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Thesis abstract 

 

Rapid climate change in the Arctic and Sub-Arctic is causing vegetation change 

across large areas of tundra. Shrubs and trees are undergoing range expansions as 

part of an over-all trend of ‘greening’ of the tundra. This is of importance because 

northern peatlands contain around half of total soil carbon (C) and there is a 

potential for productive vegetation to interact with this C in a number of ways: (1) 

Ectomycorrhizal fungi (ECM) in symbiosis with trees and shrubs could potentially 

stimulate decomposition through extracellular enzyme production whilst extracting 

nitrogen (N) for their hosts; (2) deep snow, trapped by tall vegetation insulates the 

soil, resulting in higher winter-time microbial activity and has potential to influence 

growing season microbial activity; (3) the biochemistry of litter and decomposition 

environment associated with more productive vegetation could result in accelerated 

mass loss of litter and stimulate decomposition of older soil C.  

 

This thesis investigates how productive sub-arctic plant species in Northern Sweden 

interact with soil C by using ‘space-for-time’ transitions from forests (Betula 

pubescens), through intermediate shrub vegetation (Betula, Salix), to tundra heath 

(Empetrum nigrum). This was to test how ECM fungi, winter snow accumulation, 

defoliation events and litter input influence C cycling. C stocks, respiration rates 

and ECM growth rates were measured across these ecotones. It was found that birch 

forests and shrub stands had significantly lower soil C storage and higher 

respiration rates than adjacent heaths. This is contrary to the predictions of earth 

system models. Higher ECM growth rates at plots with low C storage and high 
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cycling rates implied that they had an important role in the stimulation of C 

decomposition.  

 

To test whether snow cover in forests over winter had an important effect on C 

cycling, soils were transplanted between forest and heath (different snow cover), 

and respiration rates were measured over summer. It was found that deep snow 

cover over winter increases microbial activity in summer due to a warmer, more 

stable winter environment; this is hypothesised to be due to the environmental 

selection of a more active assemblage of decomposing microbes. A defoliation 

event of part of the birch forest by caterpillars allowed for a natural ‘experiment’. 

Trees with different degrees of defoliation were compared in their influence over 

soil C cycling processes. Defoliated plots shifted to slower-cycling states through a 

shift in the ECM community. This further implied that ECM fungi have an 

important role to play in rapid cycling of C in forests. A decomposition experiment 

using the litter of significant plant species in forest, shrub and heath communities 

was carried out by transplanting them between these key environments. This work 

showed that rapid decomposition of litter in the forest is driven by an interaction 

between carbohydrate-rich litter input and an effective decomposer community.  

This work addresses the relationship between vegetation productivity and C storage 

in the soil. This theme runs through every experiment as they test specific 

interactions between different plant groups and the soil. The results from this thesis 

suggest that increasing productivity and shrub expansion in the Arctic will stimulate 

decomposition of soil C via a number of pathways. Plant-soil interactions are 

clearly of importance in determining the fate of C in ecosystems and will play a key 

part in the balance of C in the future.              
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Chapter 1: Introduction 

 

1.1. Climate change in the Arctic 

Greenhouse gases (GHGs) warm the atmosphere because of their capacity to absorb 

and reemit infrared wavelengths of energy, causing a ‘greenhouse effect’ (IPCC, 

2013). The most important of these gases are water vapour (H2O), carbon dioxide 

(CO2) and methane (CH4). CO2 concentrations in the atmosphere are increasing due 

to anthropogenic combustion of fossil fuel reserves and land use change (IPCC, 

2013). As a result, the climate is warming. Natural fluxes of carbon (C) from 

ecosystems (photosynthesis and respiration in biological systems) are over 18 times 

larger than the production of CO2 from anthropogenic sources. However, increasing 

CO2 concentrations since the industrial revolution in 1750 and associated warming 

may interact with the ‘natural’ carbon cycle and causing feedbacks and further 

warming (IPCC, 2013).  

 

Over the last century the global climate has warmed by, on average, 0.78 °C (IPCC, 

2013). This change in temperature has been forced primarily by greenhouse gas 

emissions from anthropogenic sources with little or no influence from ‘natural’ 

forcings (IPCC, 2013). If the level of human activity and release of GHGs continues 

at the current rate, there could be an overall planetary warming of up to 4 °C by 

2100 (IPCC, 2013).  Northern high latitudes (above 60 °N) have warmed by 

between 1-4 °C in the last 50 years, proceeding at a rate that is far higher than the 

planetary mean (ACIA, 2005; Serreze & Barry, 2011). By the end of the 21st 

century, if GHG emissions follow their current trajectory the Arctic may warm by 

up to 11 °C (IPCC, 2013). The disproportionate increase in temperature recorded in 
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northern latitudes compared to the global mean is known as ‘Arctic Amplification’ 

(Serreze & Francis, 2006; Serreze et al., 2009; Serreze & Barry, 2011; Cohen et al., 

2014). Arctic amplification is driven by a number of interacting physical processes 

relating to energy fluxes and weather patterns, but primarily by sea ice loss (Serreze 

& Barry, 2011). Loss of sea ice, due to climate warming, decreases albedo and 

results in increased solar radiation absorption into the ocean then energy transfer 

back to the atmosphere (Serreze et al., 2009). This leads to negative feedbacks with 

ever thinner layers of seasonal sea ice which take less energy to melt; leading to a 

rapid decrease in sea ice cover in the last 50 years (Stroeve et al., 2007). If the 

current trend holds, summer sea ice over the Arctic Ocean could be completely lost 

by 2050, therefore driving the highest regional temperature increases anywhere on 

Earth (IPCC, 2013).      

 

 

1.2. The response of the arctic carbon cycle to climate change 

The global terrestrial pool of carbon is estimated to store between 1500 and 2400 Pg 

C (Schimel, 1995; IPCC, 2013), of which approximately 1580 Pg is stored in the 

soil; around 2.5 times more than that stored in vegetation (610 Pg C) (Schimel, 

1995). There is considerably less confidence in estimates of the terrestrial C pool 

which has shown more variation it its capacity to sequester C  than the oceanic pool 

(Cox et al., 2000; Le Quere et al., 2009). Feedbacks are predicted to occur with 

future warming as contrasting components (broadly, photosynthesis and respiration) 

of the terrestrial C cycle respond differentially both to warming and to increases in 

atmospheric CO2 concentrations (Cramer et al., 2001). There remain critical 

uncertainties in the magnitude, and even sign, of these feedbacks due to limitations 
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in our understanding of key plant and soil processes (Cox et al., 2000; Todd-Brown 

et al., 2013; Zhang et al., 2014).  

 

From a terrestrial biological perspective, the Arctic has been defined as areas 

poleward of the arctic treeline, where tundra vegetation dominates (Hustich, 1979; 

Walker, 2000; Callaghan et al., 2002). It has been estimated to hold up to half of the 

total soil organic C on Earth, making it the most important store of soil carbon of 

any biome (Tarnocai et al., 2009). The majority of this carbon is locked in 

permafrost (continually frozen ground) (Tarnocai et al., 2009) which hold 

approximately twice the amount of C present in the atmosphere (Schuur et al., 

2013). Peatlands have a pan-arctic coverage (CAFF 2010) and despite their small 

global coverage, store between 15-30 % the world’s soil carbon (Limpens et al. 

2008). Factors such as slowly-decomposing litter input, low annual temperatures, 

prevalence of anoxic conditions, and low fire frequency, have, over geological 

timescales, made northern peatlands a strong sink of C (Hobbie et al., 2000; 

McGuire et al., 2009), despite very low net primary productivity (NPP) (Cao & 

Woodward, 1998).  

 

As temperature increases over the Arctic at rates which far surpass the global mean 

(Serreze & Barry, 2011), models suggest that increases in respiration and 

disturbance by fire may be weakening the C sink-strength of the system (Hayes et 

al., 2011).  This corroborates with observations which have large variation in 

estimates of sink strength of arctic tundra, ranging from strong to very weak 

(Cahoon et al., 2012; McGuire et al., 2012) and predictions that respiration may 

increase exponentially with temperature increase (Davidson et al., 2006). In 
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addition to this, C stored in permafrost is potentially vulnerable to climate warming, 

with possible feedbacks to the climate system through the release of biogenic C to 

the atmosphere (Schuur et al., 2008). Experimental warming of peatland underlain 

with permafrost showed that ecosystem respiration (ER) rates increased persistently 

over an eight year period and a significant proportion of the respired C was derived 

from old C stores (Dorrepaal et al., 2009). The response of ER to temperature 

increases has been shown to be due to microbial communities in tundra soils with 

high soil C storage that are exceptionally responsive to temperature increase, more 

so than more southerly ecosystems (Karhu et al., 2014). Due to their storage of the 

largest pool of soil carbon globally (Tarnocai et al., 2009),  research has focussed 

on responses of arctic soils to climate warming; but there is considerable 

uncertainty as to whether increases in ER will shift their sink-source status. 

 

1.3. Changes in productivity 

Since satellites have been able to measure vegetation greenness from space there 

has been an abundance of data and studies showing that arctic terrestrial vegetation 

has increased in  productivity. The first to measure normalised difference vegetation 

index (NDVI) were Myneni et al. (1997) who observed large increases in 

productivity (up to 50% increase) between 1981-1991 up to 70 °N which they 

linked to lengthening of the growing season. In recent decades this has been  snow-

free seasons have lengthened on average at a rate up to 6.3 days per decade, with 

this pattern driven by regional climate warming (Zeng et al., 2011). This process is 

thought to be linked to sea ice decline (Bhatt et al., 2010) and therefore part of the 

feedbacks related to ‘polar amplification’ (Serreze & Barry, 2011). This pattern was 

further observed over Alaska up to 2001 and strong correlation found between 
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NDVI and above-ground biomass in a ‘ground-truthing’ study (Jia et al., 2003). 

These finer scale measurements were made across Canada and Alaska to re-affirm 

the trend across the arctic tundra (Goetz et al., 2005; Verbyla, 2008).  NDVI studies 

in Siberia mirrored what was observed in the North American tundra and that 

greening was driven by warming of the climate (Forbes et al., 2010; Blok, Daan et 

al., 2011). However, other work highlighted human activity through reindeer 

herding and development as other important factors, more so than climate change in 

some areas (Walker et al., 2009). Latest multi-sensor studies up to 2008 have shown 

the greening trend in large areas across the Arctic (Guay et al., 2014) and also 

further established a link between sea-ice decline, warming temperatures and 

productivity increase (Bhatt et al., 2010; Fraser et al., 2014).  

 

Recent work has confirmed that the increases in productivity in the Arctic observed 

from space have resulted in sequestration of C in plant biomass with a 20 % 

increase in productivity equating to a 0.4 Pg C increase in biomass in 30 years (See 

Figure 1.1(Epstein et al., 2012)). This increase in biomass was most pronounced in 

lower latitudes of the tundra, in ecosystems where graminoids, dwarf shrubs and 

herbs dominate, down to the sourtherly limit of the tundra, where erect shrubs in 

genera such as Betula, Salix and Alnus constitute the majority of vascular vegetation 

and trees encroach in riparian areas (for detailed definitions of tundra climate zones, 

see Walker et al. (2002)). These areas with the warmest summer temperatures and 

highest standing biomass have undergone increases in plant biomass of up to 25 % 

(Epstein et al., 2012). In contrast, polar deserts and areas of the High Arctic have 

only undergone modest increase in biomass (of 2-6 %) (Epstein et al., 2012). Long-

term studies on the ground have supported the notion that the Arctic is becoming 
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more productive (Elmendorf et al., 2012b) and that climate warming is responsible 

for these changes.  

 

 

 

 

  

 
Figure 1.1: Changes in aboveground phytomass (calculated from changes in 

NDVI) in tundra ecosystems above the treeline. Taken from Epstein et al. 

(2012).  
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Earth system models (ESMs) have predicted that increases in atmospheric CO2 will  

out-weight increases in temperature-related increases in respiration  and stimulate 

increases in C sequestration in arctic ecosystems over the next 100 years (Cramer et 

al., 2001; Qian et al., 2010; Todd-Brown et al., 2013). This predicted increase in C 

storage is driven by increases in NPP (Epstein et al., 2012) and therefore an 

increase in litter-fall and below-ground biomass production. ESMs therefore predict 

that climate change will increase the sink capacity of the Arctic (Cramer et al., 

2001; Qian et al., 2010; Todd-Brown et al., 2013). 

 

1.4. Change in productivity in boreal regions 

In sub-arctic and boreal ecosystems, the opposite of the greening phenomenon has 

been occurring over a similar timeframe; where forests have experienced reductions 

in productivity (Goetz et al., 2005; Verbyla, 2008; Koven, 2013; Bjerke et al., 

2014).  Climate warming in northern forests (ACIA, 2005) has increased  drought 

stress of trees which, along-side pest outbreaks, has resulted in reduction in 

productivity across North-American boreal forests (Goetz et al., 2005; Verbyla, 

2008). At the same time, climate warming in Northern Scandinavia has increased  

the range and severity of insect outbreaks (Jepsen et al., 2008) to cause large 

decreases in NPP in some forests (Goetz et al., 2005; Bjerke et al., 2014). In sub-

arctic regions, where greening of tundra (Rundqvist et al., 2011) and browning of 

forest (Bjerke et al., 2014) is occurring, it is important to consider both effects for 

the future carbon balance for the ecosystem. 
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1.5. Shrub expansion in the Arctic 

 

1.5.1. Observations 

Shrub expansion is considered an important component of the widely-observed 

increases in NDVI (Tape et al., 2006). Increases in temperatures and a longer 

growing season (Zeng et al., 2011) have not only increased the productivity of 

species already present but also allowed the expansion of more productive species 

into what was previously low canopy tundra (for an example, see Fig. 1.2(Myers-

Smith et al., 2011a; Myers-Smith et al., 2011b)). This was first documented in 

riparian zones in Alaska by Sturm et al. (2001b) and then more extensively by Tape 

et al. (2006), comparing contemporary photos of shrub stands with photos of the 

same sites around 50 years later. As well as Alaska, shrubs have been observed to 

be expanding in Siberia (Forbes et al., 2010; Frost & Epstein, 2014), North-West 

Territories of Canada (Fraser et al., 2014), Quebec (Ropars & Boudreau, 2012) and 

sub-arctic Sweden (Rundqvist et al., 2011). The connection between temperature 

increases and growth and expansion of shrubs has further been shown using 

dendroecology and analysis of age structure of shrub stands (Forbes et al., 2010; 

Hallinger et al., 2010; Blok et al., 2011). Further, it was found that arctic dwarf 

shrubs show ‘bursts’ of recruitment on Greenland after warm periods of climate 

(Büntgen et al., 2014). Genera that are most commonly observed to be responding 

to warming and lengthening growing season by expanding into less productive 

systems are deciduous shrubs  Betula, Salix, Populus and Alnus (Myers-Smith et al., 
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2011a). ESMs calculate that by 2050, woody cover may increase by up to 52 % 

along with other widespread vegetation changes (Pearson et al., 2013).   

 

 

 

1.5.2. Warming experiments 

Passive warming treatments in the International Tundra Experiment (ITEX), using 

open top chambers (OTCs), have been particularly informative in terms of 

explaining observed deciduous shrub increase in the Arctic and predicting how 

vegetation communities will further change in the future (Walker et al., 2006; 

Elmendorf et al., 2012a). They warm air temperatures by 1-3°C in arctic, sub-arctic 

and alpine tundra systems across the world (Henry & Molau, 1997); i.e. temperature 

increases which have already been observed in the Arctic (Chapin et al., 2005; 

Serreze & Barry, 2011) and are predicted in the near future (IPCC, 2013).  

 
Figure 1.2: Repeat photography from 1987 and 2009 showing expansion of shrub patches Salix 

richardsonii on Herschel Island, Canada, from Myer-Smith et al. (2011b), 

 



 

 10 

The ITEX project comprehensively demonstrates that when tundra is heated, even 

over short time scales (Arft et al., 1999) the plant community becomes more 

productive (Walker et al., 2006; Elmendorf et al., 2012a). The longer the duration 

of the ITEX experiment and the higher the temperature increase, the more 

pronounced the changes to the plant community. More productive shrubs, 

graminoids, and forbs increased in cover and canopy height at the expense of 

mosses and lichens (Walker et al., 2006; Elmendorf et al., 2012a).   Earlier bud 

burst was the most obvious effect, allowing photosynthesis to occur over a longer 

growing season (Arft et al., 1999), consistent with observed changes across 

northern latitudes (Myneni et al., 1997). 

One of the key findings of ITEX is that woody biomass and canopy height increase 

in response to warming, especially in deciduous shrubs (Walker et al., 2006; 

Elmendorf et al., 2012a). This draws obvious parallels with observations of shrub 

expansion across the Arctic and adds strength to the argument that temperature 

increases are important in this process (Myers-Smith et al., 2011a). 

 

1.5.3. Positive feedbacks and shrub expansion 

Ecosystem feedbacks to shrub expansion may play an important part in further 

facilitating their growth in a positive feedback mechanism (Sturm et al., 2001a; 

Sturm et al., 2005; Wookey et al., 2009). Deep snowpacks of up to one meter high 

may build -up on the leeward side of a small stand of shrubs and thus protect the 

shoots of younger individuals (Sturm et al., 2001a; Sturm et al., 2005). In addition 

to this, soil under snow-packs are insulated from the air temperature in winter and 

dip no lower than -10°C compared with soil under a thin snow pack which closely 

follows ambient air temperature, which can dip to -40°C (Sturm et al. 2001b; Sturm 
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et al. 2005). Experimental manipulation of snow depth has shown that deep snow 

allows continued microbial activity and, as a result, nitrogen (N) mineralisation 

increases (Schimel et al., 2004). This provides a positive feedback, whereby the 

snow beds provide more bioavailable N for further growth and expansion of 

productive shrubs (Sturm et al., 2001a).  

 

Equally important as an ecosystem feedback to shrub expansion is the quality of 

litter input. Higher quality (low C:N) of litter input from Betula glandulosa 

increased pools of N, and had higher N turnover rates in the organic layer, than 

adjacent birch hummock tundra (Buckeridge et al., 2010). It is therefore likely that 

productive shrubs facilitate their own expansion through summer and winter 

processes which increase N availability and turnover rates and increase productivity 

in an otherwise N-limited system (McKane et al., 2002).  

 

1.5.4. Geographical extent of shrub expansion 

Although there is a general consensus that across much of the Arctic shrubs are 

increasing their range and becoming more productive (Myers-Smith et al., 2011a), 

there are important exceptions to this. It has been observed over the last three 

decades that, high arctic tundra has undergone only modest increases in productivity 

(2-6 %), whereas large increases have been observed in warmer, lower latitude 

areas (Epstein et al., 2012). This has been supported by a number of field studies in 

Greenland (Daniëls & de Molenaar, 2011; Daniëls et al., 2011), Svalbard (Prach et 

al., 2010) and Disko island (Callaghan et al., 2011), which have not reported 

significant vegetation change despite regional climate warming. A tundra warming 

experiment using OTCs on Ellesmere Island, Canada, observed no change in 
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community composition after three years, suggesting that these high arctic 

communities may be very resilient to change (Hudson & Henry, 2010). This 

supports Wookey and Robinson’s (1997) prediction that the lack of substantial soil 

nutrient pools in polar desert and semi-desert ecosystems would constrain responses 

to warming in these regions in the absence of further nutrient inputs. 

 

At a different vegetation assemblage on Ellesmere Island, a long term study (25 

years) showed increases in aboveground (Hudson & Henry, 2009) and belowground 

biomass (Hill & Henry, 2011).This observation may, however, be exceptional for 

the High Arctic; described as a ‘polar oasis’ and contains substantial soil organic 

matter and nutrient stocks (Henry, 1998; Hill & Henry, 2011), it has relatively large 

nutrient and moisture influxes from an upslope glacier resulting in high vegetation 

cover. This is consistent with patterns observed at lower latitudes, where the large 

increases in shrub biomass have been observed in moister riparian zones (Tape et 

al., 2006; Naito & Cairns, 2011). ITEX syntheses have also shown that shrub 

biomass increases most in warmer and wetter plots (Walker et al., 2006; Elmendorf 

et al., 2012a) which is supported by NDVI data showing that the warmer areas of 

the Arctic have already witnessed the highest productivity increase. This prompts 

the suggestion that the area most likely to experience shrub expansion is the ‘Low 

Arctic’ where the environment and climate are milder. More southerly areas of the 

Arctic nearer the treeline, are likely to undergo the largest changes in ecosystem 

processes and properties and this is where research into the impacts of shrub 

expansion on carbon cycling should be focussed.  
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1.6. Treeline change and forest expansion 

The arctic treeline is defined as the position of the northern-most tree (over 2 m) of 

a tree species (Hustich, 1979), north of which is treeless tundra and south of which 

is the ‘tree-tundra’, a mosaic of stands of trees and tundra vegetation (Payette et al., 

2001). Further south, below the Timberline is the uninterrupted boreal forest or 

‘taiga’, where higher temperatures allow trees to grow larger and taller (Payette et 

al., 2001). The treeline is formed by different species at different points in its 

circum-polar distribution. These species are principally of the genera Betula, Larix, 

Pinus and Picea, with Betula and Larix most consistently at the northern-most limit 

of tree growth (Hustich, 1979; Callaghan et al., 2002).  

 

Tree survival, and therefore the position of the treeline, are is highly sensitive to 

extremes of temperature and is therefore predicted to advance in response to climate 

warming (Callaghan et al., 2002; Grace et al., 2002; Harsch et al., 2009). Research 

has shown that altitudinal treelines grow up to a summer ‘thermal limit’ (Korner & 

Paulsen, 2004), and could be responsive to climate warming. However, in a meta-

analysis of treeline studies, it was found that only half of those studied had moved 

in response to warming (Harsch et al., 2009). The strongest response of treelines 

has been in areas experiencing strongest winter warming (Harsch et al., 2009). 

Trees could be particularly responsive to winter climate change as their height 

ensures that shoots receive no protection from winter cold, therefore increases in 

winter temperature should equate to increases in survival (Grace et al., 2002). The 

largest increases in temperature at high latitudes have been observed over the winter 

period (Serreze & Barry, 2011), therefore we should expect further advance of the 

polar treeline.  
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Diffuse treelines, where stands of trees are ever-increasingly interspersed with 

tundra until they can grow no further north/up-slope (Payette et al., 2001) were 

found to be the most likely to respond positively to climate warming rather than 

abrupt treelines (Harsch et al., 2009). This ‘forest-tundra’ is found further south in 

the Arctic and is where some of the highest increases in productivity have been 

recorded in past decades (Epstein et al., 2012) and is predicted to expand rapidly 

into the tundra by 2050 (Pearson et al., 2013). Some recent examples of this can be 

found in sub-arctic Sweden where stands of Betula pubescens were found both to 

have increased in size and to have colonised further up-slope (Rundqvist et al., 

2011) and to higher latitudes (Hofgaard et al., 2013). In sub-arctic Quebec, only 

more southerly tundra within a diffuse treeline area were found to be undergoing 

recruitment of tree species (Gamache & Payette, 2005). In addition to this, it has 

been observed that land management via processes such as changes in reindeer 

husbandry can also result in the increases of forest cover via herbivory of lichens 

(Tommervik et al., 2009). Conversely, herbivory by reindeer can stabilise the 

treeline through direct shoot mortality (Van Bogaert et al., 2011), as can herbivory 

by other species such caterpillars of lepidopteran moths (Van Bogaert et al., 2011; 

Bjerke et al., 2014). 

 

1.7. Potential interactions between shrubs and trees and soil carbon. 

Earth system models have predicted that increases in productivity at northern high 

latitudes that are being driven by climate change will result in increased C 

sequestration in the soil (Cramer et al., 2001; Qian et al., 2010; Todd-Brown et al., 

2013). The proposed mechanism for this is through an increase in litter fall (Qian et 
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al., 2010). However, recent work has cast doubt on this prediction. It was suggested 

that extrapolations of current ESMs do not take into account more subtle, yet 

critical plant-soil interactions that exert potentially critical influence over the fate of 

soil C (Todd-Brown et al., 2013). Indeed recent empirical data from treelines 

(Wilmking et al., 2006; Hartley et al., 2012) and boreal forests (Kane & Vogel, 

2009)  have shown that more productive vegetation stores less C in the soil than less 

productive vegetation. The plant-soil interactions which Todd-Brown et al. (2013) 

allude to are mechanisms such as ‘positive priming’, whereby labile carbon is 

delivered to the soil from plant roots. This stimulates the microbial community into 

mineralising nutrients from organic complexes, but, in so doing, causes 

decomposition of native organic matter in the soil (Kuzyakov, 2002). This was a 

mechanism proposed to explain low C stocks in a sub-arctic forest where it was 

observed that ‘old’ C was being respired at the peak of forest productivity (Hartley 

et al., 2012). Meta-analyses of CO2 enrichment experiments have shown that the 

excess C fixed by forests can be cancelled out by increases in priming of old soil C 

(van Groenigen et al., 2014).  Further, when priming effects are incorporated into 

ESMs, they can reduce the soil C storage predicted by CO2 ‘fertilisation’ by up to 

50 % (Sulman et al., 2014).  

 

Productive shrub and forest expansion onto the carbon-rich tundra is therefore not a 

straight-forward case of increased productivity resulting directly in carbon 

sequestration. The simple consideration of priming effects (Sulman et al., 2014) in 

more productive systems casts doubt on the additional storage potential  of these 

plant functional types (PFTs). Furthermore, the examination of empirical evidence 

suggests that there could be losses of C from the Arctic, should shrubs expand their 
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ranges. Plant-soil interactions are of fundamental importance to C fluxes in the 

Arctic when considering vegetation change (Wookey et al., 2009). Specific plant-

soil interactions need to be considered to better understand the future fate of soil C 

in the Arctic. 

 

1.7.1. Ectomycorrhizal fungi and soil carbon 

Ectomycorrhizal (ECM) fungi live in symbiosis with the majority of trees and 

shrubs, exchanging nutrients, water and pathogen resistance for photosynthate-C 

from their plant hosts (Smith & Read, 2008) . They can be defined morphologically 

from any other mycorrhizal group by their complete coverage of root tips with a 

fungal mantel and hyphae that grow in between epidermal and cortical cells, called 

the ‘Hartig net’ (Smith & Read, 2008). ECM invest autotophic C in a network of 

extramatrical mycelia, which are heavily branched hyphae that have considerably 

greater surface area than the plant’s roots (Smith & Read, 2008). The extent of the 

mycelia varies greatly by species, from smooth-mantled ‘contact’ species to 

extremely dense or long-ranging networks with large potential to explore the soil 

(Agerer, 2001; Agerer, 2006). ECMs make up a polyphyletic group that has  

evolved multiple times from free-living ancestors (Tedersoo et al., 2010). For this 

reason, many species retain the ability to produce extra-cellular enzymes similar to 

those of free living fungi with a high potential to degrade soil organic carbon 

(Cullings et al., 2008; Talbot et al., 2008; Bödeker et al., 2014; Phillips et al., 2014; 

Brzostek et al., 2015). It is doubtful that ECM species produce these enzymes as a 

method of acquiring C for their own growth (Lindahl & Tunlid, 2015), but to break 

down complex organic molecules in order to free N for their tree hosts (Bödeker et 

al., 2014).   
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The major deciduous shrub groups known to be proliferating onto the tundra as a 

result of climate warming (Betula, Alnus, Salix) all have strong symbioses with 

ECM fungi (Michelsen et al., 1996; Treu et al., 1996; Cripps & Eddington, 2005).  

As the range of these species expands, more soils will be exposed to the action of 

ECMs and potentially lead to the stimulation of soil organic matter (SOM) 

decomposition through the ability to produce a suite of oxidative and hydrolytic 

enzymes (Cullings et al., 2008; Talbot et al., 2008; Bödeker et al., 2014; Phillips et 

al., 2014; Brzostek et al., 2015). In particular, it was found that a genus of ECM 

fungi, Cortinarius, which commonly colonises deciduous shrubs (Deslippe et al., 

2011), retains the ability to use peroxidase enzymes, especially when inorganic N is 

at low concentrations (Bödeker et al., 2014). This was seen as a mechanism to free 

N from organic complexes for uptake by the fungus, but can result in stimulated 

decomposition of organic matter, as previously ‘secure’ C is exposed for 

decomposition to the microbial community (Talbot et al., 2008). This could be of 

particular significance in arctic ecosystems/ heath environments where inorganic N 

availability is typically very low (Hobbie et al., 2002; Read & Perez-Moreno, 2003) 

but abundant in undecomposed organic forms (Hobbie et al., 2000; Read & Perez-

Moreno, 2003). Carbon stores in arctic soils could therefore be highly vulnerable if 

exposed to ECM networks. It is therefore of critical importance to understand how 

ECM communities relate to PFTs and how they respond to changes in C supply.  

 

Ericoid mycorrhizal fungi (ERMs) are dominant in many heath ecosystems (Read & 

Perez-Moreno 2003; Tybirk 2000). They form strong symbioses with ericaceous 

dwarf shrub genera such as Empetrum, Vaccinium and Calluna (Read & Perez-
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Moreno 2003). ERM species are evolved to degrade the complex C compounds that 

make up the litter of their hosts (Read & Perez Moreno 2003). As such, they are 

able to exude a larger number of C-degrading enzymes than many ECM species, 

with a higher specificity to ‘recalcitrant’ C compounds such as lignin and phenols 

(Bending & Read, 1997; Talbot et al., 2008). 

One of the most significant differences between ECM and ERM fungi is the degree 

to which they explore the soil in search for nutrients (Smith & Read 2008). ERM 

fungi do not typically explore many μm beyond their host roots where they form 

typical coils in infected root hairs (Smith & Read 2008). There is a lot of diversity 

in the growth forms or exploration types (ETs) of ECM species (Agerer 2001). 

Some, like ERM fungi do not explore away from the root (e.g. contact ETs such as 

Russula spp.), some forage the soil extensively, forming cords and/or dense 

mycelial mats across the soil (Agerer 2001). Therefore, depending on the 

assemblage of species associated with a tree or shrub, the amount of ECM growth 

could be very large, as could the amount of C degrading enzymes that are exuded 

into the soil (Phillips et al., 2014). It has been found that in forests, ECM fungi 

could produce as much, if not more extracellular enzymes than free-living fungi 

(Phillips et al., 2014). In this way, although ECM species produce a lower diversity 

of C degrading enzymes (Talbot et al. 2008) and may produce less per unit area 

than ERMs; the net production of enzymes from ECM fungi associated with a 

single root maybe far higher than in ericaceous systems. 

 

 

 

 



 

 19 

1.7.2. Snow accumulation and winter processes 

A significant proportion of biogeochemical cycling in forest and tundra ecosystems 

occurs over winter, with up to a third of ER estimated to take place over the winter 

months (Fahnestock et al., 1999). This is because microbial communities remain 

active at sub-zero temperatures (Clein & Schimel, 1995), and active microbial 

growth has been recorded in tundra soils at -2 °C (McMahon et al., 2009) with 

survival possible at -39 °C (Panikov et al., 2006). 

  

Winter snow cover is critical to maintaining microbial activity, as deep snow 

insulates the microbial community from air temperatures which regularly dip as low 

as - 40 °C in the Arctic and Sub-Arctic (Sturm et al., 2001a; Sturm et al., 2005; 

Grogan & Jonasson, 2006). Shrub vegetation can create snow-packs of 50-100 cm 

in depth, where it gathers on the lee-side of the shrub, insulating the soil to maintain 

relatively stable temperatures between 0 and -10 °C (Sturm et al., 2001a). The 

changes in local snow depth associated with shrub expansion in the Arctic (increase 

of up one metre) are a far larger change than changes in general landscape-scale 

overall snow depth observed in recent decades (± 10 cm per decade, depending on 

location (Park et al., 2013)). The formation of deeper snow packs formed by the 

presence of shrubs may therefore have an important effect on microbial winter 

processes and C cycling via snow drift creation that exceeds any direct effects of 

climate change on snow depth.  

 

Although the direct effect of snow depth on carbon cycling processes is relatively 

well established and it is known that increases in snow depth scales with 

biogeochemical cycling (Schimel et al., 2004; Sturm et al., 2005), the effect on 



 

 20 

carbon cycling year-round is less known. It has been shown in a number of different 

ecosystems that deep snow over winter can influence microbial cycling in the 

summer (Blankinship & Hart, 2012). Forest ecosystems foster a large, active 

community of fungi (Voriskova et al., 2014). In contrast, tundra ecosystems harbour 

stress tolerant microbial communities that are adapted to colder soil temperatures in 

winter, when they show low rates of activity (Robinson, 2001). There are clear 

differences in snow accumulation between low stature tundra vegetation and more 

productive plants which are currently encroaching. The importance of this 

difference in abiotic environment needs to be addressed from a year-round 

perspective.     

 

1.7.3. Litter decomposition 

ESMs predict that increasing productivity will result in C sequestration via an 

increase in litter-fall (Qian et al., 2010). Although it is clear that more productive 

groups of plants such as trees and shrubs will create more litter, the speed at which 

this litter decomposes is fundamental to whether it will be stored in the soil for any 

significant amount of time. The effect of new shrub species on litter and C already 

present in tundra systems is also of key importance. Novel decomposer 

communities and litter input may stimulate faster decomposition in the soil as a 

whole.    

 

It was hypothesised that an expansion of shrubs into the Arctic would increase its 

sink capacity because shrub litter was found to decompose at slower rates than other 

arctic PFTs (Cornelissen et al., 2007). However, this prediction contrasts with 

comparisons of soil C which show that some the most productive areas of arctic 
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landscapes have the lowest C storage (Wilmking et al., 2006; Hartley et al., 2012). 

This highlights that litter decomposition rates are highly species-specific and the 

identity of the original tundra species is all-important. For example, litter of 

deciduous shrubs decomposes at slower rates than litter of graminoid species, so, a 

shift from graminoid vegetation to deciduous shrubs would result in a slower rate of 

litter C turnover (Cornelissen et al., 2007). However, the key vegetation substitution 

some sub-arctic ecotones (Hartley et al., 2012) is deciduous  shrubs and trees for 

evergreen, ericaceous dwarf shrubs. Litter of deciduous plants are known to 

decompose faster than litter of evergreen shrubs (Aerts et al., 2006; Cornwell et al., 

2008). Additionally, high levels of N in the litter of deciduous shrubs are known to 

stimulate fast cycling of C in the soil (Buckeridge et al., 2010; DeMarco et al., 

2014). Therefore, to understand the effect of vegetation change on carbon cycling 

via changes in litter input, the interactions between the species identity and 

decomposition environment needs to be considered.  
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1.8. Treeline at Abisko, sub-arctic Sweden 

The Sub-Arctic (Fig. 1.3) is of interest and importance for a number of reasons. 

This transition between boreal forest and tundra has been observed to be changing 

rapidly in response to climate change. Productivity increases have been most 

pronounced at the southern limit of the tundra, where trees begin to encroach 

(Epstein et al., 2012). It is these ‘diffuse’ treelines in the sub-Arctic (Payette et al., 

2001) which have shown the strongest expansion with recent warming (Harsch et 

al., 2009). Therefore this dynamic area of the terrestrial biosphere could have a 

disproportionately large interaction with the global carbon cycling and future 

climate change.  

 

The alpine treeline in the Nissunsnuohkki area, c. 4.5 km south of the Abisko 

Scientific Research Station, in sub-arctic Sweden represents an excellent area in 

which to investigate controls exerted on soil processes by key PFTs (Sjögersten & 

Wookey, 2009). At this location (68° 18’ N, 18° 49’ E (Fig. 1.3)) the diffuse 

treeline is formed by Betula pubescens ssp czerepanovii (mountain birch). The 

understorey is a mixture of Empetrum nigrum, Vaccinium myrtillus, Vaccinium 

vitis-idaea, Vaccinium uliginosum with some patches of Juniperus communis.  The 

Betula genus forms the treeline in many arctic ecosystems (Hustich, 1979) and B. 

pubescens  has been shown to be responsive to climate warming at its northern limit 

in Fennoscandia (Hofgaard et al., 2013) and at an alpine treeline at Abisko 

(Rundqvist et al., 2011). Mountain birch forests suffer defoliation by the geometrid 

moths Epirrita autumnata and Operophtera brumata which is recognised as an 

important control over productivity in the region (Bjerke et al., 2014).  
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Vegetation above the treeline at Abisko is predominantly ericaceous heath, made up 

of dense mats of Empetrum nigrum with other ericaceous species such as Vaccinium 

vitis-idaea, Vaccinium uliginosum and patches of deciduous Betula nana. These are 

typically slow growing communities adapted to stressful tundra environments which 

contribute to dense mats of humic C (Tybirk et al., 2000). The transition between 

forest and tundra heath moves through a transitional band of shrubs consisting of 

Betula nana and Salix spp. A typical ecotone in at this treeline is shown in Fig. 1.4. 

The plant-soil interactions of these three distinct and important vegetation 

 
Figure 1.3: Map of the circumpolar Arctic and Sub-Arctic with the location of 

Abisko, Sweden noted. Taken from The Arctic Biodiversty Assessment 2013 

(CAFF, 2013).  
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communities can therefore be compared within very short distances without the 

introduction of geographical biases resulting from changes in slope, aspect or 

altitude. At the same time, the effect of specific PFTs on soil C can be examined at 

large scales because of the mosaic nature of the treeline at this location. 

 

 

The transition from heath to forest via shrubs can be seen as a  ‘space for time’ 

transition in vegetation; the heath represents present-day tundra communities, the 

deciduous shrub communities will be more prevalent over the next 10-50 years with 

further warming (Myers-Smith et al., 2011a) and forest communities could colonise 

tundra within the next 100 years, as evident in the paleo-record (Lloyd, 2005). 

Using this gradual change in vegetation across the forest-tundra ecotone, we can 

understand how soil carbon storage and cycling in tundra soils will respond to the 

 
Figure 1.4: Treeline ecotone at Abisko with Betula pubescens (back), Betula 

nana and Salix spp. (right) and Empetrum nigrum dominated heath (Left). Photo: 

Thomas C. Parker.  
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increases in productivity predicted over the next 100 years (Todd-Brown et al., 

2013).  

 

The treeline ecotones represent not only a transition in productivity but also a 

transition in plant-soil interactions in various different forms, which can be 

hypothesised to increase C cycling rates with increasing productivity. Firstly, the 

ecotone can be seen as a transition in the dominance of mycorrhizal fungi from 

slow-cycling ericoid mycorrhizal (ERM) fungi (Dickie et al., 2013)  to faster 

cycling ECM fungi, capable of stimulating decomposition via extensive hyphal 

exploration of the soil. Ericaceous dwarf shrubs engineer a slow-cycling soil system 

by producing litter of low C:N ratios which favours uptake organic N via their ERM 

fungi (Read & Perez-Moreno 2003). This results in strong accumulation of soil C as 

mineral N availability remains low other microbial communities are excluded, 

leaving the N cycle ‘closed’ and dominated by ericaceaous plants and ERM fungi. 

The transition to shrub and forest ecosystems on the ecotone represents an 

‘opening’ of the N cycle where N may become more easily accessible (including 

organically bound N (Talbot et al. 2008)) and C cycling may be faster as a result. 

 

The ecotone is a transition in snow depth, from deep snow packs in forests and 

shrubs to thin, wind-blown snow cover on the tundra heath. This could translate into 

a gradient of winter microbial activity with (relatively) fast-cycling in the deep 

snow areas and slow cycling in the shallow snow areas (Grogan & Jonasson, 2006). 

Thirdly, the transition from heath to forest could be seen as a transition from 

evergreen litter which is typically slow to decompose (Cornwell et al., 2008), 

through to more carbohydrate- and nitrogen-rich litter, which stimulates 
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decomposition in the shrub and forest vegetation (Buckeridge et al., 2010). When 

studying these transitions, it is clear that the shrub-dominated systems share some 

key traits with adjacent forest ecosystems: ECM symbionts, snow accumulation and 

deciduous litter may result in low carbon storage, as has been shown in forest 

ecosystems (Hartley et al., 2012). An investigation into the effects of vegetation 

transitions in the Arctic therefore needs to address these different impacts 

separately, whilst including potential interactions between them. 

 

The information above is summarised in Figure 1.5. ‘Space for time’ changes in 

vegetation across treeline ecotones also represent transitions in the amount of ECM 

growth and their influence over SOM dynamics, depth of snow over winter and rate 

of litter decomposition.  The are all hypothesised to contribute to increased C 

cycling and reduced C storage in the soil as productivity increases (Fig. 1.5). 

 

The direct effect of climate warming on the biogeochemical processes identified 

(mycorrhizal growth, winter temperature and snow accumulation and litter 

decomposition) should also be considered (Fig. 1.6). If current anthropogenic GHG 

emissions remain on course, the Arctic could warm by up to 11 °C over the next 

100 years (IPCC 2013). This will cause huge changes in thermal regimes in tundra 

northern high latitude ecosystems, notably a shortening of the snow-covered season 

and a lengthening of the growing season (Euskirchen et al. 2006). Warmer 

temperatures can lead to increases in mycorrhizal growth as more explorative 

growth forms such as Cortinarius spp. are selected for as shrub productivity 

increases (Deslippe et al. 2011). This genus has high potential to produce 

peroxidase enzymes (Bödeker et al. 2014) which can stimulate decomposition, 



 

 27 

therefore, increases in temperature can increase decomposition via higher ECM 

growth rates. The direct effect of atmospheric warming may increase winter 

temperatures as well as a reduction of the snow-covered season across all ecosystem 

types (Euskirchen et al. 2006). This could lead to increasing microbial 

decomposition rates and a further loss of C from the soil (Panikov et al. 2006). 

Temperature explains large amounts of variation in decomposition across forest- 

tundra ecotones in Fennoscandia (58 % (Sjögersten & Wookey 2009)), therefore 

increases in temperature in this region may result in increases in decomposition. 

Taken together, the direct effects of increases in air temperature on the ecology of 

the tree-line ecosystem may result in increases in C cycling rates and reductions of 

C storage as is predicted across the arctic with changes in thermal regimes 

(Euskirchen et al. 2006). In summary, without considering vegetation change, many 

of the processes described may increase in activity with warming in accordance 

with typical kinetic models which predict increasing biological activity with 

increasing energy input (temperature) (Davidson et al., 2006).  This is summarised 

in Figure 1.6.  
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Figure 1.5: Conceptual diagram showing contrasting vegetation communities across 

ecotones: (a) Tundra heath, (b) Shrub, (c) Forest with shrubs and forests predicted to expand 

across tundra vegetation (Pearson et al., 2013) this ecotone represents a ‘space for time’ 

transition. Hypothesised strength of ecological influences on C cycling and storage are 

represented below. 
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Figure 1.6: Conceptual diagram showing the direct effect of temperature increase on 

important processes in  heath, shrub and forest ecosystems and their knock-on effects on 

carbon cycling and storage independent of change in vegetation dynamics outlined in 

Fig. 1.5. 
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1.9. Aims and objectives 

This thesis will synthesise four studies conducted at the sub-arctic treeline in the 

Nissunsnuohkki area at Abisko, sub-arctic Sweden, in order to quantify and 

understand the interplay between plant and soil processes, and the potential 

consequences of global change and shifts in PFTs and community composition. 

Each study addresses plant-soil interactions which drive dynamics of soil C, but are 

linked by the theme of the relationship between productivity and soil C cycling. It 

will address hypotheses relating to ecological mechanisms which can be condensed 

into four over-arching hypotheses: 

 

1. Shrub and forest systems store less C than heaths as a result of fast C 

cycling related to ECM activity; 

 

2. Deep snow accumulations in forest systems protect soil microbial 

communities from the harshest of winter conditions and therefore increase 

both winter and summer microbial activity; 

 

3. Defoliation of forest ecosystems results in reduction in autotrophic C supply 

to the soil, therefore slowing microbial decomposition of soil C; 

 

4. Carbohydrate-rich litter input and summer decomposition environment 

interact to result in fast decomposition rates in the forest and shrub systems 

compared to the heath. 
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Each of these concepts was addressed individually and the methods used for each 

chapter are summarised here: 

 

Chapter two: To understand carbon storage and cycling across the treeline ecotone 

we established multiple, spatially replicated transects from forest to heath. These 

ran through ‘knee-high’ shrub zones to characterise gradual changes in vegetation 

which could be representative of vegetation change across the Arctic. These 

transects were replicated over an area of approximately 2 km2, therefore allowing 

results gained from the transitions to be realistically extrapolated to the landscape-

scale. Along these transitions soil C stocks were measured, which involved detailed 

inventories of soil organic matter content, bulk density, horizon depth and elemental 

analysis of organic and mineral horizons. This was repeated in another landscape 

which has similar vegetation transitions but a wetter climate (Vassijaure). At 

Abisko, at each plot at along the transect, thaw-season respiration rates over two 

years and ECM hyphal production rates over the growing season of 2013 was then 

measured.    

     

Chapter three: In order to understand the influence of snow depth and duration on 

soil microbial processes throughout the year, a spatially replicated soil temperature 

monitoring experiment was firstly set up in heath and forest soils. Concurrently, soil 

monoliths were transplanted between heath and forest, and vice versa, with control 

monoliths which were transplanted back into their ‘home’ environment. This 

experimental approach was used to expose each soil type to two contrasting winter 

environments and then to measure respiration rates and microbial biomass inthe 
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growing season to understand the importance of winter environment on summer C 

cycling rates. 

 

Chapter four: A natural disturbance event occured in summer of 2013 when a moth 

outbreak caused wide-spread damage of the mountain birch forest canopy. In 

collaboration with the University of New Hampshire, the issue of whether reduced 

autotrophic C supply to the rhizosphere slowed microbial C and N cycling rates was 

addressed. Plots were set up on existing transects and on new plots with contrasting 

levels of defoliation to measure respiration rates, free inorganic N levels in summer 

and autumn, and ECM hyphal production rates. Collaborators collected ECM root 

tips from Betula hosts at defoliated and non-defoliated trees to understand how the 

ECM community changed and how extra-cellular enzyme production changes with 

defoliation. Together, these data could better explain the C and N flux data in this 

chapter and show how soil processes respond to canopy defoliation. 

 

Chapter five: An extensive decomposition experiment at the ecotone transects was 

set-up to identify the most important factors determining decomposition rates across 

the vegetation types. Recently senesced litter from dominant heath, shrub and forest 

vegetation was measured for mass loss over 21 months with each species of litter 

transplanted between all three environments. Concurrently litter bags were placed 

under snow manipulations designed to recreate those under different vegetation 

types to understand the role of insulation by snow for decomposition rates. CP/MAS 

13C-NMR spectroscopy was used to characterise remaining C composition of 

decomposed litter of Betula pubescens and Empetrum nigrum in heath and forest 

environments. This was then compared with undecomposed ‘controls’ to identify 
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which compounds had been significantly depleted and the relative importance of 

species biochemistry and decomposition environment to loss of important C 

structural compounds.    
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Chapter 2: Rapid carbon turnover beneath shrub and tree vegetation is 

associated with low soil carbon stocks at a sub-arctic treeline 

 

Thomas C. Parker1,2, Jens-Arne Subke1 and Philip A. Wookey3.  

1 Biological and Environmental Sciences, School of Natural Sciences, University of 

Stirling, Stirling, UK, FK9 4LA, 2 Department of Animal and Plant Sciences, Alfred 

Denny Building, University of Sheffield, Sheffield, UK, S10 2TN, 3 Environmental 

Sciences, School of Life Sciences, Heriot-Watt University, Edinburgh, UK, EH14 4AS 

  

2.1 Abstract 

Climate warming at high northern latitudes has caused substantial increases in plant 

productivity of tundra vegetation and an expansion of the range of deciduous shrub 

species. However significant the increase in carbon (C) contained within above-ground 

shrub biomass, it is modest in comparison with the amount of C stored in the soil in 

tundra ecosystems. Here, a ‘space-for-time’ approach was used to test the hypothesis 

that a shift from lower-productivity tundra heath to higher-productivity deciduous shrub 

vegetation in the sub-Arctic may lead to a loss of soil C that out-weighs the increase in 

above-ground shrub biomass. It was hypothesised that a shift from ericoid to 

ectomycorrhizal systems coincident with this vegetation change provides a mechanism 

for the loss of soil C. Soil C stocks, soil surface CO2 flux rates and fungal growth rates 

were sampled along replicated natural transitions from birch forest (Betula pubescens), 

through deciduous shrub tundra (Betula nana) to tundra heaths (Empetrum nigrum) near 

Abisko, Swedish Lapland. It is shown that organic horizon soil organic C (SOCorg) is 

significantly lower at shrub (2.98 ± 0.48 kg m-2) and forest (2.04 ± 0.25 kg m-2) plots 

than at heath plots (7.03 ± 0.79 kg m-2). Shrub vegetation had the highest respiration 

rates, suggesting that despite higher rates of C assimilation, C turnover was also very 

high and less C is sequestered in the ecosystem. Growth rates of fungal hyphae 
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increased across the transition from heath to shrub, suggesting that the action of 

ectomycorrhizal symbionts in the scavenging of organically bound nutrients is an 

important pathway by which soil C is made available to microbial degradation. The 

expansion of deciduous shrubs onto potentially vulnerable arctic soils with large stores 

of C could therefore represent a significant positive feedback to the climate system.  
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2.2 Introduction: 

Northern high latitudes, particularly north of 60° over land, and across the Arctic 

Ocean, have warmed by between 1-4°C since 1960, and at a rate substantially greater 

than the global mean (Serreze & Francis, 2006; Hansen et al., 2010; Serreze & Barry, 

2011). The ‘Arctic Amplification’ of global warming is also predicted to accelerate in 

the coming decades, further accentuating the contrasts with overall planetary warming 

(Serreze & Barry, 2011). In parallel with this strong warming trend, one important 

change in arctic and sub-arctic tundra ecosystems has been an increase in productivity 

(Guay et al., 2014) where some areas have experienced increases of up to 10 g 

phytomass m-2 yr-1 in the last 30 years (Epstein et al., 2012). Contributing towards 

productivity increase has been an expansion of the range of woody deciduous shrub 

species within the genera Betula, Salix and Alnus (Tape et al., 2006) .Shrub range 

expansion has now been documented to be occurring at many sites across the Arctic at 

ecosystem (Myers-Smith et al., 2011) and plot scales (Elmendorf et al., 2012b). This 

concurs with changes predicted by warming experiments (Elmendorf et al., 2012a). 

Plant-soil interactions play a key role in global biogeochemical cycles, modulating the 

fate of carbon (C) fixed by plants, and the amount stored in the soil (Heimann & 

Reichstein, 2008; Metcalfe et al., 2011). It is well documented that supply of C to, and 

respiration from, the soil and roots is broadly proportional to primary productivity in the 

system (Litton et al., 2007; Chen et al., 2011; Metcalfe et al., 2011). However, although 

global scale analyses of the relationship between primary productivity and both plant 

and soil C stocks reveal general patterns (i.e. that the ratio of soil to vegetation C 

density increases with increasing latitude (Lal, 2005)), they mask important local and 

regional contrasts associated with specific plant functional types and, for example, their 

mycorrhizal symbionts. Despite their obvious importance, these patterns and 
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interactions are still not well understood (Arneth et al., 2010; van Groenigen et al., 

2014). 

 

In Northern terrestrial ecosystems, the expansion of woody species with more 

recalcitrant litter than the existing vegetation could lead to C sequestration in the soil 

and therefore a negative feedback to climate warming (Cornelissen et al., 2007). A 

birch forest in northern Scandinavia, for example, was found to contain more 

recalcitrant carbon compounds than adjacent ericaceous heaths (Sjögersten et al., 2003), 

which were suggested to be less prone to microbial decomposition. However, evidence 

is emerging that the supply of carbon via the rhizosphere of some woody species also 

stimulates decomposition of these recalcitrant (and potentially older) C stores  (Hartley 

et al., 2012) in a process known as ‘positive priming’ (Kuzyakov, 2002). This, 

therefore, may shift the balance between productivity and respiration, resulting in low 

soil C sequestration in spite of high net primary productivity.  

 

Empirical data from field studies is providing growing evidence that specific 

relationships exist between the vegetation type and biomass in arctic and boreal 

ecosystems and the amount of C stored in the soil (Kuzyakov, 2002; Wilmking et al., 

2006; Kane & Vogel, 2009; Hartley et al., 2012). These do not conform to the positive 

relationships between productivity and C storage predicted by global C cycle models 

(Cramer et al., 2001; Qian et al., 2010; Todd-Brown et al., 2013). Arctic species’ 

below-ground biomass does not increase with Leaf Area Index (LAI) above 1 m2 m-2 

(Sloan et al., 2013), and therefore may also defy predictions of carbon storage. At one 

site in northwest Alaska, Wilmking et al. (2006) revealed that recently advanced forest 

and shrub tundra had lower soil C densities in organic horizons than the adjacent 
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tundra. Furthermore, Hartley et al. (2012) demonstrated that soil C densities in a 

Swedish sub-arctic forest were significantly lower than a nearby tundra heath. Kane and 

Vogel (2009) also showed that less C is stored in Alaskan boreal ecosystems where 

there is greater above-ground biomass. Taken together, these studies indicate that 

existing patterns of above- and below-ground biomass and C stocks along spatial 

vegetation transitions may hold clues regarding the possible consequences of temporal 

shifts in vegetation communities in the future (‘space-for-time substitution’). However, 

it is important to emphasise that C densities in many soils of the circumpolar north are 

often orders of magnitude higher than the phytomass in this region (Tarnocai et al., 

2009; Hugelius et al., 2011; Epstein et al., 2012) and have developed over decades to 

millennia; this raises the prospect of northern ecosystems increasingly being at 

‘dynamic disequilibrium’ (Luo & Weng, 2011) with contemporary climate. 

 

There are a number of phenomena that could lead to a net loss of C from tundra 

ecosystems when shrubs and forests encroach. Firstly, there is a concurrent increase in 

the abundance of ectomycorrhizal (ECM) fungi with increasing cover by trees and 

shrubs. These fungi are one of the primary recipients of autotrophic C (Hobbie, 2006) 

and are able to produce and exude a number of structural carbon-degrading compounds  

(Cullings et al., 2008; Talbot et al., 2008). Although it is uncertain the extent to which 

these compounds may interact with soil organic carbon (SOC) in the Arctic, it is clearly 

of pressing importance to find out. Secondly, the input of ‘novel’ litter into the system 

(i.e. from plant functional types not previously substantial components of the 

community) could lead to faster C cycling if the nutrients are in forms more accessible 

to the decomposer communities, physically or biochemically, than the litter of the 

plants they are replacing (e.g. ericaceous species) (Read & Perez-Moreno, 2003). 
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However a replacement of graminoids (grasses and sedges) may lead to the opposite 

effect (Cornelissen et al., 2007). Thirdly, the accumulation of snow in drifts formed by 

taller vegetation and the resulting increased winter soil temperatures (Sturm et al., 

2005) may lead to faster C turnover in winter (Schimel et al., 2004). 

 

Other than the suggestion of ‘positive priming’ in sub-arctic birch forests, the 

ecological mechanisms by which C could be lost from the soil remain unresolved. 

Because the arctic tundra is undergoing increases in productivity (Epstein et al., 2012; 

Guay et al., 2014) on soils that contain a very substantial proportion of global soil C 

(Tarnocai et al., 2009), there is a compelling need to understand the process 

implications for rates of soil organic matter (SOM) turnover and both C sequestration 

and release.  

 

The increase of woody shrub cover in arctic systems occurs over a gradient from low 

densities to dominance over time (Myers-Smith et al., 2011; Elmendorf et al., 2012b) 

and it is important to understand the effect on C storage of this more subtle change as 

well as the larger-scale differences between forest and tundra. The ecotone between 

forest and tundra merits sampling over spatial scales sufficiently fine-grained to 

underpin an improved mechanistic understanding of the relationship between plant 

cover, C fluxes and soil C stocks. At fine (nominally defined here as 1 to 100 m lateral) 

scales, such transitions include subtle but important elements such as a transitional 

shrub community. In this case the ‘space-for-time’ substitution also potentially matches 

likely successional changes (vegetation shifts) associated with climate change, albeit 

with changes in soil C stocks likely trailing changes in vegetation  (Sistla et al., 2013).  
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This present study of SOC stocks and ecosystem respiration across the forest-tundra 

ecotone makes use of a dispersed ‘mosaic-like’ treeline near Abisko, Sweden. The 

following hypotheses were tested: 

1. In spite of higher productivity (Shaver, 2010), deciduous shrub and forest plots 

have lower soil organic horizon and total SOC than heath sites, likely due to higher 

decomposition rates; 

2. At small scales at tundra heath sites, deciduous shrub cover is correlated 

negatively with SOC densities; 

3. Shrub and forest plots have high rates of C recycling (respiration), which would 

be a key indicator of C loss from the ecosystem; 

4. ECM hyphal growth (a key link between plant productivity and soil C cycling) 

is comparable at shrub and forest sites, and both are higher than at heath sites. 
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2.3 Material and methods 

Sites description 

Twelve independent, short (<100 m) transects were selected within a permafrost-free 

landscape (c 2 km2) spanning the sub-arctic/alpine treeline at Nissunsnuohkki (Abisko 

area, Sweden; ca. 68°18’N 18°49’ E, 600 m asl, hereafter referred to as ‘Abisko’). In 

this study, terminology of Walker (2000)  and Kaplan et al. (2003), presented in ACIA 

(2005), is adopted to distinguish tundra plant growth forms and to place the study into 

circumpolar context. The treeline is formed by mountain birch (Betula pubescens Ehrh. 

ssp czerepanovii (Orlova) Hämet Ahti) with an ericaceous understorey and typically 

moves through a thick layer of shrub vegetation (Betula nana L. and grey willow 

(Salix) species (Specifically, Salix glauca, often accompanied by Salix lanata; other 

Salix spp., including S. hastata and S. lapponum, occur less frequently) - before 

becoming tundra heath, dominated by Empetrum nigrum L. ssp hermaphroditum 

(Hagerup) Böcher and Vaccinium vitis-idaea L. This transitional shrub-dominated 

vegetation is similar to the ‘low- and high-shrub tundra’ (‘Continuous shrubland, 50 cm 

to 2 m tall, deciduous or evergreen, sometimes with tussock-forming graminoids and 

true mosses, bog mosses, and lichens’) referred to in ACIA (2005), although generally 

not exceeding 1.5 m height and with the only one evergreen shrub species, Juniperus 

communis L., at low abundances. Tundra heath is here similar to the ‘erect dwarf-shrub 

tundra’ (‘Continuous shrubland 2 to 50 cm tall, deciduous or evergreen, with 

graminoids, true mosses, and lichens’) of ACIA (2005). Soils in the forest are micro-

spodosols with a thin O horizon (< 5 cm) underlain by glacial till on a bed-rock 

typically of hard-shale (Sjögersten & Wookey, 2002). Soil pH in the organic horizon is 

4.3 ± 0.1 at forest and 4.5 ± 0.1 at heath locations in the Abisko area (Table 1).  
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Transect lengths ranged from 52 to 97 m (Appendix 1) depending on the length-scale of 

the forest- heath ecotone. Care was taken to select vegetation transitions that were not 

present as a result of strong topographical influence; for example where water and snow 

accumulation due to dips and hollows dominate site conditions, and avoiding steep 

slopes (mean elevation change from heath to forest plots of -2.7 m (Appendix 1)). 

Transects were selected with a variety of contrasting compass bearings (Appendix 1) to 

ensure that there was no bias in the data due to shading or winter snow drifting. The 12 

transects were grouped geographically into three blocks of four as shown in Figure 1.  

 

  

Table 2.1: Vegetation characteristics along transects at Abisko across all blocks (means ± 

1SE, n=12). “Canopy height” refers to the actual vegetation canopy for Heath, Shrub-Heath 

and Shrub communities, and the understorey for the Forest Edge and Forest (where 

mountain birch trees comprise the canopy) 

 Plot on transect 

 Heath Shrub-

Heath 

Shrub Forest Edge Forest 

Distance from Heath 

(m) 

n/a 14.6 ± 1.6 28.3 ± 2.9 44.9 ± 5.8 67.6 ± 5.9 

Canopy height (cm) 14.7 ± 0.7 21.2 ± 1.2 32.0 ± 2.4 27.9 ± 3.0 19.0 ± 1.7 

B. pubescens density 

(trees hectare -1) 

      78.5 ± 11.4 78.5 ± 10.9 

B. nana cover (%) 21.2 ± 2.7 36.9 ± 6.9 60.3 ± 4.8 32.2 ± 4.2 8.0 ± 2.2 

E. nigrum cover (%) 65.4 ± 3.3 67.6 ± 3.4 66.9 ± 4.7 43.0 ± 6.5 45.4 ± 4.2 

pH (organic 

horizon) 

4.3 ± 0.1 4.6 ± 0.2 4.4 ±0 .1 4.5 ± 0.1 4.5 ± 0.1 
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Figure 2.1: Google Earth images showing (a) Abisko transects and (b) Vassijaure transects across multiple treeline ecotones. At Abisko, A, B and C refer to 

different geographical blocks 
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Seven further transects (over approximately the same area as the Abisko transects) were 

sampled at Vassijaure (68° 26’ N 18° 15’ E, 517 m asl). This location has monthly 

temperatures similar to the Abisko area (both monthly means range from -11.9°C in 

January to 11°C in July) but a far higher mean annual precipitation (848 mm compared 

with 304 mm; for an overview of environmental conditions at the two sites, see 

Sjögersten & Wookey (2005)). Care was taken to distribute transects over an area 

similar in extent to Abisko, and to run transects over similar distances (c. 58 m). As 

with the Abisko sites, Vassijaure sites were selected to have little (on average) 

topographic change from H to F sites; this was, however, unavoidable for some sites 

(Appendix 1). Nonetheless, the most important apparent difference between sites was 

the vegetation community.  

 

Five plots were established along each transect in order to represent best the transition 

in vegetation from heath to forest. These were; tundra heath (H), shrub heath (SH), 

shrub (S), forest edge (FE) and forest (F) (see Table 1 for further site details). H plots 

were chosen for an open heath environment with low B. nana cover and a low canopy 

height, and with vegetation dominated by E. nigrum. S plots were identified as areas 

dominated by B. nana with shrub height characteristically between 40 and 60 cm. SH 

plots were at locations intermediate between H and S plots, defined as having 

intermediate canopy height and B. nana cover, and generally located approximately 

equidistant to plots H and S. FE plots were located at the first B. pubescens tree along 

the transect from H to F and signified the forest margin. F plots were chosen to be in 

areas dominated by B. pubescens, approximately 10 to 15 m inside the forest edge.  
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Vegetation surveys 

 

Percentage cover of selected species was estimated at each plot on transects. Five 0.25 

m2 quadrats were placed at each plot, one at the centre point and four more located 2.5 

m from the centre point, every 90°, starting at a random bearing. In each quadrat, 

percentage cover of B. nana and E. nigrum was estimated by eye and the height of the 

tallest shoot was measured from ground level. Canopy height refers to actual canopy 

height at plots H, SH and S, and understorey canopy height at plots FE and F; at the 

latter two plot types B. pubescens forms the canopy (estimated to be 2 to 4 m 

vertically). Density of B. pubescens individuals > 50 cm high was measured within a 5 

m radius of the centre points of sites FE and F. 

 

Soil organic carbon (SOC) estimation 

 

SOC was measured at every plot (H, SH, S, FE and F) on all transects at Abisko and the 

H, S and F plots of transects at Vassijaure. Five soil cores were taken at 2 m from the 

central point at headings of 0, 72, 144, 216 and 288°. A two cm diameter soil corer was 

pushed (using a sharp knife inserted around the margin to cut fibrous materials, 

including roots, and to avoid compression) into the soil to a depth at which the corer 

could not be inserted any deeper (assuming that parent materials or large clasts were 

reached), and depth of organic and mineral horizons recorded. Subsamples of mineral 

and organic soil were collected and pooled for the five coring locations on each plot. 

Samples were homogenised, dried (80°C for 48 hours) and sieved through a 2 mm 
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sieve. Soil organic matter (SOM) content for each pooled sample was determined by 

loss on ignition (LOI) in a furnace at 550°C for 5 hours (Ball, 1964). 

 

Bulk density (BD) was sampled once at the organic horizon at the centre point of every 

plot by vertically inserting a 6.5 cm diameter, 10 cm deep PVC collar, measuring depth 

of organic horizon in the collar and calculating volume of soil present. BD samples 

were dried at 80°C for 48 hours (to ‘constant weight’) before determining soil dry mass. 

Five transects were selected to measure BD of mineral horizons. The procedure was the 

same as for the organic horizon except that this was removed in order to expose the 

mineral horizon. BD of mineral horizons across all sites and transects was found to be 

very consistent (1.20 ± 0.067 g cm-3; mean ± one standard error (n = 21)) therefore the 

mean bulk density across sites was applied to all mineral horizons in the calculation of 

SOM. 

 

SOM content (kg m-2) in organic and mineral soil was calculated according to  

𝑆𝑂𝑀 = 𝑓 × 𝐵𝐷 × ℎ 

Where f is the fraction of organic matter, BD the bulk density (kg m-3), and h the height 

of the respective horizons (m; averaged across the 5 cores). 

 

Soil organic carbon (SOC) was measured from all soil samples taken from Vassijaure 

(organic and mineral; H, S, F). Triplicate subsamples from each sample were measured 

for C content after combustion in a Vario EL Cube elemental analyser (Elementar, 

Hanau, Germany) and a mean was taken for each plot. The relationship between 

measured SOM (g g-1) and SOC (g g-1) was determined. Based on these samples, SOC 

can be calculated with high confidence (P < 0.001, R2 = 0.997) according to  
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𝑆𝑂𝐶 = 𝑆𝑂𝑀 × 0.5248 

This equation was applied to estimations of SOM at every plot to estimate SOC.  

 

Respiration measurement 

At all plots of the 12 Abisko transects, PVC collars with a diameter of 15 cm and a 

height of 7 cm were placed on the soil surface and sealed to the soil using a non-setting 

putty (Plumber’s Mait, Bostik Ltd, Stafford, UK). Collars were not pushed into the 

soil in order to avoid disturbing the rhizosphere. Effectiveness of the seal was 

confirmed as all measurements of respiration showed a linear and regular increase in 

[CO2] which was comparable to closed system in laboratory conditions.  

 

A portable EGM-4 infrared gas analyser with a darkened CPY-2 chamber (PP Systems 

International, Amesbury, MA, USA) was used to measure respiration. Respiration in 

this study is defined as the sum of microbial, root and shoot (including cryptogam) 

respiration within the chamber. At H plots, this measurement includes the entire 

vegetation canopy and therefore represents ecosystem respiration (ER); however, at all 

other sites the vegetation canopy is higher than the chamber, and the respiration 

measurement is therefore the sum of the understorey shoot and cryptogam respiration, 

total root and microbial respiration. CO2 flux was measured from all collars in June and 

September 2012 and June, July and September 2013. Respiration rates were calculated 

as the product of a linear function of CO2 concentration increase within the closed 

system, over a period of 90 seconds. Tests with longer regression periods showed no 

improvement of fit compared with regression results obtained over 90 seconds. All 

collars on every transect at Abisko (60 collars in total) were measured over periods of 

two days from 0900-1600 hours. Complete blocks were measured on the same days to 
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avoid bias from variations in temperature and moisture over the two day periods. The 

order in which blocks and transects within blocks were measured was randomised, as 

was the order of sampling within transects (i.e. H to F or F to H). 

  

Hyphal in-growth 

 

Thirty-seven µm nylon mesh bags (5 x 4 cm) were filled with 25 g sand from the shore 

of Lake Torneträsk (68°21’N, 18°49’E). These allowed ingrowth of hyphae, anticipated 

to be primarily of ECM fungi (analysis of community DNA shows c 80% (Wallander et 

al., 2013)) but not roots. It was assumed that no ericoid mycorrhizal fungi grew into the 

sand as they not known to explore far from ericaceous root hairs (Smith & Read 2008).  

In addition to this No plants were present above-ground within 1 m of the sampling 

point. Sand was sieved to between 0.125 and 1 mm, rinsed under a flow of water for 1 

minute then microwaved in a microwave (800 W) for 12 minutes, reaching a 

temperature of 98°C. This process was repeated and rinsed a final time before drying 

for 48 h at 80°C. Bags were inserted within 0.5 m of the PVC collar at the centre of the 

plots. The bags were left in the field for 92 days between 16th June and 16th September 

2013. Sand was removed from the mesh bags and freeze-dried using a ModulyoD 

freeze drier (ThermoFisher Scientific, Waltham, MA, USA) for 72 hours within 6 hours 

of recovery.  

 

One gram of sand from each bag was sonicated for 10 minutes in 30 ml of H2O, a 4 ml 

aliquot of the solution was filtered onto a nitrate cellulose filter paper using a Millipore 

filtration kit, and fungal material was stained with trypan blue. Hyphal length was 

counted under 200x magnification (Primo Star, Zeiss, Oberkochen, Germany) using the 
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line intersect method  (Brundrett et al., 1994). This was repeated to make duplicates for 

each in-growth bag, a mean of which was taken as the final measurement.  

 

Defoliation event 

 

In 2012 and 2013 there was a significant joint outbreak of the geometrid moths 

Operophtera brumata and Epirrita autumnata across the Abisko and Vassijaure areas, 

causing large scale defoliation the B. pubescens canopy and damaging the understorey. 

In a separate study at these sites, complete defoliation was observed to reduce 

respiration rates but only at 50 cm from the base of a tree, there was no significant 

effect of defoliation on soil CO2 flux further away from the tree (See Chapter 4). In the 

present study, all collars for respiration measurement are at least 2 m from the closest 

tree and therefore we do not consider defoliation to have affected respiration rates 

significantly. ECM in-growth into sand was reduced by B. pubescens defoliation 

(average F and FE plot defoliated by 50.5 %) by an average of 26.6 % (Chapter 4). 

Therefore, the results presented in the present study in F and FE plots will likely be an 

underestimation compared to a ‘healthy’ year. At our plots the outbreaks were confined 

to the forests and there was no evidence of defoliation of H, SH or S plots.  

 

Statistical analysis 

Differences in organic horizon SOC, mineral horizon SOC and total SOC between 

vegetation types, within sites (Abisko or Vassijaure), were analysed using one-way 

ANOVAs. If the raw data did not meet the assumptions of parametric analysis, they 

were transformed using a natural log. If vegetation type was statistically significantly 

related to SOC, differences between vegetation types were analysed using a Tukey’s 
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Honestly Significant Differences (HSD) test. A generalised linear model, following 

Poisson distribution and a log-link function, was used to analyse the relationship 

between B. nana cover and organic horizon SOC. Repeated measures nested ANOVAs 

following a linear mixed effects model were used to analyse for differences in 

respiration rates between vegetation types. A nested ANOVA following a linear mixed 

effects model was used to analyse hyphal in-growth between vegetation types. The 

respiration and hyphal in-growth data were nested within transect then block, which 

were assigned as random factors. Respiration and hyphal growth data were square root 

transformed prior to analysis to meet the assumptions of the parametric model. 

Differences between vegetation types as analysed by nested ANOVAs were identified 

using one degree of freedom Wald tests. All analyses were carried out on R studio 

v0.97.551.   
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2.4 Results 

 

Soil organic carbon across ecotones  

 

At Abisko there are significant differences in organic horizon SOC (SOCorg) between 

vegetation types (Fig. 2.2, Table 2.2 for statistics). Both S (2.98 ± 0.48 kg m-2 (mean ± 

1SE)) and F (2.04 ± 0.25 kg m-2) plots have significantly lower SOCorg than the H plots  

(7.03 ± 0.79 kg m-2) but are not significantly different from each other. Differences can 

be observed in SOCorg between H (7.03 ± 0.79 kg m-2) and SH (4.55 ± 0.61 kg m-2) 

where B. nana cover increases by an average of 15.7 % across an average lateral 

distance of 14.6 ± 1.6 m (Table 2.1). Furthermore, there is a significant (P < 0.001 Fig. 

3) negative relationship between the % cover of B. nana and SOCorg.  

 

At Vassijaure there is a significant relationship between vegetation type and SOCorg 

with a significant difference between H (5.51 ± 1 kg m-2) and F plots (2.18 ± 0.29 kg m-

2) (Fig. 2.2, Table 2.2). The difference in SOCorg between H and S (3.01 ± 0.72 kg m-2) 

was not as pronounced at Vassijaure as at Abisko and was not statistically different (P = 

0.066). At both Abisko and Vassijaure there are no significant differences in mineral 

SOC (SOCmin) between vegetation types (Fig. 2.2, Table 2.2). Reflecting this, total SOC 

(SOCtot) follows a similar pattern to SOCorg across the vegetation types and at both 

sites, with a decrease in SOCtot from H to F. There is a significant relationship between 

vegetation type and SOCtot at Abisko (Fig. 2.2, Table 2.2), with SOCtot reducing from 

9.01± 0.74 kg m-2 at H plots to 4.51 ± 0.51 kg m-2 at F plots. The first significant 

reduction in SOCtot compared to H plots was at the FE plots (5.76 ± 0.84 kg m-2). As 

with SOCorg, SOCtot at Vassijaure follows a very similar pattern (Fig. 2.2). In this case 
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the differences in SOCtot between H (9.98 ± 1.53 kg m-2) and F (4.53 ± 0.49 kg m-2) 

plots are statistically significant (P = 0.016). 

 

 

 

 

 

Table 2.2: Test statistics for one way ANOVAs analysing differences in organic horizon 

SOC (SOCorg), mineral horizon SOC (SOCmin) and total SOC (SOCtot) between 

vegetation types within sites (Abisko and Vassijaure). Data marked “*” have been 

natural log transformed for analysis. 

Site  Abisko    Vassijaure  

 F value d.f. P value  F value d.f. P value 

SOCorg 11.18 4,55 <0.001  5.60 2,18 0.01 

SOCmin 0.66* 4,55 0.62  1.76 2,18 0.2 

Total 6.38* 4,55 <0.001  4.94 2,18 0.02 

 
Figure 2.2: SOC at Abisko (dry/mesic, n = 12) and Vassijaure (mesic/wet, n = 7) across 

multiple heath-forest ecotones. The lower error bars (± 1SE mean) refer to total SOC 

(Organic + Mineral). The upper error bars (± 1SE mean) refer to organic horizon only SOC. 

Different letters show significant differences between means (P < 0.05) from Tukey HSD 

post-hoc tests (see Table 2 for test statistics). Letters refer to differences within site and 

horizon (Organic or Total). 
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Figure 2.3: Relationship between % cover of Betula nana and SOC of the organic 

horizon at H (squares), SH (circles) and S (triangles) sites (y = 102.04 - 0.013x). 

Modelled line represents a significant relationship between the two variables 

(generalised linear model (Poisson distribution, z = -3.722, P < 0.001, d.f. = 35)) 
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Respiration rates at Abisko ecotones 

 

Respiration was significantly (P = 0.008) associated with vegetation type (Fig. 2.4). 

Mean respiration over all measurement points was highest at shrub plots  

(3.49 ± 0.21 μmol CO2 m
-2 s-1), followed, in decreasing order, by SH, F, FE and H plots 

(3.23 ± 0.20, 3.03 ± 0.22, 2.93 ± 0.32 and 2.71 ± 0.13 μmol CO2 m
-2 s-1, respectively); 

only the latter (H) was significantly different from S plots (P < 0.001). When respiration 

is expressed per kg SOCorg, however, it was significantly associated with vegetation 

type (P < 0.001, Fig. 2.5); S, FE and F plots respired at very similarly high rates (1.37 ± 

0.29, 1.44 ± 0.22, 1.48 ± 0.19 μmol CO2 (kg SOCorg)
-1 s-1, respectively), followed by SH 

and H plots (0.77 ± 0.15 and 0.48 ± 0.08 μmol CO2 (kg SOCorg)
-1 s-1, respectively), 

which were significantly lower (P < 0.001). 
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Figure 2.4: Dark respiration over two years of measurement across five vegetation types (n = 12). Repeated measures nested 

ANOVA: F = 3.92, P = 0.0083, response variable was square root transformed before analysis to meet assumptions of the linear 

model. Different letters in brackets at the figure legend represent significant differences (P < 0.05) between vegetation types 

within the statistical model using one degree of freedom Wald tests.  
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Figure 2.5: Dark respiration (expressed per kg SOC at each plot) measured over 2 years at five vegetation types (n = 12). 

Repeated measures nested ANOVA: F = 12.90, P < 0.001, response variable was square root transformed before analysis to meet 

assumptions of the linear model. Different letters in brackets at the figure legend represent significant differences (P < 0.05) 

between vegetation types within the statistical model using one degree of freedom Wald tests. 
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Hyphal in-growth at Abisko ecotones 

 

Hyphal in-growth increased steadily along the transect from H (6.79 m hyphae (g 

sand)-1) to FE plots (17.70 m hyphae (g sand)-1) with more hyphal growth in S  and 

FE plots than H plots (Fig. 2.6). There were lower growth rates at the F plots with a 

decrease to 10.67 m hyphae (g sand)-1 from the FE plots. The overall pattern was 

not statistically significant as indicated by the nested ANOVA (P = 0.077). 

 

  

 

 
Figure 2.6: Hyphal in-growth of fungi over summer 2013 at Abisko transects. 

Nested ANOVA: F = 2.28, P = 0.077, response variable was square root 

transformed before analysis to meet assumptions of the linear model.  
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2.5 Discussion 

 

This study provides strong evidence to support a number of hypotheses relating to 

vegetation cover and C storage in the soil. First, it demonstrates, using 17 

independently replicated transects over two landscapes, that SOC stocks are similar 

in deciduous shrub-dominated systems and forest systems, but substantially lower 

than in adjacent, lower productivity, tundra heath systems (Hypothesis 1). These 

data show that this is true at multiple scales, from negative relationships between 

cover of B. nana and SOC (Hypothesis 2), to changes in SOC over ecotones. This 

emphasises a close link between the dominance of non-ericaceous woody species 

present in a community and the amount of C stored in the soil. It was shown that the 

changes in SOC over ecotones hold true at the landscape scale (both ca. 2 km2 

sampling areas), and also are similar in contrasting climatic contexts (sites with 

large differences in mean annual precipitation). 

 

Until now, only Wilmking et al. (2006) had shown that SOC is depleted in shrub 

tundra compared to tussock tundra over permafrost in NW Alaska. Our sites are not 

underlain by permafrost, and they are relatively freely-draining; moisture and 

thermal status, alone, are therefore unlikely to explain contrasting rates of organic 

matter decomposition in shrub and forest communities compared with tundra 

heaths. Previous work at Abisko (Hartley et al., 2012) showed that SOC densities in 

sub-arctic birch forests were lower than at tundra heaths. They did not, however, 

consider other woody vegetation (specifically, non-ericaceous shrub-dominated 

communities) in the same landscape; neither the ecological similarity between 

forest and shrub-dominated systems nor whether they exert the same controls over 
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SOC and how it is cycled. Furthermore, our study reveals a fine-scale negative 

relationship measured between B. nana cover and SOC (Hypothesis 2). This may be 

important in predicting how ecosystems will respond to gradual vegetation change 

as observed at plot scales (Elmendorf et al., 2012b) and in warming experiments 

(Elmendorf et al., 2012a). 

 

Root biomass is an especially important component of C storage in arctic 

ecosystems which in most cases is larger than aboveground biomass (Iversen et al., 

2015). However, a full inventory of root biomass was beyond the scope of this 

study, but Hartley et al. (2012) provide data to indicate that it represents from ca. 8 

to 18% of total below-ground C stocks in nearby heath and forest plots, 

respectively, in Abisko. Furthermore, at such sites, fine root C does not increase 

linearly with LAI above 1 m2 m-2 (it tends to plateau at approximately 0.25 kg C m-2 

(Sloan et al., 2013)). This suggests that extra C sequestered in above-ground 

biomass may not be associated with a proportional increase in root biomass. The 

mechanism for this is high root turnover at high LAI meaning that high production 

of roots in more productive vegetation types does not result increased storage of C 

in root biomass (Sloan et al., 2013). However, this has not been found for course 

roots in tundra (Campioli et al., 2009) or forest systems  (Bolte et al., 2004). 

 

The small C stocks under forest and deciduous shrub vegetation are being recycled 

(respired) substantially faster than adjacent, more SOC-rich, ericaceous heaths 

(Hypothesis 3). When the flux data are standardised and presented per unit SOC 

(i.e. potentially available substrate) present at each plot, it becomes clear that plots 

with high productivity (shrubs and trees) also return C rapidly to the atmosphere via 



 

 60 

respiration compared to adjacent tundra heath communities (Fig. 2.5). Even without 

standardising the respiration data per kg SOCorg, respiration is highest in deciduous 

shrub vegetation (Fig. 2.4). Although photosynthesis was not measured, previous 

work shows that photosynthetic rates can be up to five times higher in deciduous 

shrub vegetation compared to tundra heath (Shaver, (2010); but note that Fletcher et 

al.  (2012)  also provide evidence of some depression in rates of GPP per unit leaf 

area in transition zones compared with adjacent ‘main’ vegetation types). So, whilst 

not all components of the C fluxes and stocks across our vegetation transitions 

could be quantified, it was shown that the larger amounts of C that are likely 

assimilated into deciduous shrub plots compared to heath plots are quickly 

metabolised and returned to the atmosphere through respiration.  

 

Our findings suggest that the increased amount of C fixed by shrubs is cycled at a 

faster rate and therefore not sequestered in the soil to the same extent as predicted 

by some models (Qian et al., 2010; Todd-Brown et al., 2013). Our data are 

consistent with measurements at other shrub sites with relatively warm soils, which 

have been shown to be slight net sources of CO2 (Cahoon et al., 2012). These 

authors concur that a shift to shrub dominance in the Arctic will increase rates of C 

cycling and result in loss of C to the atmosphere if temperatures continue to 

increase. At another site in the low Arctic of Northwest Territories, Canada, a 

warming experiment with strong increases in shrub productivity yielded no extra 

standing above-ground litter compared to control (Zamin et al., 2014), suggesting 

that the increase in productivity is concurrent with faster recycling and release of C 

from the ecosystem. 
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Here, vegetation transitions, thought to represent a plausible space-for-time 

scenario, were used to understand better the patterns that exist between vegetation 

and soil C and the possible future of soil C under vegetation change. The future flux 

of C is, however, highly dependent on a large number of interacting biotic and 

abiotic factors, several of which have not been investigated directly in this study. 

The vegetation of arctic tundra can be highly heterogeneous over small spatial 

scales (Walker et al., 2005), and contrasting vegetation types can have significantly 

different fluxes of C. Moist sedge tundra, for example, is far more productive, with 

faster rates of C cycling, than adjacent dry heaths (Kade et al., 2012). Increased 

shrub abundance may therefore have contrasting effects on sedge tundra than on 

ericaceous heaths. Additionally, where carbon cycling is slow due (topographically) 

to waterlogged conditions (Zona et al., 2011), shrub vegetation may have a less 

pronounced effect on SOM decomposition due to the relatively greater importance 

of physico-chemical constraints (e.g. anoxia) on microbial activity. Shrubs have, in 

fact, been observed to increase in wet soils that have experienced climate warming 

(Elmendorf et al., 2012b), but a key question is by how much they will influence 

rates of C cycling once established.  

 

Observations of low SOC under more productive vegetation hold true in both areas 

of very high and low rainfall (Sjögersten & Wookey, 2005) in the sub-Arctic, i.e. at 

geographical scales for which forest and shrub expansion have been observed in the 

Fennoscandian sub-Arctic (Tommervik et al., 2009; Rundqvist et al., 2011). This 

adds confidence that the hypothesised ‘vegetation effect’ that was observed can be 

extrapolated over larger areas with contrasting climates. It is also hypothesised that 

expansions of shrubs and trees across the sub- and low Arctic tundra, the majority 
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of which is underlain by permafrost (Tarnocai et al., 2009), may result in net losses 

of SOC from organic horizons which are supplemental to changes caused by 

climate drivers (e.g. soil warming and drying, and active layer deepening). The 

patterns that are observed in this study should be applicable in continuous 

permafrost regions where shrub expansions (Myers-Smith et al., 2011) and 

productivity increases (Epstein et al., 2012) are occurring. Indeed, Wilmking et al. 

(2006) observed similar decreases in stocks of C in a permafrost-underlain region. It 

is therefore likely that shrub expansion in tundra that is underlain by permafrost will 

result in loss of SOC. 

 

Our results suggest that because there are similarly low SOC stocks in shrub and 

forest vegetation, there may be similar plant-soil interactions at work. One of the 

likely key differences between forest and shrub systems and tundra heaths at our 

study sites is the dominance of ECMs (Read & Perez-Moreno, 2003) in symbiosis 

with B. nana and B. pubescens, amongst others (Hypothesis 4). There is some 

evidence to support this, as it was found that there is a general increase in ECM 

growth along the transects from the heath to the edge of the forest. The decrease 

seen at F plots in Figure 6 is likely to be due to the partial defoliation of some F and 

FE plots which will have reduced C flow to the ECM community and reduced 

hyphal growth (Chapter 4) amongst other ECM community changes (Kuikka et al., 

2003). This would act to dampen the effect that was observed (Fig. 6) and it should 

be expected that FE and F plots would have higher ECM growth rates in non out-

break years.  
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There is increasing evidence that the action of ECM fungi in scavenging for 

nutrients results in the breakdown of SOC (Talbot et al., 2008). The exact 

mechanisms for this are attracting considerable interest, and the relative importance 

of ECMs’ potential saprotrophic ability, their influence as an ‘accidental 

decomposer’, and as a direct recipient of plant C for positive priming, will be 

important to know (Talbot et al., 2008). One could view the transition from heath to 

shrub to forest as an increase in dominance of ECM fungi from heath to shrub 

vegetation, and then a plateauing at the forest which would explain the loss of SOC 

along this transition if the ‘decomposers in disguise’ hypothesis is true (Talbot et 

al., 2008).  

 

Hartley et al. (2012) showed, by radiocarbon analysis of respired CO2, that ‘old’ 

SOC was being decomposed at peak growing season in a sub-arctic birch forest. 

They attributed this to recently assimilated (‘young’) C by the trees causing a 

positive priming effect (Kuzyakov, 2002); here,  it is proposed that the ECM 

community is central to this process. ECMs receive up to 20% of total C fixed by 

trees  (Hobbie, 2006) and are therefore a key interface between labile C input and C 

sequestered in the soil. ECMs have substantial potential to produce extracellular 

enzymes to break down a range of structural organic compounds (Cullings et al., 

2008; Talbot et al., 2008; Phillips et al., 2014). One such genus (Cortinarius) has 

been found to excrete SOC-targeting peroxidases in response to low nitrogen (N) 

availability in the soil in the same region as the present study (Bödeker et al., 2014). 

This finding may be of key importance in heath systems with relatively high soil 

organic C contents (e.g. H and SH plots), which typically also have low N 

availability (Read & Perez-Moreno, 2003), as the ECMs may degrade soil C in 
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order to mineralise N  (Bödeker et al., 2014). The observation in the current study 

that areas of high above-ground productivity and ECM growth (Fig. 6) (Hypothesis 

4) have the highest rates of C cycling (Hypothesis 3) and lowest SOC (Hypothesis 

1) lends support to the hypothesis that the ECM symbiosis is a mechanism by which 

C is lost from the soil. This could be important following an expansion of 

vegetation with ECM associations into heath soils where nutrients such as nitrogen 

are more likely to be bound in organic forms (Read & Perez-Moreno, 2003).   

 

One other mechanism that could explain, or contribute towards, the patterns in SOC 

that were observed is the influence of winter processes. Over winter, an insulating 

layer of snow is trapped by shrubs and trees (Sturm et al., 2005), which contrasts 

with heath sites where drifting elsewhere results in only thin or no snow cover. This 

insulating snow layer may maintain a more active microbial community (Schimel et 

al., 2004) with higher winter respiration rates (Sullivan, 2010), which could also 

contribute to the loss of SOC from the system. As with the ECM example, the 

pattern in SOC across the transect will be mirrored by a similar pattern in abiotic 

constraints over biogeochemical processes such as snow accumulation. 

 

Lastly, the transition in vegetation from heath to forest represents a transition in 

chemical composition of litter input; there is a reduction in chemical recalcitrance 

and decomposability of litter from heath (evergreen dominated) to forest (deciduous 

dominated). Empetrum nigrum leaf litter has high concentrations of phenolic 

compounds, which results in low decomposition and accumulation of SOC (Tybirk 

et al., 2000). This contrasts with deciduous shrubs and trees (Cornelissen et al., 

2004; Cornwell et al., 2008) and specifically B. nana, which decomposes faster than 
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E. nigrum (Aerts et al., 2006). At our sites, there is a substantial cover of E. nigrum 

in the understory of the forest and shrub plots (Table 1), yet accumulation of SOC 

were not observed at these plots. It is therefore likely that the chemical composition 

of the litter input is not the most important determinate of SOC storage at these 

plots. Much like the decomposition of B. pubescens litter (Sjögersten & Wookey, 

2004), it could be hypothesised that decomposition of E. nigrum litter (amongst 

other litter types) is enhanced in shrub and forests systems due in part to the 

presence of a strong decomposing fungal community (Lindahl et al., 2007; Bödeker 

et al., 2014) . 

 

In conclusion, evidence is presented for a marked contrast in below-ground C 

cycling rates across the forest-tundra ecotone at a sub-arctic treeline. These results, 

based on a fully replicated design and covering contrasting landscape settings, not 

only confirm that mountain birch forests have relatively low soil C densities, but 

also that shrub vegetation has equally low SOC storage and faster C turnover. This 

relationship holds across different microclimatic conditions (contrasting 

precipitation at comparable mean temperatures), supporting the hypothesis that 

treeline vegetation type strongly controls SOC storage. These data emphasise the 

importance of plant-soil interactions and of the relative size, responsiveness and 

vulnerability of phytomass and SOC stocks to climate and vegetation change in the 

Arctic. Documented increases in productivity and above-ground phytomass may be 

modest compared to potentially vulnerable soil C that could be metabolised as a 

result of shrub expansion or other biotic and abiotic drivers of change in the 

circumpolar North. If shrub- and tree-dominated communities continue to expand 

northwards, then increases in productivity may accelerate C cycling (and release) to 
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a greater extent than any additional sequestration of C. Improved process 

understanding is required to underpin improvements in Earth System models. 
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Chapter 3: Snow accumulation over winter contributes to fast summer carbon cycling 

in a sub-arctic forest 

 

Thomas C. Parker1,2, Jens-Arne Subke1 and Philip A. Wookey3.  

1 Biological and Environmental Sciences, School of Natural Sciences, University of 

Stirling, Stirling, UK, FK9 4LA, 2 Department of Animal and Plant Sciences, Alfred 

Denny Building, University of Sheffield, Sheffield, UK, S10 2TN, 3 Environmental 

Sciences, School of Life Sciences, Heriot-Watt University, Edinburgh, UK, EH14 4AS 

 

3.1 Abstract 

Shrubs and trees are expanding onto tundra ecosystems in areas that are becoming more 

productive due to climate change. Snow accumulation around tall-stature vegetation can 

have important influences on carbon cycling during winter months by insulating the soil 

microbial community from the extreme cold and fluctuations of temperature. At a sub-

arctic treeline in Sweden data loggers measured soil temperature across replicated 

transitions between mountain birch forests (Betula pubescens Ehrh. ssp czerepanovii) 

and tundra heath, to measure the influence of vegetation on soil thermal regimes. It was 

hypothesized that deep snow in forest plots would increase soil microbial activity over 

the growing season due to more insulation and better growing conditions over winter. 

To this end, a spatially replicated soil transplant experiment between forest (high snow) 

and tundra heath plots (low snow) was conducted. Respiration rates over the growing 

season of 2013 were measure, as were respiration and microbial biomass in June 2014. 

Respiration of forest soils, which were transplanted into heath, was significantly lower 

than paired control soils over 2013. Data showed that this depression in respiration rates 

was partly due to low plant cover in the transplanted cores but also the result of the 

transplant manipulation. In 2014, respiration of heath soils was higher in those that 

were transplanted into forests. Paired measurements of microbial biomass did not show 
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any significant differences between transplant and control cores. This work suggests 

that deep snow cover forests in may contribute towards the low storage of soil C in 

these systems. It then suggests that continued expansion of high-stature vegetation may 

stimulate the decomposition of C stored in the Arctic.  
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3.2 Introduction 

 

Soils in northern high latitudes store up to half of the global soil carbon (C) stocks 

(Tarnocai et al., 2009). In arctic ecosystems, winter is the longest season and of 

importance to year-round ecosystem processes.  Snow cover exerts a profound 

influence on biological processes and winter respiration may contribute up to a third of 

annual ecosystem respiration (ER) (Fahnestock et al., 1999). Environmental influences 

over winter on soil processes may therefore have important interactions with the large 

store of soil carbon in the Arctic (Tarnocai et al., 2009). 

 

 There is a growing body of evidence demonstrating the importance of snow cover for 

microbial activity over winter (Fahnestock et al., 1999; Schimel et al., 2004; Grogan & 

Jonasson, 2006; Nobrega & Grogan, 2007; Sullivan et al., 2008; Sullivan, 2010; 

Grogan, 2012; Oechel et al., 2014). Tundra soil microbial communities can actively 

grow at -2 °C (McMahon et al., 2009) and can continue metabolism at -5 °C (Clein & 

Schimel, 1995), with an exponential decrease in rates down to  -39 °C where respiration 

is still measurable (Panikova et al., 2006). There is a similar ratio of anabolism and 

catabolism at temperatures above and below 0 °C but with lower rates at lower 

temperatures, thus suggesting ‘normal’ function of the microbial community (Drotz et 

al., 2010); although as temperatures fall towards 0 °C soil microorganisms initiate a 

range of physiological responses to survive freezing; (see (Schimel et al., 2007) for a 

review). It is not surprising, therefore, that measurements of CO2 emissions from soils 

year-round are revealing that winter fluxes are an important component of the C 

balance in the Arctic, potentially determining the sign of the net ecosystem C balance 

(Oechel et al., 2014). Indeed, for soils at a high arctic site on Svalbard (Norway) 



 

 70 

(Elberling, 2007) determined that between 14 and 30% of annual CO2 production rates 

occurred during the six winter months (October to March) with continuous sub-zero air 

temperatures. 

 

Annual duration of snow cover is very sensitive to climate change in the pan-Arctic 

region (Jones et al., 2012) and has been observed to decline over the past 40 years 

(Brown & Robinson, 2011). Snow depth in high latitude systems has also been 

observed to be decreasing by up to 10 cm in the last 30 years, with the exception of 

localised areas in Siberia (Park et al., 2013) This could therefore interact with soil 

processes over winter as insulation decreases. Therefore climate change could slow C 

cycling over winter through reduced insulation of the microbial community. 

 

Another change in arctic ecosystems that is driven by climate warming is the expansion 

of shrub genera such as Betula, Salix and Alnus (Tape et al., 2006; Myers-Smith et al., 

2011) as part of an overall ‘greening’ trend (Epstein et al., 2012). These shrub species 

increase the canopy height of the tundra by up to one meter and cause snow 

accumulations in the windward side of the vegetation (Sturm et al., 2001). The 

accumulation of snow also represents a potential positive feedback mechanism where 

the deeper snow enhances microbial activity, therefore increasing nutrient availability 

and encouraging further growth of shrubs (Sturm et al., 2005; Elberling, 2007). 

 

The local increases in snow associated with shrub expansion (e.g. over 100 cm (Sturm 

et al., 2005)) are far higher than the observed pan-arctic decreases in snow cover 

directly due to climatic influences (up to 10 cm (Park et al., 2013)). Considering the 

close coupling between snow depth and soil temperature, and thus winter respiration, 
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the increase in snow associated with shrub expansion could represent a stronger positive 

feedback to CO2 flux than the possible negative feedback associated with the subtler, 

yet larger scale, reduction in snow depth (Park et al., 2013). Furthermore, Grogan & 

Jonasson (2006) found that winter ER was significantly increased by snow 

accumulation in a Swedish sub-arctic birch forests only in areas where winter 

precipitation was low; there was no corresponding difference in ER between low and 

high stature vegetation in areas where snowfall was high (Grogan & Jonasson, 2006). 

This suggests that shrub expansion and associated snow accumulation will be 

particularly important to ER in areas with low snowfall, or where high wind speeds 

cause substantial redistribution of snow in the landscape.  

 

Winter snow cover also has important ‘memory effects’ on subsequent summer C 

cycling rates, with the general trend observed that reduced winter snow cover results in 

reduced growing season CO2 efflux from the soil (Blankinship & Hart, 2012). A 

number of mechanisms could be driving this: A reduction in root respiration due to frost 

damage (Oquist & Laudon, 2008; Haei et al., 2013), and reduced soil moisture at depth 

(Chimner & Welker, 2005); but, conversely, in some cases snow can cause 

waterlogging and reduce ER due to anoxic conditions (Natali et al., 2011). In 

permafrost soils increases in snow can increase CO2 efflux due to a deepening of the 

active layer, making more SOM available for microbial degradation (Nowinski et al., 

2010; Rogers et al., 2011).  

 

Following a decline in winter snow-depth, springtime soil respiration may also be 

increased due to the release of dissolved organic carbon (DOC) resulting from physical 

damage by freeze-thaw cycles (Oquist & Laudon, 2008; Haei et al., 2010; Haei et al., 
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2013) and a subsequent shift to a fungal decomposer community (Haei et al., 2011).  In 

the same boreal study system, decreases in snow leads to reduced annual decomposition 

of organic matter, but the relative importance of each season under this treatment is not 

known (Kreyling et al., 2013).  

 

Observations in sub-arctic Sweden have revealed that productive forest and shrub 

ecosystems store less carbon in the soil than adjacent, lower productivity, heaths 

(Hartley et al., 2012). The high rates of C cycling observed in Chapter 2 in the growing 

season within the forest and shrub communities, compared to nearby heaths, could 

partly be due to the protection (insulation) afforded to the microbial community by the 

deeper winter snow cover (Grogan & Jonasson, 2006). 

 

Here, a spatially replicated soil transplant experiment was conducted between forest and 

heath ecosystem types at a sub-arctic treeline, with contrasting winter environments, to 

test the importance of winter snow cover for subsequent summer carbon cycling rates. 

The design of this experiment, and its physical location, enabled us to eliminate a 

number of environmental co-variables (e.g. waterlogging and permafrost thaw) which 

could confound the interpretation of the results. The following hypotheses were tested: 

H1: Deep snow in forests insulates the soil, making it warmer and less variable than in 

heath soils; 

 

H2: The winter-insulated community has higher metabolism over the subsequent 

summer; 

 



 

 73 

H3: Winter-insulated soils have a larger microbial biomass which can explain higher 

respiration rates.  
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3.3 Materials and Methods 

 

Sites description 

 

12 paired heath (H) and forest (F) plots were selected from 12 replicated ecotones at a 

permafrost-free area spanning the subarctic/alpine treeline at Nissunsnuohkki (Abisko 

area, Sweden; ca. 68° 18’N 18° 49’ E, 600 m asl).  The treeline is formed by stands of 

mountain birch (Betula pubescens Ehrh. ssp czerepanovii (Orlova) Hämet Ahti) with an 

ericaceous understorey interspersed with tundra heath. F plots were chosen to be in 

areas dominated by B. pubescens, approximately 10 to 15 m from the edge of the forest 

stand. H plots were chosen for an open heath environment with low B. nana cover and a 

low canopy height, and with vegetation dominated by Empetrum nigrum ssp 

hermaphroditum.  Tundra heath is here similar to the ‘erect dwarf-shrub tundra’ 

(‘Continuous shrubland 2 to 50 cm tall, deciduous or evergreen, with graminoids, true 

mosses, and lichens) of ACIA (2005). Soils in the forest are micro-spodosols with a thin 

O horizon (< 5 cm) underlain by glacial till on a bed-rock typically of hard-shale. Soil 

pH at the organic horizon is 4.3 ± 0.1 in the forest and 4.5 ± 0.1 in the heath (Table 3.1).  

 

Distance between F and H plots ranged from 52 to 97 m with a mean length of 67.6 m. 

Care was taken to select vegetation transitions that were not present as a result of strong 

topographical influence - for example where water and snow accumulation due to dips 

and hollows dominate site conditions - and avoiding steep slopes (mean elevation 

change of -2.7 m). Transects were selected with a variety of contrasting compass 

bearings to ensure that there was no bias in the data due to shading or winter snow 
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drifting. For details, see Appendix 1. The 12 transects were grouped geographically into 

three blocks of four as shown in Figure 3.1.  
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Table 3.1: Vegetation characteristics along transects at Abisko across all blocks 

(means  ± 1SE, n=12). “Canopy height” refers to the actual vegetation canopy 

for Heath (H), and the understorey for Forest (F), where mountain birch trees 

form the (open) canopy. 

 

 Plot on transect 

 Heath Forest 

Distance from Heath (m) n/a 67.6 ± 5.9 

Understorey Canopy height 

(cm) 

14.7 ± 0.7 19.0 ± 1.7 

B. pubescens density (trees ha-2)  785 ± 109 

B. nana cover (%) 21.2 ± 2.7 8.0 ± 2.2 

E. nigrum cover (%) 65.4 ± 3.3 45.4 ± 4.2 

pH (organic horizon) 4.3 ± 0.1 4.5 ± 0.1 

 
Figure 3.1: Google Earth images showing Abisko Ecotones. A, B and C refer 

to different geographical blocks 
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Data loggers 

A Tinytag Plus Two logger with PB-5001 thermistor probe (Gemini Data Loggers, 

Chichester, UK) was set up at six paired H and F plots (A1, A2, B2, B4, C1, C4, i.e. 

two from each block) to measure soil temperature at 5 cm depth. Loggers recorded, 

hourly, from June 2012 until June 2014. Hourly mean and standard error data for 

vegetation type were generated from the six replicate H and F plots for the duration of 

the measurement period. Measurement seasons (summer and winter) were allocated 

based on the date at which soil temperature at 5 cm depth at all heath plots deviated and 

remained below 0 °C (Winter), and when they deviated and remained above 0 °C 

(Summer) at all  heath plots. According to this definition based on the temperature of 

the soil, Winter 2012 lasted from 16/10/2012- 14/5/2013 and Winter 2013 from 

20/10/2013- 18/5/2014. At transect B2 at the F plot, a HOBO U23-002 thermistor 

shielded from direct sunlight using a well-ventilated screen, connected to a HOBO 

microstation data logger (Onset, Bourne, MA, USA), was used to measure air 

temperature from July 2012 to August 2013. Surveys of soil moisture were carried out 

at all H and F plots.  Using a HH2 ThetaProbe soil moisture meter (Delta-T Devices, 

Cambridge, UK), a mean of three soil moisture measurements all within 20 cm of a 

central point, at 5 cm depth was taken. This was done five times through June and July 

2013.  

Soil transplants 

Intact soil monoliths (herein referred to as ‘core’) were transplanted between H and F 

plots at each transect, with appropriate controls. At each plot, two 15 cm diameter 

circles were cut in the soil approximately 2 m apart at each plot. At each circle, a 16 cm 

deep, 15 cm diameter PVC tube was driven into the soil until the entire collar (top of 
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the PVC tube) was level with the understorey vegetation. The core was then carefully 

extracted to avoid excess disturbance of the soil. Of the two extracted cores, one was 

randomly selected to be transplanted to one of the holes created in the contrasting 

vegetation community (e.g. H to F and F to H) and one was selected as control and 

inserted back into the hole it came out of. Good stability of cores and close contact with 

surrounding soil was ensured by carefully replacing soil removed during extraction of 

PVC tubes. In all F soil cores, the base of the core comprised mineral soil, therefore 

confirming that the entire organic horizon had been transplanted; this was not the case 

with H soil cores, where the organic horizon often exceeded 16 cm. All transplants were 

completed in five days by 6 June 2012, this was therefore counted as the first day of the 

experiment. On 12 June and 21 July 2013, each soil core was carefully rotated 90° to 

disrupt any connection (such as roots and fungal hyphae ‘importing’ autotrophic C into 

cores from surrounding vegetation) between the soil in cores and the native soil/parent 

material (which was often comprised of large clasts). One soil moisture measurement at 

5 cm depth was taken at every transplant core on 15/6/2013 but this was not repeated to 

ensure minimal disturbance and minimal increased aeration of the cores. 

 

Respiration measurement 

 

A portable EGM-4 infrared gas analyser with a darkened CPY-2 chamber (PP Systems 

International, Amesbury, MA, USA) was used to measure respiration of all soil cores. 

Respiration in this study is defined as the sum of microbial, root and shoot (including 

cryptogam) respiration within the chamber. Respiration was measured from all collars 

in June and September 2012, July and September 2013, and in June 2014. Respiration 

rates were calculated based on the linear increase of CO2 concentration within the 
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closed system over a period of 90 seconds. Tests with longer regression periods showed 

no improvement of fit compared with regression results obtained over 90 seconds (see 

also Chapter 2). On each sampling day, all 48 collars were measured over a period of 

two days from 0900-1600 hours. Complete blocks were measured on the same days to 

avoid bias from variations in temperature and moisture over the 2-day periods. The 

order in which blocks and transects within blocks were measured was randomised, as 

was the order of sampling within transects (i.e. H then F, or F then H). On 26th July 

2013, a vegetation survey was conducted of the species present within the PVC tube of 

each transplant collar and percentage cover of ericaceous species (Ecov) and graminoid 

and forb species (Gcov) recorded, the sum of the two representing total vascular plant 

cover (Totcov).     
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Table 3.2: Percentage vegetation cover (± 1SEM to one decimal point) of key species and groups (July 2013) present in transplant collars and forest 

and heath plots 

 

 

Soil 

origin Treatment E. nigrum V. myrtillus V. vitis-idaea V. uliginosum Grass Forb 

Feather 

moss Totcov 

Forest 
Transplant 1.5 ± 0.9 0.0  6.2 ± 1.5 0.4 ± 0.3 1.4 ± 1.2 0.5 ± 0.4 0.4 ± 0.4 10.0 ± 2.2 

Control 6.3 ± 3.9 1.1 ± 0.6 6.7 ± 1.4 1.7 ± 1.7 16.7 ± 8.9 9.2 ± 7.9 5.0 ± 4.2 41.5 ± 12.2 

Heath 

Transplant 24.6 ± 5.4 0.0  5.4 ± 2.5 2.1 ± 0.6 0.2 ± 0.2 0.0 3.8 ± 2.5 32.3 ± 4.7 

Control 25.2 ± 6.5 0.0 4.5 ± 1.2 4.1 ± 1.2 0.0 0.0 0.0 33.8 ± 6.9 
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Microbial biomass estimation 

 

 

The organic horizon from four 1 cm diameter, 5 cm deep soil cores was extracted from 

each soil collar (transplants and control) on 19 June 2014, immediately after completion 

of respiration measurement at each collar. The cores were homogenised and large roots 

removed by hand on the day of sampling. Two 2 ± 0.1 g subsamples of soil (fresh 

weight (FW)) from each core were weighed into glass vials, lid put on to maintain field 

moisture, and incubated at 19 °C for three days. Following the chloroform fumigation 

method (Vance et al., 1987), one of each of the paired subsamples was then fumigated 

in an evacuated desiccator with 25 ml of CHCL3. After boiling the CHCL3 for 3 

minutes, samples were left to fumigate for 24 hours. Fumigated and non-fumigated 

samples were extracted in 20 ml H2O and shaken at 150 rpm for 30 minutes. Samples 

were then immediately filtered through a Whatman number 42 filter and acidified with 

1 ml 1 % H2SO4 to prevent microbial activity prior to analysis. Samples were diluted to 

1:3 and then analysed for total organic carbon (TOC) in solution using a Sievers 5310c 

TOC Analyser (GE Analytical Instruments, Boulder, CO, USA). Microbial biomass of 

the soil taken from collars was calculated as the difference in TOC between fumigated 

and non-fumigated extractions.    

 

Data analysis 

 

In all linear mixed effects analysis of the transplant soil cores, the soil type (H or F) was 

defined as ‘Origin’ and the placement of the soil core (in either H or F plots) was 

defined at ‘Site’ and inputted into linear mixed effects models as fixed effects. 

Respiration measured from transplants in the forest was found to be significantly higher 

than at heath sites in the growing season of 2012, i.e. before the impact of winter 



 

 82 

conditions (linear mixed effects model; P = 0.002; Table 3.4)). The reason for this is 

unknown, but in order to understand the effect of winter temperature on summer 

respiration rates in 2013, the mean respiration rate for each collar over 2012 was 

calculated and the rates measured at every collar in 2013 were divided by this average 

(one 2012 average flux per collar). The standardised data from 2013 were then analysed 

using a repeated measures nested ANOVA following a linear mixed effects model with 

measurements nested within block, transect and repeated measures. This was done after 

log transformation of the response variable in order to meet the assumptions of the 

linear model. Reduction of snow cover is known to reduce vascular plant cover 

(Kreyling et al., 2012), therefore Totcov (see table 3.2 for vegetation cover)was included 

in the analysis of respiration as a fixed effect covariate, after it was found to best refine 

the linear mixed effects model (compared to combinations of Ecov and Gcov). Microbial 

biomass and respiration rates in response to transplant treatment were also analysed 

using a nested ANOVA following a linear mixed effects model. In all analyses, if the 

data violated the assumptions of the linear models, they were natural log transformed, 

with no further transformation required. All analyses were carried out using R studio 

V0.98.501. 
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3.4 Results 

Soil temperature and temperature 

 

Temperature was lower at H plots than F plots in both winter seasons: (Table 3.3, Fig. 

3.2). This coincides with deep snow at the F plots and shallow snow depth at the H 

plots in both winters (Table 3.3). Winter mean temperatures contrast with only small 

differences in mean summer soil temperatures between vegetation types (Table 3.3). 

Soil temperatures over winter 2012-13 in H plots were also more variable than those at 

F plots as soil temperature was more strongly coupled to air temperature (F: coefficient 

= 0.06, H: coefficient = 0.24 (Fig. 3.3)).  

 

Forest soil (not in the transplants) had consistently lower moisture than soil at the heath 

plots remaining on average at 24.9 % compared to 35.2 % (Fig. 3.4). The difference 

was less pronounced in the soil cores where all transplants and controls were ~ 30 % 

(Table 3.4).

 

 

 

 

Table 3.3: Mean temperature and snow depth measured at H and F plots. All 

temperature measurements are an average of hourly means over the whole season. All 

error signified is ± 1SEM to 1 decimal point. 

 

 

 

 

 

  

Plot 
Summer 

2012 (°C) 

Winter 2012-

2013 (°C) 

Summer 

2013 (°C) 

Winter 

2013-2014 

(°C) 

Winter 

2013 

Snow (cm) 

Winter 

2014 

Snow (cm) 

Forest 5.5 ± 0.1 -1.2 ± 0.0 4.8 ± 0.1 -0.5 ± 0.0 46.8  ± 3.4 73.9  ± 7.0 

Heath 5.0 ± 0.1 -4.2 ± 0.1 4.1 ± 0.1 -3.5 ± 0.1 13.1 ± 1.8 14.0  ± 2.5 
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Table 3.4: Soil moisture and DOC measured at H and F plots and within transplant 

collars. Moisture content in collars measured on 15/6/2013, DOC sampled on 

19/6/2014. All error signified is ± 1SEM to 1 decimal point. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Soil Transplant treatment Moisture (%) DOC (µg g soil -1) 

Forest 
Transplant (to heath) 30.1 ± 2.6 20.6 ± 3.1 

Control 29.6 ± 1.5 17.5 ± 2.0 

Heath 
Transplant (to forest) 31.2 ± 2.0 16.6 ± 3.7 

Control 32.7 ± 1.3 16.0 ± 2.2 
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Fig. 3.2 Hourly soil temperature at replicated H (black) and F (grey) plots. Middle line of three represents the running hourly mean of all plots, outer two 

lines represent a running ± 1 standard error of the hourly mean (n = 6 per plots type).   
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Figure 3.3: The relationship between air temperature and soil temperature at 5 cm 

depth in (a) Forest plots and (b) Heath plots over the winter of 2012-13.  

 
Figure 3.4: Soil moisture at 5 cm depth measured at Heath (Black Squares) and 

Forest (Grey triangles) plots over summer 2013. Error bars represent ± 1 SEM   
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Figure 3.5 Dark respiration over 2012 (left) and 2013 (right) (with time after treatment 

indicated on the x axis) from (a) forest soils and (b) heath soils, transplanted into the 

contrasting environment (dashed lines) or remaining in ‘home’ environment as a control 

(solid line). Error bars represent ± 1SEM, n = 12).  
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Respiration rates from soil transplants  

 

 

There was a significant effect of site on respiration rates of the soil cores in 2012 

(before winter; P = 0.002, Table 3.5, Fig. 3.5), with rates in the forest (F control: 

2.67 ± 0.23 µmol m-2 s-1, H transplant: 2.5 ± 0.13 µmol m-2 s-1) higher than cores in 

the heath (H control: 2.11 ± 0.13 µmol m-2 s-1, F transplant: 2.01 ± 0.17 µmol m-2 s-

1). There was no effect of soil origin on respiration rates in 2012. 

 

In a similar way to 2012, there was also a significant effect of site on respiration 

rates (P = 0.001, Table 3.5, Fig. 3.5), with cores in the forest (F control: 3.10 ± 0.14 

µmol m-2 s-1, H transplant: 3.23 ± 0.11 µmol m-2 s-1) having higher rates than those 

in the heath (H control: 3.06 ± 0.15 µmol m-2 s-1, F transplant: 2.15 ± 0.12 µmol m-2 

s-1). This difference was primarily driven by a reduction of respiration compared to 

control of the F soil transplanted in the heath (Fig. 3.5a). In 2013, there was 

however an important effect of soil origin (P = 0.002). The most important factor in 

this analysis was the total cover of vascular plants, Totcov (P < 0.001), which was 

positively associated with respiration rates (Table 3.5).   

When fluxes in 2013 were standardised by dividing by the mean flux of each core in 

2012 (RespirationRel, Fig. 3.6, Table 3.5), there was a near significant (P = 0.08) 

effect of site on fluxes, with higher respiration rates in the forest. Again, there was a 

significant effect (P = 0.005) of Totcov which was positively associated with 

respiration rates.   
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Table 3.5: Test statistics from nested ANOVAs testing the effect of soil origin (H or F), 

site (H or F) and total vascular plant cover (Tcov) on respiration rates from soil cores.  

Significant (P < 0.05) factors are highlighted in bold. 

Data y transformation Factor d.f. F P 

2012 Respiration Loge Origin 1,32 0.70 0.41 

  Site 1,32 10.53 0.002 

  Origin*Site 1,32 0.38 0.54 

2013 Respiration Loge Origin 1,32 11.19 0.002 

  Site 1,32 12.81 0.001 

  Origin*Site 1,32 0.23 0.64 

  Totcov 1,32 24.69 < 0.001 

2013 

RespirationRel 

Loge Origin 1,32 0.001 0.98 

  Site 1,32 3.16 0.08 

  Origin*Site 1,32 0.02 0.89 

  Totcov 1,32 6.19 0.02 
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Figure 3.6: Dark respiration in 2013 standardised by dividing measured rates by rates 

recorded in 2012 (RespirationRel) from (a) forest soils and (b) heath soils. Error bars 

represent ± 1SEM, n = 12).  
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Final respiration and microbial biomass measurements 

 

There was a significant effect of site on respiration rates in June 2014, with 

significantly higher respiration in F than in H plots (P = 0.009, Fig. 3.7a, Table 3.6). 

Unlike respiration rates recorded during 2013, where F control cores had the highest 

rates (Fig. 3.5), this was primarily driven by high rates recorded from H 

transplanted into F plots (2.35 ± 0.26 µmol m-2 s-1(Fig. 3.7a)). In contrast, H control 

cores had the lowest mean rate (1.67 ± 0.27 µmol m-2 s-1), and this resulted in a 

significant interaction between site and soil origin within the linear mixed effects 

model (Table 3.6). This was also reflected in respiration rates standardised by mean 

rates observed in 2012, before the two winter periods, where there was a close to 

significant effect of site on RespirationRel (P = 0.054, Fig. 3.7b). Microbial biomass 

was highest in F control soil cores but there was no effect of origin, or site, or an 

interaction between the two on microbial biomass measured from the soil cores 

(Table 3.6, Fig. 3.7c). There was also no relationship present between microbial 

biomass C and respiration from these paired measurements (P = 0.36, Fig. 3.7d).    
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Figure 3.7: Dark respiration and microbial biomass measurements taken June 2014 from heath 

and forest soils transplanted in heath environment (Black bars) or forest environment (grey 

bars). (a) Dark respiration (b), respiration relative to 2012 (see Fig. 5 for more information), (c) 

microbial biomass C with soil origin indicated (n=12 per bar, bars represent ± 1SEM), and (d) 

microbial biomass plotted against respiration, showing no relationship between the two (P = 

0.36). 
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Table 3.6: Test statistics from nested ANOVAs testing the effect of soil origin (H 

or F), site (H or F) and total vascular plant cover (Tcov) on respiration rates and 

microbial biomass in June 2014 from soil cores.  Significant (P < 0.05) factors are 

highlighted in bold 

Data y 

transformation 

Factor d.f. F p 

2014 Respiration  Origin 1,20 0.005 0.94 

  Site 1,19 8.47 0.009 

  Origin*Site 1,19 3.21 0.021 

  Totcov 1,19 6.29 0.089 

2014 RespirationRel  Origin 1,20 0.68 0.42 

  Site 1,19 0.39 0.054 

  Origin*Site 1,19 1.64 0.22 

  Totcov 1,19 6.05 0.02 

2014 Microbial 

biomass 

Loge Origin 1,22 0.00 0.99 

  Site 1,22 1.53 0.23 

  Origin*Site 1.22 0.002 0.97 
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3.5 Discussion 

 

This experiment demonstrated, over a replicated ecosystem scale, the importance of 

the interaction between vegetation and snow cover on summer carbon dynamics at 

an important treeline ecosystem. It showed that forest systems create a warmer, 

more stable environment for the maintenance of soil microbial processes (H1). 

Secondly, using a novel experimental approach, it suggested the importance of the 

winter snow pack created by forests, for maintaining high summer respiration rates 

(H2). In addition to this, evidence suggests that the respiration rates of heath soils 

can be stimulated by only two winters of increased snow pack, therefore suggesting 

a mechanism by which C could be lost if forests encroach onto heath. It was 

hypothesised (H3) that microbial biomass would be increased by being in a forest 

environment (with ameliorated winter temperatures related to deeper winter snow; 

Table 3.3, Figs. 3.2 and 3.3), but this was not supported by the data. 

   

Our results are consistent with a significant body of evidence that tall stature 

vegetation, such as trees and shrubs, substantially changes the soil environment over 

winter (Sturm et al., 2001; Sturm et al., 2005; Grogan & Jonasson, 2006). This 

work has used a replicated design across a subarctic ecosystem to demonstrate 

without doubt that winters are warmer in forest soils (Fig. 3.2), due to snow 

accumulation, because they insulate the soil from extreme air temperature and 

fluctuations (Fig. 3.3) (H1). For example, when air temperature dropped below -10 

°C,  mean soil temperature in the heath could drop as low as - 12 °C whereas in the 

forest it did not drop below was -5 °C (Fig. 3.3), but mostly remained stable at ~ -1-

2 °C regardless of the air temperature. In other words forest soils were protected 
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from serious temperature fluctuations and maintained at a temperature at which 

microbial population growth can continue (McMahon et al., 2009). The depth of the 

snowpack created in the forests also allowed for a more stable temperature in the 

soil, which would make it less susceptible to freeze-thaw cycles (Haei et al., 2010) 

and possibly even extreme winter warming events which can cause large scale 

ecosystem damage at multiple trophic levels (Bokhorst et al., 2012).   

 

The relationship between deep snow cover, soil temperature and microbial 

metabolism over winter is well known (Schimel et al., 2004; Sturm et al., 2005; 

Grogan & Jonasson, 2006; Monson et al., 2006; Nobrega & Grogan, 2007). In the 

same landscape as the present study, Grogan and Jonasson (2006) showed that 

winter respiration was significantly higher at forest plots than heath plots. 

Furthermore, in similar plots to the present study, suggesting decomposition of  

‘old’ SOC was being stimulated in the forest environment (Hartley et al., 2013) . 

Therefore, although ER  was not measured over winter, it is reasonable to suggest 

that fluxes of C were higher in the forested plots compared to the heath plots.  

 

There were significantly higher respiration rates in the soil cores placed in the forest 

compared to those placed in the heath in 2012. This was not an intended treatment 

but it is nonetheless interesting. The transplant treatment was intended to change 

soil temperature over winter but it is possible that the small difference in summer 

temperature (0.5 °C) may have stimulated increase in respiration rates over the 

measurement period in 2012. Respiration rates of birch forest and ericaceous heath 

are known to be responsive to summer soil temperature increase in the summer over 

typical ranges of 4-8 °C (Sjögersten & Wookey 2002). Mean summer temperature 
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measured over 2012 was 5.5 °C in the forest and 5.0 °C in the heath, and the 

difference was 0.7 °C in 2013. A warming of tundra soil in sub-arctic Sweden by 

approximately 1 °C was found to increase heterotrophic respiration but the effect of 

summer warming and winter snow addition on ecosystem respiration was larger 

than summer warming alone (Dorrepaal et al. 2009). One question is whether small 

differences in summer temperature between vegetation types significantly effects 

respiration. The second is which season’s temperature differences contributes the 

most to the respiration differences observed here:  the indirect effect of the large 

temperature change over winter or the direct effect of small change in the summer. 

The data presented here not able to compare the relative importance of these 

drivers.   

 

This work is the first to address the question of winter environment in influencing 

growing season C cycling rates in a sub-arctic context, and also the first to use the 

approach of soil transplants to simulate a future increase in snow due to treeline 

change on heath soils. Summer respiration rates were decreased in forest soils when 

transplanted to the heath (H1). This could be due to two mechanisms: Firstly, 

transplanting forest soil into the heath winter environment may have reduced 

microbial activity over winter due to less insulation which, in summer resulted in 

reduced activity which was measured as respiration. Secondly, a difference in plant 

cover between forest soils transplanted into the heath and controls due to, 

presumably, frost damage caused a reduction in respiration rates observed in the 

2013 growing season.  
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Reduction of plant cover and associated respiration with reduction of snow cover is 

consistent with an experiment in boreal Sweden (Kreyling et al., 2012). Other than 

this, a number of different factors were controlled for in order to address the 

response of soil microbial respiration rates to snow cover change. It was conducted 

in a permafrost-free and well-drained ecosystem which therefore eliminated the 

confounding effects of active layer (Rogers et al., 2011) or soil moisture  changes  

through saturation (Natali et al., 2011), or drying (Chimner & Welker, 2005) 

associated with snow depth manipulations. Mean soil moisture was found to vary by 

only three per cent between all the treatments (Table 3.4). This, however, is only 

one measurement of soil moisture which varies enormously with time. A more 

detailed survey of the surrounding soil showed that forest soil was found to be 

consistently drier. Soil moisture may still be an important influence contributing to 

C cycling differences between forest and heath that was not sufficiently measured in 

this study. DOC did not vary significantly between collars as has been reported in 

other studies (Oquist & Laudon, 2008; Haei et al., 2013). Again, this was only 

measured once so the conclusions that can be drawn are limited. The microbial 

communities in forest and heath may have been altered by the different snow depths 

and in turn had different summer respiration rates. The other factor identified as 

important in the statistical models was the vascular plant cover but when this is 

accounted for, the affect of winter environment still remained significant.   

 

In contrast to the change in vegetation cover observed with forests soils when 

transplanted into a colder winter environment, there was no (measured) change in 

plant communities associated with heath soils (Table 3.2) transplanted into forest. 

Respiration of heath soils took two years to increase in response to transplantation 
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compared to the control treatment (effect detected in 2014: Fig. 3.7b). This is of 

particular interest because, in contrast to removing the ‘normal’ snow cover and 

seeing a reduction in respiration rates, it has been shown that in a soil, which 

normally experiences very cold temperatures in winter, respiration can be 

stimulated in the growing season by increasing winter snow for two years.   

 

Winter snow-summer C cycling interactions may represent an important feedback 

between shrub expansion and soil carbon cycling when considering the large 

geographical scale of the pan-Arctic shrub expansion (Tape et al., 2006; Myers-

Smith et al., 2011). Snow accumulation by shrubs (Sturm et al., 2001) increases 

snow depth  locally (by up to one meter) far more than the observed loss of snow 

depth due to climate change across the Arctic (Park et al., 2013).  If snow 

accumulation and associated warmer soils is integrated into earth system models, 

carbon storage is shown to be reduced due to continued winter decomposition 

(Gouttevin et al., 2012). Therefore the large increases in snow associated with shrub 

expansion may have important effects on the carbon balance of the arctic as 

respiration is stimulated in winter (Grogan & Jonasson, 2006) and in the summer, as 

shown by this work. In the context of shrub expansion, C stored in the soil 

(Tarnocai et al., 2009) far outweighs recent increases in sequestration of C into 

biomass as a result of increases in productivity (Epstein et al., 2012). Recent work 

has suggested that C stored in tundras may be vulnerable to decomposition if 

colonised by shrubs (Chapter 2) or trees (Hartley et al., 2012). The experiment here 

highlights another mechanism by which these soils could lose C in the future which 

is supplemental to effects mediated by shifts in soil-plant mycorrhizal status and/or 

rhizosphere priming.  
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The final hypothesis that the soil ‘incubated’ over winter in the forest would have a 

larger microbial biomass compared with soils in the tundra heath (H3) must be 

rejected; there were no differences in microbial biomass between sites or soil 

origins, and there was no significant relationship between microbial biomass and 

the respiration measured shortly beforehand (Fig. 3.7c,d, Table 3.6) as was expected 

(Wang et al., 2003; Lipson et al., 2005). This is consistent with studies which only 

show small increases in microbial biomass in sub-arctic soils in response to 

warming (Clemmensen et al., 2006; Rinnan et al., 2007) which need a concurrent 

increase in nitrogen availability to be significantly stimulated. It is therefore 

hypothesised that deep winter snow cover in sub-arctic forests influences microbial 

respiration in summer by changing the microbial community composition as 

opposed to total mass of microbes. 

 

The soil transplants, with their PVC collars to depth and rotation to severe any 

connections at depth, were removed from the influence of the birch forest 

rhizosphere, therefore significant plant-soil interactions, for example priming 

(Hartley et al., 2012) or ectomycorrhizal in-growth (Chapter 2) , were considered 

unlikely in this case (except for the effect of the small cover of understorey plants).  

A change in free-living fungi and bacteria are therefore likely to be influencing 

biogeochemical cycling in the transplanted soil cores. Previous work has found that 

soil fungal biomass (especially free-living fungi) is very high over winter (Schadt et 

al., 2003; Zhang et al., 2014). This is particularly the case under deep snow-packs 

which maintain temperatures no lower than -1 °C (Kuhnert et al., 2012) where fungi 

are found to have highest enzyme production over the year (Voriskova et al., 2014).  
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Significant fungal cell damage occurs below -10 °C, and fungi in soils which are 

annually exposed to temperatures this low have specific adaptations such as slow 

growth and low temperature growth optima whilst investing in antifreeze 

production (Robinson, 2001; Robinson, 2002). It is possible that the microbial 

population adapted to a tundra environment is not able to metabolise as rapidly in 

the summer as a population that has been ‘incubated’ at a warmer winter 

temperature and do not have a need for such adaptations. 

 

Fungal populations have turnover times of up to hundreds of days, orders of 

magnitude higher than that of bacteria (Rousk & Baath, 2011). It is therefore likely 

that the fungal community in the forest which has been ‘incubated’ in a more stable 

and warmer environment than the heath will still be present into the growing season 

once the snow has gone and both communities are subject to similar thermal 

regimes. Differences were not observed in biomass between the two microbial 

communities, therefore the differences in respiration rates that were measure may 

be driven in part by a difference in the composition of the communities shaped by 

winter temperature patterns. Equally, bacterial communities differ in the winter 

compared to the summer (Lipson & Schmidt, 2004) and are therefore likely to vary 

depending on snow cover. Due to a shorter turnover time (Rousk & Baath, 2011) 

the effect of winter on summer process via bacterial communities maybe more 

limited but should not be ignored. This considered, it could be hypothesised that the 

increased snow cover in the forest fosters conditions which favour a faster 

metabolising, more fungi-dominated microbial community, which, in turn 

metabolises C more rapidly in summer.  
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In conclusion, this manipulation of winter snow cover, replicated over a landscape 

scale, shows that forest soils rely on deep snow and associated insulation for fast 

growing-season C cycling rates. This deep snow could stimulate summer 

decomposition rates in adjacent tundra heaths (i) if shrub and forest dominated 

systems expand in the future due to warming local climates, and (ii) if there is 

sufficient regional snowfall to produce an increase in snow-depth in these systems 

due to drifting. There were no differences detected in microbial biomass between 

transplant and control soil cores therefore it could be possible that snow 

accumulation in these forests fosters a fungal community that maintains fast rates of 

carbon cycling into the growing season. Continuing work on this system should 

therefore focus on quantifying the microbial communities, and their composition, 

created by snowpack accumulation in this treeline ecosystem. 
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Chapter 4: Slowed biogeochemical cycling in subarctic birch forest linked to 

mycorrhizal community change after a defoliation event.  

 

Thomas C. Parker1,2, Jesse Sadowsky4, Haley Dunleavy4,5, Jens-Arne Subke1, Serita 

Frey4 & Philip A. Wookey3. 
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HD sampled on plots set up by TCP. It should be clear that all mycorrhizal 
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4.1 Abstract 

Sub-arctic birch forests (Betula pubescens Ehrh. ssp. Czerepanovii) periodically 

suffer large-scale defoliation events caused by the caterpillars of the geometrid 

moths Epirrita autumnata and Operophtera brumata. Despite their clear importance 

to forest ecosystem functioning through a large decrease in productivity, little is 

known about how the reduction in belowground C allocation affects soil processes. 

The response of  soil processes following a natural defoliation event in sub-arctic 

Sweden was quantified by measuring respiration, nitrogen availability, 
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ectomycorrhizal (ECM) hyphal production, ECM root tip community composition 

and enzyme activity.  

 

There was a reduction in respiration and an accumulation of soil inorganic N in 

defoliated plots, symptomatic of a slow-down of soil processes. This coincided with 

a reduction of ECM hyphal production and a shift in the ECM community to lower 

C-demanding lineages (e.g. /russula-lactarus) which produce more C-degrading 

enzymes. Microbial and nutrient cycling processes shift to a slower, less C-

demanding state in response to canopy defoliation. These events are becoming more 

frequent with climate warming and therefore their impacts merit improved 

understanding. 
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4.2 Introduction 

 

Mountain birch forests (Betula pubescens Ehrh. ssp. czerepanovii (Orlova) Hämet 

Ahti) are the dominant treeline forests in most of northern Fennoscandia 

(Tommervik et al., 2009; Hofgaard et al., 2013). This forest is responsive to climate 

change, amongst other important drivers such as changes in reindeer management 

(Tommervik et al., 2009; Van Bogaert et al., 2011). The birch treeline has been 

observed to have expanded both in latitude in the last century (Hofgaard et al., 

2013) and in altitude in the last 34 years (Rundqvist et al., 2011). 

 

Pathogenic insect outbreaks are important controls over productivity in temperate, 

boreal (Hicke et al., 2012) and sub-arctic ecosystems (Bjerke et al., 2014). Cyclical 

outbreaks of the defoliating Autumnal Moth (Epirrita autumnata) and the Winter 

Moth (Operophtera brumata) are common and widespread across the mountain 

birch forests of Northern Scandinavia (Jepsen et al., 2008). These outbreaks occur 

in waves across the Scandes mountains, with an approximate 10 year frequency 

(Tenow et al., 2007), causing considerable damage to the canopy of Betula 

pubescens  forests (Jepsen et al., 2013) and contributing towards large decreases in 

forest productivity (Bjerke et al., 2014). It is not clear whether the frequency of 

these outbreaks is increasing with climate change but the area of forest affected by 

these outbreaks has increased by ~ 5 ° east in longitude into the colder continent and 

~ 2 ° north in latitude (Jepsen et al., 2008). This is due to a warming of winter 

climate, allowing over-winter survival of eggs in areas that were previously too cold 

(Jepsen et al., 2008). With the distribution and severity of defoliator insect 

outbreaks expected to expand further with climate change (Bale et al., 2002; Jepsen 
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et al., 2008; Jepsen et al., 2011), there is a pressing need to understand how the 

mountain birch forest ecosystem responds to such disturbance.  

 

Sub-arctic forests are known influence on soil carbon (C) cycling by allocating 

recently assimilated C belowground, stimulating the decomposition of soil organic 

C and the release of nutrients (Hartley et al., 2012). Below-ground transfer of labile 

C from trees to the rhizosphere drives microbial activity, respiration (Högberg et al., 

2001), and N immobilisation (Kaiser et al., 2011). Since defoliation reduces the 

ability of sub-arctic birch forests to fix C (Heliasz et al., 2011), it is expected that  

defoliation events strongly reduce C inputs to the rhizosphere and slow 

biogeochemical cycles. 

 

In addition to altering C allocation patterns, defoliation events in sub-arctic 

ecosystems accelerate nitrogen (N) inputs into the soil via direct frass addition 

(excreted waste from insects), thereby potentially altering N cycling (Kaukonen et 

al., 2013). N immobilisation by microbial communities has been in the soil is 

known to be driven by autotrophic C inputs (Kaiser et al., 2011) and belowground 

C allocation is  positively correlated with forest productivity (Litton et al., 2007). In 

productive temperate ecosystems the N cycle responds quickly to N additions from 

frass through redistribution of N into microbial communities (Lovett & Ruesink, 

1995), or reabsorption by the affected trees (Russell et al., 2004; Frost & Hunter, 

2007). In a less productive ecosystem such as the sub-arctic, reduced C supply to 

the rhizosphere alongside frass addition may result in an accumulation of N in the 

soil (as has previously been observed (Kaukonen et al., 2013)), akin to a saturated 

ecosystem (Aber, 1992).  
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Ectomycorrhizal (ECM) fungi are a major recipient of autotrophic C in forest 

ecosystems, with up to 21% of plant C allocated below-ground transferred to the 

ECM community (Högberg et al., 2001; Hobbie, 2006). This C supply allows ECM 

species to maintain dominance in the organic horizon of boreal forest soils over 

free-living fungi (Lindahl et al., 2007), but this dominance can be disrupted by 

cutting the autotrophic C supply (Lindahl et al., 2010).  Therefore any reduction in 

C inputs below-ground may translate directly to a reduction in C supply to the 

mycorrhizosphere (Gehring et al., 1997; Högberg et al., 2001). When trees are 

defoliated, ECM fungi with lower C demand from their autotrophic host may hold a 

competitive advantage over species with that require a larger C investment 

(Saikkonen et al., 1999; Markkola et al., 2004). Widespread defoliation should 

therefore drive a change in ECM community composition, selecting for less C-

demanding ECM taxa. 

 

Having evolved from free-living saprotrophic fungi, some ECM taxa retain the 

ability to degrade organic matter to access N and other nutrients and so play a role 

in nutrient cycles (Talbot et al., 2008; Bödeker et al., 2014; Meier et al., 2014; 

Phillips et al., 2014; Brzostek et al., 2015). There is a large amount of variation 

between taxa in the ability to produce C degrading enzymes (Lindahl & Tunlid, 

2015), therefore a change in community composition with defoliation may lead to 

changes in  overall community enzyme production.  

 

A mountain birch forest (Betula pubescens ssp. czerepanovii) in sub-arctic Sweden 

was defoliated by a joint outbreak of the winter and autumnal moths (Operophtera 
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brumata and Epirrita autumnata) in early summer 2013 after an outbreak the 

previous year. This gave us the opportunity to measure the belowground response of 

this ecosystem to the associated reduction in autotrophic C supply. In particular 

addressed the following research aims are addressed: 1. Measure belowground C 

and N cycling in response to defoliation of the Betula canopy. 2. Compare hyphal 

growth, root tip community composition and enzyme activity of the 

ectomycorrhizal community at defoliated and non-defoliated plots. 3. Better 

understand how changes (if any) in soil C and N cycling link to ectomycorrhizal 

community structure and function in a subarctic forest ecosystem.   
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4.3Materials and Methods 

 

Study site 

 

Study sites were established in the treeline birch forest near Abisko, Sweden 

(~68°18’ N, 18°49’E). The forest is made up of mountain birch (Betula pubescens 

Ehrh. ssp. czerepanovii (Orlova) Hämet Ahti) with a dominantly ericaceous 

understorey of Empetrum hermaphroditum, Vaccinium myrtillus, Vaccinium vitis-

idaea, Vaccinium uliginosum and some shrubs including Betula nana, Salix spp. 

and Juniperus communis. The soil is a thin spodosol developed over glacial till and 

bedrock typically of hard-shale, with a thin (<5 cm) O horizon. Soil pH of the 

organic horizon is 4.5 ± 0.1 SE (standard error) (Chapter 2). Further details on soil 

properties can be found in Sjögersten & Wookey (2002) and Hartley et al. (2010).  

The forest defoliation event by Operophtera brumata and Epirrita autumnata began 

in May 2013 as budburst occurred across the forest, although the exact timing was 

highly dependent on local microclimates. The trees were at their maximum extent of 

defoliation and caterpillars were no longer present in the trees by June 19th
, 2013 

(Fig. 4.1). There was also widespread defoliation due to an outbreak by the same 

species the previous summer, which is unusual, but it was not documented in detail 

in this study area.  

 

Study design 

 

Defoliation was estimated by eye at every B. pubescens individual for percentage of 

leaves remaining, which was then converted to percentage defoliated (assuming a 
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full canopy prior to defoliation). Defoliation values for each tree are means of 

independent estimates by two different observers. Based on the visual extent of 

defoliation, replicate trees across one forest stand were selected as either defoliated 

(max. 5% of leaves remaining) or non-defoliated (at least 95% of leaves remaining), 

with n = 5 per group (Fig. 4.1). In addition to these plots, other forest stands were 

sampled to assess defoliation impacts at the landscape scale. Plots (24 in total, 

consisting of all trees within a 5 m radius of a central point) were distributed across 

multiple stands of mountain birch over a 2 km2 area (hereafter referred to as 

Landscape Scale (LS) plots). All trees in each plot were estimated for defoliation 

using the method above 

.  

Respiration 

 

At defoliated and non-defoliated plots, two PVC collars (15 cm diameter x 7 cm 

 
Figure 4.1: Two Betula pubescens study trees assigned to “defoliated” and “non-

defoliated” categories based on the extent of defoliation by Operophtera brumata 

and/or Epirrita autumnata on 19th June 2013. Collars to measure soil respiration 

can be seen at 50 cm and 150 cm from the base of each tree.  
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high) were placed on the soil surface at 50 and 150 cm from the base of each tree 

(Fig. 4.1). To avoid disturbance to the rhizosphere, collars were not pushed into the 

soil, but were sealed to the soil using non-setting putty (Plumber’s Mait®, Bostik 

Ltd, Stafford, UK). A good seal with the ground was confirmed as all respiration 

measurements showed a linear increase in CO2 concentration over time (over 90 

seconds).  

Respiration measurements (which included both microbial and plant components) 

were made with a portable EGM-4 infra-red gas analyser with a darkened CPY-2 

chamber (PP Systems International, Amesbury, MA, USA). CO2 flux was measured 

five times at each collar through June and July 2013, after the defoliation event, and 

then twice in September 2013. Follow-up respiration measurements were made in 

June and July 2014 (one measurement each month). In 2014 ‘defoliated’ trees did 

not re-grow their canopy, instead, investing in new shoots at their base. Respiration 

rates were calculated as the product of a linear function of [CO2] increase over a 

period of 90 seconds within the closed system. Tests with longer measurement 

periods showed no improvement of fit. All collars were measured within a two-hour 

period between the hours of 0900-1600. 

 

Soil inorganic nitrogen 

 

Cation exchange membranes (2.5 x 5 cm; Resintech, West Berlin, NJ, USA) were 

used to measure soil inorganic N availability in summer (10th – 24th July 2013) and 

autumn (6th – 20th September 2013). Membranes were regenerated in 0.5 M HCl for 

one hour before being neutralised in 0.5 M NaCO3 for five hours, replacing the 
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NaCO3 every hour. The membranes were inserted vertically into the soil surface (0-

5 cm) at the centre of all landscape scale (LS) plots. Care was taken to select soils 

with no moss species (e.g. Pleurozium schreberi) associated with N-fixing 

cyanobacteria (DeLuca et al., 2002) to avoid measuring leached N from this 

potential source. A knife was used to create a vertical slit in the soil into which the 

membrane was inserted. The soil was then pushed together to ensure good contact 

and membranes were left in situ for 14 days. After collection, adhering soil particles 

were gently brushed away, after which the membranes were rinsed with deionised 

water. Membranes were stored at 3°C for 18 days before extraction (100 rpm for 60 

minutes in 35 ml 2 M KCl (Qian & Schoenau, 2002)). Extractable NH4
+ was 

quantified using flow injection analysis (FIAflow2, Burkard Scientific, Uxbridge, 

UK). Control strips (n = 10 per season) were taken into the field on the day of strip 

insertion but not placed in the field. They were taken back to the lab and stored at 

3°C until field samples were analyzed, at which point they were processed in the 

same way. The mean amount of NH4
+ adsorbed to control strips in each season was 

subtracted from field samples as an analytical blank. 

 

Ectomycorrhizal hyphal production 

 

Nylon mesh bags (5 x 4 cm; 37 µm mesh size), which allowed hyphal ingrowth, 

primarily of ECM fungi (analysis of community DNA in boreal and temperate 

forests shows c 80% ECM (Wallander et al., 2013)) but not roots (Wallander et al., 

2001; Wallander et al., 2013), were filled with 25 g of sand from the shore of Lake 

Torneträsk (68°21N, 18°49E). No plants were present aboveground within 1 m of 

the sand collection point. Sand was sieved to between 0.125 and 1 mm, rinsed under 
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a flow of water for 1 minute then microwaved (800 W) for 12 minutes, reaching a 

temperature of 98°C. This process was repeated and the sand was rinsed a final time 

before drying for 48 h at 80°C. The sand-filled bags were inserted at the landscape 

scale plots within 0.5 m of the ion exchange membranes at the centre of the plots. 

The bags were left in the field for 92 days between 16th June and 16th September 

2013. At collection, the sand was removed from the bags and freeze dried using a 

Modulyo freeze drier (ThermoFisher Scientific, Waltham, MA, USA) for 72 hours 

within six hours of recovery.  

 

Sand from each bag (1 g) was sonicated for 10 minutes in 30 ml deionised water to 

disassociate the fungal hyphae from the sand particles. A 4 ml aliquot of the water-

hyphae suspension was filtered onto a nitrate cellulose filter paper (0.45 µm pore 

size) and fungal material was stained with trypan blue (following Quirk et al. 

(2012). Hyphal length was estimated under 200x magnification (Primo Star, Zeiss, 

Oberkochen Germany) using the line intersect method (Brundrett et al., 1994). This 

was repeated on duplicate samples for each mesh bag, a mean of which was taken 

as the final measurement.  

 

Extraction, amplification and sequencing of fungal DNA from ectomycorrhizal 

roots 

 

Root tips of non-defoliated and defoliated trees were collected and analysed to 

identify the ECM taxa colonizing the roots, along with their activity as measured by 

extracellular enzyme analysis. Samples for root tip analysis were taken on 7th July 

2013. Samples were taken from five plots, three from the LS plots and two from two 
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additional mountain birch stands. At each of these plots, paired trees located within 

5-10 m of each other were designated ‘defoliated’ or ‘non-defoliated’ based upon 

the percentage of leaves remaining (c. 0 – 15 % designated ‘defoliated’, c. 85 – 100 

% designated ‘non-defoliated’). Organic-horizon soil was sampled to a depth of 

4 cm using a 5.7 cm diameter soil corer. Root samples were rinsed of adhering soil 

particles under a stream of tap water on a 1 mm-mesh sieve. Individual ECM root 

tips were then excised from larger root fragments under a stereomicroscope and 

stored and stored intact at 4˚C for up to 14 days until analysis (Pritsch et al., 2011).  

 

Single root tip DNA were extracted with the Extract-N-Amp kit (Sigma, USA) 

according to Avis et al. (2003). Fungal DNA was amplified using polymerase chain 

reaction (PCR) with the ITS1F-ITS4 primer set (Gardes & Bruns, 1993, White et 

al., 1990) at 0.35-µM concentration in GoTaq G2 Master Mix (Promega, USA). 

The PCR consisted of a 3-min hot start at 95°C, 35 cycles of 30 s at 95°C, 45 s at 

60°C, and 90 s at 72°C, and a final cycle of 5 min at 72°C. Negative controls 

(diethylpyrocarbonate-treated water) were included in each PCR run. PCR products 

were ran in 0.05% ethidium bromide 1.5% agarose (w/v) gels and photographed 

under UV light to confirm single PCR amplicons. After primers and unincorporated 

nucleotides were removed using ExoSAP (Affymetrix, Cleveland, OH, USA), as 

described by Kennedy &  Hill (2010), amplicons were sequenced with the ITS4 

primer on a 3730XL Applied Biosystems sequencer by Macrogen Corp. (Rockville, 

MD, USA). Sequence chromatograms were edited in FinchTV 1.4.0 (Geospiza, 

Seattle, WA, USA) or 4peaks 1.7 (http://nucleobytes.com/index.php/4peaks) to 

eliminate spurious base calls on the flanking ends of sequences.  

 

http://nucleobytes.com/index.php/4peaks
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Classification of fungal sequences 

 

Fungal sequences were assigned to one of ~80 ECM lineages or monophyletic 

groups (Tedersoo & Smith, 2013).  Lineages are designated by a '/' (slash) followed 

by the dominant genus, genera, or representative sequence, e.g., /cenococcum, 

/tomentella-thelephora, or atheliales3. Richness, evenness, and diversity (Shannon 

and Simpson indices) of ECM lineages were computed according to McCune & 

Grace (2002). 

 

Fungal sequences were placed into ectomycorrhizal (ECM) lineages (Tedersoo and 

Smith 2013) based on maximum bit score matches to reference sequences in the 

UNITE 6.0 database (unite.ut.ee ) accessed via PlutoF (Abarenkov et al. 2010; 

http://plutof.ut.ee/ ) with the International Nucleotide Sequence Database (INSD) 

option chosen. Mycorrhizal exploration type was assigned (ET; Agerer 2001) at the 

ECM lineage level following Tedersoo and Smith (2013) and of SH groups based 

on mantle structure and on previously published ECM morphology of taxa with 

97% or higher match with sequences in this study. 

 

Potential mycorrhizal N uptake 

 

Potential mycorrhizal N uptake was estimated based by first grouping the ECM taxa 

associated with collected root tips into 'exploration types' (contact, short-, medium-, 

or long-distance) according to Tedersoo and Smith (2013) and additional references 

(Appendix 2, Table S2). NH4
+-N potential depletion by ECM hyphae was calculated 

as the weighted average of the relative abundance of each exploration type in the 
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ECM community multiplied by NH4
+-N depletion values specific to each 

exploration type. 

 

Ectomycorrhizal (ECM) enzyme production 

 

Hydrolytic and phenol oxidase enzyme activities were assessed according to 

(Pritsch et al., 2011). Peroxidase activity, which is important in the breakdown of 

lignin in sub-arctic ecosystems (Bödeker et al. 2014), was measured as conversion 

of the substrate 3,3′,5,5′-tetramethylbenzidine (TMB; (Johnsen & Jacobsen, 2008)) 

in a 120-µl reaction volume after 15-min incubation. Following completion of each 

assay, reaction products  read for fluorescence or absorbance on a Synergy HT 

(Biotek, USA). Substrate conversion was calculated as pmol mm-2 min-1 using 

standard curves for hydrolase substrates and the Beer-Lambert law for 2,2’-azino-

bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS; ε420 = 3.6 × M-1 cm-1 and TMB 

(ε450 = 5.9 × 104 M-1 cm-1; (Josephy et al., 1982), the latter after addition of 30 µL 1 

M H2SO4 (Johnsen & Jacobsen, 2008). 

 

Statistical analyses 

 

Respiration data in 2013 and 2014 were analysed separately using a repeated 

measures two-way ANOVA following a linear mixed effects model with distance 

from tree and defoliation status (defoliated or non-defoliated) as main effects. Data 

were square root transformed to meet the assumptions of the parametric analyses. A 

linear model was used to analyse the relationship between NH4
+ adsorbed to cation 

exchange membranes and the defoliation extent of the B. pubescens on the 
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landscape scale plots once the response variable was natural log-transformed. The 

relationship between defoliation extent and ECM ingrowth was analysed using a 

linear model. Once again, a natural log transformation of the response variable 

made the data appropriate for parametric analysis. One outlying point was removed 

from the ECM ingrowth analysis because it had a disproportionate effect on the 

statistical model, violating the underlying assumptions (Cook’s distance > 0.5). A 

conservative Bonferroni test on its residual was used to confirm that this was indeed 

a statistical outlier (P = 0.0058) (Kutner et al., 2005) .  

 

Richness, evenness, and diversity (both Shannon's and Simpson's indices) of ECM 

lineages were compared between defoliated and non-defoliated trees with paired t-

tests. To test a null hypothesis that ECM communities were not affected by 

defoliation, the non-parametric blocked multi-response permutation procedure in 

PC-ORD was used (McCune & Mefford 2011). The raw data matrix included 

counts of ECM fungal lineages and non-ECM fungi in defoliated and non-defoliated 

plots (n=5). Plots were considered as random blocks, performed within-block 

median averaging, and used distance function commensuration to give equal 

weighting to variables in the calculated Euclidian distance matrix (McCune & 

Grace, 2002). 

 

The effect of defoliation effects on ECM enzyme activity at the community scale 

was evaluated by ANOVA in the generalized linear mixed-model procedure of SAS 

9.4 (SAS Institute, Cary, NC, USA). Defoliation status was specified as a 

categorical fixed effect and plot as a random effect. Depending on enzyme class, 

enzyme activity among individual ECM roots varied by three or more orders of 
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magnitude. Transformation of raw data to a natural logarithmic scale proved 

satisfactory to dampen the influence of extreme values on plot means and to satisfy 

the ANOVA assumption of normality (studentized residuals, Shapiro-Wilk test, 

Type I error of α = 0.10). Either equal or unequal fixed-effect variances were fitted 

by comparing the Bayesian Information Criterion value of competing models 

(Littell et al., 2006). To determine if defoliation and ECM fungal lineages interacted 

to affect ECM-root enzyme activities a two-way ANOVA was used and a pre-

planned comparison of defoliated and non-defoliated least-squares means for ECM 

lineages that had replicate observations among the sampled transects.  Additionally, 

the effect of defoliation on the relative abundance of mycorrhizal exploration types 

was assessed using a two-way ANOVA with exploration type and defoliation 

defined as categorical variables and relative abundance as the response.  
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4.4 Results 

Defoliated plots had a significantly lower respiration rates (2.63 μmol CO2 m
-2 s-1) 

than non-defoliated plots (3.96 μmol CO2 m
-2 s-1) in 2013 when measured 50 cm 

from the tree (P = 0.015; Table 4.1, Fig.4.2). However, the effect of defoliation 

overall was not significant (P = 0.068) due to a non-significant response to 

defoliation at 150 cm from the tree. Overall, there was a significant (P = 0.009) 

effect of distance on respiration rates and no significant interaction (P = 0.24) 

between distance and defoliation. The same pattern with lower respiration at 50 cm 

from defoliated trees continued into 2014.  

 

 

Table 4.1: Analysis of variance of defoliation, distance from the base of the tree, and 

their interaction effects on respiration. Statistical results correspond to data shown in 

Figure 4.2. Significant (P < 0.05) factors are highlighted in bold. 

 

 

Data 

 

y transformation 

 

Factor 

 

d.f. 

 

F 

 

P 

2013 Respiration  Square root Distance from tree 1,8 11.68 0.009 

  Defoliation 1,8 4.46 0.068 

  Distance*Defoliation 1,8 1.62 0.24 

2014 Respiration Square root Distance from tree 1,8 8.83 0.017 
  Defoliation 1,8 3.25 0.11 

  Distance*Defoliation 1,8 1.65 0.24 
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Figure 4.2: Soil respiration measured over the growing season of 2013 and 2014 at non-defoliated (closed triangles) and defoliated (open 

circles) plots at (a) 50 cm and (b) 150 cm from study trees. Error bars represent ±1 SEM (n = 5). * signifies a significant (P < 0.05) effect of 

defoliation within the statistical model in that year and distance from the tree, according to one degree of freedom Wald tests.  
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There was a significant relationship between defoliation extent (% defoliated) and 

the amount of NH4
+ sorbed to resin membranes at both sampling points (July and 

September, 2013). The relationship was more significant in July (P < 0.001 Fig. 

4.3a), however it was still present in September (P = 0.004 Fig. 4.3b). There was 

also a significant negative relationship between defoliation extent and ECM hyphal 

production over the months of June - September (P = 0.005, Fig. 4.4).  

 

 

 

  

 
 

Figure 4.3: Resin membrane-sorbed ammonium (µmol NH4
+ cm-2 membrane) at LS 

plots in (a) July and (b) September in relation to defoliation extent of B. pubescens (% 

defoliated). July: y = e0.034x - 4.19, R2 = 0.56. Non-linear regression:  d.f. = 1,22, t =  5.49, 

P < 0.001. September: y = e0.027x - 4.05 R2 = 0.31. Non-linear regression: d.f.  = 1,21, t = 

2.43, P = 0.0036).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 121 

 

  

 
Figure 4.4: Hyphal in-growth in relation to defoliation of B. pubescens  (% 

defoliated) at the LS plots. Line represents y = e-0.017x + 3.26 R2 = 0.30. Non-linear 

regression: d.f. = 1,20, t = 3.17, P = 0.0048. Statistical outlier is identified as an 

open circle, no other points were statistical outliers.  
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Figure 4.5: Main: Relative abundance of ectomycorrhizal (ECM) fungal lineages 

and non-mycorrhizal (NM) fungi sequenced from ectomycorrhizal root tips of 

control 'Fol' and defoliated 'Defol' Betula. Error bars are standard error of the mean 

(n = 5) and undefined for unreplicated fungal lineages . Absence in replicates was 

treated as zero for mean relative abundance calculation. Relative abundance of non-

ectomycorrhizal fungi is shown but excluded from analysis. Inset: relative 

abundance of all but /cortinarius and /russula-lactarius lineages expressed on 0-12 

% scale. 
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Table 4.2: Effect of defoliation on ectomycorrhizal fungal community richness (S), evenness 

(E), Shannon diversity (H'), Simpson diversity (D'), and composition. Values are means ± 

standard error  (n=5). 

 S E H' D' Composition 

Non-defoliated 4.8 ± 1.4 0.83 ± 0.07 1.2 ± 0.31 0.60 ± 0.12 
 

Defoliated 2.6 ± 0.9 0.43 ± 0.19 0.5 ± 0.24 0.28 ± 0.13 

P > |t| 0.04a 0.05a 0.04a 0.05a 0.04b 



 

 123 

 

The structure and function of the ECM fungal community associated with Betula 

pubescens roots was significantly affected by defoliation. ECM fungal richness, 

evenness, and diversity (both Shannon and Simpson diversity indices) declined in 

response to defoliation (Table 4.2). Fungal community composition was also 

altered, with some ECM taxa increasing and others decreasing with defoliation. The 

/cortinarius lineage was the most abundant ECM taxon of both non-defoliated and 

defoliated trees, representing 48-51% of relative ECM abundance (Fig. 4.5). 

Relative abundance of /cortinarius was not impacted by defoliation. In contrast, 

defoliation significantly affected the relative abundance of the /russula-lactarius 

lineage which made up 20% of the ECM community in non-defoliated trees, but 

increased to 44% following defoliation. Additionally, the ECM lineages 

/tomentella-thelephora, /tomentellopsis, /piloderma, /cantharellus, /inocybe, 

/hydnellum-sarcodon, /amphinema-tylospora, and /boletus, which together 

accounted for about 30% of ECM taxa associated with non-defoliated Betula, 

collectively declined to 3% of the ECM community with defoliation. The lineages 

/hygrophorus, /meliniomyces, and /cenococcum were detected on roots from single 

defoliated plots and not detected from non-defoliated plots. Non-mycorrhizal Fungi 

most closely related to root endophytes, such as Phialocephala fortinii, P. 

sphaeroides, and Meliniomyces variabilis, and free-living saprotrophs (Mycena 

spp.) were primarily recovered from ECM roots of defoliated Betula (Fig. 4.5). The 

changes in relative ECM community abundance of different  exploration types with 

defoliation are summarised in  Fig. 4.6.  
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Among ECM lineages, those with high extraradical mycelium biomass (medium- to 

long-distance soil exploration strategy (Hobbie & Agerer, 2010)) declined from 

76% in non-defoliated trees to 43% in defoliated trees. This corresponded to an 

increase in contact exploration types (consisting of /russula-lactarius) and non-

mycorrhizal fungi (Fig. 4.5). Insofar as exploration strategy is conserved in ECM 

lineages and corresponds to zones of hyphal nutrient depletion in soil (Agerer et al., 

2012), alteration of ECM community composition by defoliation lessened the 

potential of ECM fungi to immobilize N in soil (Fig. 4.7). It should be noted that in 

this study potential ECM N immobilization was estimated from literature values and 

that direct measures of N uptake are needed for validation. 

 

   

 
Figure 4.6: Effect of defoliation on relative abundance of non-mycorrhizal fungi 

and exploration types (ETs) of ectomycorrhizal fungi. Absence within replicates 

was counted as zero for mean relative abundance calculation. Bars are standard 

error of the mean. Symbols indicate defoliation affected relative abundance of an 

ET (Holm-Tukey test) at P < 0.05 (asterisk) and P = 0.1 (dagger).  
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Defoliation increased C-degrading (cellobiohydrolase, phenol oxidase, and 

peroxidase) enzyme pools on ECM-colonized root tips, but caused no change in the 

activities of N- and P-cycle enzymes (Fig. 4.8). As for the effects on individual 

ECM fungal taxa, defoliation did not alter enzyme activity of root tips colonized by 

/cortinarius, but increased cellulolytic enzyme activity of root tips colonized by 

/russula-lactarius (Fig. 4.9). Irrespective of defoliation, /russula-lactarius roots had 

higher phenol oxidase and peroxidase enzyme activities than /cortinarius roots. 

ECM lineages with low frequency (i.e. detected in two or fewer replicate plots) 

were not compared for activity of individual enzyme classes due to lack of 

replication. 

 
Figure 4.7. Effect of defoliation on potential N immobilization by ectomycorrhizal 

hyphae  due to defoliation effects on mycorrhizal exploration type relative 

abundance. Least-squares means and standard errors are shown for replicate LS 

plots (n = 5).  
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Figure 4.8: Effect of defoliation on enzymes on extracellular enzyme activity of 

ectomycorrhizal root tips. Data were analyzed on a natural logarithmic scale in order to 

meet the ANOVA assumption of normality; least-squares means and 90% confidence 

intervals, back-transformed to the measured scale, are shown. Sample size is n = 5 for all 

enzyme classes except phosphatase, n = 3 for control and n = 4 for defoliated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

60

120

180

240

300

F D

p
m

o
l m

m
-2

m
in

-1

Leucine 
aminopeptidaseLeucine aminopeptidase

Non-defoliated
Defoliated

0

200

400

600

800

D F

Chitinase

0

700

1400

2100

2800

3500

D F

Phosphatase

0

30

60

90

120

150

180

D F

p
m

o
l m

m
-2

m
in

-1

Cellobiohydrolase

P < 0.01

0

3

6

9

12

15

18

21

mean

Phenol oxidase

P = 0.05

0

30

60

90

120

mean

Peroxidase

P < 0.01



 

 127 

      
 

    

Figure 4.9: Effect of defoliation (Fol, non-defoliated; Defol, defoliated) and fungal lineage (ECMf; /cortinarius and /russula-lactarius) on extracellular enzyme activity of ectomycorrhizal 

root tips. Data were analyzed on a natural logarithmic scale to meet the ANOVA assumption of normality; least-squares means and 90% confidence intervals were back-transformed to the 

measured scale. Asterisk denotes increased (Holm-Tukey P < 0.05)  / cellobiohydrolase activity of defoliated /russula-lactarius ectomycorrhizas. Sample size for enzyme classes except 

phosphatase: cortinarius, non-defoliated n = 5, defoliated n = 4; russula-lactarius, non-defoliated n = 5, defoliated n = 3; phosphatase: cortinarius, non-defoliated n = 3, defoliated n = 3; 

russula-lactarius, non-defoliated n = 3, defoliated n = 2, therefore, no statistics for phosphatase.  
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4.5 Discussion 

 

This study has shown that defoliation of a Betula pubescens forest canopy slows 

biogeochemical cycling in the soil via a reduction of photosynthate supply. 

Amongst other potential factors, it is demonstrated that a shift in ectomycorrhizal 

community composition to a more conservative state could be an important factor 

contributing to the slow-down of C and N cycling in the soil. 

 

It was shown that, when defoliated, biogeochemical cycling in a mountain birch 

forest slows. Previous work in this system showed that large defoliation events 

drastically reduce the strength of the ecosystem C sink (Heliasz et al., 2011), with a 

reduction in photosynthesis. The reduction in C assimilation also slowed the loss of 

C from the soil. This was only statistically significant closer to the tree base (at 50 

cm), presumably where the tree has a greater influence on soil carbon cycling rates. 

These data demonstrate that the respiration rates of roots, fungi and bacteria, and 

other soil organisms are sensitive to a reduction in above-ground C assimilation, as 

has been shown by experimental girdling and trenching experiments (Högberg et 

al., 2001; Brzostek et al., 2015). Although there was a slow-down in respiration 

close to trees, the effect of the defoliation on C cycling across the rest of the forest 

(> 50 cm from tree base) may be negligible, as there was no reduction in respiration 

further away from study trees. There will therefore be large areas of forest soil 

where soil CO2 efflux is not affected by the defoliation of the canopy. These results 

should therefore be regarded as evidence that rhizosphere processes are slowed by 

aboveground defoliation, but it is unclear how this effect extends to the C budget of 

the forest as a whole. 
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This study in forest plots which have undergone almost complete defoliation in a 

relatively unproductive ecosystem (Myneni et al., 2001; Karlsen et al., 2008) 

showed the opposite response to more productive ecosystems which experienced a 

smaller reduction in belowground C allocation. Further south, in a temperate 

deciduous system, belowground respiration rates increased in response to 

defoliation (8% less foliage than control (Frost & Hunter, 2004)). This was similar 

to patterns of increased C allocation belowground by plants in response to partial 

herbivory (Bardgett & Wardle, 2003; Orians et al., 2011). The authors explained the 

increase in C flux as being due to a combination of increased root growth, turnover, 

activity and labile C input, all as mechanisms to recover N that was lost from leaf 

biomass (Frost & Hunter, 2004). All of these processes depend on a high flux of 

autotrophic C to maintain roots and associated mycorrhizal symbionts (Litton et al., 

2007; Brzostek et al., 2015), something that was not possible in the present study as 

the defoliated trees suffered almost complete defoliation. In a subalpine forest 

suffering a bark beetle outbreak, as productivity decreased with tree death, 

ecosystem respiration decreased, signifying an overall slowdown of the forest C 

cycle (Moore et al., 2013). This is analogous to what was observed in the present 

study. Soil carbon cycling in sub-arctic forests relies on autotrophic C supply to 

mobilise microbial communities and continue the decomposition of soil organic 

matter (Hartley et al., 2012).  This study shows that when this C supply is cut, 

cycling in the soil slows, further supporting the hypothesis that it is recently fixed 

carbon which drives this cycle (Hartley et al., 2012).  
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A decline in ECM hyphal production with increasing defoliation led to a shift in the 

ECM fungi colonizing B. pubescens roots from medium and long- distance 

exploration types (ETs) in non-defoliated plots to smooth-mantled contact species 

such as /russula-lactarius in the defoliated plots (Agerer et al., 2012). The shift from 

longer to shorter ETs coincides with a loss of ECM diversity on Betula root tips. 

The species lost tend to be from the longer ETs.  This is consistent with the 

hypothesis that when a host tree is defoliated, ECM species with a low C 

requirement hold a competitive advantage over those that invest in more extensive 

soil exploration (Saikkonen et al., 1999; Markkola et al., 2004). A competitive shift 

driven by defoliation therefore has negative effects on ECM biomass and diversity 

as longer ETs lose lose fitness and root tips shift to more of a Russula and 

Cortinarius- dominated system.  

 

A similar shift to Russuloid ECM fungi on root tips and reduction in ECM biomass 

on roots was observed in another mountain birch forest (Saravesi et al., 2015).  The 

opposite occurred in a warming experiment in the Alaskan tundra where biomass of 

Betula nana increased; there was a shift to the more explorative Cortinarius spp. 

from the lower investment Russula spp, presumably as a result of increased C 

supply (Deslippe et al., 2011). This change in the composition of the ECM 

community that was observed likely contributed to the reduction of ECM hyphal 

biomass observed in the in-growth bags in highly defoliated plots. A shift to higher 

allocation to C-scavenging extracellular enzymes by ECM fungi of defoliated trees 

also suggests that host C supply is an important control on ECM physiology in our 

study system, It is clear that the mycorrhizosphere is altered in both biomass and 

composition in response to reduced C supply, as has been observed in previous 
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defoliation studies (Gehring & Whitham, 1991; Delvecchio et al., 1993; Gehring et 

al., 1997; Kuikka et al., 2003; Pestana & Santolamazza-Carbone, 2011). 

 

The data from this study show that ECM hyphal production was reduced in 

defoliated plots as were respiration rates. This would agree with previous work 

showing that respiration by ECM hyphal networks contribute significantly to total 

heterotrophic soil respiration (Heinemeyer et al., 2007; Vallack et al., 2012). The 

effect of ECM community change on C flux is in this study, however, complicated 

by the co-occurring change in extracellular enzyme activity. Community-wide 

activity of C-degrading enzymes associated with ECM root tips were increased in 

defoliated plots compared to non-defoliated plots. This was driven primarily by the 

shift to increased relative abundance of the /russula-lactarius lineage; predominantly 

a contact exploration type (Agerer, 2006) which had higher extra-cellular oxidative 

enzyme activities compared to /cortinarius, the co-dominant ECM lineage in our 

study site. This could potentially lead to an increase in C degradation and soil 

microbial community-wide respiration in the vicinity of the ECM root tips.  

 

The change in enzyme production at the root tips is likely to be minor relative to the 

observed decrease in hyphal production and associated reduction in soil enzyme 

activity. Our data along with others (Tedersoo et al., 2012; Bödeker et al., 2014) 

show that other lineages with potential to produce an extensive mycelium also has a 

significant capacity to produce C-degrading extracellular enzymes. Therefore, 

reduction in hyphal production may have reduced enzyme production away from 

the roots. Although /russula-lactarius lineages produced more enzymes at the root 

tip, the net effect of the observed ECM community response to defoliation may 
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have been a reduction in enzyme production through the soil and reduction of 

degradation of soil organic matter. It was shown that when trees are girdled 

(causing a similar effect as observed here), microbial community-wide enzyme 

production was reduced by ~ 40% (Brzostek et al., 2015), causing a slow-down in 

respiration rates. The reduction in respiration rates observed that was observed is 

likely to be linked to change in the ECM community away from more explorative 

lineages.  

 

Defoliation increased cellobiohydrolase activity in /russula-lactarius lineages. This 

could be seen as C acquisition by /russula-lactarius which could be a compensatory 

response to reduced photosynthate supply following defoliation. i.e., the ‘Plan B 

Hypothesis’ proposed by Talbot et al. (2008). Although some lineages of ECM 

fungi do not degrade polymeric C and rely strictly on ECM hosts for C (Veneault-

Fourrey & Martin, 2013), evidence suggests that the /russula-lactarius lineage arose 

from wood-decomposing ancestors (Larsson & Larsson, 2003; Tedersoo et al., 

2010) and retained some capacity to access C via decomposition. For example, 

Russula sp. isolates cultivated on culture media and in the presence of Fagus leaf 

litter secreted similar levels of oxidative enzymes to litter-decomposing fungi 

(Burke et al., 2014). Additionally, in decomposing leaf litter and forest soil, Russula 

spp. accounted for a large proportion of fungal cellobiohydrolase genes and gene 

transcripts, implicating a role of Russula in cellulose depolymerisation in forest 

soils (Weber et al., 2012; Voriskova et al., 2014). Moreover, a Russula sp. 

assimilated C from cellulose in the absence of mycorrhizal symbiosis (Stursova et 

al., 2012). In this way, therefore, a shift to a more /russula-lactarius-dominated 

system may enhance decomposition of soil C; this response, however, is likely 
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limited to soil in direct contact with /russula-lactarius ECM roots in our system, 

since rhizomorphs that allow ECM hyphae to proliferate several dm from ECM 

roots (Agerer 2012) were absent members of /russula-lactarius detected in our study 

system. Hence, the increase of enzymes on the surface of ECM roots is unlikely to 

have a significant effect on respiration compared to the overall reduction in hyphal 

growth in the soil that was observed.  

 

Inorganic N availability in soils, specifically NH4
+-N, increased where B. pubescens 

was defoliated. The positive relationship between the extent of defoliation and NH4
+ 

in the soil observed in midsummer was still observed at the same magnitude in 

autumn, although there was more variation in the latter. Other work from similar 

forests showed that excess NH4
+ was present in defoliated plots over a year after the 

defoliation event (Kaukonen et al., 2013). Based on our own results, and the 

findings by Kaukonen et al. (2013), there is reasonable evidence that the N flush is 

caused by the caterpillar outbreak. This could be driven by direct frass inputs from 

the caterpillars (Lovett et al., 2002) and equally though reduced N uptake by 

defoliated trees relating to reduced root growth (Kosola et al., 2001; Cigan et al., 

2015; Saravesi et al., 2015). Although neither of these processes were measured, the 

severe defoliation of the trees would suggest that their roots have been negatively 

affected. The N response persisted throughout the remainder of the growing season, 

three months after the defoliation event finished, and potentially beyond. Similar 

results were measured in sub-alpine forests which saw a concurrent reduction in 

ecosystem respiration (Moore et al., 2013) with tree mortality an increase in 

bioavailable soil N (Trahan et al., 2015). These results are in contrast to more 

productive systems where excess N as a result of severe defoliation of oak 
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woodlands was retained in the ecosystem (Lovett & Ruesink, 1995). This can be 

either by immobilisation of free N by the microbial community stimulated by a co-

increase in labile C (Lovett & Ruesink, 1995) or by a rapid recovery of N by the 

trees (Russell et al., 2004). Neither of these processes are like likely to be 

significant in this case as a reduction in respiration was observed (which includes 

root and microbial components) and reduction in fungal growth, suggesting that 

neither plant or microbial groups were stimulated by the addition of frass. Instead, 

the evidence suggests that in this ecosystem, soil processes and biological uptake 

are slowed to a point where excess N builds up in the soil. 

 

On balance, these data imply a slow-down of biogeochemical cycling in this sub-

arctic birch forest. This is in contrast to other work in the sub-arctic which argued 

that defoliation could enhance C cycling by effectively ‘bypassing’ the fungal 

decomposition pathway (Kaukonen et al., 2013). This study measured an increase 

in bacteria and enchytraed worms in response to N from added frass in the soil. The 

current work shows defoliation slows C and N cycling, partly by a change in the 

ECM community. These two mechanisms therefore need resolving. A combination 

of measurement of fungal: bacterial ratios with the ECM community composition 

would allow assessment of their relative effects on C and N fluxes A further 

research priority remains to measure the duration of response measured here to 

better understand the balance of C in the wake of these important disturbances.  

 

 Moth outbreaks in this area are known to be limited by minimum over-winter 

temperature, with a temperature of about – 35 °C known to freeze and kill over-

wintering eggs (Tenow & Nilssen, 1990). Increases in temperature and concurrent 
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reductions in the number of days below – 35 °C have been shown to increase the 

range of both E. autumnata and O. brumata (Jepsen et al., 2008). The latter has 

seen particularly large increases in its range as it is more sensitive to cold 

temperatures than E. autumnata. Herbivorous insect distributions and populations 

are known to be particularly responsive to winter and summer temperature increases 

(Bale et al., 2002) and with this in mind, along with the observed past changes in 

moth ranges in relation to warming (Jepsen et al., 2008), it seems likely that this 

kind of disturbance will increase in severity and magnitude in the coming century 

(Bale et al., 2002).   

 

To conclude, a large-scale defoliation event by Operophtera brumata and Epirrita 

autumnata caused a number of cascading effects in subarctic mountain birch 

forests. This work has highlighted that a reduced delivery of autotrophic C to the 

rhizosphere may contribute towards accumulation of mineral N, altering the 

diversity and composition of the ECM community and altering the potential activity 

of organic matter-degrading enzymes. The ECM community is shown to be a key 

link between changes in autotrophic C supply and cycling of C and N in the soil. 

Defoliation events are a feature of many forest ecosystems (particularly in sub-

arctic, boreal and temperate regions), yet little is known of the complex processes 

and cascading interactions that they drive. In an era of rapid environmental changes 

where short-lived and mobile insect species are able to respond rapidly to new 

opportunities for range expansion, the severity of ‘outbreak’ years will likely have 

more profound ecosystem impacts. Further work needs to focus on the interactions 

and potentially non-linear effects of defoliation events to better understand how 
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these important events exert control over ecosystem processes and the C balance of 

these forests
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Chapter 5: Biological environment and litter quality drive fast decomposition in sub-

arctic birch forests in contrast to adjacent heaths  
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Author notes 

The snow fences were established by RDH who kindly allowed TCP to place litter bags 

alongside his own experiments. In addition to this, in collaboration with TCP, RDH 

measured snow depth at transects and at the snow fences. 

 

5.1 Abstract 

Decomposition of litter is one of the key controls over carbon (C) storage in the soil. 

The biochemistry of the litter and the environment in which it takes place are the most 

important factors affecting decomposition rates. Deciduous shrubs and trees are 

predicted to expand rapidly across tundra ecosystem as a result of regional climate 

warming. This change in vegetation represents a change in litter input into tundra soils 

and a change in the environment in which litter decomposes. At a sub-arctic treeline in 

Sweden, a litter transplant experiment between important vegetation communities was 

used to test the importance of litter biochemistry and environment in determining litter 

mass loss. In addition to this,  a snow fence experiment was used in a tundra 

environment to understand the relative importance of snow cover in the decomposition 

of litter across the treeline. B. pubescens and B. nana litter decomposed at faster rates 

than E. nigrum across all environments and all litter types decomposed at faster rates in 
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the forest and shrub environments than the heath. The effect of increased snow on 

decomposition was minimal, leading us to conclude that microbial activity over summer 

in the shrub and forest plots is driving increased mass loss compared to the heath. 

CPMAS 13C NMR (cross-polarization/magic angle spinning 13C nuclear magnetic 

resonance spectroscopy) was used to show that degradation of carbohydrate-C is one of 

the important drivers of mass loss in the forest. This pathway was less prominent in the 

heath which therefore explains why tundra soil typically have high concentrations 

‘labile’ C. This experiment suggests that further expansion of shrubs and trees may 

stimulate the loss of undecomposed decomposition of carbohydrate-C in the tundra. 
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5.2 Introduction 

Climate warming in the Arctic of between 1 – 4 °C since 1960 (Serreze & Francis, 

2006; Serreze & Barry, 2011) has resulted in areas of tundra becoming more 

productive, with some landscapes increasing biomass by 10 g m-2 yr -1 (Epstein et al., 

2012).  In many of these areas experiencing increased productivity, shrubs and trees 

have also been observed to be increasing in cover and height (Elmendorf et al., 2012b) 

as has been predicted by in situ warming experiments (Walker et al., 2006; Elmendorf 

et al., 2012a) and have been expanding onto arctic tundra in response to warming (Tape 

et al., 2006; Myers-Smith et al., 2011). 

 

Earth system models have predicted that increased productivity in arctic ecosystems 

will increase carbon (C) sequestration at whole ecosystem level (Cramer et al., 2001; 

Qian et al., 2010; Todd-Brown et al., 2013). However, empirical data suggest that the 

relationship between productivity and whole-ecosystem C sequestration is not linearly 

positive (Todd-Brown et al., 2013). Indeed, there is a growing body of evidence 

showing that, once soil C densities are taken into account, the most productive 

ecosystems, although high in productivity may store less C than less productive systems 

(Wilmking et al., 2006; Kane & Vogel, 2009; Hartley et al., 2012).  

 

Litter from plants is the primary input of C into the soil (Brovkin et al., 2012; Todd-

Brown et al., 2013), of which, in forests, approximately 52 % comes from the 

aboveground biomass (Freschet et al., 2013). Litter decomposes and contributes 

towards humic substances in the soil which can lead to stabilisation of soil organic 

matter (SOM) (Melillo et al., 1989; Sollins et al., 1996). However all chemical fractions 

of SOM are ultimately degradable and require physical protection to be stored for long 
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periods of time (Dungait et al., 2012). The species identity and functional type of litter 

input is key to determining its rate of decomposition and eventual contribution to SOM 

(Dorrepaal et al., 2005; Cornelissen et al., 2007; Cornwell et al., 2008; Brovkin et al., 

2012); this has been shown to be more important in influencing SOM composition than 

climate controls (Quideau et al., 2001). 

 

Aboveground biomass allocation by arctic plants is low compared to more productive 

biomes due to high allocation of C into roots (Iversen et al. 2014). There is not yet an 

estimate of an arctic-wide above:belowground allocation but there is a large amount of 

variation between species (Iversen et al. 2014). Changes in plant functional type (PFT) 

could change the balance of this ratio. The change in PFTs in arctic communities due to 

shrub expansion (Tape et al., 2006; Myers-Smith et al., 2011) was hypothesised to 

result in a negative feedback to climate change (Cornelissen et al., 2007) as the litter of 

more productive shrub species was shown to decompose at slower rates than other 

arctic species. This is at odds with observations of lower SOM storage under such shrub 

and tree species than adjacent tundra systems (Wilmking et al., 2006; Hartley et al., 

2012), suggesting that identity of the species in these studies is all important in 

determining the C balance of the study systems. Chapter 2 shows that productive Betula 

pubescens forests and shrub dominated plots (Salix and Betula) store significantly lower 

C than adjacent heaths, prompting the hypothesis that decomposition of their litter is 

more rapid than the Empetrum nigrum-dominated heaths.  

 

E. nigrum is widespread across alpine tundras of Fennoscandia and boreal forests across 

Eurasia (Bell & Tallis, 1973; Büntgen et al., 2014) where it is present on heathlands 

from the Netherlands to Svalbard (Buizer et al., 2012). In Fennoscandian tundra heaths 
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it dominates vegetation through forming dense mats, excluding other plant species 

through production of allelopathic, phenolic compounds (Gallet et al., 1999). The 

complex organic litter input in heath ecosystems favours a decomposition pathway 

through ericoid mycorrhizal fungi (ERM) (Read & Perez Moreno, 2003). Nitrogen in 

these systems is bound in organic molecules which are predominantly taken up directly 

by ERM fungi (Tybirk et al., 2000; Read & Perez-Moreno, 2003; Talbot et al. 2008), 

giving their ericaceous hosts a competitive advantage over fungi and roots and 

reinforcing their dominance in the organic-rich soil. The dominance of ericaceous 

shrubs in tundra and boreal forest ecosystems is further reinforced by allelopathic action 

by Empetrum which reduces tree seedling establishment and growth of their 

mycorrhizal symbionts (Nilsson et al. 1993; Nilsson & Wardle 2005).  

 

Decomposition of E. nigrum is very slow due to its high phenolic content (Gallet et al., 

1999) and  high levels of the lipid polymer cutin, which is particularly slow to break 

down (Tegelaar et al., 1989; Rasse et al., 2005) as a result of a well-developed waxy 

cuticle (Bliss, 1962; Hetherington et al., 1984). This retards decomposition and  leads to 

build-up of humic-rich organic horizons in the soil (Tybirk et al., 2000). In contrast, 

deciduous shrubs and trees decompose faster than evergreen species such as E. nigrum 

(Aerts et al., 2006; Cornwell et al., 2008). It has previously been found that high litter 

quality (low carbon: nitrogen ratio) can stimulate decomposition processes (Subke et 

al., 2004; Knorr et al., 2005) in a similar way to addition of inorganic N (Stark et al., 

2014).  

 

For the forest - tundra heath ecotone, it was found that the most important factor 

controlling decomposition of the deciduous Betula pubescens was the environment it 
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was present in, with higher rates of decomposition in Scandinavian birch forests than 

nearby tundra heaths (Sjögersten & Wookey, 2004). This was more important than 

differences in regional climate (in contrast to other studies (Dorrepaal et al., 2005; 

Cornelissen et al., 2007)) and experimental warming. The authors hypothesised that 

litter moisture in the birch forest was important in enhancing decomposition rates; 

however, other abiotic factors, such as deeper snow cover (and therefore warmer winter 

soil and more active microbial community (Grogan & Jonasson, 2006)), can also 

contribute to this. 

 

The biota present in the decomposition pathway are important in influencing the rate of 

decomposition. In boreal forests there is a large biomass of free-living fungi 

concentrated in the litter layer of the soil (Lindahl et al., 2007; Clemmensen et al., 

2013). In the humic and mineral horizons in boreal and sub-arctic forests there is also a 

strong ectomycorrhizal (ECM) fungal community (Lindahl et al., 2007) which has been 

shown to have the capacity to degrade structural C polymers using a white rot 

mechanism (Bödeker et al., 2014). The fungi use this to extract nitrogen (N) from 

organic complexes which in turn enhances decomposition rates (Talbot et al., 2008; 

Lindahl & Tunlid, 2015). These fungi grow and explore the upper horizons of soil at 

faster rates in forest and shrub-dominated soils than in tundra heath systems (Chapter 

2). 

 

ECM and saprotophic fungi have the capacity to degrade a large range of simple and 

complex plant-derived structural C (Hatakka, 1994; Talbot et al., 2008; Rytioja et al., 

2014). It is therefore probable that all the chemical fractions of litter in forest 

ecosystems are decomposed to some extent, especially bearing in mind that all C is 
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considered chemically ‘available’ if the appropriate microbial community is present 

(Dungait et al., 2012). This may not be the case in tundra soils, where strong 

environmental controls, such as low temperature (Robinson, 2001) and dominance of 

ERM fungi with their closed N and C  cycle (Read & Perez-Moreno, 2003), may 

restrict the growth and activity of other fungi.  

 

When the chemical composition of C in forest and tundra soils was measured across a 

climatic gradient, it was consistently found that the tundra had more ‘labile’ fractions of 

carbon (Sjögersten et al., 2003). This is counterintuitive because the input of litter from 

the dominant plant species, Empetrum, has a strong phenolic signature (Tybirk et al., 

2000) yet there was no difference in phenolic compounds in the soil between forest and 

heath, only in compounds related to polysaccharides (Sjögersten et al., 2003).  

Decomposition rates were higher in the forest (Sjögersten & Wookey, 2004). This 

prompts the hypothesis that these high rates of decomposition were due to loss of 

simpler, cellulose and hemi-cellulose-related products (Kögel-Knabner, 2002; Simpson 

& Simpson, 2012) which will then be followed by more complex compounds (Melillo 

et al., 1989). In the tundra, conversely, a different decomposition pathway may be 

present, with C flowing through a more closed ERM-dominated system (Read & Perez-

Moreno, 2003); in which case, lignin-derived compounds would initially be 

decomposed preferentially, and more ‘available’ forms of C would be still present, as 

was observed in the humic layer of heath systems (Sjögersten et al., 2003).  In addition, 

enhanced decomposition of phenolics in the heath, through an ERM pathway, would 

explain why no difference in phenolics between forest and heath has been observed 

previously (Sjögersten et al., 2003).  
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Using a decomposition experiment whereby litter was transplanted between key 

vegetation types at a sub-arctic treeline ecosystem, the aim was to understand the key 

drivers of decomposition rates in this ecosystem. The following hypothesises were 

tested:   

  

1. Litter from the most productive vegetation types (forest and shrub) decomposes at the 

fastest rates, regardless of environment type; 

2. The forest and shrub environments stimulate decomposition, regardless of litter type, 

including increased snow depth; 

3. All fractions of C (simple through to complex) in both litter types are decomposed more 

in forests due to a more diverse decomposer community;  
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5.3 Materials and methods 

 

Sites description 

 

Twelve independent, short (<100 m) transects were established within a permafrost-free 

landscape (c. 2 km2) spanning the sub-arctic/alpine treeline at Nissunsnuohkki (Abisko 

area, Sweden; ca. 68°18’N 18°49’ E, 600 m asl). In this study the terminology of 

Walker (2000) and Kaplan et al. (2003), presented in ACIA (2005) is adopted to 

distinguish tundra plant growth forms and to place the study into circumpolar context. 

The treeline is formed by mountain birch (Betula pubescens Ehrh. ssp czerepanovii 

(Orlova) Hämet Ahti), with an ericaceous understorey, and typically moves through a 

thick layer of shrub vegetation before becoming tundra heath dominated by Empetrum 

nigrum L. ssp hermaphroditum (Hagerup) Böcher and Vaccinium vitis-idaea L. The 

intermediate shrub zone is dominated by Betula nana L. and grey willow (Salix) species 

(specifically, Salix glauca, often accompanied by Salix lanata; other Salix spp., 

including S. hastata and S. lapponum, occur less frequently). This transitional shrub-

dominated vegetation is similar to the ‘low- and high-shrub tundra’ (‘Continuous 

shrubland, 50 cm to 2 m tall, deciduous or evergreen, sometimes with tussock-forming 

graminoids and true mosses, bog mosses, and lichens’) referred to in ACIA (2005), 

although generally not exceeding 1.5 m height and with the only one evergreen shrub 

species, Juniperus communis L., at low abundances. Tundra heath is here similar to the 

‘erect dwarf-shrub tundra’ (‘Continuous shrubland 2 to 50 cm tall, deciduous or 

evergreen, with graminoids, true mosses, and lichens’) of ACIA (2005). Soils in the 

forest are micro-spodosols with a thin O horizon (< 5 cm) underlain by glacial till on a 

bed-rock typically of hard-shale (Sjögersten & Wookey, 2002). Soil pH in the organic 
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horizon is 4.3 ± 0.1 at forest and 4.5 ± 0.1 at heath locations in the Abisko area (Chapter 

2).  

 

Transect lengths ranged from 52 to 97 m (Appendix 1) depending on the length-scale of 

the forest- heath ecotone. Care was taken to select vegetation transitions that were not 

present as a result of strong topographical influence; for example where water and snow 

accumulation due to dips and hollows dominate site conditions, and avoiding steep 

slopes (mean elevation change from heath to forest plots of -2.7 m). Transects were 

selected with a variety of contrasting compass bearings (Appendix 1) to ensure that 

there was no bias in the data due to shading or winter snow drifting. The 12 transects 

were grouped geographically into three blocks of four as shown in Figure 5.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 5.1: Google Earth images showing Abisko Ecotones, S plots are 

located approximately half way along each transect.. 
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Three plots were established along each transect in order to represent best the transition 

in vegetation from heath to forest. These were; tundra heath (H), shrub (S) and forest 

(F) (see Table 5.1 for further site details). H plots were chosen for an open heath 

environment with low B. nana cover and a low canopy height, and with vegetation 

dominated by E. nigrum. S plots were identified as areas dominated by B. nana with 

shrub height characteristically between 40 and 60 cm. F plots were chosen to be in areas 

dominated by B. pubescens, approximately 10 to 15 m inside the forest edge.  

 

Snow fences 

Five replicate 3.5 m wide, 1.5 m high snow fences were erected on tundra heath sites 

between 0.1 and 1 km N of the transect sites. They were erected before winter 2012 and 

2013 (and lowered during the summer to avoid shading the vegetation and influencing 

evapotranspiration), designed to create snow drifts of comparable depth to the typical 

seasonal snow-cover at F and S plots on the transects. To replicate the snow at F plots, 

plots were set up 2 m to the leeward side of the fence, 7 m for the S plots and 20 m for 

the H plots (no extra snow). Snow depths were measured at both snow fence and 

Table 5.1: Vegetation characteristics along transects at Abisko across all 

blocks (means ± 1 SE, n = 12). ‘Canopy height’ refers to the actual vegetation 

canopy for Heath, Shrub-Heath and Shrub communities, and the understorey 

for the Forest Edge and Forest (where mountain birch trees - Betula pubescens 

ssp czerepanovii - comprise the canopy).  

 Plot on transect 

 Heath Shrub Forest 

Distance from Heath (m) n/a 28.3 ± 2.9 67.6 ± 5.9 

Canopy height (cm) 14.7 ± 0.7 32.0 ± 2.4 19.0 ± 1.7 

B. pubescens density (trees m-2)     0.07 ± 0.01 

B. nana cover (%) 21.2 ± 2.7 60.3 ± 4.8 8.0 ± 2.2 

E. nigrum cover (%) 65.4 ± 3.3 66.9 ± 4.7 45.4 ± 4.2 

pH (organic horizon) 4.3 ± 0.1 4.4 ±0 .1 4.5 ± 0.1 
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transect plots, once each between 14/3 and 29/3 in 2013 and between 29/3 and 30/3 in 

2014. At each plot on the natural transects, five measurements were taken within 3 m of 

a central point (which was the accuracy of the GPS unit) at each plot. At the snow 

fences, the position of the plots was estimated based on the known distance from the 

snow fence and one measurement was taken per plot in 2013. In 2014 the exact position 

of the litter bags was marked using a pole so the measurement was more accurate. Snow 

depths in both years are summarised in Figure 5.2. 

 

 

  

 
Figure 5.2: Snow depths measured at transects through heath, shrub and forest 

environments (Filled bars, n = 12) and on the leeward side of snow fences at plots 

designed to replicate snow depths at heath, shrub and forest plots (open bars, n = 

5) in (a) March 2013 and (b) March 2014. Error bars indicate ± 1 SEM.  
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Litter bags 

 

Litter was collected from four different transects at the Abisko study site from 

2/9/2012- 12/9/2012. Freshly fallen Betula pubescens and Betula nana litter was 

collected from the top of the litter layer, taking care to exclude older litter. Empetrum 

nigrum litter was collected by carefully removing senesced leaves from the stem of 

extracted Empetrum shoots. Only recently senesced leaves were taken (light brown 

colour, 2-4 years old according to growth scars). Litter was collected from the ‘home’ 

plots in which each species is dominant, i.e. B. pubescens from F plots, B. nana from S 

plots, E. nigrum from H plots. All litter was brought back to the lab and sorted to 

remove any adhering particles or litter from other species, and then air dried at 40°C for 

72 hours. For each species, 0.5 ± 0.01 g of litter was weighed into 7 x 7 cm polyester 

mesh bags with a 0.3 mm mesh size and sealed using hot melt adhesive. Litter bags 

were placed in the field on 17/9/12. Six bags of each species were placed at every plot 

on all 12 transects. Care was taken to ensure that every bag had good contact with the L 

horizon at each plot. Two corners of each bag were fastened to the ground using 

stainless steel pins and all bags were tied with nylon thread to nearby vegetation to 

prevent disturbance by grazing animals. Bags were also placed in the same manner on 

the leeward side of the snow fences were snow depth was estimated to be equivalent of 

snow collected at H, S and F plots. Retrospective measurements confirm that these were 

reasonable estimates (Fig. 5.2). Ten other samples of each species were oven dried at 

60°C for 72 hours to calculate residual moisture of the air dried samples and the starting 

dry weight of the samples was corrected. 
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On 13/6/13, 24/7/13, 16/9/13 and 20/6/2014 one litter bag of each species at each plot at 

both transect and snow fence sites was chosen randomly to be extracted from the field 

and oven dried at 60°C for 72 hours. Once ingrown vegetation was removed, the 

remaining litter was extracted and weighed. From this dry weight and the residual 

moisture-adjusted air dried original mass, percentage mass remaining was calculated.  

  

Solid state CPMAS 13C NMR 

 

Five randomly selected samples of each species/plot combination of B. pubescens and 

E. nigrum and H and F sites from the final harvest on 20/6/2014 (from a pool of 12 

samples per combination) were used for solid state 13C nuclear magnetic resonance 

CPMAS 13C NMR (cross-polarization/magic angle spinning 13C nuclear magnetic 

resonance spectroscopy) and elemental (C and N) analysis. CPMAS 13C NMR spectra 

were obtained using a Bruker Avance 300 spectrometer (Bruker Analytik GmbH, 

Rheinstetten, Germany). For each sample 2500 scans were obtained from 

approximately 0.25 g of ball-milled leaf material that was packed into a cylindrical 

zirconia rotor  with approximately 0.02 g Tetrakis (trimethylsilyl) silane (TKS) packed 

on top and sealed with a Bruker Kel-F drive cap (Bruker Analytik GmbH, Rheinstetten, 

Germany). The scanning parameters were as follows: frequency of 200 MHz, contact 

time of 1000 ms, relaxation time of 1.5 s, spinning speed of 5500 Hz and line 

broadening of 50 Hz. Chemical shift values were obtained compared to TKS. Peak 

areas of the following chemical shift areas were measured manually: 0-47 ppm (alkyl), 

47-59 ppm (N-alkyl and methoxl-C), 59-92 ppm (O-alkyl), 92- 112 ppm (acetal), 112-

139 ppm (aromatic), 139-162 ppm (phenolic) and 162-220 ppm (carboxyl) according to 
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Sjögersten et al. (2003). Note that the N-alkyl region may be over-represented by a 

contribution from methoxyl-C (Sjögersten et al., 2003).  

 

After analysis by CPMAS 13C NMR, samples were separated from TKS, ensuring no 

contamination of the sample, and were analysed for carbon and nitrogen content after 

combustion in a Vario EL Cube elemental analyser (Elementar, Hanau, Germany). The 

carbon content data were then applied to the actual mass of the litter remaining and the 

spectra to calculate the mass of carbon in each region of the spectrum and the mass 

compared to the replicated (n =3), undecomposed control samples of each species.   

 

5.3.5 Statistical analysis 

 

Final percentage mass remaining data (harvest four, 642 days after placement in the 

field) were analysed using two-way ANOVAs, testing the effect of species (E. nigrum, 

B. nana or B. pubescens) and environment (heath, shrub or forest). Data were arcsin 

square-root transformed to meet the assumptions of the parametric analysis. The same 

analysis was carried out for the effect of different snow depths on percentage mass 

remaining of litter but with different snow depths as the ‘environment’ factor.  

Mass of different C classes after 642 days was analysed using two-way ANOVAs 

testing the effect of species (E. nigrum or B. pubescens) and environment (heath or 

forest). Each C class was considered separately and differences between combinations 

of environment and litter species were identified using a Tukey’s Honestly Significant 

Differences (HSD) test. All analyses were carried out using R studio V 0.98.501.       
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5.4 Results 

 

Litter mass loss 

 

Species identity and decomposition environment both had highly significant effects on 

percentage mass remaining of litter on the final harvest (642 days) on the transects from 

H plots, through S plots to F plots, according to a two way ANOVA (Fig. 5.3, Table 

5.2). Species identity had the strongest effect (F = 109.2, P < 0.001) on decomposition, 

regardless of the environment; Betula pubescens consistently had the lowest mass 

remaining (Fig. 5.3a), followed by Betula nana (Fig. 5.3b) then Empetrum nigrum (Fig. 

5.3c). The decomposition environment also had a highly significant effect on 

percentage mass remaining of litter (F = 38.8, P < 0.001). Mass remaining at H plots 

was significantly higher than at S plots (P < 0.05) which, in their turn, were 

significantly higher than F plots, with the least mass remaining (P < 0.05). There was 

also a significant interaction between species of litter and decomposition environment 

(P = 0.002), driven by a disproportionately low mass remaining of B. pubescens in its 

‘home’ environment, the F plots (Fig 5.3a). 

 

At the snow fence plots, there was again a significant effect of species identity on 

percentage mass remaining of litter according to a two-way ANOVA on the final 

harvest at 642 days (F = 109.2, P < 0.001, Fig. 5.4, Table 5.2). Again, B. pubescens had 

the lowest mass remaining at all snow treatments (Fig. 5.4a), followed by B. nana (Fig. 

5.4b) then E. nigrum (Fig. 5.4c). At the final harvest, however, there was no effect of 

decomposition environment (level of winter snow cover) on decomposition (P = 0.2, 
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Table 2, Fig. 5.4) and no interaction present between species and environment (P = 0.9, 

Table 5.2). 
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Figure 5.3: Mass remaining of litter over time of three different species: (a) Empetrum nigrum, (b) Betula nana, (c) Betula pubescens 

ssp czerepanovii in three different environments (heath, shrub and forest). Circled points indicate the ‘home’ environment for each 

species. Error bars represent ± 1 SEM (n = 12).  
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Fig. 5.4: Mass remaining of litter over time of three different species: (a) Empetrum nigrum, (b) Betula nana, (c) Betula pubescens ssp 

czerepanovii under three different snow depths simulating snow accumulation found at different vegetation types: Heath (control), + 

Snow (Shrub) and ++ Snow (Forest). Error bars represent ± 1 SEM (n = 5).  
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CPMAS 13C NMR results 

For the CPMAS 13C NMR analyses we found clear peaks at ~ 30-32 ppm (alkyls), 

shoulder regions or peaks at ~ 56 ppm (N-alkyls), clear peaks at ~ 72 ppm (O- 

alkyls), peaks at 104-105 ppm (acetals), peaks at 115 and 130 ppm (aromatics), 

peaks at 145 and 153 ppm (phenolics) and a peak at 175 ppm (carboxyls), in all 

samples (Fig. 5.5). These are all in general agreement with Sjögersten et al. (2003).   

  

 
Figure. 5.5: Examples of solid state CPMAS 13C NMR spectra of two litter types in two 

different environments (including undecomposed control samples). See Table 3 for 

correspdence of peaks to SOM constituents  
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CPMAS 13C NMR spectra were divided into regions as set out by Sjögersten et al. 

(2003) and averaged for litter of B. pubescens and E. nigrum  in forest and heath 

environments (n =5 each) and undecomposed controls (n = 3). Results show clear 

differences between litter species and environment treatments (Table 5.3); the 

clearest difference is that the spectra from B. pubescens are dominated by O-alkyls 

(48.8 ± 0.6 % for control) and E. nigrum is dominated by Alkyls (45.5 ± 1.1 % for 

control). This results in substantially different Alkyl:O-Alkyl ratios, which carry 

through to samples that have been decomposing in the field. Therefore in this case 

Alkyl:O-Alkyl ratios of samples from the field cannot be compared between 

species, only between environments. Decomposition in the forest plots increases the 

ratio markedly in both species compared to the controls, and litter that has 

decomposed at heath plots. The reason for this is reduction in O alkyls at the forest 

plots of both B. pubescens (down to 40.7 ± 0.9 %) and E. nigrum (down to 22.1 ± 

1.2 %) and increases in signal from Alkyls with decomposition at both sites (Table 

5.3). There were small changes in signals from N- alkyls, acetals, aromatics, 

phenolics and carboxyls but these were minor in comparison with changes in O- 

alkyls and Alkyls (Table 5.3).  

 

C:N ratios of E. nigrum (control: 138.3 ± 3) were more than double those of B. 

pubescens (control: 60.8 ± 4.3) which both decreased substantially after 

decomposing in the forest environment (74.6 ± 4.5 in E. nigrum, 31.5 ± 1.9 in B. 

pubescens). This was far lower than samples decomposing in the heath environment 

for both E. nigrum and B. pubescens (111.6 ± 5.0 and 49.7 ± 0.9 respectively, 

Table. 5.3). 
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In the majority of functional C classes, the forest environment was associated with 

lower mass remaining compared to the heath environment, and mass loss/remaining 

was strongly influenced by litter species (Fig. 5.6, Table 5.4). 

Mass remaining of the alkyl functional C class was most significantly related to 

species (P < 0.001) where initial input of alkyl mass was far higher in Empetrum 

(0.12 g) than Betula (0.037 g) (Fig. 5.6). The forest environment was also highly 

significant (P = 0.0015) in reducing alkyl mass compared to heath environment in 

Empetrum (0.12 g in the heath, 0.10 g in the forest) and in Betula (0.033 g in the 

heath, 0.026 g in the forest). 

 

Mass of N-alkyls in the decomposed samples was slightly, but significantly higher 

in Empetrum compared with Betula (P = 0.026). There was a significant effect (P < 

0.001) of decomposition environment on mass of N-alkyls with mass of Betula 

Table 5.3: Percentage contributions of functional C classes and C to N ratios of litter samples of 

Betula pubescens ssp czerepanovii and Empetrum nigrum that were decomposing in forest or 

heath environments, or un-decomposed control samples. Error values signify ± 1 SEM (n = 5 

for decomposed field samples, n = 3 for controls).  

  Species 
 

B. pubescens ssp czerepanovii 
 

E. nigrum 

  Plot  Control Forest Heath  Control Forest Heath 

Alkyls (%) 0-47 ppm   16.8 ± 0.1 23.8 ± 1.1 20.4 ± 0.4  45.5 ± 1.1 52.5 ± 1.7 53.0 ± 1.1 

N-Alkyls (%) 47-59 ppm   4.9 ± 0.3 6.3 ± 0.1 6.2 ± 0.1  4.1 ± 0.2 4.6 ± 0.2 4.8 ± 0.2 

O-Alkyls (%) 59-92 ppm   48.8 ± 0.6 40.7 ± 0.9 46.7 ± 0.6  27.7 ± 1.2 22.1 ± 1.2 25.1 ± 0.6 

Acetals (%) 92-112 ppm  12.6 ± 0.5 10.5 ± 0.7 12.1 ± 0.2  6.9 ± 0.2 5.4 ± 0.5 5.7 ± 0.1 

Aromatics (%) 112-139 ppm  8.0 ± 0.4 7.0 ± 0.4 6.6 ± 0.3  7.5 ± 0.1 7.0 ± 0.2 6.1 ± 0.2 

Phenolics (%) 139-162 ppm  4.6 ± 0.2 4.5 ± 0.4 3.4 ± 0.1  4.7 ± 0.4 4.3 ± 0.6 2.9 ± 0.2 

Carboxyls (%) 162-220 ppm  4.3 ± 0.2 7.2 ± 1.0 4.7 ± 0.2  3.7 ± 0.1 4.2 ± 0.5 2.5 ± 0.3 

Alkyl:O Alkyl  

ratio* 
  

 
0.25 ± 0.0 0.42 ± 0.0 0.31 ± 0.0 

 
1.18 ± 0.1 1.66 ± 0.1 1.49 ± 0.1 

C:N    60.8 ± 4.3 31.5 ± 1.9 49.7 ± 0.9  138.3 ± 3.0 74.6 ± 4.5 111.6 ± 5.0 
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lower in forests (0.0071 g) than in heaths (0.01 g); there was, however, no 

significant difference between mass from the Empetrum litter between forest and 

heath environments. 

 

 

 

  

 
Figure 5.6: Mass of functional C classes of Betula pubescens ssp czerepanovii and Empetrum 

nigrum in forest and heath environments after 21 months of decomposition compared with 

undecomposed control samples. Different letters (only decomposed samples) are applied and 

show significant differences between means (P < 0.05) from Tukey HSD post-hoc tests. Error 

bars represent ± 1 SEM (controls: n = 3, decomposed samples: n = 5).  
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For mass of O-alkyls, there were important effects of litter species (P = 0.0011) and 

the decomposition environment (P < 0.001). O-alkyl mass was highest in Betula 

litter in the heath (0.075 g), which was significantly higher than in the forest (0.046 

g). The same was true for Empetrum litter, where mass in the heath (0.042 g) was 

higher than in the forest (0.054 g); this difference was, however, less pronounced, 

which resulted in a significant (P = 0.018) interaction between species and 

environment (Fig. 5.6, Table 5.4).   

 

Table 5.4: Test statistics for two way ANOVAs analysing the effect on mass input 

of different functional C classes by different species of litter (Betula pubescens ssp 

czerepanovii or Empetrum nigrum) in different decomposition environments (Forest 

or Heath).  

 

 

 

 

 

 

 

 

 

 

 

  

 

Group Factor d.f F P 

Alkyls Species 1,16 751.3 < 0.001 

 Environment 1,16 14.6 0.0015 

 Species * Environment 1,16 2.4 0.14 

N-Alkyls Species 1,16 6.0 0.026 

 Environment 1,16 23.7 < 0.001 

 Species * Environment 1,16 1.3 0.28 

O-Alkyls Species 1,16 15.5 0.0011 

 Environment 1,16 45.4 < 0.001 

 Species * Environment 1,16 6.9 0.018 

Acetals Species 1,16 19.3 < 0.001 

 Environment 1,16 21.9 < 0.001 

 Species * Environment 1,16 6.7 0.02 

Aromatics Species 1,16 33.0 < 0.001 

 Environment 1,16 3.4 0.082 

 Species * Environment 1,16 3.4 0.083 

Phenolics Species 1,16 7.5 0.015 

 Environment 1,16 1.2 0.29 

 Species * Environment 1,16 2.9 0.11 

Carboxyls Species 1,16 2.5 0.13 

 Environment 1,16 4.4 0.051 

 Species * Environment 1,16 2.8 0.11 
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There was a highly significant effect of species (P < 0.001) and environment (P < 

0.001) on the mass of acetal groups after decomposition. Betula litter in the forest 

(0.012 g) had significantly lower acetal-containing compounds than in the heath 

(0.020 g) which was also higher than Empetrum litter in the heath (0.012 g) and in 

the forest (0.010 g); there was no difference between the latter. As a result there was 

a significant interaction between species and environment (P = 0.02) as Betula litter 

responded more to the forest environment than the Empetrum litter (Fig. 5.6). 

 

Mass input of aromatic functional C classes was higher in Empetrum litter (P < 

0.001) with a higher mass in both environments (Heath: 0.013 g; Forest: 0.013 g) 

than Betula in the forest (0.008 g) and heath (0.011 g). As with aromatic mass input, 

species had a significant (P = 0.015) effect on mass input of phenolic functional C 

classes, with mass of Empetrum in the heath (0.008 g) the highest measured. There 

was no effect of species or environment on mass of carboxyl functional C classes.  
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Figure 5.7: Functional C classes of Betula pubescens ssp czerepanovii and 

Empetrum nigrum in forest and heath environments expressed as percentage (%) 

lost compared to initial amounts prior to 21 months of decomposition. Different 

letters are applied and show significant differences between means (P < 0.05) from 

Tukey HSD post-hoc tests. Error bars represent ± 1 SEM (n = 5).  
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Of all the C fractions, O-alkyls showed the largest difference in percentage mass 

lost compared to initial amounts. Large differences are present between sites where 

there were large losses in the forest compared with the heath and between species 

where Betula lost more than Empertum (Fig 5.6, Table 5.5). Acetals showed a very 

similar pattern of percentage mass loss with the largest loss was from Betula litter in 

the forest. There were also important percentage mass loss effects in Alkyls and N-

alkyls where there was consistently higher loss in the forest plots and more loss of C 

from Betula litter than Empetrum  litter (Fig 5.6, Table 5.5). There was significantly 

more loss of aromatics from Betula litter in the forest than Empetrum  in either of 

the ecosystems and no definite patterns with Phenolics and Carboxyls.  
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Table 5.5: Test statistics for two way ANOVAs analysing the effect on percentage 

mass loss of different functional C classes by different species of litter (Betula 

pubescens ssp czerepanovii or Empetrum nigrum) in different decomposition 

environments (Forest or Heath).  

 

 

 

 

 

 

 

A 

 

 

 

 

  

 

Group Factor d.f F P 

Alkyls Species 1,16 9.8 0.006 

 Environment 1,16 11.8 0.003 

 Species * Environment 1,16 2.1 0.16 

N-Alkyls Species 1,16 8.9 0.009 

 Environment 1,16 19.7 < 0.001 

 Species * Environment 1,16 0.13 0.72 

O-Alkyls Species 1,16 15.5 0.001 

 Environment 1,16 50.5 < 0.001 

 Species * Environment 1,16 1.5 0.25 

Acetals Species 1,16 3.6 0.08 

 Environment 1,16 21.7 < 0.001 

 Species * Environment 1,16 3.0 0.7 

Aromatics Species 1,16 19.1 < 0.001 

 Environment 1,16 3.5 0.082 

 Species * Environment 1,16 3.5 0.082 

Phenolics Species 1,16 1.6 0.22 

 Environment 1,16 1.1 0.32 

 Species * Environment 1,16 2.6 0.12 

Carboxyls Species 1,16 0.6 0.44 

 Environment 1,16 4.4 0.051 

 Species * Environment 1,16 2.7 0.11 
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5.5 Discussion 

This decomposition experiment has highlighted a number of mechanisms at work 

which are fundamental in determining C storage and cycling in forest, shrub and 

heath ecosystems which can go a significant way in explaining why so little soil C 

is stored in sub-arctic birch forests (Chapter 2). Decomposition of dominant forest 

and shrub species’ litter was higher than a dominant heath species regardless of 

decomposition environment and decomposition of all species was higher in forest 

and shrub environments than in the tundra heath.  

 

This comparison of the most important litter types in their typical decomposition 

environments across the forest-heath ecotone reveals how large the difference in 

decomposition rates in these two systems is. Previous work had shown that 

decomposition rates were higher in the forest than tundra heaths (Sjögersten & 

Wookey, 2004), but this was only using Betula pubescens litter which would not 

typically be deposited (in substantial amounts) in tundra heath systems. After 21 

months of decomposition, Empetrum nigrum, one of the dominant species on 

northern Fennoscandian heathlands, lost on average ~17 % of its mass when in the 

heath environment (Fig. 5.3). This is in contrast to the loss of B. pubescens, in the 

forest environment, which was 45 %. There are clearly large differences in 

decomposition rates between these important species, which will contribute 

significantly to C accumulation in their respective environments. Previous studies 

have shown that deciduous litter decomposes faster than evergreen (Cornwell et al., 

2008) and that decomposition occurs at a faster rate in forests than heaths 

(Sjögersten & Wookey, 2004) but to our knowledge the two factors have not been 

combined to represent better the decomposition rates in these two ecosystems.  
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The decomposition rates of Betula nana were examined. This is a shrub species 

which has been observed to be expanding its range over arctic tundra in response to 

climate change (Tape et al., 2006; Myers-Smith et al., 2011). This litter also has 

significantly higher decomposition rates than Empetrum, which could contribute 

towards observations of high C flux in these shrub systems (Chapter 2) and low 

standing litter stocks in plots that have undergone increases in shrub cover (Zamin 

et al., 2014). However, B. nana decomposed at slower rates than B. pubescens. This 

could be due to a number of factors including specific leaf area, N content and 

structural C compounds although there is no data presented here to test this. Based 

on species specific decomposition rates, what are our data suggest is that expansion 

of B. pubescens forests will increase decomposition in tundra more than expansion 

of B. nana but both will increase C cycling rates through litter input.     

 

Decomposition of all litter types was enhanced in forest and shrub environments 

compared with the ericaceous heath plots. This has previously been shown with B. 

pubescens litter (Sjögersten & Wookey, 2004) but the finding that the 

decomposition of ericaceous plants from a tundra environment can be stimulated in 

a forest environment is novel. Forest environments have a large community of 

saprotrophic fungi in the litter layer (Lindahl et al., 2007) and below that, an ECM 

community, of which some have the same white and brown-rot abilities (Bödeker et 

al., 2014; Lindahl & Tunlid, 2015). Although a decomposer community exists in 

tundra ecosystems (Robinson, 2002), this evidence clearly shows that it is not as 

effective at degrading any of the litter types as the community present in the forest.  
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The abiotic environment in which decomposition occurs in forests contrasts with 

tundra heath, especially in the winter, when deeper snowpacks accumulate in 

treeline forests, insulating the soil and creating both a warmer and more stable 

decomposition environment (Sturm et al., 2005) with faster C cycling rates (Grogan 

& Jonasson, 2006). When snow was experimentally increased for two winters over 

litter on tundra soils, no increase in decomposition of any litter type was detected. 

The fastest-decomposing species, B. pubescens, saw initial increases in 

decomposition after the first winter, when snow was manipulated to the depth found 

in forest systems. This effect was lost, however, after only 41 days of 

decomposition during the growing season. These results are consistent with a 

similar decomposition experiment using a common substrate on Alaskan tundra 

which saw no increase in decomposition with increases in snow (DeMarco et al., 

2014). Another experiment in the same landscape as the present study, showed that 

decomposition was unaffected by a loss of snow under an extreme winter warming 

experiment (Bokhorst et al., 2010). It can therefore conclude that, although snow-

mediated winter processes are important for microbial community turnover 

(Schimel et al., 2004) and contribute significantly to the C budget of tundra 

ecosystems (Fahnestock et al., 1999; Oechel et al., 2014), they may not have an 

important direct  influence on decomposition of recently senesced litter. 

 

Having ruled-out snow depth alone as an important control over litter 

decomposition at our sites, it is clear that other environmental factors associated 

with forest and shrub systems are more important in determining microbial growth 

and therefore decomposition rates (for a review see Rousk & Bååth (2011)). 

Temperature (Pietikainen et al., 2005) and pH (Rousk & Bååth, 2011) are important 
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in determining fungal and bacterial growth rates, however both have been shown to 

be remarkably similar in the summer across the study ecotones (Table 1). This 

leaves differences in chemical environment between forest and heath as the key 

control of decomposition. In a controlled lab study it was found that fungal growth 

is stimulated by cellulose addition to soil (Meidute et al., 2008) and this effect was 

amplified further when nitrogen was also added, which is consistent with field 

studies (Subke et al., 2004; Knorr et al., 2005). This may explain why there was a 

disproportionate decrease in mass of B. pubescens in the forest plots similar to 

‘home-field’ advantage; this is where litter of dominant species decomposes fastest 

in their own environment due to a specifically-adapted microbial community (Ayres 

et al., 2009).  

 

Microbial ‘home-field’ advantage may be at work at our plots; however, there could 

be another mechanism is at play. B. pubescens produces litter rich in 

polysaccharides such as cellulose, which stimulates saprotrophic fungal growth and 

positively feeds back to further increase decomposition rates. In addition to this, B. 

pubescens produces litter which has far lower C:N than Empetrum, and this can also 

stimulate decomposition (Buckeridge et al., 2010; DeMarco et al., 2014; Stark et 

al., 2014). This mechanism could be of particular importance in some areas, with 

further expansion of birch forest (Tommervik et al., 2009; Rundqvist et al., 2011; 

Hofgaard et al., 2013). Our data show that colonization of tundra by forest could 

stimulate decomposition not only of B. pubescens litter but also litter of the 

dominant heath species. This, together with processes in the rhizosphere such as 

positive priming (Hartley et al., 2012) and colonisation with ECM fungi (Chapter 2) 

could  lead to a net loss of C from the system. 
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Using 13C NMR, the hypothesis was tested that all fractions of C in both B. 

pubescens and E. nigrum would be more decomposed in the forest than the heath 

because all fractions of C should be available to decomposition if a suitable 

decomposer community is present (Dungait et al., 2012). This is partially supported. 

There was significantly higher loss in the forest of compounds associated with 

carbohydrates (O-alkyl and acetal regions) and aliphatic C associated with fatty 

acids in cuticle compounds such as cutin (alkyls) (Kögel-Knabner, 1997; Sjögersten 

et al., 2003; Simpson & Simpson, 2012). Together, these made up the majority of 

litter mass in both species and therefore their decomposition was the main driver of 

litter mass loss. We was, however, no difference between environment in the 

decomposition of fractions of C associated with lignin (aromatic and phenolic 

groups ). There are two reasonable explanations for this: Firstly, that loss of these 

compounds takes place later in the decomposition process and our study was not of 

sufficient duration to capture this. This would be consistent with traditional theories 

of litter decomposition and accumulation of humus in soil (Melillo et al., 1989). On 

the other hand, although there are no differences in lignin-derived compounds 

between sites, they have lost mass compared to the undecomposed controls. This 

may be due to two separate processes; (i) in the forest the saprotrophic community 

of fungi in the litter (Lindahl et al., 2007) have all the enzymatic capabilities for 

white-rot decay of lignin (Hatakka, 1994), while (ii) in the heath, the primary 

decomposition pathway is through ericoid mycorrhizal (ERM) fungi associated with 

their dominant ericaceous hosts. ERM fungi have a greater capacity to degrade 

organic complexes than ECM fungi (Bending & Read, 1997; Read & Perez-

Moreno, 2003) and their ability to take up organic N allows them to create a closed 
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N cycle to out-compete other fungal species (Read & Perez-Moreno, 2003). In this 

way, aromatic compounds may be decomposed at equal rates in both heath and 

forest, as was observed. 

 

Interestingly, there were more lignin-derived compounds in E. nigrum litter than B. 

pubescens after 21 months of decomposition. Even though it only makes up small 

proportions of the litter recovered, these compounds will persist longer in the 

environment than others and therefore likely contribute towards SOM build-up 

observed at these sites (Hartley et al., 2012). It was hypothesised that an expansion 

of deciduous shrubs and trees into arctic tundra would result in a negative feedback 

to climate change due to an increase in these slowly-decomposing compounds 

through litter fall (Cornelissen et al., 2007). This could be true if the species being 

replaced are graminoid or forb species (Cornelissen et al., 2007). However, if the 

tundra is dominated by E. nigrum, as is the case for much of Fennoscandia (Tybirk 

et al., 2000), along with many other sites across the arctic circumpolar distribution 

(Walker et al., 2002; Büntgen et al., 2014) where northern limits of forest are 

interspersed with tundra (Payette et al., 2001), this feedback is unlikely; in fact, the 

opposite may be true, with an acceleration of C cycling.  

 

Previous measurements of the chemical fractions of C in the forest and heath at 

Abisko have shown a dominance of aliphatic compounds (alkyls) in the heath 

(similar levels have also been observed in another Fennoscandian tundra; (Väisänen 

et al., Personal Communication)), but less so in the forest (Sjögersten et al., 2003). 

It was shown that this is due to high concentrations of alkyls in E. nigrum with a 

well-developed waxy cuticle made up of cutin, a lipid polymer (Bliss, 1962; 
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Hetherington et al., 1984), which decomposes slowly (Tegelaar et al., 1989; Rasse 

et al., 2005). This could therefore be a major fraction of stored C in tundra soils. 

Around a third of the alkyl input in B.pubescens litter, which corroborates with 

amounts observed in the soil (Sjögersten et al., 2003). A significant proportion of 

alkyls observed in forest soils will not be directly due to the chemistry of the litter, 

rather due to the faster decomposition process; as O-alkyl-containing structures 

such as polysaccharides are decomposed, alkyl structures increase in their 

concentration as products of the decomposer community, or transformation of the 

organic compounds (Baldock et al., 1997; Sjögersten et al., 2003). This can be seen 

in both species; the alkyl: O-alkyl ratio is far higher in the forest than the heath, and 

this is another strong indicator of fast C cycling in the forest, resulting in low 

storage in these systems (Hartley et al., 2012) in spite of relatively high primary 

productivity. 

 

The decomposition environment, not the species of litter, was found to be the most 

important factor controlling O-alkyl input into the soil after 21 months of 

decomposition. This group of C, which makes up a core of plant structural 

compounds such as cellulose and hemicellulose (Kögel-Knabner, 2002; Simpson & 

Simpson, 2012; Rytioja et al., 2014), was significantly more decomposed in the 

forest than the heath regardless of the species of litter. In the heath, with a 

hypothesised contrasting decomposer community, the polysaccharide constituent of 

litter has decomposed at a far slower rate. Labile C input by B. pubescens litter, 

together with an environment and microbial community conducive to cellulose 

decomposition, results in rapid decomposition of these compounds in the forest. 
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This gives a very good explanation as to why such high rates of C cycling in these 

deciduous stands of vegetation are observed (Chapter 2). 

 

It was observed that in the organic matter of tundra heath plots similar to the present 

study there were consistently higher O-alkyl and acetal-related compounds than in 

near-by birch forests (Sjögersten et al., 2003). Similarly high amounts of labile 

carbohydrate-derived compounds have been observed in a Norwegian heath 

(Väisänen et al., Personal Communication). Tundra soils in Siberia (Uhlirova et al., 

2007) and Alaska (Dai et al., 2002) have also been characterised as carbohydrate-

rich and chemically accessible, should a suitable microbial community be present. 

The results from this study contribute towards our understanding of why these 

observations have been made when it had been expected that heaths would have had 

a more recalcitrant C signature. It is evident that the slow degradation of cellulose-

related carbohydrates in the heath is causing this group that is traditionally 

considered to be easily accessible to decomposer communities to be left intact. This 

highlights that much of the large store of C in the Arctic (Tarnocai et al., 2009) may 

be in forms relatively accessible to soil microbes, with a high potential to be 

metabolised rapidly. 

 

The current limited decomposition of carbohydrates in the heath is significant for 

their future C balance in the context of the expansion of forests in some areas of the 

Sub-arctic (Tommervik et al., 2009; Rundqvist et al., 2011; Hofgaard et al., 2013) 

and shrubs in large areas of the arctic tundra (Tape et al., 2006; Myers-Smith et al., 

2011). If tundra heath soils, rich in undecomposed, labile forms of C (Sjögersten et 

al., 2003), are colonised by forest, with its associated fungal community (including 
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ECMs), there will be a rapid metabolism of this C and a significant part of the 

stored C will be released to the atmosphere. This could lead to a positive feedback 

mechanism, contributing towards further warming of the Arctic and further shrub 

expansion. 

 

In conclusion, it was shown, using a large-scale decomposition experiment 

involving transplants of dominant litter types across the forest-heath ecotone, that 

cycling of litter is extremely fast in the forest. This is due to a carbohydrate-rich 

input of litter from the birch canopy and the presence of a decomposer community 

that can metabolise this relatively labile source of C. An interaction between these 

two factors causes disproportionately higher decomposition rates in the forest 

compared to the tundra environment. Using a snow fence experiment on tundra soils 

it was shown that the effect of increased snow in the forest compared to the heath 

alone is minimal and that the effect of environment on decomposition rates in the 

forest is mostly due to microbial processes over summer. Reduced decomposition of 

polysaccharide-containing compounds in the heath explains why other studies have 

observed them to be rich in O-alkyl fractions of C. This prompts the prediction that 

this build-up of microbially accessible C will be vulnerable to decomposition should 

more productive deciduous species further expand onto the tundra, resulting 

potentially in a net emission of CO2 to the atmosphere. 
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Chapter 6: General discussion and conclusions 

 

6.1 Introduction: Climate, vegetation and soil carbon 

 

Ecosystems in the Arctic and Sub-Arctic are experiencing rapid changes (Post et al., 

2009) due to regional climate warming of greater magnitude than the rest of the 

Earth (Serreze & Barry, 2011). One important change has been the expansion of 

shrub species (Myers-Smith et al., 2011) which has been contributing towards a 

greening trend as northern latitudes become more productive (Epstein et al., 2012). 

In addition to this, some treelines have been observed to move north, especially in 

the sub-Arctic (Harsch et al., 2009). This change in vegetation dominance may have 

wide-reaching impacts if it interacts with the large stocks of carbon (C) stored in 

arctic soils (Tarnocai et al., 2009).  

 

The research contributing to this thesis demonstrates, using space-for-time 

transitions across treeline ecosystems, that expansion of shrubs and trees onto 

tundra may lead of a net loss of carbon (C), despite high productivity.  It joins a 

growing body of work from northern latitudes that shows that more productive 

vegetation may store less C (Wilmking et al., 2006; Kane & Vogel, 2009; Hartley et 

al., 2012). Using field-scale experiments, however, together with process 

measurements, detailed soil organic matter characterisation, and fungal community 

analysis, it provides an improved mechanistic understanding of the controls of soil 

C dynamics and stocks. This gives us an understanding of their likely fate in the 

future, in forest and shrub systems near the arctic treeline. 
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6.3 Sampling design strengths 

 

The transects approach across the forest-tundra ecotone puts a focus on differences 

in vegetation and their effects on soil processes, with the replication across 

numerous ecotones enabling a scaling of the dataset to the landscape scale (~ 2 

km2). This approach took into account noise in the data related to geographical 

variation in soil properties but retained the vegetation differences across 12 

independent transects. 

 

The space-for-time design of this work was critical because it under-pinned the 

sampling design in each of the chapters with the exception of chapter four. The 

transitions in vegetation over relatively short distances (< 100 m) provide controls 

for a number of co-variables, which can confound a more simplistic comparison of 

vegetation communities located further apart. Soil formation is dependent on five 

key factors: time to develop, parent material, topography of the land, regional or 

micro-climate, and the organisms present (Jenny, 1941). With these small-scale 

transitions in vegetation, one can be reasonably confident that bedrock and climate 

were similar between vegetation types across each ecotone. Organic-horizon pH 

across transects was found to be remarkably similar. This could suggest that the 

influence of the bedrock and glacial till was similar. Mineral soil pH, although not 

measured in this thesis, could have important influences on decomposition and soil 

processes. Low pH favours high fungal: bacterial ratios (Rousk et al., 2009) and 

slows soil respiration rates (Andersson et al., 2000). Therefore, more focus needs to 

be applied to the relative effect of mineral soil on pH along the transects compared 
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to the effect of vegetation on carbon cycling (e.g. acidification in heaths via 

ericaceous litter input (Tybirk et al., 2000). 

 

Transects were chosen to have no clear topographical contrasts between plots (the 

mean change in altitude from heath to forests was -2.7 m (Appendix 1)). With all 

the other soil forming factors considered (Jenny, 1941), it is reasonable to conclude 

that differences that were observed in soil C storage and cycling are principally a 

result of differences in vegetation and their associated microbial community. 

 

6.3 Evidence for hypothesised differences in plan-soil interactions along tree-line 

ecotones 

 

This body of work was set out to test specific hypotheses relation to the effect of 

different plant function types and ecosystem types on belowground processes and 

ultimately soil carbon storage. These are set out in Figure 6.1, as they were set out 

in the introduction (Fig. 1.5). The transition from heath to forest, through a thick 

shrub layer represented an increase in vegetation productivity as well as a shift in 

plant functional types, which are predicted and already observed with climate 

change (Myers-Smith et al. 2011). The overall and most important prediction, in 

contrast with predictions of earth system models (e.g. Todd-Brown et al. 2013) was 

that as vegetation increases in biomass along the transect, SOC storage would 

decrease as a result of fast C cycling. Strong evidence was found to support this 

notion in chapter 2 where a study of SOC stocks along the transition was found to 

rapidly decrease from heath to shrub to forest ecosystems. Low SOC storage in 
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more productive vegetation types coincided with rapid respiration rates, which 

further supported this hypothesis. 

 

The graphics in Figure 6.1 go on to hypothesise that the increased the co-increases 

in ectomycorrhizal fungi (ECM) are important in the stimulation of decomposition 

and therefore low SOC storage in shrub and forest ecosystems. Two of lines of 

evidence support this. Firstly, a study of ECM hyphal production showed that 

ECMs growth was associated with the areas in which SOC storage was lowest and 

respiration rates highest. This therefore suggests that they are implicit in the fast 

turnover and low storage of SOC in sub-arctic forests and shrub tundra. The second 

line of evidence is that when trees were defoliated, therefore reducing C supply to 

ECMs, there was an observed reduction in respiration rates. This implies, not only 

that recently assimilated photosynthate is involved in the stimulation of respitation 

rates (Högberg et al., 2001; Hartley et al. 2012) but also mycorrhizal fungi are 

important conduits for the stimulation of decomposition (Talbot et al. 2008). 
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Figure 6.1: Conceptual diagram showing contrasting vegetation communities 

across ecotones: (a) Tundra heath, (b) Shrub, (c) Forest with shrubs and forests 

predicted to expand across tundra vegetation (Pearson et al., 2013) this ecotone 

represents a ‘space for time’ transition. Hypothesised strength of ecological 

influences on C cycling and storage are represented below. 
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The second mechanism that was suggested to enhance C cycling rates and therefore 

reduced SOC storage in the most productive plots on the study transects was the 

accumulation of snow in the winter time. Evidence suggests that this affects carbon 

cycling throughout the year in a number of ways. Snow accumulations around tall 

vegetation insulate the soil from the extremes of winter air temperature. The data 

loggers deployed on six of the transects supported this comprehensively over two 

winters. Based on the measurements by others (e.g. Schimel et al., 2004) which 

showed that tundra soil microbial communities remain active over winter and are 

responsive to increased temperature through snow addition, it is reasonable to 

suggest that winter carbon cycling rates are higher in forest and shrub plots 

compared with heath. The fluxes of C over winter, although unquantified in this 

work, may contribute significantly to low SOC stocks under forest and shrub 

vegetation. The soil transplant experiment between forest and heath plots suggested 

that deep cover of snow in forests also affected summer respiration rates by 

incubating the microbial community which in turn was more active over summer. 

An analysis of microbial community composition is needed to test this hypothesis 

however. In chapter 5, the effect of deep snow cover was found to be negligible in 

relation to surface litter decomposition. This therefore implied that effects of deep 

snow via differences in vegetation stature have a larger effect deeper into soil 

horizons. On balance, the evidence supports the hypothesis that deep snow cover is 

a mechanism by which decomposition of SOC under more productive species is 

enhanced. 

 

The final hypothesis put forward by Figure 6.1 is that decomposition of litter is 

extremely fast in forests and shrubs and although litter fall is undoubtedly higher for 
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these species, it does not result in storage of C in the soil. The evidence supported 

this. Decomposition rates were highest in the forest plots, followed by the shrub 

plots and lowest rates at heath plots. The litter transplant experiment allowed a 

comparison of both environment and litter biochemistry in dictating these patterns 

of decomposition. It was clear that litter decomposition was particularly fast in the 

mountain birch forest because litter chemistry was carbohydrate rich with a low 

C:N ratio and that the summer environment was conducive to rapid decomposition.  

 

Taken together, the various experiments and studies over the natural transitions of 

the Abisko tree-line allowed for a comparison of plant-soil interactions which all 

implied that more productive ecosystems store less carbon in the soil as a result of 

fast carbon-cycling. All imply that a continued expansion of shrubs and tree-lines 

around the Arctic will result in a shift in the carbon balance with a net loss of C 

from the soil. 

 

6.4: Scaling to the rest of the Sub-Arctic and Arctic.  

 

In Chapter 2, the surveys in soil organic carbon (SOC) were scaled to a different 

landscape, Vassijaure, which had contrasting climate but retained the same 

transitions in vegetation. The common pattern of low SOC in more productive 

ecosystems across two landscapes increases the confidence that can be taken in 

extrapolating these results across wider arctic ecosystems. The Sub-Arctic where 

patchy treelines form multiple transitions in vegetation, similar to those at Abisko 

(Payette et al., 2001) are applicable here but also beyond. One key difference 

between the sites at Abisko and much of the rest of the Arctic is the presence of 
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continuous permafrost (Tarnocai et al. 2009). The sites at Abisko and Vassijaure 

had no such permafrost, therefore the applicability of these results to other such 

areas could be debated. Permafrost stores large amounts of carbon in frozen mineral 

horizons (Tarnocai et al., 2009) and may slow decomposition through restriction of 

drainage and waterlogging (Natali et al., 2011; Zona et al., 2011). However, loss of 

organic horizon C has been found under an recently expanded spruce stand at a 

treeline on permafrost in Alaska (Wilmking et al., 2006) and fertilisation of tussock 

tundra was found to increase shrub biomass, whilst reducing total soil C storage 

(Mack et al., 2004). Although the direct plant-soil interactions leading to C loss in 

these studies are not well understood, the suggestion is that organic C underlain 

with permafrost may be degradable (Dai et al., 2002) and that vegetation change 

could be important in this process. Therefore, although the Abisko site is dissimilar 

to many other arctic regions in its lack of permafrost, the vegetation transitions that 

are present are representative of many arctic ecosystems (Walker et al. 2000, 

Kaplan et al. 2003). So far, the results form this work marries with studies over 

similar transitions (Wilmking et al., 2006).  

 

The scale of productivity increase (Epstein et al., 2012) and shrub expansion 

(Myers-Smith et al., 2011) is pan-arctic. Therefore the priority with this line of 

research is to make comparisons analogous to the work presented here but in other 

areas of the Arctic, specifically where abiotic constraints on decomposition differ. 

This has been achieved to an extent in the present work where areas of different 

precipitation levels were compared (Chapter 2) but this should be expanded across 

areas of the arctic in order to better understand the likely fate of SOC with 

continued vegetation change.    
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6.5: The influence of Ectomycorrhizal fungi on carbon cycling. 

 

One of the strong themes to emerge from this work is the relationship between 

ectomycorrhizal fungi (ECM) abundance and speed of carbon cycling. This work 

would suggest that ECMs are central to the fast turnover of C in forest and shrub 

ecosystems. There is a growing body of evidence to suggest that ECM fungi 

enhance decomposition rates as a result of their scavenging for organically bound N 

(Talbot et al. 2008). This moves past the previous paradigm that ECM fungi have 

very little capability to degrade complex C compounds such as lignin and phenolics 

(Read & Perez-Moreno, Read et al., 2004). Data presented here and in other studies 

(Bödeker et al., 2014) show that ECM fungi (depending on lineage) have the 

capability to produce a range of important extracellular enzymes which can 

breakdown complex C compounds which in turn, liberates N for uptake. This ability 

may allow shrubs and trees to access N stored deep old horizons of the tundra heath 

should they expand further north and up mountain slopes (Myers-Smith et al., 2011; 

Rundqvist et al., 2011). It was shown that one of the dominant ECM genera, 

Continarius, expressed more perxodidase- coding genes when less mineral-N was 

present in the soil (Bödeker et al., 2014). Therefore as ECM fungi expand their 

influence through the expansion of their hosts, expression of such genes may 

increase as C:N ratios of tundra heaths are known to be higher than forest 

ecosystems (Read & Perez-Moreno 2003).  

 

The mycorrhizal community the heaths studied here are dominated by ericoid 

mycorrhizal fungi of the dominant ericaceous dwarf shrubs such as Empetrum 

nigrum (Tybirk et al., 2000; Read & Perez-Moreno 2003). These species and their 
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ericoid mycorrhizal fungi exert a dominance over heath systems which excludes 

other plants and mycorrhizae (Nilsson & Wardle 2005) through creating a closed N 

cycle and producing allelopathic chemicals (Tybirk et al. 2000). Ericoid 

mycorrhizal fungi are proficient at taking up organic N as well as producing a suite 

of extracellular enzymes which can break down complex C compounds in order 

uptake N ahead of other species (Bending & Read 1997; Read et al. 2004; Talbot et 

al. 2008). The high organic-N content of ericaceous species’ litter gives their ERM 

fungi a competitive advantage over other mycorrhizal types which creates a ‘closed’ 

N cycle between ericaceous plants and their fungi (Read & Perez-Moreno 2003).  

 

Although ERM fungi can produce the largest range of C-degrading enzymes and 

break down the most complex compounds, they lack the anatomy and energy to 

grow significantly into the soil (Smith & Read 2008). Heathlands are very 

unproductive with a strategy for slow growing, unproductive species (Tybirk et al. 

2000). Therefore there is little energy in the form of fixed-carbon to seriously 

stimulate decomposition through supply to ERM fungi. There is no evidence of 

ERM hyphae extending past the influence of ericaceous root hairs (Smith & Read 

2008). ECM fungi, although they have a smaller range of extracellular enzymes 

(Talbot et al. 2008), receive large proportions (up to 20 % (Hobbie 2006)) of fixed 

C by shrubs and trees by have a large capacity to forage the soil for nutrients. 

Shrubs are up to five times more productive than ericaceous heaths (Shaver, 2010). 

It is becoming clear that this ability contributes significantly to decomposition 

(Heinemeyer et al. 2007, 2012; Phillips et al. 2014).  
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The legacy effects of ERM and ECM fungi must be considered with regards to 

direct C storage though necromass inputs. In a Swedish boreal forest system it was 

found that ERM fungi on in old, undisturbed islands were dominant and produced 

slowly-decomposing, melanised necromass which contributed to storage of C in the 

soil (Clemmensen et al. 2015). The authors suggest that ERM fungi contribute more 

C and N to the soil than they degrade and therefore stabilise C in humic horizons 

(Clemmensen et al. 2015). In contrast, ECM fungi in younger boreal forests were 

found to be associated with faster C and N cycling. Rapid turnover of necromass 

was found to result in remineralisation of N and therefore low storage of C despite 

high investment of C into hyphal biomass (Clemmensen et al. 2015).  

 

Interesting analogies can be drawn between the present study and studies of the 

Swedish boreal with differing ages of forest assemblages (Wardle et al. 2003). 

Here, it was shown that smaller islands were burnt less often due to lower chance of 

lightning strike, these islands had increased carbon storage due to lower 

decomposition rates despite lower productivity rates than large islands (Wardle et 

al. 2003). Empirical evidence from boreal forests and tundra ecosystems (including 

the present thesis) appears to support the hypothesis that more higher productivity 

aboveground results in lower long term soil storage (Wardle et al., 2003; Wilmking 

et al., 2006; Kane & Vogel et al., 2009; Hartley et al., 2012). In the Swedish island 

system it was also shown that high production rates of ECM fungi compared to 

slow-growing ERM fungi does not result in storage of C but the opposite 

(Clemmensen et al., 2015). These results are analogous to the whole ecosystem 

patterns (Wardle et al., 2003) and it could be possible that the balance between 
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ECM and ERM fungi in soil is critical to the carbon balance of the whole 

ecosystem.  

 

The patterns observed in this thesis and in others discussed (e.g. Phillips et al., 

2014; Clemmensen et al., 2015) presents problems when scaling-up the effect of 

mycorrhizal fungi on carbon cycling and storage. Previous studies have grouped 

ECM and ERM fungi together because of their shared ability access organic N 

(Averill et al. 2014). This is reported to result in increased storage of C compared to 

arbuscular mycorrhizal (AM) systems as a result of decreased competition for N 

with free-living microbial communities. Work that makes the direct comparison 

between ERM and ECM communities, however shows that there are clear 

differences in carbon storage and cycling rates (Chapter 2; Clemmensen et al., 

2015). This suggests that that these two groups of fungi interact with soil carbon in 

different ways and need to be considered separately. It may be that these differences 

are not as clear as when compared with AM systems but this needs to be 

investigated further and tree-line ecosystems such as at Abisko provides a useful 

model ecosystem to make these comparisons.  

 

6.6 Advances in understanding and further steps 

 

Taken as a whole, this thesis addresses shrub and tree expansion, a pan-arctic 

phenomenon (Myers-Smith et al., 2011), and tackles important questions about the 

‘whole-ecosystem’ implications of this process. Increases in productivity across the 

Arctic have been predicted to increase C sequestration (Qian et al., 2010). On the 

face of it, it is reasonable to suggest that more photosynthesis would equate to more 
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storage of C in the ecosystem. This work takes the global issue of vegetation change 

and addresses some key plant-soil interactions which vary between plant functional 

types. These interactions were distilled to the influence of ECM fungi, defoliation 

events, snow accumulation and litter decomposition. All of these lines of evidence 

lead us to conclude that more productive vegetation does not store more C in the 

soil and that, via a number of pathways, C turnover can be stimulated by productive 

vegetation. 

 

Chapter 2 made significant progress in showing that productive vegetation types 

were linked to fast soil carbon cycling and low storage. This had been previously 

shown in sub-arctic forests (Hartley et al., 2012) but not in the shrubs. Shrubs are 

expanding at an expanding at a rapid rate in the Arctic (Tape et al., 2006; Myers-

Smith et al., 2011) whereas tree-lines do not appear to be as responsive to climate 

change (Harsch et al., 2009). The focus on shrubs as well as forest ecosystems in 

this work not only reinforces what was previously found but also makes significant 

steps to understand change in arctic tundra that is now colonised by shrubs. This has 

substantial implications for the rest of the Arctic and surveys of a similar nature 

should be expanded to other areas, especially those underlain with permafrost, to 

know whether this relationship holds across other Arctic ecosystems. Although the 

SOC stocks were quantified in detail, the resources were not available to complete 

an above-ground inventory of C. Although it is predictable that shrub plots will 

have more standing biomass than heath, the numbers should be known in order 

better to understand total C storage of the ecosystem. This was achieved in forest 

and heath plots previously, which demonstrated that although forested plots had 

more above-ground biomass, their total C storage was significantly lower than heath 
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plots (Hartley et al., 2012). An equally important next step will be to measure rates 

of photosynthesis along-side respiration rates in order to understand better what the 

net flux of C over a season is.  

 

The C stock data would suggest that C is not accumulating in the more productive 

plots but this needs to be tested. In this chapter it was argued that ECM fungi  are 

key to the decomposition of SOM. Two field experiments are needed to fully test 

this hypothesis. Firstly, the exclusion of hyphae using regularly rotated cores of soil 

with mesh that restricts root growth (no fungi) and static (fungal in-growth) 

(Johnson et al., 2001). Secondly a girdling experiment (Högberg et al., 2001) of 

Betula pubescens plots. The hyphal exclusion experiment, when applied with 

detailed soil respiration measurements, would test the effect of fungi (including 

saprotrophic fungi) on soil respiration. When combined in a factorial design with 

girdling hyphal exclusion, it would inform the effect on ECM fungi on soil 

respiration (assuming ECM fungi have little or no saprotrophic abilities). This is the 

clear next experiment and number one priority to follow up the present work. 

 

It was shown, using a variety of methods, that sub-arctic forests influence soil 

microbial cycling throughout the year. This experiment with soil cores transplanted 

between forests and heaths showed that soils respire at faster rates in the forest than 

the heath. The experimental design isolated winter processes (i.e. snow depth) as the 

factor driving this. However, the interaction between snow cover and microbial 

processes is complex. Research should focus on the effect of longer snow cover on 

ecosystem processes and the effect of deep snow cover on nutrient flushes in the 

melt season (Buckeridge et al., 2010) and on hydrology (Natali et al., 2011). Heath 
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plots were found to be moister than forest plots over the growing season so the 

waterlogging effects of deep snow in the forest may only be short lived in this case. 

 

Measurements after two winters of treatment forced us to reject the hypothesis that 

deep snow increased microbial biomass. This led to the hypothesis that a change in 

the composition of the microbial community had influenced respiration rates. The 

next logical step is therefore to measure the community composition of these soil 

cores to understand whether more insulated soils shift to more fungal dominated 

community than the soil that remained in the heath. If a significant fungal 

community develops in the heath soils which were transplanted into the heath as a 

result of insulation over winter, decomposition of C could be rapid, especially 

considering that heath soil is potentially very carbohydrate-rich (Sjögersten et al., 

2003) Enzyme assays will allow further work to understand whether insulation over 

winter in the forest allows for a more biologically active microbiota.            

 

Chapter 4 examined how biogeochemical processes are affected by defoliation. It 

underlines how soil processes and cycles are dependent on autotrophic C supply and 

offers insights into how the microbial community responds to defoliation and how it 

feeds back to C and N fluxes. As the situation currently stands, reduction in 

autotrophic C supply seems to cause a slow-down in C cycling but the concurrent 

addition of N and C from the caterpillar frass (Lovett & Ruesink, 1995) confounds 

our understanding of the mechanisms at work. This work should, therefore, be 

followed-up by experiments to separate the relative importance of C supply, e.g. by 

girdling (Högberg et al., 2001) and N additions via frass (via artificial addition).  
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One suggestion in this chapter is that the reduction in ECM growth observed 

beneath defoliated trees is due to a shift in ECM community composition to more 

conservative growth strategies, which was observed at the root tips. To follow this 

up, molecular techniques need to be used (e.g. TRFLP) to measure community 

composition of hyphae the as well as the root tips. This will better link hyphal 

growth to the interaction between tree and fungi and further test the hypothesis that 

change in ECM community influences carbon cycling during defoliation events. 

 

The final data chapter of this thesis showed that litter decomposition is rapid in sub-

arctic forests as a result of carbohydrate-rich litter input, which decomposes quickly 

and stimulates the decomposition the rest of the litter layer. The nature of this 

project only allowed for the decomposition study to continue for 21 months. This 

gave us a good understanding of the drivers of decomposition over this timescale 

but longer-term studies of the fate of litter are needed. To this end, there are two 

extra harvests of litter possible for later dates in this study (six harvests were 

deployed originally). It is important that these harvests are collected to understand 

decomposition at the treeline over longer time periods. Further 13C NMR work on 

future harvests will inform us whether different decomposition pathways continue 

to exist between forest and heath, and how much litter input will contribute to 

humus formation in each system. 
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6.7 Conclusion 

 

This body of work shows that in the landscape under investigation in sub-arctic 

Sweden, storage of soil carbon is low as a result of a number of ecological 

interactions between productive plants and the soil. The findings in this work can be 

applied at a number of different scales. At the microbiological scale, our data 

suggest that the action of ectomycorrhizal fungi can be key in regulating SOC. At 

the scale of a vegetation stand, snow accumulation can be an important regulator of 

microbial communities as can litter input. Due to the nature of the sampling 

strategy, the data that have been collected can be applied to large-scale 

biogeographic issues such as shrub expansion, as we observed consistent patterns 

holding true across landscapes.  

 

The strong underlying theme of this work is the relationship between aboveground 

productivity rates and belowground C storage. The relationship between these two 

is globally important as tundra productivity rates are changing. The response of 

arctic ecosystems to changes in aboveground structure will have significant effects 

on the balance of C. This work has shown that plant-soil interactions are 

fundamental in interacting with SOC. Direct effects of climate change on SOC in 

tundra ecosystems are important, however, plant-soil interactions have a critical role 

to play in determining the fate of C in the Arctic.  
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Appendices 

Appendix 1 

 

Table S1: Geographical details of each transect at Abisko and Vassijaure sites. 

‘Elevation change’ and ‘heading’ refer to transects from heath to forest plots. Plots 

on the transects run approximately in a straight line. 

Abisko Transect length (m) Elevation change  (m) Heading (degrees) 

A1 74 +5 169 

A2 70 -11 314 

A3 87 +6 164 

A4 71 -11 322 

B1 82 -8 337 

B2 97 +3 213 

B3 77 +2 59 

B4 52 -4 355 

C1 59 -7 350 

C2 53 -7 2 

C3 60 +1 219 

C4 31 -1 71 

Average 67.8 -2.7  

    

Vassijaure    

1 77 4 124 

2 22 -12 358 

3 59 1 342 

4 61 2 119 

5 50 0 234 

6 70 -8 30 

7 67 4 153 

Average 58 -1.2  
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Appendix 2 

Table S2. Reference sequence annotation, relative abundance, and frequency of occurrence of ectomycorrhizal (ECM) fungi in non-

defoliated and defoliated Betula forests in Abisko, Sweden. Values for genus- or higher-level taxonomic groups are shaded. 

Reference taxon 
 

 NCBI/UNITE 
Accession 

Match 
(%) 

UNITE              
Species     
Hypothesis 

Mycorrhizal 
Exploration 
Type#  
 

Non-defoliated           Defoliated  
µ̂†       σ̂†           ƒ‡          µ̂       σ̂              ƒ 
(%)                 ( /5)        (%)                 ( /5) 

ECTOMYCORRHIZAL FUNGI 
Basidiomycota       Agaricales       Cortinariaceae        /cortinarius    MDF 50 ± 12 5/5 55 ± 18 4/5 
 Cortinarius alboviolaceus JQ724019.1 99 SH221787.06FU MDF 38 ± 13 2/5      Cortinarius armillatus DQ114744.1 99 SH221779.06FU MDF     21   1/5 
 Cortinarius atrocoeruleus JQ724019.1 99 SH232829.06FU MDF 12   1/5      Cortinarius balaustinus AF389153.1 98 SH220396.06FU MDF 25   1/5 31   1/5 
 Cortinarius caperatus FJ845425.1 99 SH191824.06FU MDF 6   1/5 41 ± 20 3/5 
 Cortinarius casimiri HQ604710.1 99 SH232830.06FU MDF 3 ± 0.2 2/5 33   1/5 
 Cortinarius cedriolens FJ552786.1 99 SH232841.06FU MDF 7   1/5      Cortinarius collinitus DQ367896.1 99 SH191855.06FU MDF 5   1/5      Cortinarius delibutus UDB002173 99 SH220385.06FU MDF 8 ± 3 2/5      Cortinarius laetus  AF389170.1 99 SH192000.06FU MDF     4   1/5 
 Cortinarius sp. EU597035.1 96 SH191963.06FU MDF 5   1/5      Cortinarius sp. FJ039656.1 99 SH192083.06FU MDF     7   1/5 
 Cortinarius sp. JN032537.1 99 SH191806.06FU MDF 10 ± 4 2/5      Cortinarius sp. UDB002209 99 SH191882.06FU MDF 38 ± 22 2/5     Hygrophoraceae               /hygrophorus    SD     7   1/5 
 Hygrophorus pudorinus FJ845408.1 88 SH024898.06FU SD     7   1/5 
Inocybaceae               /inocybe    SD 6 ± 3 2/5      Inocybe obscurobadia AM882802.2 97 SH001193.06FU SD 2   1/5      Inocybe petiginosa EF218781.1 99 SH208978.06FU SD 9   1/5     Tricholomataceae               /tricholoma    MDF 15 ± 4 2/5 7   1/5 
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 Tricholoma album UDB002398 99 SH194000.06FU MDF     4   1/5 
 Tricholoma flavovirens AF349689.1 99 SH192989.06FU MDF 13 ± 1 2/5 4   1/5 
 Tricholoma virgatum UDB011594 100 SH194223.06FU MDF 6   1/5     Atheliales              Atheliaceae               /amphinema-tylospora    SD 3   1/5      Tylospora sp. HM189733.1 100 SH229868.06FU SD 3   1/5      /piloderma    MDF 14 ± 9 2/5 4   1/5 
 Piloderma olivaceum JQ711859.1 98 SH212379.06FU MDF 12 ± 8 2/5 4   1/5 
 Piloderma sp. JQ711935.1 99 SH212383.06FU MDF 3   1/5     Boletales              Boletaceae               /boletus    LD 4 ± 1 2/5      Leccinum scabrum UDB001608 99 SH197538.06FU LD 4 ± 1 2/5     Cantharellales              Hydnaceae               /cantharellus    MDF, MDS 9 ± 3 2/5      Hydnum umbilicatum AJ547885.1 97 SH214526.06FU MDS 11   1/5      Sistotrema sp. FN669254.1 99 SH219329.06FU MDF 6   1/5     Russulales              Russulaceae               /russula-lactarius    C, SD 20 ± 6 5/5 70 ± 15 3/5 
 Lactarius    C 8 ± 3 3/5 83 ± 17 2/5 
 Lactarius pilatii UDB018157 99 SH238107.06FU C 5 ± 2 2/5      Lactarius rufus KF241543.1 99 SH191391.06FU C     67   1/5 
 Lactarius tabidus HM189825.1 99 SH193869.06FU C     8   1/5 
 Lactarius trivialis UDB000365 99 SH238110.06FU C 13   1/5 92   1/5 
 Russula    C, SD 15 ± 5 4/5 48   1/5 
 Russula gracillima KF002779.1 99 SH224403.06FU C 7   1/5      Russula nuoljae UDB002530 99 SH207687.06FU C 12 ± 6 4/5 48   1/5 
 Russula versicolor UDB001641 99 SH224391.06FU SD 3   1/5     Thelephorales              Bankeraceae               /hynellum-sarcodon    MDM 7   1/5      Sarcodon sp. UDB015699 100 SH227933.06FU MDM 7   1/5      Thelephoraceae     SD, MDS 13 ± 3 3/5 4   1/5 
 /tomentella-thelephora    SD, MDS 8 ± 2 2/5 4   1/5 
 Thelephoraceae sp. U83467.1 99 SH195967.06FU MDS 7   1/5      Tomentella lapida U83480.1 98 SH199020.06FU SD 6   1/5      Tomentella sp. FJ553031.1 99 SH219847.06FU SD 2   1/5 4   1/5 



 

 217 

 /tomentellopsis    MDF/MDS 11 ± 8 2/5      Tomentellopsis sp. UDB018589 99 SH199526.06FU MDF/MDS 11 ± 8 2/5     Ascomycota              Mytilinidiales              Gloniaceae               /cenococcum    SD     4   1/5 
 Cenococcum geophilum JN943891.1 99 SH196545.06FU SD     4   1/5 
Helotiales              Incertae sedis               /meliniomyces    SD     7   1/5 
 Meliniomyces bicolor  HM164675.1 100 SH207165.06FU SD     7   1/5 

NON-ECTOMYCORRHIZAL FUNGI 
Basidiomycota              Agaricales              Mycenaceae               Mycena         5 ± 1 2/5 
 Mycena simia GU234138.1 99 SH237366.06FU      4   1/5 
 Mycena sp. HM069358.1 100 SH193138.06FU      7   1/5 
Capnodiales              Incertae sedis              
 Toxicocladosporium  

strelitziae  JX069874.1 98 SH196751.06FU  3   1/5     
Ascomycota              Helotiales              Vibrisseaceae               Phialocephala     2   1/5 10 ± 3 2/5 
 Phialocephala fortinii DQ497924.1 99 SH213468.06FU  2   1/5 7   1/5 
 Phialocephala sphaeroides  JQ711837.1 99 SH213470.06FU      13   1/5 
Incertae sedis              Incertae sedis               Meliniomyces variabilis FN565286.1 98 SH207164.06FU      6   1/5 
#Abbreviations: C, contact; SD, short-distance; MDF, medium-distance fringe; MDM, medium-distance mat; MDS, medium-distance smooth; LD, long-

distance. References: Agerer (2006), Tedersoo & Smith (2013), Beenken (2004), Weigt et al. (2011), and Jakucs et al. (2015). 

†µ̂ ± σ̂: Mean and standard error of taxon relative abundance in transect-replicate samples where it occurred; further detail in Methods and Materials. 

‡ƒ: Frequency of occurrence in five transect-replicate samples



 

 218 

 


