This is the peer reviewed version of the following article: Paine, C. E. T., Amissah, L., Auge, H., Baraloto, C., Baruffol, M., Bourland, N., Bruelheide, H., Daïnou, K., de Gouvenain, R. C., Doucet, J.-L., Doust, S., Fine, P. V. A., Fortunel, C., Haase, J., Holl, K. D., Jactel, H., Li, X., Kitajima, K., Koricheva, J., Martínez-Garza, C., Messier, C., Paquette, A., Philipson, C., Piotto, D., Poorter, L., Posada, J. M., Potvin, C., Rainio, K., Russo, S. E., Ruiz-Jaen, M., Scherer-Lorenzen, M., Webb, C. O., Wright, S. J., Zahawi, R. A., Hector, A. (2015), Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why. *Journal of Ecology*, 103: 978–989, which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1111/1365-2745.12401/full. This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving.

1	
2	Globally, functional traits are weak predictors of juvenile tree growth, and we do not
3	know why
4	C. E. Timothy Paine* <u>c.e.t.paine@stir.ac.uk</u>
5	• Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK, phone: +44 (0)1786 467785 fax: +44 (0) 1786 467843
07	$I uev Amissah lamissah @esir_forig.org.gh$
8	• Forest Ecology and Forest Management Group, Wageningen University, P.O. Box 47
0	6700 A A Wageningen. The Netherlands
10	• Council for Scientific and Industrial Research Forestry Research Institute of Chana P.O.
10	• Coulen for Scientific and industrial Research-Forestry Research institute of Onana, 1.0. Box LIP63 KNILIST Kumasi Ghana
12	Harald Auge harald auge@ufz de
12	Department of Community Ecology LIEZ Helmholtz Center for Environmental Research
14	D-06120 Halle, Germany
15	• German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, D-4103
16	Leipzig, Germany
17	Christopher Baraloto, <u>Chris.Baraloto(@ecofog.gf</u>
18	• INRA, UMR "Ecologie des Forêts de Guyane", 9/38/, Kourou Cedex, French Guiana
19	• Department of Biology, University of Florida, Gainesville FL, USA
20	Martin Barutfol, <u>martin.barutfol@ieu.uzh.ch</u>
21	• Institute of Evolutionary Biology and Environmental Studies, University of Zurich,
22	Winterthurerstr. 190, CH-805 / Zurich, Switzerland
23	Nils Bourland, <u>nils.bourland@algx.be</u>
24 25	• Laboratory of Tropical and Subtropical Forest Regions, Unit of Forest and Nature
23 26	Halag Brualhaida, halag brualhaida@hatanik.uni halla da
20	Intege Diruchielde, <u>intege.ordemende@ootanik.uni-nane.de</u>
27	• Institute of Biology/Geobolary and Bolancal Garden, Martin Lutier University Halle Wittenberg Am Kirchtor 1, D-06108 Halle Germany
20	 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-J einzig D-0/103
30	• German Centre for Integrative Biodiversity Research (IDIV) Hanc-Jena-Leipzig, D-04105
31	Kasso Daïnou kdainou@gmail.com
32	Laboratory of Tropical and Subtropical Forest Regions. Unit of Forest and Nature
33	Management Gembloux Agro-Bio Tech University of Liège Belgium
34	Roland C de Gouvenain rdegouvenain@ric edu
35	Rhode Island College Department of Biology 600 Mount Pleasant Ave Providence RI
36	USA
37	Jean-Louis Doucet, ildoucet@ulg.ac.be
38	• Laboratory of Tropical and Subtropical Forest Regions, Unit of Forest and Nature
39	Management, Gembloux Agro-Bio Tech, University of Liège, Belgium
40	Susan Doust, susan.doust@aad.gov.au
41	• Australian Antarctic Division, Channel Highway, Kingston, Tasmania 7050, Australia.
42	Paul V. A. Fine, paulfine@berkeley.edu
43	• Department of Integrative Biology, University of California, Berkeley, CA, USA
44	Claire Fortunel, <u>fortunel@umd.edu</u>
45	• INRA, UMR "Ecologie des Forêts de Guyane", BP 709, 97387, Kourou Cedex, France
46	• Department of Biology, University of Maryland, College Park, MD, USA
47	Josephine Haase, josephine.haase@biologie.uni-freiburg.de
48	• Faculty of Biology, Geobotany, University of Freiburg, Schaenzlestr. 1, D-79104
49	Freiburg, Germany

50 • Ecosystem Management, Department of Environmental Systems Science, ETH Zurich, Universitätsstr. 16, CH-8092 Zurich, Switzerland 51 52 Karen D. Holl, kholl@ucsc.edu • Environmental Studies Department, University of California, Santa Cruz, CA 95064, 53 54 USA 55 Hervé Jactel, herve.jactel@pierroton.inra.fr 56 • INRA, UMR1202 BIOGECO, Cestas, F-33510, France, Univ. Bordeaux, UMR1202 BIOGECO, Talence, F-33400, France 57 • 58 Xuefei Li, xuefei.li@ieu.uzh.ch • Institute of Evolutionary Biology and Environmental Studies, University of Zurich, 59 Winterthurerstr. 190, CH-8057 Zürich, Switzerland 60 Kaoru Kitajima, kitajima@ufl.edu 61 • Department of Biology, University of Florida, Gainesville FL, USA 62 Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Panama 63 • • Forest Biomaterial Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, 64 Kyoto, Japan 65 66 Julia Koricheva, Julia.Koricheva@rhul.ac.uk 67 School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK 68 Cristina Martínez-Garza, cristina.martinez@uaem.mx 69 • Universidad Autónoma del Estado de Morelos, Centro de Investigación en Biodiversidad 70 y Conservación, Universidad 1001, Colonia Chamilpa, Cuernavaca, Morelos 62209, 71 Mexico 72 73 Christian Messier, messier.christian@uqam.ca Center for Forest Research and ISFORT, Université du Québec à Montréal et Université 74 du Québec en Outaouais, PO Box 8888, Centre-Ville Station, Montréal, QC H3C 3P8, 75 76 Canada 77 Alain Paquette, alain.paquette@gmail.com Center for Forest Research, Université du Québec à Montréal, PO Box 8888, Centre-Ville 78 79 Station, Montréal, QC H3C 3P8, Canada 80 Christopher Philipson, christopher.philipson@ieu.uzh.ch 81 Ecosystem Management, Institute of Terrestrial Ecosystems, ETH Zürich, Universitätstrasse 16, Zurich 8092, Switzerland 82 83 Daniel Piotto, piotto@hotmail.com 84 • Universidade Federal do Sul da Bahia, BR 415, Km 39, Ferradas, Itabuna-BA, 45613-204 85 Brazil 86 Lourens Poorter, Lourens.Poorter@wur.nl • Forest Ecology and Forest Management Group, Wageningen University, P.O. Box 47, 87 6700 AA Wageningen, The Netherlands 88 89 Juan M. Posada, juan.posada@urosario.edu.co Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, 90 Carrera 24 No. 63C-69, Bogotá, D.C. 111221, Colombia 91 92 Catherine Potvin, catherine.potvin@mcgill.ca 93 • Smithsonian Tropical Research Institute, Apartado 0843–03092, Balboa, Panama 94 • Department of Biology, McGill University, 1205 Dr Penfield, Montréal, Québec H3A 95 1B1 Canada 96 Kalle Rainio, karainio@utu.fi 97 Section of Ecology, Department of Biology, FI-20014 University of Turku, Finland 98 Sabrina E. Russo, srusso2@unl.edu

99	• School of Biological Sciences, 208 Manter Hall, University of Nebraska, Lincoln, NE
100	68588 USA
101	Mariacarmen Ruiz-Jaen, <u>polypodium(<i>a</i>)yahoo.com</u>
102	• Department of Biology, McGill University, 1205 Dr Penfield, Montréal, Québec H3A
103	1B1 Canada
104	Michael Scherer-Lorenzen, <u>michael.scherer(a)biologie.uni-freiburg.de</u>
105	• Faculty of Biology, Geobotany, University of Freiburg, Schaenzlestr. 1, D-79104
106	Freiburg, Germany
107	Campbell O. Webb, <u>cwebb@oeb.harvard.edu</u>
108	• Arnold Arboretum of Harvard University, 1300 Centre Street, Boston, MA 02131, USA
109	S. Joseph Wright, <u>wrightj@si.edu</u>
110	• Smithsonian Tropical Research Institute, Apartado 0843–03092, Balboa, Panama
111	Rakan A. Zahawi, <u>zak.zahawi@ots.ac.cr</u>
112	• Las Cruces Biological Station, Organization for Tropical Studies, Apartado 73-8257, San
113	Vito de Coto Brus, Costa Rica
114	Andy Hector, andrew.hector@plants.ox.ac.uk
115	• Department of Plant Sciences, University of Oxford, OX1 3RB, UK.
116	
117	AUTHOR CONTRIBUTIONS
118	CETP and AH conceived the analysis. CETP performed analyses and wrote the first
119	draft of the manuscript. All authors contributed data and contributed substantially to
120	revisions.
121	
122	*Correspondence author. Email: <u>c.e.t.paine@stir.ac.uk</u>
123	
124	RUNNING TITLE
125	Functional traits and growth rates
126	
127	Key-words
128	FunDivEurope, functional ecology, growth, hierarchical models, Plant population and
129	community dynamics, RGR, size-standardized growth rate, TreeDivNet
130	

131 SUMMARY

Plant functional traits, in particular specific leaf area (SLA), wood density and seed mass,
 are often good predictors of individual tree growth rates within communities. Individuals
 and species with high SLA, low wood density and small seeds tend to have faster growth
 rates.

If community-level relationships between traits and growth have general predictive value,
 then similar relationships should also be observed in analyses that integrate across taxa,
 biogeographic regions, and environments. Such global consistency would imply that traits
 could serve as valuable proxies for the complex suite of factors that determine growth rate,
 and, therefore, could underpin a new generation of robust dynamic vegetation models.
 Alternatively, growth rates may depend more strongly on the local environment or
 growth-trait relationships may vary along environmental gradients.

We tested these alternative hypotheses using data on 27,352 juvenile trees, representing
278 species from 27 sites on all forested continents, and extensive functional-trait data,
38% of which were obtained at the same sites at which growth was assessed. Data on
potential evapotranspiration (PET), which summarises the joint ecological effects of
temperature and precipitation, were obtained from a global database.

4. We estimated size-standardized relative height growth rates (SGR) for all species, then
related them to functional traits and PET using mixed-effect models for the fastestgrowing species and for all species together.

5. Both the mean and 95th percentile SGR were more strongly associated with functional
traits than with PET. PET was unrelated to SGR at the global scale. SGR increased with

- 153 increasing SLA and decreased with increasing wood density and seed mass, but these
- traits explained only 3.1% of the variation in SGR. SGR-trait relationships were
- 155 consistently weak across families and biogeographic zones, and over a range of tree

- statures. Thus, the most widely studied functional traits in plant ecology were poorpredictors of tree growth over large scales.
- 158 6. *Synthesis*. We conclude that these functional traits alone may be unsuitable for predicting
- 159 growth of trees over broad scales. Determining the functional traits that predict vital rates
- 160 under specific environmental conditions may generate more insight than a monolithic
- 161 global relationship can offer.

162 INTRODUCTION

163	Functional traits impact population growth rates via their effects on the vital rates of
164	recruitment, growth, reproduction and survival (Lavorel & Garnier 2002; Violle et al. 2007;
165	Adler et al. 2014). They have been adopted with enthusiasm by ecologists in part because
166	they reduce the dimensionality inherent in species-rich ecosystems, providing a tractable way
167	to make inferences on community dynamics and ecosystem functioning (McGill et al. 2006).
168	The use of functional traits has provided substantial insight into the determinants of
169	community structure, including relative abundances and competitive hierarchies (Kraft,
170	Valencia & Ackerly 2008; Cornwell & Ackerly 2010; Kunstler et al. 2012). Making
171	community-level inferences using functional traits is predicated, however, on the assumption
172	that they are strongly associated with the vital rates of individuals.
173	This assumption has been strongly validated in forested sites, where functional traits,
174	especially wood density, are associated with interspecific variation in the growth rates of
175	trees. Variation in wood density accounted for up to 33% of the variation in relative growth
176	rate (RGR) for the fastest-growing juveniles of Panamanian rain-forest tree species, though
177	relationships were weaker among adult trees, slower-growing individuals, and with other
178	functional traits (Wright et al. 2010; Rüger et al. 2012). Across Spain, Martínez-Vilalta et al.
179	(2010) showed that RGR was inversely related to wood density ($R^2 = 0.35$) using national
180	forest inventory data. At a still larger scale, Poorter et al. (2008) showed that wood density
181	explained 11% of the variation in RGR across five Neotropical forest sites. Because of the
182	consistency in results among their five sites, Poorter et al. (2008) suggested that trait-growth
183	relationships would be similar across rain forests, since all rain forest trees face similar trade-
184	offs.

185 We tested the hypothesis that the relationships between tree functional traits and RGR
186 that are found within communities are also encountered at a global scale. If traits have a

187	general and consistent relationship with RGR, then significant covariation should be observed
188	in a data set that encompasses global variation in environments and taxa with diverse
189	biogeographic and phylogenetic histories. Such consistency would imply that functional traits
190	can serve as proxies for the complex suite of factors that determine growth rate, given the
191	abiotic and biotic environment, and could thus underpin a new generation of robust dynamic
192	vegetation models (Scheiter, Langan & Higgins 2013; Sakschewski et al. in press).
193	Alternatively, at such large scales, growth rates may depend more upon environmental
194	conditions, or upon trait-environment interactions, such that the strength of growth-trait
195	relationships varies along environmental gradients.
196	We examined three commonly measured functional traits, for which global
197	relationships with the individual tree growth would be expected: specific leaf area (SLA),
198	wood density and seed mass (Grime, Hunt & Grime 1975; Poorter & Remkes 1990; Poorter
199	& van der Werf 1998). RGR should correlate positively with increasing SLA, but negatively
200	with wood density and seed mass, for the following reasons. SLA is a strong determinant of
201	carbon assimilation capacity per unit mass invested in photosynthetic surface area (Rees et al.
202	2010). Wood density governs the translation of assimilated carbon into stem and branch
203	biomass, thereby influencing tree height and crown growth. Denser wood is associated with
204	increased construction costs and decreased hydraulic conductance, both of which can reduce
205	growth rate (Chave et al. 2009). Finally, seed mass is inversely related to survival for
206	seedlings, and can thus affect the growth of juvenile plants via life-history correlations,
207	although this effect dissipates when growth rates are compared at a standard size (Turnbull et
208	<i>al.</i> 2012).
209	At a global scale, variation in temperature and precipitation should also affect growth

210 rates. Though rates of photosynthesis and maintenance respiration are strongly temperature-

211 dependent (Atkin *et al.* 2005), the primary ecological effect of elevated temperature on

212 growth rates derives from its interaction with low precipitation, increasing drought stress. High evaporative demand may limit photosynthetic carbon assimilation due to stomatal 213 214 closure to reduce water stress (Keenan el al. 2013). 215 We assessed the relative importance of functional traits and environmental conditions 216 in determining variation in sapling growth rates using a unique global dataset of 27,352 217 individual juvenile trees representing 278 species from sites on all forested continents. 218 Functional trait data were collected for all species, 38% of which were obtained from the 219 same sites at which growth was assessed. Potential evapotranspiration (PET) was obtained 220 for all sites from a global database. We estimated growth rates at a standardized size using 221 nonlinear hierarchical Bayesian models, which allowed us to account for uncertainty in 222 growth rates. We then assessed the relationships among growth rates, functional traits and 223 PET using mixed-effect models. Functional traits may better predict maximal than mean 224 growth rates (Grime et al. 1975; ter Steege 2003; Wright et al. 2010). Therefore, we also used 225 linear quantile mixed-effect models to examine the growth of the fastest-growing species. To 226 further assess the generality of growth-trait relationships, we partitioned the variation in the 227 global relationships among plant families and biogeographic regions.

228

229 MATERIALS AND METHODS

230 Study sites and growth data

We assessed height growth on juvenile trees because less data were available for radial growth and for adults. Furthermore, juveniles are expected to have stronger growth-trait relationships than adults, given their smaller pools of stored reserves. We included only freestanding tree species; palms were also excluded as they do not have secondary growth. Data on tree growth were compiled from 27 sites across six continents. The key criterion for the inclusion of a site in this study was that juvenile trees of known age were grown in a nursery,

237 then planted into mixed-species stands. This ensured a measure of consistency in the age and ontogenetic stage of juveniles within and among sites. The median juvenile was 37 cm tall 238 239 when transplanted (inter-quartile range: 7-170 cm). 240 The core of the dataset came from the European sites of TreeDivNet 241 (www.treedivnet.ugent.be), which constitute the experimental platform of FunDivEUROPE 242 (Baeten et al. 2013), a consortium of biodiversity-ecosystem functioning studies on woody 243 plants. These sites were complemented by other TreeDivNet sites (Bruelheide et al. 2014), reforestation trials, and studies designed to test specific ecological hypotheses. The latter two 244 245 classes of studies were located through literature searches. In sites with multiple diversity 246 treatments, we used only data from the one with the greatest species diversity. These 247 treatments most closely resembled natural conditions, and their use allowed us to avoid 248 interference with on-going research at each site. Where light availability was manipulated, we 249 used the treatment with the greatest light availability to reduce within-site heterogeneity and 250 to assure positive growth rates. The sites spanned a latitudinal range from 18° S (Queensland, 251 Australia) to 62° N (Satakunta, Finland). 252 Across our sites, annual rainfall varied between 533 and 4900 mm, and mean annual 253 temperature between 5.0 and 27.7° C. Temperature and precipitation were highly correlated, 254 however, precluding an examination of their individual effects (r = 0.79). Therefore, we 255 investigated environmental conditions in terms of potential evapotranspiration (PET), which 256 integrates the effects of temperature and precipitation, and expresses the ability of the

atmosphere to remove water through evaporation and transpiration (Allen *et al.* 1998). This

climatic metric, though relatively crude, was appropriate for this study, in which the

- 259 heterogeneity of data sources precludes the investigation of more detailed aspects of the
- 260 biotic environment. We obtained standardized PET data for each site from the Consortium for
- 261 Spatial Information's Global Aridity and PET Database (<u>http://www.cgiar-</u>

<u>csi.org/data/global-aridity-and-pet-database</u>). PET data were downloaded with 30 arc-second
 spatial resolution as an annual average over the years 1950-2000. We extracted the PET
 values for grid cells within 50 km of each study site, then, for analysis, calculated the mean
 PET for each site.

266 In total, we studied 278 species and 27,352 individuals, on which 120,150 267 measurements were made. Because there was substantial variation among sites in terms of 268 light availability, planting density, study duration and species composition, the 39 species 269 that occurred in more than one site were modelled independently, yielding 333 species-site 270 combinations (henceforth referred to as 'species'). Sample sizes varied among sites: 3 to 48 271 species, and 35 to 7065 individuals were measured at each site. The median species was 272 represented by 32 individuals (range: 5 to 2205) and 124 measurements (range: 10 to 10716). 273 The median study lasted 49 months (range 11 to 145). Nomenclature follows that of The 274 Plant List (http://theplantlist.org). See Figure 1 and Supplementary Table 1 for details of each 275 site.

276

277 Trait data

278 Functional trait data were acquired from many sources. In 14 of the 27 sites, traits were 279 measured on the same species at which growth was assessed, yielding 'local' values of SLA, 280 wood density and seed mass for 192, 121, and 66 species, respectively. Trait data for the 281 remaining species were obtained from publicly available databases and published studies. The TRY database of plant traits (Kattge et al. 2011), Chave et al. (2009) and the Kew Seed 282 283 Information Database (SID, http://data.kew.org/sid), were the primary resources for data on 284 SLA, wood density and seed mass, respectively. Supplemental data were gleaned from literature searches. Species-level data on SLA, wood density and seed mass were available 285 286 for 91, 96 and 86% of species, respectively. To estimate the functional traits of the remaining

287 species, we first obtained the relevant traits for all congeneric species from the 288 aforementioned primary data sources. Following Gallagher & Leishman (2012), we regressed 289 genus-mean trait values against the observed species mean trait values, and then predicted 290 species-mean trait values from the genus-mean values (R²: SLA: 15%, WD 73%, SM: 86%). 291 292 Analyses 293 Relationships between relative growth rates and functional traits were evaluated in a three-294 step process. 295 *First*, we selected the functional form to predict individual height as a function of 296 time. In 23 sites, juveniles were measured for height four or more times, allowing nonlinear 297 models to be fit. Such models are appropriate because RGR tends to decrease over time, 298 owing to the accumulation of non-photosynthetic biomass and the local depletion of soil 299 resources (Paine et al. 2012). We fit linear, exponential, power-law, asymptotic and logistic 300 mixed-effect models for each species-site combination separately, then selected the best 301 function for each one on the basis of Akaike's information criterion (AIC). In the remaining 302 four sites, juveniles were measured three times; their growth was modelled as an exponential 303 function of time. All growth models included individual trees as a random effect. 304 Second, we predicted the height of each individual tree as a function of time using 305 species-specific Bayesian hierarchical models with the functional forms selected in step one. 306 Parameters were given uninformative priors and were fitted with a Hamiltonian Monte Carlo 307 sampler using the No-U-Turns (NUTS) algorithm, with the constraint that predicted heights 308 always be positive. We implemented these models in stan 2.5 via the package 'rstan' in R 309 3.1.1 (R Core Development Team 2014; Stan Development Team 2014). Four chains were 310 run for each species-specific growth model. All models were run for 20,000 iterations, 311 discarding the first 19,000 as a burn-in period. We used the Rhat statistic, together with a

visual inspection of the chains, to assess convergence (Gelman & Rubin 1992). Parameters in
all models converged before 1000 iterations (Rhat≈1).

314 These models vielded posterior distributions of growth parameters for each species, 315 from which we calculated posterior distributions of RGR at a standardized height of 100 cm. 316 a height attained by almost all species. We refer to this size-standardized RGR as 'SGR'. 317 Size-standardization reduces the potential for bias when making comparisons among species 318 that vary in initial size (Rees et al. 2010; Turnbull et al. 2012), as was the case here. SGR 319 was calculated as the derivative of the function used to predict height, divided by the standard 320 height (Paine *et al.* 2012). Trait values can vary over ontogeny, and size-standardized trait 321 values can explain variation in SGR (Rees et al. 2010), even though species rankings are 322 largely maintained (Poorter 2007). Even so, we did not analyse ontogenetic variation in trait 323 values, because data on ontogenetic variation were not available for most species in the 324 dataset.

325 Third, we predicted SGR as a function of PET and functional traits (SLA, wood density, and seed mass) for all species, and for the fastest-growing species (i.e., species in the 326 95th quantile of growth rates). The former group was analysed with linear mixed-effect 327 328 models, whereas the latter group was analysed using linear mixed-effect quantile models 329 (Geraci 2014) including additive and interactive effects (Table 1). Because preliminary 330 analyses indicated that SGR varied substantially among sites, we included site-specific 331 intercepts as a random effect in all models. In all models, SGR and seed mass were log-332 transformed to improve normality. Predictor values were always centred and standardized to 333 unit variance, to allow comparisons among their slope parameters. Thus, intercepts represent 334 the SGR for a species with trait values at the global mean and with PET at the global average. 335 We accounted for uncertainty in our estimates of SGR by weighting each observation by the 336 standard deviation of its posterior distribution obtained in step two. Doing so, we assumed the

337	true SGR values were log-normally distributed with species-specific means and standard
338	deviations. In contrast, in many previous studies, species-mean growth rates have been
339	assessed as point estimates, implying that they were known without error (Reich, Walters &
340	Ellsworth 1992; Poorter & van der Werf 1998; but see Rüger et al. 2012). Models were
341	compared on the basis of AIC. For the linear mixed-effect models, pseudo R ² was obtained
342	with the method of Nakagawa & Schielzeth (2013). We were not able to calculate the
343	variance explained for the fast-growing species, because such methods have not yet been
344	developed for linear quantile mixed-effect models (Geraci 2014).
345	In addition to the global analyses, we partitioned variance in the SGR-trait
346	relationships among study sites, plant families and biogeographic regions following the
347	approach of Gelman (2005). Our aim was to estimate the variation contributed by each source
348	to global SGR-trait relationships, rather than to test hypotheses. Thus, we built an additional
349	linear mixed-effect model with random intercepts and slopes for sites, families and regions.
350	Our biogeographic regions mostly aligned with continental margins but were adjusted to
351	reduce variation in sample sizes (Fig. 1). To make the sources of variation comparable, we
352	assumed that effects of sites, families and regions on intercepts and slopes were each drawn
353	from separate, independent, zero-mean normal distributions. We estimated the variance
354	contributed by each source to SGR and the three SGR-trait relationships through 2000
355	bootstrap samples of the variance-covariance matrix. Linear mixed-effect models and linear
356	quantile mixed-effect models were implemented in the lme4 and lqmm packages,
357	respectively (Bates et al. 2014; Geraci 2014).
358	
359	RESULTS
360	Species-mean SLA varied fifteen-fold (3.37–50.38 m ^{2} ·kg ⁻¹), wood density five-fold (0.16–

 $0.96 \text{ g} \cdot \text{cm}^{-3}$), and seed mass by six orders of magnitude (0.11–33,333 mg). Functional traits

were largely uncorrelated with each other, with coefficients of determination ≤ 0.06, though
 there were significantly positive SLA-wood density and seed mass-wood density
 relationships (Fig. 2). See Supplementary Table 2 for details of the studied species and their
 functional traits.

Log-transformed height was best modelled with a logistic or asymptotic function for 210 and 70 species, respectively, whereas the remaining 53 were adequately modelled by exponential functions (Supplementary Figure 1). Thus, growth rates decreased as individual trees increased in size in 84% of the studied species. Species-mean SGR varied among species over four orders of magnitude, from 9.52×10^{-6} cm·cm⁻¹·day⁻¹ in *Protium aracouchini* to 0.014 cm·cm⁻¹·day⁻¹ in *Phyllanthus salviifolius*, with the median species having a SGR of 1.28×10^{-3} cm·cm⁻¹·day⁻¹ (Fig. 3).

Both mean and 95th percentile SGR were more strongly associated with functional 373 374 traits than with PET. For all species together, as well as fast-growing species, models with 375 traits alone had the lowest AIC values (Table 1). The three functional traits were associated 376 with mean SGR, with each SGR-trait slope differing significantly from zero (95 per cent confidence intervals: SLA, 0.09 - 0.11; WD: -0.11 - -0.09, SM: -0.10 - -0.08; Fig. 3). Judged 377 378 by their standardized slope coefficients, the three traits were associated with SGR to a similar degree. Thus, a 10 m²·kg⁻¹ increase in SLA increased SGR by 10.3%, a 0.1 g·cm⁻³ increase in 379 380 wood density reduced SGR by 5.3%, and a one order of magnitude increase in seed mass 381 reduced SGR by 7.3%. Overall, however, functional traits explained only 3.1% of the 382 variation in SGR (marginal pseudo-R²). Examined independently, SLA, wood density and seed mass explained 0.8%, 1.4% and 1.6% of the variation in SGR, respectively. Far more 383 384 variance was explained by among-site variation in SGR (conditional pseudo- R^2 : 71%). When the fastest-growing species were analysed (i.e., species in the 95th percentile of 385 386 growth rates), seed mass was significantly negatively related to SGR (P < 0.0001), whereas

387	SLA and wood density had no effect (SLA: $P = 0.42$, wood density: $P = 0.072$; Fig. 3A-C).
388	Accordingly, comparing standardized slope coefficients from the quantile mixed-effect model,
389	seed mass affected the SGR of fast-growing species more strongly than did SLA or wood
390	density (seed mass = -0.17 , SLA = -0.01 , wood density = -0.13). For these species, a one
391	order of magnitude increase in seed mass reduced SGR by 19.2%.
392	We partitioned the variation in SGR and the SGR-trait relationships among sites,
393	plant families and biogeographic regions (Fig. 4). SGR varied among families, but families
394	did not differ in their SGR-trait relationships (parametric bootstrap likelihood ratio test: P =
395	0.45). There was no evidence of variation in SGR or SGR-trait relationships among
396	biogeographic regions (P \ge 0.31). Therefore, sites were the dominant source of variation in
397	SGR, with relatively minor contributions from families and regions.
398	We assessed the generality of growth-trait relationships in four additional ways. First,
399	we assessed them using only those sites in which study designs were most similar. This
400	evaluated the possibility that global growth-trait relationships were obscured by among-site
401	variation in experimental design (Supplementary Table 1). To do so, we considered the
402	global sites of TreeDivNet, and the European sites of that network (nine and five sites,
403	respectively). Growth-trait relationships in the global TreeDivNet sites were of a similar
404	magnitude to those in the global dataset (standardized slope coefficients: SLA: -0.15, WD: -
405	0.14, SM: -0.14; Supplementary Figure 2). In the European TreeDivNet sites, there were
406	significant interactions between functional traits and PET, such that increasing PET
407	strengthened SGR-trait effects (Supplementary Figure 2), despite the shorter gradients of PET
408	and traits in this geographically restricted subset of the data. Surprisingly, in both analyses,
409	increasing SLA was associated with reduced growth rates.
410	Competitive interactions could intensify as juveniles grow, for example, affecting
411	SGR-trait relationships. We examined, therefore, whether the strength of growth-trait

412	relationships varied with the size at which growth rates were measured. We repeated the
413	linear mixed-effect analyses using SGR estimated at heights of 200, 300, and 500 cm,
414	including only the species that attained those heights. Models that included additive effects of
415	PET and functional traits were preferred when SGR was estimated at these heights.
416	Nevertheless, we infer that PET only marginally affected growth rates, because more-
417	parsimonious trait-only models fit the data equivalently well, regardless of the size at which
418	growth was assessed (Δ AIC: 2.5, 0.8 and 1.2, respectively). Seed mass was the only
419	significant predictor of growth at heights above 100 cm (Supplementary Figure 3). The slope
420	of the growth-seed mass relationships remained largely consistent as juveniles grew. Thus,
421	growth trait relationships became no stronger as juveniles increased in size.
422	Within-site variation in environmental conditions could retard the growth of some
423	individuals. For example, photo-inhibition may have reduced growth rates for shade-tolerant
424	species planted into sunny sites (Loik & Holl 2001), even as shading from faster-growing
425	neighbours may have reduced growth rates for some individuals in others (Tobner et al.
426	2013). We evaluated this possibility by modelling the growth of the fastest-growing
427	individuals (i.e., individuals in the 95 th percentile of growth rates for each species) with an
428	additional set of mixed-effect models. A functional trait-only model fit the data more
429	parsimoniously and almost equivalently well as a model including PET (Table 1). Though all
430	three functional traits significantly affected the growth of the fastest-growing individuals, the
431	standardized slope coefficients were no greater in magnitude than in the model for all species
432	(SLA: 0.09, WD: -0.12, SM: -0.12; Fig. 3D-F). Nor did this model explain substantially more
433	variance in growth rates (marginal pseudo-R ² , SLA: 0.7%, wood density: 1.6%, seed mass:
434	2.2%). Thus, even for the fastest-growing individuals in each species, functional traits
435	remained poor predictors of growth.

436 Finally, not all functional trait values were available for all species at the sites where 437 saplings were measured. Intra-specific trait variation, however, can be substantial (Albert et 438 al. 2010). By including trait data drawn from databases and the literature, we may have 439 introduced variation which obscured the global growth-trait relationships. We tested this 440 possibility by evaluating whether the slopes of the growth-trait relationships differed between 441 the set of species with locally measured traits and the set with trait data obtained from other 442 sources. The three traits were measured locally on differing subsets of species. SLA, wood 443 density and seed mass were locally available for 192, 121 and 66 species, respectively. Thus, 444 we built a mixed-effect model for each trait to test if the slope of the growth-trait relationship depended on the origin of the trait data. They did not (parametric bootstrap likelihood ratio 445 446 tests: $P \ge 0.88$). These models were similarly poor at explaining the variation in SGR (Pseudo 447 $R^2 \le 2.3\%$). Therefore, we do not believe that the weakness in the global growth-trait 448 relationships is attributable to intra-specific trait variation.

449

450 **DISCUSSION**

451 At a global scale, among-species variation in sapling growth was positively associated with 452 SLA, and negatively with wood density and seed mass. Even so, they were surprisingly weak, 453 and did not strengthen when we analysed more homogeneous geographic subsets, juveniles 454 of larger stature, fast-growing individuals, or locally collected functional trait data. Due to 455 their significant negative covariation, we conclude that the relationships between functional 456 traits and sapling growth are globally consistent. On the other hand, growth and growth-trait 457 relationships were independent of global variation in potential evapotranspiration. We discuss 458 why traits are reasonable predictors of performance at local, but not global scales, and the 459 implication of our results for trait-based global vegetation modelling.

460

461 *Why are global growth-trait relationships so weak?*

462 Previous studies have found stronger relationships between growth and the traits we studied. 463 especially when plants were grown under controlled conditions (Grime et al. 1975; Poorter & 464 van der Werf 1998). Combinations of functional traits explained up to 40-60% of the 465 variation in diameter growth for field-grown trees assessed at single sites (Wright et al. 2010; 466 Rüger et al. 2012), and slightly less at regional scales (Poorter et al. 2008; Martínez-Vilalta et 467 al. 2010). In contrast, we found that the three functional traits explained little variation in 468 growth at the global scale. This broad result is made robust by the use of a) a substantial 469 dataset of global scope, b) data-collection methods that were standardized across globally 470 distributed study sites, c) an analysis through which uncertainty was propagated and d) 471 estimates of relative growth rate that were made at standardized sizes.

472 The discrepancy between previous studies and the current, global one might be 473 explained by the fact that an individual's growth rate is not only affected by its functional 474 traits, but also by the environmental conditions it experiences and the suitability of its traits to 475 its environment. Environmental conditions entered our analyses as the fixed effect of PET, 476 which summarized the joint influence of temperature and precipitation, and the random effect 477 of site, which accounted for unmeasured sources of variation in SGR among sites. Surprisingly, PET affected neither SGR nor global SGR-trait relationships, although among-478 479 site variation in SGR was substantial. This may have occurred because we selected study 480 sites with similar experimental designs and relatively high-light conditions; 59% of species 481 were planted into sites with \geq 50% sunlight, and 70% were planted with \geq 25% sunlight 482 (Supplementary Table 1). Simultaneously, we found weak relationships between SGR and 483 functional traits. Together, these observations suggest that growth rates were strongly 484 affected by unmeasured within-site variation in environmental conditions. We tested this by 485 evaluating the relationships among growth, traits and PET for the fastest-growing individuals

486 of each species, and surprisingly, found that relationships were no stronger than in the overall 487 analysis (Fig. 3D-F). This indicates that functional traits were poor predictors of growth even 488 for individuals that did not experience adverse environmental conditions. The discrepancy 489 could also have arisen if there were substantial variation in growth-trait relationships among 490 sites, but after testing with an additional set of models that allowed for varying growth-trait 491 relationships in each site, we found no support for the suggestion that growth-trait 492 relationships vary among sites (parametric bootstrap likelihood ration tests: $P \ge 0.75$), 493 confirming the minor variance in slopes explained by sites in the variance-partitioning 494 analysis (Fig. 4).

495 Our choice of growth metric may have affected our inference of the strength of the 496 growth-trait relationships. Ideally, growth would be assessed as whole-plant biomass, rather 497 than as stem height. This was not feasible in the current study, as it would have required 498 species-specific allometries or destructive harvests, which were not available for most species 499 in our dataset. Growth can also be measured as girth, which is often strongly correlated with 500 height (Martínez-Garza, Bongers & Poorter 2013). For trees <140 cm, however, there is little 501 consensus on the point at which girth should be measured. Moreover, height growth can be 502 evaluated much more precisely than radial growth because small plants grow more in height 503 than in diameter, and height growth is more ecologically relevant, as it determines an 504 individual's position in the vertical light profile of the forest, and thus, its access to light. 505 Using stem height may have introduced some noise into the analysis, owing to interspecific 506 variation in biomass allocation to height. We believe, however, that it is unlikely to have been 507 sufficient to generate the globally weak trait-growth relationships we observed.

Altogether, it is unclear why global relationships among functional traits, PET and growth are so weak. Thus, evaluating the joint effects of environmental conditions and functional traits on growth rates remains an important topic of study (Rüger *et al.* 2012). 511

512 Toward better predictions of growth

513	To better manage and conserve ecological communities, we must improve our ability to
514	predict their dynamics (Clark et al. 2001). The most promising models to do so are rooted in
515	demography (Boulangeat et al. 2012), but obtaining demographic data is challenging,
516	especially in species-rich communities where many species are rare. The ability to accurately
517	predict vital rates, and thus demography, from data that are relatively easily obtained would
518	allow a step change in ecological forecasting (Adler et al. 2014). The relative ease of
519	collecting functional trait data and the potential of functional traits to yield insight into
520	population and community structure (Kraft et al. 2008; Cornwell & Ackerly 2010; Kunstler
521	et al. 2012), suggest that integrating them into dynamic vegetation models would increase
522	their reliability (Scheiter et al. 2013; Sakschewski et al. in press). Our results, however,
523	indicate that the functional traits most commonly investigated in plant ecology are poor
524	predictors of growth at large scales. Though organ-specific functional traits are easily
525	measured, they integrate many physiological processes, are intricately interrelated, and can be
526	highly plastic (Russo et al. 2010; Paine et al. 2011; Pérez-Harguindeguy et al. 2013).
527	Moreover, functional integration occurs at the individual level, not at the level of organs
528	(Craine et al. 2012). Thus, many combinations of trait values can yield similar growth rates
529	(Marks & Lechowicz 2006). Integrated measures, such as whole-plant carbon use efficiency,
530	may be more effective (Enquist et al. 2007).
531	Is it feasible to predict plant community dynamics over broad scales? It has been
532	suggested that 'hard' functional traits, such as photosynthetic or respiration rates, would be
533	better predictors of vital rates than 'soft' traits such as SLA, wood density and seed mass
534	(Lavorel & Garnier 2002). This is unlikely under field conditions, however, because the

535 physiological bases of hard traits make them overly sensitive to heterogeneity in

536	environmental conditions. Contrastingly, experimental measurements of whole-plant
537	tolerance to low resource availability may predict vital rates, and thus community dynamics,
538	over broader scales than can organ-specific functional traits (Craine et al. 2012). As data on
539	species' physiological tolerance to low resource availability become more widely available,
540	they should allow broader-scale predictions of community structure and dynamics
541	(Engelbrecht et al. 2007). We suggest that future studies focus on determining which
542	functional traits predict the vital rates of individuals under various environmental conditions,
543	and at what spatial scales (Martínez-Garza et al. 2005), rather than seeking monolithic global
544	relationships. Regardless of the approach, improving techniques to predict the dynamics of
545	ecological communities remains a vital task, given the urgent need for their management and
546	conservation.
547	
548	Acknowledgements
549	We thank the multitudes involved in planting, measuring and maintenance of the study sites,
550	and collecting growth and trait data. Jens Kattge, manager of the TRY global trait database,
551	and Kyle Dexter contributed additional trait data. Statistical advice from Marco Geraci,
552	Sophia Ratcliffe, Nadja Rüger and Christian Wirth strengthened the analysis. This research
553	was funded by Swiss National Science grant number 121967 to A.H. and by the European
554	Union Seventh Framework Program (FP7/2007-2013) under grant agreements n° 265171
555	(project FunDivEUROPE) and n° 226299 (project BACCARA).
556 557	DATA ACCESSIBILITY
228 559	All growth and functional trait data used in this study are archived at the DKYAD online database under doi:10.5061/dryad b9083
560	In addition to the data collected for this study, functional trait data were obtained from the
561	following sources.
562	Agyeman, V.K., Kyereh, B., Swaine, M.D. & Thompson, J. (2010) Species differences in
563	seedling growth and leaf water response to light quality. Ghana Journal of Forestry,
564	26 , 101–123.

565	Agyeman, V.K., Swaine, M.D. & Thompson, J. (1999) Responses of tropical forest tree
566	seedlings to irradiance and the derivation of a light response index. Journal of
567	<i>Ecology</i> , 87 , 815–827.

568 Anonymous. (2000) *Seeds of Woody Plants in China*. China Forestry Publishing House.

- Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L.L., Di Fiore, A., Erwin, T.L.,
 Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A.,
 Neill, D. a., Patiño, S., Pitman, N.C. a., Silva, J.N.M. & Martínez, R.V. (2004)
 Variation in wood density determines spatial patterns in Amazonian forest biomass. *Global Change Biology*, 10, 545–562.
- Baraloto, C. & Forget, P.-M. (2007) Seed size, seedling morphology, and response to deep
 shade and damage in neotropical rain forest trees. *American Journal of Botany*, 94,
 901–911.
- Baraloto, C., Goldberg, D.E. & Bonal, D. (2005) Performance trade-offs among tropical tree
 seedlings in contrasting microhabitats. *Ecology*, 86, 2461–2472.
- Blaser, J., Rajoelison, G., Tsza, G., Rajemison, M., Rabevohitra, R., Randrianjafy, H.,
 Razafindrianilana, N., Rakotovao, G. & Comtet, S. (1993) *Choix des Essences Pour la Sylviculture À Madagascar*.
- Bloor, J.M.G. (2003) Light responses of shade-tolerant tropical tree species in north-east
 Queensland: a comparison of forest- and shadehouse-grown seedlings. *Journal of Tropical Ecology*, 2, 163–170.
- Bloor, J.M.G. & Grubb, P.J. (2004) Morphological plasticity of shade-tolerant tropical
 rainforest tree seedlings exposed to light changes. *Functional Ecology*, 18, 337–348.
- 587 Calvo-Alvarado, J.C., McDowell, N.G. & Waring, R.H. (2008) Allometric relationships
 588 predicting foliar biomass and leaf area:sapwood area ratio from tree height in five
 589 Costa Rican rain forest species. *Tree physiology*, 28, 1601–8.
- 590 Carvalho, P.E.R. (2003) *Espécies Arbóreas Brasileiras*. Embrapa Informação Tecnológica
 591 Brasília.
- 592 Chave, J. *et al.* 2009. Ecology Letters. Towards a worldwide wood economics spectrum. 12:
 593 351-66. doi: 10.1111/j.1461-0248.2009.01285.x
- Choong, M.F., Lucas, P.W., Ong, J.S.Y., Pereira, B., Tan, H.T.W. & Turner, I.M. (1992)
 Leaf fracture toughness and sclerophylly: their correlations and ecological
 implications. *New Phytologist*, **121**, 597–610.
- 597 Clark, D. & Clark, D.B. (1992) Life history diversity of canopy and emergent trees in a
 598 neotropical rain forest. *Ecological monographs*, 62, 315–344.
- Coll, L., Potvin, C., Messier, C. & Delagrange, S. (2008) Root architecture and allocation
 patterns of eight native tropical species with different successional status used in
 open-grown mixed plantations in Panama. *Trees*, 22, 585–596.
- Doucet, J.-L., Kouadio, Y.L., Monticelli, D. & Lejeune, P. (2009) Enrichment of logging
 gaps with moabi (Baillonella toxisperma Pierre) in a Central African rain forest.
 Forest Ecology and Management, 258, 2407–2415.
- Doust, S.J. (2011) Seed Removal and Predation as Factors Affecting Seed Availability of
 Tree Species in Degraded Habitats and Restoration Plantings in Rainforest Areas of
 Queensland, Australia. *Restoration Ecology*, **19**, 617–626.
- Doust, S.J., Erskine, P.D. & Lamb, D. (2008) Restoring rainforest species by direct seeding:
 Tree seedling establishment and growth performance on degraded land in the wet
 tropics of Australia. *Forest Ecology and Management*, **256**, 1178–1188.
- Falster, D.S. & Westoby, M. (2005) Alternative height strategies among 45 dicot rain forest
 species from tropical Queensland, Australia. *Journal of Ecology*, 93, 521–535.

613	Gerhardt, K. & Friedriksson, D. (1995) Biomass allocation by broad-leaf mahogany seedlings,
614	Swietenia macrophylla (King), in abandoned pasture and secondary dry forest in
615	Guanacaste, Costa Rica. <i>Biotropica</i> , 27 , 174–182.
616	Gonzalez, E.J. (1993) Effect of seed size on germination and seedling vigor of Virola
617	koschnyi Warb. Forest Ecology and Management, 57, 275–281.
618	González-Rodríguez, V., Villar, R. & Navarro-Cerrillo, R.M. (2011) Maternal influences on
619	seed mass effect and initial seedling growth in four Ouercus species. Acta Oecologica,
620	37 . 1–9.
621	de Gouvenain, R.C., Kobe, R.K. & Silander, J.A. (2007) Partitioning of understorev light and
622	dry-season soil moisture gradients among seedlings of four rain-forest tree species in
623	Madagascar, Journal of Tropical Ecology, 23, 569-579.
624	Hector A Philipson C D Saner P Chamagne J Dzulkifli D O'Brien M Snaddon
625	IL Ulok P Weilenmann M Revnolds G & Godfrav H C I (2011) The Sabah
626	Biodiversity Experiment: a long-term test of the role of tree diversity in restoring
627	tropical forest structure and functioning <i>Philosophical transactions of the Royal</i>
628	Society of London Series B Biological sciences 366 3303–15
629	Hidavat S & Simpson W T (1994) Use of Green Moisture Content and Basic Specific
630	Gravity to Group Tropical Woods for Kiln Drying US Dept. of Agriculture. Forest
631	Service Forest Products Laboratory
632	Holl K D Zahawi R a Cole R I Ostertag R & Cordell S (2011) Planting Seedlings in
633	Tree Islands Versus Plantations as a Large-Scale Tropical Forest Restoration Strategy
634	Restoration Ecology 19 470–479
635	Kattge L et al. (2011) TRY Plant Trait Database http://try-db.org
636	Kitajima K Cordero R a & Wright S I (2013) Leaf life span spectrum of tropical woody
637	seedlings: effects of light and ontogeny and consequences for survival <i>Annals of</i>
638	hotany 112 685–699
639	Kitajima K Llorens A -M Stefanescu C Timchenko MV Lucas PW & Wright S I
640	(2012) How cellulose-based leaf toughness and lamina density contribute to long leaf
641	lifesnans of shade-tolerant species New Phytologist 195 640–52
642	Kurokawa H Kitahashi Y Kojke T Laj L & Nakashizuka T (2004) Allocation to
643	defense or growth in dipterocarp forest seedlings in Borneo <i>Oecologia</i> 140 261–70
644	Lavinsky A O Souza Sant'Ana C Mielke M S Almeida A - A F Gomes F P Franca S
645	& Costa Silva D (2007) Effects of light availability and soil flooding on growth and
646	nhotosynthetic characteristics of Genina americana L. seedlings. New Forests 34 41–
647	50
648	Lee H S Davies S I LaFrankie I V Tan S Yamakura T Itoh A Ohkubo T &
649	Ashton P.S. (2002) Floristic and structural diversity of mixed dipterocarp forest in
650	Lambir Hills National Park Sarawak Malaysia Journal of Tropical Forest Science
651	14 379–400
652	Lehto T & Grace I (1994) Carbon balance of tropical tree seedlings: a comparison of two
653	species New Phytologist 127 455-463
654	Li X (2011) Light-Use Strategies and Riomass Accumulation of Woody Species in a
655	Subtronical Forest in Southwest China University of Zurich
656	Markesteijn L. & Poorter L. (2009) Seedling root morphology and biomass allocation of 62
657	tropical tree species in relation to drought- and shade-tolerance. <i>Journal of Ecology</i>
658	97 311–325
659	Okubo S. Tomatsu A. Muhamad D. Harashina K. & Takeuchi K. (2012) Leaf functional
660	traits and functional diversity of multistoried agroforests in West Java Indonesia
661	Agriculture Ecosystems & Environment 149 91–99
001	

662	Osunkoya, O., Ash, J. & Hopkins, M. (1994) Influence of seed size and seedling ecological
663	attributes on shade-tolerance of rain-forest tree species in northern Queensland.
664	<i>Journal of Ecology</i> , 82 , 149–163.

- Otani, T. & Shibata, E. (2000) Seed dispersal and predation by Yakushima macaques,
 Macaca fuscata yakui, in a warm temperate forest of Yakushima Island, southern
 Japan. *Ecological Research*, 15, 133–144.
- Palow, D.T., Nolting, K. & Kitajima, K. (2012) Functional trait divergence of juveniles and
 adults of nine Inga species with contrasting soil preference in a tropical rain forest (ed
 L Sack). *Functional Ecology*, 26, 1144–1152.
- Paoli, G.D., Peart, D.R., Leighton, M. & Samsoedin, I. (2001) An Ecological and Economic
 Assessment of the Nontimber Forest Product Gaharu Wood in Gunung Palung
 National Park, West Kalimantan, Indonesia. *Conservation Biology*, 15, 1721–1732.
- Paquette, A. & Messier, C. (2011) The effect of biodiversity on tree productivity: from
 temperate to boreal forests. *Global Ecology and Biogeography*, 20, 170–180.
- Paulus, B.C., Kanowski, J., Gadek, P. a & Hyde, K.D. (2006) Diversity and distribution of
 saprobic microfungi in leaf litter of an Australian tropical rainforest. *Mycological research*, 110, 1441–54.
- Piotto, D. (2008) A meta-analysis comparing tree growth in monocultures and mixed
 plantations. *Forest Ecology and Management*, 255, 781–786.
- Piotto, D., Montagnini, F., Ugalde, L. & Kanninen, M. (2003) Performance of forest
 plantations in small and medium-sized farms in the Atlantic lowlands of Costa Rica. *Forest Ecology and Management*, **175**, 195–204.
- Piotto, D., Viquez, E., Montagnini, F. & Kanninen, M. (2004) Pure and mixed forest
 plantations with native species of the dry tropics of Costa Rica: a comparison of
 growth and productivity. *Forest Ecology and Management*, **190**, 359–372.
- Poorter, L. (1998) Seedling Growth of Bolivian Rain Forest Tree Species in Relation to Light
 and Water Availability. Utrecht University.
- Potvin, C. & Gotelli, N.J. (2008) Biodiversity enhances individual performance but does not affect survivorship in tropical trees. *Ecology letters*, 11, 217–23.
- Quero, J. & Villar, R. (2007) Seed-mass effects in four Mediterranean Quercus species
 (Fagaceae) growing in contrasting light environments. *American Journal of Botany*,
 94, 1795–1803.
- Royal Botanic Gardens Kew. (2014) Seed Information Database (SID). Version 7.1.
 http://data.kew.org/sid
- Russo, S.E., Davies, S.J., King, D. a. & Tan, S. (2005) Soil-related performance variation and distributions of tree species in a Bornean rain forest. *Journal of Ecology*, 93, 879–889.
- Sales-Come, R. & Hölscher, D. (2010) Variability and grouping of leaf traits in multi-species
 reforestation (Leyte, Philippines). *Forest Ecology and Management*, 260, 846–855.
- Salinas, N., Malhi, Y., Meir, P., Silman, M.R., Roman Cuesta, R., Huaman, J., Salinas, D.,
 Huaman, V., Gibaja, a, Mamani, M. & Farfan, F. (2011) The sensitivity of tropical
 leaf litter decomposition to temperature: results from a large-scale leaf translocation
 experiment along an elevation gradient in Peruvian forests. *New Phytologist*, 189,
 967–77.
- Sautu, A., Baskin, J.M., Baskin, C.C. & Condit, R.S. (2006) Studies on the seed biology of
 100 native species of trees in a seasonal moist tropical forest, Panama, Central
 America. Forest Ecology and Management, 234, 245–263.
- Scherer-Lorenzen, M., Potvin, C., Koricheva, J., Schmid, B., Hector, A., Bornik, Z.,
 Reynolds, G. & Schulze, E.-D. (2005) The design of experimental tree plantations for
 functional biodiversity research. *Forest diversity and function: temperate and boreal*

711	systems (eds M. Scherer-Lorenzen, C. Körner & ED. Schulze), pp. 347–376.
712	Springer Verlag, Berlin, Heidelberg.
713	Scherer-Lorenzen, M., Schulze, E., Don, A., Schumacher, J. & Weller, E. (2007) Exploring
714	the functional significance of forest diversity: A new long-term experiment with
715	temperate tree species (BIOTREE). Perspectives in Plant Ecology, Evolution and
716	Systematics, 9, 53–70.
717	Souza, R. & Válio, I. (2003) Leaf optical properties as affected by shade in saplings of six
718	tropical tree species differing in successional status <i>Brazilian Journal of Plant</i>
719	Physiology 15 49–54
720	Turner IM & Tan HTW (1991) Habitat-related variation in tree leaf form in four tropical
721	forest types on Pulau Ubin Singapore Journal of Vegetation Science 2, 691–698
722	Veenendaal E.M. Swaine M.D. Lecha R.T. Walsh M.F. Abebrese I.K. & Owusu-
723	Afrivie K (1996) Responses of West African forest tree seedlings to irradiance and
724	soil fertility <i>Functional Ecology</i> 10 501–511
725	Vincent G (2006) Leaf life span plasticity in tropical seedlings grown under contrasting
726	light regimes Annals of botany 97 245_55
720	Wagner F (2011) La Rénouse Des Forêts Tropicales Humides Aux Variations Climatiques
727	Université des Antilles et de la Guyane
720	Voung IA & Voung C G (1992) Seeds of Woody Plants in North America Dioscorides
730	Press
731	Yumoto T & Noma N (1998) Cheek-nouch dispersal of seeds by Japanese monkeys
732	(Macaca fuscata vakui) on Vakushima Island Japan <i>Primatas</i> 39 325–338
733	(Macaca fuscata yakar) on fakasinina island, sapan. Trimates, 57, 525-556.
734	LITEDATUDE CITED
735	Adler P.B. Salguero-Gómez R. Compagnoni A. Hsu I.S. Ray-Mukheriee I. Mheau-
736	Ache C & Franco M (2014) Functional traits explain variation in plant life history
737	strategies Proceedings of the National Academy of Sciences of the United States of
738	America 111 740-5
739	Albert C H Thuiller W Yoccoz N G Soudant A Boucher F Saccone P & Lavorel S
740	(2010) Intraspecific functional variability: extent structure and sources of variation
741	<i>Journal of Ecology</i> 98 604–613
742	Allen R G Pereira L S Raes D Smith M & Ab W (1998) Crop evapotranspiration -
743	Guidelines for computing crop water requirements - FAO Irrigation and drainage paper
744	56 By 1–15
745	Atkin OK Bruhn D Hurry VM & Tioelker MG (2005) Evans Review No. 2 - The hot
746	and the cold. Unravelling the variable response of plant respiration to temperature
747	Functional Plant Riology 32 , 87–105
748	Baeten L. Verheven K. Wirth C. Bruelheide H. Bussotti F. Finér L. Jaroszewicz B.
749	Selvi F Valladares F Allan F Ampoorter F Auge H Avăcăriei D Barbaro I.
750	Bărnoaiea I Bastias C.C. Baubus I Beinhoff C. Benavides R. Benneter A
751	Berger S Berthold F Boherg I Bonal D Brüggemann W Carnol M
752	Castagnevrol B Charbonnier V Chećko F Coomes D A Conni A Dalmaris F
753	Dănilă G Dawud S M de Vries W De Wandeler H Deconchat M Domisch T
754	Duduman G Fischer M Fotelli M Gessler A Gimeno T F Granier A
755	Grossiord C Guyot V Hantsch L Hättenschwiler S Hector A Hermy M
756	Holland V Jactel H Joly F-X Jucker T Kolb S Koricheva J Lever M J
757	Liebergesell M Milligan H Müller S Muys R Nouven D Nichtforel I
758	Pollastrini M Proulx R Rahasa S Radoolou K Rateliffe S Raulund-Rasmussen
759	K Seiferling I Stenlid I Vesterdal I, von Wilnert K Zavala M a Zielinski D
760	& Scherer-Lorenzen M (2013) A novel comparative research platform designed to
,00	a senerer Ebrenzen, m. (2015) it nover comparative research platform designed to

761	determine the functional significance of tree species diversity in European forests.
762	Perspectives in Plant Ecology, Evolution and Systematics, 15, 281–291.
763	Bates, D.M., Maechler, M., Bolker, B.M. & Walker, S. (2014) lme4: Linear mixed-effects
764	models using Eigen and S4.
765	Boulangeat, I., Philippe, P., Abdulhak, S., Douzet, R., Garraud, L., Lavergne, S., Lavorel, S.,
766	Van Es, J., Vittoz, P. & Thuiller, W. (2012) Improving plant functional groups for
767	dynamic models of biodiversity: at the crossroads between functional and community
768	ecology. Global Change Biology, 18, 3464–3475.
769	Bruelheide, H., Nadrowski, K., Assmann, T., Bauhus, J., Both, S., Buscot, F., Chen, XY.,
770	Ding, B., Durka, W., Erfmeier, A., Jessica L. M. GutknechtDali, Dali Guo, Guo, LD.,
771	Härdtle, W., He, JS., Klein, AM., Kühn, P., Liang, Y., Liu, X., Michalski, S., Niklaus,
772	P.A., Pei, K., Scherer-Lorenzen, M., Scholten, T., Schuldt, A., Seidler, G., Trogisch, S.,
773	Oheimb G von Welk E Wirth C Wubet T Yang X Yu M Zhang S Zhou H
774	Fischer M Ma K & Schmid B (2014) Designing forest biodiversity experiments:
775	general considerations illustrated by a new large experiment in subtropical China
776	Methods in Ecology and Evolution 5 74–89
777	Chave J Coomes D A Jansen S Lewis S L Swenson N G & Zanne A E (2009)
778	Towards a worldwide wood economics spectrum <i>Ecology letters</i> 12 351–66
779	Clark LS Carpenter S.R. Barber M. Collins S.L. Dobson A. Foley J.A. Lodge D.M.
780	Pascual M A Pielke R I & Pizer W (2001) Ecological Forecasts: An Emerging
781	Imperative Science 293 657–660
782	Cornwell WK & Ackerly DD (2010) A link between plant traits and abundance: evidence
783	from coastal California woody plants <i>Journal of Ecology</i> 98 814–821
784	Craine, J.M., Engelbrecht, B.M.J., Lusk, C.H., McDowell, N.G. & Poorter, H. (2012)
785	Resource limitation tolerance and the future of ecological plant classification <i>Frontiers</i>
786	in plant science, 3 , 246.
787	Doust, S.J., Erskine, P.D. & Lamb, D. (2008) Restoring rainforest species by direct seeding:
788	Tree seedling establishment and growth performance on degraded land in the wet tropics
789	of Australia. Forest Ecology and Management, 256, 1178–1188.
790	Engelbrecht, B.M.J., Comita, L.S., Condit, R.S., Kursar, T. a, Tyree, M.T., Turner, B.L. &
791	Hubbell, S.P. (2007) Drought sensitivity shapes species distribution patterns in tropical
792	forests. Nature, 447, 80–82.
793	Enquist, B.J., Kerkhoff, A.J., Stark, S.C., Swenson, N., McCarthy, M.C. & Price, C. A.
794	(2007) A general integrative model for scaling plant growth, carbon flux, and functional
795	trait spectra. Nature, 449, 218–22.
796	Gallagher, R. & Leishman, M. (2012) Contrasting patterns of trait-based community
797	assembly in lianas and trees from temperate Australia. Oikos, 121, 2026–2035.
798	Gelman, A. (2005) Analysis of variance? Why it is more important than ever. The Annals of
799	<i>Statistics</i> , 33 , 1–53.
800	Gelman, A. & Rubin, D. (1992) Inference from Iterative Simulation Using Multiple
801	Sequences. Statistical science, 7, 457–511.
802	Geraci, M. (2014) lqmm: Linear quantile mixed models.
803	Grime, J.P., Hunt, R. & Grime, A.J.P. (1975) Relative growth-rate: its range and adaptive
804	significance in a local flora. Journal of Ecology, 63, 393–422.
805	Kattge, J., Diaz, S., Lavorel, S., Prentice, I.C., Leadley, P., Bönisch, G., Garnier, E., Westoby,
806	M., Reich, P.B. & Wright, I.J. (2011) TRYa global database of plant traits. Global
807	<i>Change Biology</i> , 17 , 2905–2935.
808	Keenan, T.F., Hollinger, D.Y., Bohrer, G., Dragoni, D., Munger, J.W., Schmid, H.P. &
809	Richardson, A.D. (2013) Increase in forest water-use efficiency as atmospheric carbon
810	dioxide concentrations rise. Nature, 499, 324-7.

- Kraft, N.J.B., Valencia, R. & Ackerly, D.D. (2008) Functional traits and niche-based tree
 community assembly in an Amazonian forest. *Science*, **322**, 580–582.
- Kunstler, G., Lavergne, S., Courbaud, B., Thuiller, W., Vieilledent, G., Zimmermann, N.E.,
 Kattge, J., Coomes, D.A. & Grover, J. (2012) Competitive interactions between forest
 trees are driven by species' trait hierarchy, not phylogenetic or functional similarity:
 implications for forest community assembly. *Ecology letters*, 15, 831–40.
- Lavorel, S. & Garnier, E. (2002) Predicting changes in community composition and
 ecosystem functioning from plant traits: revisiting the Holy Grail. *Functional Ecology*,
 16, 545–556.
- Loik, M.E. & Holl, K.D. (2001) Photosynthetic responses of tree seedlings in grass and under shrubs in early-successional tropical old fields, Costa Rica. *Oecologia*, **127**, 40–50.
- Marks, C.O. & Lechowicz, M.J. (2006) Alternative designs and the evolution of functional
 diversity. *The American naturalist*, 167, 55.
- Martínez-Garza, C., Bongers, F. & Poorter, L. (2013) Are functional traits good predictors of
 species performance in restoration plantings in tropical abandoned pastures? *Forest Ecology and Management*, 303, 35–45.
- Martínez-Garza, C., Pena, V., Ricker, M., Peña, V., Campos, A. & Howe, H.F. (2005)
 Restoring tropical biodiversity: leaf traits predict growth and survival of latesuccessional trees in early-successional environments. *Forest Ecology and Management*,
 217, 365–379.
- Martínez-Vilalta, J., Mencuccini, M., Vayreda, J. & Retana, J. (2010) Interspecific variation
 in functional traits, not climatic differences among species ranges, determines
 demographic rates across 44 temperate and Mediterranean tree species. *Journal of Ecology*, 98, 1462–1475.
- McGill, B.J., Enquist, B.J., Weiher, E. & Westoby, M. (2006) Rebuilding community
 ecology from functional traits. *Trends in Ecology & Evolution*, 21, 178–185.
- Nakagawa, S. & Schielzeth, H. (2013) A general and simple method for obtaining R2 from
 generalized linear mixed-effects models (ed RB O'Hara). *Methods in Ecology and Evolution*, 4, 133–142.
- Paine, C.E.T., Baraloto, C., Bruno, H., Chave, J. & Hérault, B. (2011) Functional traits of
 individual trees reveal ecological constraints on community assembly in tropical rain
 forests. *Oikos*, **120**, 720–727.
- Paine, C.E.T., Marthews, T.R., Vogt, D.R., Purves, D., Rees, M., Hector, A. & Turnbull, L.A.
 a. (2012) How to fit nonlinear plant growth models and calculate growth rates: an update
 for ecologists. *Methods in Ecology and Evolution*, 3, 245–256.
- Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S. & Poorter, H. (2013) New
 handbook for standardised measurement of plant functional traits worldwide. *Australian Journal of Botany*, 61, 167–234.
- Poorter, H., Niklas, K.J., Reich, P.B., Oleksyn, J., Poot, P. & Mommer, L. (2012) Biomass
 allocation to leaves, stems and roots: meta-analyses of interspecific variation and
 environmental control. *The New phytologist*, **193**, 30–50.
- Poorter, H. & Remkes, C. (1990) Leaf area ratio and net assimilation rate of 24 wild species
 differing in relative growth rate. *Oecologia*, 83, 553–559.
- Poorter, H. & van der Werf, A. (1998) Is inherent variation in RGR determined by LAR at
 low irradiance and by NAR at high irradiance? A review of herbaceous species. *Inherent variation in plant growth.* pp. 309–336. Backhuys, Leiden.
- Poorter, L. (2007) Are species adapted to their regeneration niche, adult niche, or both? *American Naturalist*, 169, 433–42.
- Poorter, L., Wright, S.J., Paz, H., Ackerly, D.D., Condit, R.S., Ibarra-Manriquez, G., Harms,
 K.E., Licona, J.C., Martínez-Ramos, M., Mazer, S.J., Muller-Landau, H.C., Peña-Claros,

861	M., Webb, C.O. & Wright, I.J. (2008) Are functional traits good predictors of
862	demographic rates? Evidence from five neotropical forests. <i>Ecology</i> , 89 , 1908–1920.
863	Purves, D.W. & Pacala, S.W. (2008) Predictive models of forest dynamics. Science, 320,
864	1452–3.
865	R Core Development Team. (2014) R: A Language and Environment for Statistical
866	Computing.
867	Rees, M., Osborne, C.P., Woodward, F.I., Hulme, S.P., Turnbull, L.A. & Taylor, S.H. (2010)
868	Partitioning the components of relative growth rate: how important is plant size
869	variation? The American naturalist, 176, E152–61.
870	Reich, P.B., Walters, M.B. & Ellsworth, D.S. (1992) Leaf life span in relation to
871	leaf, plant, and stand characteristics among diverse ecosystems. <i>Ecological Monographs</i> ,
872	62 , 365–392.
873	Rüger, N., Wirth, C., Wright, S.J. & Condit, R.S. (2012) Functional traits explain light and
874	size response of growth rates in tropical tree species. <i>Ecology</i> , 93 , 2626–36.
875	Russo, S.E., Jenkins, K.L., Wiser, S.K., Uriarte, M., Duncan, R.P. & Coomes, D. A. (2010)
876	Interspecific relationships among growth, mortality and xylem traits of woody species
877	from New Zealand. Functional Ecology, 24, 253–262.
878	Sakschewski, B., von Bloh, W., Boit, A., Rammig, A., Kattge, J., Poorter, L. & Thonicke, K.
879	in press. Leaf and stem economics spectra drive diversity of functional plant traits in a
880	dynamic global vegetation model. Global Change Biology.
881	Scheiter, S., Langan, L. & Higgins, S. (2013) Next-generation dynamic global vegetation
882	models: learning from community ecology. New Phytologist, 198, 957-969.
883	Stan Development Team. (2014) Stan Modeling Language User's Guide and Reference
884	Manual.
885	Ter Steege, H. (2003) Long-Term Changes in Tropical Tree Diversity.
886	Tobner, C.M., Paquette, A., Reich, P.B., Gravel, D. & Messier, C. (2013) Advancing
887	biodiversity-ecosystem functioning science using high-density tree-based experiments
888	over functional diversity gradients. Oecologia, 174, 609–621.
889	Turnbull, L.A., Philipson, C.D., Purves, D.W., Atkinson, R.L., Cunniff, J., Goodenough, A.,
890	Hautier, Y., Houghton, J., Marthews, T.R., Osborne, C.P., Paul-Victor, C., Rose, K.E.,
891	Saner, P., Taylor, S.H., Woodward, F.I., Hector, A. & Rees, M. (2012) Plant growth
892	rates and seed size: a re-evaluation. <i>Ecology</i> , 93 , 1283–1289.
893	Violle, C., Navas, ML., Vile, D., Kazakou, E., Fortunel, C., Hummel, I. & Garnier, E.
894	(2007) Let the concept of trait be functional! Oikos, 116, 882-892.
895	Wright, S.J., Kitajima, K., Kraft, N.J.B., Reich, P.B., Wright, I.J., Bunker, D.E., Condit, R.S.,
896	Dalling, J.W., Davies, S.J., Díaz, S., Engelbrecht, B.M.J., Harms, K.E., Hubbell, S.P.,
897	Marks, C.O., Ruiz-Jaen, M.C., Salvador, C.M. & Zanne, A.E. (2010) Functional traits
898	and the growth-mortality trade-off in tropical trees. <i>Ecology</i> , 91 , 3664–74.
899	

900 TABLES

901	Table 1 Comparison of A) all species, B) fast-growing individuals in all species, and c) fast-
902	growing species. The first two groups were fit using linear mixed-effect models, whereas the
903	latter group was fit using linear quantile mixed-effect models. Models are sorted by
904	increasing Akaike Information Criterion (AIC). PET: Potential evapotranspiration

	Model	N Parameters	ΔΑΙϹ
All species	Traits	6	0.0
	PET + Traits	7	1.5
	Intercept-only	10	5.1
	PET	4	6.6
	PET x Traits	10	6.7
Fast-growing species	Traits	6	0.0
	PET + Traits	7	1.9
	PET x Traits	10	14.9
	PET	4	32.6
	Intercept-only	3	72.9
Fast-growing individuals	PET + Traits	7	0.0
	Traits	6	0.1
	PET x Traits	10	5.2
	PET	4	20.6
	Intercept-only	3	20.7

929

905	FIGURES		
906	Figure 1	Map of study sites. Points are coloured by biogeographic region and scaled to	
907	the number of species studied at each site. Bold font indicates site numbers, whereas plain		
908	text indicates	study duration (in months) and the number of individuals monitored for growth	
909	at each site. Se	ee Supplementary Table 1 for details.	
910			
911	Figure 2	Correlations among functional traits for the 333 species-site combinations.	
912	Note that seed	l mass is presented on log-transformed axes. Functional traits were largely	
913	independent of one another. Fitted lines are derived from standardized major-axis		
914	regressions. Error bars indicate one standard error of the mean.		
915			
916	Figure 3	Global relationships between size-standardized relative growth rate (SGR) and	
917	SLA, wood de	ensity, and seed mass. In A-C), points represent mean SGR for each species,	
918	whereas in D-	F), points represent the 95 th percentile of growth rates of individuals in each	
919	species. Thick	regression lines and darker shading show overall relationships fitted with a	
920	weighted linea	ar mixed-effects model, whereas thinner lines and lighter shading show	
921	relationships f	for fast-growing species, which were fitted with a weighted linear 95 th quantile	
922	mixed-effects model. Solid lines represent significant relationships ($\alpha \le 0.05$), whereas		
923	dashed lines indicate non-significant ones. Relationships are shown with 95% confidence		
924	intervals. In all models, weights are the inverse of the credible intervals around species-		
925	specific growt	h rates, which are indicated by error bars.	
926			
927	Figure 4	A summary of the variance contributed to the global growth-trait relationships	
928	by study sites,	, plant families and biogeographic regions. Variation in SGR was greater among	

Page 31 of 33

study sites than among families or regions, whereas SGR-trait relationships were relatively

- 930 consistent among sites, families and regions. Points, thick bars and thin bars show means,
- 931 50% confidence intervals and 95% confidence intervals of the finite-population standard
- 932 deviations, respectively. The point estimates are not always at the centre of the intervals
- because all variance components must be nonnegative (Gelman 2005).

934

Growth rates and functional traits

935	SUPPLEMENTARY MATERIAL		
936	Supple	ementary Table 1 Summary data on each experimental site.	
937	Supple	ementary Table 2 Summary data on each species-site combination.	
938	Supplementary Figures		
939	1)	Predicted growth of each of the 333 species-site combination over time. Points	
940		indicate observed sizes of individuals, heavy black lines indicate species-mean	
941		growth, and thin grey lines indicate growth of repeatedly-observed individuals. The	
942		colour of the associated confidence envelopes indicates the fitted functional form	
943		green: asymptotic; red: exponential; blue: logistic. Note that height is log-transformed	
944		and that scales vary among panels.	
945	2)	Relationships between size-standardized relative growth rate (SGR) and SLA, wood	
946		density, and seed mass in the worldwide TreeDivNet sites (Top row, panels A-C) and	
947		the European TreeDivNet sites (Bottom row, panels D-F). A trait-only model fit the	
948		former data best, whereas the latter were best fit by a model that included a trait-PET	
949		interaction. In all panels, relationships are weighted by the inverse of the credible	
950		intervals around species-specific growth rates, which are indicated by error bars. SGR	
951		was log-transformed for analysis and back-transformed for presentation.	
952	3)	Relationships between size-standardized relative growth rate (SGR) and SLA, wood	
953		density, and seed mass in the global dataset. SGR was estimated at standardized	
954		heights of 200 cm (Top row, panels A-C), 300 cm (Middle row, panels D-F) and 500	
955		cm (Bottom row, panels G-I). A trait-only model fit all three sets of data best. In all	
956		panels, relationships are weighted by the inverse of the credible intervals around	
957		species-specific growth rates, which are indicated by error bars. SGR was log-	
958		transformed for analysis and back-transformed for presentation.	
959			