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ABSTRACT

The problem of selecting determinant features generating appropriate model structure is a challenge in 
epidemiological modelling. Disease spread is highly complex, and experts develop their understanding 
of its dynamic over years. There is an increasing variety and volume of epidemiological data which 
adds to the potential confusion. The authors propose here to make use of that data to better understand 
disease systems. Decision tree techniques have been extensively used to extract pertinent information 
and improve decision making. In this paper, the authors propose an innovative structured approach 
combining decision tree induction with Bio-PEPA computational modelling, and illustrate the approach 
through application to tuberculosis. By using decision tree induction, the enhanced Bio-PEPA model 
shows considerable improvement over the initial model with regard to the simulated results matching 
observed data. The key finding is that the developer expresses a realistic predictive model using 
relevant features, thus considering this approach as decision support, empowers the epidemiologist 
in his policy decision making.

Keywords
Bio-PEPA Modelling, Data Mining, Decision Support, Decision Tree Induction, Epidemiology, Modelling and 
Simulation, Optimisation, Refinement, Tuberculosis

1. INTRODUCTION

The epidemiological field has been greatly enhanced by the use of computational and mathematical 
models, e.g. the studies of Anderson and May (1991), Weber et al, 1997; Keeling and Rohani (2008), 
Amouroux et al. (2010) and Hamami and Atmani (2013). Such models are considered indispensable 
both to understand the pathophysiology of human disease and to follow the spread of disease. The 
latter in particular allows public health policies to be developed by using predictive models to explore 
suitable disease control strategies.

For any modelling, the main goal is to provide accurate disease representation and realistic long 
term prediction; at least, as far as possible given that “the real world is undeniably replete with many 
complications; economic and social as well as biological” (Anderson and May, 1991). Capturing 
the complex, dynamic and variable nature of disease spread depends on strong partnership working 
between epidemiologists and modellers, to achieve careful refinement, elaboration and optimisation 
of models. Even so, the developed models (Anderson and May, 1991; Frost, 1995; Oaken et al., 2014) 
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rely heavily on the experience of the experts and developers, and a degree of speculation and inspiration 
regarding identification of pertinent model features or accurate parameter estimation. Keeling and 
Rohani (2008) confirm this point of view: “The feasibility of model complexity is compromised by 
computational power, the mechanistic understanding of disease natural history, and the availability of 
necessary parameters. Consequently, the accuracy of any model is always limited”. However, relying 
on expert knowledge and assumptions is not enough to ensure model accuracy when this depends on 
knowledge or features unknown to the expert/developer team.

In this context, many works (vynnycky and Fine, 1997; Debanne, 2000; Geisweiller, 2006; Prandi, 
2010; DeEspíndola et al. 2011; Oaken REF, Goeyvaerts, 2015) focus on optimisation, as it becomes 
as a natural step in the modelling process. Optimisation has grown in recent years from considering 
simply parameter values, to refining model structure. Of great help in this process is the availability 
of massively complex datasets on epidemics, containing quantitative, qualitative, textual, Boolean, 
etc., information (Maumus et al., 2005). Our conclusion is that to decrease uncertainty in epidemic 
modelling, providing rigorous model descriptions containing the most important system features 
so parameters can then be correctly estimated, it is urgent to devise a solution to assisting experts/
developers in acquiring only the most pertinent information from a dataset, and allow them to review 
their reasoning about the underlying epidemic system (Moundalexis and Nag, 2013).

To resolve this enigma and overcome the problems of selecting the determinant model features, 
in particular for tuberculosis (TB), we propose here, that a good epidemiological understanding and 
control requires a knowledge extraction process from data derived from cohort studies (Mancini, 
2014; Poulymenopoulou et al., 2013). This process can involve symbolic methods of data mining 
(Maumus et al., 2005; Azar et al., 2013).

In epidemiology and public health, the use of data mining methods in general and decision tree 
induction in particular is growing briskly (Azar et al., 2013; Kotu and Deshpande, 2015; Breiman 
et al., 1984; Krizmaric et al., 2009; Smitha and Sundaram, 2012). Often these works mention the 
discovery of unexpected but effective information. As in other areas, it is the availability of wide-
ranging historical databases that encourages such developments. By using data mining, patterns are 
discovered which can lead to better performance in computational modelling, long term prediction and 
decision-making (Lavanya and Rani, 2013). In our work, this process is automated by using WEKA 
tool (Hall et al., 2009), this offers a range of algorithms to build decision tree models.

The purpose of this article is:

•	 To show how the results from data mining can be complementary to the expert knowledge and 
help to achieve, update or validate an epidemic Bio-PEPA model,

•	 To present a framework in which data mining and Bio-PEPA modelling can be used together to 
better understand the mechanisms of detection and spread of epidemics, and

•	 To demonstrate the application of the framework to TB disease to identify influencing factors 
and their force.

This paper is structured as follows: section 2 provides background on Bio-PEPA modelling 
and data mining concepts more extensively on decision tree induction. Section 3 is dedicated to the 
proposed approach, which describes the different steps undertaken to combine Bio-PEPA with data 
mining. Details of the case study (tuberculosis), experimental approach and results of applying the 
Bio-PEPA framework using decision tree induction results are described in Section 4. Finally, in 
section 5, we conclude by summarizing and highlighting our key findings and contribution, together 
with perspectives on future work.
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2. BACKGROUND

This section reviews the two main areas in our work, Bio-PEPA modelling and simulation and data 
mining.

2.1. Bio-PEPA Modelling and Simulation
Bio-PEPA (Bio-Performance Evaluation Process Algebra) is a formal language belonging to the 
Process algebra (PA) family. Developed in the 1970s, PA was mainly based on algebraic concepts 
(operators and axioms) to study the behaviour of parallel and distributed systems. It has since been 
used in biology: e.g. in 1993 Tofts (1993) used it to describe the behaviour of social insects, and 
in 2003 Norman and Shankland (2003) used it for epidemiology. Ciocchetta and Hillston (2009a, 
2009b) developed a new, less-complex formalism, Bio-PEPA, to describe biological systems more 
succinctly. A general view of Bio-PEPA model components is given in Figure 1 (Appendix, all figures 
and tables are shown in Appendix).

Bio-PEPA is a formalism based on a set of rules and events (Ciocchetta and Hillston, 2009a) 
describing an interaction between a set of species (agents) belonging to one or a set of compartments 
and performing different reactions evolving under specific parameters. More formally and conveniently 
those concepts are described by the syntax below:

S:: = (α, κ) op S | S + S | C
op = << | >> | (+) |(-) |(.)
P:: = P <L> P | S(x)

Where ‘S’: species or well known as individual entities. The dynamic of S is described by the reaction 
defined by ‘α’: action to undertake and ‘κ’: stoichiometry coefficient of the entity in that reaction. 
During the process ‘P’, S evolves under a specific operation ‘op’ as indicated above, where ‘<<’: 
reactant, ‘>>’: product, ‘(+)’: activator, ‘(-)’: inhibitor, ‘(.)’: generic modifier. Bio-PEPA syntax 
offers the choice between different behaviours by using ‘+’ (the full syntax details are presented by 
Ciocchetta and Hillston, 2009a, 2009b).

By applying Bio-PEPA to avian influenza Ciocchetta and Hilston (2009a) draw out the advantages 
of using Bio-PEPA for epidemiology modelling such as, its ability to deal with population level 
dynamics, the heterogeneity of individual attributes, stochasticity, spatial structure and discrete/
external event. Further, Bio-PEPA offers a series of analyses not previously available to epidemiology 
through a single description such as stochastic simulation, model checking, ODE derivation and for 
those who are less familiar, Bio-PEPA allows translating an existing model to SBML (The Systems 
Biology Markup Language based on XML) (Hamami and Atmani, 2014).

The Ciocchetta and Hillston (2009a, 2009b) epidemiological studies led many authors to 
extend the use of Bio-PEPA to different infectious diseases. Benkirane et al. (2012) pinpointed the 
key features of Bio-PEPA by developing a measles model. They put forward seasonal effects and 
immigration on spreading disease. Hamami and Atmani (2012, 2013) have reviewed a Bonmarin 
mathematical model of chickenpox (Bonmarin et al., 2008) as well as De-Espindola tuberculosis 
model (DeEspíndola et al. 2011). Ramanathan et al. (2012) and Oaken et al. (2014) worked on SIR/
SEIR models using the Bio-PEPA framework for deeper analysis. Despite the success of Bio-PEPA 
in epidemiological modelling, developers and experts still must avoid including irrelevant details and 
features and excluding pertinent ones in the model description.

2.2. Data Mining and Features Filtering
Data mining techniques are powerful tools to identify pertinent patterns and events within a large 
database. Data mining involves different techniques depending on the objective of the task and data 
to explore (Wang et al., 2012). They are summarised as predictive or descriptive methods (Kotu and 
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Deshpande, 2015). That is, predictive methods, such as classification and regression, use known outputs 
and the relationship between existing features to predict the future. Regression defines models using 
continuous output, as applied by Piarroux et al. (2011) to detect different levels of Cholera infection 
by region. Classification uses categorical output as done by Azar et al. (2013) to classify patients 
infected with Lymph disease. Descriptive methods, such as clustering and association rules, disclose 
concealed patterns that sum up the relationship between variables without predicting target values. 
Clustering regroups a set of objects with a similar specificity, as used by Almeida et al. (2014) in 
cardiovascular risk assessment where the resulting five clusters showed the intrinsic relation between 
features. Association rules identify a degree of association between features and their frequency, as 
achieved by Ou-yang et al. (2013) where the impact of prescribed drugs on Stevens–Johnson syndrome 
was detected. Thus, before applying data mining techniques, it is important to know which kind 
of method is more appropriate for our dataset study. Recall that the aim of this work is to use data 
mining techniques to enrich computational modelling by finding the relevant variables that explain 
the data. This means that the output of the data mining model is known. In addition, according to the 
categorical nature of our data, this description led us to focus on classification.

Classification is a data mining technique based on supervised learning (Kotu and Deshpande, 
2015; López-Vallverdú et al., 2012): the learning is based on using known output values to build a 
model, useful to predict the class of objects whose class label is unknown. Various techniques such 
as: Decision Trees, Bayesian networks, Neural Networks, Rule induction, K-nearest neighbour, are 
used in classification. Many works highlight the decision tree as the classification method popularly 
used for classifying medical data (Lavanya and Rani, 2013; Mitchell, 1997; Phyu, 2009; Gorunescu, 
2011; Carr et al., 2013). The decision tree is described by a tree structure where each non-leaf node 
denotes an attribute, each branch represents an attribute value and leaf nodes represent classes or class 
distributions. This structure makes models easy to interpret into rules: If Condition Then Conclusion, 
where Condition denotes a disjunction/conjunction of attributes, and Conclusion is the class reached 
by the condition (Atmani and Beldjilali, 2007). More advantages are reported in literature: Lavanya 
and Rani (2013) argued that decision tree algorithms are most commonly used because the parameter 
setting of domain knowledge is not required to construct the tree. Phyu (2009), by undertaking a 
survey of classification techniques, concluded that decision tree algorithms tend to perform better 
when dealing with discrete/categorical features. Gorunescu (2011) noted that the greatest benefit of 
decision tree approaches is flexibility, understandability and usefulness in prediction. Delen et al. 
(2005) used a series of decision tree algorithms (ID3, C4.5, C5 (Quinlan, 1993), and CART (Aguiar et 
al, 2012)) to identify variables and corresponding thresholds which separate observations in branches 
containing a set of leaves. Delen et al. (2005) outlined that the objective of decision tree algorithms 
is to minimise the number of homogeneous groups, and went on to apply the C5 algorithm to breast 
cancer data, extracting the most important features for the breast cancer prognosis. Azar et al. (2013) 
applied decision tree algorithm following classification to prove an increase in diagnostic confidence, 
by selecting six relevant features rather than the defined eighteen as data input. Krizmaric et al. (2009) 
focused on survival prediction of patient subject to cardiac arrest where features such as arrival 
time and cardiopulmonary resuscitation were detected as more pertinent for this study. Smitha and 
Sandaram (2012) applied a decision tree algorithm to predict the inhabitants infected by disease in a 
slum area. The resulting tree explains clearly that the infection is related first to climatic parameters 
and second to other parameters such as spread of deadly diseases, population immunity and control 
activities, vector abundance and family history.

These wide-ranging examples reveal that the decision tree is by far the most adequate classifier 
for our study, because:

•	 The resulting model is expressed by a tree (set of rules), easily interpreted by non-expert and 
well matched to Bio-PEPA model components.
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•	 Decision tree algorithms perform better when dealing with the nature of features defined in our 
dataset (discrete, categorical),

•	 Decision tree algorithms identify variables relevant to the example, which is our principal aim 
in developing more realistic formal models. In the epidemiological setting, this draws out the 
causal relationships between predictors of the disease using a decision tree classifier, allowing 
relevant information to be extracted to understand and monitor epidemics.

To summarize, to improve and simplify the interaction between expert and developer, this section 
has identified two complementary techniques: decision tree induction and Bio-PEPA modelling. The 
former identifies the relevant features. The latter is used by the modeler to explore the usefulness 
of those features in optimising and refining a realistic and accurate model aiming to predict and 
improve the decision making of the epidemiologist. The next section explains how these techniques 
can be combined.

3. METHODOLOGY

Our aim is to use decision tree induction to extract useful information from the database to inform, 
refine and optimise our formal modelling.

To prove the usefulness of our approach, we begin by considering the typical manual modelling 
process and show how this can be enhanced with data mining. Figure 2 shows the structure of the 
methodology. Typical steps of our approach include:

1. 	 Interaction expert/developer: Consecutive exchange knowledge between epidemiologist and 
developer is performed as follows:
a. 	 Problem Definition: identify critical areas in the process to be modelled.
b. 	 Design the Study: collect data (and possibly expert knowledge of the problem).
c. 	 Design the Conceptual Model: describe all dependencies between system components.
d. 	 Process Definition: determine the predictability and accuracy of the model, where inputs, 

outputs, assumptions and rules are specified separately.
2. 	 Bio-PEPA modelling: Based on Bio-PEPA structure, the formal model is constructed using all 

the information gained in the previous step, inputs, outputs and rules.
3. 	 Simulation and analysis: Once the formal model is constructed, it can be analysed. For this 

work we use stochastic simulation of the Bio-PEPA model. The resulting outputs are used to 
validate model accuracy by comparing with observed data.

4. 	 Optimisation: The implementation of the model can be an accurate/inaccurate representation of 
the real system depending on the assumptions made by either the developer or the epidemiologist/
domain expert. In either case, more information is required to refine/optimise the model.
a. 	 Manual Optimisation (dashed line in Figure 2 ): By returning to the process definition 

step defined earlier (Interaction expert/developer step), the expert enhances this step with 
new information. The optimisation based on expert/developer interaction is repeated until the 
results match well with observed data. This process is extremely reliant on expert/developer 
capability and knowledge, when basing only on inspiration and assumptions could derive 
to time consuming and increasing in complexity. To overcome these problems, we propose 
to use data mining at optimisation step.

b. 	 Optimisation Using Data Mining: Rather exploring the expert/developer interaction at 
optimization step, decision tree induction is used as factor retrieval on the disease dataset. 
This optimization begins with the data mining process (data cleaning, data transformation, 
feature selection, classification and validation) and ends in Bio-PEPA model refinement. 
The steps lie as follow:
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▪▪ Data Cleaning and Data transformation: As disease dataset is collected from 
different sources, noise and errors can be expressed. Data cleaning attempts to correct 
inconsistencies, remove errors, noise and missing values in the data (Han and Kamber, 
2006; Gibert et al, 2008), when data transformation (Inbarani et al, 2013) converts 
the data into appropriate forms for mining that makes data operationally efficient and 
understandable. To achieve this goal, a series of algorithms are available in literature 
(Inbarani et al, 2013; Witten, 2011), such as discretisation and removing missing values. 
The choice of those algorithms remains strongly dependent on dataset used.

▪▪ Feature Selection Algorithms: Not all features recorded in the dataset are useful in 
decision making. Feature selection is a preliminary step to classification, it reduces 
the attribute space with the aim of finding a minimal attribute set to describe the data 
(Guyon and Elisseeff, 2003). Those attributes are the classifier input deriving the 
optimal tree (optimal tree size and number of leaves) with highest accuracy. In data 
mining a range of feature selection algorithms are defined. According to Witten (2011), 
Saeys et al. (2007) and Karegowda et al. (2010), methods used for feature selection 
are classified into two types: Attribute subset evaluator and Single attribute evaluator. 
The choice of algorithm depends on the aim of feature selection. As argued by Saeys 
et al. (2007), attribute subset evaluators are used to improve prediction performance 
by considering feature dependencies whereas single attribute evaluators consider each 
feature separately to improve cluster detection (Inbarani et al., 2013). The aim of this 
study is to detect pertinent information expressed by the relation between different 
attributes to improve modelling prediction, therefore the Attribute Subset Evaluator 
algorithms are more suitable for this field. Many of them are defined in the literature. 
For example, Karegowda et al. (2010) applied a Correlation-based Feature Selection 
algorithm (CFS algorithm) combined with a neuronal network classifier to diabetic data 
to identify highest classifier accuracy through a highest correlation between features, 
while Macaš et al (2012) used Wrapper Subset Evaluator and Filtered Subset Evaluator 
combined with a series of classifiers. The choice of algorithm remains dependent on 
the nature of data to be mined.

▪▪ Classification: Once the feature selection step is achieved, the selected attributes can 
be used as an input to the classifier.As argued in section 2.2, decision tree algorithms 
are used in this study. A range of algorithms can be used to create the classifier, the 
most commonly reported in literature (Ou-yang et al., 2013; Shi, 2008; Zhao and Zhang, 
2008; Gibert et al, 2010) are: Best First Decision Tree (BFTree), J48, J48Graft, Naive 
Bayesian Tree (NBTree), Alternating decision Tree using the LogitBoost strategy 
(LadTree), REPTree, RandomTree and Cart /Simple Cart.

▪▪ Validation: Once the models resulting from the classifiers listed above are achieved 
and trained, their performance is evaluated and significance is interpreted. To this end, 
a series of measures are undertaken such as: accuracy rate, confusion matrix, positive 
rate and negative rate. According to Witten (2011), confusion matrix is very useful 
measure for better understandability. The matrix is defined by predicted classes (matrix 
columns) and actual classes (matrix rows), where all correct predictions are expressed 
by its diagonal, see for example Table 5. Once the performance evaluated using the 
above measures, a comparison is done between all classifiers resulting in a ranked set.

▪▪ Optimisation of Bio-PEPA Model: The best ranked model resulting from the validation 
step is analysed to distinguish which parameters influence the classification results. To 
simplify this step, the selected model structured as a tree, where the first node is a root 
and terminal nodes reflect decision outcomes is converted into sets of rules described by 
a relation (arc) between a set of attributes (nodes) and then defined as: X and Y then Z, 
where X, Y are called antecedent (condition) and Z the consequent (conclusion) of the 
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rule. At this step, the selected attributes could be further validated by the epidemiologist 
as being primary reasons disrupting the analysis of disease spread which were unknown/
missed by epidemiologist at the start of the study.

Having extended these rules, this information from data mining is incorporated into the Bio-
PEPA model as follows:

1. 	 Extract from mined rules, pertinent attributes not currently included in the Bio-PEPA model.
2. 	 Refine the existing Bio-PEPA model by integrating relevant features.
3. 	 Recalculate parameters useful to developing the Bio-PEPA model by restructuring the initial 

database.
4. 	 Analyse the new simulated results.
5. 	 Come back to step 1 here or to the data mining/dataset interaction phase to regenerate new rules 

if the aim is not achieved (i.e. the model is improved, but there is still a significant gap between 
observed data and model simulation).

To illustrate this methodology, the next section describes its application to a tuberculosis data set.

4. RESULTS

The Tuberculosis has been a major killer disease for several years which makes it a disease of interest 
for number of studies either in modelling and simulation field such as: Blower et al. (1998), Aparicio 
and Catillo-chavez (2009), DeEspíndola et al. (2011), Ozcaglar et al. (2012) and Hamami and Atmani 
(2013), or in data mining field such as: Sebban et al. (2002), Aguiar et al. (2012) and Venkatesan 
and Yamuna (2013).

According to the last report of the World Health Organization (WHO), the international standard 
for tuberculosis control, TB remains the leading infectious deadly disease today (WHO, 2012). WHO 
applies a strategy to reduce the transmission of the infection through prompt diagnosis and effective 
treatment of symptomatic TB patients who present at health care facilities, where strict supervision 
is based on recording individual patient data and their medicines taken during treatment period.

In 1985, the medical authority of Algeria, created the Service of Epidemiology and Preventive 
Medicine (SEMEP: Service d’Epidémiologie et MEdecine Préventive). The role of SEMEP is to 
co-ordinate and monitor health and prevention activities. SEMEP services work closely with the 
Department of Health and Population (DSP: Direction de la Santé et de la Population) for the collection 
of health information and its analysis. This is useful for statistical analysis of data, epidemiological 
interpretation, dissemination and exploitation of results. Although the SEMEP provides a great 
support to epidemiological monitoring, the large number and complexity of recorded data increase 
the difficulty to follow the spread of TB.

To demonstrate the value of our approach, we used data set obtained from the SEMEP of 
Mostaganem (Algeria). This data set consists of a set of locations situated in Mostaganem (Algeria). 
It records the details of individuals infected by tuberculosis from January, 2008 up to December, 
2012: a total number of 998 cases. This data is an Excel spreadsheet with 23 attributes to describe 
each record described in Table 1, where nine attributes were ignored following data mining steps 
(more details are given in the section 4.4).

The process as described in section 3 is divided into three steps:

1. 	 Realize TB Bio-PEPA model based on expert knowledge.
2. 	 Analyse TB data using data mining techniques if the simulated output does not match observed 

data.
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3. 	 Rebuild existing model taking into consideration the extracted pertinent information from the 
second step.

4.1. Interaction Expert/Developer
Figure 3 formulates a global schema of the TB model that incorporates treatment and reinfection 
based on expert knowledge. The host population is divided into the following epidemiological classes 
or subgroups: susceptible moves through to infected by pulmonary TB (TP) when he is diagnosed. 
The TP moves to one of the different states (recovered, died, Trt_comp, lost, failed and transferred). 
It is noted in Figure 3 that:

•	 Because the TB treatment just allows recovery and does not give immunity, the recovered 
individual comes back to the susceptible class.

•	 Because of treatment failure, the individual in the Failure state comes back to the infected TP state.
•	 Because lost individuals are no longer part of the treated population, they will return into the 

infected class.

The main parameters that drive these transitions are shown in Table 2 with their values, and 
formula used to calculate the values from TB data.

4.2. Bio-PEPA Modelling
The aim here is to express the TB model, illustrated in Figure 3, in Bio-PEPA and to analyse the results.

As shown in Figure 4, the Bio-PEPA model is composed in a modular way through the interactions 
between the processes by defining:

Parameters/rates (P, θ1, …, θ6): numeric rates (Figure 4 from line 1 to 8), calculated using the 
observed data or collected from the literature (Aparicio and Catillo-chavez, 2009; Keeling and 
Rohani, 2008), see Table 2.

Location (space): Bio-PEPA defines a “Location” parameter which describes the place where the 
population is situated. For our initial model, we consider our population as homogeneous within 
a unique space (location) “City” (see Figure 4 line 9).

Species and Functional rates (KineticLawOf). The species correspond to the compartments defined 
in Figure 3 (Susceptible, Infected, transferred, Failed, Lost, Trt_comp and recovered). Each 
species carries out activities to change their own levels or those of others they may interact 
with (see Figure 4 from line 17 to 24). The rate of change is defined by the functional rate (see 
Figure 4 from line 10 to 16). For example, the action Recovery (line 12) leads to an increase 
in Recovered species (line 20) using the “>>” operator, while it leads to a decrease in Infected 
species (line 18) using the “<<” operator. By using the operator ‘+’, the Infected species (line 
18) has a choice between different actions at each time step.

The last line of the model (line 25) is the model component, defining the initial sizes and the 
interaction between species.

4.3. Simulation and Analysis
Once the model is achieved, a series of simulations are carried out in the Bio-PEPA plug-in (Duguid 
et al., 2009) (100 simulations are performed: Two Way ANOVA followed by Tukey Multiple 
Comparisons showed that the mean responses were not statistically different when more simulations 
were performed). The simulation is of one year, starting at t=0, where only the susceptible individuals 
and infected by pulmonary TB individuals are present, and ending at t=364.
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Complete data series of five years are available, from 2008 to 2012. As some of Bio-PEPA 
parameters are calculated from observed data, Table 3 illustrates the period used according to the 
year of prediction. For example, to predict 2011, the average value of the set (2008-2009-2010) is 
considered to calculate parameters reported in Table 2.

To validate the model, the first simulation for observed data of 2008 is carried out and predicted 
data for 2009. A comparison is done between simulated (rounded mean) and observed data illustrated 
in histograms of Figure 5, for each class (died, failed, recovered, lost, transferred and Trt_comp).

As shown in Figure 5, the simulated model corresponds well to observed data. The histograms 
illustrate the state of individuals after 180 days of treatment. In order to strengthen the validity of 
these results, a χ2 goodness of fit test was performed at 5% significance level. The null hypothesis 
(H0) is that the observed data follows the same distribution as the simulated data while the alternative 
hypothesis (H1) is that the observed data follows some other unspecified distribution. The results of this 
analysis was χ2 = 0.381, degree of freedom = 3, p-value = 0.944. Thus, there is insufficient evidence 
at the 5% level to reject H0 in favour of H1, which confirms that observed data is not different to the 
predicted. In the rest of the paper we summarize this argument by writing that the simulated data is 
not statistically different from the observed data (χ2=x, degree of freedom=y, p-value=z). As there 
is no large variability between simulated and observed data, the optimization step is not required and 
the model is considered as an accurate one.

Moving on to 2010, further simulations (100 simulations) are carried out in the Bio-PEPA plug-
in. Figure 7 shows histograms of the state of individuals, who were detected as infected in 2010, 
after 180 days of treatment. The same Bio-PEPA model was used to carry out this simulation as 
for 2009, keeping the same rates. It is clearly shown that a large difference separates simulated data 
and observed data, particularly the Lost class (resp. Trt_comp class) where the gap is estimated at 9 
individual (resp. 9 individual). Nevertheless, the Lost state draws more attention than the Trt_comp 
state as it was under-predicted. It is noted that the Lost state is significant in both 2009 and 2010. As 
shown in Figure 5 and 7, the lost state is the largest group after recovered. Additionally, in 2010 our 
Bio-PEPA model predicts that the lost state characterizes 12% of infected when in the observed data 
it characterizes 23% of infected. This difference may mislead decisions by the epidemiologist. This 
state means that the patients are still infected and could cause potential infection in the population 
in the following years.

Thus, the Bio-PEPA model is inaccurate for 2010. At this step, as discussed in section 3, the 
principle of modelling and simulation is to apply the optimisation step.

4.4. Optimization
Deliberately, we apply manual optimisation first to better state its limitations and enhance the model 
with available information from either expert or literature. In this case, our expert observed the larger 
number of Lost in the observed data and proposed that the parameters may be adjusted. A series 
of experiments ranging over the flexible parameters: contact_ number and infection_period (see 
Table 2) show us that the results are insensitive to the balanced values of rates and converge to the 
same histograms in Figure 6. Therefore, what happened in 2010 that expert does not know? Which 
information is omitted from the simulated model? Which specific features could explain this large 
difference?

To refine the model and enrich the information given by the expert, data mining techniques 
are used. This process will not itself give a closer match to data, but it will explain what part of the 
population tends towards this lost state and helps us understand the underlying system. The model 
can then be revised accordingly.

WEKA (Waikato Environment for Knowledge Analysis, Hall et al., 2009) is a collection of 
machine learning algorithms for data mining tasks. WEKA contains tools for data pre-processing, 
classification, regression, clustering, association rules, and visualization. It is also well-suited for 
developing new machine learning schemes (Ou-yang et al., 2013).
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In this study WEKA is used to carry out experiments. Table 4 summarises the range of data set 
used for each data mining experiment. For example, if we are predicting the year 2010 in Bio-PEPA 
then the range of data set used in WEKA is from 2008 to 2010. According to the steps depicted in 
the section 3, the corresponding results are discussed below:

4.4.1. Data Cleaning and Data Transformation
By using either manual process or WEKA algorithms, some of irrelevant variables were removed and 
some others were transformed. In sum nine of them were removed and one transformed:

•	 “ID, First name, Last name, RecStatus” are not relevant to our analysis, and then removed 
manually.

•	 “DiagnoTEP and Preuve” do not help in diagnosis, as they concern extra-pulmonary tuberculosis, 
where in our study we focus on disease which spreads. Therefore, only pulmonary tuberculosis 
is considered.

•	 As the last action leads to remove all extra-pulmonary tuberculosis records, the “Loc” attribute 
as well “DiagnoTP” are referring to the only pulmonary tuberculosis, where their values do not 
vary at all, hence there were considered useless by WEKA filter and then removed.

•	 “MalAsso” for which 99% of records are not reported, and then considered as useless by WEKA 
filter.

•	 As “Age” is defined by a large number of possible values ranging from 3 to 94, discretisation was 
applied to reduce this number, where ages were transformed to nine groups using WEKA filter.

That leaves 14 attributes which could be significant. These were input to the feature selection 
and classification algorithms as described in Section 3.

4.4.2. Feature Selection and Classification
As argued in section 3.2, the Attribute Subset Evaluator is more suitable for this field. To analyse 
the performance of our approach, we compared five attribute Subset Evaluators combined with eight 
classifier algorithms, where the feature set resulting from each feature selection algorithm is assigned 
as an input to each classifier. In addition, the classification process is based on separated training and 
test data, as our data are limited due to the cleaning step undertaken above, a k-fold cross-validation 
(k =5, 10, 20, 25) algorithm is pre-applied (Saeys et al., 2007; Witten, 2011). This splits training and 
test data in different ways, to ensure we are not overfitting to training data.

In total, WEKA (Hall et al., 2009) runs 160 (5*8*4) experiments. Although this number of 
experiments seems staggering, WEKA automates the process and much more, WEKA repeats the 
process N times to give mean accuracy and standard deviation value. Data mining relies on additional 
parameters of the algorithms. We carried out a series of preliminary experiments: our recommendation 
is that the default values for WEKA parameters are used. These depend on our data (e.g. minimum 
number of objects: 2, confidence factor: 0.25, pruning: true). Results showed that the best accuracy 
was performed by running 10 times k-fold cross-validation, with k = 25. Indeed, splitting our dataset 
on 25 folds enables the fine grained heterogeneity of our data to be explored.

4.4.3. Validation
As identified in section 4.3, the lost state is the inaccurate part of our modelling; therefore, looking 
across our 160 experiments, we select classifiers reaching the highest class-wise accuracies particularly 
for the Lost state. In terms of feature selection algorithms, Filtered subset evaluator always provides 
the highest classification (for our data). In terms of classification algorithms, J48, J48Graft and 
LadTree algorithms reached the highest accuracy.
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The rules resulting from J48 and J48Graft are described below, where the condition expresses 
the pertinent attributes and the conclusion expresses the state of individual.

As can be observed, the features Bacil 1-3 and Daira are those pertinent features inducing the 
state of individual during treatment. Recall that the Lost state is the inaccurate part of our modelling, 
the conditions leading to the Lost state are the point of interest (see dashed rectangle in the rules 
above). Although this indicates Bacil 1-3 as a classifier, in fact Bacil 1-3 are used as the definition 
of Lost: if we fail to have all of these tests, then the subject is defined as lost. Therefore, these add no 
additional information either to the expert knowledge or how the higher number of Lost cases arise.

We conclude the model arising from J48 and J48Graft does not give useful information, and we 
consider the LadTree model, which has the next highest accuracy after J48 and J48Graft. The rules 
resulting from Ladtree algorithm, as seen below, produce a multi class in the conclusion of the rule 
with their predictive values rather one class as in J48 tree.

If (Bacil3= MM) Then
(-1.16,4.217,-1.159,-1.158,0.415,-1.155)
If (Bacil3 ≠ MM) Then
(0.643,0.376,-0.197,-0.632,0.49,-0.68)
| If (Bacil2 = MM) Then
(-0.769,2.585,-0.696,-0.66,0.192,-0.652)
| If (Bacil2 ≠ MM) Then
(0.343,-0.628,0.297,-0.008,0.141,-0.144)
| | If (Daira = Ain Tedles) Then
(-0.59,0.64,-0.008,0.777,-0.237,-0.581)
| | If (Daira = Kheireddine) Then
(0.526,-0.647,0.199,-0.794,0.116,0.6)

The Ladtree is based on decision nodes and prediction nodes, where a decision node refers to 
conditions in the rules above, and a prediction node refer to conclusions. As the LadTree algorithm 
is well known as a multiclass decision tree, the conclusion is expressed by a vector of predictive 
values corresponding to each class. In our example the predictive values refer respectively to: Lost, 
Recovered, Failed, Died, Trt_comp, Transferred.

Recall that our aim is to filter the branch reaching to the Lost state. In LadTree, we follow all 
paths leading to the Lost state for which all decision nodes are true (the “true” refers to the positive 
values expressed between brackets in the above rules). By maximising the sums of all predictive values 
corresponding to each branch, the best classifier is then selected. In our example the strongest classifier 
leading to the Lost state was from maximising the values (0.643, 0.643+0.343, 0.643+0.343+0.526). 
This result leads us to conclude that the attribute “Daira” is the main factor arising to this classifier.

The aim of analysing these conditions is not to predict TB, but to detect, extract and understand 
what is common in general to all TB individuals described in the database and in particular those 
that are lost.

Table 5 shows the Ladtree algorithm results depicting the class-wise accuracy and confusion 
matrix for six classes, where columns denote the instances in a predicted class and rows denote the 
instances in an actual class. The Recovered class yields highest accuracy (0.978) followed by the 
Lost class (0.811). It is clear that LadTree algorithm successfully classified and identified patients 
who are lost after the end of treatment.

As the aim of this research is to find out the determining factors for being lost, Table 5 and 
described rules strengthen the usefulness of “Daira” attribute.

In fact, the rules described above mean that the lost individual, infected by pulmonary TB, for 
whom the smear test 2 and 3 are either positive or unavailable, has more chance to be located in 
Daira of Kheireddine than in Daira of AinTedles. This suggests that a more refined model structured 
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on Daira could be more consistent with observed data, by integrating the selecting rules to the initial 
Bio-PEPA model. The next section describes this step in detail.

4.4.4. Optimisation of Bio-PEPA Model
Two stages are required prior to further simulation: restructuring the TB database according to the 
condition described in the last section, and updating Bio-PEPA model.

•	 Restructuring tuberculosis database: To make the TB database heterogeneous, it should be divided 
into two parts, those situated in Kheireddine and those situated in Ain Tedles.

•	 Updating Bio-PEPA model: As the main concepts of Bio-PEPA are: parameters, compartments, 
functional rate and species, updating the initial model requires us to update each one of these 
concepts.

Conveniently, Bio-PEPA allows species to be grouped in compartments. In the first model the 
compartment was based on one location “City”. Here, we split the “City” compartment into two 
sub-compartments corresponding to the Daira of interest which contains only two sub-locations: 
Kheireddine and Ain Tedles. The set of rates is essentially as before, but specialized to use only 
individuals and rules in the specified location from which the new values were calculated. These two 
distinguished compartments help us to follow each group separately in simulation. The full Bio-PEPA 
model is available online (Hamami, 2015).

The revised model can now be analysed using simulations (100 simulations, time period as 
before) and comparing to 2010 data to answer the questions: which part of the population makes the 
simulated model illustrated in Figure 6 different than the observed data? Further, which attribute is 
pertinent to conduct this analysis and detect the missing information?

Histograms in Figure 7 (resp. 8), illustrate comparison between simulated and observed data of 
individuals located at Ain Tedles (resp. Kheireddine), in 2010. As can be seen from Figure 7 (resp. 
Figure 8), the gap between simulated and observed data is more important for Lost individuals 
located in Kheireddine, than those located in Ain Tedles. By comparing them to the observed number 
of infected in each location, the gap for those located in Ain Tedles is 2% (with number of lost in 
simulated data 5 compared to 3 in observed data), and the gap for those located in Kheireddine is 
30% (with number of lost in simulated data 5 compared to 15 in observed data). Figure 7 and 8 show 
clearly that the rest of classes matched well between observed and simulated data with insignificant 
differences. The observed data is statistically analysed at 5% significance level (with χ2 = 0.862, 
degree of freedom=2 and p-value = 0.650 for Ain Tedles and χ2=5.742, degree of freedom = 2, 
p-value = 0.057 for Kheireddine).

Further, this simulation explains that group located in Kheireddine is the cause of the discrepancy 
between simulated and observed data which involves that more information is required to correctly 
predict an epidemic state. In general, in our approach, data mining can be repeated to extract further 
information from the restructured dataset. For the TB example the data is limited - just 40 instances for 
Kheireddine location. No new information was issued except Bacil 1-3; and these are not useful. By 
using symbolic decision tree induction, we have refined the initial model and more tightly identified 
the problem area which helps the expert to undertake the next step, to further investigate this particular 
portion of population and collect additional useful knowledge. Revealing this direct relationship 
between location and the lost state will lead the expert to investigate the district of Kheireddine more 
closely, and make a better decision.

By identifying the specific problem area, it is clearer now why the manual optimisation 
undertaken in section 4.4 did not lead to a more accurate result. The population in the global model 
was homogeneous and well mixed, with only one global rate of infection. By re-estimating this rate, 
it is impossible for the initial model to estimate accurately those lost in Kheirddine without leading to 
an imperfection for those lost located in Ain Tedles, and vice-versa. By defining the rate of infection 
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for each location, the revaluation using the range values defined in Table 2 is more accurate for that 
location. Indeed, the optimisation considers rates (rate of infection and rate of lost) related to the 
lost state in Kheireddine Location without changing those at Ain Tedles location. It is worth noting 
that the major concern in those rates is actually increasing the contact rate within population of 
Kheireddine. The choice was argued both by the formula defining the rate of infection illustrated in 
Table 2 and the capability to re-evaluate formula parameters. As infection probability is estimated 
from our data, this leads to re-evaluate the contact rate, which was increased from 27 to 29 for 2010. 
Results for updated model of the year 2010 are illustrated in Figure 9. Our histograms show better 
results when comparing simulated data to observed data, as a consequence of increasing the related 
rates which were under-estimated. Furthermore, to assess the global perspective of the last results 
corresponding to Kheireddine location (Figure 9), they were merged to those corresponding to Ain 
Tedles location (Figure 7) and compared to the global observed data (histograms in the right side of 
Figure 6). The final histograms in Figure 10 show clearly the positive impact of optimisation on our 
Bio-PEPA results. Recall that simply changing the parameter values (without changing the structure 
of the model) is not sufficient. Our study highlights the utility of decision tree induction in uncovering 
relevant features in the data, but also the requirement to couple this with constant reassessment of 
parameter values to achieve robust modelling results. The key element is that both of these are strongly 
tied to the nature of the disease, and the data collected.

In order to emphasize the generalized capability of our approach, the same process and simulations, 
as done for 2010, are carried out in the Bio-PEPA plug-in, for both years 2011 and 2012 by considering 
them as blind data, to show the refined model fits other years.

To predict 2011 (resp. 2012), the same initial Bio-PEPA model was used to carry out this 
simulation as for 2009 and 2010 keeping the same species and functions and varying rates depending 
on information extracted from 2008, 2009 and 2010 (resp. From 2008 to 2011). As shown in Figure 
11 the simulated model corresponds well to observed data. The histograms illustrate the state of 
individuals, who were detected as infected in 2011, after 180 days of treatment. The statistical analysis 
(χ2=1.550, degree of freedom = 3, p-value = 0.671) shows that the observed data is statistically 
similar to the simulated data at 5% significance level.

If (BACIL3 = NF)
| If (BACIL2 = NF)
| | If (BACIL1 = NF) Then Lost
| | If (BACIL1 = MM) Then Recovered
| | If (BACIL1 = MP)
| | | If (DAIRA = AIN TEDLES) Then Failed
| | | If (DAIRA = KHEIR EDDINE) Then Lost
| | If (BACIL1 = MP+) Then Lost
| If (BACIL2 = MM) Then Recovered
| If (BACIL2 = MP+)Then Transferred
If (BACIL3 = MM) Then Recovered
If (BACIL3 = MP) Then Failed

As for 2009, this simulation predicts well what happened in 2011, which leads us to strengthen 
our opinion that the Bio-PEPA model works well when epidemic knowledge is correctly stated. 
Contrariwise, for 2012 it is clearly shown in Figure 12 that only for the Lost state a large difference 
separates simulated data and observed data, as it is under-predicted. The same steps were undertaken, 
as it was done for 2010, to extract pertinent information from decision tree induction, thus the initial 
model is refined by integrating Daira attribute extracted from the resulting rules as shown above.

Results for the updated model are illustrated in Figure 13 (resp. 14). Histograms show comparison 
between simulated and observed data of individuals located at Ain Tedles (resp. Kheireddine), in 2012. 



International Journal of Information Systems in the Service Sector
Volume 9 • Issue 2 • April-June 2017

84

As can be seen from these Figures, the gap between simulated and observed data is more important 
for Lost individuals located in Kheireddine than those located in Ain Tedles. By comparing them to 
the observed number of infected in each location, the gap for those located in Ain Tedles is 6% (with 
5 lost in simulated data rather than 10 in observed data), and for those located in Kheireddine is 14% 
(with 4 lost in simulated data rather than 17 in observed data) (see Figure 14).

The refined model, enriched by Daira attribute, identified more specifically the area of difference 
with the data of 2012. That is, we have used the information of 2010 to create a model which 
corresponds for other years not considered in our data mining step. Independently, we applied decision 
tree induction for 2012 to confirm the use of the Daira attribute.

Results achieved by using the same set of feature selection algorithms combined with classification 
methods, define J48 algorithm as the most accurate by using 20-fold cross-validation. According 
to Table 6 depicting the class-wise accuracy and confusion matrix for six classes, the Recovered 
class yields higher (0.996) followed by Lost class (0.904). It is clear that J48 algorithm successfully 
classified and identified patients who are lost after the end of treatment. It is clear that J48 algorithm 
outperformed for the 2012 data comparing to the 2010 data.

As the aim of this research is to find out the determining factors for being lost, the rules defined 
above reveal the pertinent attributes resulting from use of the Filtered Subset Evaluator and J48 
classifier.

It is clear that Daira attribute remains the most pertinent information extracted from tuberculosis 
dataset.

Further, based on assumptions made by the expert for 2010 concerning strong influence that the 
Lost state and Kheireddine location have on contact rate, the latter was increased from 27 to 30. The 
corresponding results are illustrated in Figure 15.

The analysed histograms validate the usefulness of increasing the related rates which were 
under-estimated.

We also performed the merging process between the last histograms depicting simulated data 
for Kheireddine location (Figure 15) and those for Ain tedles Location (Figure 13), with the aim of 
comparing the merged histograms to the global observed data (histograms in the right side of Figure 
12).

The final histograms in Figure 16 show better fitting between simulated and observed data 
compared to the first model results.

These results strengthen our assumptions that the expert missed important information that could 
enrich our Bio-PEPA prediction for both years 2010 and 2012. It is clear that something happened in 
Kheireddine location during 2010 and 2012, leading to perform a specific optimisation for a specific 
part of population rather than refining parameters of the whole population. Even if, we succeed to 
achieve an accurate model comparing to the observed data, the expert should investigate more research 
to understand really what happened at Kheireddine location which leads to this group of lost. At that 
time, our model can be subject for further future predictions.

5. CONCLUSION

In this paper we have presented results demonstrating the usefulness of combining data mining with 
Bio-PEPA modelling in the epidemiological field. We have done this by creating a framework in 
which data mining and Bio-PEPA modelling can be used together to better understand the mechanisms 
of detection and spread of epidemics, and by demonstrating its application to TB disease to identify 
influencing factors and their force. Thus we have met the objective set out at the beginning.

More specifically, we carried out a series of simulations to predict outbreaks in 2009, 2010, 2011 
and 2012. The results showed that there is clearly variation between those different years. For 2009 
and 2011, the initial prediction corresponded well to observed data, which means that all information 
used was sufficient to reproduce an accurate model. Conversely, for 2010 and 2012 the results showed 
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that the Bio-PEPA model ought to be enriched by new information (unknown by the expert). This 
is to be expected: variation within the system and unexpected future circumstances mean that the 
past is not always a good predictor of the future. However, using decision tree induction at this point 
helped to uncover which portion of the population should be subject to more investigation. This 
process was achieved by experimenting with eight decision tree classifiers combined with five feature 
selection algorithms, where the accuracy of classification reached to 76.41%. This rate is relatively 
low in data mining terms: this is due to our rather small, highly variable dataset. We therefore used 
accuracy enhanced by the true positive rate as a way of qualitatively identifying pertinent features to 
incorporate in our Bio-PEPA model. It is important to state that by analysing all dataset from 2008 
to 2012 the accuracy was increased by 3%. In terms of feature selection algorithms and classifiers, 
the filtered subset evaluator yielded the highest accuracy for all classifiers where the best classifiers 
were Ladtree classifier for 2010 and J48 classifier for 2012. The results show that the most appropriate 
feature extracted is “Location”. This pertinent attribute leads to divide the Bio-PEPA model into two 
parts: “Kheireddine” location and “Ain tedles” location. It is clear that the Kheireddine location is 
the principal part of the model where the developer should parameterize parameters differently to 
the rest of the model. In addition, it suggests to the expert subareas and subsets he should explore to 
make the right decision.

The last step in this experiment, based on expert hypothesis, was to prove the influence of the 
Location attribute on the infection rate by inferring the number of contacts through experiments.

By comparing our analysis to other modelling and simulation works, as done by Aparicio and 
Castello-chavez (2009), when the simulated model does not fit with observed data, it is better to use 
pertinent parameters extracted from data mining than to select by inspiration. Aparicio and Castello-
chavez (2009) argued in their last work, the importance of modelling age and its influence on the 
number of contacts. The parameters used for these attributes are drawn from a literature review. 
The question is: are those parameter values ranges the right ones? And are there other features more 
important than this one? For example, if the ranges of age groups resulting from expert analysis are not 
clustered correctly then significant and pertinent information will be hidden from the expert. As argued 
by Anderson and May (1991): “even if using a roughly flat age distribution in the host population had 
large impact on the force of infection for a specific period, this could be an unreasonable assumption 
for another period”. Further, in our study the age was among features defining TB data, but at no 
point was it depicted as the pertinent one by data mining. Through the use of decision tree induction, 
medical experts can detect relevant paths and even anomalies better than just human observation of 
datasets. By using Bio-PEPA modelling and simulation tools, we were able not only to validate the 
usefulness of extracting rules for the epidemiological study, but also to design the patterns which 
help to identify which, among a series of parameters, is the cause of an epidemic. By doing this, 
Bio-PEPA with symbolic induction decision tree aids the decision making of the epidemiologist.

In this study we proved the performance of using data mining at optimisation step in the existing 
computational model gaining on time and complexity.

This work is the first step in showing that data mining techniques generally can be used to 
support formal modelling. In future work we plan to optimise a selection of parameters affecting 
classifier performance and to carry out a large comparative study of all the data mining techniques, 
including association rules and clustering algorithms, as well as combining a set of classifiers, and 
their combination with our modelling approach. This will expand the range of measures used to 
select new content for our formal models. That is, rather than simply using accuracy rate (as here) 
as the principal measure to choose the best classifier, we can use information about clusters and 
associations to enhance the model.
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APPENDIX

Figure 1. Bio-PEPA model component

Figure 2. Modelling and simulation process
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Figure 3. Simplified tuberculosis model

Figure 4. Tuberculosis Bio-PEPA Model



International Journal of Information Systems in the Service Sector
Volume 9 • Issue 2 • April-June 2017

92

Figure 5. Histograms for tuberculosis model for 2009

Figure 6. Histograms for tuberculosis model for 2010
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Figure 7. Histograms for tuberculosis model for Ain Tedles 2010

Figure 8. Histograms for tuberculosis model for Kheireddine 2010
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Figure 9. Updated tuberculosis model for Kheireddine Location 2010

Figure 10. Final Histograms for tuberculosis model for 2010
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Figure 11. Histograms for tuberculosis model for 2011

Figure 12. Histograms for tuberculosis model for 2012
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Figure 13. Histograms for tuberculosis model for Ain Tedles Location 2012

Figure 14. Histograms for tuberculosis model for Kheireddine Location 2012
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Figure 15. Updated tuberculosis model for Kheireddine Location 2012

Figure 16. Final Histograms for tuberculosis model for 2012
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Table 1. Attributes and description

Attributes Description

Attributes used in the study 

Age Age of individual

Sexe Male / Female

Mois month of detection

Trim season of detection

Annee year of detecting disease

Com City

Daira municipality

adress Flat nimber, Zip code, etc.

Date_Debut_TRT Date of starting treatment

Typmal New/Relapse/Failure/Other

Bacil1, Bacil2, 
Bacil3

Baciloscopy1, Baciloscopy 2, Baciloscopy 3. 
MM: negative, MP: positive, 
known as microscopy for Bacilli, test performed during six months of treatment by using a 
microscope to detect bacteria of tuberculosis in sputum samples. This test is used to manage 
mycrobacterial infections of tuberculosis.

AretTRT State of patient at the end of treatment period: 
Lost: individual diagnosed but not treated, failed: treated but not recovered, Trt_comp: 
completed treatment without proving recovery, died, transferred: resistant TB, recovered.

Attributes not used in the study 

ID, First name, 
Last name 
RecStatus 
Loc 
DiagnoTP 
DiagnoTEP 
Preuve 
MalAsso

Identifier, first name of patient, 
last name of patient 
national identity number 
pulmonary or Extra pulmonary tuberculosis 
Patient diagnosed as a pulmonary tuberculosis Patient diagnosed as extra-pulmonary tuberculosis 
Examination of Extra pulmonary tuberculosis 
Other disease related to the record
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Table 2. Model Parameters

Parameter Description Value Formula

p 
Rate of developing active 
pulmonary tuberculosis from 
susceptible state

5.4 e-8 (Contact _ Number / Infection_Period)* Infection_Probability 1 (Keeling 
and Rohani, 2008).

θ 1 Transfer rate 0.1 e-3 (1/ Infection_Period) * Transfer _Probability1 (Keeling and Rohani, 2008).

θ 2 Failure rate 3.7 e-4 (1/ Infection_Period) * Failure_Probability

θ 3 Lost rate 8.5 e-3 (1/ Infection_Period)* Lost _Probability1

θ 4 Complete treatment rate 7.8 e-4 (1/ Infection_Period)* Treatment_completed_Probability

θ 5 Death rate 1.9 e-4 (1/ Infection_Period)* Death_Probability1

θ 6 Recovery rate 4 e-4 (1/ Infection_Period)* Recovery_Probability1

ηt Rate of recovered individual moving 
to susceptible state 1 All recovered move to Susceptible state.

ɳ1 Rate of failure state transiting to 
infected TP state 1 All failed move to Infected state

ɳ Rate of lost transferred to Infected 
state 1 All lost move to Infected state

Contact Number Contact with one infected case 27 Range over the interval [7,30]: possible freedom to vary these to fit 
observed data (Aparicio and Castillo-chavez, 2009)

Infection Period 
(month) 

The period during which the virus 
can be transmitted 6 Range over the interval [6,24]: possible freedom to vary these to fit 

observed data (Aparicio and Castillo-chavez, 2009)

1the probabilities are calculated from observed data.

Table 3. Description the uses of data by year in Bio-PEPA process

Year of prediction 2009 2010 2011 2012

Set of years used 2008 2008-2009 from 2008 to 2010 from 2008 to 2011

Table 4. Description the uses of data by year in data mining process

Year of prediction 2010 2012

Set of years used From 2008 to 2010 from 2008 to 2012
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Table 5. Confusion matrix and class wise accuracy of Ladtree algorithm

Predicted classes

Class label Died Failed Recovered Lost Transferred Trt_comp

Died 0 0 1 7 0 0

Failed 0 0 2 10 0 4

Recovered 1 0 136 0 0 2

Lost 0 1 1 30 0 5

Transferred 0 0 1 3 2 0

Trt_comp 0 1 12 15 1 5

True positive rate   0 0 0.978 0.811 0.333 0.147

False Positive Rate 0.004 0.009 0.168 0.172 0.004 0.053

Table 6. Confusion matrix and class wise accuracy of j48 algorithm

Predicted classes

Class label Died Failed Recovered Lost Transferred Trt_comp

Died 0 0 1 11 1 0 

Failed 0 5 4 10 0 0 

Recovered 0 0 227 0 1 0 

Lost 0 1 6 66 0 0 

Transferred 0 1 1 2 3 0 

Trt_comp 0 0 19 33 1 0 

TP rate   0 0.005 0.996 0.904 0.429 0 

FP Rate 0 0.263 0.188 0.175 0.008 0 



International Journal of Information Systems in the Service Sector
Volume 9 • Issue 2 • April-June 2017

101

Dalila Hamami is a PhD student at Computing Science Department, Oran University (Algeria) in collaboration with 
School of Natural Science, Stirling University (Stirling). She completed her Master’s in Computing science in 2007. 
Her research interests include modelling, simulation, data mining and optimization and decision support systems. 
She is currently assistant lecturer at Computing science and mathematics department, University of Abdelhamid 
Ibn Badis, Mostaganem, Algeria.

Baghdad Atmani is a professor of Computing Science at the University of Oran. His field of interests are Data Mining 
and Machine Learning Tools. His research is based on Knowledge Representation, Knowledge-based Systems 
and CBR, Data and Information Integration and Modelling, Data Mining Algorithms, Expert Systems and Decision 
Support Systems. His research is guided and evaluated through various applications in the field of control systems, 
scheduling, production, maintenance, information retrieval, simulation, data integration and spatial data mining.

Carron Shankland is a professor of Computing Science at the University of Stirling, and deputy head of the school of 
Natural Sciences. Her research lies in the intersection of computer science, mathematics and biology: understanding 
the behaviour of biological systems through mathematical and computational models. Her models (in process 
algebra) can describe systems at a high level of abstraction as networks of communicating individuals, scaling 
up to the emergent population dynamics. Her group has worked across a range of biological systems (disease 
dynamics, immunological systems, collective dynamics of cells, cell signaling response to cancer therapies) as 
well as in computer networks and protocols. In addition, her group is developing an exciting technique combining 
genetic programming with modelling to produce models directly from experimental data. Prof Shankland leads 
activities in the modelling and abstraction theme in the Scottish Computing community, and nationally co-leads 
the POEMS network linking modelling to healthcare technology.



Please recommend this publication to your librarian
For a convenient easy-to-use library recommendation form, please visit:
http://www.igi-global.com/IJISSS

Volume 9 • Issue 2 • April-June 2017 • ISSN: 1935-5688 • eISSN: 1935-5696
An official publication of the Information Resources Management Association

All inquiries regarding IJISSS should be directed to the attention of:
John Wang, Editor-in-Chief • IJISSS@igi-global.com

All manuscript submissions to IJISSS should be sent through the online submission system:
http://www.igi-global.com/authorseditors/titlesubmission/newproject.aspx

Business services • Creative problem solving • Customer value and customer relationship management • Data 
warehousing and mining in services • Decision-making under uncertainty • Decision-support systems • E-business 
in service industries • Economic analysis and organizational behavior • Forecasting, planning, scheduling, 
and control • Green service and sustainability • Hospitality and tourism information systems • Information 
technology in services • Knowledge Management • Logistics network configuration • Matching supply with 
demand • Multiple-objective decision making • Optimization of service systems • Performance measures and 
quality control • Public service management • Revenue and risk management • Self-service systems • Service 
business models • Service information systems • Service practice, productivity, and innovation • Service systems 
simulation • Service-oriented architecture • Service-oriented computing • Solid or soft modeling and analysis • 
Strategic information systems and strategic alliances • Supplier relationship management • System analysis of 
service industry • Web Services

Coverage and major topics
The topics of interest in this journal include, but are not limited to:

The International Journal of Information Systems in the Service Sector (IJISSS) provides a significant 
channel for practitioners and researchers (from both public and private areas of the service sector), software 
developers, and vendors to contribute and circulate ground-breaking work and shape future directions for research. 
IJISSS assists industrial professionals in applying various advanced information technologies. It explains the 
relationship between the advancement of the service sector and the evolution of information systems.

Mission

Ideas for Special Theme Issues may be submitted to the Editor(s)-in-Chief

International Journal of Information Systems in the Service Sector

Call for Articles




