
P R O C E S S A L G E B R A W I T H L AY E R S : A L A N G U A G E F O R

M U LT I - S C A L E I N T E G R AT I O N M O D E L L I N G

Erin Gemma Scott

Thesis submitted for the degree of

Doctor of Philosophy

Computing Science and Mathematics

University of Stirling

April 2016

A B S T R A C T

Multi-scale modelling and analysis is becoming increasingly important and relevant. Analysis

of the emergent properties from the interactions between scales of multi-scale systems is

important to aid in solutions. There is no universally adopted theoretical/computational

framework or language for the construction of multi-scale models. Most modelling approaches

are specific to the problem that they are addressing and use a hybrid combination of modelling

languages to model specific scales. This thesis addresses if process algebra can offer a unique

opportunity in the definition and analysis of multi-scale models.

In this thesis the generic Process Algebra with Layers (PAL) is defined: a language for

multi-scale integration modelling. This work highlights the potential of process algebra to

model multi-scale systems. PAL was designed based on features and challenges found from

modelling a multi-scale system in an existing process algebra. The unique features of PAL

are the layers: Population and Organism. The novel language modularises the spatial scales

of the system into layers, therefore, modularising the detail of each scale. An Organism can

represent a molecule, organelle, cell, tissue, organ or any organism. An Organism is described

by internal species. An internal species, dependent on the scale of the Organism, can also

represent a molecule, organelle, cell, tissue, organ or any organism. Populations hold specific

types of Organism, for example, life stages, cell phases, infectious states and many more. The

Population and Organism layers are integrated through mirrored actions.

This novel language allows the clear definition of scales and interactions within and between

these scales in one model. PAL can be applied to define a variety of multi-scale systems. PAL

has been applied to two unrelated multi-scale system case studies to highlight the advantages

of the generic novel language. Firstly the effects of ocean acidification on the life stages of the

Pacific oyster. Secondly the effects of DNA damage from cancer treatment on the length of a

cell cycle and cell population growth.

1

A C K N O W L E D G E M E N T S

I would now like to thank the people that made up the "layers" of my life during this project.

I wish to acknowledge and thank my brilliant supervisor Professor Carron Shankland for

her constant support, enthusiasm, encouragement, patience and guidance. She has taught me

that every question is an open ended opportunity. I also wish to thank my second supervisor

Dr Andy Hoyle for his support and mathematical knowledge. He had the unique ability to

answer any of my questions no matter how large or small with a simple drawing of a graph.

Their supervision has been greatly appreciated and the work presented in this thesis was

greatly improved thanks to their valuable advice.

I express my thanks to my SICSA supervisor Professor Jane Hillston for her knowledge

and assistance in the formulation of syntax and semantics of a process algebra language. I am

also grateful to Dr Allan Clarke for his knowledge and advice in Bio-PEPA and the Bio-PEPA

plug-in.

My thanks also go to Dr Andrea Degasperi for his knowledge and assistance with his multi-

scale process algebra language. Thanks also to Mr James Nicol for providing the radiation

data for the cell cycle model and Dr Rene Robert for providing the data for the Larva model.

Further thanks go to the members of the administrative team in the Computing Science

and Mathematics Department: Grace, Linda and Gemma.

Finally, my heartfelt thanks go to my family and friends for their continuous love and

support. To Evelyn Humphrey for your praise and giving me a great many laughs throughout

the years. To Sadie Flanagan for your cheer, continuous questions and genuine interest in my

work. To Aunt Frances and Uncle Karl for all your words of encouragement, advice and hugs

from Pippa the salty sea dog. Finally to my Mum and Dad, Mary and Colin, for all your help

being there for me through the highs and lows of this process. You both are an inspiration

to me and are the ones who have encouraged me to reach a point in my life I never thought

possible. This thesis is dedicated to you.

2

C O N T E N T S

1 introduction and literature review 12

1.1 Introduction . 12

1.2 Background . 14

1.3 Mathematical Modelling . 15

1.3.1 Ordinary Differential Equations . 15

1.3.2 Dynamic Energy Budget Modelling . 15

1.3.3 European Regional Seas Ecosystem Model 17

1.4 Computational Modelling . 18

1.4.1 Individual-Based Modelling . 18

1.4.2 Petri Nets . 20

1.4.3 Process Algebra . 22

1.4.4 Other Modelling Formalisms . 33

1.5 Background case study: the Pacific oyster . 35

1.5.1 Juvenile and Adult life stage experiments 37

1.5.2 Larval life stage experiments . 39

1.6 Thesis Outline . 42

2 converting dynamic energy budget models to bio-pepa , illustrated

by a pacific oyster case study 44

2.1 Translating the Pacific oyster DEB model to Bio-PEPA 44

2.1.1 Conversion of the state variables to agents 45

2.1.2 Adding the forcing variables into the model 49

2.1.3 Changing the units of specific parameters 50

2.1.4 Addition of dry flesh weight equation for comparison 50

2.2 Generic Translation of DEB models to Bio-PEPA 51

2.3 Model Analysis . 52

2.3.1 Comparison analysis results . 52

2.3.2 Simulation distributions analysis of the Bio-PEPA model 56

2.3.3 Parameter Estimation . 57

2.4 Summary . 57

3 larva and integrated life stage bio-pepa models 59

3.1 Larva Model . 59

3.1.1 Translating the Larva Pacific oyster DEB model to Bio-PEPA 59

3.1.2 Analysis . 60

3.2 Integrated life stage model . 66

3

3.2.1 Linking the life stages . 66

3.2.2 Analysis . 68

3.3 Summary . 69

3.4 Discussion . 69

4 pal: process algebra with layers 71

4.1 Layers of the language: Population and Organism 71

4.1.1 Population . 74

4.1.2 Organism . 74

4.2 Process Algebra with Layers . 74

4.2.1 The Syntax of PAL . 74

4.2.2 The Semantics of PAL . 76

4.3 Simple model example using PAL . 84

4.3.1 Model configuration . 84

4.3.2 Transitions . 84

4.3.3 Underlying CTMC of simple model . 90

4.4 Comparison of PAL with other Process Algebras 91

4.4.1 psPAH comparison with PAL . 91

4.4.2 PEPA Nets comparison with PAL . 93

4.5 Summary . 95

5 application of pal to the pacific oyster life stage case study 96

5.1 Introduction to case study . 96

5.2 PAL model . 97

5.3 Model Analysis . 103

5.3.1 Larval Length . 104

5.3.2 Population growth . 104

5.4 Summary . 105

6 application of pal to cell cycle and dna damage case study 106

6.1 Introduction to case study . 106

6.2 PAL model . 108

6.3 Model Analysis . 113

6.3.1 Simulation Distributions Analysis of Average Length of a cell cycle . . 113

6.3.2 Time Series Analysis of cell Population Growth 114

6.3.3 Comparison with wet laboratory data survival fraction results 115

6.4 Summary . 116

7 conclusion 118

7.1 Thesis summary . 118

7.1.1 Characteristics of PAL . 119

7.2 Future work . 120

4

7.3 Summary . 121

a appendix a 122

b appendix b 126

5

L I S T O F F I G U R E S

Figure 1.1 Strategies for modelling marine ecosystems [10]. 13

Figure 1.2 Generic DEB model schematic for a multicellular organism. Circles

represent sources and sinks, squares represent state variables and arrows

indicate metabolic processes. 16

Figure 1.3 European Regional Seas Ecosystem Model Example [3]. 17

Figure 1.4 Standard organism used as a base in the ERSEM [13]. 18

Figure 1.5 Example Bio-PEPA model of a genetic network [21]. 25

Figure 1.6 Genetic Network Model [21]. Agents are in red and actions are shown

with their associated rates. 26

Figure 1.7 Composed action a[x] presents layer action a that operates within the

current scale and hook action x that operates between scales [24]. . . . 29

Figure 1.8 Example psPAH model. Please note the layout is used to indicate sections

and is not part of the syntax. 29

Figure 1.9 Mobile agent system [30]. 31

Figure 1.10 Example PEPA nets model [30]. 32

Figure 1.11 Life cycle model of the Pacific oyster adapted from [1]. 36

Figure 1.12 Temporal variations of phytoplankton concentration and temperature,

in experiments A (top panel); B (middle panel) and C (lower panel)

reproduced from [59]. 37

Figure 1.13 Comparison of observations ± SD (dots) and DEB model simulation

(line) of Dry Flesh Weight in the Pacific oyster in Experiment B for each

stock and Experiment C (Thau lagoon). Note that the sharp drops that

can be observed on simulation lines indicate spawning event predicted

by the DEB model [59]. 38

Figure 1.14 Comparison of observations ± SD (dots) and DEB model simulation

(line) of growth for Pacific oyster Larvae in experiment 1 under different

temperatures: 17 (a), 22 (b), 25 (c), 27 (d) and 32
◦C (e). The other

environmental conditions were optimal: food density of 1400 µm3µl−1

[67]. 40

6

Figure 1.15 Comparison of observations ± SD (dots) and DEB model simulation

(line) of growth for Pacific oyster Larvae in experiment 2 under different

food density conditions: 70 (a), 280 (b), 450 (c), 960 (d), 1000 (e), 1900

(f), 2100 (g) and 3300 µm3µl−1 (h). The other environmental conditions

were optimal: temperature of 25
◦C [67]. 41

Figure 2.1 Pacific oyster Bio-PEPA model. See Table 2.1 for other parameters. . . . 47

Figure 2.2 State diagram for the behaviour of the tracker component. 48

Figure 2.3 Temporal variations of the forcing variables: temperature and phyto-

plankton in Experiment A and B. DEB model values on left (reproduced

from Pouvreau et al [59]) and Bio-PEPA values on right. The scales are

phytoplankton concentration on the left, and temperature on the right

of each graph. 50

Figure 2.4 Experiment A comparison of total dry flesh weight results of DEB model

left [59] and Bio-PEPA model (ODEs and stochastic results) right. DEB

model includes comparison of observations ± SD (dots). The error bars

show the standard deviation in the observed data. Note that the sharp

drops that can be observed on simulation lines indicate spawning events

predicted by the models. 53

Figure 2.5 Experiment B comparison of total dry flesh weight results of DEB model

left [59] and Bio-PEPA model (ODEs and stochastic results) right. DEB

model includes comparison of observations ± SD (dots). The error bars

show the standard deviation in the observed data. Bio-PEPA graph

horizontal axis tick marks indicate 15 days and month letters are at the

start of each month. Note that the sharp drops that can be observed on

simulation lines indicate spawning events predicted by the models. . . 55

Figure 2.6 Experiment B assimilation of energy against maintenance costs. DEB

model results left reproduced [59]. 55

Figure 2.7 Simulation distributions for experiment A (left) and B (right). Temporal

variations of the forcing variable temperature for each experiment is

also shown. The scales are CDF and PDF percentage values on the left,

and temperature on the right hand side of each graph. 56

Figure 3.1 Experiment 1 comparison of Larval Length results of DEB model left [67]

and Bio-PEPA model (ODEs and stochastic results) right under different

temperatures: (a) 17, (b) 22, (c) 25, (d) 27 and (e) 32
◦C. The DEB model

includes comparison of observations ± SD (dots). 63

7

Figure 3.2 Experiment 2 (part 1 of 2) comparison of Larval Length results of DEB

model left [67] and Bio-PEPA model (ODEs and stochastic results) right

under different food density conditions: (a) 70, (b) 280, (c) 450 and (d)

960 µm3µl−1. The DEB model includes comparison of observations ±

SD (dots). 64

Figure 3.3 Experiment 2 (part 2 of 2) comparison of Larval Length results of DEB

model left [67] and Bio-PEPA model (ODEs and stochastic results) right

under different food density conditions: (e) 1000, (f) 1900, (g) 2100 and

(h) 3300 µm3µl−1. The DEB model includes comparison of observations

± SD (dots). 65

Figure 3.4 Pacific oyster integrated life stage Bio-PEPA model switching mechanism

for Larva to Juvenile-Adult life stage. 67

Figure 3.5 Total dry flesh weight for oysters produced in July, September and

January. The sharp drops show the first spawning events of these oysters. 68

Figure 4.1 Schematic of Population and Organism Layers. Organism numbering

should be read as follows: O12 is Organism 2 of Population 1. 72

Figure 4.2 Example transitions of a PAL model. Organisms which are invovled in

transitions are highlighted in bold. 73

Figure 4.3 Syntax of PAL. 75

Figure 4.4 Semantics of PAL. 77

Figure 4.5 Semantics of PAL. 78

Figure 4.6 Semantics of PAL. 79

Figure 4.7 Rules for Bio-PEPA included in the semantics of PAL. These rules are

presented in [21] and are repeated here for convenience and completeness. 80

Figure 4.8 The nine reachable states of the toy PAL model in Figure B.1. 83

Figure 4.9 Reachable states and transitions of the toy PAL model in Figure B.1. s

and r represent Population actions switch and remove respectively. . . 83

Figure 4.10 Formal Definition of example model in PAL Part 1 of 2. Please note the

layout is used to indicate sections and is not part of the syntax. Also

note population actions that mirror internal organism actions get their

rate from the internal organism action. 85

Figure 4.11 Formal Definition of example model in PAL Part 2 of 2. Please note the

layout is used to indicate sections and is not part of the syntax. Also

note population actions that mirror internal organism actions get their

rate from the internal organism action. 86

Figure 4.12 Diagrams of all transition examples in the simple PAL model. 87

Figure 4.13 Application of rules for life stage transition example. 88

Figure 4.14 Application of rules for reproduction transition example. 89

8

Figure 4.15 Application of rules for death transition example. 90

Figure 4.16 Initial model state and reachable states in first transition 91

Figure 4.17 Simple schematic version of the PEPA Net. 93

Figure 5.1 Pacific Oyster PAL Model Part 1 of 4. 99

Figure 5.2 Pacific Oyster PAL Model Part 2 of 4. 100

Figure 5.3 Pacific Oyster PAL Model Part 3 of 4. 101

Figure 5.4 Pacific Oyster PAL Model Part 4 of 4. 102

Figure 5.5 Comparison of PAL model results to integrated Bio-PEPA model from

Chapter 3. 103

Figure 5.6 Time Series Analysis of Larval length from day 2 to 6. 104

Figure 5.7 Time Series Analysis of oyster Population Growth. 105

Figure 6.1 Cell Cycle PAL Model Part 1 of 3. 109

Figure 6.2 Cell Cycle PAL Model Part 2 of 3. 110

Figure 6.3 Cell Cycle PAL Model Part 3 of 3. 111

Figure 6.4 Simulation Distributions PDF values of the Length of a cell cycle. . . . 113

Figure 6.5 Time Series Analysis of total cell Population Growth. 114

Figure 6.6 Time Series Analysis of cell Population Growth G and D cells. 115

Figure 6.7 Comparison results between PAL model population and wet laboratory

radiation treatment results. 116

Figure A.1 Pacific oyster Larva Bio-PEPA model. See Table A.1 for other parameters.123

Figure A.2 Integrated life stage Bio-PEPA model Part 1 of 2. The prefix L and JA on

the parameter names refer to parameter values in Table A.1 and Table

2.1 respectively. 124

Figure A.3 Integrated life stage Bio-PEPA model Part 2 of 2. 125

Figure B.1 Toy PAL model in the PAL Parser file format. 127

Figure B.2 Bio-PEPA output model from PAL Parser Part 1 of 2. 128

Figure B.3 Bio-PEPA output model from PAL Parser Part 2 of 2. 129

Figure B.4 psPAH model Part 1 of 5 . 130

Figure B.5 psPAH model Part 2 of 5 . 131

Figure B.6 psPAH model Part 3 of 5. 132

Figure B.7 psPAH model Part 4 of 5. Note there are no vertical synchronisations on

Reproduce(i,j) action where i == j. 133

Figure B.8 psPAH model Part 5 of 5. Note there are no horizontal synchronisations

on Reproduce(i,j) action where i == j. 134

Figure B.9 PEPA nets model Part 1 of 6. 135

Figure B.10 PEPA nets model Part 2 of 6. 136

Figure B.11 PEPA nets model Part 3 of 6. 137

Figure B.12 PEPA nets model Part 4 of 6. 138

9

Figure B.13 PEPA nets model Part 5 of 6. 139

Figure B.14 PEPA nets model Part 6 of 6. 140

10

L I S T O F TA B L E S

Table 2.1 Model parameters used in this study. The DEB parameters are as given

by Pouvreau et al [59]. 46

Table 2.2 Initial values of Xκ and the state variables: V, E and ER. 52

Table 3.1 Experiment 1(a) comparison data used in R2 regression for Bio-PEPA

model stochastic result. Observation data reproduced from Rico-Villa et

al [67]. 61

Table 3.2 Comparison of Bio-PEPA model and the original DEB model [67]

goodness-of-fit to the observed data. 62

Table 5.1 Parameter values of Pacific oyster PAL model. 98

Table 6.1 Parameter values of Cell Cycle PAL model. First column parameters

taken from Powathil et al [61] and second column parameters taken

from Zhang et al [77]. Third column threshold parameters for G and D

cells. 112

Table 6.2 Average length of cell cycle and 95% confidence interval in hours of

each simulation distributions experiment. 114

Table A.1 Model parameters used in Figure A.1. 122

11

1
I N T R O D U C T I O N A N D L I T E R AT U R E R E V I E W

1.1 introduction

Mathematical and computational multi-scale modelling of multi-scale systems is now com-

monplace and indeed essential to many investigations. Analysis of the emergent properties

from the interactions between scales of multi-scale systems is important to aid in solutions.

There is no universally adopted theoretical/computational framework or language for the con-

struction of multi-scale models. Most multi-scale models are specific to the problem they are

addressing and are defined by integrated scales that are modelled in different mathematical

and computational languages [22, 75]. A common multi-scale hybrid model example is the

Met Office climate prediction model [39] which couples the atmospheric and oceanic scales

together in one model. The model utilises different mathematical approaches to describe the

different scales and is specific to the problem of climate change forecasting. These hybrid

models make the structure and the analysis of the model difficult as the scales are defined in

separate models. The modeller has to be knowledgeable in integration techniques to link the

models together.

There are particular problems associated with multi-scale modelling. Firstly, choosing the

most appropriate scale, or level of abstraction, especially given that there may be different

important characteristics at each scale. Secondly, the integration of the scales: this is important

to ensure the characteristics in the model are not sacrificed in any way to accommodate the

integration. Noble [53] and Allen et al [10] from the fields of systems biology and marine

ecological modelling respectively, state there are specific features to consider in multi-scale

modelling. These features are: abstraction, descriptive, integrative, explanatory and generic.

Abstraction: The balance in the level of detail needs to be established in order to ensure

efficiency of model simulations. As indicted by Allen et al [10] ecological models should be

constructed at an appropriate level of detail to address the hypothesis being tested and the

data available to validate it. This approach is also supported by Noble [53] who advocates

that computational models are constructed and tested at levels where the most knowledge of

the system is found. This feature advocates the middle-out strategy described below.

Descriptive: The model has to reflect the system accurately and represent the available data

appropriately [10]. This feature is essential for the biological insight the model will produce.

This will further aid communication of the model between disciplines. It is important that

enough knowledge and relevant data is available to make the model realistic.

12

Figure 1.1: Strategies for modelling marine ecosystems [10].

Integrative: The model has to demonstrate how different elements of the system interact [10].

There will be many types of interactions. These interactions will be between local internal

and external components and these affect thresholds and thereafter these altered thresholds

interact with the components. A multi-scale model has different levels of scales of interactions.

Knowledge of the importance of these multi-scale interactions is essential in order to create a

complex and efficient model. Interactions that are not relevant to the specific problem need

to be excluded in order to avoid extraneous detail that will make the model simulations less

efficient.

Explanatory: The model should provide predictions and insights of the system [10]. It

should allow analysis by different techniques and have the ability to be exported to other

applications for further analysis. This will allow users of the model to use their preferred

model and analysis tool.

Generic: The model should be generic and re-usable to allow it to be applied to different

systems [53]. The model should be able to adapt to the data that is available, for example, the

time period of experiments will vary from days to years [10]. The description of generic by

Noble [53] and Allen et al [10] is interpreted as "generally applicable". Hence, when generic is

used in this thesis it means "generally applicable".

There are three well known strategies for constructing multi-scale models which are utilised

within the fields of systems biology and marine ecological modelling: Top-down, Bottom-up,

and Middle-out [10, 53]. A schematic of these strategies within a marine ecosystem is shown

in Figure 1.1.

13

The Top-down strategy involves looking at a whole system and its high level functions and

then works downward to envisage low level parts of the system that are less well known [53].

This strategy starts by modelling of high-level physiological systems (such as the circulatory,

endocrine or immune systems) and then works downwards progressively describing in more

detail the lower-level mechanisms (such as the molecules such as haemoglobin located in red

blood cells or the signalling molecules of immune T-helper cells). The problem in this approach

is that it tries to simplify everything to basic principles, understanding the components is

important but not sufficient for a systems level understanding [53]. Allen et al [10] further

suggests it can suffer from the fundamental weakness of being over general and therefore not

completely useful for targeted questions.

The Bottom-up strategy involves starting at a specific low level for example the physiology

and behaviour of individual species, cells, molecules, genes or atoms. The problem with this

approach is how identifiable the behaviour of a cell can be linked to a high level function. For

example, a vast assembly of nerve cells can give you joy or sorrow [53]. In ecological modelling

the problem of this approach is that only a few species can be characterised physiologically

and mechanistically well enough in experiments to make such models. Investigating lower

levels in an ecological system needs knowledge of higher levels of organisation [10].

The Middle-out strategy involves building the model at a level that has sufficient data and

knowledge. Middle-out is advocated by Noble [53] as it is a simple and pragmatic strategy.

Essentially since all levels can be starting points for a causal chain, any level can be the

starting point for building and resulting in a successful simulation. Allen et al [10] indicates

that a balanced combination of all three strategies and focus on descriptive, integrative and

explanatory features will result in a good model.

In this thesis Process Algebra with Layers (PAL) is defined. The design incorporates the

multi-scale features discussed and follows the middle-out strategy.

1.2 background

There are many modelling approaches and languages utilised by modellers today. Many are

designed to efficiently express and analyse a model at a specific time and spatial scale [75]. To

achieve multi-scale modelling across these scales certain modelling approaches and languages

have been combined. These hybrid multi-scale models are usually specific to the problem

they are addressing. The following languages and approaches are given as an indication of

existing options and to give some historical context.

14

1.3 mathematical modelling

1.3.1 Ordinary Differential Equations

Ordinary differential equations (ODEs) are the most traditional mathematical modelling

technique to describe and quantitatively analyse systems in several research areas including

systems biology and ecology [62, 40]. A model is presented as a system of equations. Each

equation describes the rate of change of a continuous variable [44]. ODEs solve a continuous,

deterministic regime in which the variables are subject to continuous change. The solution of

the system of equations provides an average variation of the concentrations of the variables

that are included [62]. The limitations of using ODEs is that they do not capture variability

as they use a continuous deterministic approach that shows the most likely behaviour of the

system. The advantages of this is that the run time of model simulations are fast and are less

computational expensive with respect to other modelling approaches.

ODEs are frequently used in hybrid multi-scale models to describe a specific scale of the

model and this approach is rarely used alone in multi-scale modelling (an example of this

is given in Section 1.3.3). They are specifically used in hybrid multi-scale models to define

intracellular, biochemical and physiological scales. They can effectively describe molecular,

chemical and metabolic interactions. For example Powathil et al [61] in their hybrid multi-scale

mathematical model of cancer cell growth use a system of ODEs to describe the intracellular

proteins that drive the cell growth and division. The cellular scale in the model is described

by the Cellular automata approach (described in Section 1.4.1.1).

Powathil et al [61] state to account for the issue of non-variability in the ODEs model

and therefore not to get a synchronous population of cells they introduce a random growth

distribution variable to each individual cell. Therefore the cell cycle length varies with the

population. This has limitations as other variations in the intracellular scale are not considered

and that these may be important in respect to the emergent properties of this multi-scale

system.

1.3.2 Dynamic Energy Budget Modelling

ODEs modelling gives the foundations for the Dynamic Energy Budget (DEB) [40] modelling

approach. The multi-scale problem being explored in this thesis includes the challenge of

modelling the physiological scale of a marine organism. DEB theory describes an organism’s

physiology in an abstracted and descriptive approach. DEB theory is a mechanistic, mathem-

atical, physiological modelling theory. It describes in a generic way an organism’s physiology

and how it adapts to its environment. From its inception in the 1970s to the present, DEB

theory is popularly utilised in a large number of published case studies (over 425) of biological

15

Figure 1.2: Generic DEB model schematic for a multicellular organism. Circles represent sources and

sinks, squares represent state variables and arrows indicate metabolic processes.

systems in a variety of journals [41]. This generic theory of energy budgets can be used to

describe the uptake and use of substrates (food) in all organisms. It is a generic theory because

it assumes common physiological processes across species and life stages via a set of common

DEB parameters; the only differences in species lying in the differences in these parameters. A

schematic diagram of a general multicellular DEB model adapted from Kooijman [40] is given

in Figure 1.2.

A basic DEB model consists of two differential equations to describe the behaviour of the

two state variables: the Reserve (E) and the Structural Volume (V). A DEB model assumes that

assimilated energy is first stored in a reserve and this reserve is utilised to fuel other metabolic

processes. The allocation of the energy to be utilised is controlled by the parameter κ: its value

represents which process has priority over the energy. These metabolic processes include

maintenance, growth, development and reproduction. The complexity and sophistication of

the model arises from interrelationships between the processes. These processes have many

interrelationships, for example, the assimilation process has an impact on the utilisation

process.

Models also have forcing variables; for example, in Figure 1.2 the forcing variables are food

and heat. The model usually contains sources and sinks, for example, food is a source and

gametes are a sink as shown in Figure 1.2. More realism can be included in the model by

adding further state variables, for example, to describe reproduction and development.

The advantages of this approach is it can describe an organism’s physiology in a generic

and abstract way and does not lose any important physiological detail. This is shown by

the numerous DEB models comparisons with wet laboratory data [41]. The limitations of

this approach is that as explained previously they do not capture variability as they use

a continuous deterministic approach that shows average system behaviour of the energy

budgets. Another disadvantage is that this method does not describe the population view

of an organism. This is important to understand how changes in an organism’s physiology

impacts the overall population.

16

Figure 1.3: European Regional Seas Ecosystem Model Example [3].

1.3.3 European Regional Seas Ecosystem Model

The European Regional Seas Ecosystem Model (ERSEM) [17] was developed to give rise to a

generic shelf sea ecosystem model which simulates the cycling of organic carbon, nutrients

and oxygen over a seasonal cycle initially applied to the North Sea. ERSEM is represented by

a group of parallel ODEs, solved as an open ended recursive system using continuous system

simulation techniques. This approach is an example of a compartmental model using ODEs of

varying compartment size therefore, this model contains modules describing different parts

of the multi-scale system. The modules are specifically looking at a particular set of state

variables, for example some of the modules describe, nutrient dynamics, mesozooplankton

and top predators. Figure 1.3 shows a schematic of a ERSEM illustrating the sea water column

cycles and the state variables they include.

The state variables include organisms, elements and derived carbonate system parameters

from the pelagic and benthic sea water column cycles. The organisms are described by the

ratios of the state variable elements (Carbon, Nitrogen, Phosphorus, Silicon and Oxygen)

over a seasonal cycle. The organism is stated to be a standard organism which is defined

by a group of state variables and the organism can be thought of as essentially three types;

producer, consumer and decomposer, each of which may be defined as having a standard set

of processes [17]. This standard organism is shown in Figure 1.4.

17

Figure 1.4: Standard organism used as a base in the ERSEM [13].

The ERSEM concentrates on the ecosystem surrounding the organism such as the suspended

particles in the water column. The main focus of this approach is on the cycling of organic

carbon, nutrients and oxygen over a seasonal cycle. The advantage of this approach is it can be

used to explore oceans physical features and nutrient conditions impacting fish. This approach

essentially treats the organisms as black boxes concentrating on the inputs and outputs of the

state variable elements. This is a disadvantage, as it does not describe the organisms internal

scales therefore when changes occur in the input and output of the organism the model would

not describe how this impacts the organisms internal scales, for example, their physiology.

1.4 computational modelling

1.4.1 Individual-Based Modelling

1.4.1.1 Cellular automata

Cellular automata (CA) [54] are discrete dynamic models that consist of a grid of cells with a

finite number of states. At each time step CA rules are applied to update the state of each cell

in the grid according to the states of cells in its local neighbourhood. As CA is a simplistic

technique it is able to be applied to many different problems, such as tumour growth and

disease spread. Machado et al [44] states that due to CA spatial features CA main application

are related to molecular dynamics and cellular population dynamics.

They are frequently used to build hybrid multi-scale models, specifically they are used to

define the population scale as they can effectively describe interactions between individuals

18

or cells. For example Powathil et al [61] uses CA to describe the cellular population dynamics

in conjunction with the ODEs approach to model cell growth. An advantage of CA is its

ability to produce discrete simulations of the model therefore allowing the analysis of the

system’s variability. The major drawback of CA is its high computational requirements, as it

explicitly defines all cells and space, the processing time increases with the population size.

ODEs cannot be derived from CA models and therefore ODEs simulation analysis cannot be

performed. CA therefore restricts the user to using specific analysis tools.

1.4.1.2 Agent-Based Modelling

Agent-based models [64] (ABM) represent a system’s individual autonomous agents and their

behaviours. They are similar to CA apart from CA uses a grid, the agents within ABM move

freely within the containing space. ABM describe agents that are unique; they have different

characteristics from each other. These can be size, location, resource reserves and history.

These agents can interact with each other and their environment locally; agents usually do not

interact with all other agents but only their neighbours. This interaction can take place in a

geographic space or in another sort of space like a network. Agents can be defined as any sort

of entity which pursues a certain goal, for example an agent could be an organism searching

for food or a business trying to generate profit. The agents are autonomous; they pursue their

own objectives and act independently of each other. Adaptive behaviour is used by the agents

to adapt their behaviour to the current states of other agents and of their environment.

The use of ABM similar to CA helps in the analysis of problems that concern emergence.

ABM allow questions to be studied about how a system’s behaviour arises from and what

it is linked to. Further questions can be studied on the characteristics and behaviours of the

individual agents. They are used to both look at what happens to the system because of what

its individuals do and what happens to the individuals because of what the system does.

Similar to CA, ABM also are used to build hybrid multi-scale models. Specifically they

are used to define the population scale as they can effectively describe interactions between

individuals. For example Martin et al [47] used an Agent-based model to describe the organism

population scale. They implemented a generic DEB-Agent-based model in NetLogo [76].

NetLogo is a software package which is used to implement and analyse ABM. Martin et

al [47] used DEB theory (Described in Section 1.3.2) to describe the physiological scale of

an organism within the ABM population. They state that basing ABM on standardised and

well tested approaches such as DEB theory facilitates re-usability of ABM and their elements

and further facilitates general insights from specific ABM. In general ABM are developed

for specific questions, so therefore the structure and parameters defining the life history of

organisms differ widely. The use of DEB theory as the basis of the model reduces this problem

and facilitates broader insight from specific studies and comparison between species.

19

Martin et al [47] state that using ABM allows the inclusion of stochasticity and provides

a framework to investigate the stochastic effects at a population level. Similar to CA, ABM

has the drawback of high computational requirements, as it explicitly defines all agents and

containing space, the processing time increases with the population size.

1.4.1.3 Statistical methods: individuals to populations

Statistical methods are used in individual based modelling to derive population models.

The advantage of this approach is to create a simpler population model retaining detail on

individual behaviour. This allows population analysis and the model is less computationally

expensive to run. An example of this is shown in Boots et al [18] where they use stochastic

analysis to derive mean field equations from individual based models. The mean field

equations reduce the complex stochastic model to give an average population behaviour.

They investigate disease virulence and the impact that different local and global contact of

susceptible and infected individuals have on the virulence of the disease. The disadvantage

of this approach is the model describes the individual’s behaviour but does not include the

individual’s internal system. For example, this scale could be important in the case of the

’common cold’. The probability of infection is not exclusive to close contact with an infected

individual but also the condition of the immune system of the susceptible individual.

McCaig et al [48] use an analytical approach to derive mean field equations from process

algebra models (process algebra is discussed in Section 1.4.3). They derive a model describing

HIV spread in the UK. This gives the advantage again of reducing a complex model to a

simpler model but keeping the detail of the individual behaviour therefore giving a low cost

for simulation analysis. The disadvantage of this approach is that it only describes individuals

by their behaviour and does not include their internal system behaviour. HIV would have a

more serious affect on a susceptible which is already immunologically comprised.

It is noted that the above examples are epidemiological systems. However, this approach can

be applied to any system consisting of individuals in a population. The same disadvantage

will still apply as for example intracellular mechanisms in a cell drives a cells behaviour and

hence cell population behaviour.

1.4.2 Petri Nets

Petri nets were created in the 1960s by Carl Adam Petri for describing chemical processes [57].

This approach is also intensively used in computing science to model and analyse concurrent

and distributed systems. A Petri net is a directed graph whose vertices can be divided into

two disjointed sets (bipartite graph). It contains two sets of nodes called places (represented

by circles) and transitions (represented by bars) which are connected by directed arcs. Places

hold tokens (represented by coloured marks) that can be produced or consumed when an

20

input or output transition fires. A transition fires whenever it is enabled by the presence of

some tokens in one of the places directly connected to it. A concurrent semantics specifies

the evolution in time of the token distribution. This graphical modelling approach is popular

with computational systems biologists to describe biochemical reaction systems where the

tokens represent molecules [44, 15].

An ordinary Petri net has only one type of token and the net is flat. Coloured Petri nets

(CP-nets) can have different types of token. These tokens can have an attached data value

called the token colour. The token colours can be investigated and modified by the transitions.

CP-nets can be organised into hierarchies of layers giving rise to Hierarchical Petri nets [28].

This approach is similar to modular programming as the construction of the CP-net can

be broken into smaller pieces by creating substitution transitions. Nets with these transitions

therefore have multiple layers of detail. The net can be simplified to give a broad overview

of the system (top-level net) and give more detail by substituting transitions of the this net

with more detailed nets. Hierarchical Petri nets solve the issues of creating large and intricate

CP-nets.

Hierarchical Petri nets have been used to describe multi-scale systems specifically in systems

biology. An example of a multi-scale bacterial macrophage interaction Petri net is given by

Carvalho et al [20]. They model the bacterium Mycobacterium tuberculosis one of the most

efficient pathogens responsible for chronic infection. Carvalho et al [20] define biochemical

compounds or receptors as places in the net. The relationships between biochemical substances

are represented by transitions with arcs modelling biochemical reactions, inhibitions/degrad-

ations and signal/catalytic events. Carvalho et al [20] Hierarchical Petri net has three layers.

The top level net models the overall view of the system (interactions that occur in the cellular

wall and the consequences). This top level net is connected to the middle level net through

substitution transitions which connects to the molecular level modelled by the bottom level

net.

The advantages of this approach is it provides a graphical framework for qualitative analysis

given the static structural topology of Petri nets. Qualitative analysis is carried out by Carvalho

et al [20] in the animation of their Petri net in the Snoopy software [34]. This software allows

animating the token flow of the Hierarchical Petri net visualising the causality of the model

and its behaviour. Bartocci et al [15] also state quantitative analysis can also be carried out

given by the time evolution of the token distribution. The disadvantages of this approach

is that CP-nets are static structures whereas real life scenarios are dynamic. For example if

there is updated information concerning the role of a molecule or dynamics of a reaction from

the literature, the structure of the CP-net would need to be completely changed to add new

features and dependencies as a result. Another drawback is single components of a system

and their connections may not be easily identified in a CP-net model. For example proteins

communicate and synchronise on certain reactions which cause a cell to modify its behaviour.

21

This is important when modelling multi-scale interactions and their emergent properties.

There are numerous extensions to CP-nets which try to solve some of the issues mentioned

above [74].

Process algebra traces its roots back to the development of Petri nets and the following

section focuses on process algebra languages that are designed to model systems and multi-

scale systems.

1.4.3 Process Algebra

Process algebra (or process calculus) is a compositional approach to formally model concurrent

systems. Process algebra gives a high-level description of interactions, communications, and

synchronizations between a collection of independent agents or processes [12]. It is used to

model networks from computer and biological systems including biochemical networks. Its

application provides many analysis techniques for the network’s behaviour and properties.

The first modern examples include the Calculus of Communicating Systems (CCS) [49]

and Communicating Sequential Processes (CSP) [37]. Numerous process algebras have been

designed since and each applied to different systems or questions studied. Process algebra

shares similarities to IBM as both approaches concentrate on individual behaviour of an agent

or cell.

In the context of this thesis, focus will now be directed on Biochemical-Performance

Evaluation Process Algebra (Bio-PEPA) [21] which is a modification of Performance Evaluation

Process Algebra (PEPA) [35]. Ciocchetta and Hillston [21] states that Bio-PEPA makes it

possible to represent explicitly features of biochemical models, specifically the stoichiometry

and the role of the species in a given reaction. Also kinetic laws can be implemented to

represent each action’s functional rate. Bio-PEPA is equipped with an operational semantics

and a stochastic labelled transition system based on discrete levels of concentration. Therefore,

Bio-PEPA models are implemented in the reagent-centric view. This is a low level view

of the biological system, describing each reagent and their interactions. This is in contrast

to the pathway-centric view which represents a high level view of the system describing

pathways and the interactions which occur within them. This high level view therefore does

not explicitly describe the reagents within the pathways. Scott [69] states the advantage of the

reagent-centric view is that Bio-PEPA models will have an explicitly descriptive view of the

biological system. This is why in the scope of this thesis Bio-PEPA is chosen to investigate

the potential of process algebra to model multi-scale systems. This work shows the important

challenges of multi-scale modelling and highlights the multi-scale features that need to be

included in PAL.

Bio-PEPA is an extension of PEPA and therefore it carries forward some design features.

These features are referred to in the following section before Bio-PEPA is described.

22

1.4.3.1 PEPA

PEPA [35] (an extension of CCS) is a process algebra originally defined for the performance

analysis of computer systems. PEPA models are described as interactions of components (P)

and these components engage, either singly or multiply, in activities (α). The components

correspond to identifiable parts in the system, or roles in the behaviour of the system. Each

component can perform a set of activities which capture the actions of the system. Every

activity/action in PEPA has an associated duration which is a random variable with an

exponential distribution. Each component can perform a set of actions: an action is described

by a pair (α,r), where α is the type of the action and r is the parameter of a negative exponential

distribution governing its duration, i.e. the rate of the action. PEPA has a set of combinators

which are used to build up complex system/network behaviour. The combinators are: prefix,

choice, parallel composition (cooperation) and hiding (abstraction). Each of these combinators

are described by Hillston [35, 36] and reproduced below for convenience.

Prefix (.) is the basic mechanism by which the behaviours of components are constructed.

The component (α,r).P carries out activity (α,r), which has action type α and a duration

which is exponentially distributed with parameter r. The component subsequently behaves as

component P.

Choice (+): a choice between two possible behaviours is represented as the sum of the

possibilities. Thus the choice combinator represents competition between components or

activities depending on their rate.

Cooperation (BC
L

): actions in the cooperation set require the simultaneous involvements of

components. The resulting action, a shared action, will have the same type as the contributory

actions and a rate reflecting the rate of the action in the slowest participating component.

Hiding (/): it is often convenient to hide some actions, making them private to the compon-

ents involved [35, 36].

PEPA has a number of analysis techniques which can be used on PEPA models if appro-

priate. These analysis techniques include: Static, Markovian, Performance, and Discrete and

Continuous Simulation. The PEPA plug-in incorporated in the Eclipse tool utilises all these

techniques [27].

1.4.3.2 Bio-PEPA

Bio-PEPA [21] is a language for the modelling and the analysis of biochemical networks. It has

also been applied to describe a variety of systems [46, 16]. Bio-PEPA is based on PEPA and

extends it in order to handle some features of biochemical networks, such as stoichiometry

(quantity of agents1 involved in a reaction), the role of the agent in a given reaction, and

1 The Bio-PEPA term for these is species, in-line with the biochemical interpretation as molecules, compounds etc. The

term agents is used here to avoid the obvious confusion with biological species classification.

23

different kinetic laws (different rates of reactions). The syntax for terms in Bio-PEPA is already

presented in Ciocchetta and Hillston [21] and reproduced here for convenience:

S :: = (α, κ) op S | S+ S | C

P :: = P BC
L
P | S(x)

where op = ↓ | ↑ |⊕ |	 |�

The two main components of a Bio-PEPA model are agent components S which describe the

behaviour of individual entities, and the model component P, which describes the interactions

between the various agents. The prefix in PEPA is replaced by a new one, (α,κ) op S,

containing information about the role of the agent in the reaction associated with α. The prefix

is (α, κ) where α is the action type and κ is the stoichiometry coefficient of the agent(s) in that

reaction. The stoichiometric coefficient captures how many molecules of an agent are required

for a reaction. The rate of the reaction α is given by a kinetic law: an arithmetic expression

which may include numeric rate parameters, some simple geometric functions (e.g. sin, exp),

and which may depend functionally on the numbers of agents in the model.

The prefix combinator op represents the role of S in the action or the impact the action has

on that agent. The prefix combinators are: ↓ indicating a reactant, ↑ a product, ⊕ an activator,

	 an inhibitor and � a generic modifier. A reactant will be consumed in the action and a

product will be produced as a result of the action. Activators, inhibitors and generic modifiers

play a role in an action without being produced or consumed and have a meaning defined in

the biochemical context. A choice between two possible behaviours is represented as the sum

of the possibilities. Thus the choice combinator + represents competition between agents or

actions depending on their rate. Actions in the cooperation set BC
L

require the simultaneous

involvements of agents. The resulting action, a shared action, will have the same type as the

contributory actions and a rate reflecting the rate of the action in the slowest participant. In

the model component S(x) the parameter x represents the initial amount of the agent.

The underlying semantics of Bio-PEPA is as a Continuous Time Markov Chain. The model

can be broken down into states and transitions between these states.

An example Bio-PEPA model of a genetic network with a negative feedback through dimers

is given in [21] and reproduced in Figure 1.5. The transcription of M (messengerRNA molecule)

is inhibited by the protein P2 (molecule in dimeric form). This has an affect on the translation

of the protein P (molecule in monomer form) as M is an activator of this translation. The

model is made up of agents representing molecules of the specific genetic network shown in

Figure 1.6. All the actions in the model are given specific kinetic laws based on the set of rate

parameters. The transcription action is given a kinetic law to build in inhibition to the model

as the one transcription action which produces mRNA (M) is inhibited by the dimer protein

(P2). The other actions are given kinetic laws that use the function of mass action indicated

by (fMA) which takes into account the agent populations that take part in the action and

24

Parameters of model

kM = 356;

k2 = 0.043;

k3 = 0.0039;

k4 = 0.0007;

k5 = 0.025;

k5i = 0.5;

v = 2.19;

Actions and their associated kinetic rates

kineticLawOf transcription : v
(kM+P2) ;

kineticLawOf translation : fMA(k2);

kineticLawOf degradation_M : fMA(k3);

kineticLawOf degradation_P : fMA(k4);

kineticLawOf dimerization : fMA(k5);

kineticLawOf dimerization_inv : fMA(k5i);

Agent definitions

M = (transcription, 1) ↑ +(translation, 1)⊕+(degradation_M, 1) ↓;

P = (translation, 1) ↑ +(degradation_P, 1) ↓ +(dimerization, 2) ↓ +(dimirization_inv, 2) ↑;

P2 = (transcription, 1)	+(dimerization, 1) ↑ +(dimerization_inv, 1) ↓;

Model Component

M[0] BC
translation

P[0] BC
dimerization, dimerization_inv

P2[0]

(fMA = formula of mass action)

Figure 1.5: Example Bio-PEPA model of a genetic network [21].

25

changes the kinetic law rate accordingly. As this function is inbuilt in the Bio-PEPA plug-in

the only parameter needed is the definition of the rate of the action. There are three different

agents defined in this model. The first agent M represents mRNA which has three different

actions associated with it. M is defined as a product of the transcription action, as the activator

for the translation reaction and as a reactant of the degradation_M action. All these reactions

require one M agent except for the transcription action where one M agent is produced. The

second agent P represents the protein which has four different actions associated with it. P is

defined as the product of the translation and dimerization_inv actions and is a reactant of the

actions degradation_P and dimerization. Translation and degradation reactions require one P agent,

and dimerization and its inverse action require two P agents. The third agent P2 represents

the dimer protein which has three different actions associated with it. P2 is defined as the

inhibitor of transcription, as the product of dimerization and as the reactant of dimerization_inv.

All of these reactions require one P2 agent. The model component contains these three agents

with starting populations all at zero and the actions on which they synchronise e.g. agent M

synchronises with an agent P on the action translation [69].

Figure 1.6: Genetic Network Model [21]. Agents are in red and actions are shown with their associated

rates.

The Bio-PEPA language is supported by a suite of software tools which automatically

process Bio-PEPA models and generate internal representation suitable for different types of

analysis. These analysis techniques include: Static, Markovian, Invariant, Simulation traces,

Simulation Distributions, Parameter Estimation and Discrete and Continuous Simulation [11].

These analysis techniques are described by Avgeri et al [11] and are reproduced here as some

are utilised (highlighted in bold) throughout this thesis.

Static analysis informs the modeller of any syntactic and simple semantic errors in the

model before any simulations have been run. The "outline view" in the plug-in shows the

actions and agents that are present in the model and also shows which of these actions are

sources or sinks. This view informs the user about the model in an abstract way. The "problems

view" highlights any errors in the syntax of the model and also shows warnings suggesting

26

that particular actions need to be assessed. This static analysis provides confidence to the

modeller in their understanding of the system and the syntactic correctness and consistency

of their model

Markovian analysis: The Bio-PEPA plug-in can translate the model into a Probabilistic

Symbolic Model Checker (PRISM) model, therefore the model’s Continuous Time Markov

Chain (CTMC) can be analysed in the PRISM tool. CTMC derivation produces all the possible

states and therefore the evolutions of a model and subsequently can be used for functional

verification of the model.

Invariant analysis highlights the state and activity invariants in the model. Invariants are

expressions whose value does not change during program execution. This is useful when

modelling biochemical networks as some activities during reactions should remain constant.

Time Series Analysis: This includes two techniques, one via the mapping of a Bio-PEPA

model to a set of ODEs and the other via Stochastic Simulation Algorithms (SSA). The modeller

is required to select the components they want to investigate and set the main parameters

(start time, stop time and number of data points). An important SSA-related parameter to set

is the number of replications wanted during the simulation. The time series of each component

will be shown as a different line on the 2D graph which this analysis produces. The graph

shows how the number of the selected components evolves over time. The results can be

exported to a comma separated value (csv) file for further analysis.

Stochastic and ODEs simulations can be carried out on the model in Figure 1.5 to see the

relative numbers of the populations over a period of time. An example of the automatic

mapping of the Bio-PEPA model to a set of ODEs is presented in [21] and the ODEs are

reproduced here for convenience. Agents M, P and P2 are mapped to Equations 1.1, 1.2 and

1.3 respectively. It is noted that it is not yet possible to obtain the automatically derived ODEs

from the plug-in.

dM

dt
=

v

kM + P2
− k3 ∗M (1.1)

dP

dt
= k2 ∗M− k4 ∗ P− 2 ∗ k5 ∗ P2 + 2 ∗ k5i ∗ P2 (1.2)

dP2
dt

= k5 ∗ P2 − k5i ∗ P2 (1.3)

Simulation Distributions obtain the percentage of a user-defined number of stochastic

simulations for which some property is true at or before a given time t. The Bio-PEPA plug-in

plots the Cumulative Distribution Function (cdf) and the Probability Distribution Function

(pdf) of any agents in the model, with respect to the target value. This simulation distributions

technique provides an opportunity to obtain many more statistics about the model. The results

can be exported to a csv file for further analysis.

27

Parameter Estimation can be used on Bio-PEPA models to find unknown values for certain

parameters by comparing the time series data with experimental data. Parameter estimation is

easily available for Bio-PEPA models via either Systems Biology Software Interface (SBSI) [6]

or the Evolving Process Algebra (EPA) framework [45] (recently adapted to accept Bio-PEPA

input).

The Bio-PEPA plug-in utilises these techniques and allows the user to export appropriate

file types to analyse the model in other applications [2], most notably Systems Biology

Markup Language (SBML) [5]. The SBML modelling language is incorporated into over 230

modelling and analysis tools and is regarded as a generic standard modelling language for

the computational biology field [4].

1.4.3.3 Multi-scale Process Algebra

There are few process algebra languages that are specifically designed for multi-scale systems.

In this thesis focus is on the integration of spatial scales and the interactions between these

scales. PAL assumes events in different spatial scales take place at the same time scale. Two

languages are compared with PAL. They are Parametric Stochastic Process Algebra with Hooks

(psPAH) [24] and PEPA nets [30]. These multi-scale languages were chosen for comparison as

they also focus on the integration of spatial scales and the interactions between these scales

taking place at the same time. Both languages are described below with example models

given.

1.4.3.4 psPAH

Parametric Stochastic Process Algebra with Hooks (psPAH) [24, 25] is designed specifically

for modelling tissue growth and pattern formation. It follows the middle-out [53] strategy

where modelling can begin at any scale and then relate to higher or lower scales. Put generally,

psPAH allows the modelling of interrupt like events happening across scales.

The main differences between psPAH and a traditional process algebra with multi-way

synchronisation, such as PEPA and Bio-PEPA, are the substitution of the simple α actions

with more complex composed actions L ′[L ′′] and the addition of the vertical cooperation operator.

The composed action L ′[L ′′] is interpreted while on this scale perform the actions in set L ′

altogether, while broadcasting actions in set L ′′ to the other scales. It implies that actions in L ′

affect the local scale while actions in L ′′ affect other scales. If an action belongs to set L ′ it

is called a layer action and if an action belongs to set L ′′ it is defined as a hook action. Hook

actions synchronise with layer actions in other scales, an example of a composed action is

shown in Figure 1.7.

The vertical cooperation operator synchronises layer actions on one side of the operator

with hook actions on the other side via actions present in L ′′. No hook with hook or layer

28

Figure 1.7: Composed action a[x] presents layer action a that operates within the current scale and hook

action x that operates between scales [24].

Agent Definitions

A0 = a.A1 + f.A1 B0 = c.B1 + e.B1

A1 = a[p].A2 + b.A0 + f[p].A2 + e.A0 B1 = c[p].B2 + d.B0 + e[p].B2 + f.B0

A2 = b[q].A1 + e[q].A1 B2 = d[q].B1 + f[q].B1

P0 = p.P1 P1 = q.P0 + p[x].P2 + {p,q}.P1 P2 = q[y].P1

CellM = move.CellM + x.CellA CellA = absorb.CellA + y.CellM

Model Initial State

((A0 BC
e,f

B0) BC

p,q
P0) BC

x,y
CellM

Figure 1.8: Example psPAH model. Please note the layout is used to indicate sections and is not part of

the syntax.

29

with layer action synchronisations are allowed with this operator. This operator expresses

cooperation between processes at different scales.

It is noted that the psPAH language cannot generate new agents and cannot remove agents

therefore this may hinder modelling features such as reproduction and death. A solution to

this problem could be the creation of ghost agents that would wait around to be used in the

generation of specific agents. Agents could also become ghost agents when they require to be

removed from the model. The initialisation of ghost agents will make the model’s initial state

huge. An example of the use of these ghost agents is given in Section 4.4.1 of Chapter 4.

An example of a psPAH model of a biological system is given in [24] and is reproduced in

Figure 1.8. It represents the interactions between biochemical and cellular scales. There is a

middle scale between these two scales that is used to count how many biochemical agents

A and B have their concentration above a specific threshold. The biochemical scale interacts

with the middle scale through the hook actions p and q when the agents are at a specific

concentration and perform specific layer actions. The choice of {p,q}.P1 defines that P1 agent

should stay in the P1 concentration if two hook actions originate from the biochemical scale.

The middle scale interacts with the cellular scale through the hook actions x and y when the P

agent is at a specific value and performs specific layer actions. These multi-scale interactions

cause the cell agent to change from either moving or absorbing.

1.4.3.5 PEPA Nets

PEPA Nets [30] is a formalism which uses PEPA as the inscription language for labelled

stochastic Petri nets (Petri nets are discussed in Section 1.4.2). The net is used to provide

a structure for combining related PEPA systems. It is an example of a two level modelling

language. It is designed for modelling peer-to-peer file stores, for example, the PEPA terms

are used to model the program code which moves between network hosts (the places in the

net). Petri nets [8] provide a graphical presentation of a model which has an easily accessible

interpretation and they also have the advantage of being supported by an unambiguous

formal interpretation. Coloured Petri nets are a high-level form of classical Petri nets. The

plain tokens of a classical Petri net are replaced by arbitrary terms which are distinguishable.

In PEPA nets the colours used as the tokens of the net are PEPA components. A PEPA net

with only one place and no transitions is a PEPA model.

There are two types of change of state in a PEPA net: firings of the net and transitions of

PEPA components. These two types of change of state can be used to model changes which

take place on different scales. Transitions of PEPA components will typically be used to model

small-scale (or local) changes of state as components undertake activities. Firings of the net

will typically be used to model macro-step (or global) changes of state such as a mobile

software agent moving from one network host to another.

30

Figure 1.9: Mobile agent system [30].

A firing of a PEPA net causes the transfer of one token from one place to another. The

token which is moved is a PEPA component, which causes a change in the remainder of the

evaluation both in the source (where existing co-operations with other components now can

no longer take place) and in the target (where previously disabled co-operations are now

enabled by the arrival of an incoming component which can participate in these interactions).

Firings have global effect because they involve components at more than one place in the net.

A transition in a PEPA net takes place whenever a transition of a PEPA component can

occur (either individually, or in co-operation with another component). Transitions can only

take place between components which are resident in the same place in the net. The PEPA net

language does not allow components at different places in the net to co-operate on a shared

activity. Transitions in a PEPA net have local effect because they involve only components at

one place in the net.

A PEPA net is made up of PEPA contexts, one at each place in the net. Contexts contain a

cell. A cell is a storage area dedicated to storing a PEPA component. The components which

fill cells can circulate as the tokens of the net. Components which are not in a designated cell

are static and cannot move. PEPA nets use the notation P[−] to denote a context which could

be filled by the PEPA component P or one with the same alphabet. If P has derivatives P ′

and P ′′ only and no other component has the same alphabet as P then there are four possible

values for such a context: P[−], P[P], P[P ′] and P[P ′′].

P[−] enables no transitions.

P[P] enables the same transitions as P.

P[P ′] enables the same transitions as P ′.

P[P ′′] enables the same transitions as P ′′.

A PEPA net model must contain an initial marking of the net, similar to the marking of

a Petri net which records the number of tokens which are resident in each place in the net.

Instead of tokens PEPA nets record where the dynamical PEPA components are in the net.

31

PEPA context definitions

P1[Agent] = Agent[A] BC
{interrogate}

Probe

P2[Agent] = Agent[A] BC
{dump}

Master1

P2′ [Agent] = Agent[A] BC
{dump}

Master2

P3[Agent] = Agent[A] BC
{interrogate}

Probe

Initial marking of the net

(P1[_],P2[Agent],P3[_])

PEPA definitions: Static components

Master1 = (dump, τ).Master2

Master2 = (analyse, ra).Master1

Probe = (monitor, rm).Probe+ (interrogate, τ).Probe

PEPA definitions: Dynamic component

Agent = (go, λ).Agent1

Agent1 = (interrogate, ri).Agent2

Agent2 = (return,µ).Agent3

Agent3 = (dump, rd).Agent

Arcs of the Net

P2 − (go, λ) > − P3

P3 − (return,µ) > − P2

P2 − (go, λ) > − P1

P1 − (return,µ) > −P2

Figure 1.10: Example PEPA nets model [30].

32

A simple example of a PEPA nets model of a mobile agent system is given by Gilmore

et al [30] and is reproduced in Figure 1.10. The PEPA net represents a system made up of

a travelling agent that visits three sites shown in Figure 1.9. The Agent interacts with the

static components Master and Probe at the sites causing it to change state. On visiting a site

which has a Probe component it synchronises on the activity interrogate. On visiting a site

which has a Master1 component it synchronises on the activity dump. After completion of

the dump activity the Master1 component changes state to Master2. In this state a Master2

component can carry out the slow activity of analyse. The system allows the Agent to continue

travelling and performing activities while the analyse activity is being carried out by the

Master2 component. Figure 1.9 shows the initial marking of the net where the mobile agent is

resident at the central site P2. The activities that cause a firing of the net (go and return) are

highlighted in bold.

1.4.4 Other Modelling Formalisms

1.4.4.1 Temporal logic

Temporal logics are very concise modelling languages. They meticulously specify the occur-

rence of specific temporal behaviours. This approach uses rules and symbolism for represent-

ing and reasoning about, propositions qualified in terms of time. High level statements are

used to describe a system to satisfy the properties of the system [15].

A popular temporal logic in computing science is Linear Temporal Logic (LTL) [58] in-

troduced by Pnueli to reason about the order of events occurring during the execution of a

program. The basic proposition (p) in LTL indicates a Boolean value that may express the

relationship between a state variable of the system and a value for a particular time instant.

For example, LTL syntax can specify that the concentration of the molecule A is greater

than a certain threshold t (A > t) or that a specific event e should occur. More complex

logical formulae can be obtained by combining propositions using logical operators such as

or and not. The other classical logical operators such as and and implication can be derived

by combining the previous two operators. LTL also includes two temporal operators: next

(a formula should hold until the next step) and until (a formula one requires to hold until a

formula two becomes true). The combination and the nesting of the basic propositions with the

logical and temporal operators allow the specification of several different types of temporal

behaviours. LTL operates on a single path of the model execution, and a temporal property

can be formulated only for one possible trajectory of the system [15].

A new logic called Hybrid Linear Logic (HyLL) [23] developed by Despeyroux provides

a unified language to describe biological systems in systems biology, specifically to express

properties of their dynamic behaviour and to prove these properties. de Maria et al [23] states

33

in contrast to LTL, HyLL describes both biological and temporal properties and prove these

properties from the system. In HyLL syntax propositions are interpreted as resources which

may be composed into a state using linear connectives and linear implications which denotes

transitions between states. de Maria et al [23] constructed a simple HyLL model consisting of

six rules of the biological example of the tumour suppressor protein P53 and its relationship

with the protein Mdm2 in the DNA-damage repair mechanism. This system is important in

the study of cancer therapies. de Maria et al [23] analysed the model through model checking

techniques to formally verify the biological system.

Advantages of the temporal logic approach is that it allows the specification, reasoning and

verification of systems and utilises numerous model checking tools. The drawback of this

approach is it represents systems in abstract models created specifying what the system is,

instead of describing it mechanistically like other modelling approaches mentioned above. It

is important to describe these mechanisms to understand how emergent behaviour occurs.

1.4.4.2 P Systems

The P systems [56] formalism was created by Paun and is inspired by biology. P systems

are based on the structure of biological cells and the way chemicals interact and cross cell

membranes. Variations of the P system formalism initiated a new area within computer science

called ’membrane computing’. P systems were developed for their use in computational

modelling rather than biological modelling although it has been applied to some specific case

studies in cellular systems [55].

Romero-Campero et al [68] presented how P systems can be used as a multi-scale framework

in systems biology. Romero-Campero et al [68] states specifically how it explicitly specifies

the molecular, cellular and colony levels in cellular systems in a relevant and understandable

manner. Advantages of this approach is that because it is biologically inspired it can be

successfully applied to cellular systems in systems biology. There is little research on its

general application to other multi-scale systems outwith this area. Its specificity with cells

and membranes may be a disadvantage making it less generally applicable to areas such as

ecology and immunology. Bartocci et al [15] states in their review, P system research is more

suitable for the theory of computation than for modelling in systems biology. Hence, this may

be the case for other multi-scale systems.

A preliminary theoretical language called Membrane Calculus [63] was developed by Qi

et al [63] and is based on P systems and Petri Nets (discussed in Section 1.4.2) to formalize

transaction processing in web services and grid services. Qi et al [63] states combining these

two approaches means that the system can be analysed graphically as well as being an

algebraic model and extends Coloured Petri nets (CP-nets) by introducing the dynamic and

reflective structure inspired by P systems. The semantics of Membrane Calculus is divided into

two parts: object rules and membrane rules. Every object rule can be presented by a transition in

34

the term of CP-nets and the semantics of this rule can be represented by the changing of the

marking in CP-nets. The operational semantics of one object rule is delimited by a transition

similar to CP-nets. Qi et al [63] show that Membrane Calculus is very suitable to describe

grid transactions through one example. It would be interesting to see if this approach of a

combination of modelling approaches would be generally applicable to multi-scale systems,

as yet this has not been seen in the literature.

1.4.4.3 BioSPI

BioSPI [65] is a computer application developed by Regev et al [65] for simulating the beha-

viour of biochemical systems specified in pi-calculus. Pi-calculus [50] was developed by Milner

as a formal language for concurrent computational processes. Pi-calculus provides a frame-

work for the representation, simulation, analysis and verification of mobile communication

systems. A typical system in the pi-calculus consists of multiple concurrent processes. Pairs of

processes interact with each other by sending and receiving messages in a synchronized way.

This communication is done on complementary input and output channels.

Regev et al [65] shows the suitability of pi-calculus for modelling biological systems such as

signal transduction networks, metabolic pathways and transcriptional regulation. They treat

molecules as computational processes. The molecules complementary structural and chemical

determinants correspond to communication channels. Chemical interaction and subsequent

modification coincide with communication and channel transmission.

This approach has the same advantages like other process algebras of being able to formally

represent complex networks, simulate and monitor their behaviour and formally verify their

properties and compare networks across organisms. Regev et al [65] states further development

is required for this approach as some biochemical events require elaborate encoding in pi-

calculus. For example, pi-calculus only supports pair synchronisation (between two processes

that present complementary channels) and many biological reactions involve numerous

molecules interacting together. Regev et al [65] states that this issue can be overcome with

specifying the system in a different level of detail (abstraction). Another disadvantage of this

approach is it has only been applied to systems in molecular biology. Further research needs

to be completed to investigate whether this approach is applicable to a variety of multi-scale

systems.

1.5 background case study : the pacific oyster

The case study of the marine invertebrate the Pacific oyster (Crassostrea gigas) is used through-

out this thesis. The motivation of choosing this case study comes from the problem of ocean

acidification and the consequences it has on marine invertebrates. These consequences affect

each life stage of a marine invertebrate in different severity. Concentrations of carbon dioxide

35

Figure 1.11: Life cycle model of the Pacific oyster adapted from [1].

(CO2) in the atmosphere are rising, which is widely accepted will primarily cause an increase

in mean global temperatures. A second problem linked with the rise in particle CO2 is associ-

ated with its dissolution in sea water and the subsequent acidification of the world oceans.

There are model predictions of the difference in pH of sea water by 2100 ranging between

-0.4 and -0.5 units [26]. This decrease in sea water pH will have two consequences for marine

organisms. Firstly it has been predicted that a reduction in sea water pH will produce a reduc-

tion in the calcification rate of shelled marine organisms [14, 72]. Secondly changes in the pH

of seawater will potentially cause a disruption to the internal acids/base balance in calcifying

and non-calcifying invertebrates. The maintenance of internal acids/base balance is essential

for maintaining protein conformation and subsequently enzyme function and metabolism.

These consequences will have an effect not only in the physiology of marine organisms and

their persistence in their populations but will also affect the stability of ecosystems in which

they inhabit and therefore affect the goods and services those ecosystems provide [19, 29].

Hence this is a multi-scale system that requires a multi-scale model in order to investigate

these multi-scale effects.

The Pacific oyster is potentially the largest harvested and collected shellfish in European

waters. In 2006, global Pacific oyster aquaculture production reached 4.6 million tonnes (t).

European production was around 126 000 t [51]. The Pacific oyster is an isomorph, an organism

that does not change shape during growth, which means its surface area is proportional to

its volume. These bivalves are ectotherms and osmoconformers: their body temperature and

internal salinity is the same as the surrounding environmental conditions [32]. Hence any

change in environmental conditions can significantly affect the oyster.

A life cycle model of the Pacific oyster is given in Figure 1.11. A life cycle model is a

collection of facts of periods of an organisms’ life usually depicted in a graphical composition.

The whole life history of an organism is usually represented through a series of developmental

36

Figure 1.12: Temporal variations of phytoplankton concentration and temperature, in experiments A

(top panel); B (middle panel) and C (lower panel) reproduced from [59].

life stages which an organism goes through. Figure 1.11 shows the development of the Pacific

oyster from embryo through larval stages to juvenile and adult. The time an oyster spends in

each life stage varies dependent on temperature and diet (food density). A Pacific oysters’ diet

consists mainly of phytoplankton which is made up of minute plants and other photosynthetic

organisms.

1.5.1 Juvenile and Adult life stage experiments

Chapter 2 refers to wet laboratory experiments on juvenile and adult Pacific oysters from

Pouvreau et al [59]. The purpose, methodology and results of these experiments are repro-

duced here for convenience. Pouvreau et al [59] carried out three (A, B and C) long-term

growth experiments (>5 months) located in France on Pacific oysters reared under different

conditions of food (phytoplankton densities) and environment (temperature). Pouvreau et

al [59] states the resulting data sets from these experiments where used to validate their

Pacific oyster DEB model results and demonstrate the DEB models’ ability to capture the

dynamics of the energy budget in the Pacific oyster in various environments. The DEB model

is described in Chapter 2.

37

Figure 1.13: Comparison of observations ± SD (dots) and DEB model simulation (line) of Dry Flesh

Weight in the Pacific oyster in Experiment B for each stock and Experiment C (Thau lagoon).

Note that the sharp drops that can be observed on simulation lines indicate spawning event

predicted by the DEB model [59].

The variations in phytoplankton concentration and temperature in all three experiments is

reproduced in Figure 1.12. In experiment A, the oysters were placed in experimental facilities

and reared at two contrasting food density levels. Experiment A of [59] is omitted in Chapter

2 and therefore only experiments B and C are described in detail here. The reason for this

omission is explained in Chapter 2. Experiment B oysters were placed in an oyster pond and

reared at a fluctuating food density. The oysters were reared in a natural environment (Thau

lagoon) over a complete annual cycle in experiment C.

Pouvreau et al [59] states experiment B lasted from June to October 2002. Oysters were

cultivated in a 600 m3 pond located on Oleron island. They were fed with pure phytoplankton.

Biometry (flesh and shell mass) was conducted at the start and end of the experiment. Oxygen,

temperature and in vivo chlorophyll-a were monitored daily. Three batches of oysters from

different origins were placed in the pond. Batch 1 was composed of about 30 month old oysters

from Brittany transferred to the pond in June 2002. Batch 2 consisted of smaller oysters from

the same origin, but transported to the pond one month later, presumably after spawning.

Batch 3 was composed of oysters from the Marennes-Oleron Bay and transferred to the pond

after spawning.

Pouvreau et al [59] states experiment C consisted of an annual growth survey conducted

in the Thau lagoon. This study was carried out between September 2000 and October 2001.

38

Oysters were installed on ropes in late September 2000 at one site located in the north western

part of the lagoon. 27 groups of 3 oysters were glued on 3 metre long ropes with cement, and

density on the ropes was adjusted to 34 individuals per metre of rope; water depth was 4

metres at the study site. The potential food consisted of natural phytoplankton and growth

was monitored monthly over a year. Temperature, salinity and chlorophyll-a values were

collected once a week during the growth period and every month outside this period.

The methods used to assess the growth of oysters over all experiments were similar. Under

each condition, oysters (> 12) were randomly collected twice a month in experiment C, and at

the start and end of experiment B. They were cleaned and weighed after draining. Individual

total mass (grams) was recorded. Then, the oysters were opened, and their flesh was removed

and drained prior to weighing. The total dry mass of soft tissues was determined after freeze-

drying and termed Dry Flesh Weight (DFW) in grams. Figure 1.13 reproduces comparison of

the DFW observation data from experiment B and C to Pouvreau et al [59] DEB model. The

error bars show the standard deviation in the observed data.

1.5.2 Larval life stage experiments

Chapter 3 refers to wet laboratory experiments on the larval life stage of Pacific oysters

from Rico-Villa et al [67]. The purpose, methodology and results of these experiments are

reproduced here for convenience. Rico-Villa et al [67] carried out two growth experiments (1

and 2) on Pacific oyster larvae reared under different levels of phytoplankton density and

temperature. The data sets collected from these experiments where used to validate their

Larval DEB model. Rico-Villa et al [67] states the Larval DEB model showed good growth

simulations and provided an extensive description of the energetic needs of the Pacific oyster

during its larval stage. The Larval DEB model is described in Chapter 3. Rico-Villa et al [67]

states all larval experiments (1 and 2) were run starting with two-day-old larvae, and feeding

supply was expressed in cell biovolume (µm3µl−1).

Rico-Villa et al [67] states in experiment 1 larvae were reared in a flow-through system

to maintain a constant flow of algal cells and stable temperature conditions, and allow

continuous data recording. Larvae were reared at a density of 30 larvae ml−1, at five different

temperatures: 17, 22, 25, 27 and 32
◦C. Food ration was adjusted as the larvae grew, allowing

1400 µm3µl−1 of phytoplankton to always be available. Each set of experimental conditions

consisted of a test tank with larvae and food supply, and a control tank with only a constant

flow of phytoplankton (no larvae), both at a defined temperature. Larvae, initially reared at

25
◦C, were acclimated over one day at each temperature before the experiment began.

Rico-Villa et al [67] states in experiment 2 larvae were grown under rearing conditions

similar to those described above, except that temperature was maintained at 25
◦C and it was

the food supply that was varied. Larvae were thus continuously fed at several phytoplankton

39

Figure 1.14: Comparison of observations ± SD (dots) and DEB model simulation (line) of growth for

Pacific oyster Larvae in experiment 1 under different temperatures: 17 (a), 22 (b), 25 (c), 27

(d) and 32
◦C (e). The other environmental conditions were optimal: food density of 1400

µm3µl−1 [67].

densities (expressed in cell biovolume) providing food availabilities of 70, 280, 450, 960, 1000,

1900, 2100 and 3300 µm3µl−1. The lowest value, 70 µm3µl−1, considered as minimal amount

of particles, was that found in tank seawater after 1 µm filtration when no phytoplankton was

added. Food densities from 200 to 500 µm3µl−1 were considered as low diets; 700 to 1000

µm3µl−1 as restricted diets, and 2000 to 3300 µm3µl−1 as non-restricted diets.

Shell length was measured during the larval experiments using an image analysis tech-

nique. Shell length data was assessed during the period where larvae fed exclusively on

phytoplankton, exhibited a linear shell length increase and had not achieved competent size

of 280 µm . Rico-Villa et al [67] states in their larvae rearing experiment the assumption that

when larvae achieved competent size earlier they were removed from the population in which

they were measuring mean size. They hypothesised that this is the reason for the plateau in

larval growth at the end of some of the observation experiments. Figure 1.14 and Figure 1.15

reproduces the comparison of the shell length observation data from experiment 1 and 2 to

Rico-Villa et al [67] DEB model. Mean observed values are presented with their standard

deviation.

40

Figure 1.15: Comparison of observations ± SD (dots) and DEB model simulation (line) of growth for

Pacific oyster Larvae in experiment 2 under different food density conditions: 70 (a), 280 (b),

450 (c), 960 (d), 1000 (e), 1900 (f), 2100 (g) and 3300 µm3µl−1 (h). The other environmental

conditions were optimal: temperature of 25
◦C [67].

41

1.6 thesis outline

The aim of this thesis is to define a generic multi-scale process algebra language for multi-scale

integration modelling. There are essential stages that need to be completed before defining

such a language. Firstly, it is important to gain insight into whether a process algebra language

such as Bio-PEPA has the potential to model an organism’s physiology within a specific life

stage scale. A generic translation approach to translate DEB models to Bio-PEPA models will

be defined in order to describe an organism’s physiology in an abstracted but descriptive view.

This work will allow an appreciation on the further analysis available to the model which

the Bio-PEPA plug-in can provide. This work will also show the challenges of modelling the

physiological scale in Bio-PEPA and comparison analysis with original DEB model results.

Secondly, investigations into the multi-scale challenges of integration of the physiological life

stages of an organism in Bio-PEPA need to be carried out. Thirdly, the multi-scale challenges

and features attained from these Bio-PEPA models will allow the conception of Process

Algebra with Layers (PAL). The syntax and semantics of PAL will be defined. The comparison

of PAL to other multi-scale process algebra languages will highlight its ability to model

specific multi-scale features in an elegant fashion showing that PAL encapsulates the multi-

scale features and middle-out strategy. Fourthly, PAL will be applied to the multi-scale system

that is the motivation of this thesis. Fifthly, application of PAL to an unrelated multi-scale

system will be carried out to test PAL’s generic ability and emphasise its usefulness to aid in

the analysis of multi-scale systems.

This thesis is separated into the following chapters. Chapter 2 (published in the proceedings

of the Sixth International Workshop on the Practical Application of Stochastic Modelling (PASM),

2013) presents the generic translation approach to translate DEB models to Bio-PEPA models.

This is achieved by the translation of a specific DEB model of a Pacific oyster Juvenile-Adult

physiological life stage case study. Analysis of the Bio-PEPA model is undertaken to first

compare to the original DEB model results and secondly to gain extra insight of the model by

utilising analysis techniques in the Bio-PEPA plug-in.

Chapter 3 presents an integrated life stage Bio-PEPA model. This is completed by firstly

using the generic translation approach to translate the Pacific oyster Larval physiological life

stage DEB model to a Bio-PEPA model. Secondly, this model is integrated with the Pacific

oyster Juvenile-Adult physiological life stage Bio-PEPA model. This integrated life stage

Bio-PEPA model is analysed to show its predictive capabilities. Multi-scale challenges and

features are gathered from this model to discuss the conceptualisation of a multi-scale process

algebra language.

Chapter 4 introduces Process Algebra with Layers a language for multi-scale integration

modelling. The unique features of PAL are presented, in particular the layers of the language:

Population and Organism. The mirrored actions that allow the integration of these layers are

42

shown. The formal syntax and semantics of PAL is presented. A simple PAL model example

is given to show the configuration of a PAL model and transitions. Comparison of PAL with

process algebra languages psPAH and PEPA nets is presented. Finally in this chapter an

implemented PAL parser is described in order that the novel language can be applied to

multi-scale systems and the models can be analysed.

Chapter 5 shows the application of PAL to a Pacific oyster life stage case study invest-

igating the impacts of ocean acidification. A PAL model is created to include the oyster’s

physiology, life stage and population scale. Analysis focuses on the Larva life stage scale and

the population scale.

Chapter 6 shows the application of PAL to a cell cycle and DNA damage case study

investigating the effects of cancer treatment. A PAL model is created to include the intracellular,

cellular and population scale. Analysis of this model focuses on the length of a cell cycle and

population growth. The results are compared to wet laboratory data to show that PAL can aid

in analysis of multi-scale systems.

In Chapter 7 conclusions and future work related to this thesis are presented.

43

2
C O N V E RT I N G D Y N A M I C E N E R G Y B U D G E T M O D E L S T O B I O - P E PA ,

I L L U S T R AT E D B Y A PA C I F I C O Y S T E R C A S E S T U D Y

The work presented in this chapter has been published in the proceedings of the Sixth

International Workshop on the Practical Application of Stochastic Modelling (PASM), credited to E.

Scott, A. Hoyle and C. Shankland [71]. In this chapter, we illustrate the potential of process

algebra to illuminate physiology in a component-based high-level way. An existing Dynamic

Energy Budget (DEB) model of the Pacific oyster in Pouvreau et al [59] is translated to a

Bio-PEPA model. Moreover, as DEB theory presents models for different organisms in a

similar way, generic principles for translating DEB models to Bio-PEPA can be found. My

Bio-PEPA model has been validated through testing in a number of experiments with different

environmental conditions and initial physical values for the oyster. The results are equivalent

to those of the original DEB model, showing the translation to be faithful in this sense. My

translated Bio-PEPA DEB model can thereafter be utilised and analysed in a variety of different

modelling language tools. Some novel analysis is carried out using the Bio-PEPA plug-in [11].

This new translation approach, therefore, broadens the audience for the implementation and

analysis of DEB models. In addition, this demonstrates the utility of Bio-PEPA outside the

realm of biochemical networks for which it was developed.

In the context of this thesis, it is important to gain insight into whether a process algebra

language such as Bio-PEPA has the potential to model an organism’s physiology within a

specific life stage scale. DEB models offer a method to describe an organism’s physiology

in an abstracted way but still captures enough descriptive detail to accurately represent the

system. The organism’s physiological detail should not be lost in an integrated multi-scale

model. It is essential that the detail at each scale is preserved and therefore will reflect the

multi-scale system accurately. It is further essential to gain an appreciation on the further

analysis available to the model which the Bio-PEPA plug-in can provide.

2.1 translating the pacific oyster deb model to bio-pepa

DEB theory has been utilised to describe a variety of marine invertebrates including the

bivalve Pacific oyster [59, 66, 67] studied here. The Pacific oyster and its life cycle are described

in Section 1.5 of Chapter 1. The wet laboratory experiments carried out by Pouvreau et al [59]

and referred to throughout are described in Section 1.5.1 of Chapter 1.

44

In Pouvreau et al [59] DEB model there are three state variables: Energy Reserve (E) de-

scribes the dynamics of the energy reserve, Structural Volume (V) specifies the growth of the

structural body volume and Energy Reproduction Buffer (ER) describes the storage and use

of the energy allocated to development and reproduction. Each state variable is described by

an ordinary differential equation, reproduced here for convenience [59]. In DEB modelling Ṗ

represents an energy process.

dE

dt
= ṖA − ṖC (2.1)

dV

dt
=

ṖG
[EG]

=
κ.ṖC − ṖM

[EG]
(2.2)

dER
dt

= (1− κ).ṖC − ṖJ (2.3)

Equation (2.1) describes the increase of E by the assimilation process which produces energy

and the decrease by utilisation of this energy by many processes. Equation (2.2) specifies V is

increased by utilised energy which is specifically allocated by the parameter κ. V is decreased

by somatic maintenance which stands for a collection of processes necessary to maintain life

and also by the volume-specific cost for growth which includes all types of overheads, for

example, biosynthesis. ER (2.3) is increased by an allocated amount of utilised energy and is

decreased by maturity maintenance processes.

The DEB model parameters are reproduced in Table 2.1 for convenience with the Bio-

PEPA model parameters. In translating the model to Bio-PEPA the relationship between state

variables and ODEs, and agents and actions, must be considered. Also of importance are units

of measurement, and how the outputs of the model should be formulated.

2.1.1 Conversion of the state variables to agents

My Bio-PEPA model is given in Figure 2.1. The first step of the translation is to represent

the state variables (E, V and ER) by agents in the Bio-PEPA model. See Agent definitions of

Figure 2.1. The equations of the state variables become actions of these agents. Some actions

indicate increase or decrease of an agent corresponding to the positive and negative terms of

the ODE. Some terms include state variables that influence the state variable. This corresponds

to actions that indicate that an agent influences a kinetic rate of another agent’s action even

though the agent does not increase or decrease when the action occurs. Reserve (E) agent

is assigned four actions: a1, a3, a4 and a5. E is increased by a3 and decreased by a4. The

associated rate of action a3 is defined as the assimilation rate and the rate of action a4 is

defined as the utilisation rate. See Actions and their associated kinetic rates of Figure 2.1.

Both these rates are as defined in the DEB equations. E is a generic modifier in the actions a1

45

DEB Bio-PEPA

Symbol Definition Value Dimension Value Dimension

[EG] Volume-Specific costs for structure 1900 Jcm−3
1.9 Jmm−3

[EM] Maximum energy storage density 2295 Jcm−3
2.295 Jmm−3

κ Fraction of utilised energy spent on growth and

maintenance

0.45 - 0.45 -

κR Fraction of reproduction energy fixed in eggs 0.7 - 0.7 -

VP Structural body volume at puberty 0.4 cm3 400 mm3

{ṖXm} Maximum surface area-specific ingestion rate 560 Jcm−2d−1 5.6 Jmm−2d−1

{ṖAm} Maximum surface area-specific assimilation rate 420 Jcm−2d−1 4.2 Jmm−2d−1

ae Assimilation efficiency 0.75 - 0.75 -

[ṖM] Volume-specific maintenance rate 24 Jcm−3d−1 0.024 Jmm−3d−1

µE Energy content of reserves 17.5 Jmg−1 17500 Jg−1

ρ Volume-specific dry flesh weight 0.2 gcm−3
0.2 gcm−3

GSI Gonadosomatic index triggering spawning 35 % 35 %

TS Temperature threshold triggering spawning 20
◦C 20

◦C

T1 Reference temperature 293 K 293 K

TA Arrhenius temperature 5800 K 5800 K

TAH Rate of decrease at upper boundary 30000 K 30000 K

TAL Rate of decrease at lower boundary 75000 K 75000 K

TH Upper boundary of tolerance range 305 K 305 K

TL Lower boundary of tolerance range 281 K 281 K

Table 2.1: Model parameters used in this study. The DEB parameters are as given by Pouvreau et al [59].

46

Parameters of model

Actual_temperature = value dependent on experiment ;

Temperature_correction = exp((TA/T1)− (TA/(273+Actual_temperature)))

∗ ((1+ exp((TAL/(273+Actual_temperature))− (TAL/TL))

+ exp((TAH/TH)− (TAH/(273+Actual_temperature))))−1);

{ṖXm} = 5.6 ∗ Temperature_correction;

{ṖAm} = ae ∗ {ṖXm};[
ṖM

]
= 0.024 ∗ Temperature_correction;

ṖM =
[
ṖM

]
∗V ;

[E] = E/V ;

ṖC = ([E]/([EG] + (κ ∗ [E]))) ∗ ((
[EG]∗{ṖAm}∗V2/3

[EM]) + (
[
ṖM

]
∗V));

Food_density_chloa = value dependent on experiment ;

Xκ = value dependent on experiment ;

Functional_response = Food_density_chloa
(Food_density_chloa+Xκ) ;

ṖA = Functional_response ∗ {ṖAm} ∗V2/3;

Maturity = H(V −Vp);

ṖJ = ((((1−κ)
κ

) ∗V ∗
[
ṖM

]
) ∗ (1−Maturity))

+ ((((1−κ)
κ

) ∗Vp ∗
[
ṖM

]
) ∗ (Maturity));

Percentage_ER = (
ER_DFW
Total_DFW) ∗ 100;

ER_start_spawn = H(Percentage_ER −GSI);

Stop_spawn = H(1−Percentage_ER);

T_start_spawn = H(Actual_temperature− Ts);

Actions and their associated kinetic rates

kineticLawOf a1 :
(κ∗ṖC)

[EG] ;

kineticLawOf a2 :
ṖM
[EG] ;

kineticLawOf a3 : ṖA;

kineticLawOf a4 : ṖC;

kineticLawOf a5 : ((1−κ) ∗ ṖC) ∗Maturity;

kineticLawOf a6 : ṖJ ∗Maturity ∗ (1− stop_spawn);

kineticLawOf empty : fMA(100 ∗Maturity);

kineticLawOf switch_on : fMA(10 ∗ER_start_spawn ∗ T_start_spawn);

kineticLawOf switch_off : fMA(10 ∗ stop_spawn);

Agent definitions

V = a1 ↑ +a2 ↓ +a3�+a4�+a5�+a6�+empty�;

E = a3 ↑ +a4 ↓ +a1�+a5�;

ER = a5 ↑ +a6 ↓ +empty ↓;

Tracker_off = (switch_on,1) ↓ +(switch_off,1) ↑;

Tracker_on = (switch_on,1) ↑ +(switch_off,1) ↓ +(empty,1)⊕;

Model Component

V[0] BC∗ E[0] BC∗ ER[0] BC
∗ Tracker_off[1] BC∗ Tracker_on[0]

(fMA = formula of mass action)

Figure 2.1: Pacific oyster Bio-PEPA model. See Table 2.1 for other parameters.

47

and a5 as E influences the kinetic rates of the increasing actions of the Structural Volume (V)

and Reproduction Buffer (ER) although E does not increase or decrease when these actions

occur.

Structural Volume (V) is assigned seven actions: a1 which increases V, and a2 which

decreases it, and actions a3, a4, a5, a6 and empty which leave V unchanged. The associated

rate of action a1 is defined as utilisation rate multiplied by κ divided by the volume-specific

cost for growth. Rate of action a2 is specified as the somatic maintenance rate divided by the

volume-specific cost for growth. These rates again use the specific rates as defined in the DEB

model. As V is a generic modifier in the other five actions it influences the kinetic rates and

does not increase or decrease when these actions occur.

The Reproduction Buffer agent (ER) has three actions: a5, a6 and empty. Actions a5 and a6

are as before where a5 increases ER and a6 decreases it. This agent has the extra action of

empty to describe the spawning event of the oyster. The associated rate of action a5 is defined

as the utilisation rate multiplied by 1− κ multiplied by the parameter Maturity. The rate of

the action a6 is specified by maturity maintenance rate multiplied by the maturity parameter.

This maturity parameter is created in Bio-PEPA to acknowledge the additional rule of the

DEB model that specifies that ER becomes active when the individual has reached a specific

structural volume. The maturity maintenance rate varies with V when the oyster is below the

specific structural volume of maturity and becomes constant when V reaches or is above this

specific value. The DEB model uses the min function to achieve this whereas in Bio-PEPA the

Heaviside step function (H) [9] is utilised. Apart from the maturity parameter the rates used

for the actions a5 and a6 are as defined in the DEB model.

Figure 2.2: State diagram for the behaviour of the tracker component.

48

The spawning event of the oyster is described partly in the ODEs of the DEB model, but

mainly through the accompanying textual description. The translating process therefore does

not only require the translations of the ODEs but also requires the novel interpretation and

implementation of timed events with specific conditions. There are two conditions that have

to be fulfilled before spawning can take place. The first condition refers to the build up

of gonad material and the second condition is dependent on the temperature during the

seasons. The first condition is that a certain gonadosomatic index (GSI) has to be reached:

this means the ratio between the gonad and total tissue mass is above the GSI. Secondly, the

external temperature must be above a specific threshold (TS). It is not sufficient to only use

the Heaviside step function to implement the conditions described above, because the empty

action would only be active as long as both conditions were true and hence spawning would

be partial (ER would never fully empty). Instead, these conditions and event are implemented

by a tracker component in the Bio-PEPA model. The tracker component only switches on

when both conditions are met and acts as an activator to the empty action of the reproduction

buffer. As defined in the DEB model when a spawning event occurs ER is completely emptied,

therefore the empty action decreases ER at a fast rate, it is triggered multiple times. The

tracker component switches off when ER becomes zero, therefore the empty action cannot

take place. Thus it is never possible for ER to become negative. A state diagram of the tracker

component’s behaviour is given in Figure 2.2. The kinetic rate of the tracker is given by the

built-in mass action function (fMA).

2.1.2 Adding the forcing variables into the model

Temperature and food density are forcing variables. Temperature affects two physiological

rates, maximum surface area-specific ingestion rate and volume-specific maintenance rate.

In the DEB model this dependency on the temperature is described by an Arrhenius-type

equation [31] and this is utilised in the Bio-PEPA model. The second forcing variable, food

density, affects the assimilation rate and is implemented in the same way as the DEB model.

Both forcing variables vary over time in the DEB model: experimental data was imputed for

both values at each data point in time. Since both temperature and food density are measured

variables from experiments, there exists a time series for each (as shown in Figure 1.12 in

Chapter 1 and again in Figure 2.3 left). It is desirable to be able to directly input these time

series to the Bio-PEPA tool as background data to use in calculations. This is not currently

possible. Instead hand crafted functions must be coded to approximate the time series for

experimental data (as shown in Figure 2.3 right). These make use of the inbuilt time variable

and the Heaviside step function. There is a trade-off between the complexity of these functions

and the closeness of the approximation.

49

Figure 2.3: Temporal variations of the forcing variables: temperature and phytoplankton in Experiment

A and B. DEB model values on left (reproduced from Pouvreau et al [59]) and Bio-PEPA

values on right. The scales are phytoplankton concentration on the left, and temperature on

the right of each graph.

2.1.3 Changing the units of specific parameters

In Bio-PEPA initial values for each agent are required to be an integer. The initial value of V

in the DEB model is a decimal number therefore changing of some units in the model must

be made. The unit of V is cm3 and is changed to mm3 to gain integer values with acceptable

precision. Other model parameters that are affected by V had their units appropriately

changed. See Table 2.1.

2.1.4 Addition of dry flesh weight equation for comparison

The DEB model results are compared with wet laboratory results using a calculated total dry

flesh weight value (DFW). The Bio-PEPA simulation results must therefore be calculated into

DFW values and also their units to be scaled and changed appropriately for the comparison.

Equation (2.4) from Pouvreau et al [59] gives the total DFW. The other values (such as the

assimilation and respiration rates) from the Bio-PEPA model can be compared to the DEB

model and the wet laboratory results. Analysis of this model is shown in Section 2.3.

DFW =
E

µE
+ (

V

1000
) ∗ ρ +

κR ∗ ER
µE

(2.4)

50

2.2 generic translation of deb models to bio-pepa

Having learned from the Pacific oyster Bio-PEPA model, it is possible to describe a generic

approach that can be used to transform an organism’s DEB model that includes the state

variables of Structural Volume (V), Reserve (E) and Reproduction Buffer (ER). A more complex

DEB model may require further investigation.

Conversion of the state variables to agents: DEB model state variables usually are V, E and

ER. There may be more than one V and E. These will become agents in the Bio-PEPA model.

As noted by Gurriero and Heath [33], the translation from simple ODEs to Bio-PEPA is

straightforward. This is partly true for the DEB model here. It is worth noting that DEB

models include timed events such as spawning which are not described in the ODEs of the

models, therefore interpretation and implementation of the textual model assumptions must

be made e.g using a tracker component.

Implementation of the actions of agents from the state variable equation definitions: The equations of

the state variables form the kinetic rates of the agent’s actions. The part within the equation

which increases the state variable becomes the kinetic rate of an action for which that state

variable’s agent is a product. The part of the equation that decreases the state variable will

become the kinetic rate of the action for which that agent is a reactant.

The state variable ER is involved in a reproduction event, therefore the use of the Heaviside

step function and a tracker component may be required to set the specific conditions of the

event, e.g. the use of a tracker component for a specific reproduction event of Section 2.1.1.

Adding the forcing variables into the model: Values of the forcing variables are usually wet

laboratory values that are entered at each data point in time. As it is not possible to add

each data point to each time point in a Bio-PEPA simulation, hand crafted functions should

be implemented to create similar behaviour of the forcing variables over time. Statistical

techniques such as regression can assist here.

Changing the units of specific parameters: In Bio-PEPA initial values for each agent are re-

quired to be integer. Changing of some units and suitable scaling in the values of the state

variables must be made. An example is shown in Table 2.1. Other parameters affected by the

state variables that have been changed in this way must be changed accordingly.

Addition of equations for comparison and analysis of results: DEB model results are compared to

wet laboratory results by an equation to convert the state variable values to an appropriate

51

unit value. This equation can be used on the results of the Bio-PEPA model. In the Pacific

oyster model in Section 2.1 the comparison equation is Equation (2.4).

2.3 model analysis

2.3.1 Comparison analysis results

Two time-series analysis techniques, continuous ODEs and discrete stochastic simulation,

were used on the Bio-PEPA model. The Bio-PEPA model is validated by comparing its output

with the results of the original DEB model. It is further validated by statistical comparison:

the original DEB model [59] compared the simulated predicted results with observed wet

laboratory data using R2 statistics; the Bio-PEPA model simulation results were also compared

to the observed wet laboratory data using the same technique. The goodness-of-fit between

prediction (Y) and Observation (X) was tested according to the R2 value of the regression Y=X.

Pouvreau et al [59] carried out three wet laboratory experiments described in Section 1.5.1

of Chapter 1. Two of these are shown here: experiment A and experiment B corresponding to B

and C respectively of [59]. Experiment A of [59] was omitted because food concentration data

had a high number of fluctuations and a complex hand crafted function needed to be created.

Also this experiment took place with oysters in tanks whereas the other two experiments were

in natural environments. The results from the DEB model are from ODEs simulations using

the Systems Thinking for Education and Research (STELLA) tool [38]. The Bio-PEPA model

results are stochastic simulations of multiple replications (1000); therefore, simulating the

growth and reproduction of a population of oysters. 1000 replications are chosen consistently

here across analyses to give a representative average system behaviour. The Bio-PEPA model

is also used to generate ODEs simulation results, to give comparability with the original DEB

model.

Experiment DEB V (cm3) Bio-PEPA V (mm3) E (J) ER (J) Xκ (µg chl− al−1)

Experiment A

Batch 1 2.3 2300 2000 4000 8

Batch 2 2.6 2600 500 0 8

Batch 3 3.1 3100 3500 8500 8

Experiment B 1 1000 500 500 3.5

Table 2.2: Initial values of Xκ and the state variables: V, E and ER.

The two experiments from the original DEB model had different initial values for the

state variables and a different value for Xκ (half-saturation coefficient). The half-saturation

52

coefficient is changed due to the different diet composition between experiments [59]. Both

experiments are carried out over a different time period and under different environmental

conditions. This demonstrates the Bio-PEPA model’s generic ability to capture the dynamics

of the energy budget in the Pacific oyster in various environments. Table 2.2 reproduces [59]

the initial values of the state variables and Xκ for each experiment and includes the Bio-PEPA

model scaled state variable V. The graphs of the DEB model [59] (Shown in Figure 1.5.1 of

Chapter 1) are reproduced here for convenience for comparison to the outputs of the Bio-PEPA

model.

2.3.1.1 Experiment A

The wet laboratory methodology of this experiment is described in Section 1.5.1 of Chapter 1.

This experiment had a time period of 120 days (July to October). The model is tested here as

the experiment has a fluctuating environment (see Figure 2.3) because the food concentration

varies erratically and oysters from various origins are analysed. The experiment encapsulates

three sub-experiments (batch 1, 2 and 3) and each batch has different initial state variable

values indicating oysters from different origins. The batch 1 experiment lasted the whole

time period, batch 2 had a duration of 90 days commencing from August and batch 3 started

ten days from the start of September lasting 50 days. Batch 1 were allowed to continue

and complete a spawning event whereas the other two batches were introduced too late

for spawning to take place. The forcing variables’ values, temperature and phytoplankton

concentration, of both the original DEB model and the Bio-PEPA model are given in Figure 2.3.

The differences in the values occurs as the values in the Bio-PEPA model are produced from

functions which approximate the actual measurements whereas the DEB model uses wet

laboratory values. The total dry flesh weight values for all batches in the DEB model and

Bio-PEPA model is given in Figure 2.4.

Figure 2.4: Experiment A comparison of total dry flesh weight results of DEB model left [59] and

Bio-PEPA model (ODEs and stochastic results) right. DEB model includes comparison of

observations ± SD (dots). The error bars show the standard deviation in the observed data.

Note that the sharp drops that can be observed on simulation lines indicate spawning events

predicted by the models.

53

The Bio-PEPA model produced comparable results to the original DEB model. It confirms a

very good simulation of somatic growth and the replication of a spawning event. The slight

differences in batch 1 are derived from the difference in the forcing variable values. Although

it cannot be seen clearly on the graphs, the values of reproduction weight released at the

spawning event in batch 1 are similar and the time of the spawning is the same.

Pouvreau et al [59] state the observed wet laboratory data of the three sub-experiments of

this experiment were all pooled together for the statistical comparison with the simulation

results of the original DEB model. This was carried out as the aim of this experiment was

to test the model not only on a more fluctuating environment but on several populations

of oysters from various origins [59]. There is also a limited amount of data available in the

observation results, for example batch 2 only has two observation data points. I also grouped

the observed wet laboratory data of this experiment therefore the statistical comparison is

faithful to the original DEB model. The original DEB model gave R2 = 0.81 (n=8, p<0.002)

between observation and simulation. The Bio-PEPA model gave R2 = 0.813 (n=8, p=0.002)

between observation and stochastic simulation and gave R2 = 0.812 (n=8, p=0.002) between

observation and ODEs simulation. Here, n represents the number of data points and p

represents the p-value. This statistical comparison confirms the Bio-PEPA model in this

experiment gives comparable results to the original DEB model.

2.3.1.2 Experiment B

The wet laboratory methodology of this experiment is described in Section 1.5.1 of Chapter 1.

This experiment had a duration of 365 days, that is a complete annual cycle. The experiment

has typical natural environmental field conditions. These conditions are presented in Figure 2.3;

again differences in the forcing variables values occur as the values in the Bio-PEPA model

are produced from functions whereas the DEB model uses wet laboratory values. The total

dry flesh weight value for this experiment in the DEB model and Bio-PEPA model is given in

Figure 2.5.

The Bio-PEPA model simulated the growth of an oyster over a complete annual cycle and

also the two spawning periods. The first spawning event is at the beginning of June and

the weight lost is approximately 0.15g in the stochastic simulations and 0.28g in the ODEs

simulation. The second spawning event takes place around the end of August and the weight

lost is approximately 0.61g in the stochastic simulations and 0.82g in the ODEs simulation.

These results are comparable to the original DEB model with 0.2g for the first event and 0.5g

for the second.

The goodness-of-fit for the original DEB model was R2 = 0.92 (n=24, p<0.0001) against

observation and predicted. The Bio-PEPA model gave R2 = 0.86 (n=24, p<0.0001) between

observation and stochastic simulation. Analysis of the ODEs simulation against observation

gave R2 = 0.824 (n=24, p<0.0001). The Bio-PEPA result are less comparable to the original

54

Figure 2.5: Experiment B comparison of total dry flesh weight results of DEB model left [59] and

Bio-PEPA model (ODEs and stochastic results) right. DEB model includes comparison of

observations ± SD (dots). The error bars show the standard deviation in the observed data.

Bio-PEPA graph horizontal axis tick marks indicate 15 days and month letters are at the start

of each month. Note that the sharp drops that can be observed on simulation lines indicate

spawning events predicted by the models.

DEB model result because of the functions that describe the behaviour of the temperature and

food forcing variables. The functions are more simplistic in their behaviour than the original

collected data. For example, the temperature in the Bio-PEPA model may be decreasing below

20
◦C too early in September, artificially preventing some simulations spawning for a second

time.

The Bio-PEPA model, similar to the DEB model, outputs not only the total dry flesh weight

values but also values of internal parameters of the model such as the assimilation rate and

functional response. These results can be used to analyse the models internal functioning.

Figure 2.6 shows the assimilation rate plotted against the maintenance costs. This demonstrates

the assimilation is just sufficient to meet the maintenance costs when food is limited during

the winter period [59]. It is noted that the parameters of scaled energy density and functional

response also displayed the same internal relationship values as the original DEB model.

Figure 2.6: Experiment B assimilation of energy against maintenance costs. DEB model results left

reproduced [59].

55

Figure 2.7: Simulation distributions for experiment A (left) and B (right). Temporal variations of the

forcing variable temperature for each experiment is also shown. The scales are CDF and PDF

percentage values on the left, and temperature on the right hand side of each graph.

2.3.2 Simulation distributions analysis of the Bio-PEPA model

Further analysis of the Bio-PEPA model is performed using the analysis technique simulation

distributions in the Bio-PEPA plug-in. Results from this analysis are presented for both

experiments and are given in Figure 2.7. This technique allows the analysis of the spawning

events and when they are most likely to occur. The chosen component in this analysis is an

agent which counts the number of times the Tracker_on component becomes equal to 1, i.e.

when spawning occurs. The target value is set to 1 for experiment A and set to 1 and then 2

in experiment B. The number of stochastic simulation replications is set to 1000.

2.3.2.1 Experiment A

For batch 1 spawning starts to occur at day 77 with 1.3% of the simulations reaching the target

value of 1 around mid September. 90.7% of the simulations reach this target between day 78

and 80. By day 82 all simulations reach the target. This certifies the spawning event occurring

at a narrow time frame. Batch 2 and 3 simulations never reach the target value of 1 indicating

that a spawning event will never occur in either experiment.

2.3.2.2 Experiment B

Simulations start to reach the target value of 1 at day 223. All the simulations had reached

this target value by day 272. This indicates a large window of time for the first spawning to

occur (beginning of June to mid July). The distribution is skewed: 72% of simulations spawn

within the first 9 days of June then a long tail.

Simulations start to reach the target value of 2, i.e. a second spawning event, at day 308

(around the end of August). 97.6% of all simulations had reached this value by day 326 at the

start of September. 24 simulations did not produce a second spawning event. This may be

due to these simulations having late first spawning events and therefore do not have time to

56

build up to the GSI condition before the temperature drops below 20
◦C. These types of results

are not available in the original DEB model ODEs results. It is possible in principle to do

stochastic simulations in ODEs models but the model would first need to be transformed into

a different equation type to allow such analysis. This may be the reason that such analysis

was not carried out in the original DEB model.

2.3.3 Parameter Estimation

Pouvreau et al [59] estimate some model parameters, as is common in modelling; for example,

finding the values of volume specific cost for structure [EG] and the maximum energy storage

density [EM] in a starvation experiment [66]. Parameter optimisation can be used on Bio-PEPA

models to find unknown values for certain parameters by comparing the time series data

from the relevant experiment, removing the need to carry out additional wet laboratory

experiments for these certain parameters. Given experimental data, this is easily available for

Bio-PEPA models. This analysis has not been carried out for this model due to lack of access

to experimental data.

2.4 summary

In this chapter I described a generic translation approach to easily convert mathematical DEB

models to Bio-PEPA models. A concrete example model of the translation process has been

constructed and its results have been compared to the original DEB model. I carried out new

analysis (Section 2.3.2) on a specific DEB model in the Bio-PEPA plug-in by using simulation

distributions and new results have been generated about the system demonstrating the utility

of the translation process.

The Pacific oyster Bio-PEPA model also shows that it is generic, producing results for

different environmental conditions and for different state variables. The model can therefore

be used again for other related bivalve experiments, potentially feeding back to further, more

targeted, wet laboratory experiments.

The Bio-PEPA plug-in tool [11] has a range of analysis techniques which can further aid

in examination of results. The Bio-PEPA model can be exported and converted into other

computational modelling and analysis tools. This allows a wider audience to access the model.

This range of further analysis techniques is not available for the DEB model.

A problem identified with the Bio-PEPA plug-in is that functions approximating the

environmental data were required: it would be desirable to add these directly from the

collected data. This may account for the differences between our results and those of the DEB

model as the forcing variables have a significant effect.

57

My generic translation approach can be used in future work to investigate not only marine

invertebrates DEB models but also other organism DEB models [41], therefore, broadening the

audience for modelling and analysis. In the next chapter this approach is used to implement a

DEB Bio-PEPA model of the Larval life stage of the Pacific oyster.

This work shows that a process algebra language such as Bio-PEPA can successfully model

an organism’s physiology within a specific life stage scale. The comparison analysis of the

model shows that DEB models accurately capture enough detail of the system. In Section 2.3.2

further analysis of this model was undertaken using the simulation distributions analysis

available within the Bio-PEPA plug-in. This shows the Bio-PEPA plug-in can aid in the further

analysis of this type of system.

58

3
L A RVA A N D I N T E G R AT E D L I F E S TA G E B I O - P E PA M O D E L S

In this chapter we illustrate how Bio-PEPA can be used to model the Larval life stage of

the Pacific oyster by translating a Dynamic Energy Budget (DEB) model using my novel

translation approach described in Chapter 2. Ocean acidification has its greatest effect on the

Larval life stage of the Pacific oyster [14], therefore it is important to translate and include

this stage in the model. The Larva Bio-PEPA model is validated by comparing its simulation

results of two experiments with the original DEB model results.

A novel integrated life stage Bio-PEPA model is implemented by linking the Larva model

and Juvenile-Adult model from Chapter 2. Analysis of the integrated model shows its

predictive capacity and usefulness. Important multi-scale challenges and features are identified

from this model. The highlighted features and issues observed need to be resolved in the PAL

language to model multi-scale systems appropriately.

3.1 larva model

An existing mathematical DEB model of the life stage of the Pacific oyster Larva in Rico-Villa

et al [67] is translated to a computational Bio-PEPA model. The Pacific oyster and its life

cycle are described in Section 1.5 of Chapter 1. The wet laboratory experiments carried out

by Rico-Villa et al [67] and referred to throughout are described in Section 1.5.2 of Chapter 1.

Chapter 3 shows that DEB models which have different parameter values for physiology and

driving forces can be translated to Bio-PEPA models using the generic translation approach

detailed in Chapter 2.

3.1.1 Translating the Larva Pacific oyster DEB model to Bio-PEPA

My Bio-PEPA model is given in Figure A.1 of Appendix A. In Rico-Villa et al [67] DEB model

there are three state variables: Reserve (E) describes the dynamics of the energy reserve,

Biovolume (EV) specifies the flow of energy from the Reserve for the process of growth

of the structural body volume and Development (ER) describes the storage and use of the

energy allocated to development and the maintenance of this development. The state variables

are described by a set of ODEs, reproduced here for convenience [67]. In DEB modelling Ṗ

represents an energy process.

59

dE

dt
= ṖA − ṖC (3.1)

dEV
dt

= ṖG = κ.ṖC − ṖM (3.2)

dER
dt

= (1− κ).ṖC − ṖJ (3.3)

Equation (3.1) describes the increase of E by the assimilation process which produces energy

and the decrease by utilisation of this energy by many processes. Equation (3.2) specifies

EV is increased by utilised energy which is specifically allocated by the parameter κ and is

decreased by somatic maintenance which stands for a collection of processes necessary to

maintain life. ER (3.3) is increased by an allocated amount of utilised energy and is decreased

by maturity maintenance processes. The Bio-PEPA model parameters are shown in Table A.1

of Appendix A.

The initial agents’ (Reserve, Biovolume and Development) values are scaled up by 106 as

agent initial values need to be integers. The agents’ values are scaled back by 10−6 in the

parameters: E, EV and ER. These parameters are used throughout the model for parameter

and rate equations. The agents’ units values are therefore changed in one place in the model.

This makes writing the model more efficient. For example if the units need to be modified

later, only one alteration is needed. This will reduce manual writing errors. See the parameters

of the model in Figure A.1. The rates of the actions were multiplied by 106 to be at the same

scale as the agents’ values.

To compare the model output to available data, Larval length L is used, which was obtained

by converting the state variable EV into µm using the equation (3.4) from Rico-Villa et al [67].

L = (EV/[EG])
1/3/δM (3.4)

3.1.2 Analysis

Both continuous ODEs and discrete stochastic simulation time-series analysis techniques of the

Bio-PEPA plug-in were used in the analysis of the Larva model. The Bio-PEPA model is valid-

ated by comparing its output with the results of the original DEB model. It is further validated

by statistical comparison: the original DEB model [59] compared the simulated predicted

results with observed wet laboratory data using R2 statistics; the Bio-PEPA model simulation

results were also compared to the observed wet laboratory data using the same technique.

The goodness-of-fit between prediction (Y) and Observation (X) was tested according to the

R2 value of the regression Y=X.

60

Day Observation (µm) Stochastic (µm)

2 79.06 77.298

5 86.01 95.237

7 91.95 107.259

10 109.93 125.277

13 123.93 143.177

15 136.16 155.098

18 157.49 172.946

21 171.40 190.770

Table 3.1: Experiment 1(a) comparison data used in R2 regression for Bio-PEPA model stochastic result.

Observation data reproduced from Rico-Villa et al [67].

Rico-Villa et al [67] carried out two experiments (Experiment 1 and 2 described in Sec-

tion 1.5.2 of Chapter 1) focusing on changes of the forcing variables (food density and temper-

ature) of the model and how these will affect Larval growth. Similarly to the Juvenile-Adult

Bio-PEPA model the Larva Bio-PEPA model results are stochastic simulations of multiple

replications (1000) as before. The Bio-PEPA model is also used to generate ODEs simulation

results, to give comparability with the original DEB model, which are faster to generate than

stochastic results. To match the data both experiments had the same initial value (2.5× 10−4

Joules) for the state variables Biovolume and Reserve. ER has the initial value of zero. Xκ

(half-saturation coefficient) is the same in both experiments with the value of 600µm3 µl−1.

The simulations start at day 2 as this is when the first collected wet lab Larval length data was

taken. The simulations time period is around 25 days when the Larvae reach the size of 300

µm. Rico-Villa et al [67] state that at this size the process of metamorphosis occurs and this is

when a Larva becomes a Juvenile.

Rico-Villa et al [67] stated in their larvae rearing experiment the assumption that when

larvae achieved competent size earlier they were removed from the population in which they

were measuring mean size. They hypothesised that this is the reason for the plateau in larval

growth at the end of some of the observation experiments. To reflect this the original DEB

model simulations ended when the Larva reached the size of 300 µm. In my Larva Bio-PEPA

model the feeding mechanism was allowed to continue even when the Larva reached 300

µm. It is unrealistic to try and match the Bio-PEPA simulation results to some of the last data

points of the observed Experiments that have this plateau because the observed data points

are not showing the realistic growth of Larvae. To take this into account the last data point

of the observed data was removed when comparing the simulation results of the Bio-PEPA

model in specific experiments that were effected by this plateau. These include Experiment 1

(c to e) and Experiment 2 (d to h). For Experiment 2 (f) the last two data points were removed

as they both occurred when the plateau was in effect. Table 3.1 shows the comparison data for

61

Experiment 1(a) shown in Figure 3.1 as an example of the data used to find the R2 value in

the statistical analysis.

3.1.2.1 Experiment 1

The wet laboratory methodology of this experiment is described in Section 1.5.2 of Chapter 1.

Experiment 1 focused on Larvae growth under different temperatures with food density at

a constant optimal value of 1400µm3µl−1. The experiment shows the strong influence that

temperature has on growth and that increasing the temperature results in a shorter time for a

Larva to reach the size of 300 µm (a shorter larval rearing period). The Larval length values

for this experiment in the original DEB model and my Bio-PEPA model is given in Figure 3.1.

Both the stochastic and ODEs simulation results of the Bio-PEPA model are similar to each

other indicating consistency in the model.

The Bio-PEPA model produced comparable results to the original DEB model. The statistical

comparison R2 results of the Bio-PEPA model comparison with the DEB model is given in

Table 3.2. This statistical comparison confirms the Bio-PEPA model in this experiment gives

comparable results to the original DEB model.

Experiments Temperature (◦C) Food Density (µm3µl−1) R2: Original DEB R2: Bio-PEPA Stochastic R2: Bio-PEPA ODEs

Experiment 1

(a) 17 1400 0.987 0.983 0.983

(b) 22 1400 0.972 0.983 0.983

(c) 25 1400 0.996 0.985 0.985

(d) 27 1400 0.984 0.989 0.989

(e) 32 1400 0.977 0.970 0.970

Experiment 2

(a) 25 70 0.954 0.547 0.552

(b) 25 280 0.611 0.881 0.881

(c) 25 450 0.987 0.991 0.991

(d) 25 960 0.983 0.968 0.968

(e) 25 1000 0.974 0.972 0.972

(f) 25 1900 0.961 0.973 0.973

(g) 25 2100 0.987 0.955 0.955

(h) 25 3300 0.990 0.962 0.962

Table 3.2: Comparison of Bio-PEPA model and the original DEB model [67] goodness-of-fit to the

observed data.

3.1.2.2 Experiment 2

The wet laboratory methodology of this experiment is described in Section 1.5.2 of Chapter 1.

Experiment 2 focused on Larvae growth under different food densities with temperature at a

constant optimal value of 25◦C. The experiment shows that increasing food density enhances

62

Figure 3.1: Experiment 1 comparison of Larval Length results of DEB model left [67] and Bio-PEPA

model (ODEs and stochastic results) right under different temperatures: (a) 17, (b) 22, (c) 25,

(d) 27 and (e) 32
◦C. The DEB model includes comparison of observations ± SD (dots).

63

Figure 3.2: Experiment 2 (part 1 of 2) comparison of Larval Length results of DEB model left [67] and Bio-

PEPA model (ODEs and stochastic results) right under different food density conditions: (a)

70, (b) 280, (c) 450 and (d) 960 µm3µl−1. The DEB model includes comparison of observations

± SD (dots).

64

Figure 3.3: Experiment 2 (part 2 of 2) comparison of Larval Length results of DEB model left [67] and

Bio-PEPA model (ODEs and stochastic results) right under different food density conditions:

(e) 1000, (f) 1900, (g) 2100 and (h) 3300 µm3µl−1. The DEB model includes comparison of

observations ± SD (dots).

65

Larval growth and Rico-Villa et al [67] stated that an optimal food supply of a minimum level

of 1000 µm3µl−1 would be necessary to enhance larval growth and success to metamorphosis.

The Larval length values for this experiment in the original DEB model and my Bio-PEPA

model is given in Figure 3.3. The stochastic and ODEs simulation results of the Bio-PEPA

model are similar indicating consistency in the model.

The Bio-PEPA model produced comparable results to the original DEB model. The statistical

comparison R2 results of the Bio-PEPA model comparison with the DEB model is given in

Table 3.2. The Bio-PEPA result for 70 µm3µl−1 Figure 3.3 (a) is less comparable to the original

DEB model, this may be a result of the low value of the food density. The other Bio-PEPA

results in this statistical comparison are more comparable to the original DEB model validating

the Bio-PEPA model as a accurate translation.

3.2 integrated life stage model

An integrated life stage model was implemented linking my two separate validated Larva

and Juvenile-Adult Bio-PEPA models. My integrated life stage Bio-PEPA model is given in

Appendix A. This novel model includes three distinct life stages of the Pacific oyster (Larva,

Juvenile and Adult). There is a need to have all three life stages included in one model as each

stage is affected differently with environmental changes [7, 14]. The model was built to firstly

ascertain mechanisms within Bio-PEPA to link the stages and secondly to highlight problems

which arise from this integration. These challenges identify features that need to be included

in a multi-scale process algebra language.

3.2.1 Linking the life stages

To integrate and link the two models a switching life stage mechanism (L_Switch_J) was

implemented using a simple Heaviside step function. The switching mechanism is a condi-

tional for a range of Boolean expressions. This function tracks when the length of the oyster

reaches 300µm; Rico-Villa et al [67] stated that at this length an oyster begins the process

of metamorphosis and changes from a Larva to a Juvenile instantaneously. The timing of

this switch mechanism became important to realistically model when the Larva changes to

a Juvenile. The value of L_Switch_J equals 1 when the model is in the Larval life stage and

0 when it is in the Juvenile-Adult life stage. An advantage of this mechanism is that if the

length value for metamorphosis changes the model only needs updated in one place (the

parameter Metamorphosis). L_Switch_J is used to carry out three changes throughout the

model. These changes include the values of parameters, some equations and units. Figure 3.4

shows the switching mechanism and the three ways it is used throughout the model through

three examples.

66

Switching mechanism from Larva to Juvenile

Metamorphosis = 300;

L_Switch_J = H(metamorphosis− L);

Example of switch used for changing the value of parameters

TL = (285 ∗ L_Switch_J) + (281 ∗ (1− L_Switch_J))

Example of switch used for changing an equation

Functional_response = (Food_density2
(Food_density2+X2κ)

∗ L_Switch_J) + (Food_density
(Food_density+Xκ)

∗ (1− L_Switch_J));

Example of switch used for changing of units[
ṖM

]
= (((24 ∗ 10−12) ∗ L_Switch_J) + (24 ∗ (1− L_Switch_J))) ∗ Temperature_correction;

Figure 3.4: Pacific oyster integrated life stage Bio-PEPA model switching mechanism for Larva to

Juvenile-Adult life stage.

Parameters: Several parameters needed to be switched, for example, the lower boundary

temperature tolerance of a Larva is lower from that of its next life stage.

Equations: Some equations had to be switched, for example, the functional response for

food consumption of the Larva model was of type 3 compared to the Adult which was of

type 2 [59, 67]. Many of the equations did not change as both of my models use the DEB

approach and have generic parameters. This consistency was an advantage as it simplifies the

integration process.

Units: The two separate models focus on a specific time and physical scale for their specific

biological system. Some units of parameters had to be switched appropriately. The Larva

physical scale is in µm and its time scale is in days compared to the Adult’s physical scale in

cm and time scale of months. Most models focus on one unit of scale [59, 67]: the challenge

was to allow the integrated life stage model to focus on the units that are appropriate for the

life stage it is simulating. This was somewhat achieved by utilising L_Switch_J so that the

model must switch its parameters’ spatial units at an appropriate time to focus on a specific

life stage, however, the model’s agents units are scaled to the Larva model agent scale.

As the model contains two sets of parameters for the Larva and Juvenile-Adult models and

further includes the equations to convert the state variables to dry flesh weight and the length

of an oyster needed for comparison to observational data, this resulted in the integrated model

being large with many lines of code. The model is scaled to the Larva agent initial values 106,

therefore agent values for the Juvenile and Adult life stages become very large. This makes

the stochastic simulations infeasible to run. This is partly overcome as the Bio-PEPA tool

can perform ODEs simulations. It would be useful to switch scaling of values appropriately

depending on the model’s life stage. This cannot be implemented in Bio-PEPA. This issue has

to be overcome in a multi-scale process algebra language.

67

Figure 3.5: Total dry flesh weight for oysters produced in July, September and January. The sharp drops

show the first spawning events of these oysters.

3.2.2 Analysis

Experiments were carried out using the knowledge of the system to demonstrate the value

of the integrated life stage model. This allows the validation of my model. There were 3

experiments and the difference between them are when the larvae are produced from the

first spawning event. Gosling [32] states that Pacific oyster spawning occurs between July and

September. In the first experiment the Larva life stage commenced in July showing an early

spawning, in the second experiment the Larva life stage began in September, indicating a late

spawning. In the third experiment the Larvae begins their Life stage in January, this is an

unrealistic spawning time to show the models predictive capacity to deal with this situation.

The time scale of each experiment was 450, 390 and 360 days respectively. For simplicity

a month in all experiments had 30 days making a year 360 days. The difference in time

scales reflects the inclusion of the progression of all the life stages from Larva to Juvenile to

Adult until the first spawning event. The temperature for the months of July to September

was set to the optimal value of 25
◦C [67], the remaining months had the temperature of

15
◦C. This temperature is too low for spawning to occur but high enough for the lower

temperature tolerance range for all life stages [59, 67]. The food density was set at a constant

optimal value of 1400µm3µl−1 [67], this ensures the results from the model are affected by

the temperature forcing variable. The Bio-PEPA model generated ODEs simulation results for

these experiments and the results are shown in Figure 3.5.

68

For Larvae produced in July and September their first spawning events as Adults occur

in early July. The Larvae produced in January spawn as Adults in late September with the

weight before spawning at 7g. The weight of the Adult oyster that was produced in July

was 16g at the time before their first spawning. The weight of the Adult oyster produced in

September was 8g at the time before their first spawning. The model predicts that Larvae that

are produced early in the spawning season i.e. July, at the Adult stage of first spawning will

weigh double than those produced in September. Both Larvae that were produced in July and

September switched to the Juvenile life stage at 14 days, this is consistent with Rico-Villa et

al [67]. It takes 52 days for the Larvae produced in January to switch to the Juvenile life stage,

this shows spawning in January is impossible. January is indeed an unrealistic spawning time

as the temperature is below the optimal temperature for Larvae growth which is 25
◦C [67].

This analysis shows the model can be used effectively to predict the best time of year that

Larvae should be produced to ensure optimal weight and earlier spawning in their Adult

life stage. The experiments were simplistic in the forcing variable values of temperature and

food density, more detailed values may give more informative results. To validate the model,

further observation data is needed from wet laboratory experiments that include all the three

life stages.

3.3 summary

This Chapter illustrated that my translation steps created for the Juvenile-Adult model in

Chapter 2 worked successfully for the Larva life stage Bio-PEPA model. This shows the steps

are generic. It further illustrated that Bio-PEPA can model a system where the values are small

and the units are different (µm) therefore the model allows the user to focus on a specific life

stage. The Bio-PEPA model is validated against the original DEB model results.

The two validated life stage models can be seamlessly integrated using a switching mech-

anism. This switching mechanism allows the user to change easily the value for the switch

from Larva to Juvenile in one place. Analysis of this integrated model shows the use and

predictive capacity to allow questions to be asked about the whole progression of three life

stages. Rico-Villa et al [67] stated that it would be an attractive aspect to have a unique DEB

model to simulate growth from larva to adult and thus to encompass the whole life cycle of

Pacific oyster. This has been accomplished in my integrated Bio-PEPA model and it is the first

DEB Bio-PEPA model to detail the whole life-span of the Pacific oyster.

3.4 discussion

On critical analysis of the integrated Bio-PEPA model the main multi-scale challenges and

features identified are discussed as follows:

69

The integration of the two Bio-PEPA models creates a large model which is difficult to read.

This is due to the Bio-PEPA language not having integrative features that modularise the

multi-scale details.

The unit of scale of the organism’s internal system has to be set to the life stage with the

smallest unit of scale e.g. the Larva life stage µm. This results in large values being processed

for the other life stages which makes some analysis techniques in the Bio-PEPA plug-in

computationally expensive.

Population actions such as the addition or removal of organisms are not included in

this model. The integrated Bio-PEPA model does not model the population scale of an

organism explicitly, therefore, there is no population view of the system and no analysis can

be completed in this scale. Analysis of the population is essential to gain insight on how the

changes at other scales impacts on the population as a whole e.g. ocean acidification affecting

specific life stages of marine organisms has an impact on their persistence as a population.

These challenges of effectively integrating and modularising multi-scales, scaling of units

appropriate to an organism’s life stage and including a population view of the system are

addressed in the next chapter with the conceptualisation and definition of PAL.

70

4
PA L : P R O C E S S A L G E B R A W I T H L AY E R S

This Chapter introduces Process Algebra with Layers (PAL): a language for multi-scale

integration modelling. The novel features of PAL are the layers Population and Organism.

The multi-scale integration modelling challenges and features from the previous Bio-PEPA

models allowed the conceptualisation of these layers. PAL modularises the spatial scales of

the system with these layers. The layers seamlessly integrate the scales through mirrored

actions allowing multi-scale interactions. The PAL layers, for example, provide the modelling

of an individual’s physiology at different life stages within a population view within one PAL

model. The modularisation allows the appropriate unit of scale to be used depending on the

individual’s life stage.

The syntax and semantics of PAL are defined. A simple example PAL model is given and

example transitions are shown. A comparison of PAL with process algebra languages: psPAH

and PEPA nets is presented. The implementation of a PAL parser for the automatic translation

of a PAL model to a Bio-PEPA model is shown.

4.1 layers of the language : population and organism

As explained above, PAL has two layers which are named Population and Organism. These

two layers were defined to encapsulate the features of multi-scale systems. An Organism is

defined as an individual internal system model of internal species components. An Organism

can represent a molecule, organelle, cell, tissue, organ or any organism. An internal species

component, dependent on the scale of the Organism layer, can also represent a molecule,

organelle, cell, tissue, organ or any organism. The internal system model of an Organism

can be, for example, a DEB model which describes the physiology with the internal species

components representing energy budgets. The internal system model can indeed represent

any abstract system. Populations hold specific types of Organism, for example, life stages, cell

phases, infectious states etc. Figure 4.1 shows a conceptual schematic of these layers, which

are described in more detail in Sections 4.1.1 and 4.1.2.

The two layers interact through mirrored and hidden actions discussed in more detail in

Section 4.2.2.1. Internal actions of the Organism’s internal system are mirrored by external

Population actions allowing multi-scale transitions. Figure 4.2 shows example transitions of

a PAL model. Specific multi-scale transitions that can be easily modelled in PAL include:

life stage switch, reproduction and death transitions. These transitions are achieved through

71

Figure 4.1: Schematic of Population and Organism Layers. Organism numbering should be read as

follows: O12 is Organism 2 of Population 1.

72

mirrored actions and Population synchronisation. Figure 4.2 shows a life stage transition

where Organism O12 performs a mirrored action and is removed from the Population P{{O1}}1
and new Organism O24 is added to Population P{{O2}}2. The Figure also shows a reproduction

transition where Organism O22 carries out a mirrored action that causes the two Populations

to synchronise and a new Organism O14 is added to the Population P{{O1}}1. Death transition

is shown where the Organism O11 carries out a mirrored action causing this Organism to be

removed from the Population P{{O1}}1.

Figure 4.2: Example transitions of a PAL model. Organisms which are invovled in transitions are

highlighted in bold.

73

4.1.1 Population

A Population describes a specific population (life stage) of an Organism. For example, in

Figure 4.1 P{{O1}}1 and P{{O2}}2 could describe the larva and juvenile life stage from the

Pacific oyster example. A Population is a multi-set that holds a population of Organisms as

defined in Figure 4.3. A multi-set is a set that can contain duplicate elements, therefore, a

Population can contain duplicate Organisms. In some cases duplicate Organisms can occur, for

example, at initial set up if there is more than one Organism in a Population, these Organisms

will have the same initial internal parameter values set up. The Population layer allows the

physiological view of an Organism to be linked to a population view.

4.1.2 Organism

An Organism is an individual internal system model of internal species components as shown

schematically in Figure 4.1. For example, O23 has an individual DEB model description. Each

Organism holds specific initial set up information about the internal system model of internal

species relevant to that specific population (life stage). For example, the initial set up of a larva

life stage would be different from the initial set up of a juvenile life stage. Allocation of energy

and how tolerant the organism is to forcing variables will change dependent on life stage.

As an Organism has a internal system model description it has internal species components

which dynamically change over a time period to evolve the Organism’s physiology, and which

generate internal actions. Some of these internal actions have an impact on the population

view of the system.

4.2 process algebra with layers

4.2.1 The Syntax of PAL

The syntax of PAL is given in Figure 4.3. The component P{{O}}A is called a Population

component and represents a multi-set of Organism components P{{O}}A = P{JO1, ...,OnK}A.

A multi-set is an unordered collection of objects with repetitions allowed. The component

O called an Organism component describes an internal system and the interactions among

internal species components S. PAL uses the same syntax as Bio-PEPA [21] to define the

internal species components. The component M, called a model component, describes the

system and the interactions among Population components. The element C is a constant

which is a component whose meaning gives a defining equation C = S. The element x is a

positive real-valued parameter. The element D is a constant, which is a component whose

74

P{{O}}A :: = (α, 1) PALop P{{O}}A | P{{O}}A + P{{O}}A | D

Where PALop = ↓ | ↑ | ((+))

O :: = O BC
L
O | S(x)

S :: = (α, κ) op S | S+ S | C

Where op = << | >> | (+) | (−) | (.)

M :: = M ♦
Ls

M | P{{O}}A

Figure 4.3: Syntax of PAL.

meaning is given by a defining equation D = P{{O}}A. Constants allow us to assign names to

patterns of behaviour associated with components.

(α,1) is the prefix, where α ∈ Actions is the action type and 1 is the stoichiometry coefficient

of the Organisms in that action. The design choice of a stoichiometry of 1 was chosen to

simplify the resulting states the action produces. There are three prefix combinators called

PALop which represent the role of the Organisms in the action. These are: ↓ indicates a

deletion of an Organism, ↑ an addition of an Organism (an initialO element will be added

to a specific Population with a specific initial set up relevant to its Population) and ((+)) an

Organism which is an activator. (α, κ) is the internal species prefix, where α ∈ SpeciesActions

is the action type and k is the stoichiometry coefficient of the species in that reaction. The

prefix combinators op are: << indicating a reactant, >> a product, (+) an activator, (−) an

inhibitor and (.) a generic modifier. The choice operator for P{{O}}A + P{{O}}A and S + S is

the same because it represents the same non-deterministic choice between actions whether

these be Population actions or internal species actions. Once one is chosen the others are

discarded. Thus the choice combinator represents competition between actions depending on

their rate.

O BC
L
O denotes the cooperation between internal species over the cooperation set L. Set

L determines those activities the cooperands are forced to synchronise on. The cooperation

between Populations over the multi-scale action cooperation set Ls is expressed by M ♦
Ls

M.

Set Ls determines those actions the cooperands are forced to synchronise on. There can be

more than two Population components in a PAL model and each Population component

must have a hidden action set A. The set A identifies those internal species actions which are

hidden to the Population component. Hidden actions should not be in the set Ls in a well

defined PAL system.

75

A PAL system P is a septuple 〈Pcomp, Ocomp, Scomp, FR, K, N, M〉, where:

• Pcomp is the set of definitions of Population components;

• Ocomp is the set of definitions of Organism components;

• Scomp is the set of definitions of internal species components;

• FR is the set of functional rate definitions;

• K is the set of parameter definitions;

• N is the set of quantities describing each internal species;

• M is the model component describing the system.

In a well-defined PAL system each element has to satisfy the following conditions. Set N

has to contain all the internal species components. The functional rates are well defined if each

variable in their definition refers to the name of a species component in the set N or a constant

parameter in the set K. The definition of the internal species components in Scomp must have

sub-terms of the form (α, k)op S and the action types in each single component must be all

distinct. The definition of the Organism components in Ocomp must be defined in terms of

the internal species components defined in Scomp and for each cooperation set Li in O, Li ⊆

SpeciesActions (O). The definition of the Population components Pcomp must be defined in

sub-terms of the form (α,1) PALop P{{O}}A and the action types in each single component

must be all distinct. The model component M must be defined in terms of the Population

components defined in Pcomp and for each cooperation set Lsi in M, Lsi ⊆ Actions (M).

4.2.2 The Semantics of PAL

The semantics of PAL are defined in Figure 4.4, 4.5, 4.6 and 4.7. The rules of the language

specify Population behaviour. The Prefix Population Transition Rules describe specific actions

that a Population can perform, specifically the addition and deletion of an Organism from a

Population. The Action Mirror/Hidden Rules describe how internal species actions in Organ-

isms can be mirrored by external Population actions. Internal species actions in Organisms

can also be hidden from the Population. These rules are discussed in Section 4.2.2.1. The

Population Transition Rules define that a Population can perform actions independently and

can also communicate and synchronise with other Populations. As stated previously PAL has

similar syntax and semantics to Bio-PEPA to allow easy expansion of Bio-PEPA models within

this language. For example, a Bio-PEPA model describing one life stage of an organism can be

integrated to include more life stages in populations in PAL.

76

Action Mirror/Hidden Rules

Internal Actions that are seen and mirrored by Populations

Oi
(α, [S:op(l,k)])
−−−−−−−−→ O ′i

P{{O}}A
α−−−−→ P{{O ′}}A

with ∃ Oi ∈ O ∧ α /∈ A

Where O ′ = O ⊕ O ′i ∧ P{{O}}
α−−−−→ P{{O ′}}

Where ⊕ overwrites Oi in O with new O ′i state, leaving the rest of O unchanged.

Where S is a sequential internal species component, op is the internal action type,

l the level and k the stoichiometry coefficient.

Internal Actions that are hidden from Populations

Oi
(α, [S:op(l,k)])
−−−−−−−−→ O ′i

P{{O}}A
τ−−−−→ P{{O ′}}A

with ∃ Oi ∈ O ∧ α ∈ A

Where O ′ = O ⊕ O ′i

Where ⊕ overwrites Oi in O with new O ′i state, leaving the rest of O unchanged.

Where S is a sequential internal species component, op is the internal action type,

l the level and k the stoichiometry coefficient.

Figure 4.4: Semantics of PAL.

77

Prefix Population Transition Rules

Internal species actions mirrored by Population actions

Adding an Organism to a Population

((α, 1) ↑ P{{O}}A)
(α, r)−−−−−−→ P{{O ′}}A with α /∈ A

O ′ = O∪ JinitialOK

Deleting a specific Organism from a Population

((α, 1) ↓ P{{O}}A)
(α, r)−−−−−−→ P{{O ′}}A with α /∈ A

∃i. Oi ∈ O∧Oi
(α, r)−−−−−−→ O ′i ∧O = [[O1, ...,On]]∧ |O| > 1∧O ′ = O\JOiK

Activator does not increase or decrease a Population

((α, 1)((+))P{{O}}A)
(α, r)−−−−−−→ P{{O}}A with α /∈ A

O = JO1, ...,OnK∧ |O| > 1

Where the rate r is the rate of internal species action (α,w).

Population actions hidden from Organism internal actions

Adding an Organism to a Population

((α, 1) ↑ P{{O}}A)
(α, r)−−−−−−→ P{{O ′}}A with α /∈ A

O ′ = O∪ JinitialOK

Deleting a random Organism from a Population

((α, 1) ↓ P{{O}}A)
(α, r)−−−−−−→ P{{O ′}}A with α /∈ A

∃i. Oi ∈ O∧O = [[O1, ...,On]]∧ |O| > 1∧O ′ = O\JOiK

Activator does not increase or decrease a Population

((α, 1)((+))P{{O}}A)
(α, r)−−−−−−→ P{{O}}A with α /∈ A

O = JO1, ...,OnK∧ |O| > 1

Where the rate r is the population action rate.

Figure 4.5: Semantics of PAL.

78

Population Transition Rules

Constant

P{{O}}A
(α, r)−−−−−−→ P{{O ′}}A

D
(α, r)−−−−−−→ P{{O ′}}A

with D = P{{O}}A

Asynchronous Left

P{{O}}A
(α, r)−−−−−−→ P{{O ′}}A

P{{O}}A ♦
Ls

M
(α, r)−−−−−−→ P{{O ′}}A ♦

Ls

M
with α /∈ Ls

Asynchronous Right

P{{O}}A
(α, r)−−−−−−→ P{{O ′}}A

M ♦
Ls

P{{O}}A
(α, r)−−−−−−→M ♦

Ls

P{{O ′}}A

with α /∈ Ls

Population Synchronisation

P1{{O1}}A
(α, r)−−−−−−→ P1{{O

′
1}}A P2{{O2}}A

(α, r)−−−−−−→ P2{{O
′
2}}A

P1{{O1}}A ♦
Ls

P2{{O2}}A
(α, r)−−−−−−→ P1{{O

′
1}}A ♦

Ls

P2{{O
′
2}}A

with α ∈ Ls

Where Ls is the multi-scale synchronisation action set

Figure 4.6: Semantics of PAL.

79

prefixReac (α,k) << S)(l)
(α, [S :<< (l,κ)])−−−−−−−−−−−−→ S(l− k) k 6 l 6 N

prefixProd (α,k) >> S)(l)
(α, [S :>> (l,κ)])−−−−−−−−−−−−→ S(l+ k) 0 6 l 6 (N− k)

prefixMod (α,k)op S)(l)
(α, [S : op(l,κ)])−−−−−−−−−−−→ S(l) with op = (.), (+), (-) and

0 < l 6 N if op = (+), 0 6 l 6 N otherwise

Where S is the name of the species component, op is the action type, l the level

and κ the stoichiometry coefficient.

choice1

S1(l)
(α,w)−−−→ S ′1(l

′)

(S1 + S2)(l)
(α,w)−−−→ S ′1(l

′)
choice2

S2(l)
(α,w)−−−→ S ′2(l

′)

(S1 + S2)(l)
(α,w)−−−→ S ′2(l

′)

constant
S(l)

(α,S: [op(l,k)])−−−−−−−−−−→ S ′(l ′)

C(L)
(α,C: [op(l,k)])−−−−−−−−−−→ S ′(l ′)

with C = S

coop1

O1
(α,w)−−−→ O ′1

O1 BCL O2
(α,w)−−−→ O ′1 BCL O2

with α /∈ L

coop2

O2
(α,w)−−−→ O ′2

O1 BCL O2
(α,w)−−−→ O1 BCL O

′
2

with α /∈ L

coop3

O1
(α,w)−−−→ O ′1 O2

(α,w)−−−→ O ′2

O1 BCL O2
(α,w)−−−→ O ′1 BCL O

′
2

with α ∈ L

Where w is a list recording the species that participate in the reaction and

L is the cooperation action set

Figure 4.7: Rules for Bio-PEPA included in the semantics of PAL. These rules are presented in [21] and

are repeated here for convenience and completeness.

80

4.2.2.1 External and Internal actions

In PAL some of the Organism’s internal actions are seen and some are hidden from the

Population. The internal actions that are seen are mirrored by the Population as defined by

the Action Mirror Rule in Figure 4.4. These actions could include internal actions such as life

stage transition, reproduction and death. Each of these internal actions have an impact on

the external population view of the system. These internal actions are mirrored by external

Population actions which are defined by the Prefix Population Transition Rules shown in

Figure 4.5.

There are essentially three Prefix Population Transition Rules: adding, deleting and activator.

These rules are repeated twice in Figure 4.5 to show that Populations can perform actions

independently from Organisms. These rules are asymmetric because when deleting an organ-

ism from a population the rule needs to identify the specific organism that is to be deleted.

For example, the deletion rule can be used for life stage transitions and deaths of specific

organisms, therefore the organism must be known to the rule so that the correct organism is

deleted. In the case of addition and the activator rule a specific organism does not need to be

known. For example, in the addition rule a new initialisation of an organism is added to a

population. The organism in the activator rule does not need to be known by the rule as the

rule does not change the organism.

Some internal actions are hidden from the Population level as defined in the Action Hidden

Rule in Figure 4.4. The modeller defines a set of hidden actions when describing a model in

PAL. These could include actions such as energy allocation and utilisation within an Organism.

Actions such as these do not change the external population of the system, therefore do not

need to be seen by the Population.

In comparison with Process Algebra with Hooks [24] PAL is simple and restricted because

external Population actions are not allowed to be mirrored by internal Organism actions.

Therefore, communication between layers is only from internal actions to external actions.

This approach was adopted in consideration of the marine organism systems researched, to

construct an elegant language, restrict the complexity of the rules and reduce state space

explosion.

Populations can perform actions independently and this allows actions such as death to

be defined in a model. Populations synchronise/communicate on specific external actions as

defined in the Population Transition Rules shown in Figure 4.6. This allows the definition of

life stage transitions and reproduction as these actions involve two Populations to change in

number.

81

4.2.2.2 PAL Parser

A PAL model parser has been implemented in the Python programming language utilising

the PLY tool. The parser source code can be found in the following repository [70]. PLY is

an implementation of lex and yacc parsing tools for Python [42]. The lex.py module is used

to break input text into a collection of tokens specified by a collection of regular expression

rules. For example, the tokens in the PAL model parser include the PAL prefix combinators

deletion, addition and activator etc. The yacc.py module is used to recognise language syntax

that has been specified in the form of a context free grammar. The grammar rules of the PAL

model parser define how to manipulate and translate different parts of the PAL model into

a Bio-PEPA model. Rules include how to specify parameters, action rates, internal species

behaviours, hidden actions set, Organisms, Populations and the model component etc. Hence,

the PAL model parser formally translates a PAL model into a Bio-PEPA model. Essentially a

PAL model with one Population with no Population actions and that has a Population of one

Organism is a Bio-PEPA model. A parser was chosen to be implemented instead of a PAL

model solver because the parsed models can utilise the various analysis techniques available

within the Bio-PEPA plug-in. Users already familiar with the Bio-PEPA language and the

plug-in can easily create PAL models.

An example of the automatic translation the PAL parser performs is shown in Appendix B.

A toy PAL model in the PAL parser file format is shown in Figure B.1 and the Bio-PEPA model

the Parser produces is in Figures B.2 and B.3. The toy model is made up of two populations:

One and Two. Population One contains Organisms of type A and Population Two contains

Organisms of type B. An A organism has an internal system made up of three species: X,

Tracker_off and Tracker_on. A B organism has an internal system of two species Y and Z.

When internal species X reaches the threshold of 10 it triggers the mirrored population action

switch which deletes the A organism and also synchronises with Population Two which adds

a new B Organism. Population Two can perform the asynchronous Population action remove

at a constant rate.

4.2.2.3 Underlying CTMC of PAL models

The PAL parser formally translates PAL models to Bio-PEPA therefore a Continuous-time

Markov chain (CTMC) can be derived from a PAL model. This can be achieved as once

translated into a Bio-PEPA model, the model can be applied to model checking tools available

to Bio-PEPA models. These tools allow the derivation of Bio-PEPA models’ CTMC. An example

of a PAL model’s CTMC is described below using the toy PAL model in Figure B.1.

The toy PAL model in Figure B.1 has nine reachable states from the initial state and these

are shown in Figure 4.8. The states and transitions of the model are shown in Figure 4.9.

82

1 : OneJA1,A2KH ♦ TwoJ KH

2 : OneJA1KH ♦ TwoJB1KH

3 : OneJA2KH ♦ TwoJB1KH

4 : OneJ KH ♦ TwoJB1,B2KH

5 : OneJA2KH ♦ TwoJ KH

6 : OneJ KH ♦ TwoJB2KH

7 : OneJA1KH ♦ TwoJ KH

8 : OneJ KH ♦ TwoJB1KH

9 : OneJ KH ♦ TwoJ KH

Figure 4.8: The nine reachable states of the toy PAL model in Figure B.1.

Figure 4.9: Reachable states and transitions of the toy PAL model in Figure B.1. s and r represent

Population actions switch and remove respectively.

83

4.3 simple model example using pal

To show how specific multi-scale features can be defined by PAL the following simple

model is used. This model describes a generic simplistic marine organism which has two

life stages: Larva and Juvenile. A Larva will switch to become a Juvenile when a structural

volume threshold has been reached. In this example Juvenile organisms can reproduce Larvae

dependent on the energy they have reserved for reproduction reaching a specific threshold.

For this simple model the term Juvenile encompasses the Juvenile/Adult life stage. Organisms

in both life stages can die based on a simple death rate. The initial population is two Larvae

and three Juveniles.

4.3.1 Model configuration

To describe this system two Populations are defined: Larva and Juvenile. These Populations

hold specific life stage Organisms. The Organisms describe the DEB physiology of an Organism

under a specific life stage by internal species components. The Populations also have external

actions which mirror the actions of the internal species allowing multi-scale transitions such

as life stage transitions, reproduction and death. The Populations synchronise on specific

actions in order to communicate on certain transitions such as life stage transitions where both

Populations change or one Population has a direct effect on another, such as reproduction.

Internal actions which are hidden from the Population layer are defined in the HiddenActions

set A. The Populations have external actions which are hidden from the Organism internal

actions. These include actions that add new J Organisms and delete random Organisms. The

initial model configuration initialises two L Organisms in the Larva Population and three J

Organisms in the Juvenile Population. Figures 4.10 and 4.11 shows the formal definition of

the model.

4.3.2 Transitions

The following transitions occur when the internal actions are mirrored by external actions

causing a multi-scale transition.

4.3.2.1 Life stage switch

A life stage switch occurs in the model when an L Organism based on internal actions is ready

to switch to become a J Organism. An internal action occurs in the Organism layer and is

mirrored by an external Larva Population action. The transition takes place at the Population

layer, the external Larva Population action deletes the specific Organism L from its multi-set

84

General parameters

K = 0.5;

Deathrate = 0.05;

L life stage parameters J life stage parameters

LPc = 0.5∗LE; JPc = 0.55∗JE;

LPa = 0.5; JPA = 0.6;

LPm = 0.25∗LV ; JPm = 0.3∗JV ;

LPj = 0.3∗LER; JPj = 0.35∗JER;

LVT = 260; JERT = 200;

LtoJ = H(LV − LVT); JReproduce = H(JER− JERT);

ReproduceStop = H(1− JER);

L internal species actions J internal species actions

LG : K∗LPc; JG : K∗JPc;

LS : LPm; JS : JPm;

LA : LPa; JA : JPa;

LC : LPc; JC : JPc;

LR : (1− k)∗LPc; JR : (1− k)∗JPc;

LJ : ((1− k)\k)∗LPj; JJ : ((1− k)\k)∗JPj;

LSwitch : fMA(100 ∗ (LtoJ)); ReproduceL : fMA(10∗(JReproduce));

LDie : Deathrate; StopReproduceL : fMA(10∗(ReproduceStop));

Empty : fMA(100);

JDie : Deathrate;

Figure 4.10: Formal Definition of example model in PAL Part 1 of 2. Please note the layout is used to

indicate sections and is not part of the syntax. Also note population actions that mirror

internal organism actions get their rate from the internal organism action.

85

L internal species J internal species

LE = LA >> +LC << +LG(.) + LR(.); JE = JA >> +JC << +JG(.) + JR(.);

LV = LG >> +LS << +LA(.) + LC(.) + LJ(.); JV = JG >> +JA(.) + JC(.) + JR(.) + JJ(.);

LER = LR >> +Lj <<; JER = JR >> +Empty <<;

Switch_on = (LSwitch, 1) >>; Tracker_on = (ReproduceL, 1) >> +

Switch_off = (LSwitch, 1) <<; (StopReproduceL, 1) << +Empty(+);

LDTracker_on = (LDie, 1) >>; Tracker_off = (ReproduceL, 1) >> +

LDTracker_off = (LDie, 1) <<; (StopReproduceL, 1) >>;

JDTracker_on = (JDie, 1) >>;

JDTracker_off = (JDie, 1) <<;

Set of hidden internal actions

HiddenActions A : {LG,LS,LA,LC,LR, JG, JS, JA, JC, JR, JJ,StopReproduceL};

Organisms (Internal species model)

L = LE[100]BC LV[250]BCLER[0]BCSwitch_on[0]

BCSwitch_off[1]BCLDTracker_on[0]BCLDTracker_off[1]

J = JE[200]BC JV[260]BC JER[100]BC Tracker_on[0]

BC Tracker_off[1]BC JDTracker_on[0]BC JDTracker_off[1]

Population action rates

RandomLDie : 0.02; RandomJDie : 0.06; RandomJAdd : 0.02;

Populations (External actions)

Larva{{L}} = LSwitch ↓ +ReproduceL ↑ +LDie ↓ +RandomLDie ↓;

Juvenile{{J}} = LSwitch ↑ +ReproduceL((+)) + JDie ↓ +RandomJDie ↓ +RandomJAdd ↑;

Model Component

LarvaJL1,L2KA ♦
{LSwitch, ReproduceL}

JuvenilleJJ1, J2, J3KA

Figure 4.11: Formal Definition of example model in PAL Part 2 of 2. Please note the layout is used to

indicate sections and is not part of the syntax. Also note population actions that mirror

internal organism actions get their rate from the internal organism action.

86

Figure 4.12: Diagrams of all transition examples in the simple PAL model.

87

Action Mirror rule

L2
(LSwitch, [Switch_on:>> (0,1)])−−−−−−−−−−−−−−−−−−−−−−−−→ L ′2

Larva{{L}}A
LSwitch−−−−−−→ Larva{{L ′}}A

with LSwitch /∈ A

Population Synchronisation

Larva{{L}}
LSwitch−−−−−−→ Larva{{L ′}} Juvenile{{J}}

LSwitch−−−−−−→ Juvenile{{J ′}}

Larva{{L}} ♦
Ls

Juvenile{{J}}
LSwitch−−−−−−→ Larva{{L ′}} ♦

Ls

Juvenile{{J ′}}

with LSwitch ∈ Ls

Deletion

((LSwitch, 1) ↓ Larva{{L}}) LSwitch−−−−−−→ Larva{{L ′}}

L2 ∈ L∧ L2
LSwitch−−−−−−→ L ′2 ∧ L = [[L1,L2]]∧ |L| > 1∧ L ′ = L\JL2K

Addition

((LSwitch, 1) ↑ Juvenile{{J}}) LSwitch−−−−−−→ Juvenile{{J ′}}

J ′ = J∪ JinitialJK

Figure 4.13: Application of rules for life stage transition example.

and synchronises with an external Juvenile Population action which adds a new initialisation

of a J Organism. This is shown schematically at the top of Figure 4.12 and Figure 4.13 shows

the example applied to the rules.

4.3.2.2 Reproduction

Reproduction occurs in the model when a J Organism based on internal actions is ready to

reproduce. An internal action occurs in the Organism layer and is mirrored by an external

Juvenile Population action. The transition happens at the Population layer where the external

Juvenile Population action synchronises with an external Larva Population action which adds

a new initialisation of an L Organism to its multi-set. This is shown schematically in the

middle of Figure 4.12 and Figure 4.14 shows the example applied to the rules.

88

Action Mirror rule

J2
(ReproduceL, [Tracker_on:>> (0,1)])−−−−−−−−−−−−−−−−−−−−−−−−−−−→ J ′2

Juvenile{{J}}A
ReproduceL−−−−−−−−−→ Juvenile{{J ′}}A

with ReproduceL /∈ A

Population Synchronisation

Larva{{L}}
ReproduceL−−−−−−−−−→ Larva{{L ′}} Juvenile{{J}}

ReproduceL−−−−−−−−−→ Juvenile{{J ′}}

Larva{{L}} ♦
Ls

Juvenile{{J}}
ReproduceL−−−−−−−−−→ Larva{{L ′}} ♦

Ls

Juvenile{{J ′}}

with ReproduceL ∈ Ls

Activator

((ReproduceL, 1)((+))Juvenile{{J}})
ReproduceL−−−−−−−−−→ Juvenile{{J}}

J = JJ1, J2, J3K∧ |J| > 1

Addition

((ReproduceL, 1) ↑ Larva{{L}}) ReproduceL−−−−−−−−−→ Larva{{L ′}}

L ′ = L∪ JinitialLK

Figure 4.14: Application of rules for reproduction transition example.

89

Action Mirror rule

L1
(LDie, [LDTracker_on:>> (0,1)])−−−−−−−−−−−−−−−−−−−−−−−−→ L ′1

Larva{{L}}A
LDie−−−−→ Larva{{L ′}}A

with LDie /∈ A

Asynchronous Left

Larva{{L}}
LDie−−−−→ Larva{{L ′}}

Larva{{L}} ♦
Ls

Juvenile{{J}}
LDie−−−−→ Larva{{L ′}} ♦

Ls

Juvenile{{J}}
with LDie /∈ Ls

Deletion

((LDie, 1) ↓ Larva{{L}}) LDie−−−−→ Larva{{L ′}}

L1 ∈ L∧ L1
LDie−−−−→ L ′1 ∧ L = [[L1,L2]]∧ |L| > 1∧ L ′ = L\JL1K

Figure 4.15: Application of rules for death transition example.

4.3.2.3 Death

Death occurs in the model based on a simple death rate. This rate could be changed to be

based on when an Organism’s internal tolerance to their external environment is outwith their

thresholds. An internal action occurs in the Organism layer and is mirrored by an external

Population action. The transition happens at the Population layer where the Population action

deletes the specific organism from its multi-set. This is shown schematically at the bottom of

Figure 4.12 and Figure 4.15 shows the example applied to the rules.

4.3.3 Underlying CTMC of simple model

A full example of the first transition is shown of the simple model in Figure 4.16, not

all transitions of the model are shown. This is due to the fact that there are numerous

transitions making a large CTMC. The model has seven labelled transitions from the initial

state corresponding with the Population external actions: ReproduceL, LSwitch, LDie, JDie,

RandomLDie, RandomJDie and RandomJAdd. The actions LSwitch will delete an L Organism

from the Larva Population and add a J Organism to the Juvenile Population. This will leave

one L Organism in the Larva Population and four J Organisms in the Juvenile Population. As

this action deletes an Organism from a population it has to select a specific Organism that is

ready to perform this action either L1 or L2. This action therefore can produce two states, one

90

where L1 remains in the Larva population and one where L2 remains in the Larva population.

This means that the model has a total of nine possible labelled transitions from the initial

state. These nine labelled transitions are shown in Figure 4.16.

Figure 4.16: Initial model state and reachable states in first transition

4.4 comparison of pal with other process algebras

A comparison of PAL is presented by constructing models in psPAH and PEPA Nets of the

simple example in section 4.3.

4.4.1 psPAH comparison with PAL

Parametric Stochastic Process Algebra with Hooks (psPAH) [24] was chosen as a language to

compare with PAL as it was designed to model biological systems at multiple scales. It uses

composed hook actions and a vertical cooperation operator to allow events at higher scales to

influence the behaviour of lower scales and vice versa. psPAH was previously explained in

Chapter 1.

The simple model in Section 4.3 is defined in psPAH and is shown in Appendix B in five

Figures. Figure B.4 shows the constants, functional rates and organism scale agent definitions.

Figure B.5 shows the agent definitions for the organism physiological scale and Figures B.6, B.7

and B.8 show the initial state of the model. The agent definitions include the definitions of

agents at the higher (organism scale) and the lower scale (organism physiological scale). In

the lower scale the energy budget processes have three states; inactive, Larva and Juvenile.

For example, for the energy reserve process, the states are NE(i), LE(i,w) and JE(i,w). The

parameter i gives the unique identification of an organism and w gives the concentration level

of the energy budget. The higher scale processes have three states which are NotInUse(i),

Larva(i) and Juvenile(i).

The hook actions in this model are EnergyOn, EnergyOff, LDie, JDie, SwitchJEnergy,

JEnergyOn, Switch and Reproduce. The lower scale triggers the Switch action of the higher

scale when the Structural Volume (LV) of the Larva reaches a threshold concentration level.

The Switch action causes the organism to change from a Larva to a Juvenile. The lower scale

91

also triggers the Reproduce action of the higher scale when the Reproduction Buffer (JER) of

the Juvenile reaches a threshold concentration level. The Reproduce action causes a Juvenile

to synchronise locally with a NotInUse agent, this agent changes to a Larva and the Juvenile

agent remains in the same state. The action that causes an organism to die from its internal

physiology is triggered from the lower scale both for Larva (LDie) and Juvenile (JDie) agents.

The higher scale triggers the JEnergyOn action of the lower scale when a NotInUse agent’s

RandomJAdd action is fired by a specific rate. This action causes a Juvenile agent to be added

to the population. The other three hook actions are triggered from the higher scale and cause

changes in the lower scale. These changes ensure that the physiology of the organism is

correct and aligned with the organism’s state, for example, a Juvenile organism should have

JE, JV and JER internal energy budgets. The lower scale processes synchronise on actions

in their local scale, for example, a LV process has to synchronise with a LE process on the

action Structural Volume growth (LG) which increases LV. The higher scale processes also

synchronise locally with each other specifically on the reproduce action.

The psPAH model is considerably larger than the equivalent PAL model. This occurs

because psPAH cannot handle specific multi-scale features that the PAL language possesses

that allow features of the multi-scale system to be written easily into the model.

Issues constructing the example in psPAH are as follows: Firstly, psPAH cannot delete

organisms from the model. NotInUse agents (ghost agents) were created to allow reproduction

and death to occur in the model. When a Larva or Juvenile dies it becomes a NotInUse

organism. Once in this state they will be used again when actions Reproduce and RandomJAdd

are fired. The initialisation of NotInUse organisms make the model’s initial state huge. In

contrast PAL can delete specific organisms from the Population layer (either from a Population

action or from internal mirrored actions for a specific organism) without the use of ghost

agents.

Secondly, psPAH can produce new initialisations of organism processes. The NotInUse

agents were created to be used to produce new initialisations of Larva. This is achieved

when a NotInUse agent synchronises locally on the Reproduce action with a Juvenile agent.

The NotInUse agent becomes a Larva and the Juvenile agent remains in the same state.

The drawback of creating reproduction in the model is the creation of listing all possible

options so the agents are able to synchronise correctly. To allow random Juveniles to be added

to the population of Juveniles, NotInUse agents are used to add these agents. The novel

language PAL can produce new initialisations of organisms from the Population layer based

on individual organism thresholds and random additions based on specific rates without the

need to create ghost agents such as the NotInUse processes.

In summary the simple model can be approximately defined in psPAH. The language has

limitations of not allowing the deletion or addition of processes. These limitations causes

the user to create states of processes that are not realistic states (NotInUse) but states that

92

permit the inclusion of actions such as death and reproduction. Population actions such

as random death of an organism and the random addition of a Juvenile to the Population

had to be modelled using the non-realistic processes. PAL can handle all these features of

multi-scale modelling without the inclusion of extra non-realistic states. To model a more

complex multi-scale system psPAH would create an even larger model. Abstraction of details

of the system would have to be carried out which means the model would not reflect the

system accurately. This would further limit the descriptive nature of the model. psPAH does

have an integrative modelling feature but having to explicitly define composed actions for

each organism makes the model large and less readable. psPAH was designed specifically for

modelling pattern formation and tissue growth. The language does not seem to have generic

capabilities as shown by the creation of this simple model.

4.4.2 PEPA Nets comparison with PAL

PEPA Nets [30] was chosen as a language to compare with PAL as it is an example of a two

level modelling language: the Petri Net is used to provide a structure for combining related

PEPA systems. PEPA nets is previously explained in Chapter 1.

Figure 4.17: Simple schematic version of the PEPA Net.

The simple model in Section 4.3 is defined in a PEPA Net model and is shown in Appendix

B and is split into six Figures. Figure B.9 shows the PEPA context definitions and the initial

marking of the net, Figures B.10 and B.11 show the rates of actions and the PEPA definitions

of the static and dynamic components. Figures B.12, B.13 and B.14 show the arcs of the net.

The places in the net are the life stages Larva (L) and Juvenile (J). The other place in the net

named Random Juvenile (RJ) is a mechanism to add new Juvenile organisms at random to the

population. These places are replicated to accommodate a maximum number of organisms

(in this example, ten of each and five RJ places). The PEPA Net token is a generic organism

which performs the activities Switch, Reproduce and AddJ which cause firing of the net. The

names of the activities that cause a firing of the net are printed in bold in Figure B.11. In

Figure 4.17 a simple schematic version of the PEPA Net of the system is shown with only

93

one Larva, one Juvenile, one Random Juvenile place and two organisms present. The net

described in Figures B.12, B.13 and B.14 have 250 arcs with each L place having 20 arcs (10

arcs arriving and 10 leaving), each J place having 25 arcs (15 arcs arriving and 10 leaving)

and each RJ place having 5 leaving arcs. Each L and J place has many local states because of

the activities of the static components. The static components are the internal components

of the organism (energy budgets) specifically structural volume (V), energy reserve (E) and

reproduction buffer (ER). The static components change dependent on each other’s activities.

Issues constructing the example in PEPA-nets are as follows: Firstly, the PEPA nets language

is non parametric, therefore, internal components of the organism do not have numerical

information associated with them. Numerical information is important in the setting of

organism thresholds, for example, when an organism is ready to reproduce. To solve this

issue abstraction of some detail was necessary. Internal components of the organism were

given specific states of concentration levels, for example, zero, low, medium and high. This

abstraction limits the system being described accurately. The novel language PAL allows the

user to have numerical information of internal Organism components and their rates can be

influenced by each other.

Secondly, activities had to be included to turn off the static components when an organism

is not present in a place. When an organism arrives in a place the static components are

turned on and reset to their initial state. If the static components were left on they would

change their state independently without a present organism and when an organism arrives

in the place the static components would not be set to their initial states. In contrast, in PAL

internal agents are always associated with an Organism. Organism’s internal agents in PAL

are initialised when an Organism is added to a Population and are deleted when an Organism

is deleted from a Population. PEPA nets, therefore, does not allow the interactions between

scales to be modelled easily.

Thirdly, PEPA nets cannot produce new initialisations of organism components. To solve

this issue, organisms in a Juvenile place in the net can move back into a Larva place by the

reproduce activity. This does not increase the population, therefore, the model will always

have the same number of organisms. There is another solution to this issue by constructing

another place in the model that holds organisms and fires them at a certain rate, but this has

the problem of not associating the production of larvae with the behaviour of a juvenile. This

solution is used to model the random addition of Juvenile organisms to the population. This

is a population action and therefore does not need to be associated with the specific behaviour

of an organism. The novel language PAL can produce new initialisations of Organisms based

on individual thresholds (through an Organism’s internal action) or Population action rates

(through a Population action). This shows once more that PEPA nets cannot model interactions

between scales efficiently.

94

Fourthly, PEPA nets cannot delete organisms from the model. A solution was found by

creating a death state for organisms and have them carry out a death activity at a certain

rate. There are two death activities, one associated with an organism’s internal components’

death rate and one associated with population death rate. In the death state the organism

cannot change state or interact with static components. This is not ideal as the place where

the organism dies therefore is occupied by the dead organism. In contrast PAL can delete

specific Organisms from the Population layer.

In summary the simple model cannot easily be defined in a PEPA net. The language restricts

the user in modelling some multi-scale features such as including numeric details of internal

components of an organism and the reproduction and death of an organism. PAL can handle

all these features of multi-scale modelling.

4.5 summary

This chapter defined PAL, a multi-scale process algebra designed to model multi-scale systems.

The novel features of PAL are the layers of the language: Population and Organism. These

layers allow the user to elegantly describe the integration and interactions between scales

in one PAL model. PAL is shown to adhere to the specific multi-scale modelling features:

abstraction, descriptive, integrative, explanatory and generic. It follows the middle-out strategy.

PAL addresses all the features and challenges from Chapter 3. The layers of the language

allow the integration and interaction of multi-scales in a system to be modelled easily. The

modularity of the language allows the the appropriate unit scales to be used for specific life

stages. A population view of a system can be modelled and analysed.

The languages of psPAH and PEPA nets restricts the modelling of some multi-scale system

features. PAL allows the user to easily define the addition and deletion of organisms within its

language, whereas psPAH and PEPA nets do not. PAL also modularises the specific organism

populations from the organisms internal model giving a more elegant model whereas the

others create large models which make them more difficult to read.

PAL is applicable to models of a variety of marine organisms, including oysters; however,

it is designed to be generic, so it can be applied to other systems in which modelling at

multi-scales is important. The explanatory and generic features of PAL are explored in the

next chapters.

95

5
A P P L I C AT I O N O F PA L T O T H E PA C I F I C O Y S T E R L I F E S TA G E C A S E

S T U D Y

In this chapter PAL firstly is applied to the Pacific oyster life stage case study which was

investigated in the integrated life stage Bio-PEPA model in Section 3.2 of Chapter 3. PAL

allows the integration of the three main life stages of the Pacific oyster. PAL enables the

analysis of a specific oyster within its life stage. To validate the PAL model the results are

compared to the Bio-PEPA integrated life stage model results. Secondly the motivation of

this PAL model case study is to incorporate the effects of ocean acidification on the Larva

life stage of an oyster and its effect to the overall population. PAL enables the analysis of the

population view. The PAL model allows multi-scale analysis of larvae length and mortality

and oyster population growth. Results are compared with wet laboratory ocean acidification

experiments by Barros et al [14] and Timmins-Schiffman et al [72]. The application of PAL

to this case study shows PAL addresses the multi-scale challenges and features discussed in

Chapter 3.

5.1 introduction to case study

The specific motivation in this case study is ocean acidification’s affect on the Larva life

stage of the Pacific oyster and how this changes population growth. This is a multi-scale

system as ocean acidification affects the energy budgets within each Larva and this causes the

population of oysters to change. Barros et al [14] and Timmins-Schiffman et al [72] states that

ocean acidification causes a reduction in Larva growth rate and a higher mortality rate. They

indicate that there is a small reduction in the growth rate and a large increase in mortality

when larvae are exposed to high and low levels of CO2. As previously discussed in Chapter

2 the Pacific oyster is potentially the largest harvested and collected shellfish in European

waters. Gazeau et al [29] argues that the predicted effects of ocean acidification will most

certainly cause a significant economic loss.

There are existing DEB models of the Pacific oyster which were discussed in Chapters 2 and

3 that model up to two life stages of an oyster’s physiology. These models are in one scale

and do not include the effects of ocean acidification. The novel PAL model is multi-scale as it

models three different life stage populations of Pacific oysters and includes a basic feature of

ocean acidification that affects only the larvae population. The ocean acidification feature is

based on Barros et al [14] and Timmins-Schiffman et al [72] findings. Bio-PEPA DEB models

96

from Chapters 2 and 3 are utilised to create the physiological scale of the specific life stage of

the oysters in the PAL model.

5.2 pal model

The PAL model is given in Figures 5.1, 5.2, 5.3 and 5.4 and the parameter values are shown

in Table 5.1. In the model the Population actions are highlighted in bold. The PAL model is

made up of two layers: an oyster population and an oyster physiology. The model has three

types of population: Larvae, Juveniles and Adults. Each population contain specific oysters

(Larva, Juvenile or Adult) with specific internal species making up a dynamic energy budget

model for the oyster’s physiology. A Larva switches its life stage to become a Juvenile when

it reaches the threshold length of 300µm, which triggers the LSwitch Population action. A

Juvenile switches its life stage to become an Adult when its structural volume is greater than

the threshold of 0.4cm3 triggering the Population action JSwitch. An Adult can reproduce

a Larva when two thresholds are reached (when temperature is greater than 20
◦C and the

energy allocated to reproduction is 35% of the total dry flesh weight) triggering reproduceL

Population action. To ensure simplicity the Adult only produces one Larva. The internal

species values of a PAL model have to be an integer, therefore, the initial values for a Larva

are scaled up by 106, a Juvenile up by 103 and no scaling for an Adult.

The ocean acidification feature is created using a simple ocean acidification parameter that

ranges from zero to six. The control simulation experiment is at zero. Low CO2 is in the range

of 1 to 4 and high CO2 is in the range of 3 to 6. The energy allocated to Larva growth is

slightly reduced to 0.39 if the ocean acidification parameter is in the range 1 to 3. Death occurs

to a Larva when the ocean acidification parameter is greater than 3. This triggers the LDeath

Population action of a Larva.

The food and temperature values in the PAL model were set to be the same as the first

experiment (Larvae July) of the integrated Bio-PEPA model in Chapter 3 where the Larvae

life stage commenced in July showing an early spawning. The temperature for the months of

July to September was set to the optimal value of 25
◦C [67], the remaining months had the

temperature of 15
◦C. This temperature is too low for spawning to occur but high enough for

the lower temperature tolerance range for all life stages [59, 67]. The food density was set at a

constant optimal value of 1400µm3µl−1 [67]. A time series analysis is carried out on the PAL

model which had the initial population of 1 Larva, zero Juveniles and zero Adults. The dry

flesh weight (DFW) results from the simulation are compared to the results of the integrated

life stage Bio-PEPA model in Section 3.2 of Chapter 3 in Figure 5.5. This validates that the PAL

model is parametrised correctly for each life stage according to the Bio-PEPA DEB models

from Chapters 2 and 3.

97

Parameter Value Parameter Value

DeathT 3 Ts 20

K 0.45 LEG 1900 * 10−12

UE 17500 JAEG 1900

KR 0.7 Ldm 0.658

p 0.2 Jdm 0.175

TAL 75000 GSI 35

LT1 298 Vp 0.4

LTA 11000 Lae 0.4

LTAH 75000 JAae 0.75

LTH 306 Lux 4.5

LTL 285 LEM 2295* 10−12

JAT1 293 JAEM 2295

JATA 5800 LFood_ density 1400

JATAH 30000 Lsaturation_ coefficient 600

JATH 305 JAFood_ density 1400 * 10−12

JATL 281 JAsaturation_ coefficient 600 * 10−12

OceanAcidification 0 to 6 metamorphosis 300

Table 5.1: Parameter values of Pacific oyster PAL model.

98

General parameters

Lev = LV/1000000; Le = LE/1000000; Ler = LER/1000000;

Jev = JV/1000; Je = JE/1000; Jer = JER/1000;

OADeath = H(OceanAcidification−DeathT);

RGrowth = H(OceanAcidification);

Actual_temperature = dependent_on_experiment;

T = 273+Actual_temperature;

LTemperature_adjustment = exp((LTA/LT1) − (LTA/T)) ∗ ((1+ exp((TAL/T) − (TAL/LTL))

+exp((LTAH/LTH) − (LTAH/T)))−1);

JATemperature_adjustment = exp((JATA/JAT1) − (JATA/T)) ∗ ((1+ exp((TAL/T) − (TAL/JATL))

+exp((JATAH/JATH) − (JATAH/T)))−1);

LLength = (((Lev/LEG)1/3)/Ldm);

LVum = ((Ldm ∗ LLength)3);

JLength = ((Jev/JAEG)1/3)/Jdm;

JVcm = ((Jdm ∗ JLength)/Jdm))3);

ALength = (((AV/JAEG)1/3)/Jdm);

AVcm = ((Jdm ∗ALength)/Jdm))3);

LE_DFW = (Le/UE);

LER_DFW = ((KR ∗ Ler)/UE);

LV_DFW = ((LVum ∗ 10−12) ∗ p);

LTotal_DFW = LE_DFW + LV_DFW + LER_DFW;

JE_DFW = (Je/UE);

JER_DFW = ((KR ∗ Jer)/UE);

JV_DFW = (JVcm ∗ p);

JTotal_DFW = JE_DFW + JV_DFW + JER_DFW;

AE_DFW = (AE/UE);

AER_DFW = ((KR ∗AER)/UE);

AV_DFW = (AVcm ∗ p);

JTotal_DFW = AE_DFW +AV_DFW +AER_DFW;

Percentage_ER = ((AER_DFW/ATOTAL_DFW) ∗ 100);

Figure 5.1: Pacific Oyster PAL Model Part 1 of 4.

99

General parameters

LPXm = (137 ∗ LTemperature_adjustment);

JAPXm = (560 ∗ JATemperature_adjustment);

LPAm = ((Lae ∗ Lux ∗ LPXm)/10) ∗ 10−8);

JAPAm = JAea ∗ JAPXm;

LVol_costs_maintenance_Pm = ((24 ∗ 10−12) ∗ LTemperature_adjustment);

JAVol_costs_maintenance_Pm = (24 ∗ JATemperature_adjustment);

LPm = LVol_costs_maintenance_Pm ∗ LVum;

JPm = JAVol_costs_maintenance_Pm ∗ JVcm;

APm = JAVol_costs_maintenance_Pm ∗AVcm;

LEnergy_Density_in_Organism = Le/LVum;

JEnergy_Density_in_Organism = Je/JVcm;

AEnergy_Density_in_Organism = AE/AVcm;

LPc = (LEnergy_in_Organism/(LEG+ (K ∗ LEnergy_Density_in_Organism)))

∗(((LEG ∗ LPAm ∗ (LVum)2/3)/LEM) + (LVol_costs_maintenance_Pm ∗ LVum));

JPc = (JEnergy_in_Organism/(JAEG+ (K ∗ JEnergy_Density_in_Organism)))

∗(((JAEG ∗ JAPAm ∗ (JVcm)2/3)/JAEM) + (JAVol_costs_maintenance_Pm ∗ JVcm));

APc = (AEnergy_in_Organism/(JAEG+ (K ∗AEnergy_Density_in_Organism)))

∗(((JAEG ∗ JAPAm ∗ (AVcm)2/3)/JAEM) + (JAVol_costs_maintenance_Pm ∗AVcm));

Lfunctional_response = ((LFood_density)2)/(((LFood_densisty)2) + ((Lsaturation_coefficient)2));

JAfunctional_response = JAFood_density/(JAFood_densisty+ JAsaturation_coefficient);

LPa = Lfunctional_response ∗ LPAm ∗ ((LVum)2/3);

JPa = JAfunctional_response ∗ JAPAm ∗ ((JVcm)2/3);

APa = JAfunctional_response ∗ JAPAm ∗ ((AVcm)2/3);

JtoA = H(JVcm− Vp);

ER_start_spawn = H(Percentage_ER−GSI);

stop_spawn = H(1− Percentage_ER);

T_start_spawn = H(Actual_temperature− Ts);

LPj = (((1−K)/K) ∗ LVum ∗ LVol_costs_maintenance_Pm);

JPj = (((1−K)/K) ∗ JVcm ∗ JAVol_costs_maintenance_Pm);

APj = (((1−K)/K) ∗ Vp ∗ JAVol_costs_maintenance_Pm);

Lstop_action = H(1− LER);

Jstop_action = H(1− JER);

Astop_action = H(1−AER);

LtoJ = H(LLength−metamorphosis);

Figure 5.2: Pacific Oyster PAL Model Part 2 of 4.
100

internal species actions

LG : ((K− (0.06 ∗ RGrowth)) ∗ LPc) ∗ (1000000);

JG : (K ∗ JPc) ∗ (1000);

AG : (K ∗APc);

LS : LPm ∗ (1000000);

JS : JPm ∗ (1000);

AS : APm;

LA : LPa ∗ (1000000);

JA : JPa ∗ (1000);

AA : APa;

LC : LPc ∗ (1000000);

JC : JPc ∗ (1000);

AC : APc;

LR : ((1−K) ∗ LPc) ∗ (1000000);

JR : ((1−K) ∗ JPc) ∗ (1000) ∗ JtoA;

AR : ((1−K) ∗APc);

LJ : (LPj ∗ (1000000)) ∗ (1− Lstop_action);

JJ : (JPj ∗ (1000)) ∗ (1− Jstop_action) ∗ JtoA;

AJ : (APj) ∗ (1−Astop_action);

LSwitch : fMA(100 ∗ (LtoJ));

JSwitch : fMA(100 ∗ (JtoA));

empty : fMA(100);

reproduceL : fMA(10 ∗ ER_start_spawn ∗ T_start_spawn);

stopreproduceL : fMA(10 ∗ stop_spawn);

LDeath : fMA(100 ∗OADeath);

Figure 5.3: Pacific Oyster PAL Model Part 3 of 4.

101

Internal species

LE = LA >> +LC << +LG(.) + LR(.);

JE = JA >> +JC << +JG(.) + JR(.);

AE = AA >> +AC << +AG(.) +AR(.);

LV = LG >> +LS << +LA(.) + LC(.) + LR(.) + LJ(.);

JV = JG >> +JS << +JA(.) + JC(.) + JR(.) + JJ(.);

AV = AG >> +AS << +AA(.) +AC(.) +AR(.) +AJ(.) + empty(.);

LER = LR >> +LJ <<;

JER = JR >> +JJ <<;

AER = AR >> +AJ << +(empty, 1) <<;

LSwitch_on = (LSwitch, 1) >>;

LSwitch_off = (LSwitch, 1) <<;

JSwitch_on = (JSwitch, 1) >>;

JSwitch_off = (JSwitch, 1) <<;

ATracker_off = (reproduceL, 1) << +(stopreproduceL, 1) >>;

ATracker_on = (reproduceL, 1) >> +(stopreproduceL, 1) << +(empty, 1)(+);

Set of hidden internal actions

HiddenActionsA : {LG,LS,LA,LC,LR,LJ, JG, JS, JA, JC, JR, JJ,AG,AS,AA,AC,AR,AJ, empty, stopreproduceL};

Oysters (Internal species model)

Larva = LE[250]BC
∗
LV[250]BC

∗
LER[0]BC

∗
LSwitch_on[0]BC

∗
LSwitch_off[1]

Juvenile = JE[14]BC
∗
JV[14]BC

∗
JER[16]BC

∗
JSwitch_on[0]BC

∗
JSwitch_off[1]

Adult = AE[614]BC
∗
AV[726]BC

∗
AER[0]BC

∗
ATracker_on[0]BC

∗
ATracker_off[1]

Oyster Populations (External actions)

Larvae{{Larva}} = LSwitch ↓ +reproduceL ↑ +LDeath ↓;

Juveniles{{Juvenile}} = LSwitch ↑ +JSwitch ↓;

Adults{{Adult}} = JSwitch ↑ +reproduceL((+));

Model Component

LarvaeJLarva_1, ...,Larva_5KA ♦
{LSwitch}

JuvenilesJ KA ♦
{Jswitch,reproduceL}

AdultsJ KA

Figure 5.4: Pacific Oyster PAL Model Part 4 of 4.

102

Figure 5.5: Comparison of PAL model results to integrated Bio-PEPA model from Chapter 3.

5.3 model analysis

The PAL parser was used to translate the PAL model to a Bio-PEPA model to allow analysis of

the model in the Bio-PEPA plug-in. Discrete stochastic time series analysis simulations were

carried out. Continuous ODEs simulation time-series analysis could not be carried out as the

ODEs solver in the Bio-PEPA plug-in did not handle the translated PAL model. In particular

the solver cannot handle the ’on’ and ’off’ agents used to describe Organisms in the Bio-PEPA

model. The solver in this case allowed the organisms to remain ’on’ even after a removal

action such as death. They remained in the population whereas they should change to an ’off’

agent. This issue does not occur in the discrete stochastic time series analysis simulations.

Three experiments were carried out: control, low CO2 and high CO2. The initial population

values were 10 Larvae, zero Juveniles and zero Adults. The initial population is relatively low

due to the capabilities of the Bio-PEPA plug-in. The ocean acidification parameter of each

oyster was assigned a value within a certain range dependent on the experiment. The ocean

acidification parameter is set to zero in the control. Low CO2 is in the range of 1 to 4 and high

CO2 is in the range of 3 to 6. The total time for each experiment is 450 days. For simplicity a

month in all experiments had 30 days making a year 360 days. The start month is July. Each

experiment is one stochastic simulation.

103

5.3.1 Larval Length

The analysis of the results of the effect of ocean acidification on Larval growth shows that

there is a small decrease in length. The average length of Larvae from day 2 to 6 from each

experiment is given in Figure 5.6. The results show that at day 6 the control Larvae are greater

in length by 7µm than the low CO2 larvae and 8µm than the high CO2. This is comparable

with the Larval length results from Barros et al[14] and Timmins-Schiffman et al [72] where the

control length is greater by 10µm. The results indicate that, as a result of ocean acidification,

Larvae take slightly longer to reach metamorphosis (Larva to Juvenile). The control reached

metamorphosis at day 15 whereas the other experiments it occurred in day 17. The decreased

growth rate also showed similar effects to the Larvae DFW results.

Figure 5.6: Time Series Analysis of Larval length from day 2 to 6.

5.3.2 Population growth

The analysis of the results of the effect of ocean acidification on oysters population growth

shows that Larvae death decreases total population numbers. It also shows that the decrease in

Larval growth does not impact on the later life stage events e.g. spawning. The total population

of oyster numbers for all experiments throughout the time frame are given in Figure 5.7. There

is a 40% mortality from the control to the low CO2 and a 60% mortality for the high CO2

in the Larva life stage at the beginning of the experiments. There is a 40% mortality from

the control to the low CO2 and a 65% mortality for the high CO2 in the overall population.

These figures are similar to the results from Barros et al[14] and Timmins-Schiffman et al [72]

although their initial Larvae population numbers are higher.

104

Figure 5.7: Time Series Analysis of oyster Population Growth.

5.4 summary

In this chapter PAL has been successfully applied to a Pacific oyster life stage case study. The

PAL model was firstly validated, its results are comparable with the results of the integrated

life stage Bio-PEPA model in Section 3.2 of Chapter 3. Secondly, analysis of the model focused

on different scales of the case study from the Larva life stage to the overall population

specifically on the effect of ocean acidification. It is noted that the ocean acidification feature

in the PAL model is simplistic. It only affects the Larva life stage whereas in reality it may

have an effect on the other life stages. The ocean acidification literature on Pacific oysters

is mainly focused on the early Larval life stage development. If research becomes available

for later life stages this could be easily added to the PAL model. A combination of different

food densities, temperature and ocean acidification values could be investigated in the PAL

model to measure the combined impact these have on all life stages. The PAL model gives

the potential for users to focus not just on one life stage but a whole life cycle and also the

population view of the system.

It is worth noting all the features and challenges from Chapter 3 are overcome in this PAL

model. The layers of the language allow the integration and interaction of multi-scales of the

system in one PAL model. The modularity of the language allows the the appropriate unit

scales to be used in specific life stages. The population view of the system is modelled and

analysis is shown.

105

6
A P P L I C AT I O N O F PA L T O C E L L C Y C L E A N D D N A D A M A G E C A S E

S T U D Y

PAL is a generic language therefore it can be applied to a variety of multi-scale systems. To

demonstrate this, in this chapter PAL is applied to a mammalian cell cycle and DNA damage

case study. The motivation of this case study is to analyse the affects of damage from cancer

treatments to the length of a cell cycle and cell survival. This is a multi-scale system as the

damage affects the levels of intracellular proteins within a cell and therefore affects the cell

population levels. A PAL model has been created by linking together a cell cycle model with a

repair model with an external force applying damage. The PAL model allowed multi-scale

analysis of an average length of a single cell cycle and cell population growth. Results from

the PAL model are compared with wet laboratory data that show the survival fraction of cells

receiving different radiation doses [52].

6.1 introduction to case study

The motivation of this case study is to investigate the effects of cancer treatment doses on the

length of a cell cycle and cell population growth. The availability of wet laboratory data allows

comparison with results from the PAL model [52]. PAL allows the multi-scale investigation of

the system, whereas previous existing models focus on one scale only [73, 77]. These models

are utilised in the PAL model to represent a specific scale. There are multi-scale cellular

automaton models that simulate spatial temporal growth [61, 60]. These models use different

modelling approaches for different scales of the system e.g. the intracellular proteins are

defined in ODEs and the cell populations are modelled in cellular automaton. PAL allows

all scales to be modelled in one language. The PAL model shows the potential of multi-scale

modelling in process algebra albeit it does not represent explicit spatial awareness. Organisms

in PAL currently do not have the ability to interact explicitly with one another.

To model the cell dynamics within each cell, the intracellular layer, a basic model originally

developed by Tyson et al [73] consisting of a system of six ODEs of cell cycle proteins is

translated to internal species of the PAL model. This basic model includes only the interactions

which are considered to be essential for cell cycle regulation and control. The model is

reproduced for convenience in Equations (6.1) to (6.6) [73]. The model describes the transitions

between two main steady states, growing (G1) and dividing (S-G2-M), of the cell cycle which

is controlled by the relationships between the proteins. These proteins include the Cdk-cyclin

106

B complex (CycB), the APC-Cdh1 complex (Cdh1), the active form of Cdc20 (Cdc20A), the

total Cdc20 (Cdc20T), the intermediary enzyme (IEP) and the mass of the cell (m). The states

of the cell are controlled by changes in cell mass and threshold values of the CycB. To make

the cell cycle relevant to mammalian cells the parameter values of this model are taken from

Powathil et al [61], therefore, time in the model is in hours.

d[CycB]

dt
= k1 − (k ′2 + k"2[Cdh1])[CycB] (6.1)

d[Cdh1]

dt
=

(k ′3 + k"3[Cdc20A])(1− [Cdh1])

J3 + 1− [Cdh1]
−
k4m[CycB][Cdh1]

J4 + [Cdh1]
(6.2)

d[Cdc20T]

dt
= k ′5 + k"5

(
[CycB]m

J5
)n

1+ (
[CycB]m

J5
)n

− k6[Cdc20T] (6.3)

d[Cdc20A]

dt
=
k7[IEP](Cdc20T] − [Cdc20A])

J7 + [Cdc20T] − [Cdc20A]

−
k8[Mad][Cdc20A]

J8 + [Cdc20A]
− k6[Cdc20A]

(6.4)

d[IEP]

dt
= k9m[CycB](1− [IEP]) − k10[IEP] (6.5)

dm

dt
= µm(1−

m

m∗
) (6.6)

To model how the cell cycle intracellular proteins are effected by DNA damage a model

originally developed by Zhang et al [77] consisting of four ODEs is translated to internal spe-

cies and parameters of the PAL model. The model consists of DNA damage, the transcription

factor p53 and Mdm2 (nucleus and cytoplasmic) that promote the degradation of p53. The

model is reproduced for convenience in Equations (6.7) to (6.10) [77]. The DNA damage ODE

has an effect on these proteins to cause the levels of p53 to pulse. A simple assumption is

made that damage is repaired at a constant rate independent of the proteins. p53 inhibits the

activity of CycB preventing the progression of the cell cycle. In the PAL model the Tyson et

al [73] and Zang et al [77] models are linked together by changing the CycB degradation rate

to be influenced by changes in the p53 levels.

d[p53]

dt
= k ′s53 + k"s53

[Mdm2cyt]
4

J4s53 + [Mdm2cyt]4
− kd53[p53] (6.7)

d[Mdm2cyt]

dt
= k ′s2 + k"s2

[p53]4

J4s2 + [p53]4

− ki[Mdm2cyt] + ko[Mdm2nuc] − k
′
d2[Mdm2cyt]

(6.8)

107

d[Mdm2nuc] = ki[Mdm2cyt] − ko[Mdm2nuc]

− k ′d2(1+DNAdamage)[Mdm2nuc]
(6.9)

dDNAdamage

dt
= −krepairH(DNAdamage) (6.10)

6.2 pal model

The PAL model is given in Figures 6.1, 6.2 and 6.3 and the parameter values are shown in

Table 6.1. In the model the Population actions are highlighted in bold. The case study has two

distinct layers; cell population and intracellular. The cell population layer is described in the

PAL model by defining two PAL Populations based on the two steady states of a cell; Growing

and Dividing. These Populations contain G and D Organism components. A G Organism is a

cell in a growing state (G cell) and a D Organism is a cell in a dividing state (D cell). G and

D cells contain internal species which create the intracellular layer which are the system of

proteins translated from Tyson et al [73] and Zhang et al [77]. G and D cells have different

initial values of intracellular proteins. The internal species value of a PAL model have to be

integer, therefore, the initial internal species values are scaled up by one hundred. A G cell has

a low CycB and high Cdh1 initial value. When the levels of CycB are above ten the Population

action start triggers a G cell to become a D cell. A D cell has a standard CycB initial value

just above ten and a low standard Cdh1 initial value. When the levels of CycB are lower than

ten the Population action finish triggers the D cell to reproduce a G cell and become a G cell,

therefore, producing two new G cells. The switching from G cell to D cell to G cell completes

one cell cycle.

Both G and D cells are indirectly affected by damage through p53. Levels of p53 are at

equilibrium (steady state) when there is no damage in the system. When there is damage it

causes p53 levels to pulse. The internal species CycB degradation rate is multiplied by the

level of p53 only when p53 is above its equilibrium threshold of 0.19. Damage is a parameter

of the model and a simple assumption is made that damage is repaired at a constant rate.

Damage levels tested in the model range from integer values of zero to ten. The assumption

has been made that a damage greater than four causes cell death through the Population

actions GDeath and DDeath. Cell cycle length will still be impacted with a damage less than

five through the increase of CycB degradation rate.

To analyse the effects of damage on population growth different damage levels were

assigned to each cell randomly depending on the highest level of damage at the start of the

simulation. For example, if the highest damage in a simulation is five the cells are assigned

damages in the range of zero to five. This randomness of damage assignment is to replicate

108

General parameters

Gmscaled = Gm1/100; GCdh1scaled = GCdh1/100; GCycBscaled = GCycB/100;

GCdc20Tscaled = GCdc20T/100; GCdc20Ascaled = GCdc20A/100; GIEPscaled = GIEP/100;

Dmscaled = Dm1/100; DCdh1scaled = DCdh1/100; DCycBscaled = DCycB/100;

DCdc20Tscaled = DCdc20T/100; DCdc20Ascaled = DCdc20A/100; DIEPscaled = DIEP/100;

p53scaled = p53/100; Mdm2cscaled =Mdm2c/100; Mdm2nscaled =Mdm2n/100;

GtoD = H(GCycB−CycBT);

divide1 = H(CycBTdivide1−DCycB);

divide2 = H(CycBTdivide2−DCycB);

G = ((2 ∗Mdm2nscaled ∗ (j2/p53scaled))/

(theta−Mdm2nscaled+ (theta ∗ (j1/p53scaled)) + (Mdm2nscaled ∗ (j2/p53scaled))

+((theta−Mdm2nscaled+ (theta ∗ (j1/p53scaled)) + (Mdm2nscaled ∗ (j2/p53scaled)))(2)

−4 ∗ (Mdm2nscaled ∗ (j2/p53scaled)) ∗ (theta−Mdm2nscaled))(0.5)));

kd53 = 0.27+ 8.25 ∗G;

D = ((DAM− ((time) ∗ rep)) ∗ (H(time) −H(time− (DAM/rep))));

Death = H(D− deathT);

kd = 0.05 ∗ (1−D);

Internal species actions

Gsythesis : k1 ∗ 100;

Gdegradation : ((k2 ∗ (p53scaled/0.19) + k21 ∗GCdh1scaled) ∗GCycBscaled) ∗ 100;

Gactivation : (((k3+ k31 ∗GCdc20Ascaled) ∗ (1−GCdh1scaled))/(j3+ 1−GCdh1scaled)) ∗ 100;

Ginactivation : ((k4 ∗Gmscaled ∗GCycBscaled ∗GCdh1scaled)/(j4+GCdh1scaled)) ∗ 100;

Gcellgrowth : ((u ∗Gmscaled) ∗ (1− (Gmscaled/m2))) ∗ 100;

GsynthCdc20 : (k5+ (k51 ∗ ((GCycBscaled ∗Gmscaled/j5)n/(1+ (GCycBscaled ∗Gmscaled/j5)n)))) ∗ 100;

GdegraCdc20 : (k6 ∗GCdc20Tscaled) ∗ 100;

GactCdc20 : ((k7 ∗GIEPscaled ∗ (GCdc20Tscaled−GCdc20Ascaled))

/(j7+GCdc20Tscaled−GCdc20Ascaled))) ∗ 100;

GinactCdc20 : (((k8 ∗Mad ∗GCdc20Ascaled)/(j8+GCdc20Ascaled)) + (k6 ∗GCdc20Ascaled)) ∗ 100;

GaddIEP : (k9 ∗Gmscaled ∗GCycBscaled ∗ (1−GIEPscaled)) ∗ 100;

GremoveIEP : (k10 ∗GIEPscaled) ∗ 100;

Figure 6.1: Cell Cycle PAL Model Part 1 of 3.

109

Internal species actions

Dsynthesis : k1 ∗ 100;

Ddegradation : ((k2 ∗ (p53scaled/0.19) + k21 ∗DCdh1scaled) ∗DCycBscaled) ∗ 100;

Dactivation : (((k3+ k31 ∗DCdc20Ascaled) ∗ (1−DCdh1scaled))/(j3+ 1−DCdh1scaled)) ∗ 100;

Dinactivation : ((k4 ∗Dmscaled ∗DCycBscaled ∗DCdh1scaled)/(j4+DCdh1scaled)) ∗ 100;

Dcellgrowth : ((u ∗Dmscaled) ∗ (1− (Dmscaled/m2))) ∗ 100;

DsynthCdc20 : (k5+ (k51 ∗ ((DCycBscaled ∗Dmscaled/j5)n/(1+ (DCycBscaled ∗Dmscaled/j5)n)))) ∗ 100;

DdegraCdc20 : (k6 ∗DCdc20Tscaled) ∗ 100;

DactCdc20 : ((k7 ∗DIEPscaled ∗ (DCdc20Tscaled−DCdc20Ascaled))

/(j7+DCdc20Tscaled−DCdc20Ascaled))) ∗ 100;

DinactCdc20 : (((k8 ∗Mad ∗DCdc20Ascaled)/(j8+DCdc20Ascaled)) + (k6 ∗DCdc20Ascaled)) ∗ 100;

DaddIEP : (k9 ∗Dmscaled ∗DCycBscaled ∗ (1−DIEPscaled)) ∗ 100;

DremoveIEP : (k10 ∗DIEPscaled) ∗ 100;

start : fMA(100 ∗GtoD);

finish1 : fMA(100 ∗ divide1);

finish2 : fMA(100 ∗ divide2);

addp53 : ((s53) + (s53i ∗ ((Mdm2cscaled4)/(js534 +Mdm2cscaled4)))) ∗ 100;

removep53 : (kd53 ∗ p53scaled) ∗ 100;

addMdm2c : ((s2) + (s2i ∗ ((p53scaled4)/(js24 + p53scaled4))) + (ko ∗Mdm2nscaled)) ∗ 100;

removeMdm2c : ((ki ∗Mdm2cscaled) + (d2i ∗Mdm2cscaled)) ∗ 100;

addMdm2n : (ki ∗Mdm2cscaled) ∗ 100;

removeMdm2n : ((ko ∗Mdm2nscaled) + (kd ∗Mdm2nscaled)) ∗ 100;

Gdeath : fMA(Death);

Ddeath : fMA(Death);

Internal species

GCycB = (Gsythesis, 1) >> +(Gdegradation, 1) <<;

GCdh1 = (Gactivation, 1) >> +(Ginactivation, 1) <<;

Gm1 = (Gcellgrowth, 1) >>;

GCdc20T = (GsynthCdc20, 1) >> +(GdegraCdc20, 1) <<;

GCdc20A = (GactCdc20, 1) >> +(GinactCdc20, 1) <<;

GIEP = (GaddIEP, 1) >> +(GremoveIEP, 1) <<;

Gtracker_off = (start, 1) <<;

Gtracker_on = (start, 1) >>;

Figure 6.2: Cell Cycle PAL Model Part 2 of 3.

110

Internal species

DCycB = (Dsythesis, 1) >> +(Ddegradation, 1) <<;

DCdh1 = (Dactivation, 1) >> +(Dinactivation, 1) <<;

Dm1 = (Dcellgrowth, 1) >>;

DCdc20T = (DsynthCdc20, 1) >> +(DdegraCdc20, 1) <<;

DCdc20A = (DactCdc20, 1) >> +(DinactCdc20, 1) <<;

DIEP = (DaddIEP, 1) >> +(DremoveIEP, 1) <<;

Dtracker_off1 = (finish1, 1) <<;

Dtracker_on1 = (finish1, 1) >>;

Dtracker_off2 = (finish2, 1) <<;

Dtracker_on2 = (finish2, 1) >>;

p53 = (addp53, 1) >> +(removep53, 1) <<;

Mdm2c = (addMdm2c, 1) >> +(removeMdm2c, 1) <<;

Mdm2n = (addMdm2n, 1) >> +(removeMdm2n, 1) <<;

Set of hidden internal actions

HiddenActions A : {Gsythesis,Gdegradation,Gactivation,Ginactivation,Gcellgrowth,GsynthCdc20,

GdegraCdc20,GactCdc20,GinactCdc20,GaddIEP,GremoveIEP,Dsythesis,

Ddegradation,Dactivation,Dinactivation,Dcellgrowth,DsynthCdc20,DdegraCdc20,

DactCdc20,DinactCdc20,DaddIEP,DremoveIEP,addp53, removep53,

addMdm2c, removeMdm2c,addMdm2n, removeMdm2n};

Cells (Internal species model)

G = GCycB[5]BC
∗
GCdh1[100]BC

∗
Gm1[60]BC

∗
GCdc20T [180]BC

∗
GCdc20A[135]

BC
∗
GIEP[70]BC

∗
GTracker_off[1]BC

∗
GTracker_on[0]BC

∗
p53[19]BC

∗
Mdm2c[16]BC

∗
Mdm2n[65]

D = DCycB[12]BC
∗
DCdh1[1]BC

∗
Dm1[89]BC

∗
DCdc20T [7]BC

∗
DCdc20A[0]

BC
∗
DIEP[34]BC

∗
DTracker_off1[1]BC

∗
Dtracker_on1[0]BC

∗
Dtracker_off2[1]BC

∗
Dtracker_on2[0]

BC
∗
p53[19]BC

∗
Mdm2c[16]BC

∗
Mdm2n[65]

Cell Populations (External actions)

Growing{{G}} = start ↓ +finish1 ↑ +finish2 ↑ +Gdeath ↓;

Dividing{{D}} = start ↑ +finish1((+)) + finish2 ↓ +Ddeath ↓;

Model Component

GrowingJG_1, ...,G_8KA ♦
{start,finish1,finish2}

DividingJ KA

Figure 6.3: Cell Cycle PAL Model Part 3 of 3.

111

Parameter Value Parameter Value Parameter Value

k1 0.12 j1 0.1 CycBT 10

k2 0.12 j2 0.1 CycBTdivide1 10

k21 4.5 theta 0.83 CycBTdivide2 9

k3 3 s53 0.6 deathT 4

k31 30 s53i 2.56

j3 0.04 js53 0.45

k4 105 s2 0.15

j4 0.04 s2i 4.23

u 0.03 js2 0.92

m2 10 ki 0.41

k5 0.015 ko 0.05

k51 0.6 d2i 0.79

k6 0.3 rep 0.08

k7 3 DAM 0 to 10

k8 1.5

k9 0.3

k10 0.06

j5 0.3

n 4

j7 0.001

j8 0.001

Mad 1

Table 6.1: Parameter values of Cell Cycle PAL model. First column parameters taken from Powathil et

al [61] and second column parameters taken from Zhang et al [77]. Third column threshold

parameters for G and D cells.

112

Figure 6.4: Simulation Distributions PDF values of the Length of a cell cycle.

reality that although all cells have the same dose of treatment the damage is varied over the

cell population. Damage occurs immediately (at time zero) in all simulation experiments.

6.3 model analysis

The PAL parser was used to translate the PAL model to a Bio-PEPA model to allow analysis

of the model in the Bio-PEPA plug-in. This analysis includes simulation distributions and

time series analysis.

6.3.1 Simulation Distributions Analysis of Average Length of a cell cycle

Simulation distributions analysis was undertaken to analyse the average length of the cell

cycle and how increasing the amount of damage affects this. Results from this analysis are

presented for five experiments and are given in Figure 6.4 and Table 6.2. Five experiments were

carried out from a control with no damage to damage of four. As this analysis is observing

one cell cycle the PAL model in these experiments starts with one G cell. The G cell is assigned

a specific damage dependent on the experiment. The chosen component in this analysis

is an agent which tracks when a D cell becomes a G cell, i.e. completion of one cell cycle.

The number of stochastic simulation replications is set to 200 and the stop time set to 48

hours. A higher number of replications (1000) would be recommended although this would

be computationally expensive (in excess of 24 hours run time).

All 100% of the simulations from the five experiments completed a cell cycle before the

stop time of 48 hours. The results show that a damage from one to three does not affect the

cell cycle average length. The intracellular proteins can cope with these damage levels. The

average cell cycle length slightly increases when a damage of four is applied.

113

Experiment Average cycle ± Confidence Interval (95%)

Control 23.96 0.4472

Damage 1 24.18 0.4780

Damage 2 24.73 0.5659

Damage 3 24.74 0.6523

Damage 4 25.88 0.6913

Table 6.2: Average length of cell cycle and 95% confidence interval in hours of each simulation distribu-

tions experiment.

6.3.2 Time Series Analysis of cell Population Growth

Discrete stochastic simulation time-series analysis was carried out to analyse cell growth and

how increasing the amount of damage affects this. Continuous ODEs simulation time-series

analysis could not be carried out as the ODEs solver in the Bio-PEPA plug-in did not handle

the translated PAL model.

Figure 6.5: Time Series Analysis of total cell Population Growth.

The initial population is eight G cells different damage levels are assigned to each cell

randomly. Throughout the time period of the simulation new cells will be assigned different

damage levels reliant on the constant repair. Eleven experiments were carried out from a

control with no damage to damage of ten. The total time for each experiment is 64 hours (2

days 16 hours). This time was chosen based on the control experiment and the number of

cells remaining at the end (35 cells). Populations are kept to a relatively low value due to the

capabilities of the Bio-PEPA plug-in. Each experiment is one stochastic simulation. Results

from this analysis are presented for eleven experiments and the total population growth of G

114

and D cells results are given in Figure 6.5 and separate population growth results of G and D

cells are given in Figure 6.6.

The results show that population growth is not affected by a damage from one to four.

These results are similar to the simulation distribution results which show the cell cycle is not

affected by this lower damage range. The damage in each experiment is repaired at a constant

rate, therefore the population of cells start to recover dependent on the damage assigned.

Death occurred in the experiments where damage is above four. This feature had the effect of

reducing the population. The damage levels of nine and ten had a greater reduction in the

population.

Figure 6.6: Time Series Analysis of cell Population Growth G and D cells.

6.3.3 Comparison with wet laboratory data survival fraction results

The population results of the PAL model are compared to wet laboratory survival fraction

results of cells given different Gray (Gy) doses of radiation treatment [52]. The results from the

wet laboratory data had the experiment duration of twelve days and the initial populations of

around 200 to 600 cells. The capabilities of the Bio-PEPA plug-in does not allow high numbers

of cells but nevertheless comparisons can be made. The end population value data point

is taken from the eleven population experiment results shown in Figure 6.5 and a survival

fraction is calculated based on the control experiment. The survival fraction results for damage

levels of 5 and 6 are compared with the survival fraction results for Gy doses of 2.25 and

3 as suggested by Nicol et al [52]. The other survival fraction results are compared with

the damage levels based on this correlation. Damage levels 0, 2, 4, 8 and 10 are compared

with radiation doses of 0, 0.75, 1.5 , 4.5 and 6 respectively. The survival fraction comparison

results are given in Figure 6.7. The results overall show a good comparison with the trend of

the wet laboratory data. The survival fraction result for Damage 4 of the PAL model is less

comparable, giving a slightly higher survival fraction than the control. This may be due to the

fact that this result is taken from one stochastic simulation if an average population value was

taken from repeated simulations the comparison may improve.

115

Figure 6.7: Comparison results between PAL model population and wet laboratory radiation treatment

results.

Further work could be undertaken to compare the PAL model results to other cancer

treatments such as Temozolomide (TMZ) and combination of these treatments (radiation

+ TMZ). A function of the relationship of the linear damage levels to the doses of these

treatments would have to be found to allow the comparison of survival fraction results. More

stochastic simulations should be carried out to find an average population value from all the

experiments and may give a better comparison with the wet laboratory data.

6.4 summary

In this chapter PAL has been shown to be a generic multi-scale language. It has been applied

successfully to a cell cycle and DNA damage multi-scale system. Analysis of the model

focused on different scales of the case study from the length of a single cell cycle to population

cell growth.

It has been shown in the literature that process algebra can be utilised to investigate this

specific problem. This is presented in a single scale process algebra model that describes

the activities of cells in a epidemic-type structure based on radiation treatment [43]. This

model does not include the growing and dividing phases of a cell and the dynamics of their

intracellular proteins, therefore, missing important multi-scale system interactions. The PAL

model is the first example of a multi-scale process algebra model specifically investigating

how cell damage affects intracellular protein interactions and how these interactions impact

on cell population growth.

Future work on this PAL model could include testing a variety of different degradation

rates for CycB affected by p53. The degradation of CycB in G and D cells could be changed

as some cancer treatments specifically affect the different states of a cell [60]. The damage

116

repair could be more specific to the levels of p53 and Mdm2. The assumption of death due to

damage greater than a certain threshold could be made more specific to certain treatments

and the survival fraction of cells. The comparison of results to reality shows how PAL can be

used to aid in investigations of cancer treatment in multi-scale systems.

117

7
C O N C L U S I O N

7.1 thesis summary

Multi-scale modelling and analysis is becoming increasingly important and relevant. Analysis

of the emergent properties from the interactions between scales of multi-scale systems is

important to aid in solutions. Most modelling approaches are specific to the problem that they

are addressing and use a hybrid combination of modelling languages to model specific scales.

In this thesis the potential of process algebra is highlighted to model multi-scale systems.

Process Algebra with Layers has been demonstrated to provide an elegant language to write

and evaluate integrated multi-scale models.

In Chapter 2 I investigated whether a process algebra language such as Bio-PEPA could

model and analyse a single scale specifically an organism’s physiology within a specific life

stage [59]. The DEB theory [40] approach was used to gain abstraction and still capture enough

detail to accurately represent the scale. As a result of this investigation I proposed a generic

translation approach to translate DEB models to Bio-PEPA models. This work confirmed that

Bio-PEPA can successfully model and analyse this specific scale. As the Bio-PEPA plug-in

offers a variety of analysis techniques further analysis of the system was achieved [71].

In Chapter 3 I validated the generic translation approach by successfully translating a DEB

model [67] of an organism’s physiology within a different life stage. My two Bio-PEPA life

stage models were integrated. As a result of this the limitations of Bio-PEPA in the modelling

of integrated multi-scales were found. These limitations provided the challenges and features

that had to be addressed in a process algebra for multi-scale integration modelling. These

included effectively integrating and modularising multi-scales, scaling of units appropriate to

an organism’s life stage and including a population view of the system.

In Chapter 4 I introduced Process Algebra with Layers (PAL): a language for multi-scale

integration modelling. PAL addresses all the features and challenges reported in Chapter

3. It also encompasses the important multi-scale modelling features and strategy stated by

Noble [53] and Allen et al [10]. PAL is also compared to two multi-scale process algebra

languages. Results from this comparison revealed PAL’s ability to model a multi-scale system

in a more concise and elegant fashion. This is because PAL specifically focuses on the easy

definition of integration and interaction between scales. PAL also allows the interaction of the

addition and removal of a component (with an internal system description) from a population

whereas the compared languages did not. A PAL parser was implemented to automatically

118

translate PAL models to Bio-PEPA models. This results in the various analysis techniques of

the Bio-PEPA plug-in becoming available in the analysis of PAL models.

In Chapter 5 I illustrated the use of PAL by applying it to the Pacific oyster life stage case

study (which I investigated in the integrated life stage Bio-PEPA model in Section 3.2 of

Chapter 3) and investigated the impacts of ocean acidification. The PAL model included the

oyster’s physiology, life stage and population scale. Results of the analysis of different scales

of the system were analysed. Results from this chapter show that PAL models can be used to

aid in the analysis of topical issues such as climate change.

In Chapter 6 I demonstrated PAL’s generic ability by applying it to a cell cycle and DNA

damage case study investigating the effects of cancer treatment. The PAL model included the

intracellular, cellular and population scale. Analysis techniques were utilised to gain results

from different scales of the system including the length of a cell cycle and population growth.

Results from this chapter show PAL results can be compared to wet laboratory data to aid in

the analysis of this specific multi-scale case study.

With the above results the characteristics of PAL are highlighted in the following section.

7.1.1 Characteristics of PAL

Characteristics of the language are the use of novel multi-scale layers and the interactions

between these layers using mirrored actions. These characteristics enables PAL to overcome

the features and challenges found in Chapter 3. PAL effectively integrates and modularises

multi-scales of a system using these layers. As the layers modularise the detail within a scale

the appropriate unit of scale can be applied. A population view of a multi-scale system can be

modelled in PAL. The population scale can include population actions such as addition and

removal from a population.

PAL encompasses all the multi-scale modelling features stated by Noble [53] and Allen et

al [10].

Abstraction, PAL allows the modeller to begin modelling at a scale and detail that is

appropriate to the knowledge they have about the system and the problem they are addressing.

The modularity of the layers allows the modeller to elegantly construct a model and aids them

to incorporate the detail needed to be included in each scale.

Descriptive, PAL models have an explicitly descriptive view of a multi-scale system. The

internal system view of the Organism layer incorporates the Bio-PEPA modelling language’s

descriptive view of a biological system. The language can incorporate approaches such as

DEB theory or ODEs modelling to allow the scale to accurately reflect a specific scale of a

multi-scale system. The layers of the language modularises the details within a PAL model

making its description accessible and easy to read.

119

Integrative, PAL allows the modeller the ability to integrate scales of a multi-scale system

and model the interactions between these scales. Changes to an internal system within a

component causing a change in the components state, e.g physiological changes within an

organism changing what life stage the organism is in, can be modelled easily. The interaction

of the addition and removal of a component from a population, e.g birth and death, can be

easily modelled.

Explanatory, PAL is shown to provide predictions and insights to multi-scale systems by

utilising the Bio-PEPA plug-in’s various analysis techniques. This allows users the ability to

export and use the model in their preferred model and analysis tool.

Generic, PAL is shown to be a generic language as it has been applied to case studies

of multi-scale systems in the fields of marine ecology and systems biology. Models can be

adapted so the appropriate unit of scale within a scale can be applied.

Middle-out strategy, PAL follows this strategy as the modeller can decide the starting scale

of a multi-scale model. PAL achieves this as the Organism layer can represent a molecule,

organelle, cell, tissue, organ or any organism. Thereafter the internal species can also represent

a molecule, organelle, cell, tissue, organ or any organism.

7.2 future work

In this thesis, the foundations of Process Algebra with Layers for multi-scale integration

modelling has been established, additional research is needed before it can be considered as a

competitor against the other well-known and traditional approaches.

The PAL parser automatically translates PAL models to Bio-PEPA models. This allows the

use of a variety of analysis techniques available within the Bio-PEPA plug-in to be applied to

a PAL model. The Bio-PEPA plug-in can also translate Bio-PEPA models into other modelling

languages. This allows PAL modellers to use their preferred model and analysis tool. This

gives PAL models the ability of the explanatory multi-scale feature. The use of the Bio-PEPA

plug-in with PAL models revealed some issues. For example, in Chapters 5 and 6 the Bio-PEPA

plug-in limited the population size in the model. To eliminate the issues that have arisen

during the analysis of PAL models because of the restrictions of the Bio-PEPA plug-in, a

possible solution could be the implementation of a PAL model solver. This proposed solver

would allow larger population sizes to be set and simulated. Efficient simulation algorithms

would need to be defined to accomplish this. The solver would have to encapsulate the

explanatory multi-scale feature.

Another issue identified with the Bio-PEPA plug-in is that hand written functions approx-

imating the environmental data were required: it would be desirable to incorporate collected

data as the forcing variables have a significant effect on the model. This may lead to more

comparable results.

120

Additional syntax and semantics could be defined to describe the interactions between

Organisms. The Organisms in PAL currently do not have the ability to interact explicitly

with one another. This would involve explicitly modelling space. Organisms would, for

example, need location attributes to therefore react to their surrounding Organisms. It would

be necessary to ensure this addition would not compromise the integrative nature of PAL.

This spatial definition may overcomplicate the definition of a PAL model which may lead to

the loss of some multi-scale features PAL already encapsulates.

Parameter passing between life stages of an Organism is another possible addition to the

language. In PAL currently when an Organism transitions to another life stage it takes on the

initial parameter values set up for that life stage. It does not take its internal species values

forward. In reality organisms mature at different rates and values. Parameter passing would

increase its accuracy to represent a system.

PAL is shown to be generic in the fields of marine ecology and systems biology. This shows

that the two layers of PAL can capture different multi-scale systems within one model. It

would be interesting to apply PAL to a problem outwith these fields, where modelling the

interactions between scales is important. For example, consider the interaction of micro and

macro parasites and the immune system, with host states (susceptible, infected and recovered)

within a population. The parasites and immune system of the host could be described by the

internal species of a PAL Organism, the Organism being the host. Different PAL Populations

of these hosts could be defined to describe the different host states. The Organisms within

these Populations would be different based on these states. These differences could be based

on actions, parameter values or rates of actions etc.

7.3 summary

In this chapter the final conclusions of the thesis are discussed. Highlighting the key investig-

ations and results. The definition and application of the novel generic Process Algebra with

Layers language for multi-scale integration modelling has been realised. It allows the clear

definition of scales and interactions within and between these scales in one model. Future

research is needed to show its full capabilities.

121

A
A P P E N D I X A

I present below the Larva Bio-PEPA model in Figure A.1 and parameters in Table A.1 discussed

in Chapter 3.

Also presented below the integrated life stage Bio-PEPA model in Figures A.2 and A.3

discussed in Chapter 3.

Symbol Definition Value Dimension

[EG] Volume-Specific costs for structure 1900 ∗ 10−12 Jµm−3

[EM] Maximum energy storage density 2295 ∗ 10−12 Jµm−3

κ Fraction of utilised energy spent on growth and

maintenance

0.45 -

δM Shape coefficient 0.658 -

XK Half-saturation coefficient 600 µm3µl−1

{ṖXm} Maximum surface area-specific ingestion rate 137 µm3d−1µm−2

ae Assimilation efficiency 0.4 -

[ṖM] Volume-specific maintenance rate 24 ∗ 10−12 Jd−1µm−3

µX Energy content of food 4.5 ∗ 10−9 Jµm−3

T1 Reference temperature 298 K

TA Arrhenius temperature 11000 K

TAH Rate of decrease at upper boundary 75000 K

TAL Rate of decrease at lower boundary 75000 K

TH Upper boundary of tolerance range 306 K

TL Lower boundary of tolerance range 285 K

Table A.1: Model parameters used in Figure A.1.

122

Parameters of model

EV = Biovolume ∗ 10−6;

E = Reserve ∗ 10−6;

ER = Development ∗ 10−6;

L = (EV/ [EG])
1/3/δM;

V = (δM ∗ L)3;

Actual_temperature = value dependent on experiment ;

Temperature_correction = exp((TA/T1) − (TA/(273+Actual_temperature)))

∗ ((1+ exp((TAL/(273+Actual_temperature)) − (TAL/TL))

+ exp((TAH/TH) − (TAH/(273+Actual_temperature))))−1);

{ṖXm} = 137 ∗ Temperature_correction;

{ṖAm} = ae ∗ µx ∗ {ṖXm};[
ṖM

]
= 24 ∗ 10−12 ∗ Temperature_correction;

ṖM =
[
ṖM

]
∗ V ;

[E] = E/V ;

ṖC = ([E] /([EG] + (κ ∗ [E]))) ∗ ((
[EG]∗{ṖAm}∗V2/3

[EM]) + (
[
ṖM

]
∗ V));

Food_density = value dependent on experiment ;

Functional_response = Food_density2
(Food_density2+X2κ)

;

ṖA = Functional_response ∗ {ṖAm} ∗ V2/3;

ṖJ = ((
(1−κ)
κ) ∗ V ∗

[
ṖM

]
);

Stop_action = H(1− ER);

Actions and their associated kinetic rates

kineticLawOf a1 : (κ ∗ ṖC) ∗ 106;

kineticLawOf a2 : ṖM ∗ 106;

kineticLawOf a3 : ṖA ∗ 106;

kineticLawOf a4 : ṖC ∗ 106;

kineticLawOf a5 : ((1− κ) ∗ ṖC) ∗ 106;

kineticLawOf a6 : ṖJ ∗ 106 ∗ (1− Stop_action);

Agent definitions

Biovolume = a1 ↑ +a2 ↓ +a3�+a4�+a5�+a6�;

Reserve = a3 ↑ +a4 ↓ +a1�+a5�;

Development = a5 ↑ +a6 ↓;

Model Component

Biovolume[250] BC
∗

Reserve[250] BC
∗

Development[0]

Figure A.1: Pacific oyster Larva Bio-PEPA model. See Table A.1 for other parameters.

123

Parameters of model

EV = Biovolume ∗ 10−6;

E = Reserve ∗ 10−6;

ER = Development ∗ 10−6;

L = (((EV/ [L_EG])1/3/δM) ∗ L_Switch_J)

+(((EV/ [JA_EG])1/3/0.175) ∗ (1− L_Switch_J));

V = (((δM ∗ L)3) ∗ L_Switch_J) + (((0.175 ∗ L)3) ∗ (1− L_Switch_J));

Actual_temperature = value dependent on experiment ;

Temperature_correction = ((exp((L_TA/L_T1) − (L_TA/(273+Actual_temperature)))

∗ ((1+ exp((L_TAL/(273+Actual_temperature)) − (L_TAL/L_TL))

+ exp((L_TAH/L_TH) − (L_TAH/(273+Actual_temperature))))−1))

∗L_Switch_J)+

((exp((JA_TA/JA_T1) − (JA_TA/(273+Actual_temperature)))

∗ ((1+ exp((JA_TAL/(273+Actual_temperature)) − (JA_TAL/JA_TL))

+ exp((JA_TAH/JA_TH) − (JA_TAH/(273+Actual_temperature))))−1))

∗(1− L_Switch_J));

{ṖXm} = ((137 ∗ Temperature_correction) ∗ L_Switch_J)

+((560 ∗ Temperature_correction) ∗ (1− L_Switch_J));

{ṖAm} = (((ae ∗ µx ∗ {ṖXm}) ∗ 10−9) ∗ L_Switch_J)

+((ae ∗ {ṖXm}) ∗ (1− L_Switch_J));[
ṖM

]
= (((24 ∗ 10−12) ∗ L_Switch_J)

+(24 ∗ (1− L_Switch_J))) ∗ Temperature_correction;

ṖM =
[
ṖM

]
∗ V ;

[E] = E/V ;

ṖC = ((([E] /([L_EG] + (κ ∗ [E]))) ∗ ((
[L_EG]∗{ṖAm}∗V2/3

[EM]) + (
[
ṖM

]
∗ V))) ∗ L_Switch_J)

+((([E] /([JA_EG] + (κ ∗ [E]))) ∗ ((
[JA_EG]∗{ṖAm}∗V2/3

[EM]) + (
[
ṖM

]
∗ V)))

∗(1− L_Switch_J));

Figure A.2: Integrated life stage Bio-PEPA model Part 1 of 2. The prefix L and JA on the parameter

names refer to parameter values in Table A.1 and Table 2.1 respectively.

124

Parameters of model continued

Food_density = (1400 ∗ L_Switch_J) + ((1400 ∗ 10−12) ∗ (1− L_Switch_J));

Xκ = (600 ∗ L_Switch_J) + ((600 ∗ 10−12) ∗ (1− L_Switch_J));

Functional_response = (Food_density2
(Food_density2+X2κ)

∗ L_Switch_J)

+(Food_density
(Food_density+Xκ)

∗ (1− L_Switch_J));

ṖA = Functional_response ∗ {ṖAm} ∗ V2/3;

Maturity = H(V − Vp);

ṖJ = (((
(1−κ)
κ) ∗ V ∗

[
ṖM

]
) ∗ (1−Maturity))

+ (((
(1−κ)
κ) ∗ Vp ∗

[
ṖM

]
) ∗ (Maturity));

Percentage_ER = (ER_DFW
Total_DFW) ∗ 100;

ER_start_spawn = H(Percentage_ER −GSI);

Stop_spawn = H(1− Percentage_ER);

T_start_spawn = H(Actual_temperature− Ts);

Stop_action = H(1− ER);

Actions and their associated kinetic rates

kineticLawOf a1 : (κ ∗ ṖC) ∗ 106;

kineticLawOf a2 : ṖM ∗ 106;

kineticLawOf a3 : ṖA ∗ 106;

kineticLawOf a4 : ṖC ∗ 106;

kineticLawOf a5 : ((((1− κ) ∗ ṖC) ∗ 106) ∗ L_Switch_J)

+ (((((1− κ) ∗ ṖC) ∗ 106) ∗Maturity) ∗ (1− L_Switch_J));

kineticLawOf a6 : ((ṖJ ∗ 106 ∗ (1− Stop_action)) ∗ L_Switch_J)

+ (((ṖJ ∗ 106) ∗Maturity ∗ (1− Stop_action)) ∗ (1− L_Switch_J));

kineticLawOf empty : fMA(100 ∗Maturity);

kineticLawOf switch_on : fMA(10 ∗ ER_start_spawn ∗ T_start_spawn);

kineticLawOf switch_off : fMA(10 ∗ stop_spawn);

Agent definitions

Biovolume = a1 ↑ +a2 ↓ +a3�+a4�+a5�+a6�+empty�;

Reserve = a3 ↑ +a4 ↓ +a1�+a5�;

Development = a5 ↑ +a6 ↓ +(empty, 1) ↓;

Tracker_off = (switch_on, 1) ↓ +(switch_off, 1) ↑;

Tracker_on = (switch_on, 1) ↑ +(switch_off, 1) ↓ +(empty, 1)⊕;

Model Component

Biovolume[250] BC
∗

Reserve[250] BC
∗
Development[0] BC

∗
Tracker_off[1] BC

∗
Tracker_on[0]

Figure A.3: Integrated life stage Bio-PEPA model Part 2 of 2.

125

B
A P P E N D I X B

I present below the toy PAL model in PAL Parser file format in Figure B.1 and the output

Bio-PEPA model in Figures B.2 and B.3 discussed in Section 4.2.2.2 of Chapter 4.

Also presented below are the psPAH and PEPA nets models discussed in Section 4.4 of

Chapter 4. The psPAH model is given in Figures B.4, B.5, B.6, B.7 and B.8. The PEPA nets

model is given in Figures B.9, B.10, B.11, B.12, B.13 and B.14.

126

Figure B.1: Toy PAL model in the PAL Parser file format.

127

Figure B.2: Bio-PEPA output model from PAL Parser Part 1 of 2.

128

Figure B.3: Bio-PEPA output model from PAL Parser Part 2 of 2.

129

Constants

InitialLE = 100 InitialJE = 200 InitialLV = 250

InitialJV = 260 InitialLER = 0 IntialJER = 100

SwitchThr = 260 ReproduceThr = 200

Functional Rates

EnergyOn(i) = 1 EnergyOff(i) = 1 SwitchJEnergy(i) = 1

LA(i) = 0.5 LG(i) = 0.25 LR(i) = 0.25

JA(i) = 0.6 JG(i) = 0.27 JR(i) = 0.27

LSwitch(i) = 1 Switch(i) = 1 LS(i) = 0.25

JS(i) = 0.3 LJ(i) = 0.3 ReproduceL(i,j) = 1

Reproduce(i) = 1 JJ(i) = 0.35 InternalLDie(i) = 0.05

InternalJDie(i) = 0.05 LDie(i) = 1 JDie(i) = 1

RandomLDie(i) = 0.02 RandomJDie(i) = 0.06 RandomJAdd(i) = 0.02

JEnergyOn(i) = 1

Agent Definitions (Organism Scale)

NotInUse(i) = Reproduce(1, i)[EnergyOn(i)].Larva(i)

+Reproduce(2, i)[EnergyOn(i)].Larva(i)

· · ·

+Reproduce(20, i)[EnergyOn(i)].Larva(i)

+RandomJAdd(i)[JEnergyOn(i)].Juvenile(i)

Larva(i) = Switch(i)[SwitchJEnergy(i)].Juvenile(i)

+RandomLDie(i)[EnergyOff(i)].NotInUse(i)

+LDie(i).NotInUse(i)

Juvenile(i) = Reproduce(i, 1).Juvenile(i)

+Reproduce(i, 2).Juvenile(i)

· · ·

+Reproduce(i, 20).Juvenile(i)

+RandomJDie(i)[EnergyOff(i)].NotInUse(i)

+JDie(i).NotInUse(i)

Figure B.4: psPAH model Part 1 of 5

130

Agent Definitions (Organism Physiological Scale)

NE(i) = EnergyOn(i).LE(i, initialLE) + JEnergyOn(i).JE(i, initialJE)

NV(i) = EnergyOn(i).LV(i, InitialLV) + JEnergyOn(i).JV(i, initialJV)

NER(i) = EnergyOn(i).LER(i, initialLER) + JEnergyOn(i).JER(i, initialJER)

LE(i,w) = EnergyOff(i).NE(i) + IntrenalLDie(i)[LDie].NE(i)

+SwitchJEnergy(i).JE(i, InitialJE) + LA(i).LE(i,w+ 1)

+(if w > 0 then LG(i).LE(i,w− 1) else nil)

+(if w > 0 then LR(i).LE(i,w− 1) else nil)

JE(i,w) = EnergyOff(i).NE(i) + IntrenalJDie(i)[JDie].NE(i) + JA(i).JE(i,w+ 1)

+(if w > 0 then JG(i).JE(i,w− 1) else nil)

+(if w > 0 then JR(i).JE(i,w− 1) else nil)

LV(i,w) = EnergyOff(i).NV(i) + IntrenalLDie(i)[LDie].NV(i)

+(if w == SwitchThr then

LSwitch(i)[Switch(i)].JV(i, InitialJV)

else LG(i).LV(i,w− 1))

+(if w > 0 then LS(i).LV(i,w− 1) else nil)

JV(i,w) = EnergyOff(i).NV(i) + IntrenalJDie(i)[JDie].NV(i) + JG(i).JV(i,w+ 1)

+(if w > 0 then JS(i).JV(i,w− 1) else nil)

LER(i,w) = EnergyOff(i).NER(i) + IntrenalLDie(i)[LDie].NER(i)

+SwitchJEnergy(i).JER(i, intitialJER))

+LR(i).LER(i,w+ 1) + (if w > 0 then LJ.LER(i,w− 1) else nil)

JER(i,w) = EnergyOff(i).NER(i) + IntrenalJDie(i)[JDie].NER(i)

+(if w == ReproduceThr then

(ReproduceL(i)[Reproduce(i, 1)].JER(i, 0)

+ReproduceL(i)[Reproduce(i, 2)].JER(i, 0)

· · ·

+ReproduceL(i)[Reproduce(i, 20)].JER(i, 0))

else JR(i).JER(i,w+ 1)

+(if w > 0 then JJ.JER(i,w− 1) else nil)

Figure B.5: psPAH model Part 2 of 5

131

Model Initial State

(LV(1, IntialLV)BC
L1
LE(1, InitialLE)BC

L1
LER(1, InitialLER)BC

∅

LV(2, IntialLV)BC
L2
LE(2, InitialLE)BC

L2
LER(2, InitialLER)BC

∅

JV(3, IntialJV)BC
L3
JE(3, InitialJE)BC

L3
JER(3, InitialJER)BC

∅

JV(4, IntialJV)BC
L4
JE(4, InitialJE)BC

L4
JER(4, InitialJER)BC

∅

JV(5, IntialJV)BC
L5
JE(5, InitialJE)BC

L5
JER(5, InitialJER)BC

∅

NV(6)BC
L6
NE(6)BC

L6
NER(6)BC

∅

NV(7)BC
L7
NE(7)BC

L7
NER(7)BC

∅
· · · BC

∅

NV(20)BC
L20

NE(20)BC
L20

NER(20) BC

H

Larva(1)BC
N1
Larva(2)BC

N2
Juvenile(3)BC

N3

Juvenile(4)BC
N4
Juvenile(5)BC

N5
NotInUse(6)BC

N6

NotInUse(7)BC
N7
· · · BC

N19
NotInUse(20))

L1 = {LG(1), JG(1),LR(1), JR(1),EnergyOn(1),EnergyOff(1),SwitchJEnergy(1),

InternalLDie(1), InternalLDie(1), JEnergyOn(1)}

L2 = {LG(2), JG(2),LR(2), JR(2),EnergyOn(2),EnergyOff(2),SwitchJEnergy(2),

InternalLDie(2), InternalLDie(2), JEnergyOn(2)}

L3 = {LG(3), JG(3),LR(3), JR(3),EnergyOn(3),EnergyOff(3),SwitchJEnergy(3),

InternalLDie(3), InternalLDie(3), JEnergyOn(3)}

· · ·

L20 = {LG(20), JG(20),LR(20), JR(20),EnergyOn(20),EnergyOff(20),SwitchJEnergy(20),

InternalLDie(20), InternalLDie(20), JEnergyOn(20)}

Figure B.6: psPAH model Part 3 of 5.

132

Model Initial State continued

H = {EnergyOn(1),EnergyOff(1),LDie(1), JDie(1),SwitchJEnergy(1),Switch(1), JEnergyOn(1),

Reproduce(1, 2),Reproduce(1, 3), ...,Reproduce(1, 20),EnergyOn(2),EnergyOff(2),LDie(2), JDie(2),

SwitchJEnergy(2),Switch(2), JEnergyOn(2),Reproduce(2, 1),Reproduce(2, 3), ...,Reproduce(2, 20),

EnergyOn(3),EnergyOff(3),LDie(3), JDie(3),SwitchJEnergy(3),Switch(3), JEnergyOn(3),

Reproduce(3, 1),Reproduce(3, 2), ...,Reproduce(3, 20),EnergyOn(4),EnergyOff(4),LDie(4), JDie(4),

SwitchJEnergy(4),Switch(4), JEnergyOn(4),Reproduce(4, 1),Reproduce(4, 2), ...,Reproduce(4, 20),

EnergyOn(5),EnergyOff(5),LDie(5), JDie(5),SwitchJEnergy(5),Switch(5), JEnergyOn(5),

Reproduce(5, 1),Reproduce(5, 2), ...,Reproduce(5, 20),EnergyOn(6),EnergyOff(6),LDie(6), JDie(6),

SwitchJEnergy(6),Switch(6), JEnergyOn(6),Reproduce(6, 1),Reproduce(6, 2), ...,Reproduce(6, 20),

EnergyOn(7),EnergyOff(7),LDie(7), JDie(7),SwitchJEnergy(7),Switch(7), JEnergyOn(7),

Reproduce(7, 1),Reproduce(7, 3), ...,Reproduce(7, 20),EnergyOn(8),EnergyOff(8),LDie(8), JDie(8),

SwitchJEnergy(8),Switch(8), JEnergyOn(8),Reproduce(8, 1),Reproduce(8, 2), ...,Reproduce(8, 20),

EnergyOn(9),EnergyOff(9),LDie(9), JDie(9),SwitchJEnergy(9),Switch(9), JEnergyOn(9),

Reproduce(9, 1),Reproduce(9, 2), ...,Reproduce(9, 20),EnergyOn(10),EnergyOff(10),LDie(10), JDie(10),

SwitchJEnergy(10),Switch(10), JEnergyOn(10),Reproduce(10, 1),Reproduce(10, 2), ...,Reproduce(10, 20),

EnergyOn(11),EnergyOff(11),LDie(11), JDie(11),SwitchJEnergy(11),Switch(11), JEnergyOn(11),

Reproduce(11, 1),Reproduce(11, 2), ...,Reproduce(11, 20),EnergyOn(12),EnergyOff(12),LDie(12), JDie(12),

SwitchJEnergy(12),Switch(12), JEnergyOn(12),Reproduce(12, 1),Reproduce(12, 3), ...,Reproduce(12, 20),

EnergyOn(13),EnergyOff(13),LDie(13), JDie(13),SwitchJEnergy(13),Switch(13), JEnergyOn(13),

Reproduce(13, 1),Reproduce(13, 2), ...,Reproduce(13, 20),EnergyOn(14),EnergyOff(14),LDie(14), JDie(14),

SwitchJEnergy(14),Switch(14), JEnergyOn(14),Reproduce(14, 1),Reproduce(14, 2), ...,Reproduce(14, 20),

EnergyOn(15),EnergyOff(15),LDie(15), JDie(15),SwitchJEnergy(15),Switch(15), JEnergyOn(15),

Reproduce(15, 1),Reproduce(15, 2), ...,Reproduce(15, 20),EnergyOn(16),EnergyOff(16),LDie(17), JDie(17),

SwitchJEnergy(16),Switch(16), JEnergyOn(16),Reproduce(16, 1),Reproduce(16, 2), ...,Reproduce(16, 20),

EnergyOn(17),EnergyOff(17),LDie(18), JDie(18),SwitchJEnergy(17),Switch(17), JEnergyOn(17),

Reproduce(17, 1),Reproduce(17, 3), ...,Reproduce(17, 20),EnergyOn(18),EnergyOff(18),LDie(18), JDie(18),

SwitchJEnergy(18),Switch(18), JEnergyOn(18),Reproduce(18, 1),Reproduce(18, 2), ...,Reproduce(18, 20),

EnergyOn(19),EnergyOff(19),LDie(19), JDie(19),SwitchJEnergy(19),Switch(19), JEnergyOn(19),

Reproduce(19, 1),Reproduce(19, 2), ...,Reproduce(19, 20),EnergyOn(20),EnergyOff(20),LDie(20), JDie(20),

SwitchJEnergy(20),Switch(20), JEnergyOn(20),Reproduce(20, 1),Reproduce(20, 2), ...,Reproduce(20, 19)}

Figure B.7: psPAH model Part 4 of 5. Note there are no vertical synchronisations on Reproduce(i,j) action

where i == j.

133

Model Initial State continued

N1, ...,N19 = {Reproduce(1, 2),Reproduce(1, 3), ...,Reproduce(1, 20),

Reproduce(2, 1),Reproduce(2, 3), ...,Reproduce(2, 20),

Reproduce(3, 1),Reproduce(3, 2), ...,Reproduce(3, 20),

Reproduce(4, 1),Reproduce(4, 2), ...,Reproduce(4, 20),

Reproduce(5, 1),Reproduce(5, 2), ...,Reproduce(5, 20),

Reproduce(6, 1),Reproduce(6, 2), ...,Reproduce(6, 20),

Reproduce(7, 1),Reproduce(7, 3), ...,Reproduce(7, 20),

Reproduce(8, 1),Reproduce(8, 2), ...,Reproduce(8, 20),

Reproduce(9, 1),Reproduce(9, 2), ...,Reproduce(9, 20),

Reproduce(10, 1),Reproduce(10, 2), ...,Reproduce(10, 20),

Reproduce(11, 1),Reproduce(11, 2), ...,Reproduce(11, 20),

Reproduce(12, 1),Reproduce(12, 3), ...,Reproduce(12, 20),

Reproduce(13, 1),Reproduce(13, 2), ...,Reproduce(13, 20),

Reproduce(14, 1),Reproduce(14, 2), ...,Reproduce(14, 20),

Reproduce(15, 1),Reproduce(15, 2), ...,Reproduce(15, 20),

Reproduce(16, 1),Reproduce(16, 2), ...,Reproduce(16, 20),

Reproduce(17, 1),Reproduce(17, 3), ...,Reproduce(17, 20),

Reproduce(18, 1),Reproduce(18, 2), ...,Reproduce(18, 20),

Reproduce(19, 1),Reproduce(19, 2), ...,Reproduce(19, 20),

Reproduce(20, 1),Reproduce(20, 2), ...,Reproduce(20, 19)}

Figure B.8: psPAH model Part 5 of 5. Note there are no horizontal synchronisations on Reproduce(i,j)

action where i == j.

134

PEPA context definitions

L1[O] = Organism[O] BC
{LVOn,LSwitch,InternalDie}

(LVOff2 BC
{LEOff,LEOn,LG}

LEOff2 BC
{LEROff,LEROn,LR}

LEROff1)

L2[O] = Organism[O] BC
{LVOn,LSwitch,InternalDie}

(LVOff2 BC
{LEOff,LEOn,LG}

LEOff2 BC
{LEROff,LEROn,LR}

LEROff1)

L3[O] = Organism[O] BC
{LVOn,LSwitch,InternalDie}

(LVOff2 BC
{LEOff,LEOn,LG}

LEOff2 BC
{LEROff,LEROn,LR}

LEROff1)

L4[O] = Organism[O] BC
{LVOn,LSwitch,InternalDie}

(LVOff2 BC
{LEOff,LEOn,LG}

LEOff2 BC
{LEROff,LEROn,LR}

LEROff1)

L5[O] = Organism[O] BC
{LVOn,LSwitch,InternalDie}

(LVOff2 BC
{LEOff,LEOn,LG}

LEOff2 BC
{LEROff,LEROn,LR}

LEROff1)

L6[O] = Organism[O] BC
{LVOn,LSwitch,InternalDie}

(LVOff2 BC
{LEOff,LEOn,LG}

LEOff2 BC
{LEROff,LEROn,LR}

LEROff1)

L7[O] = Organism[O] BC
{LVOn,LSwitch,InternalDie}

(LVOff2 BC
{LEOff,LEOn,LG}

LEOff2 BC
{LEROff,LEROn,LR}

LEROff1)

L8[O] = Organism[O] BC
{LVOn,LSwitch,InternalDie}

(LVOff2 BC
{LEOff,LEOn,LG}

LEOff2 BC
{LEROff,LEROn,LR}

LEROff1)

L9[O] = Organism[O] BC
{LVOn,LSwitch,InternalDie}

(LVOff2 BC
{LEOff,LEOn,LG}

LEOff2 BC
{LEROff,LEROn,LR}

LEROff1)

L10[O] = Organism[O] BC
{LVOn,LSwitch,InternalDie}

(LVOff2 BC
{LEOff,LEOn,LG}

LEOff2 BC
{LEROff,LEROn,LR}

LEROff1)

J1[O] = Organism[O] BC
{JEROn,ReproduceL,InternalDie}

(JEROff2 BC
{JEOff,JEOn,JR}

JEOff1 BC
{JVOff,JVOn,JG}

JVOff1)

J2[O] = Organism[O] BC
{JEROn,ReproduceL,InternalDie}

(JEROff2 BC
{JEOff,JEOn,JR}

JEOff1 BC
{JVOff,JVOn,JG}

JVOff1)

J3[O] = Organism[O] BC
{JEROn,ReproduceL,InternalDie}

(JEROff2 BC
{JEOff,JEOn,JR}

JEOff1 BC
{JVOff,JVOn,JG}

JVOff1)

J4[O] = Organism[O] BC
{JEROn,ReproduceL,InternalDie}

(JEROff2 BC
{JEOff,JEOn,JR}

JEOff1 BC
{JVOff,JVOn,JG}

JVOff1)

J5[O] = Organism[O] BC
{JEROn,ReproduceL,InternalDie}

(JEROff2 BC
{JEOff,JEOn,JR}

JEOff1 BC
{JVOff,JVOn,JG}

JVOff1)

J6[O] = Organism[O] BC
{JEROn,ReproduceL,InternalDie}

(JEROff2 BC
{JEOff,JEOn,JR}

JEOff1 BC
{JVOff,JVOn,JG}

JVOff1)

J7[O] = Organism[O] BC
{JEROn,ReproduceL,InternalDie}

(JEROff2 BC
{JEOff,JEOn,JR}

JEOff1 BC
{JVOff,JVOn,JG}

JVOff1)

J8[O] = Organism[O] BC
{JEROn,ReproduceL,InternalDie}

(JEROff2 BC
{JEOff,JEOn,JR}

JEOff1 BC
{JVOff,JVOn,JG}

JVOff1)

J9[O] = Organism[O] BC
{JEROn,ReproduceL,InternalDie}

(JEROff2 BC
{JEOff,JEOn,JR}

JEOff1 BC
{JVOff,JVOn,JG}

JVOff1)

J10[O] = Organism[O] BC
{JEROn,ReproduceL,InternalDie}

(JEROff2 BC
{JEOff,JEOn,JR}

JEOff1 BC
{JVOff,JVOn,JG}

JVOff1)

RJ1[O] = Organism[O]

RJ2[O] = Organism[O]

RJ3[O] = Organism[O]

RJ4[O] = Organism[O]

RJ5[O] = Organism[O]

Initial marking of the net

(L1[Organismb],L2[Organismb],L3[_],L4[_],L5[_],L6[_],L7[_],L8[_],L9[_],L10[_],

J1[Organisme], J2[Organisme], J3[Organisme], J4[_], J5[_], J6[_], J7[_], J8[_], J9[_], J10[_],

RJ1[OrganismRandomJ],RJ2[OrganismRandomJ],

RJ3[OrganismRandomJ],RJ4[OrganismRandomJ],RJ5[OrganismRandomJ])

Figure B.9: PEPA nets model Part 1 of 6.

135

Rates

λ = 0.9 µ = 0.9 ν = 0.02

ra = 0.9 rb = 0.9 rc = 0.25 rd = 0.5 re = 0.25 rf = 0.25

rg = 0.3 rh = 0.35 ri = 0.6 rj = 0.27 rk = 0.27 rl = 0.3

rm = 0.02 rn = 0.06 ro = 0.1 r1 = 0.9 r2 = 0.9 r3 = 1

r4 = 1 r5 = 1 r6 = 1 r7 = 1 r8 = 1 r9 = 1 r10 = 1

PEPA definitions: Larva Static components

LVOff1 = (LEOff, r3).LVOff2

LVOff2 = (LVOn, τ).LVOn

LVOn = (LEOn, r5).LVLow

LVZero = (LG, τ).LVLow+ (InternalDie, rp).LVOff1

LVLow = (LG, τ).LVMedium+ (LS, rc).LVZero+ (InternalDie, rp).LVOff1

LVMedium = (LSwitch, τ).LVOff1 + (LS, rc).LVLow+ (InternalDie, rp).LVOff1

LEOff1 = (LEROff, r4).LEOff2

LEOff2 = (LEOn, τ).LEOn

LEOn = (LEROn, r6).LELow

LEZero = (LA, rd).LELow+ (LEOff, τ).LEOff1 + (InternalDie, rp).LEOff1

LELow = (LA, rd).LEMedium+ (LG, re).LEZero+ (LR, rf).LEZero+ (LEOff, τ).LEOff1 + (InternalDie, rp).LEOff1

LEMedium = (LA, rd).LEHigh+ (LG, re).LELow+ (LR, rf).LELow+ (LEOff, τ).LEOff1 + (InternalDie, rp).LEOff1

LEHigh = (LG, re).LEMedium+ (LR, rf).LEMedium+ (LEOff, τ).LEOff1 + (InternalDie, rp).LEOff1

LEROff1 = (LEROn, τ).LERZero

LERZero = (LR, τ).LERLow+ (LEROff, τ).LEROff1 + (InternalDie, rp).LEROff1

LERLow = (LR, τ).LERMedium+ (LJ, rg).LERZero+ (LEROff, τ).LEROff1 + (InternalDie, rp).LEROff1

LERMedium = (LR, τ).LERHigh+ (LJ, rg).LERLow+ (LEROff, τ).LEROff1 + (InternalDie, rp).LEROff1

LERHigh = (LJ, rg).LERMedium+ (LEROff, τ).LEROff1 + (InternalDie, rp).LEROff1

Figure B.10: PEPA nets model Part 2 of 6.

136

PEPA definitions: Juvenile Static components

JEROff1 = (JEROff, r7).JEROff2

JEROff2 = (JEROn, τ).JEROn

JEROn = (JEOn, r8).JERLow

JERZero = (JR, τ).JERLow+ (InternalDie, rp).JEROff1

JERLow = (JR, τ).JERMedium+ (JJ, rh).JERZero+ (InternalDie, rp).JEROff1

JERMedium = (JR, τ).JERHigh+ (JJ, rh).JERLow+ (InternalDie, rp).JEROff1

JERHigh = (Reproduce, τ).JEROff1 + (JJ, rh).JERMedium+ (InternalDie, rp).JEROff1

JEOff1 = (JVOff, r9).JEOff2

JEOff2 = (JEOn, τ).JEOn

JEOn = (JVOn, r10).JEMedium

JEZero = (JA, ri).JELow+ (JEOff, τ).JEOff1 + (InternalDie, rp).JEOff1

JELow = (JA, ri).JEMedium+ (JG, rj).JEZero+ (JR, rk).JEZero+ (JEOff, τ).JEOff1 + (InternalDie, rp).JEOff1

JEMedium = (JA, ri).JEHigh+ (JG, rj).JELow+ (JR, rk).JELow+ (JEOff, τ).JEOff1 + (InternalDie, rp).JEOff1

JEHigh = (JG, ri).JEMedium+ (JR, rj).JEMedium+ (JEOff, τ).JEOff1 + (InternalDie, rp).JEOff1

JVOff1 = (JVOn, τ).JVMedium

JVZero = (JG, τ).JVLow+ (JVOff, τ).JVOff1 + (InternalDie, rp).JVOff1

JVLow = (JG, τ).JVMedium+ (JS, rl).JVZero+ (JVOff, τ).JVOff1 + (InternalDie, rp).JVOff1

JVMedium = (JG, τ).JVHigh+ (JS, rl).JVLow+ (JVOff, τ).JVOff1 + (InternalDie, rp).JVOff1

JVHigh = (JS, rl).JVMedium+ (JVOff, τ).JVOff1 + (InternalDie, rp).JVOff1

PEPA definitions: Dynamic component

Organisma = (LVOn, r1).Organismb + (DieL, rm).OrganismDead + (InternalDie, τ).OrganismDead

Organismb = (LSwitch, ra).Organismc + (DieL, rm).OrganismDead + (InternalDie, τ).OrganismDead

Organismc = (Switch, λ).Organismd + (DieL, rm).OrganismDead + (InternalDie, τ).OrganismDead

Organismd = (JEROn, r2).Organisme + (DieJ, rn).OrganismDead + (InternalDie, τ).OrganismDead

Organisme = (ReproduceL, rb).Organismf + (DieJ, rn).OrganismDead + (InternalDie, τ).OrganismDead

Organismf = (Reproduce,µ).Organisma + (DieJ, rn).OrganismDead + (InternalDie, τ).OrganismDead

OrganismDead = (Dead, ro).OrganismDead

OrganismRandomJ = (AddJ,ν).Organismd

Figure B.11: PEPA nets model Part 3 of 6.

137

Arcs of the Net

L1 − (Switch, λ) > − J1 L2 − (Switch, λ) > − J1 L3 − (Switch, λ) > − J1 L4 − (Switch, λ) > − J1

L5 − (Switch, λ) > − J1 L6 − (Switch, λ) > − J1 L7 − (Switch, λ) > − J1 L8 − (Switch, λ) > − J1

L9 − (Switch, λ) > − J1 L10 − (Switch, λ) > − J1 L1 − (Switch, λ) > − J2 L2 − (Switch, λ) > − J2

L3 − (Switch, λ) > − J2 L4 − (Switch, λ) > − J2 L5 − (Switch, λ) > − J2 L6 − (Switch, λ) > − J2

L7 − (Switch, λ) > − J2 L8 − (Switch, λ) > − J2 L9 − (Switch, λ) > − J2 L10 − (Switch, λ) > − J2

L1 − (Switch, λ) > − J3 L2 − (Switch, λ) > − J3 L3 − (Switch, λ) > − J3 L4 − (Switch, λ) > − J3

L5 − (Switch, λ) > − J3 L6 − (Switch, λ) > − J3 L7 − (Switch, λ) > − J3 L8 − (Switch, λ) > − J3

L9 − (Switch, λ) > − J3 L10 − (Switch, λ) > − J3 L1 − (Switch, λ) > − J4 L2 − (Switch, λ) > − J4

L3 − (Switch, λ) > − J4 L4 − (Switch, λ) > − J4 L5 − (Switch, λ) > − J4 L6 − (Switch, λ) > − J4

L7 − (Switch, λ) > − J4 L8 − (Switch, λ) > − J4 L9 − (Switch, λ) > − J4 L10 − (Switch, λ) > − J4

L1 − (Switch, λ) > − J5 L2 − (Switch, λ) > − J5 L3 − (Switch, λ) > − J5 L4 − (Switch, λ) > − J5

L5 − (Switch, λ) > − J5 L6 − (Switch, λ) > − J5 L7 − (Switch, λ) > − J5 L8 − (Switch, λ) > − J5

L9 − (Switch, λ) > − J5 L10 − (Switch, λ) > − J5 L1 − (Switch, λ) > − J6 L2 − (Switch, λ) > − J6

L3 − (Switch, λ) > − J6 L4 − (Switch, λ) > − J6 L5 − (Switch, λ) > − J6 L6 − (Switch, λ) > − J6

L7 − (Switch, λ) > − J6 L8 − (Switch, λ) > − J6 L9 − (Switch, λ) > − J6 L10 − (Switch, λ) > − J6

L1 − (Switch, λ) > − J7 L2 − (Switch, λ) > − J7 L3 − (Switch, λ) > − J7 L4 − (Switch, λ) > − J7

L5 − (Switch, λ) > − J7 L6 − (Switch, λ) > − J7 L7 − (Switch, λ) > − J7 L8 − (Switch, λ) > − J7

L9 − (Switch, λ) > − J7 L10 − (Switch, λ) > − J7 L1 − (Switch, λ) > − J8 L2 − (Switch, λ) > − J8

L3 − (Switch, λ) > − J8 L4 − (Switch, λ) > − J8 L5 − (Switch, λ) > − J8 L6 − (Switch, λ) > − J8

L7 − (Switch, λ) > − J8 L8 − (Switch, λ) > − J8 L9 − (Switch, λ) > − J8 L10 − (Switch, λ) > − J8

L1 − (Switch, λ) > − J9 L2 − (Switch, λ) > − J9 L3 − (Switch, λ) > − J9 L4 − (Switch, λ) > − J9

L5 − (Switch, λ) > − J9 L6 − (Switch, λ) > − J9 L7 − (Switch, λ) > − J9 L8 − (Switch, λ) > − J9

L9 − (Switch, λ) > − J9 L10 − (Switch, λ) > − J9 L1 − (Switch, λ) > − J10 L2 − (Switch, λ) > − J10

L3 − (Switch, λ) > − J10 L4 − (Switch, λ) > − J10 L5 − (Switch, λ) > − J10 L6 − (Switch, λ) > − J10

L7 − (Switch, λ) > − J10 L8 − (Switch, λ) > − J10 L9 − (Switch, λ) > − J10 L10 − (Switch, λ) > − J10

Figure B.12: PEPA nets model Part 4 of 6.

138

Arcs of the Net continued

J1 − (Reproduce,µ) > − L1 J2 − (Reproduce,µ) > − L1 J3 − (Reproduce,µ) > − L1

J4 − (Reproduce,µ) > − L1 J5 − (Reproduce,µ) > − L1 J6 − (Reproduce,µ) > − L1

J7 − (Reproduce,µ) > − L1 J8 − (Reproduce,µ) > − L1 J9 − (Reproduce,µ) > − L1

J10 − (Reproduce,µ) > − L1 J1 − (Reproduce,µ) > − L2 J2 − (Reproduce,µ) > − L2

J3 − (Reproduce,µ) > − L2 J4 − (Reproduce,µ) > − L2 J5 − (Reproduce,µ) > − L2

J6 − (Reproduce,µ) > − L2 J7 − (Reproduce,µ) > − L2 J8 − (Reproduce,µ) > − L2

J9 − (Reproduce,µ) > − L2 J10 − (Reproduce,µ) > − L2 J1 − (Reproduce,µ) > − L3

J2 − (Reproduce,µ) > − L3 J3 − (Reproduce,µ) > − L3 J4 − (Reproduce,µ) > − L3

J5 − (Reproduce,µ) > − L3 J6 − (Reproduce,µ) > − L3 J7 − (Reproduce,µ) > − L3

J8 − (Reproduce,µ) > − L3 J9 − (Reproduce,µ) > − L3 J10 − (Reproduce,µ) > − L3

J1 − (Reproduce,µ) > − L4 J2 − (Reproduce,µ) > − L4 J3 − (Reproduce,µ) > − L4

J4 − (Reproduce,µ) > − L4 J5 − (Reproduce,µ) > − L4 J6 − (Reproduce,µ) > − L4

J7 − (Reproduce,µ) > − L4 J8 − (Reproduce,µ) > − L4 J9 − (Reproduce,µ) > − L4

J10 − (Reproduce,µ) > − L4 J1 − (Reproduce,µ) > − L5 J2 − (Reproduce,µ) > − L5

J3 − (Reproduce,µ) > − L5 J4 − (Reproduce,µ) > − L5 J5 − (Reproduce,µ) > − L5

J6 − (Reproduce,µ) > − L5 J7 − (Reproduce,µ) > − L5 J8 − (Reproduce,µ) > − L5

J9 − (Reproduce,µ) > − L5 J10 − (Reproduce,µ) > − L5 J1 − (Reproduce,µ) > − L6

J2 − (Reproduce,µ) > − L6 J3 − (Reproduce,µ) > − L6 J4 − (Reproduce,µ) > − L6

J5 − (Reproduce,µ) > − L6 J6 − (Reproduce,µ) > − L6 J7 − (Reproduce,µ) > − L6

J8 − (Reproduce,µ) > − L6 J9 − (Reproduce,µ) > − L6 J10 − (Reproduce,µ) > − L6

J1 − (Reproduce,µ) > − L7 J2 − (Reproduce,µ) > − L7 J3 − (Reproduce,µ) > − L7

J4 − (Reproduce,µ) > − L7 J5 − (Reproduce,µ) > − L7 J6 − (Reproduce,µ) > − L7

J7 − (Reproduce,µ) > − L7 J8 − (Reproduce,µ) > − L7 J9 − (Reproduce,µ) > − L7

J10 − (Reproduce,µ) > − L7 J1 − (Reproduce,µ) > − L8 J2 − (Reproduce,µ) > − L8

J3 − (Reproduce,µ) > − L8 J4 − (Reproduce,µ) > − L8 J5 − (Reproduce,µ) > − L8

J6 − (Reproduce,µ) > − L8 J7 − (Reproduce,µ) > − L8 J8 − (Reproduce,µ) > − L8

J9 − (Reproduce,µ) > − L8 J10 − (Reproduce,µ) > − L8 J1 − (Reproduce,µ) > − L9

J2 − (Reproduce,µ) > − L9 J3 − (Reproduce,µ) > − L9 J4 − (Reproduce,µ) > − L9

J5 − (Reproduce,µ) > − L9 J6 − (Reproduce,µ) > − L9 J7 − (Reproduce,µ) > − L9

J8 − (Reproduce,µ) > − L9 J9 − (Reproduce,µ) > − L9 J10 − (Reproduce,µ) > − L9

J1 − (Reproduce,µ) > − L10 J2 − (Reproduce,µ) > − L10 J3 − (Reproduce,µ) > − L10

J4 − (Reproduce,µ) > − L10 J5 − (Reproduce,µ) > − L10 J6 − (Reproduce,µ) > − L10

J7 − (Reproduce,µ) > − L10 J8 − (Reproduce,µ) > − L10 J9 − (Reproduce,µ) > − L10

J10 − (Reproduce,µ) > − L10

Figure B.13: PEPA nets model Part 5 of 6.

139

Arcs of the Net continued

RJ1 − (AddJ,ν) > − J1 RJ2 − (AddJ,ν) > − J1 RJ3 − (AddJ,ν) > − J1 RJ4 − (AddJ,ν) > − J1

RJ5 − (AddJ,ν) > − J1 RJ1 − (AddJ,ν) > − J2 RJ2 − (AddJ,ν) > − J2 RJ3 − (AddJ,ν) > − J2

RJ4 − (AddJ,ν) > − J2 RJ5 − (AddJ,ν) > − J2 RJ1 − (AddJ,ν) > − J3 RJ2 − (AddJ,ν) > − J3

RJ3 − (AddJ,ν) > − J3 RJ4 − (AddJ,ν) > − J3 RJ5 − (AddJ,ν) > − J3 RJ1 − (AddJ,ν) > − J4

RJ2 − (AddJ,ν) > − J4 RJ3 − (AddJ,ν) > − J4 RJ4 − (AddJ,ν) > − J4 RJ5 − (AddJ,ν) > − J4

RJ1 − (AddJ,ν) > − J5 RJ2 − (AddJ,ν) > − J5 RJ3 − (AddJ,ν) > − J5 RJ4 − (AddJ,ν) > − J5

RJ5 − (AddJ,ν) > − J5 RJ1 − (AddJ,ν) > − J6 RJ2 − (AddJ,ν) > − J6 RJ3 − (AddJ,ν) > − J6

RJ4 − (AddJ,ν) > − J6 RJ5 − (AddJ,ν) > − J6 RJ1 − (AddJ,ν) > − J7 RJ2 − (AddJ,ν) > − J7

RJ3 − (AddJ,ν) > − J7 RJ4 − (AddJ,ν) > − J7 RJ5 − (AddJ,ν) > − J7 RJ1 − (AddJ,ν) > − J8

RJ2 − (AddJ,ν) > − J8 RJ3 − (AddJ,ν) > − J8 RJ4 − (AddJ,ν) > − J8 RJ5 − (AddJ,ν) > − J8

RJ1 − (AddJ,ν) > − J9 RJ2 − (AddJ,ν) > − J9 RJ3 − (AddJ,ν) > − J9 RJ4 − (AddJ,ν) > − J9

RJ5 − (AddJ,ν) > − J9 RJ1 − (AddJ,ν) > − J10 RJ2 − (AddJ,ν) > − J10 RJ3 − (AddJ,ν) > − J10

RJ4 − (AddJ,ν) > − J10 RJ5 − (AddJ,ν) > − J10

Figure B.14: PEPA nets model Part 6 of 6.

140

B I B L I O G R A P H Y

[1] Primary Industies and Resources South Australia, Pacific oyster aquaculture in South

Australia, 1986.

[2] Bio-PEPA web page : http://homepages.inf.ed.ac.uk/jeh/Bio-PEPA/biopepa.html, 2012.

[3] ERSEM (the European Regional Seas Ecosystem Model) page :

http://www.meece.eu/library/ersem.html, 2012.

[4] SBML Software Matrix web page: http://sbml.org/SBML_Software_Guide/SBML_Software_Matrix,

2012.

[5] SBML web page : http://sbml.org/Main_Page, 2012.

[6] Systems biology software infrastructure web page: http://www.sbsi.ed.ac.uk/, 2012.

[7] Agence France-Presse. Pacific oyster farmers see global warming in poor harvest, 2010.

[8] M. Ajmone Marsan, A. Bobbio, and S. Donatelli. Petri nets in performance analysis: An

introduction. Lectures on Petri Nets I: Basic Models, pages 211–256, 1998.

[9] O. Akman, M. Guerriero, L. Loewe, and C. Troein. Complementary approaches to

understanding the plant circadian clock. Computing, pages 1–19, 2010.

[10] J.I. Allen and E.A. Fulton. Top-down, bottom-up or middle-out? Avoiding extraneous

detail and over-generality in marine ecosystem models. Progress in Oceanography, 84(1-

2):129–133, January 2010.

[11] M. Avgeri and S. Gilmore. The Bio-PEPA Eclipse Plug-in User Manual, 2012.

[12] J.C.M. Baeten. A brief history of process algebra. Theoretical Computer Science, 335(2-

3):131–146, 2005.

[13] J.W. Baretta, W. Ebenhöh, and P. Ruardij. The European regional seas ecosystem model,

a complex marine ecosystem model. Netherlands Journal of Sea Research, 33(3-4):233–246,

July 1995.

[14] P. Barros, P. Sobral, P. Range, L. Chícharo, and D. Matias. Effects of sea-water acidifica-

tion on fertilization and larval development of the oyster Crassostrea gigas. Journal of

Experimental Marine Biology and Ecology, 440:200–206, 2013.

[15] E. Bartocci and P. Lió. Computational Modeling, Formal Analysis, and Tools for Systems

Biology. PLoS Computational Biology, 12(1):1–22, 2016.

141

[16] S. Benkirane, R. Norman, E. Scott, and C. Shankland. Measles Epidemics and PEPA :

an exploration of historic disease dynamics using process algebra. In 18th International

Symposium on Formal Methods, 2012.

[17] J.C. Blackford. A structure and methodology for marine ecosystem modelling. Netherlands

Journal of Sea Research, 33:247–260, 1995.

[18] M. Boots and A. Sasaki. ’Small worlds’ and the evolution of virulence: infection occurs

locally and at a distance. Proceedings of the Royal Society B-Biological Sciences, 266(1432):1933–

1938, 1999.

[19] T.A. Branch and B.M. DeJoseph. Impacts of ocean acidification on marine seafood. Trends

in Ecology and Evolution, pages 1–9, 2012.

[20] R.V. Carvalho, J. Kleijn, and F.J. Verbeek. A multi-scale extensive Petri net model of the

bacterial macrophage interaction. BioPPN, 1159, 2014.

[21] F. Ciocchetta and J. Hillston. Bio-PEPA: a framework for the modelling and analysis of

biological systems. Theoretical Computer Science, 410:3065–3084, 2009.

[22] J. O. Dada and P. Mendes. Multi-scale modelling and simulation in systems biology.

Integrative biology : quantitative biosciences from nano to macro, 3(2):86–96, 2011.

[23] E. De Maria, J. Despeyroux, and A. Felty. A Logical Framework for Systems Biology.

Formal Methods in Macro-Biology, 8738:136–155, 2014.

[24] A. Degasperi. Multi-scale modelling of biological systems in process algebra with multi-way

synchronisation. PhD thesis, University of Glasgow, 2011.

[25] A. Degasperi and M. Calder. A process algebra framework for multi-scale modelling of

biological systems. Theoretical Computer Science, 488:15–45, June 2013.

[26] S. Doney, V. Fabry, R. Feely, and J. Kleypas. Ocean Acidification: The Other CO 2 Problem.

Annual Review of Marine Science, 1(1):169–192, January 2009.

[27] A. Duguid, S. Gilmore, M. Smith, and M. Tribastone. The PEPA Eclipse Plug-in user

manual, 2010.

[28] R. Fehling. A concept of hierarchical Petri nets with building blocks. Advances in Petri

Nets, 674:148–168, 1993.

[29] F. Gazeau, C. Quiblier, J. M. Jansen, J. P. Gattuso, J. J. Middelburg, and C. H. R. Heip.

Impact of elevated CO2 on shellfish calcification. Geophysical Research Letters, 34(7):1–5,

2007.

[30] S. Gilmore, J. Hillston, L. Kloul, and M. Ribaudo. PEPA nets: a structured performance

modelling formalism. Performance Evaluation, pages 111–130, 2003.

142

[31] S. Glasstone, K. J. Laidler, and H. Eyring. The Theory of Rate Processes. McGraw-Hill,

London, 1941.

[32] E. Gosling. Bivalve Molluscs: Biology, Ecology and Culture. Wiley-Blackwell, 2003.

[33] M. L. L. Guerriero and J. K. Heath. Computational modeling of biological pathways by

executable biology. Methods in enzymology, 487:217–251, 2011.

[34] M. Heiner, M. Herajy, F. Liu, C. Rohr, and M. Schwarick. Snoopy - A Unifying Petri Net

Tool. In Petri Nets 2012, volume 7347, pages 398–407. Springer, 2012.

[35] J. Hillston. A Compositional Approach to Performance Modelling. Cambridge University

Press, 1996.

[36] J. Hillston. Tuning Systems: From Composition to Performance. The Computer Journal,

48(4):385–400, May 2005.

[37] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[38] isee systems. STELLA web page: http://www.iseesystems.com/softwares/Education/StellaSoftware.aspx,

2016.

[39] T. C. Johns, R. E. Carnell, J. F. Crossley, J. M. Gregory, J. F. B. Mitchell, C. A. Senior, S. F. B.

Tett, R. A. Wood, and Low. The second Hadley Centre coupled ocean-atmosphere GCM:

Model description, spinup and validation. Climate Dynamics, 13(2):103–134, 1997.

[40] S.A.L.M. Kooijman. Dynamic Energy Budget theory for metabolic organisation. Cambridge

University Press, 3rd edition, 2010.

[41] S.A.L.M. Kooijman. Bibliography on Dynamic Energy Budget theory, 2012.

[42] J. R. Levine, T. Mason, and D. Brown. lex & yacc. O’Reilly, 2nd edition, 1992.

[43] R. Lintott, S. Mcmahon, K. Prise, C. Addie-lagorio, and C. Shankland. Using Process

Algebra to Model Radiation Induced Bystander Effects. In Proceedings of the 12th Conference

on Computational Methods in Systems Biology, pages 196–210, 2014.

[44] D. Machado, R. S. Costa, M. Rocha, E. C. Ferreira, B. Tidor, and I. Rocha. Modeling

formalisms in Systems Biology. AMB Express, 1(1):45, 2011.

[45] D. Marco, D. Cairns, and C. Shankland. Optimisation of process algebra models us-

ing evolutionary computation. In Proceedings of 2011 IEEE Congress on Evolutionary

Computation, pages 1296–1301. IEEE, 2011.

[46] D. Marco, E. Scott, D. Cairns, A. Graham, J. Allen, S. Mahajan, and C. Shankland.

Investigating co-infection dynamics through evolution of Bio-PEPA model parameters: a

combined process algebra and evolutionary computing approach. In Proceedings of the 10th

143

Conference on Computational Methods in Systems Biology, pages 227–246. Springer-Verlag,

2012.

[47] B. T. Martin, E. I. Zimmer, V. Grimm, and T. Jager. Dynamic Energy Budget theory meets

individual-based modelling: a generic and accessible implementation. Methods in Ecology

and Evolution, (3):445–449, 2012.

[48] C. McCaig, R. Norman, and C. Shankland. From individuals to populations: A symbolic

process algebra approach to epidemiology. Mathematics in Computer Science, 2(3):535–556,

2009.

[49] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[50] R. Milner. Communicating and Mobile Systems: the π-calculus,. 1999.

[51] L. Miossec, R.M. Le Deuff, and P. Goulletquer. Alien species alert: Crassostrea gigas

(Pacific oyster). Technical Report 299, ICES Cooperative Research, 2009.

[52] J. Nicol and J. Coulter. Radiation Dose Enhancement: The development and application of radio

consisting gold nanoparticles. PhD thesis, Queen’s University Belfast, 2016.

[53] D. Noble. The Music of Life: Biology Beyond Genes. Oxford University Press, 2006.

[54] N. H. Packard and S. Wolfram. Two-dimensional cellular automata. Journal of Statistical

Physics, 38(5-6):901–946, 1985.

[55] G. Paun and F. J. Romero-Campero. Membrane Computing as a Modeling Framework .

Cellular Systems Case Studies. Formal Methods for Computational Systems Biology, 5016:168–

214, 2008.

[56] G. Paun and G Rozenberg. A guide to membrane computing. Theoretical Computer Science,

287(1):73–100, 2002.

[57] C.A. Petri and W. Reisig. Petri net. Scholarpedia, 2008.

[58] A. Pnueli. The Temporal Logic of Programs. The 18th IEEE Symposium on Foundation of

Computer Science, pages 46–57, 1977.

[59] S. Pouvreau, Y. Bourles, S. Lefebvre, A. Gangnery, and M. Alunno-Bruscia. Application

of a dynamic energy budget model to the Pacific oyster, Crassostrea gigas, reared under

various environmental conditions. Journal of Sea Research, 56(2):156–167, August 2006.

[60] G. G Powathil, D. J. Adamson, and M. A. Chaplain. Towards predicting the response of

a solid tumour to chemotherapy and radiotherapy treatments: clinical insights from a

computational model. PLOS Computational Biology, 9(7), 2013.

144

[61] G. G. Powathil, K. E. Gordon, L. A. Hill, and M. A. J. Chaplain. Modelling the effects of

cell-cycle heterogeneity on the response of a solid tumour to chemotherapy : Biological

insights from a hybrid multiscale cellular automaton model. Journal of Theoretical Biology,

308:1–19, 2012.

[62] C. Priami. Algorithmic systems biology. Communications of the ACM, 2009.

[63] Z. Qi, M. Li, C. Fu, D. Shi, and J. You. Membrane Calculus: A formal method for Grid

transactions. Grid and Cooperative Computing, 3251:73–80, 2004.

[64] S. F. Railsback and V. Grimm. Agent-Based and Individual-Based Modeling A Practical

Introduction. Princeton University Press, 2012.

[65] A. Regev, W. Silverman, and E. Shapiro. Representation and Simulation of Biochemical

Processes Using the pi- Calculus Process Algebra. Pacific Symposium on Biocomputing,

6:459–470, 2001.

[66] J. Ren and D. Schiel. A dynamic energy budget model: parameterisation and application

to the Pacific oyster Crassostrea gigas in New Zealand waters. Journal of Experimental

Marine Biology and Ecology, 361(1):42–48, June 2008.

[67] B. Rico-Villa, I. Bernard, R. Robert, and S. Pouvreau. A Dynamic Energy Budget (DEB)

growth model for Pacific oyster larvae, Crassostrea gigas. Aquaculture, 305(1-4):84–94,

2010.

[68] F. J. Romero-Campero, J. Twycross, H. Cao, J. Blakes, and N. Krasnogor. A Multiscale

Modelling Framework Based On P Systems. Membrane Computing, 5391:63–77, 2009.

[69] E. Scott. PEPA or Bio-PEPA : A Comparison. Dissertation, University of Stirling, 2011.

[70] E. Scott. PAL Parser source code: https://github.com/MissErinScott/PAL-Parser, 2016.

[71] E. Scott, A. Hoyle, and C. Shankland. PEPA’d Oysters: Converting Dynamic Energy

Budget Models to Bio-PEPA, Illustrated by a Pacific Oyster Case Study. Electronic Notes

in Theoretical Computer Science, 296:211–228, 2013.

[72] E. Timmins-Schiffman, M. J. O’Donnell, C. S. Friedman, and S. B. Roberts. Elevated pCO2

causes developmental delay in early larval Pacific oysters, Crassostrea gigas. Marine

Biology, 160(8):1973–1982, oct 2012.

[73] J. J. Tyson and B. Novak. Regulation of the eukaryotic cell cycle: molecular antagonism,

hysteresis, and irreversible transitions. Journal of theoretical biology, 210(2):249–263, 2001.

[74] W. M. P. van der Aalst, C. Stahl, and M. Westergaard. Strategies for Modeling Com-

plex Processes Using Colored Petri Nets. Transactions on Petri Nets and Other Models of

Concurrency VII, 7480:6–55, 2013.

145

[75] D. C. Walker and J. Southgate. The virtual cell–a candidate co-ordinator for ’middle-out’

modelling of biological systems. Briefings in bioinformatics, 10(4):450–61, July 2009.

[76] U. Wilensky. NetLogo User Manual, 2012.

[77] T. Zhang, P. Brazhnik, and J. J. Tyson. Exploring mechanisms of the DNA-damage

response: p53 pulses and their possible relevance to apoptosis. Cell Cycle, 6(1):85–94,

2007.

146

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction and literature review
	1.1 Introduction
	1.2 Background
	1.3 Mathematical Modelling
	1.3.1 Ordinary Differential Equations
	1.3.2 Dynamic Energy Budget Modelling
	1.3.3 European Regional Seas Ecosystem Model

	1.4 Computational Modelling
	1.4.1 Individual-Based Modelling
	1.4.2 Petri Nets
	1.4.3 Process Algebra
	1.4.4 Other Modelling Formalisms

	1.5 Background case study: the Pacific oyster
	1.5.1 Juvenile and Adult life stage experiments
	1.5.2 Larval life stage experiments

	1.6 Thesis Outline

	2 Converting Dynamic Energy Budget Models to Bio-PEPA, illustrated by a Pacific oyster case study
	2.1 Translating the Pacific oyster DEB model to Bio-PEPA
	2.1.1 Conversion of the state variables to agents
	2.1.2 Adding the forcing variables into the model
	2.1.3 Changing the units of specific parameters
	2.1.4 Addition of dry flesh weight equation for comparison

	2.2 Generic Translation of DEB models to Bio-PEPA
	2.3 Model Analysis
	2.3.1 Comparison analysis results
	2.3.2 Simulation distributions analysis of the Bio-PEPA model
	2.3.3 Parameter Estimation

	2.4 Summary

	3 Larva and Integrated life stage Bio-PEPA Models
	3.1 Larva Model
	3.1.1 Translating the Larva Pacific oyster DEB model to Bio-PEPA
	3.1.2 Analysis

	3.2 Integrated life stage model
	3.2.1 Linking the life stages
	3.2.2 Analysis

	3.3 Summary
	3.4 Discussion

	4 PAL: Process Algebra with Layers
	4.1 Layers of the language: Population and Organism
	4.1.1 Population
	4.1.2 Organism

	4.2 Process Algebra with Layers
	4.2.1 The Syntax of PAL
	4.2.2 The Semantics of PAL

	4.3 Simple model example using PAL
	4.3.1 Model configuration
	4.3.2 Transitions
	4.3.3 Underlying CTMC of simple model

	4.4 Comparison of PAL with other Process Algebras
	4.4.1 psPAH comparison with PAL
	4.4.2 PEPA Nets comparison with PAL

	4.5 Summary

	5 Application of PAL to the Pacific oyster life stage case study
	5.1 Introduction to case study
	5.2 PAL model
	5.3 Model Analysis
	5.3.1 Larval Length
	5.3.2 Population growth

	5.4 Summary

	6 Application of PAL to cell cycle and DNA damage case study
	6.1 Introduction to case study
	6.2 PAL model
	6.3 Model Analysis
	6.3.1 Simulation Distributions Analysis of Average Length of a cell cycle
	6.3.2 Time Series Analysis of cell Population Growth
	6.3.3 Comparison with wet laboratory data survival fraction results

	6.4 Summary

	7 Conclusion
	7.1 Thesis summary
	7.1.1 Characteristics of PAL

	7.2 Future work
	7.3 Summary

	A Appendix A
	B Appendix B

