Accepted refereed manuscript of:

Rowlinson P (2016) On graphs with just three distinct eigenvalues, Linear Algebra and Its Applications, 507, pp. 462-473.

DOI: $10.1016 /$ j.laa.2016.06.031
© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

ON GRAPHS WITH JUST THREE DISTINCT EIGENVALUES

Peter Rowlinson ${ }^{1}$
Mathematics and Statistics Group
Institute of Computing Science and Mathematics
University of Stirling
Scotland FK9 4LA
United Kingdom

Abstract

Let G be a connected non-bipartite graph with exactly three distinct eigenvalues ρ, μ, λ, where $\rho>\mu>\lambda$. In the case that G has just one non-main eigenvalue, we find necessary and sufficient spectral conditions on a vertex-deleted subgraph of G for G to be the cone over a strongly regular graph. Secondly, we determine the structure of G when just μ is non-main and the minimum degree of G is $1+\mu-\lambda \mu$: such a graph is a cone over a strongly regular graph, or a graph derived from a symmetric 2-design, or a graph of one further type.

AMS Classification: 05C50
Keywords: main eigenvalue, minimum degree, strongly regular graph, symmetric 2-design, vertex-deleted subgraph.

[^0]
1 Introduction

Let G be a graph of order n with $(0,1)$-adjacency matrix A. An eigenvalue σ of A is said to be an eigenvalue of G, and σ is a main eigenvalue if the eigenspace $\mathcal{E}_{A}(\sigma)$ is not orthogonal to the all-1 vector in \mathbb{R}^{n}. Always the largest eigenvalue, or index, of G is a main eigenvalue, and it is the only main eigenvalue if and only if G is regular. We say that G is an integral graph if every eigenvalue of G is an integer. We use the notation of the monograph [5], where the basic properties of graph spectra can be found in Chapter 1.

Let \mathcal{C}_{1} be the class of connected graphs with just three distinct eigenvalues, and let \mathcal{C}_{2} be the class of connected graphs with exactly two main eigenvalues. It is an open problem to determine all the graphs in \mathcal{C}_{1}, and another open problem to determine all the graphs in \mathcal{C}_{2}. Here we investigate graphs in $\mathcal{C}_{1} \cap \mathcal{C}_{2}$. From [6, Propositions 2 and 3] we know that if G is a non-integral graph in \mathcal{C}_{1} then either G is complete bipartite or the two smaller eigenvalues of G are algebraic conjugates. In the latter case, G has exactly 1 or 3 main eigenvalues, and so a graph in $\mathcal{C}_{1} \cap \mathcal{C}_{2}$ is either integral or complete bipartite.

The class \mathcal{C}_{1} contains all connected non-complete strongly regular graphs; moreover it is known that if H is a strongly regular graph of order n with eigenvalues $\nu>\mu>\lambda$ then the cone $K_{1} \nabla H$ lies in \mathcal{C}_{1} if and only if $\lambda(\nu-\lambda)=-n$ (see [8] and Lemma 2.1 below). We shall see in Section 2 that the condition $\lambda(\nu-\lambda)=-n$ is equivalent to the condition $\nu=\mu(1-\lambda)$, and that when this condition is satisfied we have $K_{1} \nabla H \in \mathcal{C}_{1} \cap \mathcal{C}_{2}$. There are infinitely many strongly regular graphs which satisfy the condition (see [8, Proposition 7.1]); examples include the Petersen graph $(\mu=1, \lambda=-2)$, the Gewirtz graph $(\mu=2, \lambda=-4)$ and the Chang graphs $(\mu=4, \lambda=-2)$.

Now let G be a non-bipartite graph in $\mathcal{C}_{1} \cap \mathcal{C}_{2}$ with spectrum $\rho, \mu^{(k)}, \lambda^{(l)}$ where $\rho>\mu>\lambda$. In Section 3, we prove that the following are equivalent: (a) G is the cone over a strongly regular graph, (b) G has a vertex-deleted subgraph with just three distinct eigenvalues, (c) G has a vertex-deleted subgraph with index $\nu=\mu(1-\lambda)$. In particular, for $G \in \mathcal{C}_{1} \cap \mathcal{C}_{2}$, application of the condition $\nu=\mu(1-\lambda)$ is not confined to a strongly regular graph H such that $G=K_{1} \nabla H$.

We note that $\mathcal{C}_{1} \cap \mathcal{C}_{2}$ also contains the graphs constructed by van Dam [6] from a symmetric $2-\left(q^{3}-q+1, q^{2}, q\right)$ design \mathcal{D} : such a graph is obtained from the incidence graph of \mathcal{D} by adding an edge between each pair of blocks. We refer to such graphs as graphs of symmetric type; they exist whenever q is a prime power and there exists a projective plane of order $q-1$ [7]. Their eigenvalues are $q^{3}, q-1,-q$ with multiplicities $1, q^{3}-q, q^{3}+1$ respectively. These graphs share with the cones described above the properties that μ is non-main and $1+\mu-\mu \lambda=\delta(G)$, the minimum degree in G. In Section 4, we determine the structure of all graphs in $\mathcal{C}_{1} \cap \mathcal{C}_{2}$ with these properties.

2 Preliminaries

Our first proof begins with a short derivation of the condition $\lambda(\nu-\lambda)=-n$, which was obtained by other means in [8, Proposition 6.1(b)].
Lemma 2.1. Let H be a strongly regular graph of order n with spectrum $\nu, \mu^{(s)}, \lambda^{(t)}$, where $\nu>\mu>\lambda$. Then $K_{1} \nabla H$ has just three distinct eigenvalues if and only if $\lambda(\nu-\lambda)=-n$, equivalently $\nu=\mu(1-\lambda)$. In this situation, $K_{1} \nabla H$ has spectrum $\rho, \mu^{(s)}, \lambda^{(t+1)}$, where $\rho=\nu-\lambda$, and the main eigenvalues of $K_{1} \nabla H$ are ρ and λ.
Proof. Note that $\mu \geq 0$ and $\lambda<-1$ (cf. [5, Theorem 3.6.5]). From [5, Eq.(2.23)] we know that the characteristic polynomial of $K_{1} \nabla H$ is given by

$$
P_{K_{1} \nabla H}(x)=P_{H}(x)\left(x-\frac{n}{x-\nu}\right)=(x-\mu)^{s}(x-\lambda)^{t}\left(x^{2}-\nu x-n\right)
$$

If $K_{1} \nabla H$ has just three distinct eigenvalues, then $x^{2}-\nu x-n$ is either $(x-\rho)(x-\mu)$ or $(x-\rho)(x-\lambda)$, where ρ is the index of $K_{1} \nabla H$. The first possibility cannot arise because then $\rho+(s+1) \mu+t \lambda=0=\nu+s \mu+t \lambda$, whence $\rho=\nu-\mu \leq \nu$, contradicting [5, Proposition 1.3.9]. Hence $K_{1} \nabla H$ has spectrum $\rho, \mu^{(\bar{s})}, \lambda^{(t+1)}$, where now $\rho=\nu-\lambda$. Since also $\rho \lambda=-n$, we have $\lambda(\nu-\lambda)=-n$ as required. In this situation, $K_{1} \nabla H$ has adjacency $\operatorname{matrix} A=\left(\begin{array}{cc}0 & \mathbf{j}^{\top} \\ \mathbf{j} & A^{\prime}\end{array}\right)$, where \mathbf{j} is the all-1 vector in \mathbb{R}^{n} and A^{\prime} is the adjacency matrix of H. Now μ is a non-main eigenvalue of H, and so if $\mathbf{x} \in \mathcal{E}_{A^{\prime}}(\mu)$ then $\binom{0}{\mathbf{x}} \in \mathcal{E}_{A}(\mu)$. Since $\mathcal{E}_{A^{\prime}}(\mu)$ and $\mathcal{E}_{A}(\mu)$ have the same dimension, it follows that μ is a non-main eigenvalue of $K_{1} \nabla H$. Since $K_{1} \nabla H$ is not regular, the main eigenvalues of $K_{1} \nabla H$ are ρ and λ.

Conversely if $\lambda(\nu-\lambda)=-n$ then $x^{2}-\nu x-n=(x-(\nu-\lambda))(x-\lambda)$. Then $\nu-\lambda$ is the index of $K_{1} \nabla H$ and $K_{1} \nabla H$ has just three distinct eigenvalues.

Finally, from [5, Theorem 3.6.4] we have $n=(\nu-\mu)(\nu-\lambda) /(\nu+\mu \lambda)$, and so $\lambda(\nu-\lambda)=-n$ if and only if $\nu(\lambda+1)+\mu\left(\lambda^{2}-1\right)=0$, equivalently $\nu=\mu(1-\lambda)$.

The parameters of a strongly regular graph are expressible in terms of its eigenvalues [5, Theorem 3.6.4]. For future reference we note that the graph H of Lemma 2.1 has parameters (q, r, e, f), where $q=\lambda^{2} \mu+\lambda^{2}-\lambda \mu$, $r=\mu-\lambda \mu, e=2 \mu+\lambda$ and $f=\mu$.

Lemma 2.2. A graph G in $\mathcal{C}_{1} \cap \mathcal{C}_{2}$ has exactly two distinct degrees (say $\left.d_{1}, d_{2}\right)$, and these degrees determine an equitable bipartition of G. Moreover, if G has spectrum $\rho, \mu^{(k)}, \lambda^{(l)}$, where $\rho>\mu>\lambda$, then $d_{i}=\alpha_{i}^{2}-\lambda \mu$, where $\alpha_{i}>0(i=1,2)$ and either
(a) μ is non-main and $\alpha_{1} \alpha_{2}=-\lambda(\mu+1)$, or
(b) λ is non-main and $\alpha_{1} \alpha_{2}=-\mu(\lambda+1)$.

Proof. Suppose that G has vertex set $V(G)=\{1, \ldots, n\}$ and adjacency matrix A. Since $G \in \mathcal{C}_{1}$ we have (cf. [6, Section 4]):

$$
\begin{equation*}
(A-\mu I)(A-\lambda I)=\mathbf{a a}^{\top} \tag{1}
\end{equation*}
$$

where a spans $\mathcal{E}_{A}(\rho)$ and each entry of \mathbf{a} is positive. Thus if $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)^{\top}$ then $\operatorname{deg}(i)=a_{i}^{2}-\lambda \mu(i=1, \ldots, n)$. Since $G \in \mathcal{C}_{2}$, either (a) μ is non-main and $(A-\rho I)(A-\lambda I) \mathbf{j}=\mathbf{0}$ or (b) λ is non-main and $(A-\rho I)(A-\mu I) \mathbf{j}=\mathbf{0}$ (cf. [9, Proposition 2.1]). In particular, $A^{2} \mathbf{j} \in\langle\mathbf{d}, \mathbf{j}\rangle$, where $\mathbf{d}=A \mathbf{j}$. Now $\mathbf{a}\left(\mathbf{a}^{\top} \mathbf{j}\right) \in\langle\mathbf{d}, \mathbf{j}\rangle$, and $\mathbf{a}^{\top} \mathbf{j} \neq 0$. Accordingly we have $\mathbf{a}=r \mathbf{d}+s \mathbf{j}$ for some $r, s \in \mathbb{R}$. Note that $r \neq 0$ since G is not regular. It follows that

$$
r a_{i}^{2}-a_{i}-r \lambda \mu+s=0(i=1, \ldots, n)
$$

and hence that the a_{i} take just two values, say α_{1}, α_{2}. By Eq.(1), G has just two degrees: $d_{1}=\alpha_{1}^{2}-\lambda \mu, d_{2}=\alpha_{2}^{2}-\lambda \mu$. Let V_{i} be the set of vertices of degree $i(i=1,2)$. Since the A-invariant subspace $\langle\mathbf{d}, \mathbf{j}\rangle$ is spanned by the characteristic vectors of V_{1} and $V_{2}, V_{1} \dot{\cup} V_{2}$ is an equitable bipartition of $V(G)$.

In case (a), Eq.(1) yields:

$$
\mathbf{a}\left(\mathbf{a}^{\top} \mathbf{j}\right)=(A-\mu I)(A-\lambda I) \mathbf{j}=(\rho-\mu) \mathbf{d}-\lambda(\rho-\mu) \mathbf{j}
$$

and so $s=-\lambda r$. Since α_{1}, α_{2} are the roots of $x^{2}-r^{-1} x-\lambda \mu+r^{-1} s$, we have $\alpha_{1} \alpha_{2}=-\lambda(\mu+1)$. We may interchange λ and μ to obtain $\alpha_{1} \alpha_{2}=-\mu(\lambda+1)$ in case (b).

A graph with just two degrees is said to be biregular. A wider discussion of the biregular graphs in \mathcal{C}_{1} may be found in the recent paper [3]. Here we shall also make use of the following intermediate result.
Proposition 2.3. Let G be a connected non-bipartite integral graph with spectrum $\rho, \mu^{(k)}, \lambda^{(l)}$, where $\rho>\mu>\lambda$, and let v be a vertex of G. Then
(i) $k>1, l>1$ and λ, μ are eigenvalues of $G-v$,
(ii) $G-v$ has just three distinct eigenvalues if and only if $G-v$ is strongly regular and G is the cone over $G-v$.
Proof. Let $|V(G)|=n$. Note that $\lambda<-1$ and $\rho<n-1$ because G is not complete. Now $k>1$ for otherwise

$$
2 \leq-\lambda=\frac{\rho+\mu}{n-2} \leq 1+\frac{\mu}{n-2}
$$

whence $\mu \geq n-2 \geq \rho$, a contradiction. Suppose by way of contradiction that $l=1$. If $\mu>0$ then $-\lambda>\rho$, contradicting [5, Theorem 1.3.6]. If $\mu=0$ then $\lambda=-\rho$ and G is bipartite, contrary to assumption (see [5, Theorem 3.2.4]). If $\mu<0$ then $\rho=(n-2)(-\mu)-\lambda \geq n$, a contradiction. Hence also $l>1$, and by interlacing $G-v$ has both λ and μ as eigenvalues.

Let $H=G-v$, with spectrum $\nu, \mu^{(k-1)}, \theta, \lambda^{(l-1)}$, where $\rho \geq \nu \geq \mu \geq$ $\theta \geq \lambda$ by interlacing, and $\rho>\nu$ because G is connected [5, Proposition
1.3.9]. If $\nu=\mu$ then H is not connected; moreover, $\mu>\theta>\lambda$ for otherwise H has just two distinct eigenvalues and $\lambda=-1$. Now some component C of H does not have θ as an eigenvalue. Since C has at most two distinct eigenvalues, C is complete and $\lambda \in\{-1,0\}$, a contradiction. Hence $\nu>\mu$.

Now suppose that H has just three distinct eigenvalues. Then $\theta \in\{\mu, \lambda\}$. If $\theta=\lambda$ then $\nu+(k-1) \mu+l \lambda=0=\rho+k \mu+l \lambda$, whence $\rho=\nu-\mu<\nu$, a contradiction. Hence $\theta=\mu$ and H has spectrum $\nu, \mu^{(k)}, \lambda^{(l-1)}$. As before, H is connected, for otherwise some component does not have ν as an eigenvalue.

Let A^{\prime} be the adjacency matrix of H. For any eigenvalue σ of H, we write Q_{σ} for the matrix of the orthogonal projection of $\mathcal{E}_{A^{\prime}}(\sigma)$ onto \mathbb{R}^{n-1} (with respect to the standard orthonormal basis of \mathbb{R}^{n-1}). Let $\Delta_{H}(v)$ be the set of vertices in H adjacent to v, and let \mathbf{r} be the characteristic vector of $\Delta_{H}(v)$ in \mathbb{R}^{n-1}. From [5, Theorem 2.2.8] we have

$$
P_{G}(x)=P_{H}(x)\left(x-\frac{\left\|Q_{\nu} \mathbf{r}\right\|^{2}}{x-\nu}-\frac{\left\|Q_{\mu} \mathbf{r}\right\|^{2}}{x-\mu}-\frac{\left\|Q_{\lambda} \mathbf{r}\right\|^{2}}{x-\lambda}\right) .
$$

Since the multiplicities of λ and μ in G are not less than their multiplicities in H, we have $Q_{\lambda} \mathbf{r}=\mathbf{0}$ and $Q_{\mu} \mathbf{r}=\mathbf{0}$. Hence $\mathbf{r} \in\left(\mathcal{E}_{A^{\prime}}(\lambda) \oplus \mathcal{E}_{A^{\prime}}(\mu)\right)^{\perp}=\mathcal{E}_{A^{\prime}}(\nu)$. Since H is connected, $\mathcal{E}_{A^{\prime}}(\nu)$ is spanned by a vector whose entries are all positive. It follows that $\mathbf{r}=\mathbf{j}$ and $\Delta_{H}(v)=V(H)$. Moreover, H is regular, with just three distinct eigenvalues, and hence is strongly regular. The converse is immediate.

3 Vertex-deleted subgraphs

Here we take G to be a non-bipartite graph in $\mathcal{C}_{1} \cap \mathcal{C}_{2}$ with spectrum $\rho, \mu^{(k)}, \lambda^{(l)}$ where $\rho>\mu>\lambda$. We noted in Section 1 that G is integral; hence by Proposition $2.3, k>1, l>1$ and every vertex-deleted subgraph of G has λ and μ as eigenvalues. Our objective is to prove that if one of these subgraphs has index $\mu(1-\lambda)$ then G is the cone over a strongly regular graph.

We use the notation of Lemma 2.2 and Proposition 2.3. We assume that $d_{1}>d_{2}$, and we take H to be a vertex-deleted graph with index $\nu=\mu(1-\lambda)$. Let $H=G-v$ and suppose by way of contradiction that H has four distinct eigenvalues. By interlacing H has spectrum $\nu, \mu^{(k-1)}, \theta, \lambda^{(l-1)}$, where $\rho>$ $\nu>\mu>\theta>\lambda$. Note that since ν is an integer, so too is θ. If \mathbf{r} is the characteristic vector of $\Delta_{H}(v)$ then

$$
\begin{equation*}
P_{G}(x)=P_{H}(x)\left(x-\frac{\left\|Q_{\nu} \mathbf{r}\right\|^{2}}{x-\nu}-\frac{\left\|Q_{\mu} \mathbf{r}\right\|^{2}}{x-\mu}-\frac{\left\|Q_{\theta} \mathbf{r}\right\|^{2}}{x-\theta}-\frac{\left\|Q_{\lambda} \mathbf{r}\right\|^{2}}{x-\lambda}\right) \tag{2}
\end{equation*}
$$

where again $Q_{\lambda} \mathbf{r}=\mathbf{0}$ and $Q_{\mu} \mathbf{r}=\mathbf{0}$. Let $c=\left\|Q_{\nu} \mathbf{r}\right\|, d=\left\|Q_{\theta} \mathbf{r}\right\|$. Then Eq.(2) yields

$$
\begin{equation*}
(x-\rho)(x-\mu)(x-\lambda)=x(x-\nu)(x-\theta)-c^{2}(x-\theta)-d^{2}(x-\nu) \tag{3}
\end{equation*}
$$

Equating coefficients of x^{2} and coefficients of x in Eq.(3) we find:

$$
\rho+\lambda+\mu=\nu+\theta, \quad \rho \lambda+\rho \mu+\lambda \mu=\nu \theta-c^{2}-d^{2}
$$

Suppose that $v \in V_{h}(h \in\{1,2\})$. Since $c^{2}+d^{2}=\|\mathbf{r}\|^{2}=\operatorname{deg}(v)=\alpha_{h}^{2}-\lambda \mu$ we have:

$$
\begin{equation*}
\nu+\theta=\rho+\lambda+\mu, \quad \nu \theta=\rho(\lambda+\mu)+\alpha_{h}^{2} \tag{4}
\end{equation*}
$$

Since $\rho=\theta-\lambda-\lambda \mu$, we have

$$
\alpha_{h}^{2}=\mu(1-\lambda) \theta-(\theta-\lambda-\lambda \mu)(\lambda+\mu)=-\lambda(\mu+1)(-\lambda-(\mu-\theta))
$$

Note that $-\lambda>\mu-\theta$ because $\mu>0$ and $\alpha_{h} \neq 0$.
We deal first with the case in which μ is non-main. Then we have $\alpha_{1} \alpha_{2}=-\lambda(\mu+1)$ by Lemma 2.2. If $h=1$ then

$$
\alpha_{2}^{2}=\frac{-\lambda(\mu+1)}{-\lambda-(\mu-\theta)} \geq \frac{-\lambda(\mu+1)}{-\lambda-1}>\mu+1
$$

But $\alpha_{2}^{2}-\lambda \mu-1=d_{2}-1 \leq \delta(H) \leq \nu=\mu-\lambda \mu$, and so $\alpha_{2}^{2} \leq \mu+1$, a contradiction. If $h=2$ then

$$
\alpha_{1}^{2}=\frac{-\lambda(\mu+1)}{-\lambda-(\mu-\theta)}, \quad \alpha_{2}^{2}=-\lambda(\mu+1)(-\lambda-(\mu-\theta)) .
$$

Since $d_{2}<d_{1}$ we have $\alpha_{2}^{2}<\alpha_{1}^{2}$, and so $|-\lambda-(\mu-\theta)|<1$. This is a contradiction because $-\lambda-(\mu-\theta)$ is a positive integer.

Secondly we consider the case in which λ is non-main. Then $\alpha_{1} \alpha_{2}=$ $-\mu(\lambda+1)$ by Lemma 2.2 . If $h=2$ then

$$
\alpha_{1}^{2}=\frac{(-\lambda-1)^{2} \mu^{2}}{-\lambda(\mu+1)(-\lambda-(\mu-\theta))}, \quad \alpha_{2}^{2}=-\lambda(\mu+1)(-\lambda-(\mu-\theta))
$$

Since $\alpha_{2}^{2}<\alpha_{1}^{2}$ we have

$$
-\lambda-(\mu-\theta)<\frac{(-\lambda-1) \mu}{-\lambda(\mu+1)}<1
$$

a contradiction as before. Now suppose that $h=1$, and let $\alpha=\mu-\theta$. We have $-\lambda>\alpha>0$ and

$$
\alpha_{1}^{2}=-\lambda(\mu+1)(-\lambda-\alpha), \quad \alpha_{2}^{2}=\frac{(-\lambda-1)^{2} \mu^{2}}{-\lambda(\mu+1)(-\lambda-\alpha)}
$$

Note that

$$
\frac{(-\lambda-1)^{2} \mu^{2}}{-\lambda(\mu+1)}-(\mu-1)(-\lambda-2)=\frac{\mu^{2}-1+(\lambda+1)^{2}}{-\lambda(\mu+1)}>0
$$

Hence

$$
\alpha_{2}^{2}>\frac{(\mu-1)(-\lambda-2)}{-\lambda-\alpha}
$$

If $\alpha=1$ then $\alpha_{2}^{2}=\frac{(-\lambda-1) \mu^{2}}{-\lambda(\mu+1)}$. In this case, we consider a prime p which divides $-\lambda$. Note that p divides μ and hence also ν. But $\nu+(k-1) \mu+\theta+$ $(l-1) \lambda=0$, and so p divides α, a contradiction. Hence $\alpha \geq 2$ and $\alpha_{2}^{2} \geq \mu$.

Now $d_{2}-1 \leq \bar{d} \leq \nu$, where \bar{d} is the mean degree in H. If $d_{2}-1=\nu$ then H is regular of degree $d_{2}-1$; in this case, $V_{1}=\{v\}, v$ is adjacent to every vertex in V_{2}, and (since θ is a non-main eigenvalue of H), θ is an eigenvalue of G. This contradiction shows that $d_{2} \leq \nu$, that is, $\alpha_{2}^{2}-\lambda \mu \leq \mu(1-\lambda)$, and we deduce that $\alpha_{2}^{2}=\mu \neq 0$. We have

$$
\mu(-\lambda-1)^{2}=-\lambda(\mu+1)(-\lambda-\alpha),
$$

and so $\mu=t(-\lambda)$ for some positive integer t. It follows that $-\lambda-\alpha=$ $-\lambda t(\alpha-2)+t$ and hence that $\alpha=2$. Then $\rho=\nu+\theta-\lambda-\mu=\mu(1-\lambda)-\lambda-2$. Since $\rho+k \mu+l \lambda=0$, we see that $-\lambda$ is a divisor of 2 . Hence $-\lambda=2=\alpha$, a final contradiction. We have proved that if a graph $G \in \mathcal{C}_{1} \cap \mathcal{C}_{2}$ has a vertex-deleted subgraph H with index $\mu(1-\lambda)$ then H has just three distinct eigenvalues. By Proposition 2.3, H is strongly regular, and $G=K_{1} \nabla H$. We may summarize most of our results as follows.
Theorem 3.1. Let G be a connected non-bipartite graph with exactly three distinct eigenvalues, just one of them non-main. If G has spectrum $\rho, \mu^{(k)}, \lambda^{(l)}$, where $\rho>\mu>\lambda$, then $k>1, l>1$ and the following are equivalent:
(a) G is the cone over a strongly regular graph,
(b) G has a vertex-deleted subgraph with just three distinct eigenvalues,
(c) G has a vertex-deleted subgraph with index $\mu(1-\lambda)$.

In addition, it follows from Lemma 2.1 that if H is a strongly regular graph such that $K_{1} \nabla H$ has spectrum $\rho, \mu^{(k)}, \lambda^{(l)}$, where $\rho>\mu>\lambda$, then H has spectrum $\nu_{1}, \mu^{(k)}, \lambda^{(l-1)}$, where $\rho+\lambda=\nu_{1}=\mu(1-\lambda)$ and μ is the sole non-main eigenvalue of $K_{1} \nabla H$. In this situation, let $G=K_{1} \nabla H$ and let $v \in V(H)$. Then $G-v$ has four distinct eigenvalues because G is not the cone over $G-v$. Thus $G-v$ has spectrum $\nu_{2}, \mu^{(k-1)}, \theta_{2}, \lambda^{(l-1)}$, where $\nu_{2}>\mu>\theta_{2}>\lambda$. By Eq,(4), we have $\rho+\lambda+\mu=\nu_{2}+\theta_{2}$, and we deduce that $\nu_{2}>\nu_{1}$. In particular, the index of any vertex-deleted subgraph of G is at least $\mu(1-\lambda)$. More generally we have the following.

Corollary 3.2. Let G be a connected non-bipartite graph with spectrum $\rho, \mu^{(k)}, \lambda^{(l)}$, where $\rho>\mu>\lambda$, and let H be a vertex-deleted subgraph of G. If μ is the only non-main eigenvalue of G then the index of H is at least $\mu(1-\lambda)$, with equality if and only if H is strongly regular and G is the cone over H.
Proof. Let H be a vertex-deleted subgraph with index ν. Since G is connected, G has an edge $i j$ with $i \in V_{1}$ and $j \in V_{2}$. The (i, j)-entry of A^{2} is at $\operatorname{most} \operatorname{deg}(j)-1$, and so $\alpha_{1} \alpha_{2}+\lambda+\mu \leq d_{2}-1$. By Lemma 2.2 , we have $\alpha_{1} \alpha_{2}=-\lambda(\mu+1)$, while $d_{2}-1 \leq \nu$ as before. It follows that $\nu \geq \mu(1-\lambda)$. If $\nu=\mu(1-\lambda)$, then we see from the proof of Theorem 3.1 that H is strongly
regular and G is the cone over H. Conversely, if H is strongly regular and $G=K_{1} \nabla H$ then (as noted above) H has index $\mu(1-\lambda)$.

4 The minimum degree

Again we take G to be a non-bipartite graph in $\mathcal{C}_{1} \cap \mathcal{C}_{2}$ with spectrum $\rho, \mu^{(k)}, \lambda^{(l)}$ where $\rho>\mu>\lambda$. Recall from Section 1 that ρ, μ and λ are integers. It is straightforward to check that if G is the cone over a strongly regular graph then $\delta(G)=1+\mu-\lambda \mu$; moreover we saw in Section 2 that μ is a non-main eigenvalue. If G is of symmetric type then again $\delta(G)=1+\mu-\lambda \mu$, while μ is non-main because the degrees determine an equitable bipartition with a divisor matrix whose trace is $\rho+\lambda$ (cf. [5, Theorem 3.9.5]). Now we suppose conversely that $\delta(G)=1+\mu-\lambda \mu$ and μ is non-main; in this situation we can determine the structure of G.

We retain previous notation and write $u \sim v$ to mean that the vertices u and v are adjacent. We let $\Delta(v)=\{u \in V(G): u \sim v\}, A^{2}=\left(a_{i j}^{(2)}\right)$, $\left|V_{1}\right|=n_{1},\left|V_{2}\right|=n_{2}, G_{1}=G-V_{2}, G_{2}=G-V_{1}$. Also, let $\left(\begin{array}{cc}r_{11} & r_{12} \\ r_{21} & r_{22}\end{array}\right)$ be the divisor matrix determined by the equitable bipartition $V_{1} \dot{\cup} V_{2}$. Note that $n_{1} r_{12}=n_{2} r_{21}$. Since $A \mathbf{a}=\rho \mathbf{a}$, we have $r_{11} \alpha_{1}+r_{12} \alpha_{2}=\rho \alpha_{1}$. Since also $r_{11}+r_{12}=d_{1}>d_{2}$, we have (cf. [3, Theorem 4.3(i)]:

$$
\begin{equation*}
r_{12}=\frac{\alpha_{1}\left(d_{1}-\rho\right)}{\alpha_{1}-\alpha_{2}}, \text { and similarly } r_{21}=\frac{\alpha_{2}\left(d_{2}-\rho\right)}{\alpha_{2}-\alpha_{1}} . \tag{5}
\end{equation*}
$$

By Lemma 2.2, we have $\alpha_{1} \alpha_{2}=-\lambda(\mu+1)$. Also, $1+\mu-\lambda \mu=d_{2}=$ $\alpha_{2}^{2}-\lambda \mu$, whence $\alpha_{2}^{2}=\mu+1$ and $\alpha_{1}^{2}=\lambda^{2}(\mu+1)$. It follows from Eq.(5) that

$$
\begin{equation*}
r_{12}=\frac{-\lambda\left(d_{1}-\rho\right)}{-\lambda-1}, \quad r_{21}=\frac{\rho-d_{2}}{-\lambda-1} . \tag{6}
\end{equation*}
$$

We shall make implicit use of the following consequence of Eq.(1):

$$
a_{i j}^{(2)}= \begin{cases}a_{i}^{2}-\lambda \mu & \text { if } i=j \\ a_{i} a_{j}+\lambda+\mu & \text { if } i \sim j \\ a_{i} a_{j} & \text { if } i \nsim j .\end{cases}
$$

In particular, $d_{1}=\lambda^{2}(\mu+1)-\lambda \mu$.
Lemma 4.1. If $r_{22} \neq 0$ then G is the cone over a strongly regular graph.
Proof. Let $i \in V_{1}$. Since G is connected, we have $r_{12} \neq 0$, and so V_{2} contains a vertex j adjacent to i. Now $a_{i j}^{(2)}=\alpha_{1} \alpha_{2}+\lambda+\mu=\mu-\lambda \mu=$ $\operatorname{deg}(j)-1$, and so $\Delta(j) \subseteq \Delta(i) \dot{\cup}\{i\}$. If $j^{\prime} \in \Delta(j) \cap V_{2}$ then $j^{\prime} \sim i$, and so i is adjacent to every vertex in the component $C(j)$ of G_{2} containing j. If $i^{\prime} \in \Delta(j) \cap V_{1}$ then similarly i^{\prime} is adjacent to every vertex j^{\prime} in $C(j)$; moreover $\Delta\left(j^{\prime}\right) \cap V_{1}=\Delta(j) \cap V_{1}$ (of size r_{21}). Thus if $X=\Delta(j) \cap V_{1}$ and $Y=V(C(j))$ then we have a complete bipartite subgraph on $X \dot{\cup} Y$.

If $C(j)$ is complete then (since $\left.r_{22} \neq 0\right) C(j)$ contains two vertices with the same closed neighbourhood in G, and then we obtain the contradiction $\lambda=-1$ from [5, Theorem 5.1.4]. Accordingly, let j, j^{\prime} be two non-adjacent vertices in $C(j)$. Since $j \sim i^{\prime} \sim j^{\prime}$ for all $i^{\prime} \in X$, we have $r_{21} \leq a_{j j^{\prime}}^{(2)}=\alpha_{2}^{2}$. If v is a vertex in V_{2} outside $C(j)$ then all $v-j$ paths of length 2 pass through $\Delta(j) \cap V_{1}$ and so $\alpha_{2}^{2}=a_{v j}^{2} \leq r_{21}$. Thus $a_{v j}^{(2)}=r_{21}$ and v is adjacent to every vertex in X. In particular, i is adjacent to every vertex in V_{2}. The argument applies to each vertex $i \in V_{1}$ and so we have a complete bipartite subgraph on $V_{1} \dot{\cup} V_{2}$.

From Eq.(1), we have $n_{1} \alpha_{1}^{2}+n_{2} \alpha_{2}^{2}=\|\mathbf{a}\|^{2}=(\rho-\lambda)(\rho-\mu)$. Since $n_{1}=r_{21}$ and $n_{2}=r_{12}$, Eq.(6) yields:

$$
\frac{\rho-d_{2}}{-\lambda-1} \lambda^{2}(\mu+1)+\frac{\lambda\left(d_{1}-\rho\right)}{\lambda+1}(\mu+1)=(\rho-\lambda)(\rho-\mu),
$$

equivalently

$$
-\lambda(\mu+1)\left[\rho(-\lambda-1)+d_{1}+\lambda d_{2}\right]=(\rho-\lambda)(\rho-\mu)(-\lambda-1) .
$$

Since $d_{1}+\lambda d_{2}=-\lambda(-\lambda-1)$, we deduce that $-\lambda(\mu+1)=\rho-\mu$, whence $\rho-d_{2}=-\lambda-1$ and $r_{21}=1$. Thus $n_{1}=1$, say $V_{1}=\{u\}$, and G is the cone over $G-u$. Now $G-u$ is a regular graph in which the number of common neighbours of distinct vertices i, j is $\alpha_{2}^{2}-1$ if $i \not \nsim j$ and $\alpha_{2}^{2}+\lambda+\mu-1$ if $i \sim j$. Therefore $G-u$ is strongly regular, and the lemma is proved.

In view of Lemma 4.1, we suppose now that $r_{22}=0$ (equivalently, V_{2} is an independent set). In this case, we can express $r_{11}, r_{12}, r_{21}, n_{1}, n_{2}, n, k, l$ in terms of λ and μ. Note first that $r_{22}=d_{2}-r_{21}$, and so by Eq.(6) we have $\rho=-\lambda d_{2}=-\lambda(1+\mu-\mu \lambda)$. Eq.(6) shows also that $r_{11}=d_{1}-r_{12}=$ $\left(-d_{1}-\rho \lambda\right) /(-\lambda-1)=\mu \lambda^{2}-\mu \lambda$, while $r_{12}=\lambda^{2}$.

Next observe that if j, j^{\prime} are distinct vertices in V_{2} then $\left|\Delta(j) \cap \Delta\left(j^{\prime}\right)\right|=$ $a_{j j^{\prime}}^{(2)}=\alpha_{2}^{2}=\mu+1$. Counting in two ways the paths $j i j^{\prime}\left(j, j^{\prime} \in V_{2}, j \neq j^{\prime}\right)$ we have

$$
n_{2}\left(n_{2}-1\right)(\mu+1)=n_{1} \lambda^{2}\left(\lambda^{2}-1\right) .
$$

Since $n_{1} \lambda^{2}=n_{2}(1+\mu-\lambda \mu)$, we deduce that

$$
\begin{equation*}
n_{1}=\frac{(1+\mu-\lambda \mu)\left(\lambda+\lambda \mu-\lambda^{2} \mu+\mu\right)}{\lambda(\mu+1)}, \quad n_{2}=\frac{\lambda\left(\lambda+\lambda \mu-\lambda^{2} \mu+\mu\right)}{\mu+1} . \tag{7}
\end{equation*}
$$

Hence

$$
\begin{equation*}
n=n_{1}+n_{2}=\frac{\left(\lambda+\lambda \mu-\lambda^{2} \mu+\mu\right)\left(1+\mu-\lambda \mu+\lambda^{2}\right)}{\lambda(\mu+1)} . \tag{8}
\end{equation*}
$$

(Equations (7) and (8) are special cases of [3, Theorem 4.3(iv)].) Now we can find k and l from the equations $\rho+k \mu+l \lambda=0,1+k+l=n$. We obtain

$$
\begin{equation*}
k=\frac{\left(\lambda^{2}-1\right)(1+\mu-\lambda \mu)}{\mu+1}, \quad l=\frac{(1+\mu-\lambda \mu)\left(\lambda+\lambda \mu-\lambda^{2} \mu+\mu\right)}{\lambda(\mu+1)} . \tag{9}
\end{equation*}
$$

Since all structural constants of G are expressible in terms of λ and μ we say that G is of parametric type, with parameters λ, μ. To investigate G further, we observe again that if $j \in V_{2}$ and $i \in \Delta(j)$ then $a_{i j}^{(2)}=\operatorname{deg}(j)-1$ and so i is adjacent to every other vertex in $\Delta(j)$. We deduce that $\Delta(j)$ induces a clique; in particular, if h, h^{\prime} are non-adjacent vertices in V_{1} then h, h^{\prime} have no common neighbours in V_{2}. We refer to the V_{1}-neighbourhoods $\Delta(j)\left(j \in V_{2}\right)$ as the blocks in V_{1}, and to the V_{2}-neighbourhoods $\Delta(i) \cap V_{2}$ $\left(i \in V_{1}\right)$ as the blocks in V_{2}.

We note next that $\lambda+\mu \geq-1$. To see this, let j, j^{\prime} be distinct vertices in V_{2}, and consider a vertex $i \in \Delta(j) \backslash \Delta\left(j^{\prime}\right)$. We have $a_{i j^{\prime}}^{(2)} \leq\left|\Delta\left(j^{\prime}\right)\right|$ and so $\alpha_{1} \alpha_{2} \leq d_{2}$, equivalently $-\lambda(\mu+1) \leq 1+\mu-\lambda \mu$. The inequality follows, and we deduce that $\lambda^{2} \leq 1+\mu-\lambda \mu$, equivalently $n_{1} \geq n_{2}$.
¿From Eqs.(7) and (9) we see that $n_{1}=l$ and so the co-clique on V_{2} is a star complement for λ. Let $A=\left(\begin{array}{cc}A_{1} & B^{\top} \\ B & O\end{array}\right)$, partitioned in accordance with $V_{1} \dot{\cup} V_{2}$. By [5, Theorem 5.1.7] we have $\lambda^{2} I-\lambda A_{1}=B^{\top} B$. It follows that for $i, i^{\prime} \in V_{1}$:

$$
\left|\Delta(i) \cap \Delta\left(i^{\prime}\right) \cap V_{2}\right|=\left\{\begin{array}{cll}
\lambda^{2} & \text { if } i=i^{\prime}, \\
-\lambda & \text { if } i \sim i^{\prime}, \\
0 & \text { if } i \nsim i^{\prime} .
\end{array}\right.
$$

We say that the blocks $\Delta(i) \cap V_{2}\left(i \in V_{1}\right)$, of size λ^{2}, have intersection numbers $-\lambda$ and 0 . Now $B^{\top} B$ and $B B^{\top}$ share the same non-zero eigenvalues, and $B B^{\top}=d_{2} I+(\mu+1)(J-I)$, where J is the all-1 matrix of size $n_{2} \times n_{2}$. Thus $B B^{\top}=-\lambda \mu I+(\mu+1) J$, with eigenvalues $-\lambda \mu+(\mu+1) n_{2}$ (of multiplicity 1) and $-\lambda \mu$ (of multiplicity $n_{2}-1$). The relation between the eigenvalues ν^{*} of A_{1} and the eigenvalues ν of $B^{\top} B$ is given by

$$
\lambda^{2}-\lambda \nu^{*}=\nu
$$

If $\nu=-\lambda \mu+(\mu+1) n_{2}$ then $\nu^{*}=\lambda^{2} \mu-\lambda \mu$; if $\nu=-\lambda \mu$ then $\nu^{*}=\lambda+\mu$; and if $\nu=0$ then $\nu^{*}=\lambda$. Thus the eigenvalues of A_{1} are $\lambda^{2} \mu-\lambda \mu\left(=r_{11}\right)$, $\lambda+\mu$ (of multiplicity $n_{2}-1$) and λ (of multiplicity $n_{1}-n_{2}$). Note that if $n_{1}=n_{2}$ then $\lambda^{2}=1+\mu-\lambda \mu$, equivalently $\lambda+\mu=-1$. Thus there are two possibilities: (1) $n_{1}=n_{2}, \lambda+\mu=-1$ and G_{1} is complete, or (2) $n_{1}>n_{2}$, $\lambda+\mu \geq 0$ and G_{1} is strongly regular with parameters (n_{1}, r_{11}, e, f), where n_{1} is given by Eq.(7), $r_{11}=\lambda^{2} \mu-\lambda \mu, e=\alpha_{1}^{2}+2 \lambda+\mu=\lambda^{2}(\mu+1)+2 \lambda+\mu$ and $f=\lambda^{2}(\mu+1)$.

In case (1), we have $n_{1}=n_{2}=-\lambda^{3}+\lambda+1$ by Eq.(7); moreover the blocks in V_{2} constitute a symmetric $2-\left(q^{3}-q+1, q^{2}, q\right)$ design, where $q=-\lambda$. Thus in case (1) G is of symmetric type. We summarize our observations as follows.

Theorem 4.2. Let G be a connected non-bipartite non-regular graph with spectrum $\rho, \mu^{(k)}, \lambda^{(l)}$, where $\rho>\mu>\lambda$ and μ is non-main. Then G has two degrees, say d_{1} and d_{2} where $d_{1}>d_{2}$. For $i=1,2$, let V_{i} be the set of vertices of degree d_{i}, and let G_{i} be the subgraph of G induced by V_{i}. Then $V_{1} \dot{\cup} V_{2}$ is an equitable partition of G; moreover, if $d_{2}=1+\mu-\mu \lambda$ then one of the following holds:
(a) G_{1} is trivial and G is the cone over G_{2} where G_{2} is strongly regular with parameters (q, r, e, f), where $q=\lambda^{2} \mu+\lambda^{2}-\lambda \mu, r=\mu-\lambda \mu, e=2 \mu+\lambda$ and $f=\mu$;
(b) G_{1} is complete, G_{2} is a co-clique and G is of symmetric type, derived from a symmetric $2-\left(q^{3}-q+1, q^{2}, q\right)$ design with $q=-\lambda=\mu+1$;
(c) G_{2} is a co-clique and G_{1} is strongly regular with parameters (q, r, e, f), where $q=(1+\mu-\mu \lambda)\left(\lambda+\lambda \mu-\lambda^{2} \mu+\mu\right) / \lambda(\mu+1), r=\lambda^{2} \mu-\lambda \mu$, $e=\lambda^{2}(\mu+1)+2 \lambda+\mu, f=\lambda^{2}(\mu+1)$ and $\lambda+\mu>-1$.

In case (c) the blocks $\Delta(j)\left(j \in V_{2}\right)$ induce cliques of order $1+\mu-\mu \lambda$, and any two such blocks intersect in $1+\mu$ vertices; moreover the blocks $\Delta(i) \cap V_{2}\left(i \in V_{1}\right)$ are of size λ^{2} with intersection numbers $-\lambda$ and 0.

Example 4.3. As an example of case (c) in Theorem 4.2 we have the unique smallest maximal exceptional graph, labelled G001 in [4, Chapter 6]. This graph, first identified in [1], has order 22 and spectrum $14,2^{(7)},-2^{(14)}$. A representation in the root system E_{8} is given in [4, Section 6.4]; see also [6, pp.112-113]. A different construction is given in [5, Example 5.2.6(c)]. For this graph we have $n_{1}=14, n_{2}=8, d_{1}=16$ and $d_{2}=7$. We find that $\left(\begin{array}{ll}r_{11} & r_{12} \\ r_{21} & r_{22}\end{array}\right)=\left(\begin{array}{cc}12 & 4 \\ 7 & 0\end{array}\right)$, with trace equal to $\rho+\lambda$, and so μ is a non-main eigenvalue. Since $r_{11}=12$ we have $G_{1} \cong \overline{7 K_{2}}$.

The following result narrows the search for further examples.
Proposition 4.4. If G is of parametric type, with coprime parameters λ, μ, then G is of symmetric type.
Proof. Suppose that G has coprime parameters λ, μ. We see from Eq.(7) that λ divides $\mu(\mu+1)$, and so $\mu=-\lambda \beta-1$ for some positive integer β. From Eq.(7), we have

$$
n_{1}=\frac{(\beta \lambda-\beta+1)\left(\beta \lambda^{3}-\beta \lambda^{2}+\lambda^{2}-\beta \lambda-1\right)}{-\lambda \beta}
$$

whence $-\lambda$ divides $\beta-1$. Suppose by way of contradiction that $\beta>1$. Then $\beta \geq 1-\lambda$ and $\mu+1 \geq-\lambda(1-\lambda)$.

Since $\lambda+\mu \neq-1$ the graph G_{1} is not complete. Now consider the complementary graph $\overline{G_{1}}$, which is strongly regular with parameters $\left(n_{1}, n_{1}-r_{11}-1, \bar{e}, \bar{f}\right)$, where $\bar{e}=n_{1}-2 r_{11}-2+f$ and $\bar{f}=n_{1}-2 r_{11}+e$. Then

$$
\bar{e}=\frac{(1+\mu-\mu \lambda)\left(\lambda+\lambda \mu-\lambda^{2} \mu+\mu\right)}{\lambda(\mu+1)}-2\left(\lambda^{2}-\lambda \mu+1\right)+\lambda^{2}(\mu+1)
$$

Hence $\lambda(\mu+1) \bar{e}=(\mu+1)^{2}-(\mu+1)+\lambda^{3}-\lambda$. Since $\mu+1 \geq-\lambda(1-\lambda)$, we deduce that $\lambda(\mu+1) \bar{e} \geq \lambda^{4}-\lambda^{3}$. This is a contradiction because $\lambda(\mu+1) \bar{e} \leq 0$. while $\lambda^{4}-\lambda^{3}>0$ We deduce that $\beta=1$. Hence $\lambda+\mu=-1$, and so (as before) G is of symmetric type.

In view of Proposition 4.4 we say that λ, μ are feasible parameters for a graph of parametric non-symmetric type if (i) λ and μ are not coprime, (ii) $\lambda+\mu \geq 0$, and (iii) λ and μ satisfy the integrality conditions imposed by Eqs.(7) and (9). It is clear from Eq.(8) that when $\lambda+\mu=0$, the graph G001 is the smallest that can arise. When $\lambda+\mu>0$, the values of feasible parameters with smallest $\mu-\lambda$ are $\mu=9, \lambda=-6$. Then $n_{1}=400$, $n_{2}=225, d_{1}=414, d_{2}=64$ and G has spectrum $384,9^{(224)},-6^{(400)}$. In this case, the graph G_{1} in Theorem 4.2(c) is strongly regular with parameters $(400,378,357,360)$. The complement $\overline{G_{1}}$ has the more appealing parameters $(400,21,2,1)$. According to [2], the existence of such a graph remains an open question, and it is here that we pause our own investigation.

References

[1] W. G. Bridges and R. A. Mena, Multiplicative designs II: uniform normal and related structures, J. Combin Theory Ser. A 27 (1979), 269-281.
[2] A. E. Brouwer, A table of parameters of strongly regular graphs, http://www.win.tue.nl/~aeb/.
[3] X-M Cheng, A. L. Gavrilyuk, G. R. W. Greaves and J. H. Koolen, Biregular graphs with three eigenvalues, European J. Math, 56 (2016), 57-80.
[4] D. Cvetković, P. Rowlinson and S. K. Simić, Spectral Generalizations of Line Graphs, Cambridge University Press (Cambridge), 2004.
[5] D. Cvetković, P. Rowlinson and S. K. Simić, An Introduction to the Theory of Graph Spectra, Cambridge University Press (Cambridge), 2010.
[6] E. R. van Dam, Nonregular graphs with three eigenvalues, J. Combin. Theory Ser. B 73 (1998), 101-118.
[7] C. J. Mitchell, An infinite family of symmetric designs, Discrete Math. 26 (1979), 247-250.
[8] M. Muzychuk and M. Klin, On graphs with three eigenvalues, Discrete Math. 189 (1998), 191-207.
[9] P. Rowlinson, The main eigenvalues of a graph: a survey, Applicable Analysis and Discrete Math. 1 (2007), 445-471.

[^0]: ${ }^{1}$ Tel.: +441786 467468; fax +441786 464551; email: p.rowlinson@stirling.ac.uk

