record the payments which are received. This shows the
format of:

e Menus

e Browse Screens

¢ Form Based Data Entrv/Retrieval Screens
e Command Line Options

e Overlapping Windows

These examples clarify much of the discussions in the following text.
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Menus

il s e i =)

I A Company Ltd I Sales Ledger <1996./081) I Aged Analysis Report I

Bepovts

Print Statements/Lahels
ficcount Address Lahels
[. liser Repnvr"

Online HELP is availabhle at all times by pressing the LFL] key
Report on summary aged analysis

figure 5.1 : A Phase Menu Screen

Menus are hierarchical in structure, nested to any level and with any number of options

available.

Browse Screens

[ n company Lta | Sales Ledger <1996/81> lnmuse Customer Accounts ]

Account Customer
e

ABER/C Aherdeen Cricket Club
ACHE ACME Food Services
ALUA Alva Bowling Club

British Plastics Ltd

Enterprise Engines

Genius Mouse Mat Company

Alexander Gilmour & Sons

Kitchen Supplies Co

Merlin Professional

§ National Monumental Services

PROSPER spe Cnn‘ultant' Ltd 34536. ﬂﬂ
SOUTER 2 4351 .00
ST/ENT Lip q ;e )mpany 65400
WIZARD Michael Wizard Lo;Lunc* (5% %)
WOODUAY Woodland Wayward Expeditions 149.08

| Linsert] | [returnl I
Select the Vlt qllll} d record wit h the {arrow> keys

figure 5.2 : A Phase Browse List Screen



Selecting an option from a menu usually requires access to a data table, in Phase programs
the entries in the table are listed, sorted alphabetically to enable records to be found easily.

This is called a 'browse' screen.

Form Based Data Entry/Retrieval Screens

= : sl Ll =12

| A Company Ltd | sales Ledger <1996/81> [Display Customer Account |

Account = :
Balance : Credit Limit :

Address : Open Items/Balance Forward:
Telephone

Fax No

Postcode: Ref 1

Contact : Ref 2

Default NL Code

Default NL Detail :

Default UAT Rate @ Trade Discount )
Terms of Busine : Days Pronpt Payment Disec =

Period O/Bal : Balance Forward
Period Payments : Closed Items
Period Invoices : Turnover

|yl Enter | Modify | Address | Delete | Notes |Statement| Status

Uiew transactions for this account

figure 5.3 : A Phase Data Entry/Retrieval Screen

Selecting an option from a Phase browse list displays a form with details taken from
appropriate data tables. These forms are used both to display information from tables and allow

the user to add data or maintain data in the tables.

Command Line Options

Figure 5.3 also shows a second type of menu for flow of control through a Phase program. A
series of options are printed at the foot of the screen which can be selected in a similar manner

to a traditional menu. These are called 'command line options'.

Overlapping Windows

In this Sales Ledger example, the first option on the command line is "Transact", this displays

an overlapping windows showing a browse list of the invoices and payments making up the

balance on the customer account. This is shown in figure 5 4.
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I A Company Ltd

| sales Ledger <1996,81> | Browse A11 Transactions |

Date

P e
21/08/1996

| Llescapel | Linsert] | Lreturnl |
Select the required record with the <arrow?> keys

figure 5.4 : A Phase Overlapping Windows Screen

In this example, selecting an invoice from this browse list will display a further overlapping

window showing a detailed breakdown of an invoice.

5.3 Phase Software Structure

This process of traversing though a Phase program as Menu, Browse List, Data Form,
Command Option, Browse List, Data Form, Command Option etc. becomes an intrinsic part of

the software. It is clear to see that this structure can be represented in a directed graph as shown
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in the example figure 5.5.

g T T
Account Maintenance Invoice Processing Payment Processing
I} ' i
Browse List Browse List Browse List
of Accounts of Invoices of Payments
1 1 ¥
Display Account Display Invoice Display Payment
‘L %
Command Liet
l
e I I
Traneact Enter Modify Addrees
I}
Browse List of
Invoices/Payments

figure 5.5 : The Flow of Control of a Phase program

The diagram in figure 5.5 can be restructured by separating out the actual flow of control from
the functionality of a program. If we consider any point in the structure, it can be divided into :

e What functionality do I perform at this point ?

e What options can I select next ?

In Phase terminology the 'functionality performed at this point' is called a procedure and the
'options that can be selected next' is represented as a series of nodes and options. The nodes
and options combine to form the flow of control structure. A procedure is 'attached' to a node
to specify when it is called. Menu nodes do not have procedures attached. This is illustrated in
figure 5.6. Each procedure and node is given a unique reference name and identification

number.
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5.3.1 The Phase Node Structure

Label Main Menu

Node Id ool

Node Name MAINMNU-STD-MENU
Procedure <hone>

Optlons Type  MENU

[
l I

Label Account Malntenance Label Involce Processing
Node Id 002 Node Id 003
Node Name  ACCOUNT-STD-ROOT Node Name  INVOICE-STD-ROOT
Procedure BROWSE_ACCOUNT Procedure BROWSE INVOICE
Options Type  FSERIAL Options Type  FSERIAL
I %
Label Display Account
Node 4 oog"y
Node Name  ACCOUNT-STD-DISP
Procedure DISPLAY_ACCOUNT
Optione Type  SOFTKEY

|
l |
Label Transact Label Enter
Node ld o013 Node ld 015
Node Name  TRANSACT-STD-ROOT | | Node Name  ACCOUNT-STD-ENT
Procedure BROWSE_TRANSACT | | Procedure ENTER_ACCOUNT
Options Type  FSERIAL Options Type  NONE

figure 5.6 : A Flow of Control Node Diagram

This structure can also be described :
When the program starts a menu will be displayed. This has the options :
* Account Maintenance, where new accounts are set up and enquiries made on existing

accounts
¢ Invoice Processing, where invoices to customers are processed
* Payment Processing, where payments received from customers are processed
* e¢tc.

Selecting the Account Maintenance option will display a list of all customer accounts
known to the system, the appropriate account can be selected from the list. The columns shown
are :

e Account Code

e Customer Name
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e Current Balance

e Closed Item Balance (an 'odd' balance where payments received do not exactly equal

invoices)

When the account is selected a form will be displayed showing all the details known about
the customer, this includes the following information

e Account Code

e Customer Name
e Current Balance
e Credit Limit

* ctc.

A number of options appear at the bottom of the screen, these are :

e Transact : View the invoices and payments which make up the current balance
e Enter : Add a new customer to the list of accounts
e Modify : Amend the current address and credit limit for the account

* efc.

Selecting the Transact option will display a list of all the invoices and payments processed
for the customer. An invoice or payment can be selected from the list and further details
displayed.

etc.
Node Options

There are a limited number of ways that options can be called from a node. These are :
e Menu (as shown in figure 5.1)
e Softkey (as shown in figure 5.3)
e Fserial (described below)

e None ( a'leaf node with no suboptions.)
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The Fserial option is used where there is only 1 option available from a node and this node
is selected automatically when the appropriate procedure has finished execution therefore

linking procedures together in a serial 'chain’'.
5.3.2 The Phase Procedures

Phase procedures are 'blocks' of target language programs which execute as indicated at each
node of the flow structure. Each of the Phase procedures will be implemented as a target

language procedure call.

Flow of Control

Node
Display_Page(Account._Code,) L
/ dispiay_screen(screen)
Display_Account

Phase

Procedures
Level 2
Target Language Support Library
Procedures Procedures

figure 5.7 : Phase Procedures and Target Language Procedures

There are some important issues to raise about these Phase procedures.

¢ A node may only call one Phase procedure.

» Phase procedures cannot have parameters in the usual sense of formal and actual target

language parameters as there is no parameter passing mechanism from nodes.
e Phase procedures cannot call any other Phase procedure

» A Phase procedure may be called from more than one node
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e A Phase procedure is completely independent of any other procedure and cannot rely on

'knowing' where it is being called from.

e Where the complexity is such that the functionality cannot be efficiently implemented in
a single target procedure, a Phase procedure can call other non-Phase procedures as
described in figure 5.7. There additional procedures are called Level 2 procedures and
can contain all the characteristics allowed within the target language eg parameter

passing mechanism.

e Phase procedures and Level 2 procedures can call upon the services of the Support
Library procedures. This is described later in this chapter.

The functionality of Phase Procedures

At an abstract level, based upon the structure of a Phase program illustrated in figure 5.5 there
is a finite number of basic functions which can be performed by a procedure. These are :
» Display a Browse list of a data table

e Display a data retrieval form with suitable data
» Add data from a data entry form

e Modify data from a data entry form

¢ Delete data from a data table

e Print a report

e Perform a batch process

All Phase procedures therefore perform a function from the above list. The "perform a batch

process" option also includes any non-standard function from the rest of the list.
5.3.3 Other Phase Entities

Phase procedures have to be more specific than the general descriptions above. This is done in
relation to other entities in the Phase structure. These entities are :

e Screens

e Data Items
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e Data Tables

e Algorithms

Screens

Screens are the data entry and retrieval forms which display data on the interactive
workstations. The consist of two separate parts:

e The 'image'

e The 'field specifications'

The image relates to all the non-field items on the screen including the border, the
background colour, graphical lines and the labels for the data fields.

The field specifications are areas of the screen which display actual data from a data table, or
where data is input for storage in a data table. Each ficld has a number of attributes including :

e type of data

¢ local processing to be performed e.g. Automatic upper case, Right Justify etc.
e data validation functions e.g. is the account code unique
e screen colour to display the field

A screen has one image item and any number of field specification items.
Data Items

Data items are the common link between fields and data tables. Each data item contains a

single piece of information. It has a specific type and length.
Data Tables

Data tables relate to the data storage mechanism used by a particular Phase program. These
may be 'flat files' or relational databases.

Algorithms

An algorithm is the basic functionality of a procedure. This is identical to the list given earlier
in this chapter for example :
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A basic algorithm exists to modify data in a data table using a particular screen, it would be

in the form (simplified for illustration) :

For data table [TABLE] and screen [SCREEN] for key [KEY]
locate in table [TABLE] the data for key [KEY]

match all fields common to [TABLE] and [SCREEN]
display screen [SCREEN]

wait for input

if not escape key

match all fields common to [SCREEN] and [TABLE]
store data in [TABLE]
endif

The elements in [ ] are parameters.

5.3.4 Procedures Revisited
Procedures exist to collate specific entities together. A procedure will typically have :
» A single algorithm for the basic functionality
e A single screen for data input and/or output
e A set of data items for data transmission
» A set of data tables for data storage

The actual number and type of entities will depend upon the algorithm.

To complete the example given earlier in this chapter assume we have the following

elements.
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Screen Data Table Algorithm Data items
ACCOUNT |dbACCOUNT |DISPLAY Account Code
dbINVOICE |ENTER Customer Name
MODIFY Current Balance
DELETE Credit Limit
BROWSE Address
Contact
Telephone No
Fax No
etc.

figure 5.8 : Entities in the example program

The procedure definitions would be :
PROCEDURE : Browse_Account

[Screen Data Table Algorithm Data items
dbACCOUNT |BROWSE Account Code
Customer Name
Current Balance
Closed Items

PROCEDURE : Display_Account

Screen Data Table Algorithm Data items
ACCOUNT |dbACCOUNT |[DISPLAY Account Code
Customer Name

Current Balance

etc
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PROCEDURE : Browse Transact

|Screen Data Table  |Algorithm Data items
dbINVOICE |BROWSE Period
Date
Invoice No
cte

figure 5.9 : Example Procedures

5.4 The Phase Kernel, Support Library & Repository

To summarise, the following types of entities which are maintained in the Phase repository

have been introduced :
¢ Flow of Control Nodes

e Procedures

» Screens

e Data Items

e Data Tables

e Algorithms

Previously. this chapter has described a Phase program and the structure which builds a
Phase program. This section describes the remainder of the Phase system which describes how

the structure 'works' for an executable program. There are three interrelated items :
e the Phase Kemel

e the Phase Support Library
e the Phase Repository.

The Phase Kernel is a library routine which is executed at the start of every Phase program.
This routine uses the flow structure maintained as part of the repository to determine the order
in which to call Phase procedures.
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The Phase Support Library is a set of standard functions which are used to interface Phase
procedures to entities within the repository during the execution of the program. The Kemel
and the Support Library are implemented in the target language.

The Phase Repository is a large database containing all the entities which define a Phase
program. Some of these entities (nodes, procedures, screens etc.) have already been discussed,
others will be introduced later. The repository is target language independent.

The relationship between the Kemel, Support Library and entities in the repository are

shown in figure 5.10.

‘:_I Flow of Control

Code

< Support Library T

Screens @ b Reports
N BB
/e

Data Base
N\

Data
Definitions

Algorithms

figure 5.10 : The Phase Structure
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5.4.1 The Phase Kernel

A Phase program is similar to many other types of program in that it consists of an executable
compiled program. The major difference between a Phase program and other programs is that
the relationships between procedures are maintained outside the program code, in a repository.
In order that this can be achieved, it is vital that the target language supports separately
compilable procedures and that procedure names can be determined at run-time.

The kemel is a very simple program with an algorithm (suitably simplified) as shown below:

Program kernel

current_node = root node of structure
do while current_node <> $exit
select current_node from node structure
if procedure is defined for node
execute the procedure
endif

display child nodes of current_node in appropriate menu structure
get user input for option selection
current_node = node_selected

enddo

Implied in this algorithm (removed for simplicity) is that at any point, use of an <escape>
key will set the current_node pointer to the parent of the node and not the children. The special
pseudonode S$exit is a virtual node which is the parent of the main menu.

In practice, the node structure does not have to conform to a tree, nodes can have any other
node as a parent node and a node can have any number of parent nodes. It is possible to have a
'cycle' of nodes where a child node can be linked to its parent (or grandparent etc). This adds
significant complexity to the algorithm which is required for flexibility of program design but
has been omitted for clarity.

5.4.2 The Phase Code Generator

Figure 5.10 introduced the Phase code generator. Use of the code generator is not intrinsic to

the structure of a Phase program but exists as a productivity tool for the developer. The
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commonality of program functions and the information available with the repository entity is an
ideal candidate for automatic code generation. The parameterisation of the algorithms as
shown in the example earlier in this chapter allows target code to be created by simple

substitution similar to the technique found on many macro assemblers.

5.4.3 The Phase Support Library

The Phase Support Library exists as a set of functions which allow application procedures to
access elements within the repository at run-time. The main use of this is the access required
for the screen definitions and data table definitions.

The Phase Support Library, like the Phase Kemel is written in the target language. This

allows for easy migration of applications to different database and screen technologies.

5.5 Using Phase for Prototyping

Appendix B provides a complete process for designing software using the Phase paradigm,
however the principles of Phase prototyping are an important issue and discussed below.

A Phase prototype is a construction of the user interface using the entities within the
repository which demonstrates exactly how the final Phase programs will 'look and feel'. A
Phase prototype (and consequently a full set of documentation as described later) can be
produced before any target language program code is created.

A Phase prototype and its associated documentation provide an 'as built' specification of the
design.

A prototype exists as an 'execution’ of the node, procedure, screen and data-item definitions
within the repository. As described earlier, for a Phase program, the node structure is
interpreted by a kemel program to dynamically create menu's and command options during
runtime. A 'prototyping' kemel exists which recreates these menus and command options using
an identical algorithm to the finished product. The menu and command options can therefore
be reproduced identically by either the prototyping kemel or the run-time kemel.
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The remainder of the user interface is made up by screen definitions and browse definitions,
both of these entities are defined within the repository, however the problem exists to determine
which screens and browse definitions to use at each point.

A finished program uses the Phase procedure definitions to perform the required
functionality in the form of executable target language code, these procedure definitions
provide a suitable mechanism for defining a prototype.

Earlier in this chapter it was stated that procedures can perform according to only a small set
of functions. Most of these functions involve a single screen (or browse definition). These
functions can be simulated for prototyping purposes by using a prototyping command set of
only four commands with a minimum number of parameters. These commands are :

e DISPLAY "<screen definition> <version>"
¢ BROWSE "<browse definition>"
¢ REPORT "<filename>"

e MESSAGE "<message>"
5.5.1 The Phase Prototype Specification Language

Display "<screen> < version>"

This command allows the Prototype Executor to fetch the <screen> definition from the
repository and display it on the workstation. A screen definition at this point may only consist
of the 'image'. In 'early' prototypes, field definitions may be substituted on the image in a
similar manner to graphics characters or field labels.

If, however, field definitions are included, data input and retrieval can be simulated during
prototype execution. This reaction of this, depends upon the second parameter for the
command. This is the 'version' parameter. Each screen can have up to 10 different 'versions'
numbered 1 to 10. Each version applies to the combination of fields which are 'read only' and
'data input'. For example, version 1 of a screen may have all the fieclds marked as 'read only'
and used in a 'display' type algorithm. Version 2 may have all the fields available for data input
and used for the creation of a new record using the 'enter’ algorithm. Version 3 may have all

83



the fields available for data input except the key fields (which cannot be changed once the
record has been created) etc.

At this stage there is no concept of a data table. For simulation purposes, each field
definition has a 'dummy data’' field into which any data input is stored. This provides a very

realistic method of simulating data entry.
Browse ""<browse definition>"

This command simulates a browse screen using column headings defined within the repository.
For these screens there is no data available and all the columns appear blank. Although this
means that the simulation of the prototype gives a slightly different screen from the final

versions, the difference is insignificant.
Report "<filename>"

This command simply takes the <filename>, extracts the definition from the repository and
copies the information without modification to the print device. The <filename> has been
previously created as a sample report using a standard text editor. The data on the report
obviously has not been derived from anywhere in the system but simply 'typed in'.

Message "<Message>"'

This option does little more that display the message on a "status" information line on the
screen. Execution then suspends for a given time period (say 5 seconds) and then control is
returned to the Prototype Executor to continue processing. This delay represents a process

being executed (although in reality nothing is done at all).

These four functions, together with the menu definitions allow for an extremely useful
prototype to be created and executed. Whilst being extremely simple in operation it provides
the user with the look and feel (including relevant pauses for process execution) of the final

application. This is the fundamental principle for Rapid Prototyping.



5.6 Phase and Documentation

The Phase prototype is the primary means of communication between users and developers.
The prototype, however, requires a computer for execution. There are additional benefits to be
gained by providing 'hardcopy' documentation which can be 'reviewed at leisure' and ideal for
annotating with comments. These annotations can be entered subsequently into the repository
using the appropriate editors within the system.

The Phase case tools provide a number of representations of the prototype. These are:

¢ Flow of control 'tree' structure

¢ Entity Relationship Diagram

e Hardcopy prototype.

¢ Database Structure

e Technical Reference Manual

Flow of Control 'Tree' Structure

This is an automatically produced diagram similar to figure 5.6 listing all the interconnections

of nodes in the form of a directed graph. It displays a high level overview of a software design.
Entity Relationship Diagram

This is an automatically produced diagram which prints for selected entities within the
repository showing all the hyperlink type connections to associated entities. This is particularly

useful for finding the 'consequences' of change.
Hardcopy Prototype

This document prints a single A4 page for each node in the system. This can be used in
conjunction with the structure ‘tree' diagram described above. Printed on each page is a 'screen
dump' of the screen which would be displayed during the execution of a prototype. At the foot
of the screen the options are listed and a full cross reference is made to the appropriate page
numbers. This document is ideal for use when reviewing a prototype as comments can be noted

within their context.
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Database Structure

A traditional 'data dictionary' type report listing the structure and relationship of all the data
tables.

Technical Reference Manual

The technical reference manual is a document structured automatically by the flow of control
structure of the Phase prototype. It contains an appropriate selection of 'screen dumps'
complete with automatically generated comments taken from notes maintained with entities

within the repository. The is the basis for a user reference manual which can be distributed
with the final product.

5.7 A Summary of the Phase Environment

The term "Phase Environment' is used as a generic term for entities within the Phase paradigm
which includes the features of the supporting CASE tools. This section lists all the features of
these tools for completeness as reference is made to them in later chapters.
¢ Entity Editors
Flow of Control Node Editor
Procedure Editor
Screen Painter and Editor
Database Dictionary Editor
Data Item Editor
Algorithm Editor
* Generators
Program Code Generator
Screen Definition Code Generator

'Reference Manual' Documentation Generator
Database Generator

¢ Project Management Features
Entity Modification Log



Request for Program Update (RPU List) "Wish List"
Completion Statistics and Status Reports
Node Structure Diagram
Entity Relationship Diagram
e Other
Prototype Executor

5.8 Phase and the Process State Model

At the end of chapter 4, a simple program state model was introduced with three preconditions
for helping developers with their attitude towards change. These are reproduced here for
clarity.

The requirements for a software process which will help software developers with their
attitude towards changing requirements are :

e the ability to define a 'state’ of a software product in finite attributes

« the ability to record changes to these states, and the design decisions for these changes

o the ability to retrieve and manipulate this information in a form of 'experience’

This chapter has described part of the Phase paradigm, the remainder of this chapter will

show how this information presented so far relates to the first precondition above.

5.8.1 The Definition of a Program State

The elements of the Phase repository have been presented. They are listed in figure 5.11 below
together with symbols which will be used in later chapters.
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Element Symbol
Flow of Control Node N
Data Item I
Screens S
Data Table D
Algorithm A
Procedure P

figure 5.11 : The elements of a Phase Repository

Each entity can be individually identified with a unique identifier and each type of entity has

a finite set of attributes. A complete set of attributes is contained in Appendix A. The state S

of figure 4.14 can now be represented by the set of all the Phase entities defined for a particular

program as shown in figure 5.12.

{NUN2N3,..Nj}
{M1243,...11)
{61,62,583,..51}
{D1.02.03,..D}}
{ALA2,A3,..A}
{(PLP2,P3,..F])

figure 5.12 : The components of a Phase state

These elements do not exist in isolation to one another but form a complex hierarchical

interrelationship. Each element can be related according to the following rules:

N > (N}P
P >  A{D}{S}
D = {D} {I}

S ST

The symbol -> means "is hierarchically related to"



The symbol {} means "any number of'. The absence of {} indicates that only a single

relationship can exist between a discrete entity of these types.

5.9 Conclusion

The Phase paradigm uses a program structure which relies upon the definition of a set of
entities within a repository. These definitions can be 'executed' as a prototype to allow a user
review of the software before any application code is created. When final programs are
required, these same definitions can be used by the automatic code generators within the Phase
CASE tools to aid programmer productivity. The definitions can also be provided in
'hard-copy' form.

This repository structure of a program definition makes it possible to tangibly represent a
program state in the form indicated by the model presented in chapter 4.

Chapter 6 provides the Phase approach to the second and third preconditions attached to the
model, namely,

» The ability to record changes to these states, and the design decisions for these changes

o The ability to retrieve and manipulate this information in a form of 'experience’
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Chapter 6

Defining and Reusing Phase Experience

6.1 Introduction

In chapter 5 , it was shown how the Phase paradigm relates to the model described in chapter 4
by providing a breakdown of a Phase program into tangible components or entities. The set of

all the entitics defined at any time, together with their attributes is represented as a 'State' S in

the illustration given in figure 4.14.

The aim of this chapter is to describe how the Phase paradigm relates to the changing of
states, indicated in the illustration of figure 4.14 as dR, with the purpose of being able to
capture 'design experience' in a form which can be reused.

This chapter is split into three sections:

* A history of how the information dR was captured with accuracy

» A discussion on how the information can be retrieved and manipulated

e A discussion on how the information can be analysed to provide 'experience’

6.2 The Principle of Recording Design Changes

Recording changes to entities within a repository is obviously easy provided each editor that is

used to physically edit an entity can provide suitable information to a 'log' file each time an edit



is performed. The use of 'edit' in this sense also includes the creation of new entities and the
deletion of entities. What is not so obvious is what information should be logged and how
should this information be structured.

There are a number of observations which can be made :

* Information to be logged should be obtained 'automatically’ and not require manual input

as 'human nature' will bypass manual input under pressure of time.

e The log should be maintained unobtrusively to prevent the logging interfering with the
productivity of the development

» The log should be as 'space efficient' as possible, as the number of entries will be large

» The information logged should refer to why information is changed as well as what
information has changed.

6.3 When is a State, Not a State?

In the illustration in figure 4.14, two development states are separated by a ‘change in statc'.
The question is asked :

What determines when a program is 'in a state’, and can a program ever be 'between

states'?

Strictly speaking, every change which is made to an entity alters the state of the program.
Consider the circumstance that a change to an algorithm takes four attempts by a designer
before it correctly reflects a concept. Each of the first three steps were simply 'bad' attempts
and intermediary. They did not reflect design decision changes but simply the correcting of
errors. In this instance it is proposed not to 'recognise’ these intermediate stages.

Consider also, where a single design decision may require a number of entitics to be altered.
For example a decision may be taken to remove the concept of a 'telex' field from a contact
database (due the redundancy of telex machines over fax and email). This would almost
certainly affect :

* The data table where the telex field stored the data
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e The screen where the text field displayed the data
e The redundancy of the data item 'telex’

e Any procedure which referred to the data item 'telex'

This would require a minimum of four edits in the repository, with a possible four changes
in program states. In this instance it is also proposed that only one change in state is
recognised.

In summary, it is possible that a program can be between states and that any number of
entity changes can be made between states. In reality, during these 'inbetween' states, the
program can be considered 'unstable' (as it almost definitely would not execute correctly due to
inconsistencies between entitics). Consequently a state can be redefined as a point in time
where the program is stable (not unstable) and a set of related changes are considered

'complete’.

6.4 The Example Data in this Chapter

For the purposes of illustration, the remainder of this chapter uses examples taken from a Phase
project, the Sales Ledger application introduced in chapter 5. A brief introduction to this
application will place these examples in context.

The Sales Ledger application was first started in 1990, this was one of the first applications
to be developed using the EDS CASE tool. At this time there were no logging facilities
enabled. This unfortunately means that there is no early design history available. This is not
detrimental to the examples.

This application is one of a suite of core programs for general business administration. It
integrates fully with the other programs in the suite and consequently has to 'know' about
external applications.

The 'size' of the application can be indicated by the number of entities in the repository. At
1996 these are shown in figure 6.1.



Element Type No of Items
Flow of Control Nodes 163
Data Items 283
Screens 25
Data Tables 12
Algorithms 134
Procedures 246

figure 6.1 : The 'size’ of the example application

There are presently over 5000 log entries relating to changes made to individual entities
recorded in the period January 1991 to January 1996.
There are 28 commercial installations of the application with a total of over 40 users. Many

installations are networked on networks with a 50 user capacity.

6.5 The Phase History of Change Recording Development

The methods by which change information was recorded by the Phase CASE tools altered four
times over the period of study. Each new method of recording was prompted by a lack of
rigour in the existing method, unreliable data does not result in reliable analysis. These four
methods of recording information, each one progressive, are presented in sequence. This
provides not only a justification for the final method, but provides an insight into the 'design
decisions' which were taken along the way.

In the reading of this chapter, by presenting the 'design decisions', the experience which was
learnt by me, the designer, will be passed to you, the reader. This is a practical demonstration

of the principle of 'experience passing' which is being proposed in this thesis.
6.5.1 Recording Design Changes : A First Attempt

A 'log' file was added to the EDS CASE tool in 1991. Figure 6.2 represents the structure of the
file:
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Field Description

Date The date a change was made

Time The time a change was made

Usemame The Userld of the person making the change

Entity Type Type of Entity eg Node, Screen, Data Table etc

Entity Id The unique identifier for the entity

Remark The type of change made eg Created,Modified,Deleted etc

figure 6.2 : The structure of a simple log file

Each entity editor in EDS was altered to create an entry in the log file whenever a change was

made to a repository entity. This satisfied three of the four observations made about logging

earlier in this chapter. It did not include any why information.

The method of logging changes was active from January 1991 to the end of December 1991.

This very basic form of history logging simply showed which entitics were being created or

amended and by whom.

At this early stage a significant amount of management information could be extracted. This

included :

A definitive record of when entities were changed. This helped 'debugging' by knowing

which entities had been changed 'recently' around the time that a 'bug' had been first
noticed.

An indisputable record of who changed entities. This put an end to the common 'I didn't

touch it' comments from developers.

An indication of the amount of time expended on a project which could be translated into

a cost for a project.

A high level 'activity' graph could be produced which gives a clear 'picture’ of when

changes were made. An example is given in figure 6.3.
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figure 6.3 : General activity graph for a development

This activity graph shows the number of changes (the vertical axis) made to entities on each
day (the horizontal axis). This indicates that during the period end of November / beginning of
December there was a peak of activity. This was followed by a period of no activity (due in
this instance to the Christmas holidays).
By examining a number of these activity graphs, a pattern emerges.
e A block of activity appears around the time that a new installation takes place. This
implies that as new users obtain the software, new concepts are introduced (or existing

concepts altered). In the above example, a new installation was due in the middle of

January.

* A block of heavy activity is often followed by a tailoring of activity. This is indicative
of final debugging where the rate of changes slow down. In the example, this is shown

in the first part of the graph
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The activity graphs are useful for high level analysis only. The major criticisms are :

6.5.2

It was

The lack of being able to separate out major developments from minor changes

The activity is biased towards the nature of a developer. A developer who makes a
number of small changes, testing each change as it is made will have a much higher
activity' shown than a developer who makes larger changes during the same edit session
and only saves the changes and tests as a 'whole'. In practice the actual effort expended
by the latter developer may be greater than the effort expended by the former. By
manually checking the information in a log file, it was discovered that each individual
developer would have a pattern of entries and this pattern would be consistent throughout
the year. It proved to be valuable to extract information for a single developer for a
known scope of work and present it in a similar manner to figure 6.3. This pattern could
then be used as a 'base line' when monitoring the patterns of activity for the same
developer in the future and also used for comparing the pattems for different developers

for similar scopes of work.

Recording Design Changes : Adding the "why'" Question

during January 1992 that additions where made to EDS to include information relating to

'why' entries were modified. This was done by manually creating an entry in a second data

table with a structure indicated in figure 6.4. This entry contained an identification number and

a textual description.

Field Description

RPU_Ref A unique Reference Number

Description A text field containing information relating to 'why' changes occur. This
is simple free-format notes

figure 6.4 : The structure of the 'why' table

The RPU_Ref was built on the acronym introduced to identify a 'why' entry called a Request

for Program Update (RPU). The format of an RPU_Ref was a 2 digit mnemonic representing



the application and a numeric sequence number starting at the number 1001 e.g. SL/1234 would
be the 234th entry in the 'why' table for the Sales Ledger application.
Procedures were set in place along the following concepts:
e Changes to programs should only be made for a common reason. For example, when
adding features, add them one at a time and change all entities in the repository which

relate to this new feature, before starting the next one.

e When all changes have been made, create an entry in the 'why' table containing a textual
description of the change. At this point an entry will also be made in the history log
which 'date and time stamps' the 'why' table entry.

These procedures were left operational for a period of one year. It was decided that this
would be a minimum period required to allow a 'true' picture to be formed. Three benefits, over
and above the previous benefits were observed. These were :

e The reason why an entity was changed could now be determined by scanning the log file

for a 'why reason' entry. This knowledge could be used in a manner described later in

this chapter.

e Each change of state could now be identified using the unique RPU_ref ficld in the 'why'
table.

» Developers were now required to explicitly 'finish' a development exercise. Forcing this
issue had the benefit that it removed another common developers phrase - "its about 95%

complete". If any entry appears in the 'why' table then it was complete. If no entry
appears than it was not complete.

An example of the data recorded is given in figure 6.5.

Log Table

Date Time |Userid |Entity_Type |Entity_id Remark
10/01/92(10:34 |ALAN [SCREEN ACCOUNT Item TELEX Removed
10/01/92|10:36 |ALAN |TABLE dbACCOUNT Iltem TELEX Removed
10/01/92|10:37 |[ALAN [PROCEDURE [DISPLAY_ACCOUNT Modified
10/01/92|10:42 |ALAN |PROCEDURE |MODIFY_ACCOUNT Modified
10/01/92|10:46 |ALAN |PROCEDURE |ENTER_ACCOUNT Modified
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10/01/92|10:52 |ALAN |DATA ITEM |TELEX Deleted

10/01/92|11:36 |ALAN |[RPU SL/1234 Released

Why Table

RPU_Ref |Description

SL/1234 |Remove the concept of a telex number from the customer account as this

information is no longer available.

figure 6.5 : Example Data Recorded

In practice, the data collected was not acceptable for the following reasons :

Concurrent development by more than one developer meant that entries in the log file
from two or more developers were mixed together. To search for the 'why' reason,

entries created by other developers had to be ignored.

Developers would be tempted to 'fix small bugs' at the same time that major development
was being done. This meant that the reasons why an entity, which was changed under

the 'small bug' heading, would be lost and replaced with the 'major development'
heading.

Programmers had a resistance to marking work as complete, perhaps until further testing
was completed. This meant that entries were not always created in the 'why' file at the
correct time. This meant that changes for the 'next' step in the development were often

included in the 'current’ step in the development.

Functional changes being made to programs varied dramatically in size. Some major
functional changes would take days, perhaps weeks. Others would be simple changes
taking perhaps minutes to complete. Timing became an important issue. If a major
development exercise was being performed, small changes realistically had to wait until

the 'why' entries for the major development had been completed

There was no secure method of 'policing' the data to ensure accuracy and consistency of
adherence to the day-to-day procedures. Analysis of the log files was periodically
performed manually to determine their accuracy. The development team would be a
mixture of mature skilled personnel and new junior personnel. The analysis showed that

in general, the junior members would not mix changes for different reasons as often as
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the senior members, primarily because they were trained in these procedures from the

start and also because they had smaller and more defined tasks to complete.

6.5.3 Recording Design Changes : Retiming the '""'why'' Question

Direct action was required to improve the accuracy of the data collected before any attempt
could be made to use it for extracting 'design’ information. The major issue was the problem of
concurrent development, either by different members of the development team or by a single
member working on more than one functional aspect at a time.

A feature being added to the EDS CASE tool at the start of 1993 was a "Wish List' concept,
a common feature within program development environments. This wish list would record
requests for program changes in a central data table to allow a methodical means of logging
requests and reviewing possible changes at management design meetings. The structure of the
wish list table was seen as a superset of the 'why' table previously introduced, adding fields for :

e who requested the change

e when it was requested

o the benefit that the change would bring to the use of the program

e ctc.

As this wish list was introduced, a simple addition and restructuring of the 'start-up'
sequence of EDS enforced the selection of an entry from the wish list before any changes could
be made to entities in the repository. This effectively meant that the 'why' question was asked
before any changes were being made replacing the previous system of asking the why question
after changes were made. The identifier for the 'why' question would be 'remembered' by the
CASE tool throughout the session. If no relevant entry was in the wish list, the developer
would be able to add a suitable entry before proceeding. This virtually eliminated any risk of
'cheating' caused by selecting 'any old entry' just to be allowed to make the change.

In addition, the RPU_Ref field was also added to the history log file and the 'why' identifier

recorded each time an entry was written to the log.

The following improvements were observed :



e Concurrent development could easily be accommodated as each developer could select

his/her own RPU to develop.

e It would be possible for more than one developer to work on the same RPU at the same
time (editing different entities) where, for example, a new feature being added was

sufficiently large or urgent for multiple developers to be cost effective.

e It was no longer necessary to complete an RPU before starting a new one. This meant
that small 'bug' fixes could be given their own RPU number and the changes made under

this number whilst a larger development exercise was still proceeding.

o ]t was still necessary to mark work done under an RPU as complete from a management
control point of view. This was done by changing the 'status’ of the wish list entry and
allocating a 'release number'. This meant that 'states' were given a different numbering
system for identification purposes.

Data was collected in this way until the middle of 1994 when a further check on the
accuracy was performed. The result at this time was significantly improved. The system was
less 'stressful’ to use as it was more intuitive to select and document 'reasons for change' at the
start of a session than at the end.

Other side benefits were noticed :

o Forcing programmers to document changes before they happened improved the general

efficiency of the development. It forced them to 'think through' the change before it
happened and prompted questions regarding the consequences of the change.

¢ It was now ecasily identifiable when a system was 'unstable' as it was represented by a list
of RPU's which had been started but not marked as complete. This gave reassurance and

additional control during the release of systems to users.

¢ Delegation of work to junior staff was easier as it was possible to list all the changes

relating to a specific RPU. This made it possible to 'police’ changes which were being
made.

It was this third benefit which prompted a further refinement to the data collection exercise.
This is described below.
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6.5.4 Recording Design Changes : Quality Inspection Documentation

After analysing the data in June 1994, the data being collected was about 85% accurate.
Accuracy in this case relates purely to the tagging of changes of entities to correct 'why' reasons
and was calculated by retrospectively manually checking each entry in the log file against its
'why' reason. This level of accuracy could have been regarded as sufficient but was
time-consuming to police. In order to improve the 'policing' the following refinement was
made. This refinement takes the accuracy to over 98% and is in use to the present day.

Working on the observations that :

e the system knows about every change made 'under an RPU'

e a'why' reason has been given for the RPU before changes are made

e cach application (Phase program) will have a development staff member who is
'experienced' in the application, either because he/she was part of the original
development team or has been involved with development for a period of time. This
person is referred to as the 'application supervisor' and has overall responsibility for the
quality of the application

o generally it requires 'quality staff' to create a quality software product, but being able to

use junior developers effectively without compromising quality would provide a cost

benefit.

the formation of a 'Quality Inspection Record' (QIR) was introduced. A QIR is a form
produced by the EDS CASE tool before an RPU could be marked as released. An example is
show in figure 6.6.

The QIR is designed as a mechanism for policing changes made to a program repository. It

consists of three parts :
» The information relating to the 'why' information contained in an RPU

e A list of all the entities which have changed, marked with the RPU reference. This is a
summary from the history log file

* A signature box
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Application : Sales Ledger QUALITY INSPECTION RECORD - 19/04/1996 Page No : 1
Request : 1312 Add additional contacts to the site address file
Notes : .H1.Enhancement
In order to increase the usability of the site file, three additional contacts fields
have been added. Note that these fields are not accessed by another module at this
time.
This requires utility *** USLCO31S ***
Action : JOHN
Source 1 PHIL Date 1 2071271995 Release : C.03.15
Priority H Status t C
Type Entity Action/Remark User Checked Qac
Database SLADDRSS Added  CONTACY2 PRIL
Added  CONTACT3 PHIL
Added CONTACT4 PHIL
Item CONTACT2 Entered PHIL
Modified PHIL
CONTACTS Entered PHIL
Modified PHIL
CONTACT4 Entered PHIL
Nodified PHIL
Macro BROMWSE_ADDRESS Edited File PHIL
DISPLAY_ADDRESS Edited File PHIL
ENTER_ADDRESS Edited File PHIL
MODIFY_ADDRESS Edited File PHIL
Screen ADDRESS Saved PHIL
J RPU C.03.15 Released PHIL

Authorised to Release :

QC Ssignature

figure 6.6 : Example Quality Inspection Record
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The QIR Request Information

At a time before the QIR, the 'why' information was held as unstructured text. The QIR has a

more structured format for the information which both:

e encourages the information to be entered
¢ makes 'computer' analysis of the information easier
Briefly, the information maintained is :

¢ The original request information. This is a short description, often in developers note
form summarising the changes required

» Technical notes and areas for consideration. This is a free format text note which
requires information from an 'experienced' developer to indicate potential problems and
conflicts. It is this 'experience' which it is hoped may eventually be available direct from

the Phase process itself.

» User information. This is the information which can be given to users as release notes to

inform them of the changes made. This description should be 'untechnical'.

o Source, Priority, Date Raised, Status and Action : A number of management information

fields used for presenting and analysing request information.

The QIR Change Log Information

The second part of the QIR lists all the entities which have been directly altered (or created, or
deleted) as part of this set of changes. This is pre-sorted by entity type and indicates
¢ The name of the entity

¢ The type of change made (added, modified, deleted)

¢ The name of the developer who made the change

An entry will appear on the list for every combination of these. For example, if an entity is
modified by two different developers then the names of both developers will be listed.
However if an entity is modified a number of times by the same developer then it only appears

once.

On the right hand side of the QIR are two blank columns headed
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Checked

Quality Control (QC)

These columns are used as described below.

Using the QIR

The QIR is used as follows:

When a developer (Junior or Senior) decides that an RPU is ready for release, the QIR is
printed.

The form is handed to the application supervisor (who may actually be the same

developer)

The application supervisor looks at each entry on the form and makes a judgement based
upon :

The complexity of the changes required

The ability of the person making the change
The judgement is made to either check the work done or to accept that it has been done
properly (it should already have been tested by this time). If the change to an entity is
assumed correct then the "Checked" box on the form opposite the entity should be
'ticked'. If the change is physically checked (using a visual inspection) then the box is
'initialled'.
The person checking will also be able to establish whether

Entities have been changed which do not correspond to the description
Entities have not been changed which should have been

If for any reason the person checking is not satisfied with the changes, the form will be
returned to the developer for rework. If everything is in order then it will be signed in

the "Authorised to Release" box. At this stage the RPU can be "Released". The release

number, which was allocated by the development system is then written onto the QIR
and filed.

This checking mechanism can also be policed. This policing can be done by any other

developer (not necessarily a senior member). It is policed by checking the judgement of the
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application supervisor. If it is found that changes are always assumed to be correct and as a
result errors occur, then this is easily highlighted. Consequently, if visual inspections are
always performed, especially for 'simple changes' or changes done by experienced personnel,

then this suggests overcaution (and expense).
Observations about the QIR

The QIR has been warmly appreciated by all members of development staff. In particular

¢ Senior members are :
comforted by the auditability of changes made by juniors
able to confidently delegate more work to juniors

¢ Junior members are :

comforted by the 'checking' mechanisms in areas where they feel insecure about
ability

appreciative that ‘greater responsibility' tasks are delegated to them.
As a result, the number of recorded errors reported by users fell, at the time the QIR was
introduced, from 2.3 errors a month to 0.4 errors a month on average, per application. Prior to
the introduction of the QIR both logic and consistency errors were found in about equal

proportion. After the introduction of the QIR the majority of the errors were process logic
errors with consistency errors being almost eradicated.

6.6 Retrieving and Manipulating the Data

In order to analyse the data, a utility program was written which accesses the log file in an 'easy

to navigate' fashion. Due to the nature of the data and the fact that the same information is
reported from different viewpoints, printing the data on a hardcopy device would be impractical
except for one-off purposes. The analysis tool has the following two displays.
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= MS-DOS Prompt -

Flouw of Control 1278 25,87/.94 25,8794 M HELEN

Data ltens 1907 13/81,92 13/81,92 N  PHIL

Scree 1800 11,12/91 11/12/91 H PHIL
Data Tables
Algorithnms
Procedures

| 213

ACCTRAN-STD-OPEN
ACCTRAN-STD-FPREV
CCTRAN-STD-PRNI

T -STD-ROOT

ADDRESS-STD-DISP
ADDRESS-STD-ENT

STD-PREV
E5S-STD-ROOT
ALLCATE-STD-DETL
NLLCATE-STD-DISP

figure 6.7a "Analysis tool : Component Selection”

Data Items 2249 208,8?72/93 20/872/93

Screens
Data Tables

Algorithms

Procedures

In the sales ledger. could the batch report for cash receipts be called

"Receipts batch report" and not “Payments batch r»eport" as this is
confusing.

figure 6.7b "Analysis Tool : View Descriptions"

This analysis tool allows the selection of a component type from the top left hand comer as

shown in figure 6.7a. A list of all the components of this type are then displayed in the lower
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left hand part of the screen. The appropriate component is selected with the arrow keys, as a
component is selected the top right hand area of the screen shows the different RPU/QIR
references which contains a reference to this component. This contains the start and end dates
that entries were made, the names of the development staff making the changes and an indicator
which highlights if the entries were created, modified or deleted by this routine.

Moving the cursor to the RPU/QIR reference section expands the "why" descriptions on the
lower half of the screen (figure 6.7b). These are dynamically displayed as each entry is located
in turn. An option to print the complete design history is available.

6.7 Some Example Data

For the purpose of presenting the results, selected samples from the data will be used. These
samples are not chosen because of a 'best' result but to a 'typical' result A history from each of
the state components will be included. In the representations below only a selection of the
information available is included for reasons of clarity.

In the tables below, the dates refer to the dates between which changes were made to the
entity for the given reason. The type means "C" : Created "M" : Modified "D" : Deleted.

6.7.1 Flow of Control Component

Component Dates Type |Reasons
MAINMNU-STD-MENU |25/01/92-| C |Initial Program Development
25/01/92

12/03/94-| M |Routine added for Journals. This routine used mainly for opening
14/03/94 balances and bad debt write-off

The information gathered about these type of components tended to be limited usually giving a
single entry for the creation of the routine and perhaps entries where major functionality is

added at a later stage. This makes 'sense' as these types of elements simply make menu
structures. These are possibly the least important parts of a design.
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6.7.2 Data Item Component

Component Dates Type |[Reasons
INICVALO1 19/06/95 - C |Add a "Cost Price" field, Sales Order References (Contract No, SO No, Del
19/06/85 Note No) and ten user definable fields to the sales invoice header and item
fles to maintain compatibility with the integrated Sales Order Processing
module

The information gathered about these type of components again tended to be fairly limited. By
their very nature, data items are not subject to a high degree of change. What is important is

that reasons are now "automatically" appearing as to "why" these elements were added. In the

example above the reason being for integration purposes.

6.7.3 Screen Component

Component Dates Type [Reasons
ACCOUNT 13/01/92- C |Initial Program Development
20/07/92
26/10/92- M  |Make the balance forward field readonly and the turnover field modifiable
26/10/92
27/10/92- M When setting a default nominal code, the detail code should be optional, even if
27/10/92 a detail code is required for the nominal ledger integration. This allows greater
flexibility during system start-up. The batch close routines will check this
anyway.
21/10/93- M  |Add a new discount field to the sales ledger account for prompt payment.
21/10/93
01/12/93- M | Highlight trade and prompt payment discount fields when the sales ledger is not
01/12/93 linked to the nominal ledger

The information gathered about screen components begins to build a picture of the data and
becomes almost self-documenting. In the above descriptions, only one of the changes (Dec '93)

was a 'bug fix'. All the others were enhancements.
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6.7.4 Data Table Component

Component Dates Type |Reasons

SLEDGER 21/02/92- C |Initial Program Development
24/02/92
15/12/92- M |Add a new index to the Customer Master file on the Name field. Add a ‘find’
15/12/92 command to the account screen which does a browse using this index.
21/10/93- M |Add a new discount field to the sales ledger account for prompt payment.
21/10/93
09/12/93- M |Add five more user definable fields to the account. These are used as the
09/12/93 default when raising sales invoices
21/08/95- M |Add a flag to the account maintenance page to be accessed by the Sales
21/08/95 Order Processing module and to indicate that the customer requires delivery

notes to be posted to a single invoice.

Components of a Data Table type have a lot of similarity to Screen type components. In the

example above, two of the entries (October 93 and December 93) are identical. They are, in

fact, the same RPU. This makes logical sense as in the above example the screen component is

based on this particular Data Table with a result that where entries are made to the table they

are usually added to the screen. This is not always the case as in the entry August 95, here the
new field added to the table is accessed only from a different area.

6.7.5 Algorithm Component

Component Dates Type |Reasons
CLOSE_INVOICE 29/01/92- C |Initial Program Development
16/07/92
26/10/92- M Closing a Sales Invoice Batch. Even if the stock control posting is
26/10/92 set to "N", the sales invoice details should still be posted to stock if
the path is set up and the identity exists.
01/04/93- M [Tidy up batch close routines - if posting to a period other than the
01/04/93 current period, update the current balance and turnover but not the
invoices or payments this period.
10/05/93- M |Closing the SL invoice batch; if the Sales Analysis path has been
10/05/93 set up the program assumes that the Nominal Ledger path has
been set up and the databases opened.
15/07/93- M  |Implement Prompt Payment Discount. Also allow entry of discount
15/07/93 amount on the sales invoice items (i.e. override the percentage
calculation).
05/08/93- M Change posting from invoice batch routine to Sales Analysis. Field
05/08/93 in SATRANS have been renamed.
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F.‘.omponem Dates Type |Reasons
29/09/93- M Post Sales Invoice value to Stock Audit Trail. Post cost price to
29/09/93 Sales Analysis
05/10/93- M Need to post the Product Group to Sales Analysis when closing a
05/10/93 sales invoice batch.
05/10/93- M Post the Period Number to Sales Analysis when closing a sales
05/10/93 invoice batch.
25/07/94- M |Batch close always updates the turnover figure. It should only be
25/07/94 updated if posting to the current year.
04/08/94- M |The invoice batch close routine should take into account the
04/08/94 Summary flags now maintained in the Nominal Ledger for VAT etc.
14/12/94- M |Allocate transaction numbers from the internal counter in globals
14/12/94 instead of adding 1 to the last transaction in the file as this can

cause problems in a multiuser scenario.

07/04/95- M | The Sales Invoice batch close routine does not post a Cost Price
07/04/95 if the invoice item does not have stock identity. It should post the
standard price from the stock master record.

12/05/95- M Post the Sales Invoice date to the stock control record and not the

12/05/95 current date.

19/06/95 - M |Add a "Cost Price" field, Sales Order References (Contract No,

19/06/95 SO No, Del Note No) and ten user definable fields to the sales
invoice header and item files to maintain compatibility with the
integrated Sales Order Processing module

11/08/95- M | Add automatic logging of changes to system parameters and batch

11/08/95 close routines.

02/11/95- M |Add the Sales Order Section number to the Sales invoice item file

02/11/95 and implement a new Invoice print routine which sorts the items on
this field.

2112/95- M |When closing batches, validate the period number to stop ‘wild'

2112/95 numbers from being entered.

21/12/95- M  |Want the period number to appear on all batch reports

2112/95

These types of components attract the most useful information from the history log. In the
above example all changes made to a central "batch close" routine are listed. Some are bug
fixes, others are enhancements. What is highlighted here are peculiarities which may not be
easily understood from examining source code directly.
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6.7.6 Procedure Component

Component Dates Type |Reasons
STATEMENT_CREDIT 15/11/93- C |Can we have an option in the Sales Ledger which prints
15/11/93 statements for all customers with a credit balance.

Procedures by their nature will not attract a lot of modifications. Procedures are simply

convenient ways of linking Screens, Data Tables and Algorithms. All the modification tend to

be done at this lower level.

6.8 Using the results to transfer 'experience’

The remainder of this chapter describes how the data presented above is used as experience.
The aim is to transfer the knowledge which is gained by a developer when developing an
application to a developer who is subsequently modifying the application. The reason for
transferring this data is to provide the developer with enough information that he/she can
modify the program without causing consequential damage.

6.8.1 A Worked Example

This is best explained with an example. The example chosen is the algorithm taken from the
sales ledger called VIEW_ACCTRAN. There are two questions that can be asked :
e What is this routine meant to do?

e Ifitis changed, what are the possible consequences ?

Using the information extracted from the Phase repository, these questions can be answered
(albeit not necessarily completely).
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The history log attached to this algorithm provides the following information :

Component Dates Type |Reasons

VIEW_ACCTRAN |23/06/94- C |Store each invoice printed to a file, referenced by invoice number, and be able
23/06/94 to view the invoice from the account transaction browse (SL/1281)

03/11/94- M |When using the view facility of a invoice, put the screen into condensed mode
03/11/94 (SL/1292)

29/11/94- M |Add the option to print archived invoiced (presently only allowed to view them)
02/12/94 (SL/1293)

The first entry in the log explains why the algorithm exists in the first place : To view an
invoice which had previously been printed. The second two entries provide further
information, the screen is in condensed mode and that there is an option to print.

For further information, it is possible to check which other entities in the repository were
affected at the time the algorithm was created or modified.

SL/1281
Entity Type Entity Remark
Screen LSETUP Modified
Algorithm DISPLAY_SYSPARM Modified
MODIFY_SYSPARM Modified
PRINT_INVOICE Modified
VIEW_ACCTRAN Modified
Node ACCTRAN-STD-VIEW Created
Procedure ACCTRAN_VIEW Created
Data Item INVPATH Added
Data Table SLGLOBAL Modified

This tells us that a data item (called INVPATH) was added to the data table (SLGLOBAL)
and is maintained via the algorithms DISPLAY_SYSPARM and MODIFY_SYSPARM using
the screen LSETUP. (This table, screen and these algorithms refer to the 'System Control' file
containing all the configuration parameters of a module). The data-dictionary remark for this
data item tells us that this item refers to a directory path where invoices are to be stored. The
only other routine affected is the PRINT_INVOICE algorithm. This is the routine which
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creates a copy of the invoice, in the named directory, whenever the invoice is physically
printed.

Checking the log for the second alteration provides the following information :

SL/1292
Entity Type Entity Remark
Algorithm VIEW_ACCTRAN Modified

This tells us that no other entity was affected by changing the screen mode. This third
change is listed below.

SL/1293

Entity Type Entity Remark

Algorithm PRINT_ACCTRAN Modified
VIEW_ACCTRAN Modified

Node ACCTRAN-STD-PRNT Created

Procedure ACCTRAN_PRINT Created

This tells us that the 'Print' option is actually contained in a separate procedurec with a
separate algorithm. The VIEW_ACCTRAN macro does not actually print the invoice but must
set a pointer to the invoice viewed which is used by the print routine.

From this information we now have an understanding of the functionality of this routine,
and we also know that changing this routine will not affect any other part of the program. This

prepares the developer for making any changes to the routine and will provide clarity when
reading and amending the algorithm code.

6.9 Conclusion

This chapter has described an implementation strategy for collecting information relating to
changes made to a program developed using one of the Phase CASE tools. The information
collected is simple : what has changed, and why has it changed.
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An analysis tool has been designed for use by developers who are familiar with both the
application domain and the Phase paradigm. The information presented represents the history
of the development of a program, or components of a program and contains many of the
decisions made by previous developers. This information is extremely useful when modifying
or maintaining parts of a program, both in helping with an understanding of the construction of

an application and also the implications and consequences of change.

This chapter and the previous chapter have described the Phase paradigm, the functionality
of the CASE tools required to develop applications using this technique and examples of how
the information collected by the system can be passed on and used by developers. The next
chapter provides examples of studies based upon the use of the Phase paradigm in a commercial
environment. This provides an indication of how resilient applications developed in this way

are to the detrimental effects of changing mature programs.
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Chapter 7

The Phase Resistance to Change?

7.1 Introduction : How does a Phase program perform ?

The purpose of this chapter is to provide an answer to the question:

"How does the Phase paradigm score, in relation to the consequence of changes, when

applications which are developed using the technique are subject to change?".

To provide a tangible measure of success, two key measures have been monitored. These are :

e Time taken to complete the change, measured in Programmer Hours (PH)
e Number of reported errors in the system after the time of 'release’

The experiments used in this analysis are not laboratory exercises but 'real' examples taken from
applications developed in a commercial environment. The advantage of using these real
examples is that they reflect problems of a significant complexity and funding was available to
provide solutions to these problems. The disadvantage is that it is difficult to provide a direct
comparison of the consequence of change of a single system developed using different
methodologies.

Five examples are included in this chapter, three concemed with technological changes and

two concemed with major changes in user requirements. The conclusion to this chapter
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includes an analysis of the contribution of the various specific elements of the Phase paradigm
to its overall success in resilience to the effects of change.
The examples are :
e Technological Change
Change of target language to the 'next generation' of the compiler
Change of target language to a different platform
Change from a procedural language to an event driven language
e User Requirements Change

Adding significant enhancements to a mature software program

Maintenance of software by non-original team members

7.2 Change of target language to the 'next generation' of the compiler

The software produced by EDS used a target language compiled by a 1987 version of a
compiler. This compiler was replaced by the 'owners' and became unsupported in 1992.
Dispite this, due to the effort of the development team on the functionality of Elite programs,
this target language was still used up to the first quarter of 1995. It was the limitations of poor
memory management intrinsic to this technology which placed a practical limit on the ever
increasing functionality of the programs.

The successor to this target language compiler was not classed as 'backward compatible'. It
had a basic similarity in syntax to its predecessor however it had significant differences in the
way that programs could be structured in terms of information hiding capabilities. For
comparison, the differences were similar to the relationship between a Pascal program and a
Modula-2 program.

In 1995, the first real test was applied to the Phase Paradigm, to ‘upgrade' all Elite modules
to the new compiler with the minimum of effort. A 1 month exercise was scheduled to learn’

about the new compiler and highlight the differences. This produced the following results.
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After a period of initial testing, each module was moved to the new compiler.
following table provides statistics for the 10 major modules.

The existing syntax of all application code definitions could be regenerated to the new

target language by programming direct translation 'rules' into the code generator with few

exceptions.

Manual changes to application code were minimal and due completely to 'bad

programming style' of the algorithm definitions

A number of 'third party program libraries' had to be replaced and the functionality of

these routines recoded either 'by hand' or by finding alternative libraries

The Kemel routine required only minimal changes to take advantage of improved

memory configurations.

No changes were required to the repository specification

Module Complexity Factor | Time for Errors
Completion |Reported
SL : Sales Ledger 1 9 PH 1
PL : Purchase Ledger 1 7.5 PH 2
INL : Nominal Ledger 163 6.5 PH 0
PY : Payroll 1.7 10.2 PH 1
SO : Sales Order Processing 1.1 8.5 PH 2
PO : Purchase Order Processing 14 13.5 PH 0
ST : Stock Control 23 7.5 PH 1
SA : Sales Analysis 04 9.5 PH 0
PA : Purchase Analysis 0.3 7.5 PH 0
JC : Job Costing 2:1 12 PH 1

Complexity Factor

The

The Complexity Factor in the above table is a metric calculated to provide a guide for

comparing modules in terms of complexity, using the reference of the Sales Ledger, having a
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complexity of 1. This complexity factor is a calculation based on the number and type of
algorithm entries in the repository. Algorithm entries can be split into two types :
e Type Al. These relate to the standard Display, Enter, Modify, Delete, Browse procedures
as detailed in section 5.3.2

e Type A2. These relate to the non-standard routines eg Batch Close, also described in
section 5.3.2.

Monitoring the effort taken to implement, test and perform maintenance on procedures using
these algorithms over a period of a year provides a rule of thumb which estimates the effort
required for a procedure with a type A2 algorithm to be 5 times greater than the effort required
for a procedure with a type Al algorithm.

The complexity factor for a module is calculated by the formula :

number of procedures using type A1 algorithms + (5 x the number of procedures using type A2 algorithms)

base factor for the sales ledger

The base factor for the Sales Ledger is (using the 'size' factors given in Chapter 6) :
103 + (5 * 31) =258

Example

The complexity factor for the Nominal Ledger using Al1= 120 and A2 =43 is :
120+ (5 * 42)
258
This equates to 1.3.

This figure does not have any real scientific meaning, however, it does provide a means of
comparing modules and provides an indication that the Nominal Ledger is about 30% more
complex than the Sales Ledger. The results produced by this simplistic formula are similar to
intuitive factors placed on the complexity of the above modules by programmers who are
familiar with the modules.

118



Time Taken for Completion

The time taken for completion was measured in Programmer Hours. These were 'clock hours'
recorded on manual timesheets to include the following :

* Execute the automatic translation routines
e Manually correct any syntax errors reported by the new compiler

¢ Recode routines which relied on 'old compiler technology' (regarded as bad practice)

e Relink all object files
e Execute a test set of data for all functions
¢ Execute cach non-standard algorithm using 'real' data

Figure 7.1 plots the relationship between complexity and programmer hours.
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figure 7.1 : Relationship between complexity factor and time for completion

119



It can be seen that there was a minimum period of 7.5 programmer hours per module. This

represented the time taken mainly to execute the test set of data for all functions.

There is no direct relationship suggested between the complexity of a module and the

time taken to implement the module in the new target language.

Errors Reported

The number of errors reported referred to errors which caused the program to terminate
abnommally after the program was released to users. These are errors which 'slipped through'
the test data and test procedure. All the errors reported were due to 'bad programming style'
where programmers had not followed the standard code of practice when coding unstandard
algorithms. The relationship between the complexity factor and the number of errors reported

is shown in figure 7.2.
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figure 7.2 : Relationship between complexity factor and number of errors reported

No direct relationship was found between the number of errors reported and the

complexity of the module.
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Summary

From the data given in the above experiments it would suggest that changing technology to a

compiler of a similar structure is relatively easy to perform for programs written using the

Phase paradigm.

7.3 Change of target language to a different platform

The only time that software developed using the Phase paradigm has been changed to a
different platform was when FDS, a Pascal system on a mini computer, was rewritten as EDS, a

Clipper system on PC networks in 1990.

Unlike the previous exercise, the change in technology in this example was forced due to a
redundancy of the support of hardware and associated Operating System platform. The
commercial viability of proprietary mini computers was diminishing with the advent of the low
cost Personal Computer networks which were increasing in power at an alarming rate.

The 'conversion' exercise involved the following :

¢ Recoding of the Kemel with identical functionality in the new language

e Complete design of a 'Screen Editor' to replace the 'inbuilt' forms editor of the mini

computer

e Replacement of the true relational database structure with a non relational 'open' database
system

e Recoding of the algorithm syntax to have a closer resemblance to the different target
language structure

e Complete redesign of the code generation routines

No 'computer performed' translations were attempted as even basic file transfer between the

platforms was impractical, all the functions of EDS were coded 'by hand'.

The Timetable

The complete conversion of FDS to EDS can be divided into two parts. FDS (and EDS) arc

both programs which are 'written in themsclves'. They can be considered as simply an
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application (with the functionality and purpose of a CASE tool) which is implemented using
the appropriate Kemel and Support Library.

To recode the Kemel and Support Library took approximately 210 Programmer Hours (over
a 3 month period). Much of this time however was experimental and included the leaming
curve of a new language. It also included the creation of a screen editor as the intrinsic 'forms'
editor available with the mini computer was not available with the PC network.

Developing the application (EDS) using the new support library and Kemel took
approximately 120 Programmer Hours (over a 2 month period). This figure eventually rose to

430 Programmer Hours (over a 4 year period) as a number of enhancements to the system were

added.
Summary

The example above is indicative of a 'worst case' scenario, where no automatic re-use of
information is possible due to technological differences. The examples above also involved an
application with a very high complexity factor of 9.2 (as defined earlier in this chapter)
compared with the 'normal’ range of complexity factors found with the previous examples. This
is due to the example being a CASE tool and not 'standard' IBIS software. In my opinion the

time taken to perform this transition is intuitively low compared with time taken in the past to
migrate software 'from scratch'.

7.4 Change from a procedural language to an event driven language

During the early 1990's, Microsoft introduced the Windows Operating System for the PC
environment. This provided a platform for Graphical User Interfaces (GUI) and event-driven
programming. Dispite an initial reluctance, the commercial market became dominated with
"Windows Software" around 1995, the use of MSDOS programs diminishing.

Programming with the GUI environment had two significant problems :

e The use of 'forms' and screens had to conform to a defacto Windows standard

e Programs had an 'event driven' look and feel utilising the concurrent nature of the

operating system
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Replacement of screens to "Windows Standards'

A three month experiment was performed in the summer of 1996. The purpose of this
experiment was to replace the standard user interface of Elite programs to the defacto
(Microsoft) Windows standard. A constraint was added that no application code should be
altered.

This was possible due to the use of the Support Library for accessing the User Interface.
From an application code view point single function calls placed 'screen definitions' onto the
physical VDU. These were either 'detail screens' or 'browse screens' (as described in chapter 5)
. Menus and command options were part of the 'Kemel' routine and already separate from the
application code. The screen editor in EDS was modified to handle the graphics capabilities of
windows screens.

The experiment concluded that a transformation to a GUI was possible without changing
any application code and restricting all changes to the Kemel and the Support Library. The
level to which users accept the system as 'Windows Software' however has not been tested at
this time.

Replacement of Flow of Control from Procedural to Event Driven

No attempt has been made to alter applications to a true event driven environment due mainly
to the large cost implications. There is a lack of a 'ready made' suitable development tool and
the resources available for research and experimentation in the commercial organisation are
limited. It is predicted however that changing to an event driven paradigm would not be a
significant problem (at least no more significant that the conversion from FDS to EDS). The
remainder of this section describes how it would be attempted.

In Phase terminology, a collection of related flow of control nodes is called a SubModule.
For nodes to be a SubModule they must be a hierarchically related subtree in the main flow of
control structure and all perform 'actions' on a common data table or screen. For example, the
nodes to Display, Enter, Modify and Delete records in the customer file are a SubModule. This
has a very close relationship to an Event Driven (or Object Oriented) paradigm. A Submodule
would become an OO Object and each node would become an OO method acting on the object.
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An Example

This can be clarified with the aid of an example (simplified) :
In Phase assume we have the table DBACCOUNT with the following structure :

Field Description
AC_CODE Account Code
AC_NAME Account Name

AC BALANCE Current Balance
AC TURNOVER |Value of Sales Invoices in year ex VAT
AC VAT NO Account VAT number

In Phase, manipulation of data in this table would be represented by a flow of control structure :

Browse Account
List
[
Display
Account

l |
Enter Modify Delete

figure 7.3 : Standard Phase SubModule

In Object Oriented terminology, this would be replaced with the Object Definition :

Define Object Account;

export methods Browse_Account ,
Display_Account,
Enter_Account,
Modify_Account,
Delete_Account,

export structure Ac_code,
Ac_name,
Ac_balance,
Ac_turnover,
Ac_VAT_Number
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All the information required to automatically generate these Object definitions is held within
the Phase repository structure.

Summary

As described above, there is a high degree of similarity between the structure described by the
Phase paradigm and the structure inherent in the Object Oriented paradigm. The discussions
above indicate that implementing a Phase program in an event driven manner would be

relatively straight forward.

7.5 Adding significant enhancements to a mature software program

The ‘core’ Elite applications (as previously defined) were first released in 1992. At this point
they were fully operational and could be considered as 'Mature'. In the period from July 1992
to July 1996, the number of changes made (where a 'change' in this instance relates to a set of
related entity changes or a 'state' in chapter 4) is calculated at 1435.

This number can be broken down into a number of categories :

Category No of Changes % of Total |Average Time to
Complete
Major Enhancements 367 25.6% 15.75 PH
Minor Enhancements 612 42.6% 4 PH
Cosmetic Enhancements 272 19.0% 0.5 PH
'Bugs' as a result of the 147 10.2% 25PH
original development
"Bugs' introduced during 37 2.6% 0.75 PH
maturity

e Major Enhancements relatc to user requests which provide additional 'goals' for the
software over and above the requirements of the software at the time of initial release.
This is similar to the second case study example given in chapter 4. Typically, this
involved adding or changing more than 20 entities in the repository.

125



e Minor Enhancements relate to user requests which can be considered as 'refined'

requirements. The number of entities changed in the repository is between 5 and 20.

e Cosmetic Enhancements relate to user requests that do not change the functionality of the

system, but simply the layout of screens or reports. The number of entities changed in

the repository is less than 10.

e 'Bugs' as a result of initial development relate to errors found in the software which were
present (although undetected) in the system at the time of release. The number of entities
changed in the repository is usually low.

e 'Bugs' introduced during maturity relate to errors found in the software which were

introduced after the initial release, usually as a consequence of introducing

enhancements.

Summary

Programs developed using the Phase paradigm have been significantly modified after the initial
release. Intuitively the number of errors introduced into the system seem low compared with
historical developments of non-Phase applications of a similar (or smaller) size. The average

time taken to complete these changes is also intuitively low.

7.6 Maintenance of software by non-original team members

Of the 1435 changes made to the programs presented above, 72% of the changes were made by
programmers who were not involved in the original development of the modules. This was due
both to staff tumover and the reorganisation of the development team structure. As a general
point, it was a policy decision to ‘move developers' between modules after a period of 6
months. This prevented any one individual from having 'ownership' of a piece of software

which, from previous experience, ensured that any 'bad' programming style became apparent.
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Summary

Programs developed using the Phase paradigm have been significantly maintained by
programmers who were not involved with the original development. The statistics have been
described in section 7.5 above and it has been shown that the number of errors introduced has

not been significant.

7.7 Dynamic Configuration at RunTime

During 1994, the advantage of the Support Library for all access to the repository was utilised
to its fullest potential. It was realised that as high a level as 80% of a users specific
requirements was based around 'jargon' and 'terminology’. As an example, in simple terms, the
functions of a commercial business can be summarised as follows :

e Generate Sales Leads from Customers

Log a Sales Order

Place Purchase Orders on Suppliers for '"Raw Materials' or Services

Provide a product or service to your customer

Send an Invoice & Receive Payment

e Provide Support

Whilst the general functionality is similar, the terminology and specific requirements are
not. Customer Orders may be called : Customer Orders, Sales Orders or Jobs. Orders may be
stock related, made to order or manufactured.

This led to the observation that whilst the functionality of the algorithms provided a
'standard set of functions' and rarely required alteration; menu labels, screens and reports
required a high level of alteration to suite particular users. As previously discussed, all these
aspects of the User Interface were driven though single calls to the Support Library.

By altering the Support Library routines and providing a 'Run Time' subset of the repository
containing the Screen, Browse and Menu Option Labels it became possible to alter these

entities for particular installations without changing any of the original repository entities. By
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creating a run-time definition only for entities which were actually changed (or customised),

program updates could easily be accommodated.

Summary

A large number of configurations of a single Phase module can be accommodated using data
driven techniques without altering the base programs. This has the effect of removing a
significant load from the development teams as well as reducing the errors introduced by the

development activity.

7.8 Conclusion : Why is the Phase method a good method ?

From the above exercises, it can be concluded that Phase programs can be modified and
changed without extreme difficulty. The remainder of this chapter provides a closer

examination of the following question :

Why is a Phase program reasonably resilient to the detrimental effects of change ?

A focus group of developers using the Phase method was formed in order to establish a set
of issues which contributed to the success of the Phase method in being resilient to the

detrimental cffects of change. The issues raised are listed below and presented in order of

decreasing importance.

7.8.1 Run Time configuration of the User Interface

Configuring the User Interface at Run Time and external to a program, to reflect specific user
terminology and requirements removes a significant source of complexity from a program. A
major source of change is when software has to satisfy the needs of multiple users, each with

their own particular requirements. Using data-driven techniques each user can have a different

configuration of the same program.
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7.8.2 High Coherence of Procedures

Procedures in a Phase program must be completely independent of any other procedure. The

only parameter passing mechanism is a 'current' entry in a data table. Changes to procedures

can be made in total isolation from any other procedure.

7.8.3 Use of Prototype Software

It has been observed that in order to achieve a reasonably stable requirement, a user needs
approximately 3 iterations of refinement. If prototypes are not done, these iterations are

(expensive) development exercises. Prototypes are very inexpensive to achieve using the Phase

paradigm and can be ‘thrown away".

7.8.4 Ability to view the 'history' of an entity within the repository

The advantage of knowing why entities have a particular set of attributes is significantly more
beneficial than simply knowing what the attributes are. This transfers vital knowledge between
developers and is used to provide better information, allowing more informed design decisions

to be made during maintenance. It also aids the development of the conceptual model as
described earlier in this document.

7.8.5 Printing and checking of the Quality Inspection Record

The QIR enforces discipline on developers to both complete their task and check that what they
have changed within the scope of the requirement for the change.

7.8.6 Easy availability of documentation

Easy access to documentation provides vital information to developers quickly. This accurate

information reduces the 'guesswork' and subsequent errors.

7.8.7 Mental Model of an application represented by the Flow of Control
Tree Structure

The ability to present the 'mental model' of a system to developers provides a high 'comfort'
factor when trying to understand the functionality of a new module or program.
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7.8.8 Use of automatic code generation for repetitive tasks

Automatic generation of code guarantees consistent programs. This also leaves much more

time for programmers to concentrate on the more complex and non-autogenerated functions.

7.8.9 Automatic Hyperlinking of Entities

The automatic hyperlinking of entities within the repository provides an automatic method of
knowing which entities will be affected by changes

7.9 Summary

This chapter has shown that programs developed using the Phase paradigm are more resilient to
the detrimental effects of change than similar programs developed historically using more
traditional methods by the example software development company. The main contributing
factors have also been discussed.
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Chapter 8

An Assessment of Phase

8.1 Introduction

This chapter examines the Phase paradigm in relation to its original goals and objectives.
For analysis purposes, the Phase paradigm can be assessed for its effectiveness as

e A requirements analysis tool

e A specification representation system

e A software designers productivity tool

e A software project management system

The ultimate goal is the resilience of a Phase project to the impact of changing requirements.
This chapter includes data, statistics and observations taken from Phase projects over a five year
period and assesses its effectiveness in relation to change. The attitude of software developers
towards change has been related directly to the tools which are available to them. The success
of the Phase paradigm in achieving its ultimate 'resilience to change' goal therefore has a direct

correlation with the attitude of the developers who use it.

Each section in this chapter is introduced with the source of the evaluation criteria which is

taken from literature where appropriate.
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8.2 Phase as a Requirements Analysis Tool

Phases uses a prototyping approach as an aid to requirements analysis. Objectives of a
prototyping mechanism are given in [Floyd83] and it is these objectives that will be used as a
'benchmark' for comparing the effectiveness of the Phase prototyping propertics. In her
analysis of 'ideal' prototyping features, Floyd proposes the following major headings:

» Early Availability

¢ Demonstratable/Executable

¢ Construction

¢ Commitment to Target System
¢ Documentation

e Automated Program Generation

e Further Use

8.2.1 Early Availability

To allow maximum effectiveness, a prototype must be available as soon as possible after the
initial systems analysis has taken place. This provides maximum enthusiasm for a system as
users are provided with feedback at an early time. This helps avoid the problems of users
'forgetting what they have said' which happens in the time between the initial analysis phase
and their feedback.

In the Phase system, due to its construction (see below) a prototype is easy to prepare. A
complete prototype can be created for a 'typical' project in a single day. At most, users
involved in a Phase development will expect to get feedback within 1 week.

8.2.2 Demonstratable/Executable

The prototype review is a critical part of any prototyping strategy. For maximum effectiveness

the prototype should execute in such a way that users can get a true 'feel' for the software before
it is developed.
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In the Phase system the prototype specification is executed by interpreting the high level
prototyping instructions. These instructions will re-create menus, options, screens and prompts

in an identical manner to the target program. Delay loops can be incorporated to give the
system a 'working feel'.

8.2.3 Construction

The construction of a Phase prototype is described in Chapter 4. To summarise, the structure of
the software is created by using a simple tool to create a data-driven directed graph. This graph
corresponds to menu options and command options. A simple prototype specification language
which consists of only four commands links the structure to the screen and report entities in the
specification. The screen painter and report defining tools complete the construction of the
prototype.

A Phase prototype is therefore very easy to construct.

8.2.4 Commitment to Target System

A prototype should be committed to its target system. This means that there should be a very
close relationship between the prototype (or execution of the prototype) and the execution of
the target system. This applies both to the look and executable 'feel' of the software.

The construction of the Phase prototype is such that the entities of the user interface are
stored in the repository. These entities that are used during the execution of the prototype for
analysis and are also used for the automatic creation of the program, either directly (as in code
generation) or indirectly (used during the run-time execution of the program)

The prototype in the Phase system is very committed to the target system. This however
leads to a major disadvantage which is discussed later in this chapter.

8.2.5 Documentation

As well as an executable prototype some traditional forms of documentation are also desirable.
This includes flow diagrams, data structure diagrams, reference and technical manuals.

The Phase system has a number of automatic documentation tools which have been

described in chapter 4. These are summarised as :
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Flow of Control Node Tree Structure Diagram. An automatically produced pictorial
representation of the structure of the menus and options within a software product. This
can be printed at various levels of abstraction, from a single A4 sheet where each 'node’
is simply numbered to the level where each node automatically prints out the
corresponding screens. In the later case, the full diagram for a typical module, showing
all screen activity at every node can exist as a 14 metre by 3 metre chart. (Automatically

split into A4 pages).

Database Definition Charts. Standard reference manuals detailing database structurcs,

indexes and relationships.

Screen Definition Technical Reference. A programmers reference for the information

and structure of screens defined using the screen painter.

Module Technical Reference Manual. This is a hardcopy document which displays
screens and options combined with notes in a ‘user oriented language' which can be used
for reference. This information is also available as an on-line context sensitive help

within the run-time versions of the finished products.

User Tutorial Manuals. These are 'how to do it' guides which contain text and links to

appropriate screens.

Hard Copy Prototype Manual. This is a 'flat' hyperlink structure document which is
highly cross-referenced automatically between pages. This is ideal for recording notes

on the prototype as it is being executed to users.

The major advantage to all of these documentation forms is the close integration to the

repository. Where elements are changed in the repository to alter functionality of a program,

the 'documentation’' can be reprinted without further amendment.

8.2.6 Automated Program Generation

Automated program generation is desirable as a feature which should be available in all

prototyping systems. The prototype is a specification of the system which, if it has the
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properties of commitment to target and is sound in structure, should have the capability of
using this information as an input into a code generator.

The Phase system uses automatic code generation at two levels. The first uses the
information contained within each screen definition to create fast efficient target code for all
screen manipulation. The second uses the information contained in the algorithmic code
specification to combine with the other entities in the repository to produce software in its
target language. The definitions of these translations are maintained within the system. This

allows different target languages to be used from the same specification.
8.2.7 Further Use

The information contained within a prototype specification system should have further use.
This has been implied in many of the previous headings in this chapter. Many of the entities
are reused as part of the automatic code generation, others are used at run-time, accessed within
the program libraries for activities such as flow of control, security etc.

The only element in a specification which does not have some re-use is the small

prototyping instruction set which is used solely during the execution of the prototype and
automatic preparation of the documentation.

8.2.8 Summary

When compared with the objectives of Floyd it has been shown that the Phase paradigm is
effective as a requirements analysis tool. Whilst this thesis is not concemed directly with the
analysis mcthods, what has been provided is a mechanism for rapid prototyping which
generically is a recognised method for helping with analysis. It also provides a mechanism for
recording the results of the analysis in a structured and reusable manner.

8.3 Phase as a Specification Representation System

Although there are no standard evaluation criteria for a specification, several guidelines,
introduced in the 1970's identify some important criteria for the effectiveness of any

specification representation scheme. Pamas [Pamas72] stated that the specification scheme

135



must provide to both the intended user and the implementer all the information needed by cach,
but nothing more (i.c. information hiding). He also asserted that the specification must be
formal so that it can conceivably be machine tested, and it must 'discuss the program in the
terms used by the user and implementer alike' (i.e. not some abstract formalism). Liskov and

Zilles extended the criteria as follows [Liskov75].

e Formality : It should be written in a notation that is mathematically sound. This is a

mandatory criterion.
e Constructability : One should be able to construct specifications without excess difficulty

e Comprehensibility : A trained person should be able to reconstruct the concept by
reading the specification.

e Minimality : The specification should contain the interesting properties of the concept

and nothing more.

e Wide range of applicability : The technique should be able to describe a large number of
concept classes easily.
e Scaleability : The technique should be applicable to applications regardless of size.

The Phase system will be assessed in relation to these criteria. In addition, it will be
demonstrated how the Phase system is scaleable and can be applied to applications of a

significant size.
8.3.1 Formality

The Phase method is not considered as a formal method [Liskov75)] and therefore it is
inappropriate to judge it on the basis of being mathematically sound. It has been tested and
demonstrated to produce reliable and consistent programs and therefore satisfies the underlying

principle that Liskov and Zilles were trying to achieve - that it can produce sound programs.
8.3.2 Constructability

Constructability is the ability to construct specifications without excess difficulty. There are
two ways in which this can be measured.

e The time taken to specify a concept
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e The number of times a concept specification is changed.

Time Taken

The time taken to specify a concept is influenced by a number of factors including

» The 'size' or 'scope’ of the concept
e The complexity of the concept
o The skill of the system designers

It is therefore very difficult to have a suitable single metric for measurement. In general
however observations and studies have been made regarding the times taken to construct
specifications. A typical ‘concept’ with a four to six data table scope takes between 6 - 10 hours
to develop. This is not dissimilar to non-Phase specifications however it has been observed that

Phase specifications can be created by less-experienced junior personnel that can otherwise be
expected.

Number of Specification Changes

The number of times a specification is changed in this section relates to the changes required to
specify a 'stable' concept, not changes which are due to technological or user requirement
changes. The number of times a specification in a Phase system is changed is very easy to
identify due to the entity logging functions contained within the Phase editors.

Statistics have been taken and an average number of changes computed for each type of
entity within the Phase repository. These are listed in the table below.

Entity Type Average number of
Changes Made

Node 13
Procedure 0.2
Screen 34
Data Item 0.1
Data Table 153
Algorithm 4.1
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The 'simple’ entities (Procedures and Data Items) are very rarely altered after their initial
definition. Screens and Algorithms are edited on average between 3 and 4 times after initial
definition, these entities are more complex. Upon further investigation, screen entities are
changed mainly for cosmetic reasons, algorithms for further refinement.

In general the number of 'attempts' required to specify a requirement concept correctly is

minimal.

8.3.3 Comprehensibility

Comprehensibility requires that a trained person be able to reconstruct the concept by 'reading'
the specification. In Phase, the conceptual model in the repository is viewed as a statement of
the problem and its solution, it should be 'close' to the designers mental models. Thus
Comprehensibility can be demonstrated if it can be shown that a designer who understands the
problems being addressed (i.c. domain knowledge) and the specification language (i.c. the
Phase system) has little difficulty in creating and revising specifications.

A measure of comprehensibility can be found in the relative ease that designers have in
modifying programs that they did not create initially. This can be monitored easily in the
Phase system due to the automatic logging of entity changes.

For a 'typical' program a study was made relating the number of changes made to entities
after they had first been released. It was observed that over 75% of all entities had changed in
the five year period after the first release. Of these over 62% were changed by a developer who
was not involved with the initial development. Some algorithms had changed up to 14 different
times over the same period by up to 6 different developers. It was also possible to identify the
number of changes made for any one requirements change, the average number of changes for
algorithms (the significant entity) still remained at an average of 3.2 changes.

This data shows that the Phase requirements specifications are comprehensible.

8.3.4 Minimality

Liskov and Zilles defined minimality in the sense that Pamas defined information hiding. The
specification should provide only the necessary information and nothing more. In the 1970's

the concepts of interest were data abstractions. In the Phase environment the concepts to be
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specified are computer supported responses to a need. Nevertheless, the goal remains the same

: to have the implementer specify the interesting properties of the concept and nothing more.

Phase addresses this challenge by providing:

e a holistic repository in which all concepts are shared within an application
¢ a specification command language with very few but very powerful commands

e loosely coupled but highly cohesive 'submodules' of information

e a system style that augments the specification of the interesting propertics with the

implicit and default properties expected in the implementation.

8.3.5 Wide Range of Applicability

One desirable property of a representation scheme is that it can apply to a wide range of
concepts. Phase has been optimised for interactive information systems, but there is nothing in
its architecture that restricts it to this class of application. The basic design recognises that
requirements engineering is domain oriented, and no one environment (or specification
language) will suffice for all domains. Phase uses application-class knowledge to tailor the
system to a particular class of needs, and the architecture permits the introduction of system
styles for new domains (¢.g. real-time and embedded systems).

Even though Phase may be employed with multiple application classes, it has only been
primarily demonstrated in the domain of IBIS software. This domain, however, is itself quite
broad; it includes standard Order Processing type applications; Automatic Data Collection
applications (Shop floor time recording, Aluminium Can recycling scale interfacing).

In addition to IBIS software both the Phase CASE tools (FDS and EDS) have been
developed successfully using the Phase method. The application domain of a CASE tool is
significantly different from the application domains associated with IBIS software. The Phase
CASE tools are more 'database oriented' however than the more traditional concept of a CASE
tool which tends to be highly graphical [Junk88].
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8.3.6 Scaleability

To demonstrate the scale of an application that can be designed using Phase, the largest Phase
project was analysed. This project is the 'core' of the business information modules which are
implemented in over 30 sites. The core modules cover all the standard business applications
including accounts, payroll, order processing, stock control, costing, and estimating. This set
of modules (at 1996) includes over 150 data tables, 370 screens and 750,000 lines of algorithm
specification code. At the start of the five year period being studied, the size of core package
size was 54 data tables, 140 screens and 321,000 lines of algorithm code. Therefore over the
five year period the size of the project has increased almost three fold. This project was
maintained by a team of 4 developers who were also responsible for maintaining, installing and
supporting a number of other projects. During this time, the system was considered virtually
error free (the actual number of errors reported from users over the five year period was 37, an
average of 1 reported every 2 months).

This data demonstrates that a Phase project can be significant in size.

8.3.7 Summary

When compared to the guidelines given, it has been shown that the Phase paradigm is effective

as a specification representation system.

8.4 Phase as a Software Designers Productivity Tool

There have been many attempts at defining the requirements of the 'perfect' designers
productivity tool. The objectives used in this analysis are based upon the observations of
Davies and Castell [Davies 92]. They observed that designers follows a similar behaviour
pattern :

e Developers create a mental model of their design, however, there is great difficulty in
representing this model in tangible forms.

* Designers usc mental execution of the design model as a technique for refining and

clarifying the design.

140



e Designers use opportunistic development which includes a mixture of top down and
bottom up approaches. Although an overall strategy may be adopted, different
techniques will be applied depending upon the particular concept being designed.

e Designers use extensive note-making which allow them to records ideas as they happen

which may be associated with a different issue in the concept. These notes can be

revisited and refined at a later stage.

8.4.1 Mental Model

The mental model used by designers has the definite advantage that it is not constrained by any
syntactical issues. It is intuitive to the designer and it can be at different levels of abstraction.
Representing this mental model in a physical form requires syntactical constraints.

Experience in designing Phase projects does not preclude mental models, however the
mental model is usually created along the intuitive flow of control structure of Phase projects.
Physically creating a flow of control structure within the Phase repository allows the "Flow of
Control Tree Diagram" to be created. This diagram has a strong similarity to the mental model.
This has been proved by 'team driven' projects where the flow of control structure has been
created by an individual member, the structure chart printed and distributed to other team
members. Observing a team project meeting where the only physical information is this chart,
it is soon obvious that each team member creates his own mental model which, from the
discussions that follow, the mental models are similar. This proves a strong link between

mental models and Phase flow of control charts.

8.4.2 Mental Execution

Mental execution of the mental model is an important part of the modelling process.

Experienced designers will be able to execute the mental model derived from the Phase flow of
control charts and use this execution to refine and define a design.

The Phase prototyping functions link together elements of the repository which represent the
design in a way that can be executed. This physical execution of the prototype can often be a
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concrete representation of the mental execution of the model. This shows a strong link between

mental execution of models and execution of Phase prototypes.

8.4.3 Opportunistic Development

Opportunistic development involves concurrently using different approaches during design.
For example, high level structures may be created across a module, followed immediately by a
detailed design of a particular screen. The process of defining the screen may 'spark' higher
level thoughts over the methods of obtaining the data associated with the screen and in tum
concentrate the mind on data structures.

Within the Phase repository there is no defined sequence for the creation of entitics. Where
entities have a relationship, the relationships can be defined automatically. The level of detail
required for entities is set to allow the minimum of information to be entered to create an entity
with the fuller details being filled in at a later stage. The supporting Phase CASE tools
therefore support opportunistic development.

8.4.4 Note Making

Note making is the most unstructured method of specification. It has the advantage of
unconstrained syntax but the disadvantage of ambiguity, limiting its use as a specification
medium.

The Phase repository system allows free format notes to be attached to any entity. These
notes can be 'tagged on' at any time during the design process. The notes are not used as part of
the formal 'specification' however they are available to add clarity to some aspects of the
design. In some circumstances, these notes are available as part of (and can be cdited via) the
on-line help in the prototype of the product. This allows the designer to record notes easily
during a prototype review with users. The notes are automatically linked to the relevant entities
within the repository which are being simulated at the time.

8.4.5 Summary

When compared to the observations of Davies and Castell, it has been shown that the Phase
paradigm is effective as a software designers productivity tool.
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8.5 Phase as a Software Project Management System

The complete Phase project management system is described in Appendix B. In literature,
there are considered to be three essential criteria for a project management system [Daily92]:

e The recognition of process milestones
e Auditability

e Team Development

8.5.1 The Recognition of Process Milestones

Often regarded as the most important requirement for a project management system is the
ability to determine 'milestones’ against which progress can be reported. These milestones
should be in the form of 'deliverables’. Typically these are linked with 'progress payments' in a

commercial situation.

The Phase system recognises four main 'deliverables' in the system. These are :

e The application overview (or Project Definition of Scope of Supply)
* Prototype Specifications

e Technical Specifications

¢ Finished Programs

These are described fully in appendix B.

8.5.2 Auditability

Any Quality System must be fully auditable [Daily92]. This is the basis for many of the
general IT standards that are emerging eg TickIT, AQAP, ISO9001 etc. Auditability tends to
be more associated with tracing the source of problems and the ability to replicate a standard,
however 'good' that standard may be. Generally an auditable system contains accurate

documentation in the form of a project log, with appropriate forms requiring 'signing'.
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The Phase system has automatic logging which is described fully in Chapter 5. This logging
provides a complete audit trail of every change made in the system. The QIR form, also

described in Chapter 5, satisfies the requirements of BS5750 and the TickIT standards
8.5.3 Team Development

Large programming systems requires development teams. The essence of good team building
is communication between team members. For software, due to its invisibility, communication

of concepts is not easy. Traditionally, diagrams such as data flow diagrams, structure diagrams
etc act as 'blue prints' for the software.

The Phase system has a number of diagrams as described earlier in this chapter. This makes
communication of a Phase specification manageable.

8.5.4 Summary

When compared to the criteria given by Daily, it has been shown that the Phase paradigm is

effective as a software project management system.

8.6 The Disadvantages of the Phase System

There arc a number of disadvantages to developing with the Phase development strategy.

These are summarised as :
» Changing entities in a prototype changes the actual program
e 'Clever screen displays cannot be created
e [t is not possible to rebuild previous versions of programs
e There is a maximum finite size of programs

e Programs require a large of amount of computing resources

8.6.1 Close Relationship between Prototypes and Programs

Earlier in this chapter it was observed that there is a very close relationship between a prototype
and the target system. This was viewed as an advantage. This is also a major disadvantage.
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Specifying changes to software requires changing the entities within the Phase repository which
in turn updates the execution of the prototype. However, the 'current’ version of the program
may also use the same entities during its execution, the problem arises when an existing entity
is altered for a change in specification, the functionality of the existing program is altered.

The simplest example of this is the addition of a new option on a menu. Creating the
appropriate flow of control node within the repository will include this option on a prototype
menu however, as menus are formed at run time by the target program, this option will also
appear in the 'latest release' of the program.

A more significant example is where screen definitions are updated, again the screen layouts
are referred to at run time of a program. The change to the specification may be to include new
data items on a screen, this will cause the existing program to terminate abnormally.

In practice this requires careful timing of specification changes which cannot take place
when a program may be involved in a maintenance release. This can be a significant problem.

Incorporating version control would be a major contributor in eliminating these problems and is
discussed below.

8.6.2 Inflexible Screen and Flow of Control Structure

All Phase applications have a similar structure which gives a consistent look and feel to the
software. This is very advantageous from a user acceptance point of view as users who are
familiar with one program can easily leamn to operate new programs.

There are instances when the rigid structure of screen design and flow of control options can
be limiting. For example, screens cannot be altered based upon the contents of previous data
entered, the layout of a screen is fixed. This results in screens which may be over-complex
with blank fields which are not relevant in some instances.

There are instances when an overlapping windows user interface is not appropriate for an
application from a speed an simplicity point of view. One example of this was a Phase Till
interface program which uses a computer as a point of sale till. The overlapping windows

interface resulted in a program which was overcomplex for use on a shop counter with
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relatively untrained staff. In practice, the Phase till system was replaced by a non-Phase till

program.

8.6.3 Inability to Build Previous Software Versions

The Phase repository structure includes only the latest version of any entity. An entry is made
in the 'entity change log' each time an entity is changed and, as discussed in chapter 5, the
reason why this change was made is recorded. The previous attributes of the entity are however
lost. This has the result that, should a new design be inappropriate it is impossible to retrace
the design back to its original position. Itis also not possible to have different software 'builds'
of previous releases of a product. This can make replication of a users 'bug' very difficult to
achieve without keeping run-time copies of all released programs.

Incorporating version control was only omitted due to fact that initially the Phase method
was classed as experimental and therefore not a priority requirement. As Phase now has

commercial implications the priority of this requirement is such that it will be implemented in

the near future.

8.6.4 Maximum Finite Size of Programs

The structure of a Phase program requires a target language which can support separately
compiled procedures linked into a single executable program file. This intrinsically limits the
size of a program to constraints within the target language. Using the two different CASE
tools, each with its own target language, these limitations have been reached for a number of
programs. The effect of this can be reduced with a better split of functionality between

programs, particularly where programs are used together as a 'suite'.
8.6.5 Computer Resource Usage

Phase programs require a subset of the Phase repository to be available during run-time. This
imposes an overhead in terms of file-handles and execution efficiency for executable programs.
It is observed that much of this dynamic run-time access could be circumvented as once a
system has been configured the fact that additional configuration is available is superfluous
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8.6.6 Summary

It has been shown that there are a number of recognised disadvantages to the Phase paradigm,
however none of these can be considered critical. It is the intention to continue development

with the Phase paradigm to overcome some of the disadvantages discussed with further

maintenance.

8.7 Conclusion

When compared against literature, the Phase paradigm matches all the desirable features of all
four different categories. It can be considered therefore as a serious contender as : a
requirements analysis tool, a specification representation system, a software designers

productivity tool and a software project management system.
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Chapter 9

Summary

9.1 Introduction

Brooks suggested that :

"altering the Sofiware Engineers attitude to change, from being an annoyance to

accepting change as a way of life, would be a significant step in delivering quality

systems".

I suggest that the Software Engineers attitude towards 'change' is directly related to the methods
and tools available for designing and creating software. 1 also suggest that there are two

(perfectly reasonable) major factors for a 'bad attitude' :

e A sudden change in requirements can instantly make days, wecks or perhaps months of
‘technically perfect' hard work suddenly become redundant

o Software that has been designed for a specific goal and written 'as a seamless work of art'
is tom apart and stitched together to satisfy some change of requirements. This
inherently leads to a detrimental effect on the quality of the software

'Bad attitude' leads to unsatisfaction. Unsatisfaction leads to staff tumover. Staff tumover
leads to the disappearance of staff experience. Loosing this experience is costly for the

commercial software developer.

148



9.2 The Nature of Requirements and Change

This thesis started by examining the nature of requirements. It states that requirements can be
split into Requirement for the Software (the 'User Requirements') and Requirements of the
Software (the 'Technological Requirements'). It has been studied and reported how and when
these sets of requirements change.

The first stage for control, is to monitor. The monitoring of change and the effects of
change were studied for a period of five years. As a result, a system for designing software
which would be more resilient to the detrimental effects of change, was created. The principle
behind this system was :

e Identify the state of the 'components' in a system
e Monitor and record the changes to the component states

This system is called Phase. The Phase system cannot exist without CASE tools which

provide a means for implementing the theories.

9.3 The Phase Paradigm

The Phase paradigm, presented in chapter 5, uses a central repository to store information
relating to the design of a system using five simple types of entities. These entities reflect : The
flow of control , the user interface, the data storage, the functionality, the fifth being an entity
which links the previous four together. This repository becomes the 'specification'. This
specification can be executed as a 'prototype’. This easy-to-build prototype allows users to see
exactly how the resultant software will look and feel.

Experience demonstrates that typically a user will require at least three attempts at refining
requirements and each attempt is based upon actually using the results from the previous
attempts. Without prototyping, this implies that at least two full systems will be 'thrown out'
(by which time the Software Engineer is becoming frustrated and upset), using this prototype

technique provides the same effect for the user without the same effect on the Software

Engincer.
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The same specification which is demonstrated by the prototype is used to prepare the actual
program. The Phase paradigm is ideal for automatic code gencration, translating the

specification into executable software. This is implemented using the CASE tools.

9.4 Maintaining 'Experience’

The Phase paradigm attempts to automatically record the design decisions made by developers
during the lifetime of the development activity. This information can be considered as
capturing the 'experience' of these designers. By extracting and analysing this information, the
‘experience’ can be retained, long after a tumover of staff, to be passed to future developers.
This is presented in Chapter 6.

9.5 A Tried and Tested Theory

The Phase paradigm and a number of its associated CASE tools are actively being used for
commercial development of software. This provides a real 'test bad' for obtaining results. The
level to which Phase software has been modified, especially after its initial release to users, is
presented in Chapter 7. This demonstrates that there is a high degree of resilience to the
detrimental effects of change for Phase applications. It does not remove completely, all the

'bad' effects of change. It is also possible to create 'bad' Phase programs as well as 'good' Phase

programs.

9.6 An Appraisal of Phase

Chapter 8 presents an appraisal of the Phase paradigm. This is in relation to Phasc as :
e A requirements analysis tool

* A specification representation system
* A software designers productivity tool

* A software project management system
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This chapter also includes a list of points where the Phase paradigm and its CASE tools
could be improved.
9.7 The Phase Repository and Project Management Techniques

A detailed statement of the Phase Repository is given as an Appendix. Also given is a set of
working practices to provide an explanation of a 'Phase Program Lifecycle'. This provides a

step-by-step guide to project managing a Phase development.

9.8 Conclusion

This chapter has summarised the aims and contents of this thesis. The next chapter presents the
conclusions drawn from the period of research. Many of the conclusions have been previously

presented earlier in this thesis.
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Chapter 10

Conclusions

10.1 The Contribution of this Thesis

This thesis has proposed a paradigm for developing computer software called Phase. This
paradigm is designed to tackle one of the highlighted essential clements of software
development often ignored in traditional development strategies: that requirements will change.
Consequently, programs designed using this paradigm are more resilient than traditional
programs, to the detrimental effects of change.

The reasons why Phase programs are more resilient to change is because they are structured
in such a manner that they combine many of the recognised properties of 'good programming
practice'. These are :

e Data Driven techniques allow for flexibility and ‘customisation' without requiring

programming changes. This dramatically reduces the complexity of a program.

» Procedures are extremely highly cohesive and extremely loosely coupled. This limits the

potential 'damage’ of other procedures when changes are made.

» Prototypes of software are created very easily. The prototypes are very close to the look
and feel of the resultant programs. This gives user the ability to 'throw away' as many

copies of the prototype as required without wasting valuable software engineering

ICSources.
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¢ Diagrammatic documentation is automatically produced. This allows for visual
representation of ‘'mental models' of a concept. These diagrams allow developers to share

and communicate their mental models and ideas.

e All entities in the system are related in a natural 'hyperlink' form of structure. This
provides the ability to easily check the implication of changes on other components in

the system.

e Automatic code generation is performed translating the specification into target language
code. This automatic code generation is based upon 'macro substitution' similar to the

techniques used in many assembly code assemblers.

In addition to the above features which have been used for many years, a number of new
techniques have been introduced. This is based upon the automatic recording of changes made

to entities within the system and the way in which this information is used.

e All changes made to entities are recorded automatically by the system. In addition to

who, and when, entities were changed, the rcason why entities are changed is also

recorded. This represents the design decisions taken by developers during the lifetime of
the software.

e Using the logging of changes provides a method for easily checking work done by a
development team. This is presented as the Quality Inspection Record document and
inspection technique introduced in chapter 6.

It has been shown that this technique is successful for the commercial development of a class of
software known as Interactive Business Information Systems. Many of the techniques could

equally be applied to different classes of software.

10.2 Further Development

The Phase paradigm has been in existence in some form since 1986 as a direct result of a
Stirling University Computing Science honours project. This led to the implementation of the
Phase paradigm on a mini computer. During the past five years, technology forced a

replacement of the mini computer with powerful PC networks. Technology on PC networks is
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such that an inevitable change will take place where all applications will have to conform to the
Windows GUI interface. A future enhancement will be to develop Phase applications adapted
for this technology. How this will be attempted has been introduced in Chapter 7.

Chapter 8 highlighted some of the current disadvantage and problems with the Phase system
and its supporting CASE tools. In particular, the problem caused by the prototype and the
runtime elements of a program accessing the same version of the entities in the repository
means that the ability to prototype additional functionality whilst maintaining a current version
of a program is impossible. In order to increase the usefulness of this system, some form of
version building will be required.

The analysis of the information logged as 'experience' is currently only presented to
developers when it is explicitly requested and it requires a fair level of knowledge before this
information can be classed as useful. Further enhancements to the system can include some
form of 'expert system' which will analyse the information and automatically guide the

developer through implications of changes.

10.3 The Attitude to Change

The question still remains :

What of the developer's attitude to change, is this still a problem ?

There have been twelve developers who have used the Phase paradigm for developing software.
Of these twelve, six have stayed with the system since their first introduction. Of the remaining
six who left, four have retumned having not found a better system, the other two left for further
education.

Some negative attitude to change still exists, a deeply bred culture takes years to change.

Personally, however, I know that my attitude towards change is better. It's going to happen, be
prepared for it : Users will be Users!

154



Bibliography

Agostoni88 AGOSTONI, G. et al : "Managing software quality during the
complete lifecycle". /st European seminar on sofiware quality

(Brussels, 1988)

Alexander92 ALEXANDER, C : "An introduction for Object-Oriented Designers".
ACM SIGSOFT Software Engineering Notes 1994 Vol 19 No 1 pp
39-46

Ambriola%90 AMBRIOLA, V; et al : "The evolution of configuration management

and version control" Sofiware Engineering Journal, Nov. 1990 Vol. 5
No. 6 pp 303-310

Balzer83 BALZER, R. et al : "Software Technology in the 1990's : Using a New
Paradigm," Computer, vol 16, no.11, pp 39-45, 1983

Basili75 BASILL V.R. etal : "Iterative Enhancement : A Practical Technique
for Software Development, " JEEE Transactions on Software

Engineering, vol. SE-1, no. 4, pp. 390-396, 1975
Benington56 BENINGTON, H.D.: "Production of large computer programs" in

ONR Symposium on Advanced Program Methods for Digital
Computers, pp 15-27, June 1956

Blum91 BLUM, B.1 : "Towards a uniform structured representation for
application generation" Int. J. Software Eng. Knowledge Eng. vol 1,
pp. 39-55, 1991

Blum93 BLUM, B.L : "Representing Open Requirements with a

Fragment-Based Specification" IEEE Transactions on Systems, Man,
and Cybernetics, vol 23, no. 3, pp.724-735, 1993

155



Boehm76

Bochm86

Booch91

Brooks75

Brooks87

BTRL90

Budgen94

Christensen83

Cﬁudge%

Cosgrove7l

Daily92

BOEHM, B.W. : "Software Engineering," IEEE Transactions on
Computers, vol C-25, no. 12, pp.1226-1241, 1976

BOEHM, B.W. : "A Spiral Model of Software Development and
Enhancements," Proceedings of an International Workshop on the
Software Process and Software Environments, Coto Do Caza,
Califormia. March 1985, published as Software Engineering Notcs,
vol.11, no. 4, 1986, pp. 22-42.

BOOCH, G.R.: 'Object Oriented Design with Applications'. Redwood
City, California: Benjamin / Cummings

BROOKS, F.P. Jr.: 'The Mythical Man-Month' Reading. MA:
Addison-Wesley, 1975

BROOKS, F.P_Jr.: No silver bullet: essence and accidents of software
engineering', Comput., 1987, (4), pp. 10-19

British Telecom Research Laboratories,UK. Rigby, P.J.; Norris, M.T. :
"The Software Death Cycle". UK IT 1990 Conference pp 8-14
BUDGEN, D. : Software Design. Addison - Wesley

CHRISTENSEN, N; et al : "Prototyping of User Interfaces" in
Approaches to Prototyping, Ed Budde,Kuhlenkamp, Mathiassen,
Zullighoven

CHUDGE, J. ; FULTON, D. : "Trust and co-operation in system
development: applying responsibility modelling to the problem of
changing requirements." Software Engineering Journal. May 1996 pp
193 - 204

COSGROVE, J. : "Needed : a new planning framework," Datamation,
17, 23 (Dec. 1971) pp 37-39

DAILY, K. "Quality Management for Software" NCC Blackwell Ltd,
1992 ISBN 1-85554-082-7

156



Davies92

Dawson93

Fagan77

Floyds3

Gamma93

Giddings84

Harker93

Henderson86

IEEE9]

DAVIES, S.P.; CASTELL, A M. : "Contextualizing design: narratives
and rationalization in empirical studies of software design', Design
Stud., 1992, 13, (4), pp. 379-392

DAWSON, C.W.; DAWSON, R.]J.: "Towards more flexiblc
management of software systems development using meta-models",

Software Engineering Journal, Vol.10 No.3 May 1995

FAGAN, M.E. : "Design and code inspections to reduce errors in
program development”, IBM Systems Vol. 3. 1977 pp 182-206

FLOYD, C.: "A systematic look at Prototyping", in Approaches to
Prototyping, Ed Budde,Kuhlenkamp, Mathiassen, Zullighoven

GAMMA, E., HELM, R,, JOHNSON, R., VLISSIDES, J. : "Design
Pattems : Abstraction and Reuse of Object-Oriented Design" in
Lecture Notes for Computer Science, ECOOP'93 - Object Oriented
Programming. July 1993

GIDDINGS, R.V.: "Accommodating uncertainty in software design,"
Commun. Ass Comput. Mach., Vol. 27, no 5, pp428-434, May 1984

HARKER, S.D., EASON, K.D., DOBSON, J.E. : "The change and
evolution of requirements as a challenge to the practice of software."
IEEE Int. Symp. on Requirements Change, 1993 (IEEE Computer
Society Press).

HENDERSON, P. : "Functional Programming, Formal Specification,

and Rapid Prototyping", IEEE Trans. on Soft.Eng. Vol SE-12 No.2
Feb 1986

IEEE : IEEE Standard Glossary of Software Engineering Termology.
In situ of Electrical and Electronic Engineers, inc, New York, USA,
1991. Revision and Registration of IEEE STD 729-1983

157



Junk88

Lee91

Lehman80

Letovsky87

Liskov75

Littman87

McCracken78

NATO68

Pamas72

Parnas72b

Parnas79

Pamas86

JUNK, W.S. : More than just a diagramming tool. In IEEE Software,
March 1988 Software Reviews pp 97.

LEE, J : Extending the Potts/Bruns Model for Recording Design
Rational, 1991.

LEHMAN, M.M.: "Programs, life cycles, and the laws of software
evolution," Proc. IEEE, vol. 68. no 9, pp. 1060-1076, Sept 1980

LETOVSKY, S. : "Cognitive Processes in Program Comprehension”
The Journal of Systems and Software 71, 1987 pp 325-339

LISKOV, B H.; ZILLES, S.N. : "Specification techniques for data
abstraction,” IEEE Trans. Software Eng., vol. SE-1 pp 7-19, 1975
LITTMAN, D, PINTO, J., LETOVSKY, S, SOLOWAY, E. :
"Mental Models and Software Maintenance”. The journal of Systems
and Software 7, 1987, pp 341-355

McCRACKEN, D.D.: "The changing face of applications
programming", Datamation, pp. 25-30, Nov. 15, 1978

Software Engineering, Report on a conference sponsored by the
NATO SCIENCE COMMITTEE Garmisch, Germany, 7th to 11th

October 1968. Ed Peter Naur and Brian Randell, 1969

PARNAS, D.L.. "A technique for software module specification with
examples" Comm. ACM. 15 pp.330-336, 1972

PARNAS, D.L.. "On the criteria to be used in decomposing systems
into modules" Comm. ACM. 15(12), pp.1053-1058, 1972

PARNAS, D.L.: "Designing software for ease of extension and
contraction," IEEE Trans. Software Eng., Vol. SE-5, no. 2, pp.
128-137, Mar. 1979.

PARNAS, D.L.; CLEMENTS, P.C. : "A rational design process: how
and why to fake it", JEEE Trans., 1986, SE-12, pp. 251-257

158



Pfleeger94

Potts88

Potts89

Pree94

Proteus93

RE93

Reeves9s

Ross77

Rowen90

Royce70

Shaw96

PFLEEGER, S.L.; "Design and analysis in software engineering. Part
1: the language of case studies and formal experiments. ACM
SIGSOFT Software Engineering Notes 1994 19(4) pp16-20

POTTS, C.; BRUNS, G.: "Recording the Reasons for Design
Decisions", 10th Internation Conference on Software Engineering,
April 11-15, 1988 pp 418 - 427

POTTS, C.; BRUNS, G.: "A generic Model for Representing Design
Methods" 1989, ACM 0270-5257 pp 217-226

PREE, W : "Design Pattems for Object Oriented Software
Development. Addison - Wesley

PROTEUS : "Understanding changing requirements". Proposal to
[EATP Safety-Critical Systems Programme, September 17. 1993

IEEE Int. Symp. on Requirements Change, 1993 (IEEE Computer
Society Press).

REEVES, A.; MARASHI, M.; BUDGEN D.. " A Software design
framework or how to support real designers”, Software Engineering
Journal, July 1995 pp 141-155

ROSS, D.T.; SCHOMAN, K E.Ir : "Structured Analysis for
Requirements Definition", IEEE Trans. Soft. Eng. Vol. SE-3. No.1,
Jan. 1977

ROWEN, R B. : "Software project management under incomplete and
ambiguous specifications", IEEE Trans., 1990, EM-37, (1), pp. 10-21

ROYCE, W.W.: "Managing the development of large software

systems: Concepts and techniques,” in WESCON Tech. Papers, Aug
25-28, 1970, pp. A.1 1-9

SHAW, M., GAINES, B. : "Requirements Acquisition". Software
Engineering Journal, May 1996 pp 149 - 165

159



Simon69

Smith72

Sommerville93

Swartout82

Takahashi95

Williams$88

SIMON, H.A.: "The Sciences of the Artificial." Cambridge, MA:MIT
Press, 1969.

SMITH, J : "Economics : A first course” Oxford University Press,
1972

SOMMERVILLE, L.: "Software Engineering" Addison Wesley 1993.

SWARTOUT W_; BALZER R.: "On the inevitable intertwining of
specification and implementation." Common. Ass. Comput. Mach.,

Vol. 25, no 7. pp. 438-440, July 1982.

TAKAHASHI, K., OKA, A, YAMAMOTO, S, ISODA, S. : "A
comparative study of structured and text-oriented analysis and design

methodologies" Journal of Systems and Software, 28: 49-58. 1995

WILLIAMS, L.G.: "Software Process Modelling : A Behavioral
Approach” , 10th International Conference on Software Engineering,
April 11-15, 1988, pp. 174-186

160



Appendix A

The Phase Repository Structure

This appendix contains the definitions for all the entities in the Phase repository. Each table is

individually listed with its contents. A data table diagram is included at the end to show how
cach of the tables are related.

[FMACTION Each record contains a step in the lifecycle model
Field Name Type Description

ACTION c2 Step number

ACTION_TYP Cc1 Action or Deadline

ACTION_DESC C30 Description

FMDBASE Each record contains the definition for a data table (excluding data items)
Field Name Type Description

DBASEID c10 Internal identification number

DBASENAME Cc8 Name of data table

DBASEDESC C60 Description

INXFILEO1-15 15C8 Filenames of index files

INXKEYO01-15 15C60 Index expressions

DATE Date Date last modified
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[FIDBITEM

Each record contains a link between a data table and a data item

[Field Name

Type Description
DBASEID c10 Internal identification number of a data table
ITEMID c10 Internal identification number of a data item
ORDER N3 The order the item appears in the table
DESCTEXT Memo Description
FMGLOBAL A single record table containing the configuration parameters
Field Name Type Description
PROGRAM C40 A descriptive name for the module
COMPANY C40 Company name of development company (used for report headings)
MACROPATH C30 Pathname for algorithm definitions
FDSLIBPATH C30 Pathname for library algorithm definitions
GENPATH C30 Pathname for generated source code
USERNAME Cc8 Usemame of application supervisor
NODEID c10 Next node identification number to be allocated
PROCID c10 Next procedure identification number to be allocated
MACROID c10 Next algorithm identification number to be allocated
ITEMID c10 Next data item identification number to be allocated
DBASEID c10 Next data table identification number to be allocated
REQREF N6 Next RPU reference to be allocated
RELEASE c8 Current release number
DATE Date Date record last modified
COL_HEAD C44 Colour for the user interface ‘header’
COL_FOOT C44 Colour for the user interface ‘footer’
UTILITY cs Last data table upgrade utility executed
APPLIC c2 Two character mnemonic for the application for validation
[FMITEM Each record contains a data item definition
[Field Name Type Description
ITEMID c10 Internal identification number
ITEMNAME C16 Name of data item
ITEMDESC C70 Description
ITEMTYPE Cc1 Type of ltem (Character/Numeric/Logical/Date/Memo)
ITEMLENGTH N4 Length of Item
ITEMDECPL N2 Decimal Places (Numeric Items)
PICTURE C60 Standard Data Input Template
VALID Ce0 Standard Data Input Validation Procedure
DATE Date Date last modified
DESCTEXT Memo Description

162




FMLINK Each record contains a link from a node to a child node
Field Name Type Description

NODEID Cc10 Internal identification number of the parent node

CHILDID c10 Internal identification number of a child node

OPTIONNO N2 Option number

FMLOG Each record contains a single entity modification

Field Name Type Description

DATE Date Date the change was made

USERNAME c8 Username of the developer making the change

LOG_SECT Cc8 Type of entity

LOG_NAME C16 Name of entity

REQ_REF N6 Pointer to the ‘why' table FMREQEST

LOG_REMARK C24 Description of type of change eg Created/Modified/Deleted etc
TIME c8 Time the change was made

ID C10 Internal identification number of the element to which the record is associated
IFMMAORO Each record contains a pointer to an algorithm definition
|Field Name Type Description

IMACROID c10 Internal identification number

MACRONAME Cc16 Name of the algorithm

LIBRARY C1 Library routine or Application only

DESC1-2 2C56 Description

PARAMO1-10 10C10 Parameters passed to algorithm at code generation time
DATE Date Date record last modified

LOCK-FLAG c1 Lock flag to prevent multiuser editing

LOCK-NAME Cc8 Username of person locking algorithm

FMMODULE Each record contains an entry for a SubModule (Used for the manual print)
Field Name Type Description

MODORDER c2 Logical order for implementation

SUBMODULE Cc7 Name of submodule

MODTITLE C60 Chapter Title

MODTYPE c10 Type of submodule (Data Entry/Report/Enquiry)

DESCTEXT Memo Description

CHAPTER N3 Chapter number (when printing the manual)
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FMNODE

Each record contains a flow of control node

Field Name Type Description

NODEID c10 Internal identification number

NODENAME C16 Name of flow of control node

DESCTEXT Memo Description

PROCID Cc10 Internal indentification number of the called procedure
SELECTTYPE c8 Selection type for options (Menu/Softkey/Fserial/None)

LABEL C26 Menu or command select label

TITLE C25 Identification name

COLOR c20 Colour of menu

EXITID c10 Internal identification number of the flow of control node used when exiting
HELPLINE C60 Short message required for onscreen help

DATE Date Date record last modified

ACCLEVEL C26 Security access level

FMONLINE Each record contains an online tutorial

Field Name Type Description

HELPCODE c4 Tutorial indentification number

FLAG Cc2 A grouping field

QUESTION C140 Title of the tutorial

ANSWER Memo Contents of the tutorial

[FMPROC Each record contains a procedure entity

Field Name Type Description

PROCID c10 Internal identification number

PROCNAME C16 Name of the procedure

OVERLAY cs Name of source file when generating source code

LEVEL C1 Flag indicating if this is a configurable procedure or internal procedure
DIRTYFLAG Cc1 Set true if any entity used by the procedure has been edited, cleared when

generated

FASL C200 Prototype definition command line

MACROID c10 Internal identification number of the algorithm definition
IMACRO C200 Name of the macro and actual parameters as a command string
DESCTEXT Memo Description

DATE Date Date record last modified

LOCK-FLAG c1 Set true to lock entry if it is being edited off-line

LOCK-NAME cs Username of developer locking the entry

ICD01-05 5C8 Usemame of developers responsible for developing the procedure
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|FMPROJ

Each record contains an entry in the planned development timetable

Field Name Type Description

ACTION-COD c2 Code for the action

DLINE-CODE Cc2 Code for the deadline

USERNAME cs Usermname of the person responsible for the action/deadline
DUE-DATE Date Date the deadline is due

COMP-DATE Date Date the deadline actually reached

DESCTEXT Memo Description or notes

[FMREQEST Each record contains the definition of a ‘state’
Field Name Type Description

REQ_REF N6 Request identification number (RPU)
REQ_DESC1-3 3C76 Description

DATE Date Date request raised

REQ_SOURCE c10 Source of request (developer/client)
REQ_STATUS c1 Current Status

REQ_PRI c1 Priority

RELEASE c8 Release Number for completed requests
REQACTION C20 Work authorisation code

DESCTEXT Memo Release notes

FMSCRF00 Each record contains a screen item definition
Field Name Type Description

SCREENNAME c10 Name of the screen

FIELDNAME C16 Name of the field

ITEMID c10 Internal identification number of the field
SOURCE cs8 Data table containing field

ROW N3 Screen coordinate - row

COL N3 Screen coordinate - column

LENGTH N3 Screen length of field

PICTURE C40 Actual data input template

VALID C40 Actual data input validation procedure
SAYGETTYPE c10 Screen version identifier - Display only or Input/Output
ITEMTYPE c1 Type of data item

ITEMDECPL N2 Data item decimal places

BLOCK c2 Cursor order block

FLABEL C30 Field label (used for automatic documentation)
FDATA C30 Field data used on prototype of screens
DESCTEXT Memo Description

PALETTE N1 Colour palette of field

165




[FMSCRI00

Each record contains the definition for a screen

Field Name Type Description

SCREENNAME c10 Name of screen

TOP N2 Screen coordinate for window top margin

LEFT N3 Screen coordinate for window left margin

BOTTOM N2 Screen coordinate for window bottom margin

RIGHT N3 Screen coordinate for window right margin

IMAGE Memo Screen image (graphics characters, field labels etc)

DATE Date Date screen last modified

MODE N3 Screen mode (80x25, 80x50, 132x50)

DIRTYFLAG c1 Set true if screen has been modified, cleared when generated
FMUSER Each record contains a user for each developer with access to the module
Field Name Type Description

USER cs Usemame

ACCLEVEL Cc1 Access Level (Programmer/Support Only/Project Manager)

REQ_REF N6 Current RPU being edited

FMXREF Each record contains a hyperlink cross reference between entities
Field Name Type Description

ID c10 Internal identification number of the one side of the link

CHILDID c10 Internal identification number of the other side of the link
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Appendix A : Repository Data Table Structure Chart

The following chart show the relationships between the tables in the Phase repository as
described earlier in this appendix. Note that the links from FMLOG and FMXREF have been

omitted for clarity they link to the majority of the other tables.
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figure A : Database table structure chart
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Appendix B

The Phase Development Process

This Appendix describes the Phase Development Process (or Lifecycle Model) which utilises
the power of the Phase paradigm implemented using the CASE development tools. It describes
the set of activities and the milestones used to transform a conceptual idea into a software
program. It is based upon a development team structure and details the relationship of the team

'players'. This model has been used to develop over 50 application programs.

B.1 Introduction

The Phase Lifecycle model can be considered in terms of :
¢ The 'team players'

® The 'design documentation'
e The 'control documents'

¢ The 'Actions and Deadlines'
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B.2 The Team Players

A 'team player' is a generic term for any person involved with the development of a Phase
application. The possible team players are :

e Customer

Liaison Contact

Project Manager

Project Designer

e Programmers

Implementation and Support Engineer

Customer

The 'customer’ is the generic term for the 'End User' of the software. This person, or group of
people, have the basic 'need' and ideas for projects to increase their working efficiency. In most

cases it can be assumed that the customer has limited computer appreciation.
Liaison Contract

The 'liaison contact' is the person who will act on behalf of the customer in formulating the
ideas into the project. This person will be familiar with the overall concepts of computer
software development and will be able to perform enough systems analysis to determine the

feasibility and initial scope of a project.
Project Manager

The 'project manager' is the person who will assume overall responsibility of the project. This
includes the definitive scope of the application, the maintenance of the development schedules
and the quality assurance of the finished programs. The project manager will create the
Application Overview (the list and documentation of the SubModules) within the CASE tool.
It is essential that a project manager is totally familiar with the Phase development paradigm.
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Project Designer

The 'project designer’ will take the predefined scope of a program and create a prototype model
of the software which will best implement the requirements. This prototype will be reviewed

and refined until the design is accepted by the customer. The project designer is responsible for

system testing of the application.
Programmer

The programmer will implement the details of the prototype program specification using the

automatic code generators where possible. The programmer is responsible for the quality of the
finished programs.

Implementation and Support Engineer

The 'implementation and support engineer' will configure and support the software for the
customer. The implementation and support engineer will be responsible for all user

documentation and training.

B.3 The Design Documentation

The 'design documentation' refers to the tangible components produced throughout the
development process, representing the state of the design at various times. There are five major
'design documents' :

e Rough Notes

¢ Project Definition (Application Overview)
» Prototype Specification

e Technical Specification

¢ Finished Program
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Rough Notes

‘Rough Notes' are free format notes taken by the Liaison Contact during the numerous
discussions with the Customer. They will include block database diagrams, rough screen and
report layouts and general descriptions with data flow diagrams. Any number of tools can be

used for these notes ¢.g. Work Processors, Screen Designers etc. There is no fixed format.

Project Definition (Application Overview)

This is a list of major functional elements in the system and created as a list of SubModules

within the Phase CASE tools. This provides a 'scope' of work and is prepared as simple
paragraphs of text.

Prototype Specification

This is the main tool used for communication between players in the project team. It includes
every screen layout, database definition, flow of control information and report definition. A

hardcopy version of the prototype is available.
Technical Specification

The ‘technical specification' is a document automatically produced by the Phase CASE tools. It

contains a complete definition of every entity defined within the repository.

Finished Program

The finished program is the program supplied to the customer. This includes all the appropriate

documentation.

B.4 The Control Documents

The control documents are 'progress reporting' documents which provide a schedule and

timetable for the project. The control documents are :

* Project Control Log

¢ Implementation Control Document (ICD)
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e Status Report
* Request for Program Update (RPU Log)

¢ Quality Inspection Record (QIR)
Project Control Log

The 'project control log' includes general information about the project, the team players, a log
of meetings, actions and deadlines (discussed below). It will always contain at least one current

action with a deadline.
Implementation Control Document (ICD)

The 'implementation control document' is automatically prepared from the list of 'procedure
entities' within the repository. It lists each procedure and its implementation status e.g.

programmed, tested etc. It is used to provide a definitive 'status' of a program.
Request for Program Update (RPU Log)

This is used to monitor the support and ongoing development of an application after its initial
release. It corresponds both to a 'wish list' for user requests and also a 'release log' of completed

changes. The RPU log is explained in detail in Chapter 5.

Quality Inspection Record (QIR)

The 'quality inspection record' is produced by the programmer when completing a set of
changes. This is used as an audit trail for logging changes made to entities within the

repository. This is explained in detail, and an example form given, in Chapter 5.

B.5 The Actions & Deadlines

The following table represents the different phases that a development project will pass
through. A phase is divided into stages and each stage has an action with a resultant deadline.
This provides a method of monitoring an managing a project by providing tangible milestones.

The actions and deadlines are explained in the remainder of this appendix.
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| Phase | Stage | Action | Stage | Deadline

A 1 |Project Discussions 1 |Project Initiation Meeting
Initial Scoping 2 |Project Investigation Meeting
Appointment of Team 3 |Acceptance of Project Definition
B 1 |Prototype Specifications 1 |Intenal Design Meeting

External Design Meeting
3 |Acceptance of ICD

& 1 |Program Coding 1 |Implementation Meeting
2 |Quality Assurance Meeting
3 |Program Beta-Test Release
4 |Program Release "C"
D 1 |Program in Use 1 |Project RPU Meeting
2 |Maintenance Programming 2 |Maintenance Release

figure B.1 : Phase Lifecycle Table

At any point in time, the development of an application can always be defined in terms of an
action stage associated with a deadline stage within the same phase. For example : Program
Coding can be a current action, and it could have as a deadline any of the deadlines in this
phase i.c. Implementation Meeting, Quality Assurance Meeting, Program Beta-Test or Program
Release "C".

Note that the stages do not occur in a sequential manner and it is possible to move from
stage D to stage B etc. It is also possible that different parts of a development may be in
different stages and phases at the same time. For example, some aspect may be in program
coding (Phase C) whilst another component of an application may just being developed (Phase

B). The system therefore allows and encourages concurrent developments by different team

members.
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Stage

Project Discussions - Action

Customer, Liaison Contact

The Customer approaches the Liaison Contact with ideas. These ideas are discussed and
rough notes taken. A feasibility study is undertaken and potential projects are conceived

Project Initiation Meeting - Deadline

Liaison Contact, Project Manager

The Liaison Contact approaches the appointed Project Manager and the rough notes are
discussed. An approximate budget price is agreed

Initial Scoping of Project - Action

Project Manager

The Project Manager takes the rough notes and create the application overview in the Phase

repository. The rough notes are translated into block diagrams and an application overview
document.

Project Investigation Meeting - Deadline

Liaison Contact, Project Manager, Customer

The Liaison Contact initiates a meeting to discuss the overview. The customer may or may

not be present depending upon the initial analysis performed and the complexity of the
application.

Appointment of Project Design Team - Action
Project Manager, Project Designer

As the Application Overview is near completion, the Project Manager appoints a Project
Designer and presents the application overview.

Acceptance of Project Definition - Deadline

Liaison Contact, Customer, Project Manager, Project Designer

The Liaison Contact arranges a meeting with the Customer and the Project Manager. The
application overview is presented, discussed and finally accepted. This is the last
involvement of the Liaison Contact with respect to the analysis details of the project. The
Project Designer is introduced to the Customer.
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Stage
Prototype Specification - Action

Project Designer

The Project Designer takes the application overview and rough notes and prototype

specification. This will be produced in two parts. Part 1 showing screen layouts only, Part 2
showing field definitions

Internal Design Meeting - Deadline
Project Designer, Project Manager

The Project Designer arranges an internal meeting with the Project Manager to discuss the
prototype specification

External Design Meeting - Deadline

Project Manager, Project Designer, Customer

The Project Manager arranges a project meeting with the customer and proposes the
implementation. The prototype is reviewed with the hardcopy prototype document being
updated by the Project Designer.

Acceptance of Prototype Specification - Deadline

Project Manager, Project Designer

The prototype specification is agreed by the customer
Acceptance of ICD - Deadline

Project Manager, Project Designer, Programmer

The Implementation Control Document is produced by the Project Designer and approved by
the Project Manager. The programmer is introduced to the project

Program Development - Action
Project Designer, Programmer

The Programmer translates the Phase specification into programs. As each procedure is
programmed the ICD is updated

The Designer tests each procedure for conformance to the specification. As each procedure us
tested the ICD is updated.

Implementation Meeting - Deadline

Programmer, Project Designer

The current development version of the software is copied into a test environment for the
Project Designer to perform a system test. The QIR is printed upon acceptance.
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Stage

Quality Assurance Meeting - Deadline

Project Manager, Programmer, Project Designer

The application is presented to the Project Manager who performs a second system test.
Individual procedures can be checked against the Program Standard. The ICD is updated.

Program Beta-Release to Customer - Deadline

Project Manager, Project Designer, Customer, Support Engineer

The program is installed by the Project Manager or Project Designer and the Customer is
trained in its use.

Program Use - Action

Customer

The program is used by the customer and a list of program alterations produced. These are
logged in the RPU log by the Project Manager in the Phase repository.

Project RPU Discussion - Deadline
Project Manager, Project Designer

The RPU log is produced by the Project Designer and examined by the Project Manager. By
consultation with the Customer a definitive list of modifications is created.

Program Acceptance Release "C" - Deadline

Project Manager, Customer, Liaison Contact

A program version is reached where the number of alterations allowed in a system is limited
by the contractual agreement.

Maintenance Programming - Action

Programmer

This is called maintenance programming to indicate that it is done after the initial contractual
agreement is reached, however in the Phase system, unlike conventional system, changes at
this time are encouraged.

Maintenance Release - Deadline

Customer

The software is released to the Customer
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Appendix C

Acronyms

This appendix contains a list of acronyms used in this thesis.

Acronym Expansion

3GL 3rd Generation Programming Language

4GL 4th Generation Programming Language

BASIC Beginners All-purpose Symbolic Instruction Code (Programming
Language)

CASE Computer Aided Software Engineering

EDS Elite Development System

FDS Foreman Development System

GUI Graphical User Interface

IBIS Interactive Business Information Systems

ICD Implementation Control Document

NATO North Atlantic Treaty Organisation

00 Object Oriented

0S Operating System

PC Personal Computer

PH Programmer Hour

PHASE Philip Harwood's Approach to Software Engineering

QIR Quality Inspection Record

RPU Request for Program Update

T™S Thom Micro Systems Ltd
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