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Abstract

Let G be a connected non-bipartite graph with exactly three dis-
tinct eigenvalues ρ, µ, λ, where ρ > µ > λ. In the case that G has
just one non-main eigenvalue, we find necessary and sufficient spectral
conditions on a vertex-deleted subgraph of G for G to be the cone over
a strongly regular graph. Secondly, we determine the structure of G
when just µ is non-main and the minimum degree of G is 1 + µ− λµ:
such a graph is a cone over a strongly regular graph, or a graph derived
from a symmetric 2-design, or a graph of one further type.
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1 Introduction

Let G be a graph of order n with (0, 1)-adjacency matrix A. An eigenvalue
σ of A is said to be an eigenvalue of G, and σ is a main eigenvalue if the
eigenspace EA(σ) is not orthogonal to the all-1 vector in IRn. Always the
largest eigenvalue, or index, of G is a main eigenvalue, and it is the only
main eigenvalue if and only if G is regular. We say that G is an integral
graph if every eigenvalue of G is an integer. We use the notation of the
monograph [5], where the basic properties of graph spectra can be found in
Chapter 1.

Let C1 be the class of connected graphs with just three distinct eigen-
values, and let C2 be the class of connected graphs with exactly two main
eigenvalues. It is an open problem to determine all the graphs in C1, and
another open problem to determine all the graphs in C2. Here we investi-
gate graphs in C1 ∩ C2. From [6, Propositions 2 and 3] we know that if G
is a non-integral graph in C1 then either G is complete bipartite or the two
smaller eigenvalues of G are algebraic conjugates. In the latter case, G has
exactly 1 or 3 main eigenvalues, and so a graph in C1 ∩ C2 is either integral
or complete bipartite.

The class C1 contains all connected non-complete strongly regular graphs;
moreover it is known that if H is a strongly regular graph of order n with
eigenvalues ν > µ > λ then the cone K1 5 H lies in C1 if and only if
λ(ν − λ) = −n (see [8] and Lemma 2.1 below). We shall see in Section 2
that the condition λ(ν−λ) = −n is equivalent to the condition ν = µ(1−λ),
and that when this condition is satisfied we have K1 5H ∈ C1 ∩ C2. There
are infinitely many strongly regular graphs which satisfy the condition (see
[8, Proposition 7.1]); examples include the Petersen graph (µ = 1, λ = −2),
the Gewirtz graph (µ = 2, λ = −4) and the Chang graphs (µ = 4, λ = −2).

Now let G be a non-bipartite graph in C1 ∩C2 with spectrum ρ, µ(k), λ(l)

where ρ > µ > λ. In Section 3, we prove that the following are equivalent:
(a) G is the cone over a strongly regular graph, (b) G has a vertex-deleted
subgraph with just three distinct eigenvalues, (c) G has a vertex-deleted
subgraph with index ν = µ(1−λ). In particular, for G ∈ C1∩C2, application
of the condition ν = µ(1− λ) is not confined to a strongly regular graph H
such that G = K1 5H.

We note that C1∩C2 also contains the graphs constructed by van Dam [6]
from a symmetric 2-(q3−q+1, q2, q) design D: such a graph is obtained from
the incidence graph of D by adding an edge between each pair of blocks. We
refer to such graphs as graphs of symmetric type; they exist whenever q is
a prime power and there exists a projective plane of order q − 1 [7]. Their
eigenvalues are q3, q−1, −q with multiplicities 1, q3−q, q3 +1 respectively.
These graphs share with the cones described above the properties that µ is
non-main and 1 + µ− µλ = δ(G), the minimum degree in G. In Section 4,
we determine the structure of all graphs in C1 ∩ C2 with these properties.
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2 Preliminaries

Our first proof begins with a short derivation of the condition λ(ν−λ) = −n,
which was obtained by other means in [8, Proposition 6.1(b)].

Lemma 2.1. Let H be a strongly regular graph of order n with spectrum
ν, µ(s), λ(t), where ν > µ > λ. Then K1 5 H has just three distinct eigen-
values if and only if λ(ν − λ) = −n, equivalently ν = µ(1 − λ). In this
situation, K1 5 H has spectrum ρ, µ(s), λ(t+1), where ρ = ν − λ, and the
main eigenvalues of K1 5H are ρ and λ.

Proof. Note that µ ≥ 0 and λ < −1 (cf. [5, Theorem 3.6.5]). From
[5, Eq.(2.23)] we know that the characteristic polynomial of K15H is given
by

PK15H(x) = PH(x)

(
x− n

x− ν

)
= (x− µ)s(x− λ)t(x2 − νx− n).

If K1 5 H has just three distinct eigenvalues, then x2 − νx − n is either
(x− ρ)(x− µ) or (x− ρ)(x− λ), where ρ is the index of K15H. The first
possibility cannot arise because then ρ + (s + 1)µ + tλ = 0 = ν + sµ + tλ,
whence ρ = ν − µ ≤ ν, contradicting [5, Proposition 1.3.9]. Hence K1 5H
has spectrum ρ, µ(s), λ(t+1), where now ρ = ν − λ. Since also ρλ = −n, we
have λ(ν − λ) = −n as required. In this situation, K1 5H has adjacency

matrix A =

(
0 j>

j A′

)
, where j is the all-1 vector in IRn and A′ is the

adjacency matrix of H. Now µ is a non-main eigenvalue of H, and so if

x ∈ EA′(µ) then

(
0
x

)
∈ EA(µ). Since EA′(µ) and EA(µ) have the same

dimension, it follows that µ is a non-main eigenvalue of K1 5 H. Since
K1 5H is not regular, the main eigenvalues of K1 5H are ρ and λ.

Conversely if λ(ν − λ) = −n then x2 − νx − n = (x − (ν − λ))(x − λ).
Then ν − λ is the index of K1 5 H and K1 5 H has just three distinct
eigenvalues.

Finally, from [5, Theorem 3.6.4] we have n = (ν − µ)(ν − λ)/(ν + µλ),
and so λ(ν − λ) = −n if and only if ν(λ + 1) + µ(λ2 − 1) = 0, equivalently
ν = µ(1− λ). 2

The parameters of a strongly regular graph are expressible in terms of
its eigenvalues [5, Theorem 3.6.4]. For future reference we note that the
graph H of Lemma 2.1 has parameters (q, r, e, f), where q = λ2µ+λ2−λµ,
r = µ− λµ, e = 2µ+ λ and f = µ.

Lemma 2.2. A graph G in C1 ∩ C2 has exactly two distinct degrees (say
d1, d2), and these degrees determine an equitable bipartition of G. Moreover,
if G has spectrum ρ, µ(k), λ(l), where ρ > µ > λ, then di = α2

i − λµ, where
αi > 0 (i = 1, 2) and either
(a) µ is non-main and α1α2 = −λ(µ+ 1), or
(b) λ is non-main and α1α2 = −µ(λ+ 1).
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Proof. Suppose that G has vertex set V (G) = {1, . . . , n} and adjacency
matrix A. Since G ∈ C1 we have (cf. [6, Section 4]):

(A− µI)(A− λI) = aa>, (1)

where a spans EA(ρ) and each entry of a is positive. Thus if a = (a1, . . . , an)>

then deg(i) = a2i − λµ (i = 1, . . . , n). Since G ∈ C2, either (a) µ is non-main
and (A− ρI)(A− λI)j = 0 or (b) λ is non-main and (A− ρI)(A− µI)j = 0
(cf. [9, Proposition 2.1]). In particular, A2j ∈ 〈d, j〉, where d = Aj. Now
a(a>j) ∈ 〈d, j〉, and a>j 6= 0. Accordingly we have a = rd + sj for some
r, s ∈ IR. Note that r 6= 0 since G is not regular. It follows that

ra2i − ai − rλµ+ s = 0 (i = 1, . . . , n),

and hence that the ai take just two values, say α1, α2. By Eq.(1), G has
just two degrees: d1 = α2

1 − λµ, d2 = α2
2 − λµ. Let Vi be the set of vertices

of degree i (i = 1, 2). Since the A-invariant subspace 〈d, j〉 is spanned by
the characteristic vectors of V1 and V2, V1 ∪̇ V2 is an equitable bipartition
of V (G).

In case (a), Eq.(1) yields:

a(a>j) = (A− µI)(A− λI)j = (ρ− µ)d− λ(ρ− µ)j,

and so s = −λr. Since α1, α2 are the roots of x2−r−1x−λµ+r−1s, we have
α1α2 = −λ(µ+1). We may interchange λ and µ to obtain α1α2 = −µ(λ+1)
in case (b). 2

A graph with just two degrees is said to be biregular. A wider discussion
of the biregular graphs in C1 may be found in the recent paper [3]. Here we
shall also make use of the following intermediate result.

Proposition 2.3. Let G be a connected non-bipartite integral graph with
spectrum ρ, µ(k), λ(l), where ρ > µ > λ, and let v be a vertex of G. Then
(i) k > 1, l > 1 and λ, µ are eigenvalues of G− v,
(ii) G− v has just three distinct eigenvalues if and only if G− v is strongly
regular and G is the cone over G− v.

Proof. Let |V (G)| = n. Note that λ < −1 and ρ < n− 1 because G is not
complete. Now k > 1 for otherwise

2 ≤ −λ =
ρ+ µ

n− 2
≤ 1 +

µ

n− 2
,

whence µ ≥ n − 2 ≥ ρ, a contradiction. Suppose by way of contradiction
that l = 1. If µ > 0 then −λ > ρ, contradicting [5, Theorem 1.3.6]. If µ = 0
then λ = −ρ and G is bipartite, contrary to assumption (see [5, Theorem
3.2.4]). If µ < 0 then ρ = (n− 2)(−µ)− λ ≥ n, a contradiction. Hence also
l > 1, and by interlacing G− v has both λ and µ as eigenvalues.

Let H = G − v, with spectrum ν, µ(k−1), θ, λ(l−1), where ρ ≥ ν ≥ µ ≥
θ ≥ λ by interlacing, and ρ > ν because G is connected [5, Proposition
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1.3.9]. If ν = µ then H is not connected; moreover, µ > θ > λ for otherwise
H has just two distinct eigenvalues and λ = −1. Now some component C
of H does not have θ as an eigenvalue. Since C has at most two distinct
eigenvalues, C is complete and λ ∈ {−1, 0}, a contradiction. Hence ν > µ.

Now suppose that H has just three distinct eigenvalues. Then θ ∈ {µ, λ}.
If θ = λ then ν + (k − 1)µ+ lλ = 0 = ρ+ kµ+ lλ, whence ρ = ν − µ < ν, a
contradiction. Hence θ = µ and H has spectrum ν, µ(k), λ(l−1). As before, H
is connected, for otherwise some component does not have ν as an eigenvalue.

Let A′ be the adjacency matrix of H. For any eigenvalue σ of H, we
write Qσ for the matrix of the orthogonal projection of EA′(σ) onto IRn−1

(with respect to the standard orthonormal basis of IRn−1). Let ∆H(v) be
the set of vertices in H adjacent to v, and let r be the characteristic vector
of ∆H(v) in IRn−1. From [5, Theorem 2.2.8] we have

PG(x) = PH(x)

(
x− ‖Qνr‖

2

x− ν
− ‖Qµr‖

2

x− µ
− ‖Qλr‖

2

x− λ

)
.

Since the multiplicities of λ and µ in G are not less than their multiplicities in
H, we have Qλr = 0 and Qµr = 0. Hence r ∈ (EA′(λ)⊕ EA′(µ))⊥ = EA′(ν).
Since H is connected, EA′(ν) is spanned by a vector whose entries are all
positive. It follows that r = j and ∆H(v) = V (H). Moreover, H is regular,
with just three distinct eigenvalues, and hence is strongly regular. The
converse is immediate. 2

3 Vertex-deleted subgraphs

Here we take G to be a non-bipartite graph in C1 ∩ C2 with spectrum
ρ, µ(k), λ(l) where ρ > µ > λ. We noted in Section 1 that G is integral;
hence by Proposition 2.3, k > 1, l > 1 and every vertex-deleted subgraph of
G has λ and µ as eigenvalues. Our objective is to prove that if one of these
subgraphs has index µ(1 − λ) then G is the cone over a strongly regular
graph.

We use the notation of Lemma 2.2 and Proposition 2.3. We assume that
d1>d2, and we take H to be a vertex-deleted graph with index ν = µ(1−λ).
Let H = G−v and suppose by way of contradiction that H has four distinct
eigenvalues. By interlacing H has spectrum ν, µ(k−1), θ, λ(l−1), where ρ >
ν > µ > θ > λ. Note that since ν is an integer, so too is θ. If r is the
characteristic vector of ∆H(v) then

PG(x) = PH(x)

(
x− ‖Qνr‖

2

x− ν
− ‖Qµr‖

2

x− µ
− ‖Qθr‖

2

x− θ
− ‖Qλr‖

2

x− λ

)
, (2)

where again Qλr = 0 and Qµr = 0. Let c = ‖Qνr‖, d = ‖Qθr‖. Then
Eq.(2) yields

(x− ρ)(x− µ)(x− λ) = x(x− ν)(x− θ)− c2(x− θ)− d2(x− ν). (3)

4



Equating coefficients of x2 and coefficients of x in Eq.(3) we find:

ρ+ λ+ µ = ν + θ, ρλ+ ρµ+ λµ = νθ − c2 − d2.

Suppose that v ∈ Vh (h ∈ {1, 2}). Since c2 + d2 = ‖r‖2 = deg(v) = α2
h − λµ

we have:
ν + θ = ρ+ λ+ µ, νθ = ρ(λ+ µ) + α2

h. (4)

Since ρ = θ − λ− λµ, we have

α2
h = µ(1− λ)θ − (θ − λ− λµ)(λ+ µ) = −λ(µ+ 1)(−λ− (µ− θ)).

Note that −λ > µ− θ because µ > 0 and αh 6= 0.
We deal first with the case in which µ is non-main. Then we have

α1α2 = −λ(µ+ 1) by Lemma 2.2. If h = 1 then

α2
2 =

−λ(µ+ 1)

−λ− (µ− θ)
≥ −λ(µ+ 1)

−λ− 1
> µ+ 1.

But α2
2 − λµ − 1 = d2 − 1 ≤ δ(H) ≤ ν = µ − λµ, and so α2

2 ≤ µ + 1, a
contradiction. If h = 2 then

α2
1 =

−λ(µ+ 1)

−λ− (µ− θ)
, α2

2 = −λ(µ+ 1)(−λ− (µ− θ)).

Since d2 < d1 we have α2
2 < α2

1, and so | − λ − (µ − θ)| < 1. This is a
contradiction because −λ− (µ− θ) is a positive integer.

Secondly we consider the case in which λ is non-main. Then α1α2 =
−µ(λ+ 1) by Lemma 2.2. If h = 2 then

α2
1 =

(−λ− 1)2µ2

−λ(µ+ 1)(−λ− (µ− θ))
, α2

2 = −λ(µ+ 1)(−λ− (µ− θ)).

Since α2
2 < α2

1 we have

−λ− (µ− θ) < (−λ− 1)µ

−λ(µ+ 1)
< 1,

a contradiction as before. Now suppose that h = 1, and let α = µ− θ. We
have −λ > α > 0 and

α2
1 = −λ(µ+ 1)(−λ− α), α2

2 =
(−λ− 1)2µ2

−λ(µ+ 1)(−λ− α)
.

Note that

(−λ− 1)2µ2

−λ(µ+ 1)
− (µ− 1)(−λ− 2) =

µ2 − 1 + (λ+ 1)2

−λ(µ+ 1)
> 0.

Hence

α2
2 >

(µ− 1)(−λ− 2)

−λ− α
.
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If α = 1 then α2
2 = (−λ−1)µ2

−λ(µ+1) . In this case, we consider a prime p which

divides −λ. Note that p divides µ and hence also ν. But ν + (k− 1)µ+ θ+
(l − 1)λ = 0, and so p divides α, a contradiction. Hence α ≥ 2 and α2

2 ≥ µ.
Now d2−1 ≤ d ≤ ν, where d is the mean degree in H. If d2−1 = ν then

H is regular of degree d2 − 1; in this case, V1 = {v}, v is adjacent to every
vertex in V2, and (since θ is a non-main eigenvalue of H), θ is an eigenvalue
of G. This contradiction shows that d2 ≤ ν, that is, α2

2 − λµ ≤ µ(1 − λ),
and we deduce that α2

2 = µ 6= 0. We have

µ(−λ− 1)2 = −λ(µ+ 1)(−λ− α),

and so µ = t(−λ) for some positive integer t. It follows that −λ − α =
−λt(α−2)+t and hence that α = 2. Then ρ = ν+θ−λ−µ = µ(1−λ)−λ−2.
Since ρ+ kµ+ lλ = 0, we see that −λ is a divisor of 2. Hence −λ = 2 = α,
a final contradiction. We have proved that if a graph G ∈ C1 ∩ C2 has a
vertex-deleted subgraph H with index µ(1−λ) then H has just three distinct
eigenvalues. By Proposition 2.3, H is strongly regular, and G = K1 5 H.
We may summarize most of our results as follows.

Theorem 3.1. Let G be a connected non-bipartite graph with exactly
three distinct eigenvalues, just one of them non-main. If G has spectrum
ρ, µ(k), λ(l), where ρ > µ > λ, then k > 1, l > 1 and the following are equiv-
alent:
(a) G is the cone over a strongly regular graph,
(b) G has a vertex-deleted subgraph with just three distinct eigenvalues,
(c) G has a vertex-deleted subgraph with index µ(1− λ).

In addition, it follows from Lemma 2.1 that if H is a strongly regular
graph such that K1 5H has spectrum ρ, µ(k), λ(l), where ρ > µ > λ, then
H has spectrum ν1, µ

(k), λ(l−1), where ρ + λ = ν1 = µ(1 − λ) and µ is the
sole non-main eigenvalue of K15H. In this situation, let G = K15H and
let v ∈ V (H). Then G − v has four distinct eigenvalues because G is not
the cone over G − v. Thus G − v has spectrum ν2, µ

(k−1), θ2, λ
(l−1), where

ν2 > µ > θ2 > λ. By Eq,(4), we have ρ + λ + µ = ν2 + θ2, and we deduce
that ν2 > ν1. In particular, the index of any vertex-deleted subgraph of G
is at least µ(1− λ). More generally we have the following.

Corollary 3.2. Let G be a connected non-bipartite graph with spectrum
ρ, µ(k), λ(l), where ρ > µ > λ, and let H be a vertex-deleted subgraph of G.
If µ is the only non-main eigenvalue of G then the index of H is at least
µ(1−λ), with equality if and only if H is strongly regular and G is the cone
over H.

Proof. Let H be a vertex-deleted subgraph with index ν. Since G is
connected, G has an edge ij with i ∈ V1 and j ∈ V2. The (i, j)-entry of A2

is at most deg(j)−1, and so α1α2 +λ+µ ≤ d2−1. By Lemma 2.2, we have
α1α2 = −λ(µ+1), while d2−1 ≤ ν as before. It follows that ν ≥ µ(1−λ). If
ν = µ(1− λ), then we see from the proof of Theorem 3.1 that H is strongly
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regular and G is the cone over H. Conversely, if H is strongly regular and
G = K1 5H then (as noted above) H has index µ(1− λ). 2

4 The minimum degree

Again we take G to be a non-bipartite graph in C1 ∩ C2 with spectrum
ρ, µ(k), λ(l) where ρ > µ > λ. Recall from Section 1 that ρ, µ and λ are
integers. It is straightforward to check that if G is the cone over a strongly
regular graph then δ(G) = 1+µ−λµ; moreover we saw in Section 2 that µ is a
non-main eigenvalue. If G is of symmetric type then again δ(G) = 1+µ−λµ,
while µ is non-main because the degrees determine an equitable bipartition
with a divisor matrix whose trace is ρ + λ (cf. [5, Theorem 3.9.5]). Now
we suppose conversely that δ(G) = 1 + µ − λµ and µ is non-main; in this
situation we can determine the structure of G.

We retain previous notation and write u ∼ v to mean that the vertices

u and v are adjacent. We let ∆(v) = {u ∈ V (G) : u ∼ v}, A2 = (a
(2)
ij ),

|V1| = n1, |V2| = n2, G1 = G− V2, G2 = G− V1. Also, let

(
r11 r12
r21 r22

)
be

the divisor matrix determined by the equitable bipartition V1 ∪̇ V2. Note
that n1r12 = n2r21. Since Aa = ρa, we have r11α1 + r12α2 = ρα1. Since
also r11 + r12 = d1 > d2, we have (cf. [3, Theorem 4.3(i)]:

r12 =
α1(d1 − ρ)

α1 − α2
, and similarly r21 =

α2(d2 − ρ)

α2 − α1
. (5)

By Lemma 2.2, we have α1α2 = −λ(µ + 1). Also, 1 + µ − λµ = d2 =
α2
2−λµ, whence α2

2 = µ+ 1 and α2
1 = λ2(µ+ 1). It follows from Eq.(5) that

r12 =
−λ(d1 − ρ)

−λ− 1
, r21 =

ρ− d2
−λ− 1

. (6)

We shall make implicit use of the following consequence of Eq.(1):

a
(2)
ij =


a2i − λµ if i = j
aiaj + λ+ µ if i ∼ j
aiaj if i 6∼ j.

In particular, d1 = λ2(µ+ 1)− λµ.

Lemma 4.1. If r22 6= 0 then G is the cone over a strongly regular graph.

Proof. Let i ∈ V1. Since G is connected, we have r12 6= 0, and so V2
contains a vertex j adjacent to i. Now a

(2)
ij = α1α2 + λ + µ = µ − λµ =

deg(j) − 1, and so ∆(j) ⊆ ∆(i) ∪̇ {i}. If j′ ∈ ∆(j) ∩ V2 then j′ ∼ i, and
so i is adjacent to every vertex in the component C(j) of G2 containing j.
If i′ ∈ ∆(j) ∩ V1 then similarly i′ is adjacent to every vertex j′ in C(j);
moreover ∆(j′) ∩ V1 = ∆(j) ∩ V1 (of size r21). Thus if X = ∆(j) ∩ V1 and
Y = V (C(j)) then we have a complete bipartite subgraph on X ∪̇ Y .
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If C(j) is complete then (since r22 6= 0) C(j) contains two vertices with
the same closed neighbourhood in G, and then we obtain the contradiction
λ = −1 from [5, Theorem 5.1.4]. Accordingly, let j, j′ be two non-adjacent

vertices in C(j). Since j ∼ i′ ∼ j′ for all i′ ∈ X, we have r21 ≤ a(2)jj′ = α2
2. If

v is a vertex in V2 outside C(j) then all v-j paths of length 2 pass through

∆(j)∩ V1 and so α2
2 = a2vj ≤ r21. Thus a

(2)
vj = r21 and v is adjacent to every

vertex in X. In particular, i is adjacent to every vertex in V2. The argument
applies to each vertex i ∈ V1 and so we have a complete bipartite subgraph
on V1 ∪̇ V2.

From Eq.(1), we have n1α
2
1 + n2α

2
2 = ‖a‖2 = (ρ − λ)(ρ − µ). Since

n1 = r21 and n2 = r12, Eq.(6) yields:

ρ− d2
−λ− 1

λ2(µ+ 1) +
λ(d1 − ρ)

λ+ 1
(µ+ 1) = (ρ− λ)(ρ− µ),

equivalently

−λ(µ+ 1)[ρ(−λ− 1) + d1 + λd2] = (ρ− λ)(ρ− µ)(−λ− 1).

Since d1 + λd2 = −λ(−λ − 1), we deduce that −λ(µ + 1) = ρ − µ, whence
ρ− d2 = −λ− 1 and r21 = 1. Thus n1 = 1, say V1 = {u}, and G is the cone
over G− u. Now G− u is a regular graph in which the number of common
neighbours of distinct vertices i, j is α2

2 − 1 if i 6∼ j and α2
2 + λ + µ − 1 if

i ∼ j. Therefore G− u is strongly regular, and the lemma is proved. 2

In view of Lemma 4.1, we suppose now that r22 = 0 (equivalently, V2 is
an independent set). In this case, we can express r11, r12, r21, n1, n2, n, k, l
in terms of λ and µ. Note first that r22 = d2 − r21, and so by Eq.(6) we
have ρ = −λd2 = −λ(1 + µ− µλ). Eq.(6) shows also that r11 = d1 − r12 =
(−d1 − ρλ)/(−λ− 1) = µλ2 − µλ, while r12 = λ2.

Next observe that if j, j′ are distinct vertices in V2 then |∆(j)∩∆(j′)| =
a
(2)
jj′ = α2

2 = µ + 1. Counting in two ways the paths jij′ (j, j′ ∈ V2, j 6= j′)
we have

n2(n2 − 1)(µ+ 1) = n1λ
2(λ2 − 1).

Since n1λ
2 = n2(1 + µ− λµ), we deduce that

n1 =
(1 + µ− λµ)(λ+ λµ− λ2µ+ µ)

λ(µ+ 1)
, n2 =

λ(λ+ λµ− λ2µ+ µ)

µ+ 1
. (7)

Hence

n = n1 + n2 =
(λ+ λµ− λ2µ+ µ)(1 + µ− λµ+ λ2)

λ(µ+ 1)
. (8)

(Equations (7) and (8) are special cases of [3, Theorem 4.3(iv)].) Now
we can find k and l from the equations ρ+ kµ+ lλ = 0, 1 + k + l = n. We
obtain

k =
(λ2 − 1)(1 + µ− λµ)

µ+ 1
, l =

(1 + µ− λµ)(λ+ λµ− λ2µ+ µ)

λ(µ+ 1)
. (9)
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Since all structural constants of G are expressible in terms of λ and µ
we say that G is of parametric type, with parameters λ, µ. To investigate G

further, we observe again that if j ∈ V2 and i ∈ ∆(j) then a
(2)
ij = deg(j)− 1

and so i is adjacent to every other vertex in ∆(j). We deduce that ∆(j)
induces a clique; in particular, if h, h′ are non-adjacent vertices in V1 then
h, h′ have no common neighbours in V2. We refer to the V1-neighbourhoods
∆(j) (j ∈ V2) as the blocks in V1, and to the V2-neighbourhoods ∆(i) ∩ V2
(i ∈ V1) as the blocks in V2.

We note next that λ+ µ ≥ −1. To see this, let j, j′ be distinct vertices

in V2, and consider a vertex i ∈ ∆(j) \ ∆(j′). We have a
(2)
ij′ ≤ |∆(j′)| and

so α1α2 ≤ d2, equivalently −λ(µ+ 1) ≤ 1 + µ− λµ. The inequality follows,
and we deduce that λ2 ≤ 1 + µ− λµ, equivalently n1 ≥ n2.

¿From Eqs.(7) and (9) we see that n1 = l and so the co-clique on V2 is

a star complement for λ. Let A =

(
A1 B>

B O

)
, partitioned in accordance

with V1 ∪̇ V2. By [5, Theorem 5.1.7] we have λ2I − λA1 = B>B. It follows
that for i, i′ ∈ V1:

|∆(i) ∩∆(i′) ∩ V2| =


λ2 if i = i′,
−λ if i ∼ i′,
0 if i 6∼ i′.

We say that the blocks ∆(i) ∩ V2 (i ∈ V1), of size λ2, have intersection
numbers −λ and 0. Now B>B and BB> share the same non-zero eigenval-
ues, and BB> = d2I + (µ + 1)(J − I), where J is the all-1 matrix of size
n2 × n2. Thus BB> = −λµI + (µ+ 1)J , with eigenvalues −λµ+ (µ+ 1)n2
(of multiplicity 1) and −λµ (of multiplicity n2 − 1). The relation between
the eigenvalues ν∗ of A1 and the eigenvalues ν of B>B is given by

λ2 − λν∗ = ν.

If ν = −λµ+ (µ+ 1)n2 then ν∗ = λ2µ− λµ; if ν = −λµ then ν∗ = λ+ µ ;
and if ν = 0 then ν∗ = λ. Thus the eigenvalues of A1 are λ2µ− λµ (= r11),
λ + µ (of multiplicity n2 − 1) and λ (of multiplicity n1 − n2). Note that if
n1 = n2 then λ2 = 1 +µ−λµ, equivalently λ+µ = −1. Thus there are two
possibilities: (1) n1 = n2, λ + µ = −1 and G1 is complete, or (2) n1 > n2,
λ + µ ≥ 0 and G1 is strongly regular with parameters (n1, r11, e, f), where
n1 is given by Eq.(7), r11 = λ2µ−λµ, e = α2

1 + 2λ+µ = λ2(µ+ 1) + 2λ+µ
and f = λ2(µ+ 1).

In case (1), we have n1 = n2 = −λ3 + λ + 1 by Eq.(7); moreover the
blocks in V2 constitute a symmetric 2-(q3−q+1, q2, q) design, where q = −λ.
Thus in case (1) G is of symmetric type. We summarize our observations as
follows.
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Theorem 4.2. Let G be a connected non-bipartite non-regular graph with
spectrum ρ, µ(k), λ(l), where ρ > µ > λ and µ is non-main. Then G has
two degrees, say d1 and d2 where d1 > d2. For i = 1, 2, let Vi be the set of
vertices of degree di, and let Gi be the subgraph of G induced by Vi. Then
V1 ∪̇ V2 is an equitable partition of G; moreover, if d2 = 1 + µ − µλ then
one of the following holds:

(a) G1 is trivial and G is the cone over G2 where G2 is strongly regular
with parameters (q, r, e, f), where q = λ2µ+λ2−λµ, r = µ−λµ, e = 2µ+λ
and f = µ;

(b) G1is complete, G2 is a co-clique and G is of symmetric type, derived
from a symmetric 2-(q3 − q + 1, q2, q) design with q = −λ = µ+ 1;

(c) G2 is a co-clique and G1 is strongly regular with parameters (q, r, e, f),
where q = (1 + µ − µλ)(λ + λµ − λ2µ + µ)/λ(µ + 1), r = λ2µ − λµ,
e = λ2(µ+ 1) + 2λ+ µ, f = λ2(µ+ 1) and λ+ µ > −1.

In case (c) the blocks ∆(j) (j ∈ V2) induce cliques of order 1 + µ− µλ,
and any two such blocks intersect in 1 + µ vertices; moreover the blocks
∆(i) ∩ V2 (i ∈ V1) are of size λ2 with intersection numbers −λ and 0.

Example 4.3. As an example of case (c) in Theorem 4.2 we have the
unique smallest maximal exceptional graph, labelled G001 in [4, Chapter 6].
This graph, first identified in [1], has order 22 and spectrum 14, 2(7),−2(14).
A representation in the root system E8 is given in [4, Section 6.4]; see also
[6, pp.112-113]. A different construction is given in [5, Example 5.2.6(c)].
For this graph we have n1 = 14, n2 = 8, d1 = 16 and d2 = 7. We find

that

(
r11 r12
r21 r22

)
=

(
12 4
7 0

)
, with trace equal to ρ + λ, and so µ is a

non-main eigenvalue. Since r11 = 12 we have G1
∼= 7K2. 2

The following result narrows the search for further examples.

Proposition 4.4. If G is of parametric type, with coprime parameters λ, µ,
then G is of symmetric type.

Proof. Suppose that G has coprime parameters λ, µ. We see from Eq.(7)
that λ divides µ(µ + 1), and so µ = −λβ − 1 for some positive integer β.
From Eq.(7), we have

n1 =
(βλ− β + 1)(βλ3 − βλ2 + λ2 − βλ− 1)

−λβ
,

whence −λ divides β−1. Suppose by way of contradiction that β > 1. Then
β ≥ 1− λ and µ+ 1 ≥ −λ(1− λ).

Since λ + µ 6= −1 the graph G1 is not complete. Now consider the
complementary graph G1, which is strongly regular with parameters
(n1, n1−r11−1, e, f), where e = n1−2r11−2+f and f = n1 − 2r11 + e.
Then

e =
(1+µ−µλ)(λ+λµ−λ2µ+µ)

λ(µ+ 1)
− 2(λ2−λµ+ 1) + λ2(µ+ 1).
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Hence λ(µ+1)e = (µ+1)2−(µ+1)+λ3−λ. Since µ+1 ≥ −λ(1−λ), we deduce
that λ(µ + 1)e ≥ λ4 − λ3. This is a contradiction because λ(µ + 1)e ≤ 0.
while λ4 − λ3 > 0 We deduce that β = 1. Hence λ + µ = −1, and so (as
before) G is of symmetric type. 2

In view of Proposition 4.4 we say that λ, µ are feasible parameters for
a graph of parametric non-symmetric type if (i) λ and µ are not coprime,
(ii) λ + µ ≥ 0, and (iii) λ and µ satisfy the integrality conditions imposed
by Eqs.(7) and (9). It is clear from Eq.(8) that when λ+ µ = 0, the graph
G001 is the smallest that can arise. When λ+ µ > 0, the values of feasible
parameters with smallest µ − λ are µ = 9, λ = −6. Then n1 = 400,
n2 = 225, d1 = 414, d2 = 64 and G has spectrum 384, 9(224),−6(400). In this
case, the graph G1 in Theorem 4.2(c) is strongly regular with parameters
(400, 378, 357, 360). The complement G1 has the more appealing parameters
(400, 21, 2, 1). According to [2], the existence of such a graph remains an
open question, and it is here that we pause our own investigation.
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