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Abstract – This paper presents a new search method, called Evolutionary Ruin and Stochastic Recreate, 

which tries to learn and adapt to the changing environments during the search process. It improves the 

performance of the original Ruin and Recreate principle by embedding an additional phase of Evolutionary 

Ruin to mimic the evolution within single solutions. This method executes a cycle of Solution 

Decomposition, Evolutionary Ruin, Stochastic Recreate and Solution Acceptance until a certain stopping 

condition is met. The Solution Decomposition phase first uses some problem-specific knowledge to 

decompose a solution into its components and assign a score to each. The Evolutionary Ruin phase then 

employs two evolutionary operators (namely Selection and Mutation) to destroy a certain fraction of the 

entire solution. After the above phases, an input complete solution becomes partial and thus the resulting 

partial solution needs to be repaired. The repair is done by the Stochastic Recreate phase which reintroduces 

the removed items in a specific way and asks the underlying improvement heuristic whether this move 

should be accepted or not. Last, the Solution Acceptance phase selects a specific strategy to determine the 

probability of accepting the newly generated solution. Hence, optimisation is achieved by an iterative 

process of component evaluation, solution disruption and stochastic constructive repair.  The well-known 

exam timetabling problems are used to test the availability of the approach in solving real-world hard 

problems. Furthermore, this paper presents a formal framework and implements a Markov chain analysis on 

some theoretical properties of the approach.  
 

Keywords – Metaheuristics, Evolutionary algorithm, Stochastic process, Combinatorial optimisation, Exam 

timetabling. 

 

1  Introduction 

 

In most real world combinatorial problems, the solutions comprise components which are intricately woven 

together. Each solution component may be a strong candidate in its own right, but it also has to fit well with 

other components in the current environment or setting. To deal with these components, Schrimpf et al. 

(2000) proposed a technique called Ruin and Recreate (R&R) principal for some classical problems 

(including the traveling salesman problem, vehicle routing and network optimization), and claimed it could 

be a general approach for various combinatorial optimisation problems. Since then, R&R has been 

successfully applied to many different types of discrete optimisation problems, such as quadratic assignment 

(Misevicius 2003a and 2003b), paratransit scheduling (Häll and Peterson 2013), the permutation flow shop 

problem and one-dimensional bin packing (Burke et al. 2009), etc. 

 

The R&R method uses the concepts of simulated annealing (Kirkpatrick 1983) or threshold accepting 

(Dueck and Scheuer 1990) with large moves instead of smaller ones. The method also bears some 



 

 

resemblance to variable neighbourhood search (Hansen and Mladenović 1999) which is to obtain better 

optimization results by a reconstruction of an existing solution and a following improvement procedure. 

High quality solutions are obtained by applying this type of treatment frequently. Hence, R&R method can 

be thought of as an iterative process of reconstructions and improvements applied to solutions. The 

advantage of the method over the well-known random multi-start method is that, instead of generating new 

solutions from scratch, a better idea is to reconstruct a portion of the current solution to make use of the 

information gained in the previous search. 

 

For simple structured problems such as the traveling salesman problem, the need of using large moves is not 

obvious, because very small moves are usually sufficient for the algorithms to generate near optimal 

solutions. However, for complex problems such as exam timetabling problems, difficulties arise if we still 

always use such small moves, because complex problems are often seen as discontinuous: if taking one move 

from a current solution to its neighbouring solution, the qualities of the resulting solutions might be 

significantly different due to the ruggedness of the landscapes in these problem areas. 

 

Solutions of complex problems usually come with a number of soft and/or hard constraints, which make it 

difficult to get just feasible solutions. Neighboring solutions of complex schedules, for instance, are mostly 

infeasible solutions. Walking in such a complex fitness landscape from one feasible solution to another 

neighboured feasible solution would be hard. The common method of avoiding the infeasibility problem for 

many classical algorithms in the literature is to impose artificial penalty functions, but this method would 

typically make the algorithms get stuck in solutions which are slightly infeasible but are not allowed at all. 

 

Naturally, one will think in such as paradigm: Ruin and Recreate. We ruin a large portion of the solution and 

try to rebuild the solution as best as we can, with the hope that the new solution is improved. The R&R 

approach is based on this idea whose advantage could be explained as followed: if destroying a quite large 

part of the previous solution, we have more freedom to generate a new solution, and thus it is more likely to 

find again another feasible solution in this larger solution space.  Hence, it is reasonable to believe that 

problems with many side conditions, or with complex objective functions, are more tractable using special-

designed large moves.  

 

Based on the R&R principal, in this paper we embed some evolutionary features into the searching process 

and present a more advanced technique called Evolutionary Ruin and Stochastic Recreate (ER&SR). Its 

general idea is to break a solution down into its components and assign a score to each component by an 

evaluation function which works under dynamic environments. The scores (i.e. fitness values) determine the 

chances for the components to survive in the current solution. 

 

The new technique applies two operators of Selection and Mutation as the ruining strategies, trying to mimic 

the natural evolution process happening on single individuals (or solutions). Each component in the solution 

has to continuously demonstrate its worthiness to remain in the current solution (or environment). Hence in 

each iteration, some components would be treated not worth keeping. The evolutionary strategy adopted may 

also remove some worthy components with fixed or variable low probabilities. The removed component is 

then reintroduced by using a specific algorithm. Of key importance is that the recruitment of a new 

component is determined by a dynamic evaluation function, which computes how well the potential 

component would fit in with others that already exist in the current solution. The above processes are iterated 

together with the remainder of the classical R&R. Hence, search is based on an iterative process of 

components evolution, solution disruption and reconstructive process. 

 

The proposed ER&SR algorithm comprises the following three phases: Solution Decomposition, 

Evolutionary Ruin, Stochastic Recreate and Solution Acceptance. It executes these phrases in sequence on a 

single solution until a predefined stopping criterion is met. The first Solution Decomposition phase is based 

on the observation that the solutions of the combinatorial optimization problems mostly consist of 

components which are intricately woven together. Each component in a current solution may not only be a 

strong candidate in its own right, but also need to fit well with other components. Hence, the key problem in 

this phase is about what measurement to use to evaluate the fitness of individual components. To address this, 



 

 

we may employ expert’s domain knowledge to break a solution down into its components and assign a score 

to each. The higher the score, the fitter the associated component is. 

 

The second Evolutionary Ruin phase is based on the consideration that the incumbent solution must be 

changed not only locally but also over a macroscopic scale, depending on the solution composition defined 

by the proceeding Solution Decomposition phase. This phase employs two evolutionary operators of 

Selection and Mutation to destroy a certain portion of the entire solution. The Selection operator removes 

some components based on Darwin’s survival of the fitness mechanism, while the Mutation operator further 

removes a small number of components at random. Hence, the destroyed part of the solution would 

sometimes be large enough such that the impact of the “bomb” that is thrown on the solution will be 

noticeable not only locally but in the whole system. On the other hand, the destroyed part would sometimes 

be small enough so that at least a main portion of the solution (i.e. a skeleton) remains to ease the rebuild for 

the next solution. 

 

The third Stochastic Recreate phase follows to reintroduce the removed components by a somewhat 

stochastic method in order to have a better chance to jump out of the local optima. The fourth Solution 

Acceptance phase may applies an improvement heuristic to determine whether a new move (i.e. a new 

solution) by the Stochastic Recreate phase should be accepted or not. 

 

In this paper, educational exam timetabling problems are used as the test bed for the availability of the 

proposed approach. Furthermore, as an extension on the theoretical properties of the approach, we propose 

its formal framework and implement a Markov chain analysis.  The main novelty of this analysis lies in the 

fact that the ER&SR algorithm moves through the space of partial assignments, which distinguish our 

analysis different from the analyses used for other local search method (such as simulated annealing) which 

move through complete assignments. 

 

The remainder of the paper is structured as follows. Section 2 elaborates a formal framework of the ER&SW, 

from the state transition point of view. Section 3 introduces an implementation of the ER&SW for the exam 

timetabling, and Section 4 presents the computational results of this approach. Section 5 contains concluding 

remarks and some possible future work. 

 

2  The ER&SR Algorithm 

 

Following the general introduction of the ER&SR in Section 1, this section gives its formal framework from 

the state transition point of view, and then presents a Markov chain model for a simplified version of the 

algorithm. The basic idea of the algorithm was initially and briefly presented in Li et al (2012b). The session 

brings a deeper insight about the work mechanism of the algorithm. 

 

2.1  A Formal Framework of the ER&SR Algorithm 

 

 Three phases are performed in sequence at each iteration of the ER&SR algorithm. They are Solution 

Decomposition, Evolutionary Ruin, Stochastic Recreate and Solution Acceptance. The first Solution 

Decomposition phase does not alter the current state on its own, as it only acts as an agent to collect 

information about the local fitness value of each component of the current state. 

 

The second Evolutionary Ruin phase (comprising two operators of Selection and Mutation) alters the present 

state by removing the set of selected components from a current solution, based on the results obtained from 

the preceding Solution Decomposition phase. Both of the embedded operators do not generate a destination 

state, that is, a state in which all the components are assigned to a value. Hence, we refer to the state after the 

Evolutionary Ruin as an intermediate state in which some components probably remain unassigned. Note 

that the intermediate state remains the current complete state in case no component has been selected or 

mutated. However, if at least one component is selected or mutated, the intermediate state corresponds to an 

incomplete assignment, with a set of unassigned components. When the selected components are removed, 

the exact information about the source assignment is lost. For the intermediate state point of view, all 

possible destination states and the original source are equivalent. 



 

 

 

Let x be a source state, and x′ be an intermediate state. The Selection operator in the general ER&SR 

algorithm are designed according to problem-specific heuristics, but to simplified the theoretical analysis we 

restrict to make some specific choices by a fitness function. Further let )1,0()|( ji Sxg  be the local fitness 

value of xi in solution Sj calculated by the preceding Solution Decomposition phase. The probabilities, )(
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that component xi is selected from Sj  to convert to a ‘#’ (i.e. unassigned situation) is formulated as 
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Let )|( xxpS
  be the conditional probability that intermediate state ),...,( 1 mxxx   is generated from present 

state x = (x1, …, xm) by the Selection operator. We may obtain 
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The Mutation operator further alters the present intermediate state by removing the set of mutated 

components from the current (partial) solution. Let x′ be a previous intermediate state, and x″ be a present 

intermediate state. The probabilities that component ix  is selected from tuple ),...,(
1 m

xxx   to re-instantiate 

by the later Stochastic Recreate operator is denoted as Pr{ ix  is mutated} = pm, for i = 1, …, m, where 

)1,0(mp  is a constant. Let )|( xxpM
  be the transition probability that tuple ),...,(

1 m
xxx   is generated 

from tuple ),...,( 1 mxxx   by the Mutation operator. Then we have: 
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The Stochastic Recreate phase finally generates a new destination state from the present intermediate state, 

by carrying out probabilistic choices among different possible destination states. Let x   be an intermediate 

state, and x  be a destination state. Let )|( xxpC
  be the transition probability that tuple ),...,( 1 mxxx   is 

generated from tuple ),...,( 1 mxxx   by Stochastic Recreate. We have 
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where f(·) is the  the objective function (for a maximization problem under this context) for destination states, 

and N(x″) is the set of all possible destination states that can be recreate from intermediate state x″. Clearly, 
lnxN  |)(| , with l being the number of ‘#’ in x″.  The purpose for implementing such a stochastic recreate 

is to introduce some variability but still to favour the construction of fitter solutions. 

 

The number of one-step reachable states from x″ increases exponentially with the number of ‘#’ in x″. When 

applying Stochastic Recreate in practice, to reduce the amount of computation, all the neighbouring states 

have the same chance to be reached if the number of ‘#’ is larger than a pre-defined value. We therefore 

introduce a threshold value t (t ≥ 2), and modify equation (7) as 
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Recall that x denotes the source state that the Stochastic Recreate previously reaches. The fourth Solution 

Acceptance phase accepts the new complete state x   at probability )( xxpA
 . For the simplest situation 

where each of the resulting solutions is accepted, 1)(  xxpA . If using simulated annealing, then 
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2.2  Markov Chain Model for a Simplified ER&SR algorithm 

 

A Markov chain is a stochastic process with the Markov property (Tijms 2003), that is state transitions are 

probabilistic, and the next state is only determine the present state. Let {Xn, n = 0, 1, …} be a sequence of 

random variables within state space S. A discrete-time Markov chain is denoted as 

.,...,for     ,}|{}...,|Pr{
011,0011

SiiiXiXPiXiXiX
nnnnnrnnnn



                                                (10) 

 

At each step, the system may transit its state from state i to state j according to a probability distribution. For 

state transitions within a space of finite set, the transition probability distribution can be represented by a 

matrix P, whose (i, j)-th entry is 

.,   ,}|Pr{ 1 SjiiXjXp nnij                                                                                                                 (11) 

 

For the search space of the ER&SR algorithm, assume a solution Sj  consists of m componential variables xi 

denoted as jmj xxS ),...,( 1 , and each xi takes one of the n values, i.e. },...,{ )()(

1

i

n

i

i jjx  . The assignment of 

a value 
)(i

kj to a variable is denoted as
)(i

ki jx  . A solution is a complete assignment in which each variable 

has a domain value assigned, regardless of the satisfiability on constraint set. 

 

For the Evolutionary Ruin phase, its Selection operator may be deemed as a linear map from space S of 

cardinality n
m
 to space 

#S  of cardinality (n+1)
m
, as each variable after Selection can take an additional  ‘#’ 

value which denotes that the variable  is marked as “selected” for later instantiation. Hence, an assignment is 

partial rather than complete as long as we see a mix of # and non-# symbols. 

 

At each iteration of the ER&SR algorithm, a state transition is carried out from a source state to a destination 

state. This corresponds to a one-step move in the state graph. For a given present state, the probability of its 

future state is conditionally independent of the past states. Hence, each step of transitions between complete 

states (i.e. x and x  ) has the Markov properties. 



 

 

 

After defining the state transitions after Selection, Mutation, Stochastic Recreate and Solution Acceptance, 

we may give an expression for the overall transition probability between any two connected states. The 

transition probability from source state x to destination state x  , via two intermediate states of x′ and x  , is 

expressed as 

)()()()()( xxpxxpxxpxxpxxp ACMS
                                                                                (12) 

 

Hence, we may see that the Selection, Mutation and Stochastic Recreate work as a whole to implement a 

linear transformation from state space S, by an overall transition matrix P whose entries are defined by 

Equation (12). The Markov chain formed by the ER&SR algorithm is homogeneous as none of the matrices 

depend on time. Thus, many of the standard Markov Chain theorems may apply straightaway. 

 

The following definition and theorem set up the foundation of our Markov analysis for the ER&SR 

algorithm. 

 

Definition 1.  A probability distribution π = (π1, …, πj, …) is said to be stationary for a transition matrix P 

)(
ij

p  if . ,


Si ijij
Sjp  

In the case of an infinite state space, 


Si ijij p  is an infinite system of equations. That is, a Markov 

chain started out in a stationary distribution π stays in the distribution π forever. 

 

Theorem 1.  (Koralov and Sinai (2007)) Given a Markov chain with an ergodic transition matrix P, there 

exists a unique stationary probability distribution π. The n-step transition probabilities converge to the 

distribution π, i.e. j
n

ij
n

p 


)(lim . The stationary distribution satisfies πj > 0 for all Sj . 

 

For our ER&SR algorithm, we can easily verify that its P is positive (i.e. every element in P is a positive 

number), and the thus corresponding Markov chain is ergodic. By Theorem 1, there exists a unique 

stationary probability distribution π = (πj), and πj > 0. Hence, the ER&SR algorithm visits a global optimum 

of the optimisation problem after a finite number of transition steps with probability one. However, it does 

not converge to the optimal solutions because of πj > 0, i.e. all states have non-zero probability values. 

 

In real-world implementations, an ER&SR algorithm always retains the best solution. Under this 

circumstance, a state becomes a tuple of two solutions (b0, b1), where b0 and b1 denote the previous best and 

the current solution, respectively. If b0 = s* where s* is the only optimal solution, then obviously all the 

solution pairs containing s* consist of a single closed set. Therefore, by the extension of Theorem 1 on 

reducible Markov chain, the probability of staying in the set of non-closed states converges to zero. That is, 

the ER&SR algorithm maintaining the best found over time converges to the global optimum of the problem. 

 

We then study the conditions on which the stationary probabilities are equally distributed. We can easily 

prove that, for a finite Markov chain with a positive P, the stationary probabilities }  ,{ Sii  are uniformly 

distributed, at a value of 1/|S|, on each state if matrix P is symmetric. Moreover, for an ER&SR algorithm 

with a randomized Selection and a randomized Construction, regardless of the Mutation rate, we may prove 

that its P is symmetric. Hence, the stationary probabilities }  ,{ Sii   of our ER&SR algorithm may be the 

same on each state. 

 

Naturally, to well solve the real problem, we are not satisfied if the final distribution always uniform.  For 

the ER&SR algorithm, we may observe that the stationary distribution )  |( Sii    on each state is 

affected by the different strategies of Selection, Mutation, Stochastic Recreate and Solution Acceptance. That 

is, π on individual states is controllable through a proper combination of the Selection function, the Mutation 

rate, the Stochastic Recreate method and Solution Acceptance strategy. This indicates that, even if we don’t 

keep the best solution found during the algorithm execution, it is still possible for us to get a stationary 

probability close to one on the optimal solution of the given problem. The above statement is, however, just 



 

 

our conjecture. To confirm the result, we need to carry out a much deeper study aiming at exploring and 

understanding the interactions of the various phases within an ER&SR algorithm. 

 

3 ER&SR for Exam Timetabling 

 

This section presents an ER&SR for the well-studied exam timetabling problem. Starting from a randomly 

generated initial timetable, the steps described in section 3.2 to 3.4 are executed in sequence in a loop until a 

user specified parameter (e.g. CPU-time or solution quality) is reached or no improvement has been achieved 

for a certain number of iterations. During each iteration, an unfit portion of the working timetable is removed. 

Broken timetables are repaired by the constructing heuristic. Throughout the iterations, the best is retained 

and finally returned as the preserved timetable. 

 

3.1  Exam Timetabling Problems 

 

Exam timetabling occurs frequently throughout an institution’s academic calendar, and needs to be tackled 

on a regular basis. The problem has attracted a significant level of research interest since the 1960’s. The 

general timetabling problem comes in many different guises such as nurse rostering (Cheang et al. 2003; 

Aickelin et al. 2009; Li et al. 2012a), sports timetabling (Easton et al. 2004), transportation timetabling 

(Kwan 2004) and educational timetabling (Carter and Laporte 1996; Schaerf 1999; Petrovic and Burke 2004; 

Qu et al. 2009). Educational timetabling problems are probably the most widely studied. 

 

Since exam timetabling problems are general NP-hard, various methods including knowledge-based systems 

(Burke et al. 2006), local search-based heuristics (Casey and Thompson 2004; Burke et al. 2004; Burke and 

Newall 2003), and hyper-heuristics (Qu and Burke 2009) have been studied.Meta-heuristics have attracted 

the most attention, including genetic algorithms (Erben 2001; Paquete and Fonseca 2001), tabu search 

(Burke et al. 2003; White et al. 2004), ant algorithms (Dowsland and Thompson 2005), simulated annealing 

(Thompson and Dowsland 1998). 

 

Exam timetabling can be considered to be the process of assigning a set of events (i.e. exams) into certain 

number of timeslots subject to a set of constraints, including hard constraints and soft constraints. A hard 

constraint is the one that cannot be violated, for example, two exams attended by the same students cannot be 

scheduled to the same timeslot. A soft constraint is one that should be satisfied if possible, for example, 

exams taken by the same students should be spread out over the available timeslots to get some break. 

Solutions that satisfy hard constraints are called feasible solutions. The more the soft constraints are satisfied, 

the better  the timetables would be. 

 

The simplified timetabling problem can be treated as a graph colouring problem if we are only concerned 

with hard constraints, where vertices of the graph represent exams, and edges represent the conflicts between 

exams (i.e. with common students). The target is to minimise the colours used to colour all vertices, while 

avoiding assigning two adjacent vertices to the same colour. Graph colouring problems are among the most 

important problems in graph theory (Karp 1972). 

 

The following objective function is commonly used in (Burke et al. 2007) to calculate the cost of a resulting 

feasible solution x: 
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where 

skl is the number of students involved in both exams ek and el, if i = |tl – tk| < 5; 

wi = 2
4-i

 is the cost of assigning two conflicted exams ek and el with i timeslots apart, if i = |tl – tk| < 5 

where  tl and tk as the timeslots of el and ek, respectively; 

m is the number of exams in the problem; 

S is the number of students in the problem. 

 



 

 

3.2  Solution Decomposition 

 

This step is to evaluate the current assignment for each exam },,...,1{ , mkek  in a timetable, by computing the 

fitness of each exam allocation. Its purpose is to determine which exams are assigned in positions that 

contribute more towards the overall cost reduction for the resulting schedule. We design a normalized 

evaluation function },,...,1{ ),( mkeF kt  at the t-th iteration, as follows: 
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where Ct(ek) is the cost value caused by exam ek, and wi takes the same definition as in Equation (13). 

 

3.3  Evolutionary Ruin 

 

This step is to decide whether an exam },...,1{ , mkek  , in a current timetable should be retained or removed. 

The decision is made by two operators of Selection and Mutation. For each iteration t of the Evolutionary 

Ruin step, a single random number ]1,0[)( t

sp  is generated. The Selection operator then compares the 

fitness value Ft(ek) to 
)(t

sp . If 
)()( t

skt peF  , then ek will remain in its present allocation, otherwise it will be 

removed from the current timetable. By Selection, an exam ek with larger value Ft(ek) has a higher probability 

to survive. The Mutation operator follows to mutate the retained exams ek, i.e. randomly discarding them 

from the partial timetable at a small rate. Compared with selection rate 
)(t

sp  which is also randomly 

generated for each iteration t, mutation rate 
)(t

mp  should be much smaller to help a quicker convergence. 

 

3.4  Stochastic Recreate 

 

The Stochastic Recreate task is to recreate a partial timetable by assigning unscheduled exams to their 

available timeslots. Once a specific exam has been determined, the following two steps are executed in 

sequence: Step 1 finds all its available timeslots without any conflict exams; Step 2 chooses the timeslot with 

the smallest increase on the overall cost defined by Equation (13). 

 

Many heuristics can be used to determine the order in which the exams are rescheduled. Here we use the 

following four graph-based heuristics reported in (Li et al.,  2011): largest degree first (H1), largest weighted 

degree first (H2), largest color degree first (H3) and least saturation degree first (H4). Let 
)(
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3
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and 
)(

1

kp  be the probabilities of using heuristics H1, H2, H3 and H4 for the rescheduling of exam ek. These 

heuristics are alternatively used in each step of recreate, satisfying 1
4

1

)( 
j

k

jp . 

 

The H1 heuristic orders exams in descending order by the number of conflicts they have with other exams. It 

schedules first the exams which have the most conflicts in the following way: going through the ore-

calculated conflict values for the unscheduled exams and then proceeding to Steps 1 and 2 mentioned above. 

 

The H2 heuristic orders exams in descending order by the number of conflicts, each of which is weighted by 

the number of students involved. Among exams with the same degree, H2 schedule first those with a larger 

number of students involved. Like H1, it first goes through the weighted conflict values for the unscheduled 

exams, and then executes Steps 1 and 2. 

 

The H3 heuristic orders exams in a descending order according to the number of conflicts with the other 

exams that have already been placed in the timetable. The degrees of the exams not yet scheduled are 



 

 

changed according to the situations encountered at each step of the solution construction. Unlike H1 and H2, 

the conflict value for each exam is firstly updated before an exam is scheduled. This involves the update of 

an ancillary matrix containing the conflict values between any pairs of an unscheduled exam and a scheduled 

exam. H3 then goes through the new conflict values for the unscheduled exams, and implements Steps 1 and 

2. 

 

The H4 heuristic orders exams in ascending order according to the number of available timeslots without 

violating hard constraints. The priorities of exams to be ordered and scheduled are changed when the 

solution is constructed. The number of available timeslots for each exam is firstly calculated before an exam 

is rescheduled exam. H4 then goes through the saturation degree numbers for all the unscheduled exams, and 

proceeds to Steps 1 and 2 as the other heuristics. 

 

3.5. Solution Acceptance 
 

The criterion for Solution Acceptance is not problem specific, and thus any of the strategies available in the 

literature (such as hill-climbing, simulated annealing, threshold acceptance, great deluge, or falling tide) can 

be used to determine whether the new solution generated by the Stochastic Recreate phase should be 

accepted or not. 

 

4  Experimental Results 

 

The most widely used benchmark problems were first presented in (Carter et al. 1996) for the uncapacitated 

exam timetabling problem. Over the years, two versions of the datasets have circulated using the same name, 

which has caused some confusion in comparing results of different approaches reported in the literature 

(Schaerf 1999). These datasets were renamed and the issue was discussed in (Qu et al. 2009). A web site was 

set up to include all the different datasets with new distinct names, together with an API evaluation function 

(see http://www.cs.nott.ac.uk/~rxq/data.htm). The new naming conventions are used in these paper. 

 

In these problem instances, the number of timeslots is fixed beforehand and the aim is to spread clashing 

exams around the timetable as much as possible. Graph density is calculated based on the conflict matrix C 

for the problem, where each of its entry cij = 1 if exam ei conflicts with exam ej (i.e. having students in 

common), or cij = 0 otherwise. It is the ratio between the number of elements of value “1” to the total number 

of elements in matrix C. The penalty wi in objective function, i.e Equation (12), are set as follows: w1 = 16, 

w2 = 8, w3 = 4, w4 = 2, and w5 = 1. The key features of these test problems are presented in Table 1, which 

includes the number of exams (ranged from 81 to 682), the number of students (ranged from 611 to 18416), 

the number of enrollments (ranged from 5751 to 56877), the number of available time slots (ranged from 10 

to 35) and the graph density of the problem (ranged from 0.06 to 0.42). 

 

Table 1: Characteristics of the benchmark Problems 

 

 car91 car92 ear83 hec92 kfu93 lse91 sta83 tre92 ute92 York83 

Exams 682 543 190 81 461 381 139 261 184 181 

Students 16925 18419 1125 2823 5349 2726 611 4360 2750 941 

Enrolments 56877 55522 8106 10632 25113 10918 5751 14901 11793 6034 

Timeslots 35 32 24 18 20 18 13 23 10 21 

Density 0.13 0.14 0.27 0.42 0.06 0.06 0.14 0.18 0.08 0/29 

 

Table 2 presents the best and average results of 20 runs on the 10 benchmark problems, for the ER&SR 

algorithm. The programming language is C++, executing on an Intel Core 2 Duo 1.86GHz machine with 

2.0GB of RAM under Window XP. The algorithm will stop if no improvement has been made for 1000 

iterations, or a maximum 20000 iterations has been reached. Our aim with these experiments is not to beat 

the state-of-the-art approaches in the literature, but to present the potential of this generic methodology to be 

easily employed and to perform adaptively on a range of different exam timetabling problems. 

 



 

 

Hence, we try to keep the parameter setting of the algorithm as simple as possible although an advanced 

setting would improve the system performance further. For the Evolutionary Ruin step, its mutation rate 
)(t

mp  

is set to 0.05 for all iterations and all instances, and its selection operator always makes comparisons with a 

randomly generated number
)(t

sp  which does not take into account the actual range of the component 

fitnesses Ft(ek) in a current solution. For example, comparing a 
)(t

sp  at 0.59 to the components of a solution 

with Ft(ek) values scattered between 0.10 and 0.60 is obviously inefficient as this probably leaves just one or 

two components which means that a new solution has to be recreated almost from scratch. For the Solution 

Acceptance step, we use a simplified version of threshold acceptance algorithm with a fixed threshold value, 

that is, a new solution is accepted as long as its objective value is no 1% worse than the current solution. Of 

course, better solution may be obtained if a more advance acceptance criterion (e.g. simulated annealing) is 

used, but we deliberately make the criterion simple as it is problem independent and thus does not reflect the 

real performance of the proposed ER&SR. 

 

Table 2: Comparison results of ER&SR with various GHH related algorithms (Δ% denotes the relative 

percentage deviation for the value on the above row from the “ER&SR best”) 

 

 car91 car92 ear83 hec92 kfu93 lse91 sta83 tre92 ute92 york83 avg 

ER&SR best 5.81 4.91 35.08 10.44 15.08 11.28 157.06 8.39 25.17 36.97 31.02  

ER&SR avg 6.05 5.08 35.27 10.86 15.27 11.85 157.24 8.56 26.39 38.28 31.49  

Multi-stage GHH 5.4 4.74 38.84 13.11 15.99 12.43 159.9 9.02 30.65 43.51 33.36  

Δ% -7.1% -3.5% 10.7% 25.6% 6.0% 10.2% 1.8% 7.5% 21.8% 17.7% 9.1%  

GHH best 5.36 4.53 37.92 12.25 15.2 11.33 158.19 8.92 28.01 41.37 32.31  

Δ% -7.7% -7.7% 8.1% 17.3% 0.8% 0.4% 0.7% 6.3% 11.3% 11.9% 4.1% 

SDM best 5.44 4.87 35.53 12.59 15.25 13.01 160.3 9.01 31.77 42.77 33.05  

Δ% -6.4% -0.8% 1.3% 20.6% 1.1% 15.3% 2.1% 7.4% 26.2% 15.7% 8.3% 

ILS best 5.3 4.77 38.39 12.72 15.09 12.72 159.2 8.74 30.32 40.24 32.75  

Δ% -8.8% -2.9% 9.4% 21.8% 0.1% 12.8% 1.4% 4.2% 20.5% 8.8% 6.7% 

TS best 5.43 4.94 38.19 12.36 15.97 13.25 165.7 8.87 32.12 41.3 33.81  

Δ% -6.5% 0.6% 8.9% 18.4% 5.9% 17.5% 5.5% 5.7% 27.6% 11.7% 9.5% 

VNS best 5.4 4.7 37.29 12.23 15.1 12.71 159.3 8.67 30.23 43.0 32.86  

Δ% -7.1% -4.3% 6.3% 17.1% 0.1% 12.7% 1.4% 3.3% 20.1% 16.3% 6.6% 

GHH1 best 5.3 4.8 38.4 12.0 15.1 12.7 159.2 8.7 30.3 40.2 32.67  

Δ% -8.8% -2.2% 9.5% 14.9% 0.1% 12.6% 1.4% 3.7% 20.4% 8.7% 6.0% 

GHH2 best 5.2 4.2 35.9 11.9 14.8 11.2 159 8.6 28.3 41.8 32.09  

Δ% -10.5% -14.5% 2.3% 14.0% -1.9% -0.7% 1.2% 2.5% 12.4% 13.1% 1.8% 

AGH best 5.11 4.32 35.56 11.62 15.18 11.32 158.88 8.52 28.00 40.71 31.92  

Δ% -12.0% -12.0% 1.4% 11.3% 0.7% 0.4% 1.2% 1.5% 11.2% 10.1% 1.4% 

AGH-SDM best 5.09 4.26 35.48 11.46 14.68 11.2 158.28 8.51 27.9 40.49 31.74  

Δ% -12.4% -13.2% 1.1% 9.8% -2.7% -0.7% 0.8% 1.4% 10.8% 9.5% 0.4% 

 

1. Table 2 then gives the comparison results of our ER&SR algorithm with a number of Graph-based 

Hyper-Heuristic (GHH) algorithms which also use the same four graph-based heuristics (i.e. largest 

degree first, largest weighted Hyper-Heuristic (GHH): Tabu search is employed to search for the list of 

low level heuristics (Burke et al. 2007). 

2. Steepest Descent Method (SDM): The best heuristic sequence among neighbourhoods is always selected 

if it is better than or the same as the current one (Qu and Burke 2009). 

3. Iterated Local Search (ILS): The search is re-started after a certain number of iterations of SDM (Qu and 

Burke 2009). 

4. Tabu Search (TS): The TS employed here is similar to that of GHH. The difference is that no greedy 

local search is further carried out on the complete solutions at each step (Qu and Burke 2009). 

5. Variable Neighbourhood Search (VNS): The VNS employed is an iterative process where search is re-

started after a certain number of walks are made by a standard VNS (Qu and Burke 2009). 

6. Local Improvement upon Complete Solutions (GHH1): After a complete solution is generated by a 

heuristic sequence, a greedy search is implemented to make improvement (Qu and Burke 2009). 



 

 

7. Local Improvement during the Solution Construction (GHH2): During the solution construction by a 

heuristic sequence, at each step, the 1st event in the ordered list is scheduled into the partial solution, 

upon which a greedy search is implemented (Qu and Burke 2009). 

8. Adaptive GHH (AGH): It is similar to the GHH, but focusing on developing an adaptive approach where 

heuristics are dynamically hybridised during solution construction (Qu et al. 2009). 

9. AGH-SDM: An AGH, following by the steepest descent method to make improvement (Qu et al, 2009). 

 

Table 2 shows that the ER&SR’s results are generally better than any of the previous proposed GHH related 

algorithms. In terms of the absolute objective function value, the ER&SR’s average result for the 10 test 

instances is 31.02, while the results of the other algorithms are ranged from 31.74 (for the AGH-SDM) to 

33.81 (for the TS). In terms of the relative percentage deviation, the difference is more obvious: the 

ER&SR’s result is 0.4% better than the AGH-SDM and 9.5% better than the TS. The times to obtain our 

results are ranged from less than 1 minute for small instances (e.g. Sta83) to several hours for large instances 

(e.g. car91 and car92), which are at the same levels of those GHH related algorithms. 

To gain a better insight of the ES&SR’s performance, Table 3 lists the results of the state-of-the-art 

approaches which include a selection of appropriate methods that generate the best results among all of the 

approaches in the literature. These algorithms do not use any of the four graph based heuristics as the low 

level heuristics for solution construction. They generally use another class of techniques which implement 

local search (such as swaps and moves) to achieve improvement from an refined initial solutions. Since the 

solution disruption is restricted to just one or two units, these algorithms are very quick to generate each 

single new solution, but  in theory they should be generally easy to get stuck in local optima. 

 

Table 3: Comparison with results of non-GHH related algorithms in the literature (Δ% denotes the relative 

percentage deviation from the “ER&SR”) 

 

 car91 car92 ear83 hec92 kfu93 lse91 sta83 tre92 ute92 york83 avg avgΔ% 

ER&SR 5.81 4.91 35.08 10.44 15.08 11.28 157.06 8.39 25.17 36.97 31.02   

Carter et al. 1996 7.1 6.2 36.4 10.8 14.0 10.5 161.5 9.6 25.8 41.7 32.36  4.32% 

Gaspero & Schaerf 2001 6.2 5.2 45.7 12.4 18.0 15.5 160.8 10.0 29.0 42.0 34.48  11.15% 

Merlot et al. 2002 5.1 4.3 35.1 10.6 13.5 10.5 157.3 8.4 25.1 37.4 30.73  -0.93%  

Burke & Newall 2003 4.6 4.0 37.05 11.54 13.9 10.82 168.73 8.35 25.83 36.8 32.16  3.68% 

Burke & Newall 2004 4.97 4.32 36.16 11.61 15.02 10.96 161.91 8.38 27.41 40.77 32.15  3.65% 

Burke et al. 2004 4.8 4.2 35.4 10.8 13.7 10.4 159.1 8.3 25.7 36.7 30.91  -0.35% 

Asmuni et al. 2005 5.2 4.52 37.02 11.78 15.81 12.09 160.42 8.67 27.78 40.66 32.40  4.43% 

Abdullah et al. 2007 5.21 4.36 34.87 10.38 13.46 10.24 159.2 8.7 26.0 36.2 30.86  -0.51%  

Qu & Burke  2007 5.45 4.5 36.15 11.38 14.74 10.85 157.2 8.79 26.68 42.2 31.79  2.50% 

Caramia et al. 2008 6.6 6.0 29.3 9.2 13.8 9.6 158.2 9.4 24.4 36.2 30.27  -2.42% 

 

One may observe from Tables 2 and 3 that, at least for the exam timetabling problems, results by the class of 

hyper-heuristic (i.e. GHH relative algorithms) which use a set of graph based heuristics for solution 

construction are generally worse than those by the class of local search algorithms. This is not a surprise due 

to the computational complexity that these low level heuristics cause (Li et al. 2011). Let m be the number of 

exams, n be the number of available timeslots, and α be the graph density of the problem. Both Heuristics H1 

(largest degree first) and H2 (largest weighted degree first) have computational complexity of O(m
2
n) to 

construct a complete solution, For heuristic H3 (largest color degree first), its complexity is O(αm
3
+m

2
n). For 

heuristic H4 (least saturation degree first), empirical studies have shown that it performs the best among all 

the graph based heuristics. However, as a cost its complexity is as high as O(αm
3
n+m

2
n) which means 

constructing a solution by this heuristic is likely thousands times slower than a simple swap/move heuristic 

used for local search. 

 

The interesting observation is that, Table 3 shows that the ER&SR however are generally comparable to 

those selected 10 local-search based algorithms, although conclusive comparisons are difficult to make due 

to a lack of sufficient details on the initial solutions and execution times for most of these algorithms. In 

terms of the average results on the 10 test instances, the ER&SR is significantly, ranged from 2.50% to 

11.15%, better than 6 algorithms. For the remaining 3 out of 4 algorithms which perform better than the 



 

 

ER&SR, the difference are 0.93%, 0.35% and 0.51%, respectively. Compared to the algorithm presented in 

(Caramia et al. 2008), the ER&SR underperforms  by 2.5% on average result but still outperforms on 4 of the 

10 test instances. The above results support our motivation of developing the ER&SR, which is indeed 

something flexibly standing in between the constructive search and local search, although more sophisticated 

design and parameter setting at each step of its implementation are still required to maximise its performance 

for real world problems. 

 

5  Conclusion 

 

In this paper, we present a new approach based on the original idea of R&R, by incorporating two additional 

operators of Selection and Mutation in its Evolutionary Ruin step. In our proposed ER&SR, a cycle of 

Solution Decomposition, Evolutionary Ruin, Stochastic Recreate and Solution Acceptance is executed until a 

pre-defined stopping condition is reached. Taken as a whole, the ER&SR implements evolution within a 

single solution and carries out iterative search by component evaluation, solution disruption and stochastic 

rebuild. Experimental results on 10 exam timetabling benchmark problems have demonstrated the strength of 

the proposed approach. 

 

We also propose a state transition based formal framework for a simplified version of the ER&SR, in which 

Stochastic Recreate restricts to probabilistic moves among different possible destination states based on the 

objective function values of the neighbouring solutions. We focus on the study of the ER&SR’s convergence 

behaviour by a finite Markov chain analysis. Our main result is that although the ER&SR algorithm can 

reach the global optimum  after finite number of transitions with probability one, the algorithm does not 

converge to the global optimum. Of course, like other algorithms (such as genetic algorithm) which simply 

keep the best solution found over time, the ER&SR may converge to the global optimum geometrically fast. 

In addition, we study the ER&SR’s property on the stationary probability distribution on individual states: it 

is not only affected but also controllable by a proper combination of the Selection function, the Mutation rate 

and the Stochastic Recreate method. The last result suggests that, if properly implementing the ER&SR 

algorithm,  the optimal solution of the problem still may have a stationary probability close to one even if we 

don’t use the strategy of reserving the best solution. 

 

The SE&RE approach may be regarded as a general framework, in which many well-known search methods 

belong to its special case. For example, assume at each iteration x components are removed from an n-

component solution, and let p be the acceptance criterion. 

10. If x = 0, then it is a non-iterative method as only one single solution will be generated; 

11. If x ≤ 3, then it is a local search method that uses small moves to change the configurations; 

12. If x = n, then it is a constructive method with random starting points; 

13. If (no Solution Decomposition) & (no Selection), then it equals to the R&R principle; 

14. If (no Selection) & (no Mutation) & (Stochastic Recreate at specific orders), then it equals to the squeaky 

heel optimisation. 

 

With regard to improvements on algorithmic design, the architecture of the ER&SR is innovative, and thus 

there is still some room for further improvement. In the Solution Decomposition part, we will study the 

formulation of domain knowledge for different types of other problems and the influence of different 

evaluation rules. In the Evolutionary Ruin part, we will study the suitable range for the number of 

components to be destroyed and the condition of applying a large move or a small move. For the Stochastic 

Recreate part, we will study the types of reconstruction methods that are unsuited for generating optimum or 

near-optimum results. Furthermore, we will evaluate the proposed algorithm with different operators applied 

in its three parts and the best combination we should try. 

 

With regard to future work on the theoretical studies, in this paper, we considered just storing the best found 

solution and used a fix mutation rate. It would be more complicated if we use the best found solution to 

occasionally generate new solutions, not just maintaining it. In terms of the Mutation operator, it might be 

possible to introduce a (slowly time-varying mutation rate to make the Markov chain inhomogeneous. These 

sophisticated strategies will cause different Markov modelling, and we intend to investigate them further. 
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