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Abstract 
 
The Earth’s surface waters are a fundamental resource and encompass a broad range of 

ecosystems that are core to global biogeochemical cycling and food and energy production. 

Despite this, the Earth’s surface waters are impacted by multiple natural and anthropogenic 

pressures and drivers of environmental change. The complex interaction between physical, 

chemical and biological processes in surface waters poses significant challenges for in situ 

monitoring and assessment and often limits our ability to adequately capture the dynamics of 

aquatic systems and our understanding of their status, functioning and response to 

pressures. Here we explore the opportunities that Earth observation (EO) has to offer to 

basin-scale monitoring of water quality over the surface water continuum comprising inland, 

transition and coastal water bodies, with a particular focus on the Danube and Black Sea 

region. This review summarises the technological advances in EO and the opportunities that 

the next generation satellites offer for water quality monitoring. We provide an overview of 

algorithms for the retrieval of water quality parameters and demonstrate how such models 

have been used for the assessment and monitoring of inland, transitional, coastal and shelf-

sea systems.  Further, we argue that very few studies have investigated the connectivity 

between these systems especially in large river-sea systems such as the Danube-Black 

Sea. Subsequently, we describe current capability in operational processing of archive and 

near real-time satellite data.  We conclude that while the operational use of satellites for the 

assessment and monitoring of surface waters is still developing for inland and coastal waters 

and more work is required on the development and validation of remote sensing algorithms 

for these optically complex waters, the potential that these data streams offer for developing 

an improved, potentially paradigm-shifting understanding of physical and biogeochemical 

processes across large scale river-sea continuum including the Danube-Black Sea is 

considerable.   
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1. Introduction  

 

The Earth’s surface waters are a fundamental global resource.  They are important for 

biodiversity, fulfil key function in global biogeochemical cycles and are core to food and 

energy production. However, surface waters face multiple and compounding pressures from 

changes in land use and climate change, nutrient enrichment, brownification and other 

natural and anthropogenic driven environmental perturbations operating and interacting over 

scales ranging from local to global (MEA, 2005; IPCC, 2007; Ormerod et al., 2010). The 

inherently dynamic and heterogeneous nature of surface waters poses considerable 

challenges for effective and representative monitoring and assessment via in situ sampling. 

The limited spatial coverage and temporal frequency of sampling, and differences in the 

methods and protocols used between laboratories, regions and nations, further constrains 

our understanding of the state of surface waters and how they are changing locally, 

regionally and globally scale (e.g. Carvalho et al., 2011, Palmer et al., 2015).  

 

The use of Earth observation (EO) data acquired from satellites is now becoming 

increasingly widely used for providing information on a suite of functionally relevant 

indicators of water quality and ecosystem condition from a local to global scale. This review 

will explore the potential for basin-scale monitoring of water quality in complex system like 

the Danube river catchment and Black Sea through EO platforms. Whilst water quality can 

be measured by a number of physical, biological and chemical water constituents (Chapman 

et al., this issue), this contribution will focus on the in-water biogeochemical constituents that 

can be retrieved from the data from optical EO sensors including chlorophyll-a (Chl-a), 

phycocyanin (PC), total suspended matter (TSM), turbidity and coloured dissolved organic 

matter (CDOM). In addition to those parameters that can be retrieved from optical data, 

other parameters such as sea surface salinity can be retrieved from spaceborne L-band 

radar data (e.g. Burrage et al., 2008; Klemas, 2011), while sea surface temperature can be 

retrieved from the measurements in the thermal infrared between 8 and 14 µm (e.g. 

MacCallum and Merchant, 2012; Politi et al., 2012; Merchant et al., 2013). This review is 

restricted to measurements that can be made by optical remote sensing from satellite 

platforms and will primarily consider Chl-a, PC, TSM and CDOM.  

 

Draining an area of land almost twice as large as the Black Sea (801,463 km²), the Danube 

River is the world's most international river basin, encompassing 19 countries and is the 

largest and the most important source of water and sediment entering to the Black Sea 

basin. It has a mean annual discharge of approximately 205 km3 year-1 (c. 60% of the total 
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water runoff in the Black Sea basin) and exports between 36.3 to 52.4 million tons of SPM 

into the Black Sea per year (c. 48% of the total SPM load) (Ludwig et al., 2009; Mikhailov & 

Mikhailova, 2008). However, over the last few decades the Danube Basin region and the 

Black Sea have experienced marked declines in water quality, largely due to human 

activities such as agriculture and industry. The Danube controls the sedimentation on the 

north-western Black Sea shelf, impacting southwards to the Bosphorus region, as well as 

down to the deep-sea parts of the basin (Panin & Jipa, 2002). Human activity within the 

basin results in excessive nutrients inputs into the water bodies within the Danube River 

Basin (Ludwig et al., 2009; Istvánovics & Honti, 2012; Capet et al., 2013), while significant 

quantities of sediment are also retained in reservoirs (Rovira et al., 2014) where dams have 

been constructed. These factors have contributed to pervasive eutrophication and sediment 

deficit throughout the course of the river and also in the downstream estuarine and coastal 

areas. In spite of the ecological and socio-economic importance of this iconic river basin 

system, and the severity of the problems currently faced, integrated space-time studies of 

water quality are very scarce in this complex multi-component system (Güttler et al., 2013).  

 

Earth observation has the potential to contribute greatly to our ability to observe complex 

systems like the Danube Delta and its interface with the Black Sea.  Earth observation 

provides a synoptic view of systems that cannot be replicated through field-based sampling 

and one that can be obtained at relatively high temporal frequencies to build long-term 

observational records of environmental change.  However, many previous studies have 

shown that the performance of in-waters models for the retrieval of physical and 

biogeochemical parameters from Earth observation data can vary tremendously between 

water bodies with very different optical properties and overlying atmospheres (Guanter et al., 

2010; Matthews et al. 2011). The Danube basin and its diversity of water bodies from the 

large, deep clear water lakes to the south of the Black Forest to the highly turbid 

environments of the coastal lagoons and waters of the Black Sea will undoubtedly pose a 

challenge for the operational monitoring of water quality from satellites. In these highly turbid 

waters, light penetration is also very limited and as such remote sensing data can only 

provide information on near-surface properties and in situ data and models are required to 

provide an understanding of vertical structures within the water column.  

 

Morel and Prieur (1977) were the first to formally describe the differences in the optical 

properties of water bodies identifying two broad classes that they termed “Case-1” and 

“Case-2” waters. Case-1 waters are best exemplified by the open ocean where water-

leaving radiative signals are dominated by phytoplankton and to a lesser extent the 
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presence of low and covarying concentrations of CDOM and detrital matter. By contrast 

Case-2 waters comprise shelf-sea, coastal and inland waters and are characterised by high 

and non-covarying concentrations of phytoplankton, TSM and CDOM.  The work by Morel 

and Prieur (1977) was never intended to act as a basis for the classification of optical water 

types.  More recent research has attempted to develop a more useful classification scheme 

for the identification of optical water types and one that better recognises the variability that 

exists within Case-1 and, particularly, Case-2 waters.   

 

The ocean colour community have made significant advances in the remote sensing of 

Case-1 waters (IOCCG, 2000; IOCCG; 2006; Brewin et al., 2013). However, Case-2 waters, 

now frequently referred to as optically complex waters, present significant challenges for 

atmospheric correction and retrieval of in-water constituents concentration and many 

standard ocean colour algorithms perform poorly when applied to these waters (Alikas & 

Reinart, 2008; Witter et al., 2009; Binding et al., 2010).  In recent years considerable effort 

has been invested in the development and validation of in-water algorithms tailored to 

optically complex waters and there is a rapidly growing body of literature demonstrating 

promising results for the retrieval of a range of biogeochemical constituents (Kutser et al., 

2005; 2009; Giardino et al., 2010; Tarrant et al., 2010; Hunter et al., 2010; Matthews et al., 

2010; Odermatt et al., 2010; Nechad et al., 2010; Dogliotti et al., 2015; Palmer et al., 2015; 

Ayana et al., 2015). Many of these studies have focused on individual lakes or small 

populations of lakes with comparable atmospheric and optical properties and it is almost 

certain that no single approach will perform adequately over the continuum of surface water 

bodies. The development of adaptive algorithms offers one potential solution to this 

challenge (e.g., Dogliotti et al. 2015) but an improved understanding of the performance and 

applicability of algorithms over different water optical types is also needed. 

 

The ocean colour community have benefited greatly from the long-term data provided by 

Envisat MERIS (2002-2012) and the still operational, but ageing, MODIS-Aqua and MODIS–

Terra sensors. Currently, only a limited number of platforms such as NASA’s VIIRS (Visible 

Infrared Imager Radiometer Suite) on Suomi NPP and OCM-2 on Oceansat-2 have sufficient 

capability to provide operational ocean colour observations until the next generation of 

sensors are launched. Of particular interest and relevance are the Sentinel satellites to be 

launched as part of ESA’s Copernicus programme. This will include two Sentinel-2 

spacecraft  carrying MSI (Multispectral Imager) instruments, the first of which was launched 

in June 2015 and second is due 2016, and three Sentinel-3 spacecraft with the OLCI (Ocean 

and Land Colour Instrument) sensor to be launched between early 2016 and 2020 (Table 1). 
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Other new sensors and missions are being developed and launched over the next 5-7 years 

include: (i) USA’s NASA Pre-Aerosol Cloud and ocean Ecosystem (PACE) mission (launch 

date 2022/23; specifications to be finalised); Japan’s JAXA’s GCOM-C/SGLI planned for 

launch in 2016 (2-3 day repeat cycle, 250m-1 km resolution, 19 multispectral bands from 

380nm to 12.5 µm); (iii) Brazil’s INPE/CONAE’s SABIA-Mar mission (two satellites launched 

around 2020, each with two systems with global coverage 1000 km swath and 1.1km 

resolution and regional coverage with a swath of 200 km and 200 m resolution, 16 spectral 

bands from 380 nm to 11.8 µm); and (iv) South Korea’s KIOST GOCI-I & II (launch due in 

2019, swath width to be determined but estimated to be between 1200 and 1500 km, 13 

multispectral bands between 412 nm and 1240 nm)  (IOCCG, 2015). Many of these new and 

planned satellite sensors have revised band sets that include additional near infrared bands 

to improve atmospheric correction. Collectively these new sensors will herald a new era for 

the operational monitoring of inland, coastal and ocean waters from space and will drive 

innovative science and the development of downstream EO-based services.  

 

This review explores the existing and forthcoming opportunities for water quality monitoring 

along with the challenges and solutions for retrieving quantitative measures of in-water 

constituents in optically complex waters. Examples of applications will be presented 

highlighting the insights that satellite based EO can provide to aid our understanding of 

surface water status across the continuum from lakes to shelf-seas and how these 

environments are responding to regional and global environmental change.  
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2. Earth observation satellites and sensors  
 
Data from satellites have been widely used for the assessment and monitoring of the water 

quality in inland, transitional, coastal and shelf-sea waters (see Table 1). The vast majority of 

sensors used for water quality studies are (or were) carried on satellites in sun-synchronous, 

low-Earth orbits (e.g. Vos et al., 2003; Heim et al., 2005; Wu et al., 2009; Sokoletsky et al., 

2011; Lim & Minha, 2015). These platforms typically provide data at a frequency of between 

1 to 14 days globally (cloud cover permitting) and at spatial resolutions from a few metres to 

more than a kilometre. The first dedicated satellite mission for observing the Earth from 

space was Landsat-1 launched in 1972. The Multispectral Scanner (MSS) instrument carried 

by Landsat-1 was a relatively rudimentary instrument compared to some of the sensors now 

in orbit but several authors successfully used the data to derive estimates of water 

transparency and/or turbidity in lakes and other inland waters (e.g., Gervin & Marshall, 

1977). However, the poor spectral and radiometric resolution of the early Landsat-series 

sensors posed significant challenges for the accurate retrieval of water quality information. It 

would be some years before satellite data would be used routinely or operationally but these 

early, pioneering studies starting some 40 years ago, clearly demonstrated the value of 

being able to retrieve information on water quality over large geographical areas from space 

(Rogers et al., 1976; 1977; Gervin and Marshall 1977; Shin and Gervin, 1980; Carpenter and 

Capenter, 1983; Graham and Hill, 1983; Raitala et al., 1984).  

The first dedicated satellite sensor for global observation of surface waters from space was 

the Coastal Zone Color Scanner (CZCS) launched in 1978. Importantly, CZCS was the first 

sensor with a spatial, spectral and radiometric resolution suited for observations over water 

rather than the land surface. CZCS was only a proof-of-concept mission but the data 

provided were unprecedented and unparalleled at the time and as a result have been used 

in numerous studies on the dynamics of particulate matter and phytoplankton blooms in 

marine waters including many focused on complex sea-shelf systems (Yoder et al., 1987; 

Aarup et al.,1989; Fuentes-Yaco et al., 1997). CZCS was primarily designed for ocean 

colour monitoring and thus the coarse spatial resolution (825 m) of the data was suited only 

to the observation of very large lake systems. However, a small number of studies also 

successfully demonstrated that CZCS could be used to retrieve information on water quality 

in the more optically complex situations found in large continental waters such as Lake 

Michigan (Mortimer, 1988) and Lake Superior (Li et al., 2004). 

The CZCS mission ended in 1986. Unfortunately, there were no immediate successors to 

the CZCS and its capability was not replaced until the launch of the SeaWiFS (Sea-Viewing 
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Wide Field-of-View Sensor) in 1997. SeaWiFS was arguably the first operational ocean 

colour satellite mission providing systematic observations over marine waters until 2010. 

SeaWiFS offered improved spectral and radiometric resolutions but like its predecessor 

CZCS it captured data at a coarse spatial resolution (1.1 km) that limited its use over inland 

systems or close to the coast where high spatial complexity exists in near-surface waters. 

The later launch of MODIS-Terra in 1999 and MODIS-Aqua and MERIS in 2002 improved 

the spatial resolution of ocean colour data products down to 250-300 m. Importantly, this 

greatly enhanced our ability to observe spatial and temporal trends in water quality in large 

lakes, lagoons and coastal waters and numerous studies have demonstrated the potential of 

such data products for mapping water quality in inland, coastal and shelf-sea systems 

including water bodies within the Danube basin and the Black Sea (Zibordi et al., 2013; 

Güttler et al., 2013, Palmer et al., 2015; Constantine et al., 2016). 

The most recent ocean colour satellite missions such as MERIS and MODIS provide data 

products at a 300 m spatial resolution every 1-3 days globally. These data provide 

unparalleled insights into dynamic processes in large lakes, coastal zones and shelf-sea but 

the coarse resolution of these products restricts their use for studying smaller water bodies. 

Hence, many studies concerned with small to moderately sized lakes and reservoirs, rivers 

and estuaries have made use of high spatial resolution data from satellites missions 

designed for land applications such as those in the Landsat-series (e.g., Tyler et al., 2006, 

Olmanson et al., 2008). The main disadvantage of the sensors flown on missions such as 

Landsat is that they were not designed for applications over water bodies and thus the 

coverage and resolution of their spectral bands and their radiometric sensitivity is sometimes 

not sufficient to provide accurate retrievals of parameters such as Chl-a or CDOM, 

particularly for lakes with low water-leaving radiance. The potential of current state-of-the-art 

commercial satellite sensors such as WorldView-2 and -3 for mapping water quality has not 

been widely explored partly due to the financial costs of acquiring the data, particularly if 

tasking is required, although costs are likely to decrease overtime as sensors are 

superseded and archived data volumes increase. However, these platforms offer very high 

spatial resolution data (<2m) with sufficient spectral (8 bands between 400 and 1040 nm) 

and radiometric (11-bit in the visible and near infrared) resolution to enable information on 

water quality to be retrieved over turbid waters (e.g., Wheeler et al., 2012).  

In additional to the data products that are provided by satellite sensors in sun-synchronous, 

low-Earth orbits some recent studies have also demonstrated the potential of geostationary 

satellites for high temporal frequency monitoring of coastal and shelf-sea waters. Data from 

the SEVIRI (Spinning Enhanced Visible and Infrared Imager) instruments on the Meteosat 



Special	Issue	Science	of	the	Total	Environment	
Title: Understanding and managing complex transnational river – sea systems: problems and 
opportunities in the Danube – Black Sea 
		

	 9	

Second Generation (MSG) spacecraft and the GOCI (Geostationary Ocean Color Imager) 

instrument on the Korean-operated COMS satellite have both recently been used to map 

changes in water quality in marine waters (Ruddick et al., 2014). The MSG and COMS 

spacecrafts are in orbit approximately 36,000 km above the Earth. SEVIRI is capable of 

imaging the hemisphere of the Earth every 15 minutes at a 3km resolution, while GOCI 

provides data at 500 m spatial resolution over a 625,000 km2 area centred on the Korean 

Peninsula every 1 hour. SEVIRI was not designed primarily for applications over water but 

several studies have shown the feasibility of retrieving TSM in turbid waters (Neukermans et 

al., 2009; Neukermans et al., 2012).  The GOCI sensor, however, is specifically designed for 

ocean colour applications and thus can be used to estimate Chl-a concentrations (Wang et 

al., 2013) and at a spatial resolution that also allows data to be acquired for systems ranging 

in scale from shelf-seas to large lakes (Lyu et al., 2015).  

There are several forthcoming satellite missions due for launch from late-2015 onwards that 

hold tremendous promise for the assessment and monitoring of water quality in inland, 

transitional, coastal and shelf-sea waters. Foremost amongst these are the Sentinel-3a and 

3b satellites that comprise part of ESA’s Copernicus programme 

(http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus) that will carry the 

Ocean Land Colour Instrument (OLCI). This sensor has a strong MERIS heritage and will 

provide daily observations (with 3a and 3b operating in constellation) on inland and ocean 

water quality with complete global coverage at 300 m spatial resolution. These sensors will 

replace the capability lost with the failure of Envisat in 2012 and provide continuity in ocean 

colour observation into the 2020s, at which time they will be succeeded by the Sentinel-3c 

and 3d follow-up missions with the intention to extend observations until 2030. The planned 

operational lifetime of the Sentinel-3 series of satellites sets it apart from previous missions 

as it will provide continuous, systematic and long-term observations for both inland and 

marine systems. 

These missions will be supported by higher spatial resolution data from the Multispectral 

Instrument (MSI) on-board the Sentinel-2a and 2b satellites scheduled for launch in 2015 

and 2016 respectively. In spite of the fact they were primarily designed as land missions, the 

MSI sensors on the Sentinel-2 series will have sufficient spectral and radiometric resolutions 

for application over turbid waters but will provide data at a significantly increased spatial 

resolution (10-60 m). This will afford a much needed ability to observe smaller water bodies 

from space not previously resolvable from the likes of MERIS, MODIS or the forthcoming 

Sentinel-3a/b. This capability is already provided to an extent by the Operational Land 

Imager on Landsat-8 but while it has a much improved radiometric resolution compared to its 
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predecessors its spectral band configuration is not as suitable for application over water 

bodies, especially for the retrieval of Chl-a. Sentinel-2 MSI will also have the advantage of 

being able to achieve a 5-day revisit frequency when the both satellites are in orbit.  

TABLE 1	

3. Challenges for retrieving in-water constituents 
 

3.1 Context 

Inland, estuarine and coastal waters are highly optically complex environments (Morel & 

Prieur, 1977; IOCCG, 2000) and the water bodies of the Danube basin and Black Sea are no 

different in this respect. Figure 1 shows some examples of phytoplankton, non-algal particles 

and CDOM absorption spectra from three inland waters located in the Hungarian part of the 

Danube basin. These freshwater systems are located within a few kilometres of each other 

but show marked variability in the shape and magnitude of their absorption. Many inland and 

near-shore waters are sporadically dominated by material of biological origin and during 

such phases these environments typically exhibit phytoplankton absorption spectra similar to 

the phytoplankton-dominated reservoir shown in Figure 1. In this situation, the Chl-a 

absorption features near 430 nm and 675 nm and a phycocyanin absorption feature at 620 

nm are clearly apparent (Gons et al., 1999; Babin et al., 2003; Hunter et al., 2008; Mishra & 

Mishra 2014).  

 

FIGURE 1 

 

The contribution of CDOM absorption to the bio-optical properties of inland, transition and 

near-shore waters is also an important, often dominant, component particularly in rivers, 

fluvially-influenced lakes and shallow estuaries. High concentrations of CDOM effectively 

decouples phytoplankton and non-algal particulate matter absorption in the blue (Bricaud et 

al., 1981; D’Sa & Miller, 2003; Brezonic et al., 2014) and, as a result, CDOM can hinder the 

accurate estimation of Chl-a and TSM from water-leaving radiative signals particularly when 

algorithms employing blue bands are used for their retrieval (Zhu et al., 2014). Significant 

variations in the TSM concentration can cause large changes in the magnitude and shape of 

water-leaving reflectance spectra (Figure 2). The spectra display an increase in remote 

sensing reflectance (Rrs) with increasing SPM and a change of colour (Rrs maxima position) 

in very turbid rivers. Rrs signal appears to be far from zero in the near-infrared wavelengths 

for the most turbid waters (e.g. Doxaran et al., 2003; Gernez et al., 2014). In such turbid 



Special	Issue	Science	of	the	Total	Environment	
Title: Understanding and managing complex transnational river – sea systems: problems and 
opportunities in the Danube – Black Sea 
		

	 11	

waters, particle scattering dominates the red spectrum confounding the accurate 

atmospheric correction of satellite data and the retrieval of phytoplankton absorption and 

pigment concentrations in these wavelengths (Dekker et al., 1997; Lavender et al., 2005; 

Ruddick et al., 2000; Morel & Bélanger, 2006).  

 

FIGURE 2 

 

The development and testing of algorithms for the retrieval of selected water quality 

properties over oceanic water over the last decade has led to high quality ocean colour 

products. Traditionally, biogeochemical parameters such as Chl-a, CDOM and TSM are 

estimated using empirical models derived from statistical regression between water-leaving 

radiances or reflectances and the concentration of these parameters. Many of these 

algorithms have found applications in optically complex waters (e.g. Ali et al., 2014; Bélanger 

et al., 2008; Kowalczuk et al., 2010; Matthews et al., 2010; Tyler et al., 2006). Regionally-

specific implementations and adaptations of already existing algorithms are also common in 

the literature (Budd & Warrington, 2004; Li et al., 2004; Yacobi et al., 2001; Palmer et al., 

2015). Similarly, much effort has been devoted to the development of new retrieval 

algorithms for optically complex waters (Duan et al., 2010; Wang et al., 2011; Spyrakos et 

al., 2011; Lah et al., 2014; Dogliotti et al., 2015). The expansion in the use of powerful 

inversion methods such as neural networks, the availability of in-situ data though dedicated 

databases such as MERMAID (http://mermaid.acri.fr) and LIMNADES 

(http://www.globolakes.ac.uk) and the improvement in quantity, quality and availability of 

Earth observation data have contributed to a growing list of retrieval algorithms. The 

advances in optical sensor design, bio-optical algorithms and validation methods have also 

supported the retrieval of a wide range of new water quality parameters (e.g. phycocyanin, 

particulate organic carbon, phytoplankton size distribution) (Simis et al., 2005; Nair et al., 

2008; Allison et al., 2010; Ciotti & Bricaud 2010; Hunter et al., 2010; Brewin et al., 2011; Sun 

et al., 2013).  

 

This section outlines the available water quality retrieval algorithms and atmospheric 

correction models that have been used or tested in near-shore and inland waters and 

provide some insights on their applications to systems such as the Danube Basin and the 

Black Sea. A comprehensive list and comparison of algorithms for the estimation of 

biogeochemical water quality parameters and atmospheric correction models in waters with 

high optical complexity can be found in Acker et al. (2005); Matthews (2011); Odermatt et al 

(2012); Blondeau-Patissier et al. (2014) and Zhu et al. (2014).  
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3.2 Constituent retrieval 

 

Many of the algorithms for estimating water constituent concentrations from EO data have 

been developed targeting the characteristics of a specific sensor (e.g. Doerffer & Schiller, 

2007; Yi et al., 2014). This does not always restrict their applicability to other sensors since 

in several cases they can be re-trained or have the location of the input bands shifted to the 

closest wavelength available (Gitelson et al., 2009; Moses et al., 2009; Lesht et al., 2013). 

For example, the near-infrared to red reflectance ratio which was suggested by Dall’Olmo et 

al. (2005) for estimating Chl-a in turbid productive waters has been applied using the 

corresponding bands of SeaWiFS, MODIS, MERIS and HICO (Gitelson et al., 2007; 

Giltelson et al., 2011). In a recent study, Nechad et al. (2010) developed a generic algorithm 

for the retrieval of SPM from any optical sensor using one band in the red to NIR part of the 

spectra. This model can also consider bidirectional effects and has been shown to be robust 

in moderate values of SPM. This type of approach could be particularly useful in a complex 

system such as the Danube basin and the Black Sea where multi-sensor approaches seem 

to be required to handle the variable scale of its component waters. While the removal of the 

atmosphere from the total signal measured by a space-borne sensor is still considered 

challenging over inland and near-shore waters, in turbid systems with high signal-to-noise 

some algorithms can compute water biogeochemical properties successfully from top-of-

atmosphere radiances (Gower et al., 2004) or Rayleigh-corrected reflectances (Matthews et 

al., 2012).  
 

Satellite observations over near-shore and inland aquatic systems are challenging, not only 

because of high complexity in the optical properties of the water column but also in the 

overlying continental atmosphere. The effective retrieval of the water properties by remote 

sensors is partly hindered by the contribution of the atmosphere (due absorption and 

scattering by gas molecules and aerosols) to the signal recorded by the sensors. Classic 

methods for aerosol retrieval and atmospheric correction of EO data over water are based 

on the assumption that water-leaving radiance is negligible in the infrared (IR) (Gordon & 

Wang, 1994). However, this assumption is normally not valid for coastal and inland waters 

(Doron et al., 2011). Dust aerosols in closed seas such as the Black Sea can result in the 

underestimation of water-leaving radiance from satellite platforms in the visible especially for 

shorter wavelengths (Banzon et al., 2009).  

 

The methods for aerosol retrieval and atmospheric correction used over near-shore and 

inland waters can be roughly grouped into water-specific models (e.g., Case-2 Regional 
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Processor: Doerffer & Schiller 2008; CoastColour: Brockmann 2014; Modular Inversion and 

Processing System: Heege & Fischer 2004; Management Unit of the North Sea 

Mathematical Models (MUMM) algorithm: Ruddick et al., 2000; ACOLITE: Vanhellemont & 

Ruddick 2015; Free University Berlin (FUB) algorithm: Schroeder et al., 2007; Short-wave 

infrared (SWIR)-based iterative algorithms: Wang, 2007; Zhang et al., 2014; Combined NIR-

SWIR: Wang & Shi 2007) and adapted land-surface models (SCAPE-M: Guanter et al., 

2009; Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH): ITT, 2009; 

Atmospheric/Topographic Correction for Satellite Imagery (ATCOR): Richter & SChl-apfer, 

2014). Since water-specific models consider water spectra at the lower boundary, significant 

errors may be introduced in the atmospheric correction over the highly dynamic and often 

complex near-shore and inland waters (Vidot & Santer, 2003; Goyens et al., 2013). On the 

other hand, land-surface models do not embrace any assumptions on the water spectra but 

they experience other shortcomings (e.g., assumptions on atmospheric homogeneity) and 

introduce large uncertainties over clear waters (Guanter et al., 2009; Jaelani et al., 2013).  

 

Remote sensing reflectance data in waters with high level of optical complexity are affected 

by the concentration of different optically active constituents and, as such, a single algorithm 

is unlikely to perform adequately in all situations. Some algorithm developers have tried to 

tackle this issue by predefining the limits to the applicability in their models. These limits are 

normally applied to the reflectance values or the concentrations of the water constituents 

(Stumpf & Tyler, 1988; Kutser et al., 2006; Du et al., 2008). However, the concentrations of 

the different water parameters are usually not known a priori.  For regionally-specific 

algorithms some attempts have been made to set limits on the Chl-a concentrations based 

on expected the values for the region (Rosado-Torres, 2008). Another recent approach has 

been to develop a single band semi-analytical algorithm using reflectance at 645 nm to 859 

nm with a switching scheme to improve globally applicability for retrieving turbidity, which is 

almost independent IOPs of different particle types (Dogliotti et al., 2015). The advantage of 

this approach is that a regionally derived turbidity/TSM ratio can be used to convert from 

turbidity to estimates of TSM. More sophisticated approaches, particularly for Chl-a include 

fuzzy c-means classification of satellite-derived data (Spyrakos et al., 2011; Moore et al., 

2014) and development of cluster-specific retrieval algorithms (Gonzalez Vilas et al., 2011). 

For those algorithms based on machine learning techniques, the range in the variation in the 

training dataset can define these thresholds. 

 

In order to facilitate convenient comparisons, existing in-water models for the estimation of 

biogeochemical properties from remotely sensed data in optically complex waters were 
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categorised here into three groups based on their retrieval approach. The first group 

comprises those algorithms whose performance and applicability is strongly driven by the 

shape and magnitude of the water-leaving radiative signal. The most common type of in-

water algorithm are those based on a single band or the difference or ratio between two 

bands derived based on statistical relationships with the measured concentrations of Chl-a 

or other in-water constituents (e.g. Morel & Prieur, 1977; Gitelson et al., 1985; Hoge et al., 

1987; Stumpf & Tyler, 1988; Dekker et al., 1991; Oki & Uasuoka, 2002; Dall’Olmo et al., 

2005), SPM (e.g. Curran & Novo, 1988; Dekker et al., 2001; Doraxan et al., 2002) and 

CDOM (e.g. D’Sa & Miller, 2003;; Del Castillo & Miller 2008; Mannino et al., 2008; Ficek et 

al., 2011). Combinations of more spectral bands have been also introduced in band ratio 

algorithms with variable results in order to account for the confounding effects of other 

optically active constituents (Dall’Olmo et al., 2003; Dall’Olmo & Gitelson, 2006; Gitelson et 

al., 2007; Le et al., 2009). In parallel, research in optically complex waters has focused on 

the pursuit of particular signal attributes (e.g., peak position and height) of the water-leaving 

radiative signal that appear to be unique to a specific parameter such as Chl-a fluorescence 

(Esaias et al., 1998; Gower et al., 1999; Matthews et al., 2012). One of the apparent 

limitations of this type of approaches is the need for well-defined features in the water-

leaving radiative spectra and in situations of low concentrations of the water constituents and 

poor atmospheric correction this requirement is not always fulfilled. In addition, re-tuning to 

specific conditions is normally necessary if the models are to be applied to new regions. 

Despite the limitations, these algorithms are usually easy to implement and regionally robust. 

 

The second group of algorithms comprise those are strongly driven by an understanding of 

the relationships between inherent optical properties (IOPs) (i.e., absorption, scattering and 

fluorescence) and the water-leaving radiative signal through the use of physics-based bio-

optical models. Several inversion techniques (e.g., spectral optimization, linear and non-

linear matrix inversion) have been developed for retrieve IOPs and to relate these to in-water 

biogeochemical properties (Hoge & Lyon, 1996; Garver & Siegel, 1997; Lee et al., 1999; 

Carder et al., 1999; Lee et al., 2002; Maritonema et al., 2002; Heege & Fisher, 2004; Smyth 

et al., 2006; Santini et al., 2010; Giardino et al., 2012; Werdell et al., 2013). Although, these 

models are physic-based many rely on empirical assumptions, while others require 

knowledge of the specific IOPs (SIOPs; i.e., absorption or scattering per unit mass) (Brando 

& Dekker, 2003). The output of these algorithms typically includes the three main optically 

active constituents, while more recent implementations also retrieve variables such as 

phycocyanin (Mishra et al. 2013; Li et al. 2015). This inverse modelling approach has often 

shown better retrieval capabilities than the empirical, data-driven algorithms (Huang et al., 
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2013). However, some of them still suffer from drawbacks such as their dependency on the 

initial parameterisation and the fact that the inversion process itself is an ill-posed problem 

(IOCCG, 2000).  

 

The third type of retrieval algorithm comprises those models based on machine learning 

approaches.  Machine-learning algorithms were introduced in image processing as powerful 

alternatives for the retrieval of water properties due to their ability to approximate a set of 

input data to the corresponding output and the limited assumptions required (Thiria et al., 

1993). Machine-learning algorithms that have been used in optically complex waters are 

based mainly on neural networks techniques (Keiner & Yan, 1998; Dzwonkowski & Yan, 

2005; Doerffer & Schiller 2007; Gonzalez-Vilas et al., 2011) but examples also include 

support vector machines (Matarrese et al., 2008) and hybrid active learning models 

(Shahraiyni et al., 2009). These approaches appear to be robust to noise and to allow the 

application of complex bidirectional radiative transfer models providing stable numerical 

outputs. They have shown good prediction capabilities in coastal (Spyrakos, 2012) and 

inland waters (Odermatt et al., 2010) and they are often accompanied with the improvement 

of the EO products by reducing residual atmospheric correction errors. Since these models 

are strongly driven by the data, a large representative training set is often required. 

Nevertheless, extending the training range can result in poorer accuracies and increased 

computational times. Machine-learning algorithms based on simulated datasets have been 

widely used to address this issue; however, they still fail to provide accurate results in 

regional and atypical situations (e.g. Spyrakos et al., 2011; Palmer et al., 2015). Moreover, 

careful selection of the initial inputs and parameterisation of these models are necessary to 

avoid imprecision in the prediction of the output and over-fitting.  

 

4. Inland Freshwaters  

The application of remote sensing for the assessment and monitoring of inland waters has 

developed markedly over recent decades particularly since the launch of the Terra- and 

Aqua-MODIS and Envisat MERIS sensors in 1999 and 2002 respectively. Numerous studies 

have demonstrated the potential of Earth observation for providing information on key water 

quality parameters including Chl-a, measures of water transparency (e.g., Secchi depth, Kd), 

turbidity, TSM concentrations and CDOM. The spatial coverage and temporal sampling 

frequency achievable with remote sensing can provide novel insights into dynamic 

processes in inland waters that cannot be easily captured through more in situ sampling or 

even from instrumented buoys (Palmer et al., 2015).  
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Many studies have derived estimates of the Secchi depth from satellite data. Most 

algorithms for the estimation of Secchi depth take advantage of the bands in red because as 

water clarity decreases, the water-leaving radiative signal in the red spectrum usually 

increases (Matthews, 2011). The retrieval of Secchi depth can also be achieved successfully 

using relatively broad spectral bands and thus many studies have capitalized on Landsat-

MSS/-TM/-ETM+/-OLI data as they offer high spatial resolution (30 m) suitable for 

application to moderately sized lakes and reservoirs. For example, Duan et al. (2009) used 

red band algorithms to successfully retrieve Secchi depth in two Chinese lakes and achieved 

good agreement (R2 ≥ 0.72) against measured in situ values.   

There are also a relatively large number of studies dedicated to the retrieval of TSM in inland 

waters, using sensors ranging from Landsat-TM/ETM+/OLI to ocean colour sensors such as 

MERIS and MODIS. This reflects the fact that TSM is arguably the most straightforward in-

water constituent to retrieve from remote sensing data. In similar fashion to algorithms for 

turbidity, reflectance in red bands is often used in TSM retrieval algorithms (Matthews, 2011) 

although many different approaches have been used including ratios of reflectance in the 

green and infrared. Gitelson et al. (1993) developed an algorithm based on reflectance in the 

red that was effective in retrieving TSM in lakes for concentrations up to 66 mg/L. In 

extremely turbid waters (TSM >100 mg/L) such as rivers and estuaries, nonlinearity in the 

relationship between water-leaving reflectance and the TSM concentration is often observed. 

To counter such effects, recent research has shown that the signals in the SWIR (c. 1070 

nm) demonstrate greater linearity with TSM and are less prone to saturation (Knaeps et al., 

2012) at very high turbidity. 

Chl-a is the main light harvesting pigment in most phytoplankton and is widely accepted to 

provide an accurate indication of phytoplankton biomass in inland, coastal and ocean 

waters. There is an extensive literature demonstrating that Chl-a can be retrieved over from 

water-leaving radiative signals. In large lakes, Chl-a can be retrieved using ocean colour 

satellite data from sensors such as MODIS and MERIS. Palmer et al. (2015) used MERIS 

data to map changes in the Chl-a concentration in Lake Balaton (Hungary) over a 5-year 

period with a high accuracy (R2 = 0.87, RSE 4.19 mg m-3 (30.75%)). Figure 3 shows monthly 

composited mapped Chl-a products for Lake Balaton, Hungary derived from the MPH 

algorithm (Matthews et al., 2012). The spectral and radiometric resolutions of MERIS and 

MODIS are well suited for the retrieval of Chl-a in inland waters but their coarse spatial 

resolution limits their application to smaller water bodies. Higher resolution satellite data from 

sensors such as Landsat-TM/ETM+ has been used to retrieve estimates of Chl-a in smaller 

lakes. Tyler et al. (2006), for example, used Landsat-TM data to estimate the concentration 
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of Chl-a in Lake Balaton. Tebbs et al. (2013) used Landsat ETM+ data to retrieve estimates 

of Chl-a in Lake Bogoria in the Kenyan Rift Valley at concentrations up to 800 mg m-3. 

However, the poor spectral and radiometric resolutions of the Landsat sensors limits their 

application to lakes with high turbidity and, although the recently launched OLI sensor on 

Landsat-8 has a greatly improved radiometric resolution, its spectral channels are arguably 

less suited to Chl-a retrieval than its predecessors (Vanhellemont and Ruddick, 2015). 

FIGURE 3 

In addition to retrieving estimates of the bulk Chl-a concentration, numerous studies have 

now also demonstrated the feasibility of obtaining information on the abundance of 

cyanobacteria through the detection and quantitative retrieval of the diagnostic phycocyanin 

pigment. Phycocyanin has a major absorption maximum near 620 nm. The MERIS sensor 

carried by Envisat had a spectral channel centered close to at 620 nm and several studies 

have developed and tested algorithms to retrieve phycocyanin absorption and 

concentrations from MERIS data. Riddick et al. (in review) used MERIS data to map 

seasonal changes in the concentration of phycocyanin in Lake Balaton and were able to 

demonstrate not only good retrieval accuracy (R2 = 0.71, mean absolute percentage error 

(MAPE) = 62%) but also a strong relationship between the retrieved phycocyanin 

concentration and the abundance of cyanobacteria as estimated from standard cell counts. 

This approach has been further demonstrated by Wheeler et al. (2012) and Qi et al. (2014) 

amongst others. However, following the failure of MERIS in 2012, currently only the OCM-2 

(Ocean Color Monitor) sensor on the OceanSat-2 satellite has the potential to retrieve 

phycocyanin concentrations, although it coarse spatial resolution of 360 m means it is also 

restricted to application over large lakes (Dash et al., 2011). The potential to discriminate 

other phytoplankton groups beyond cyanobacteria has not been examined for inland waters, 

although algorithms for the identification of other toxic bloom-forming species such as red 

tide dinoflagellates have been developed for marine waters (e.g., Siswanto et al., 2013).  

 

CDOM is arguably the most challenging in-water constituent to retrieve from remote sensing 

data. CDOM is non-scattering and has very high absorption in the blue and green spectral 

regions. Consequently, increases in CDOM concentration result in a decrease in the water-

leaving signal and an increase in the signal-to-noise ratio. Changes in the water-leaving 

signal due to variability in CDOM are thus difficult to resolve, particularly with sensors with 

poor radiometric resolution. The need for a highly accurate atmospheric correction, 

particularly at blue wavelengths, is also a challenge to the development of operational 

approaches for CDOM retrieval in inland waters. Campbell et al. (2011) used an analytical 
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algorithm applied to MERIS data to successfully retrieve CDOM in the Burdekin Falls Dam in 

Northern Australia with a mean bias of 0.12 m-1. Zhu et al., (2014) provide the most 

comprehensive assessment of CDOM algorithms for inland waters published thus far with an 

evaluation of 15 different models. The performance of the models varied greatly with R2 

varying from 0.01 to 0.89 and RMS errors from 0.29 to 1.43 m-1 for CDOM absorption 

coefficients ranging from 0.11 to 8.46 m. However, the coarse spatial resolutions of ocean 

colour sensors are, as previously discussed, prohibitive to applications over small lakes. The 

retrieval of CDOM from sensors such as Landsat TM/ETM+ has proven unreliable, largely 

due to the poor spectral and radiometric resolution of these sensors; thus far only a very 

limited number of studies have successfully retrieved CDOM from Landsat or similar data 

products (e.g. Kuster et al., 2005; 2012) and then only for lakes covering very large DOC 

concentration gradients.  

 

5. Transitional and coastal waters  

 

Transitional waters are ‘bodies of surface water in the vicinity of river mouths which are 

partially saline in character as a result of their proximity to coastal waters but which are 

substantially influenced by freshwater flows. If riverine dynamics occur in a plume outside 

the coastline because of high and strong freshwater discharge, the transitional water may 

extend into the sea area’ (EC, 2000). Deltas, estuaries, gulfs with freshwater input, lagoons 

and salt marshes can all be considered transitional environments. Transitional and near-

shore coastal waters often share common characteristics regarding optical properties and 

physical processes. Transitional and coastal systems represent spatially and temporally 

complex environments, largely as a result of the dynamic interaction of the physical and 

biological factors (e.g. Yang et al., 2013; Petus et al., 2014) that are compounded still further 

by the variation in tides and variations in freshwater discharge from the catchment.  

Whilst macro-tidal estuaries tend to be more extreme in their dynamic behaviour, microtidal 

systems including lagoons, and deltas exhibit spatial and temporal heterogeneity as a result 

of the subtle balance between sediment inflow from inland waters or the sea and sediment 

outflow originated by wind erosion and tidal currents (Volpe et al., 2011). River plumes 

discharging into coastal areas, either in the vicinity of an estuary or delta, represent the main 

pathways from the continent to the ocean and the main transport mechanism for nutrients, 

sediments and land-based pollutants into the coastal waters (Dagg et al., 2004). The SPM 

exported by turbid rivers in the sea, directly affects phytoplankton productivity, nutrient 

dynamics and the transport of pollutants in coastal zones (Doxaran et al., 2009).  
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EO data are an important source of synoptic observations of coastal and transitional aquatic 

systems. Much research has been published on the use of data from multiple satellite 

sensors (e.g. MODIS, MERIS, Landsat) that offer the necessary spatial resolution and/or 

sensor sensitivity for mapping and assessing spatial and temporal variation of water quality 

and sediment flux (e.g. Burrage et al., 2008; Doxaran et al., 2009; Elsner et al., 2012; 

Salama et al., 2012; Chen et al., 2014; Eleveld et al., 2014; Karageorkis et al., 2014; Keith, 

2014; Loisel et al., 2014; Mendes et al., 2014; Tian et al., 2014; Zhang et al., 2014; Cai et 

al., 2015; Schaeffer et al., 2015). The main parameters assessed by EO include the 

phytoplankton Chl-a concentration and SPM. Both variables are measures of water turbidity 

and thus allow for the delineation of dynamic features such as river plumes that provide 

important insights into ecosystem function. Such studies have also been able to identify 

long-term seasonal changes in the turbidity patterns, their relationship with physical drivers 

(hydrological conditions, wind, waves, tide), and monitor river plume dynamics, sediment 

dynamics and associated phenomena (re-suspension/deposition) and any environmental 

changes (e.g., Neil et al., 2012) 

 
6. Remote sensing of the Danube and Black Sea 
 
The Danube system encompasses a complex mosaic of river channels, lakes and lagoons, 

discharging suspended particles tens of kilometres into the coastal and sea-shelf waters of 

the Black Sea (Guettler et al. 2013) and influence the biogeochemical properties of the shelf-

sea system (Friedrich et al, 2014) and has impacts as far as the Turkish coast (Tsiaras et al., 

2008). The sheer size of the system and scarcity of in situ data means that remote sensing 

data are likely to become increasingly important for providing synoptic observations on the 

state of the system and its evolution over time.  In order to resolve spatially and temporally 

dynamic processes, particularly at the interface between the freshwaters of the Daunbe river 

and the marine waters of the Black Sea, observations are needed at medium to high spatial 

resolutions and also at high temporal sampling frequency (Doxaran et al., 2009). This 

presents a challenge at present because although the temporal resolution of ocean colour 

platforms are of the order of 1-3 days globally, their spatial resolution is only suitable for 

observing the coastal and shelf-sea area and some of the larger coastal lagoons and lakes. 

Those platforms capable of providing high spatial resolution data such as Landsat-7 TM and 

-8 OLI have significantly reduced temporal sampling frequencies (8-14 d) (Figure 4) and 

while they can provide insights into the seasonal dynamics of the system they might not be 

able to sufficiently capture the occurrence and effect of more episodic events (e.g., high 

rainfall floods, storms, phytoplankton blooms).   
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This will be partly addressed once the Sentinel-2 and Sentinel-3 satellite constellations are 

operational and providing data synergistically on a 1-day and 5-day repeat cycle globally and 

at spatial resolutions of 10-60 m and 300 m respectively.  The 16-bit radiometric resolution of 

OLCI should provide at least comparable performance to MERIS in terms of the dynamic 

range for constituent retrieval and improved performance over predecessors such as 

MODIS. The lower 12-bit resolution of the Sentinel-2 MSI sensors, coupled with their 10-20 

m spatial resolution in many of the visible and near-infrared bands, will result in a lower 

signal-to-noise ratio at its native resolution than achievable with OLCI. Thus spatial and 

temporal binning of the data will probably be required to achieve the desired performance for 

retrieval of parameters such as Chl-a and TSM. 

 

FIGURE 4 

 

The imminent availability of these new data streams from the ESA Sentinels and other 

forthcoming platforms will provide new opportunities to observe dynamic processes in the 

Danube system from space, including: (i) the variation in plume extent from the Danube 

sediment laden waters into the Black Sea; (ii) the connectivity between the channels of the 

delta and the delta lakes and lagoons; and (iii) the frequency and spatial extent of events 

such as flooding and eutrophication including the connectivity phenology of events at the 

local and regional catchment scale  The use of archive data can also fill in the gaps in 

infrequent monitoring and provide a fuller interpretation of the magnitude and impact of 

events and processes.  Surprisingly, there have been relatively few studies undertaken thus 

far that have used remote sensing data to study biogeochemical processes in the Danube-

Black Sea region. Those studies that have been undertaken have largely focused on 

mapping spatial and temporal variation in suspended particles and turbidity and even here 

the publications are sparse (Constantin et al., 2016) within the system and can be broadly 

grouped into:  

  

(i) those studies focused on the Daunbe river and the dynamics of the sediment 

plume and its seasonal variability (e.g., Constantine et al., 2016; Guttler et al., 

2011; Karageorgis et al., 2009); 

 

(ii) those studies that sought to map in-water optical properties and constituents and 

their distribution to assess environmental interactions in the wider northwest Black 

Sea and to use the observations to improve ecosystem models, including CDOM 
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(Barale et al., 2002), chl-a (Tsiaras et al., 2008) and particle size (Karageorgis et 

al., 2014). 

 

The erosion, transport and deposition of suspended particles are some of the key processes 

influencing the state and behaviour of the Danube system and the coastal and shelf-sea 

waters of the Black Sea. The Danube is the major source of water and sediment for the 

Black Sea and the processes that govern the transport of suspended particles from the 

Daunbe delta into the Black Sea are incredibly complex. Historically, damming and channel 

dredging have reduced the sediment input leading to degradation and erosion of the delta 

and the coastal environment (Panin and Jipa, 2002). At the same time, intensification of land 

use has had the opposite effect (McCarney et al., 2011) and together, these influences 

along with climate change drivers control the fluvial transfer and variability across the basin. 

The turbid waters of the Danube mix with the brackish waters of the Black Sea over a large 

area as the Danube river splits into three main channels are Chilia (north) with a secondary 

delta (situated in Ukraine), Sulina (middle) and Sfantu Gheorghe (south) over the deltaic 

plain. The tidal variations are small in the Black Sea (c. 7 to 12 cm; Giosan, 2007) and as 

such the interaction between the wind, waves and currents largely shape the hydrodynamic 

processes governing sediment transport in the transitional zone. 

 

Guettler et al. (2013) used a multi-sensor approach, combining observations from five 

difference satellites from ALOS AVNIR-2 at 10 m spatial resolution, through Landsat-7 

TM/ETM+ at 30 m spatial resolution up to Envisat MERIS at 300 m resolution, to study the 

spatial and temporal dynamics of sediment in the Danube Delta and Black Sea and obtain 

insights into the relative importance of hydrodynamic and meteorological processes in 

shaping sediment transport through the system. Interestingly, they showed that sediment 

dynamics in the coastal zone are largely shaped by the interactions between 

hydrodynamical and meterological processes, whereas phytoplankton growth is increasingly 

important to the turbidity of the coastal lagoons and deltaic lakes. They were also able to 

show that the Danube plume can extend some 70 km into the Black Sea under specific 

hydrodynamic conditions. This study exemplifies the potential for using satellite observations 

acquired at different spatial and temporal resolutions in a synergistic manner to provide 

otherwise unobtainable insights into the dynamics of the Danube river basin and Black Sea.  

Sentinel-2a MSI and Landsat-8 OLI are already providing high spatial resolution data and 

will soon be complemented by the higher frequency observations from Sentinel-3a OLCI.  

Landsat-8 imagery, for instance, has the spatial and radiometric resolution to map the TSM 
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concentrations within the river channels, deltaic lakes and Black Sea coastal environment 

(Figure 4).  

 

The Danube is known to exert a strong influence over the Black Sea system, but again our 

understanding of the interaction between these systems remains limited.  There have been 

several studies that have used satellite data to examine the optical properties and 

biogeochemical processes of the shelf-sea and pelagic zones of the Black Sea.  The use of 

Earth observation for monitoring and assessment of marine systems is far more advanced 

than for inland and transitional waters and operational services are already available.  

Broadly speaking, monitoring of the Black Sea from Earth-observing satellites can be split 

into two approaches: near-real time (NRT), where the data are delivered to end-users as 

soon as possible after the satellite has passed over the site (typically same day), and 

reprocessing (REP) mode where a long time series is processed using consistent data 

processing methods.  

 

Near-real time data can be used for guiding in situ sampling, for instance, to find the location 

of the highest concentrations of phytoplankton or suspended particles, or could be used to 

update a numerical model to make short-term forecasts, such as the development of a 

harmful algal bloom. Reprocessed time series, by contrast, can be used to find the 

interannual variability for an area (Kopelevich et al., 2013), to detect anomalous events (e.g. 

McQuatters-Gollop et al., 2008), changes in phenology (Palmer et al., 2015b), or to compare 

with a long-term run of a numerical model. The European Copernicus programme is 

implementing the Copernicus Marine Environment Monitoring Service (CMEMS) 

(http://marine.copernicus.eu/) that provides data for both NRT and REP purposes. MCS will 

be established in 2015 following development of the precursor service through the MyOcean 

project. Satellite data for the Black Sea are available from the Thematic Assembly Centres 

which produce a series of data products including ocean colour, sea-surface temperature, 

and sea-level while also providing in situ data; these data are used by end-users as well as 

the dedicated Black Sea Monitoring and Forecasting Centre.  

 

NRT ocean colour data for the Black Sea are produced by CNR, Italy and currently (March 

2015) rely on the Aqua-MODIS and VIIRS sensors and include Chl-a computed with the 

regional algorithm of Kopelevich et al., (2013) and “optics” products which include Rrs at 412, 

443, 488, 531, 547, 667, and 869 nm and the diffuse attenuation coefficient at 490 nm 

(Kd490).  

 



Special	Issue	Science	of	the	Total	Environment	
Title: Understanding and managing complex transnational river – sea systems: problems and 
opportunities in the Danube – Black Sea 
		

	 23	

The REP data makes use of the state of the art Ocean Colour Climate Change Initiative (OC 

CCI) product, which is produced by merging data from SeaWiFS, MODIS-Aqua and MERIS, 

de-biasing MODIS and MERIS with respect to SeaWiFS as a reference sensor. Likewise, 

data are available as Chl-a and optical products at 4 km resolution. A regional version of this 

product is produced by CNR using OC CCI level 2 data as input with the algorithm of 

Kopelevich et al (2013) to compute Chl-a. The existing 4 km resolution product will be shortly 

superseded with a 1 km version while other new regional algorithms (Zibordi et al., 2014) will 

be investigated. Furthermore, Level 4 products are being produced that use the DINEOF 

approach (Beckers and Rixen, 2003) to “gap fill” cloud covered areas. 

 

A key issue with EO data is ease of access: often users need a time series for a given 

location or a single image, or may wish to compare ocean colour data with sea-surface 

temperature images, or compare EO data with model output. Ideally, this analysis could be 

accomplished without having to download the entire data archive. Recent work in the OC 

CCI project and an EC FP7 project called Operational Ecology has enabled development of 

a web-based visualisation portal with simple data analysis and comparison tools. The EO 

portal (http://www.oceancolour.org) contains the OC CCI data whilst model output provided 

by the Institute of Marine Science at the Middle East Technical University (METU) is 

available at http://portal.marineopec.eu. Figure 5 shows a time series of Chl-a (using the 

global Chl-a algorithm) for a small box on the northwest shelf region. The system can be 

used for simple analyses: for example, Rrs data were extracted for a box in the Black Sea 

western gyre and used with the Case-1/Case-2 classification method of Lee and Hu (2006) 

to show that the region is Case-1 most of the time when considering turbidity (measured by 

Rrs555) but can be considered Case-2 permanently with regard to CDOM absorption as 

indicated by the Rrs412/Rrs443 ratio. The two portals will be merged shortly with both model 

and EO data available in one place. 

 

FIGURE 5 

 

The European Copernicus programme includes planned launches of the OCLI (on board the 

Sentinel-3 series of spacecraft) with the first launch expected in late 2015. Sentinel-3 OLCI 

will provide ocean colour imagery at 300m, similar to MERIS full resolution data; however, 

unlike MERIS, OLCI 300m data will be global and since there will be three Sentinel-3 

platforms operational at any time the frequency will be superior to MERIS. An ESA project 

CoastColour (www.coastcolour.org) re-processed the entire MERIS 300m data set and the 

Black Sea is one of the user specified areas. Figure 6 shows the detail possible even with 
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the 300 m resolution, revealing significant contrast in the eutrophic status of lakes within the 

Danube Delta. A number of pixels within the main branches of the River Danube through the 

Delta are also resolved.  

 

FIGURE 6 

 

7. Conclusions 

 

The world’s surface waters remain at risk from a range of natural and anthropogenic 

environmental pressures. One of the limiting factors on understanding the consequences of 

these pressures is the lack of consistent data collected systematically and at a sufficient 

spatial resolution and temporal frequency to allow greater understanding of the connectivity 

of surface waters through the ecological compartments that comprise the river–shelf-sea 

continuum. There are a number of Earth observation missions planned that will lead to step 

change in our ability to monitor inland, coastal and transitional waters. The forthcoming 

generation of satellites, such as ESA’s Sentinel 2 and -3 missions have the potential to 

provide comprehensive observational capacity for large river-sea systems such as the 

Danube-Black Sea. Numerous examples exist demonstrating the successful application of 

EO data to the characterisation and monitoring of lake, rivers transitional and coastal waters 

and multi-sensor approaches (MERIS, MODIS, SeaWiFS) have been used to extend time 

series at high temporal frequency (weekly to monthly) data back into the 1990s. Collectively 

these examples demonstrate the exciting potential that satellite data archives from past 

missions allied to observations from current and forthcoming platforms have to offer, 

particularly when such data are used synergistically and merged to develop consistent long-

term climatologies.  

 

The studies highlighted in this contribution demonstrate that a range of regionally-tuned or 

adaptive algorithms for the retrieval of optical and biogeochemical properties can be used to 

observe the dynamic behaviour of large, complex river basins and their interface with marine 

systems. Despite the number of applications of EO data to inland systems, coastal and 

shelf-sea systems, this review has highlighted that very few look across these environmental 

systems and the general applicability of these approaches in a multi-component system like 

the Danube basin and its interface with the Black Sea has yet to be fully explored. 

Furthermore, application of EO to the Danube River-Delta-Sea system have focussed 

primarily on sediment only.   
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To become operational, improvements in cross-platform the atmospheric correction of 

satellite data over turbid waters are urgently need and further effort is required to quantify 

and better constrain the uncertainties on the performance of in-water models in the different 

optical water types (e.g. high phytoplankton biomass, sediment-laden, CDOM dominated) 

that can be found in any of the components that contribute to these systems. To facilitate the 

development and selection of algorithms, a much improved understanding of the sources 

and magnitude of the variability in the SIOPs of these water types is needed to better 

understand their contribution to the water-leaving radiative signal and to better constrain the 

uncertainties in model parameterisation and the generated data products. In systems like the 

Danube and Black Sea that are likely to exhibit significant variability in the optical properties 

of the various water bodies, approaches must be developed that can allow dynamic 

selection of in-water and atmospheric models in space and time to optimise performance 

and minimise product uncertainties. Allied to this is a need for high quality in situ data, 

measured using community-endorsed protocols to facilitate algorithm development and 

validation. This is especially challenging in multi-national river-sea systems such as the 

Danube.  

 

In spite of these challenges, Earth observation data are being processed and reprocessed 

on an operational basis and, due to rapid improvements in computing power, NRT 

monitoring of inland, transitional, coastal and shelf-sea waters is now a realistic ambition. 

These data are sufficiently reliable to reveal new insights into the connectivity between the 

changes occurring within and across the catchment and the resulting downstream impacts in 

the highly dynamic transitional, coastal and shelf-sea environments.  Collectively, these data 

will yield new spatially resolved insights into the highly dynamic processes that shape the 

structure and function of inland, transitional, coastal and shelf-sea ecosystems and open a 

window of opportunity to better understand the response and sensitivity of our surface 

waters to natural and anthropogenic pressures.  
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Figures 

Figure 1. Examples of absorption coefficients (aCDOM; aNAP and aph) for different systems 
in the Danube Basin.  

Figure 2. Examples of water leaving reflectance (Rrs) from: a) near-shore waters in the Black 
Sea (data from the Gloria AERONET station, as displayed on NASA’s AERONET web-page) 
b) a turbid lake in the Danube Basin (unpublished ship borne data collected in July 2013 by 
University of Stirling in Lake Balaton, Hungary) and c) a very turbid river in the Danube Basin 
(unpublished ship borne data collected in July 2013 by University of Stirling in river Zala, 
Hungary).   

et alFigure 3. Example of MERIS derived monthly integrated time series of Chl-a from Lake 
Balaton. Figures reproduced courtesy of Carsten Brockman from the ESA funded Diversity II 
project.  

Figure 4. Landsat-8 image showing the complex turbidity pattern as a result of the Danube 
discharging through the Danube Delta into the Black Sea and the variable connectivity with 
lakes in the delta. Image acquired on the 24 December 2014 (NASA/USG Landsat 8 OLI: 
RGB – Rayleigh corrected). Inset: SPM concentration (g m3) in the Danube Delta and Black 
Sea on the 24 December 2014. SPM estimated using the 665nm band from the Rayleigh 
corrected Landsat-8 image (after Nechad et al., 2010). 
 
Figure 5. a) OC CCI web-based visualisation portal with b) time series (1998-2013) of Chl-a 
for a box on the northwest shelf close to the Danube Delta.  
 
Figure 6. MERIS Full Resolution image showing chl a for Danube delta; inset whole swath.  
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Special	Issue	Science	of	the	Total	Environment	
Title: Understanding and managing complex transnational river – sea systems: problems and 
opportunities in the Danube – Black Sea 
		

	 49	

 

Table 1. 

Sensor  Satellite 

Resolution 
Swath width 
(km) Organisation  Data range  Price 

Spectral (nm) Temporal  
(days) Radiometric  Spatial (m) 

PACE Worldview-3 450-800 (8) 1 14-bit 0.3 13.1 Digital Globe  2014-Present Payment 

Quickbird  Quickbird 450-900 (5) 1-3.5 11-bit 0.7 16.5 Digital Globe  2001-Present Payment 

SPOT 6 SPOT 6 455-890 (4) 01-May 12-bit 1.5 60 CNES 2012-Present Payment 

SPOT 7 SPOT 7 455-890 (4) 01-May 12-bit 1.5 60 CNES 2014-Present Payment 

IKONOS LM900 445-928 (5) 1 11-bit 3 11.3 Digital Globe  1990-Present Payment 

LISS 4 IRS-P6 520-680 (3) 5 10-bit 5.8 70 ESA 2003-Present Free 

HRG SPOT 5 480-1750 (5) 02-Mar 8-bit 10 60 CNES 2002-Present  Payment 

ETM Landsat 7 450-2350 (8) 16 8-bit 10 16 USGS  1999-Present Free 

Aster Terra 520-1165 (14) 16 8-bit 15 60 NASA 2002-Present  Free 

OLI Landsat 8 435-2294 (9) 16 12-bit 15 185 USGS  2013-Present Free 

CHRIS Proba-1 415-1050 (19) 7 12-bit 18 14 ESA 2001-Present Free 

LISS 3 IRS-P6 520-1700 (4) 24 7-bit 23.5 141 ISRO 2003-Present Free 

Hyperion EO-1 400-2500 (220) 16 12-bit 30 7.5 NASA 2000-Present Free 

ALI EO-2 430-2350(9) 16 11-bit 30 37 NASA 2000-Present Free 

HICO ISS 300-1000 (87) 3 14-bit 100 45 NASA 2003-Present Free 

TIRS Landsat 8 1060-1251 (2) 16 12-bit 100 185 USGS  2013-Present  Free 

MODIS Terra/Aqua 405-14385 (36) 16 12-bit 250 2330 NASA 1990-2014 Free 

MERIS FS Envisat 390-1040 (15) 3 16-bit 260 1150 ESA 2002-2013 Free 

OCM IRS-P4 400-900(8) 2 12-bit 360 1420 ISRO  1999-2010 Free 

VIIRS NPP and 
JPSS 402-11800 (22) 1 12-bit 370 3000 NASA 2011-Present Free 

WiFS SeaWiFS 402-885 (8) 2 10-bit 1000 2801 NASA 1997-2010 Free 

AVHRR 3 NOAA-18 580-1250 (6) 1 12-bit 1100 3000 GeoEye 2005-Present Free 

MERIS RR Envisat 390-1040 (15) 3 17-bit 1200 1150 ESA 2002-2013 Free 

SEVIRI METEOSAT 
400-1600 (4) 

0.001 10 bit 
1000 Geostationary 

ESA 2004 Free 
3900-13400 (8) 3000 Centred on 

Africa 

MCI Sentinel 2 425-1405 (13) 
2 systems 

12 bit Oct-60 290 ESA April 2015 Free 
5 days 

OLCI Sentinel 3 400-1020 (21) 
3 systems 

16 bit 300 1270 ESA January 2016 Free <2 days 


