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SUMMARY 131 

1. Plant functional traits, in particular specific leaf area (SLA), wood density and seed mass, 132 

are often good predictors of individual tree growth rates within communities. Individuals 133 

and species with high SLA, low wood density and small seeds tend to have faster growth 134 

rates.  135 

2. If community-level relationships between traits and growth have general predictive value, 136 

then similar relationships should also be observed in analyses that integrate across taxa, 137 

biogeographic regions, and environments. Such global consistency would imply that traits 138 

could serve as valuable proxies for the complex suite of factors that determine growth rate, 139 

and, therefore, could underpin a new generation of robust dynamic vegetation models. 140 

Alternatively, growth rates may depend more strongly on the local environment or 141 

growth-trait relationships may vary along environmental gradients.  142 

3. We tested these alternative hypotheses using data on 27,352 juvenile trees, representing 143 

278 species from 27 sites on all forested continents, and extensive functional-trait data, 144 

38% of which were obtained at the same sites at which growth was assessed. Data on 145 

potential evapotranspiration (PET), which summarises the joint ecological effects of 146 

temperature and precipitation, were obtained from a global database.  147 

4. We estimated size-standardized relative height growth rates (SGR) for all species, then 148 

related them to functional traits and PET using mixed-effect models for the fastest-149 

growing species and for all species together. 150 

5. Both the mean and 95th percentile SGR were more strongly associated with functional 151 

traits than with PET. PET was unrelated to SGR at the global scale. SGR increased with 152 

increasing SLA and decreased with increasing wood density and seed mass, but these 153 

traits explained only 3.1% of the variation in SGR. SGR-trait relationships were 154 

consistently weak across families and biogeographic zones, and over a range of tree 155 
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statures. Thus, the most widely studied functional traits in plant ecology were poor 156 

predictors of tree growth over large scales. 157 

6. Synthesis. We conclude that these functional traits alone may be unsuitable for predicting 158 

growth of trees over broad scales. Determining the functional traits that predict vital rates 159 

under specific environmental conditions may generate more insight than a monolithic 160 

global relationship can offer. 161 
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INTRODUCTION 162 

Functional traits impact population growth rates via their effects on the vital rates of 163 

recruitment, growth, reproduction and survival (Lavorel & Garnier 2002; Violle et al. 2007; 164 

Adler et al. 2014). They have been adopted with enthusiasm by ecologists in part because 165 

they reduce the dimensionality inherent in species-rich ecosystems, providing a tractable way 166 

to make inferences on community dynamics and ecosystem functioning (McGill et al. 2006). 167 

The use of functional traits has provided substantial insight into the determinants of 168 

community structure, including relative abundances and competitive hierarchies (Kraft, 169 

Valencia & Ackerly 2008; Cornwell & Ackerly 2010; Kunstler et al. 2012). Making 170 

community-level inferences using functional traits is predicated, however, on the assumption 171 

that they are strongly associated with the vital rates of individuals. 172 

 This assumption has been strongly validated in forested sites, where functional traits, 173 

especially wood density, are associated with interspecific variation in the growth rates of 174 

trees. Variation in wood density accounted for up to 33% of the variation in relative growth 175 

rate (RGR) for the fastest-growing juveniles of Panamanian rain-forest tree species, though 176 

relationships were weaker among adult trees, slower-growing individuals, and with other 177 

functional traits (Wright et al. 2010; Rüger et al. 2012). Across Spain, Martínez-Vilalta et al. 178 

(2010) showed that RGR was inversely related to wood density (R2 = 0.35) using national 179 

forest inventory data. At a still larger scale, Poorter et al. (2008) showed that wood density 180 

explained 11% of the variation in RGR across five Neotropical forest sites. Because of the 181 

consistency in results among their five sites, Poorter et al. (2008) suggested that trait-growth 182 

relationships would be similar across rain forests, since all rain forest trees face similar trade-183 

offs. 184 

 We tested the hypothesis that the relationships between tree functional traits and RGR 185 

that are found within communities are also encountered at a global scale. If traits have a 186 
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general and consistent relationship with RGR, then significant covariation should be observed 187 

in a data set that encompasses global variation in environments and taxa with diverse 188 

biogeographic and phylogenetic histories. Such consistency would imply that functional traits 189 

can serve as proxies for the complex suite of factors that determine growth rate, given the 190 

abiotic and biotic environment, and could thus underpin a new generation of robust dynamic 191 

vegetation models (Scheiter, Langan & Higgins 2013; Sakschewski et al. in press). 192 

Alternatively, at such large scales, growth rates may depend more upon environmental 193 

conditions, or upon trait-environment interactions, such that the strength of growth-trait 194 

relationships varies along environmental gradients. 195 

 We examined three commonly measured functional traits, for which global 196 

relationships with the individual tree growth would be expected: specific leaf area (SLA), 197 

wood density and seed mass (Grime, Hunt & Grime 1975; Poorter & Remkes 1990; Poorter 198 

& van der Werf 1998). RGR should correlate positively with increasing SLA, but negatively 199 

with wood density and seed mass, for the following reasons. SLA is a strong determinant of 200 

carbon assimilation capacity per unit mass invested in photosynthetic surface area (Rees et al. 201 

2010). Wood density governs the translation of assimilated carbon into stem and branch 202 

biomass, thereby influencing tree height and crown growth. Denser wood is associated with 203 

increased construction costs and decreased hydraulic conductance, both of which can reduce 204 

growth rate (Chave et al. 2009). Finally, seed mass is inversely related to survival for 205 

seedlings, and can thus affect the growth of juvenile plants via life-history correlations, 206 

although this effect dissipates when growth rates are compared at a standard size (Turnbull et 207 

al. 2012). 208 

 At a global scale, variation in temperature and precipitation should also affect growth 209 

rates. Though rates of photosynthesis and maintenance respiration are strongly temperature-210 

dependent (Atkin et al. 2005), the primary ecological effect of elevated temperature on 211 
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growth rates derives from its interaction with low precipitation, increasing drought stress. 212 

High evaporative demand may limit photosynthetic carbon assimilation due to stomatal 213 

closure to reduce water stress (Keenan el al. 2013).  214 

 We assessed the relative importance of functional traits and environmental conditions 215 

in determining variation in sapling growth rates using a unique global dataset of 27,352 216 

individual juvenile trees representing 278 species from sites on all forested continents. 217 

Functional trait data were collected for all species, 38% of which were obtained from the 218 

same sites at which growth was assessed. Potential evapotranspiration (PET) was obtained 219 

for all sites from a global database. We estimated growth rates at a standardized size using 220 

nonlinear hierarchical Bayesian models, which allowed us to account for uncertainty in 221 

growth rates. We then assessed the relationships among growth rates, functional traits and 222 

PET using mixed-effect models. Functional traits may better predict maximal than mean 223 

growth rates (Grime et al. 1975; ter Steege 2003; Wright et al. 2010). Therefore, we also used 224 

linear quantile mixed-effect models to examine the growth of the fastest-growing species. To 225 

further assess the generality of growth-trait relationships, we partitioned the variation in the 226 

global relationships among plant families and biogeographic regions. 227 

 228 

MATERIALS AND METHODS 229 

Study sites and growth data 230 

We assessed height growth on juvenile trees because less data were available for radial 231 

growth and for adults. Furthermore, juveniles are expected to have stronger growth-trait 232 

relationships than adults, given their smaller pools of stored reserves. We included only free-233 

standing tree species; palms were also excluded as they do not have secondary growth. Data 234 

on tree growth were compiled from 27 sites across six continents. The key criterion for the 235 

inclusion of a site in this study was that juvenile trees of known age were grown in a nursery, 236 
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then planted into mixed-species stands. This ensured a measure of consistency in the age and 237 

ontogenetic stage of juveniles within and among sites. The median juvenile was 37 cm tall 238 

when transplanted (inter-quartile range: 7-170 cm).  239 

 The core of the dataset came from the European sites of TreeDivNet 240 

(www.treedivnet.ugent.be), which constitute the experimental platform of FunDivEUROPE 241 

(Baeten et al. 2013), a consortium of biodiversity-ecosystem functioning studies on woody 242 

plants. These sites were complemented by other TreeDivNet sites (Bruelheide et al. 2014), 243 

reforestation trials, and studies designed to test specific ecological hypotheses. The latter two 244 

classes of studies were located through literature searches. In sites with multiple diversity 245 

treatments, we used only data from the one with the greatest species diversity. These 246 

treatments most closely resembled natural conditions, and their use allowed us to avoid 247 

interference with on-going research at each site. Where light availability was manipulated, we 248 

used the treatment with the greatest light availability to reduce within-site heterogeneity and 249 

to assure positive growth rates. The sites spanned a latitudinal range from 18º S (Queensland, 250 

Australia) to 62º N (Satakunta, Finland).  251 

 Across our sites, annual rainfall varied between 533 and 4900 mm, and mean annual 252 

temperature between 5.0 and 27.7º C. Temperature and precipitation were highly correlated, 253 

however, precluding an examination of their individual effects (r = 0.79). Therefore, we 254 

investigated environmental conditions in terms of potential evapotranspiration (PET), which 255 

integrates the effects of temperature and precipitation, and expresses the ability of the 256 

atmosphere to remove water through evaporation and transpiration (Allen et al. 1998). This 257 

climatic metric, though relatively crude, was appropriate for this study, in which the 258 

heterogeneity of data sources precludes the investigation of more detailed aspects of the 259 

biotic environment. We obtained standardized PET data for each site from the Consortium for 260 

Spatial Information’s Global Aridity and PET Database (http://www.cgiar-261 

http://www.treedivnet.ugent.be/
http://www.cgiar-csi.org/data/global-aridity-and-pet-database)P
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csi.org/data/global-aridity-and-pet-database). PET data were downloaded with 30 arc-second 262 

spatial resolution as an annual average over the years 1950-2000. We extracted the PET 263 

values for grid cells within 50 km of each study site, then, for analysis, calculated the mean 264 

PET for each site.  265 

 In total, we studied 278 species and 27,352 individuals, on which 120,150 266 

measurements were made. Because there was substantial variation among sites in terms of 267 

light availability, planting density, study duration and species composition, the 39 species 268 

that occurred in more than one site were modelled independently, yielding 333 species-site 269 

combinations (henceforth referred to as ‘species’). Sample sizes varied among sites: 3 to 48 270 

species, and 35 to 7065 individuals were measured at each site. The median species was 271 

represented by 32 individuals (range: 5 to 2205) and 124 measurements (range: 10 to 10716). 272 

The median study lasted 49 months (range 11 to 145). Nomenclature follows that of The 273 

Plant List (http://theplantlist.org). See Figure 1 and Supplementary Table 1 for details of each 274 

site. 275 

 276 

Trait data 277 

Functional trait data were acquired from many sources. In 14 of the 27 sites, traits were 278 

measured on the same species at which growth was assessed, yielding ‘local’ values of SLA, 279 

wood density and seed mass for 192, 121, and 66 species, respectively. Trait data for the 280 

remaining species were obtained from publicly available databases and published studies. 281 

The TRY database of plant traits (Kattge et al. 2011), Chave et al. (2009) and the Kew Seed 282 

Information Database (SID, http://data.kew.org/sid), were the primary resources for data on 283 

SLA, wood density and seed mass, respectively. Supplemental data were gleaned from 284 

literature searches. Species-level data on SLA, wood density and seed mass were available 285 

for 91, 96 and 86% of species, respectively. To estimate the functional traits of the remaining 286 

http://www.cgiar-csi.org/data/global-aridity-and-pet-database)P
http://theplantlist.org/
http://data.kew.org/sid
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species, we first obtained the relevant traits for all congeneric species from the 287 

aforementioned primary data sources. Following Gallagher & Leishman (2012), we regressed 288 

genus-mean trait values against the observed species mean trait values, and then predicted 289 

species-mean trait values from the genus-mean values (R2:  SLA: 15%, WD 73%, SM: 86%).  290 

 291 

Analyses 292 

Relationships between relative growth rates and functional traits were evaluated in a three-293 

step process.  294 

 First, we selected the functional form to predict individual height as a function of 295 

time. In 23 sites, juveniles were measured for height four or more times, allowing nonlinear 296 

models to be fit. Such models are appropriate because RGR tends to decrease over time, 297 

owing to the accumulation of non-photosynthetic biomass and the local depletion of soil 298 

resources (Paine et al. 2012). We fit linear, exponential, power-law, asymptotic and logistic 299 

mixed-effect models for each species-site combination separately, then selected the best 300 

function for each one on the basis of Akaike’s information criterion (AIC). In the remaining 301 

four sites, juveniles were measured three times; their growth was modelled as an exponential 302 

function of time. All growth models included individual trees as a random effect.  303 

 Second, we predicted the height of each individual tree as a function of time using 304 

species-specific Bayesian hierarchical models with the functional forms selected in step one. 305 

Parameters were given uninformative priors and were fitted with a Hamiltonian Monte Carlo 306 

sampler using the No-U-Turns (NUTS) algorithm, with the constraint that predicted heights 307 

always be positive. We implemented these models in stan 2.5 via the package ‘rstan’ in R 308 

3.1.1 (R Core Development Team 2014; Stan Development Team 2014). Four chains were 309 

run for each species-specific growth model. All models were run for 20,000 iterations, 310 

discarding the first 19,000 as a burn-in period. We used the Rhat statistic, together with a 311 
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visual inspection of the chains, to assess convergence (Gelman & Rubin 1992). Parameters in 312 

all models converged before 1000 iterations (Rhat≈1).  313 

 These models yielded posterior distributions of growth parameters for each species, 314 

from which we calculated posterior distributions of RGR at a standardized height of 100 cm, 315 

a height attained by almost all species. We refer to this size-standardized RGR as ‘SGR’. 316 

Size-standardization reduces the potential for bias when making comparisons among species 317 

that vary in initial size (Rees et al. 2010; Turnbull et al. 2012), as was the case here. SGR 318 

was calculated as the derivative of the function used to predict height, divided by the standard 319 

height (Paine et al. 2012). Trait values can vary over ontogeny, and size-standardized trait 320 

values can explain variation in SGR (Rees et al. 2010), even though species rankings are 321 

largely maintained (Poorter 2007). Even so, we did not analyse ontogenetic variation in trait 322 

values, because data on ontogenetic variation were not available for most species in the 323 

dataset. 324 

 Third, we predicted SGR as a function of PET and functional traits (SLA, wood 325 

density, and seed mass) for all species, and for the fastest-growing species (i.e., species in the 326 

95th quantile of growth rates). The former group was analysed with linear mixed-effect 327 

models, whereas the latter group was analysed using linear mixed-effect quantile models 328 

(Geraci 2014) including additive and interactive effects (Table 1). Because preliminary 329 

analyses indicated that SGR varied substantially among sites, we included site-specific 330 

intercepts as a random effect in all models. In all models, SGR and seed mass were log-331 

transformed to improve normality. Predictor values were always centred and standardized to 332 

unit variance, to allow comparisons among their slope parameters. Thus, intercepts represent 333 

the SGR for a species with trait values at the global mean and with PET at the global average. 334 

We accounted for uncertainty in our estimates of SGR by weighting each observation by the 335 

standard deviation of its posterior distribution obtained in step two. Doing so, we assumed the 336 
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true SGR values were log-normally distributed with species-specific means and standard 337 

deviations. In contrast, in many previous studies, species-mean growth rates have been 338 

assessed as point estimates, implying that they were known without error (Reich, Walters & 339 

Ellsworth 1992; Poorter & van der Werf 1998; but see Rüger et al. 2012). Models were 340 

compared on the basis of AIC. For the linear mixed-effect models, pseudo R2 was obtained 341 

with the method of Nakagawa & Schielzeth (2013). We were not able to calculate the 342 

variance explained for the fast-growing species, because such methods have not yet been 343 

developed for linear quantile mixed-effect models (Geraci 2014). 344 

In addition to the global analyses, we partitioned variance in the SGR-trait 345 

relationships among study sites, plant families and biogeographic regions following the 346 

approach of Gelman (2005). Our aim was to estimate the variation contributed by each source 347 

to global SGR-trait relationships, rather than to test hypotheses. Thus, we built an additional 348 

linear mixed-effect model with random intercepts and slopes for sites, families and regions. 349 

Our biogeographic regions mostly aligned with continental margins but were adjusted to 350 

reduce variation in sample sizes (Fig. 1). To make the sources of variation comparable, we 351 

assumed that effects of sites, families and regions on intercepts and slopes were each drawn 352 

from separate, independent, zero-mean normal distributions. We estimated the variance 353 

contributed by each source to SGR and the three SGR-trait relationships through 2000 354 

bootstrap samples of the variance-covariance matrix. Linear mixed-effect models and linear 355 

quantile mixed-effect models were implemented in the lme4 and lqmm packages, 356 

respectively (Bates et al. 2014; Geraci 2014).  357 

 358 

RESULTS  359 

Species-mean SLA varied fifteen-fold (3.37–50.38 m2 ·kg-1), wood density five-fold (0.16–360 

0.96 g·cm-3), and seed mass by six orders of magnitude (0.11–33,333 mg). Functional traits 361 
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were largely uncorrelated with each other, with coefficients of determination ≤ 0.06, though 362 

there were significantly positive SLA-wood density and seed mass-wood density 363 

relationships (Fig. 2). See Supplementary Table 2 for details of the studied species and their 364 

functional traits. 365 

 Log-transformed height was best modelled with a logistic or asymptotic function for 366 

210 and 70 species, respectively, whereas the remaining 53 were adequately modelled by 367 

exponential functions (Supplementary Figure 1). Thus, growth rates decreased as individual 368 

trees increased in size in 84% of the studied species. Species-mean SGR varied among 369 

species over four orders of magnitude, from 9.52×10-6 cm·cm-1·day-1 in Protium aracouchini 370 

to 0.014 cm·cm-1·day-1 in Phyllanthus salviifolius, with the median species having a SGR of 371 

1.28×10-3 cm·cm-1·day-1 (Fig. 3). 372 

Both mean and 95th percentile SGR were more strongly associated with functional 373 

traits than with PET. For all species together, as well as fast-growing species, models with 374 

traits alone had the lowest AIC values (Table 1). The three functional traits were associated 375 

with mean SGR, with each SGR-trait slope differing significantly from zero (95 per cent 376 

confidence intervals: SLA, 0.09 – 0.11; WD: -0.11 – -0.09, SM: -0.10 – -0.08; Fig. 3). Judged 377 

by their standardized slope coefficients, the three traits were associated with SGR to a similar 378 

degree. Thus, a 10 m2·kg-1 increase in SLA increased SGR by 10.3%, a 0.1 g·cm-3 increase in 379 

wood density reduced SGR by 5.3%, and a one order of magnitude increase in seed mass 380 

reduced SGR by 7.3%. Overall, however, functional traits explained only 3.1% of the 381 

variation in SGR (marginal pseudo-R2). Examined independently, SLA, wood density and 382 

seed mass explained 0.8%, 1.4% and 1.6% of the variation in SGR, respectively. Far more 383 

variance was explained by among-site variation in SGR (conditional pseudo-R2: 71%). 384 

When the fastest-growing species were analysed (i.e., species in the 95th percentile of 385 

growth rates), seed mass was significantly negatively related to SGR (P < 0.0001), whereas 386 
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SLA and wood density had no effect (SLA: P = 0.42, wood density: P = 0.072; Fig. 3A-C). 387 

Accordingly, comparing standardized slope coefficients from the quantile mixed-effect model, 388 

seed mass affected the SGR of fast-growing species more strongly than did SLA or wood 389 

density (seed mass = -0.17, SLA = -0.01, wood density = -0.13). For these species, a one 390 

order of magnitude increase in seed mass reduced SGR by 19.2%.  391 

We partitioned the variation in SGR and the SGR-trait relationships among sites, 392 

plant families and biogeographic regions (Fig. 4). SGR varied among families, but families 393 

did not differ in their SGR-trait relationships (parametric bootstrap likelihood ratio test: P = 394 

0.45). There was no evidence of variation in SGR or SGR-trait relationships among 395 

biogeographic regions (P ≥ 0.31). Therefore, sites were the dominant source of variation in 396 

SGR, with relatively minor contributions from families and regions. 397 

We assessed the generality of growth-trait relationships in four additional ways. First, 398 

we assessed them using only those sites in which study designs were most similar. This 399 

evaluated the possibility that global growth-trait relationships were obscured by among-site 400 

variation in experimental design (Supplementary Table 1). To do so, we considered the 401 

global sites of TreeDivNet, and the European sites of that network (nine and five sites, 402 

respectively). Growth-trait relationships in the global TreeDivNet sites were of a similar 403 

magnitude to those in the global dataset (standardized slope coefficients: SLA: -0.15, WD: -404 

0.14, SM: -0.14; Supplementary Figure 2). In the European TreeDivNet sites, there were 405 

significant interactions between functional traits and PET, such that increasing PET 406 

strengthened SGR-trait effects (Supplementary Figure 2), despite the shorter gradients of PET 407 

and traits in this geographically restricted subset of the data. Surprisingly, in both analyses, 408 

increasing SLA was associated with reduced growth rates.  409 

 Competitive interactions could intensify as juveniles grow, for example, affecting 410 

SGR-trait relationships. We examined, therefore, whether the strength of growth-trait 411 
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relationships varied with the size at which growth rates were measured. We repeated the 412 

linear mixed-effect analyses using SGR estimated at heights of 200, 300, and 500 cm, 413 

including only the species that attained those heights. Models that included additive effects of 414 

PET and functional traits were preferred when SGR was estimated at these heights. 415 

Nevertheless, we infer that PET only marginally affected growth rates, because more-416 

parsimonious trait-only models fit the data equivalently well, regardless of the size at which 417 

growth was assessed (AIC: 2.5, 0.8 and 1.2, respectively). Seed mass was the only 418 

significant predictor of growth at heights above 100 cm (Supplementary Figure 3). The slope 419 

of the growth-seed mass relationships remained largely consistent as juveniles grew. Thus, 420 

growth trait relationships became no stronger as juveniles increased in size. 421 

Within-site variation in environmental conditions could retard the growth of some 422 

individuals. For example, photo-inhibition may have reduced growth rates for shade-tolerant 423 

species planted into sunny sites (Loik & Holl 2001), even as shading from faster-growing 424 

neighbours may have reduced growth rates for some individuals in others (Tobner et al. 425 

2013). We evaluated this possibility by modelling the growth of the fastest-growing 426 

individuals (i.e., individuals in the 95th percentile of growth rates for each species) with an 427 

additional set of mixed-effect models. A functional trait-only model fit the data more 428 

parsimoniously and almost equivalently well as a model including PET (Table 1). Though all 429 

three functional traits significantly affected the growth of the fastest-growing individuals, the 430 

standardized slope coefficients were no greater in magnitude than in the model for all species 431 

(SLA: 0.09, WD: -0.12, SM: -0.12; Fig. 3D-F). Nor did this model explain substantially more 432 

variance in growth rates (marginal pseudo-R2, SLA: 0.7%, wood density: 1.6%, seed mass: 433 

2.2%). Thus, even for the fastest-growing individuals in each species, functional traits 434 

remained poor predictors of growth. 435 
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 Finally, not all functional trait values were available for all species at the sites where 436 

saplings were measured. Intra-specific trait variation, however, can be substantial (Albert et 437 

al. 2010). By including trait data drawn from databases and the literature, we may have 438 

introduced variation which obscured the global growth-trait relationships. We tested this 439 

possibility by evaluating whether the slopes of the growth-trait relationships differed between 440 

the set of species with locally measured traits and the set with trait data obtained from other 441 

sources. The three traits were measured locally on differing subsets of species. SLA, wood 442 

density and seed mass were locally available for 192, 121 and 66 species, respectively. Thus, 443 

we built a mixed-effect model for each trait to test if the slope of the growth-trait relationship 444 

depended on the origin of the trait data. They did not (parametric bootstrap likelihood ratio 445 

tests: P ≥ 0.88). These models were similarly poor at explaining the variation in SGR (Pseudo 446 

R2 ≤ 2.3%). Therefore, we do not believe that the weakness in the global growth-trait 447 

relationships is attributable to intra-specific trait variation. 448 

 449 

DISCUSSION 450 

At a global scale, among-species variation in sapling growth was positively associated with 451 

SLA, and negatively with wood density and seed mass. Even so, they were surprisingly weak, 452 

and did not strengthen when we analysed more homogeneous geographic subsets, juveniles 453 

of larger stature, fast-growing individuals, or locally collected functional trait data. Due to 454 

their significant negative covariation, we conclude that the relationships between functional 455 

traits and sapling growth are globally consistent. On the other hand, growth and growth-trait 456 

relationships were independent of global variation in potential evapotranspiration. We discuss 457 

why traits are reasonable predictors of performance at local, but not global scales, and the 458 

implication of our results for trait-based global vegetation modelling. 459 

 460 
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Why are global growth-trait relationships so weak? 461 

Previous studies have found stronger relationships between growth and the traits we studied, 462 

especially when plants were grown under controlled conditions (Grime et al. 1975; Poorter & 463 

van der Werf 1998). Combinations of functional traits explained up to 40-60% of the 464 

variation in diameter growth for field-grown trees assessed at single sites (Wright et al. 2010; 465 

Rüger et al. 2012), and slightly less at regional scales (Poorter et al. 2008; Martínez-Vilalta et 466 

al. 2010). In contrast, we found that the three functional traits explained little variation in 467 

growth at the global scale. This broad result is made robust by the use of a) a substantial 468 

dataset of global scope, b) data-collection methods that were standardized across globally 469 

distributed study sites, c) an analysis through which uncertainty was propagated and d) 470 

estimates of relative growth rate that were made at standardized sizes. 471 

 The discrepancy between previous studies and the current, global one might be 472 

explained by the fact that an individual’s growth rate is not only affected by its functional 473 

traits, but also by the environmental conditions it experiences and the suitability of its traits to 474 

its environment. Environmental conditions entered our analyses as the fixed effect of PET, 475 

which summarized the joint influence of temperature and precipitation, and the random effect 476 

of site, which accounted for unmeasured sources of variation in SGR among sites. 477 

Surprisingly, PET affected neither SGR nor global SGR-trait relationships, although among-478 

site variation in SGR was substantial. This may have occurred because we selected study 479 

sites with similar experimental designs and relatively high-light conditions; 59% of species 480 

were planted into sites with ≥ 50% sunlight, and 70% were planted with ≥ 25% sunlight 481 

(Supplementary Table 1). Simultaneously, we found weak relationships between SGR and 482 

functional traits. Together, these observations suggest that growth rates were strongly 483 

affected by unmeasured within-site variation in environmental conditions. We tested this by 484 

evaluating the relationships among growth, traits and PET for the fastest-growing individuals 485 
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of each species, and surprisingly, found that relationships were no stronger than in the overall 486 

analysis (Fig. 3D-F). This indicates that functional traits were poor predictors of growth even 487 

for individuals that did not experience adverse environmental conditions. The discrepancy 488 

could also have arisen if there were substantial variation in growth-trait relationships among 489 

sites, but after testing with an additional set of models that allowed for varying growth-trait 490 

relationships in each site, we found no support for the suggestion that growth-trait 491 

relationships vary among sites (parametric bootstrap likelihood ration tests: P ≥ 0.75), 492 

confirming the minor variance in slopes explained by sites in the variance-partitioning 493 

analysis (Fig. 4).  494 

 Our choice of growth metric may have affected our inference of the strength of the 495 

growth-trait relationships. Ideally, growth would be assessed as whole-plant biomass, rather 496 

than as stem height. This was not feasible in the current study, as it would have required 497 

species-specific allometries or destructive harvests, which were not available for most species 498 

in our dataset. Growth can also be measured as girth, which is often strongly correlated with 499 

height (Martínez-Garza, Bongers & Poorter 2013). For trees <140 cm, however, there is little 500 

consensus on the point at which girth should be measured. Moreover, height growth can be 501 

evaluated much more precisely than radial growth because small plants grow more in height 502 

than in diameter, and height growth is more ecologically relevant, as it determines an 503 

individual’s position in the vertical light profile of the forest, and thus, its access to light. 504 

Using stem height may have introduced some noise into the analysis, owing to interspecific 505 

variation in biomass allocation to height. We believe, however, that it is unlikely to have been 506 

sufficient to generate the globally weak trait-growth relationships we observed.  507 

 Altogether, it is unclear why global relationships among functional traits, PET and 508 

growth are so weak. Thus, evaluating the joint effects of environmental conditions and 509 

functional traits on growth rates remains an important topic of study (Rüger et al. 2012). 510 
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 511 

Toward better predictions of growth 512 

To better manage and conserve ecological communities, we must improve our ability to 513 

predict their dynamics (Clark et al. 2001). The most promising models to do so are rooted in 514 

demography (Boulangeat et al. 2012), but obtaining demographic data is challenging, 515 

especially in species-rich communities where many species are rare. The ability to accurately 516 

predict vital rates, and thus demography, from data that are relatively easily obtained would 517 

allow a step change in ecological forecasting (Adler et al. 2014). The relative ease of 518 

collecting functional trait data and the potential of functional traits to yield insight into 519 

population and community structure (Kraft et al. 2008; Cornwell & Ackerly 2010; Kunstler 520 

et al. 2012), suggest that integrating them into dynamic vegetation models would increase 521 

their reliability (Scheiter et al. 2013; Sakschewski et al. in press). Our results, however, 522 

indicate that the functional traits most commonly investigated in plant ecology are poor 523 

predictors of growth at large scales. Though organ-specific functional traits are easily 524 

measured, they integrate many physiological processes, are intricately interrelated, and can be 525 

highly plastic (Russo et al. 2010; Paine et al. 2011; Pérez-Harguindeguy et al. 2013). 526 

Moreover, functional integration occurs at the individual level, not at the level of organs 527 

(Craine et al. 2012). Thus, many combinations of trait values can yield similar growth rates 528 

(Marks & Lechowicz 2006). Integrated measures, such as whole-plant carbon use efficiency, 529 

may be more effective (Enquist et al. 2007).  530 

 Is it feasible to predict plant community dynamics over broad scales? It has been 531 

suggested that ‘hard’ functional traits, such as photosynthetic or respiration rates, would be 532 

better predictors of vital rates than ‘soft’ traits such as SLA, wood density and seed mass 533 

(Lavorel & Garnier 2002). This is unlikely under field conditions, however, because the 534 

physiological bases of hard traits make them overly sensitive to heterogeneity in 535 
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environmental conditions. Contrastingly, experimental measurements of whole-plant 536 

tolerance to low resource availability may predict vital rates, and thus community dynamics, 537 

over broader scales than can organ-specific functional traits (Craine et al. 2012). As data on 538 

species’ physiological tolerance to low resource availability become more widely available, 539 

they should allow broader-scale predictions of community structure and dynamics 540 

(Engelbrecht et al. 2007). We suggest that future studies focus on determining which 541 

functional traits predict the vital rates of individuals under various environmental conditions, 542 

and at what spatial scales (Martínez-Garza et al. 2005), rather than seeking monolithic global 543 

relationships. Regardless of the approach, improving techniques to predict the dynamics of 544 

ecological communities remains a vital task, given the urgent need for their management and 545 

conservation. 546 

 547 
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TABLES 900 

Table 1 Comparison of A) all species, B) fast-growing individuals in all species, and c) fast-901 

growing species. The first two groups were fit using linear mixed-effect models, whereas the 902 

latter group was fit using linear quantile mixed-effect models. Models are sorted by 903 

increasing Akaike Information Criterion (AIC). PET: Potential evapotranspiration 904 

 Model N Parameters AIC 

All species  Traits 6 0.0 

 PET + Traits 7 1.5 

 Intercept-only 10 5.1 

 PET 4 6.6 

 PET x Traits 10 6.7 

Fast-growing species Traits  6 0.0 

 PET + Traits 7 1.9 

 PET x Traits 10 14.9 

 PET 4 32.6 

 Intercept-only 3 72.9 

Fast-growing individuals  PET + Traits  7 0.0 

 Traits 6 0.1 

 PET x Traits 10 5.2 

 PET 4 20.6 

 Intercept-only 3 20.7 
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FIGURES 905 

Figure 1 Map of study sites. Points are coloured by biogeographic region and scaled to 906 

the number of species studied at each site. Bold font indicates site numbers, whereas plain 907 

text indicates study duration (in months) and the number of individuals monitored for growth 908 

at each site. See Supplementary Table 1 for details. 909 

 910 

Figure 2 Correlations among functional traits for the 333 species-site combinations. 911 

Note that seed mass is presented on log-transformed axes. Functional traits were largely 912 

independent of one another. Fitted lines are derived from standardized major-axis 913 

regressions. Error bars indicate one standard error of the mean. 914 

 915 

Figure 3 Global relationships between size-standardized relative growth rate (SGR) and 916 

SLA, wood density, and seed mass. In A-C), points represent mean SGR for each species, 917 

whereas in D-F), points represent the 95th percentile of growth rates of individuals in each 918 

species. Thick regression lines and darker shading show overall relationships fitted with a 919 

weighted linear mixed-effects model, whereas thinner lines and lighter shading show 920 

relationships for fast-growing species, which were fitted with a weighted linear 95th quantile 921 

mixed-effects model. Solid lines represent significant relationships (≤ 0.05), whereas 922 

dashed lines indicate non-significant ones. Relationships are shown with 95% confidence 923 

intervals. In all models, weights are the inverse of the credible intervals around species-924 

specific growth rates, which are indicated by error bars.  925 

 926 

Figure 4 A summary of the variance contributed to the global growth-trait relationships 927 

by study sites, plant families and biogeographic regions. Variation in SGR was greater among 928 

study sites than among families or regions, whereas SGR-trait relationships were relatively 929 
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consistent among sites, families and regions. Points, thick bars and thin bars show means, 930 

50% confidence intervals and 95% confidence intervals of the finite-population standard 931 

deviations, respectively. The point estimates are not always at the centre of the intervals 932 

because all variance components must be nonnegative (Gelman 2005). 933 

 934 
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SUPPLEMENTARY MATERIAL 935 

Supplementary Table 1 Summary data on each experimental site. 936 

Supplementary Table 2 Summary data on each species-site combination. 937 

Supplementary Figures  938 

1) Predicted growth of each of the 333 species-site combination over time. Points 939 

indicate observed sizes of individuals, heavy black lines indicate species-mean 940 

growth, and thin grey lines indicate growth of repeatedly-observed individuals. The 941 

colour of the associated confidence envelopes indicates the fitted functional form 942 

green: asymptotic; red: exponential; blue: logistic. Note that height is log-transformed 943 

and that scales vary among panels.  944 

2) Relationships between size-standardized relative growth rate (SGR) and SLA, wood 945 

density, and seed mass in the worldwide TreeDivNet sites (Top row, panels A-C) and 946 

the European TreeDivNet sites (Bottom row, panels D-F). A trait-only model fit the 947 

former data best, whereas the latter were best fit by a model that included a trait-PET 948 

interaction. In all panels, relationships are weighted by the inverse of the credible 949 

intervals around species-specific growth rates, which are indicated by error bars. SGR 950 

was log-transformed for analysis and back-transformed for presentation.  951 

3) Relationships between size-standardized relative growth rate (SGR) and SLA, wood 952 

density, and seed mass in the global dataset. SGR was estimated at standardized 953 

heights of 200 cm (Top row, panels A-C), 300 cm (Middle row, panels D-F) and 500 954 

cm (Bottom row, panels G-I). A trait-only model fit all three sets of data best.  In all 955 

panels, relationships are weighted by the inverse of the credible intervals around 956 

species-specific growth rates, which are indicated by error bars. SGR was log-957 

transformed for analysis and back-transformed for presentation. 958 

 959 


