
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/2628818

Formal	Object	Oriented	Development	of	Software
Systems	using	LOTOS.

Article	·	December	1997

Source:	CiteSeer

CITATIONS

33

READS

17

1	author:

J.	Paul	Gibson

Institut	Mines-Télécom

92	PUBLICATIONS			570	CITATIONS			

SEE	PROFILE

Available	from:	J.	Paul	Gibson

Retrieved	on:	15	August	2016

https://www.researchgate.net/publication/2628818_Formal_Object_Oriented_Development_of_Software_Systems_using_LOTOS?enrichId=rgreq-b66d1e6faf6b8eab888d8b97d17544ef-XXX&enrichSource=Y292ZXJQYWdlOzI2Mjg4MTg7QVM6OTg2ODg2MTc2ODA5MDhAMTQwMDU0MDYwODUxNA%3D%3D&el=1_x_2
https://www.researchgate.net/publication/2628818_Formal_Object_Oriented_Development_of_Software_Systems_using_LOTOS?enrichId=rgreq-b66d1e6faf6b8eab888d8b97d17544ef-XXX&enrichSource=Y292ZXJQYWdlOzI2Mjg4MTg7QVM6OTg2ODg2MTc2ODA5MDhAMTQwMDU0MDYwODUxNA%3D%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-b66d1e6faf6b8eab888d8b97d17544ef-XXX&enrichSource=Y292ZXJQYWdlOzI2Mjg4MTg7QVM6OTg2ODg2MTc2ODA5MDhAMTQwMDU0MDYwODUxNA%3D%3D&el=1_x_1
https://www.researchgate.net/profile/J_Paul_Gibson?enrichId=rgreq-b66d1e6faf6b8eab888d8b97d17544ef-XXX&enrichSource=Y292ZXJQYWdlOzI2Mjg4MTg7QVM6OTg2ODg2MTc2ODA5MDhAMTQwMDU0MDYwODUxNA%3D%3D&el=1_x_4
https://www.researchgate.net/profile/J_Paul_Gibson?enrichId=rgreq-b66d1e6faf6b8eab888d8b97d17544ef-XXX&enrichSource=Y292ZXJQYWdlOzI2Mjg4MTg7QVM6OTg2ODg2MTc2ODA5MDhAMTQwMDU0MDYwODUxNA%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Institut_Mines-Telecom?enrichId=rgreq-b66d1e6faf6b8eab888d8b97d17544ef-XXX&enrichSource=Y292ZXJQYWdlOzI2Mjg4MTg7QVM6OTg2ODg2MTc2ODA5MDhAMTQwMDU0MDYwODUxNA%3D%3D&el=1_x_6
https://www.researchgate.net/profile/J_Paul_Gibson?enrichId=rgreq-b66d1e6faf6b8eab888d8b97d17544ef-XXX&enrichSource=Y292ZXJQYWdlOzI2Mjg4MTg7QVM6OTg2ODg2MTc2ODA5MDhAMTQwMDU0MDYwODUxNA%3D%3D&el=1_x_7


Formal Object Oriented Developmentof Software Systemsusing LOTOS.J. Paul. GibsonDepartment of Computing Science,University of Stirling,Stirling FK9 4LA.
A thesis submitted in partial ful�lment of therequirements for the Degree of Doctor of Philosophyin Computer Science at Stirling UniversityJuly 1993



iAbstractFormal methods are necessary in achieving correct software: that is, software that can be proven to ful�lits requirements. Formal speci�cations are unambiguous and analysable. Building a formal model improvesunderstanding. The modelling of nondeterminism, and its subsequent removal in formal steps, allows designand implementation decisions to be made when most suitable. Formal models are amenable to mathematicalmanipulation and reasoning, and facilitate rigorous testing procedures. However, formalmethods are not widelyused in software development. In most cases, this is because they are not suitably supported with developmenttools. Further, many software developers do not recognise the need for rigour.Object oriented techniques are successful in the production of large, complex software systems. The meth-ods are based on simple mathematical models of abstraction and classi�cation. Further, the object orientedapproach o�ers a conceptual consistency across all stages of software development. However, the inherentexibility of object oriented approaches can lead to an incremental and interactive style of development, aconsequence of which may be insu�cient rigour. This lack of rigour is exacerbated by the inconsistent andinformal semantics for object oriented concepts at all stages of development.Formal and object oriented methods are complementary in software development: object oriented methodscan be used to manage the construction of formal models and formality can add rigour to object orientedsoftware development. This thesis shows how formal object oriented development can proceed from analysisand requirements capture to design and implementation.A formal object oriented analysis language is de�ned in terms of a state transition system semantics.This language is said to be customer-oriented: a number of graphical views of object oriented relations inthe formal analysis models are presented, and the speci�cations produced say what is required rather thanhow the requirements are to be met. A translation to ACT ONE provides an executable model for customervalidation. This translation is founded on a precise statement of the relationship between classes and types(and subclassing and subtypes). The structure of the resulting ACT ONE requirements model corresponds tothe structure of the problem domain, as communicated by the customer.The step from analyis to design requires an extension to the requirements model to incorporate semanticsfor object communication. A process algebra provides a suitable formal model for the speci�cation of com-munication properties. LOTOS, which combines ACT ONE and a process algebra in one coherent semanticmodel, provides a means of constructing object oriented design semantics. Design is de�ned as the processof transforming a customer-oriented requirements model to an implementation-oriented design, whilst main-taining correctness. Correctness preserving transformations (CPTs) are de�ned for: transferring requirementsstructure to design structure, manipulating design structure and changing internal communication models.Design must be targetted towards a particular implementation environment. The thesis examines a numberof di�erent environments for the implementation of object oriented LOTOS designs. It illustrates the impor-tance of understanding programming language semantics. We show how Ei�el can be used to implement formalobject oriented designs.A case study which evaluates the formal object oriented models and methods, developed in this thesis, isreported. This identi�es re-use at all stages of software development and emphasises the role of structure: itimproves understanding and communication, and makes validation and veri�cation easier and better.The thesis shows that formal object oriented technology is ready for transfer to industry. These methodsshould be exploited sooner rather than later: object oriented development can incorporate formal methodswithout signi�cant cost, and formal methods can utilise the object oriented paradigm to manage complexity.The thesis provides a rationale for formal object oriented development and a set of conceptual tools whichmakes the development of software systems a true engineering discipline.



ii

DeclarationI hereby declare that this thesis has been composed by myself, that the work reported has notbeen presented for any university degree before, and that the ideas I do not attribute to others aredue to myself.
Paul GibsonJuly 1993



iiiAcknowledgementsThe completion of this thesis was dependent on many di�erent people, my thanks goes toeveryone who encouraged me in this work, even if I forget to mention them by name.My supervisor, Ken Turner, must be acknowledged for the time and e�ort which wentinto my supervision. Ashley McClenaghan must also be thanked for his friendship andsupport whilst sharing a room with me for almost four years. The computing sciencedepartment at Stirling University is thanked as a whole, but, in particular, Sam, Grahamand Catherine (for their technical support), and Moira and Jane (for their secretarialexpertise), and Bob Clark (for ably ful�lling the role of a second supervisor) must beacknowledged.British Telecom (Research and Development) are acknowledged for their �nancial con-tributions, together with the Department of Education for Northern Ireland. BT alsoo�ered support in the form of technical advice and personal encouragement: Elspeth Cu-sack, Steve Rudkin, Jim Lynch, Steve Colwill, Jeremy Wilson, Rob Booth, David Freerand many others are thanked in this respect.On a personal note, my family are thanked for their support of an eternal student: mymother, father, David and Andrew have given me more help than they could know. Myfriends: Geo� (who never had a cross word), Flash, Andy, Steve, Dave, Gary, Richard,Ana, Peter, Dominique and Bazza have helped with their sense of humour and under-standing.Finally, I would like to thank my girlfriend, Jane, for putting up with me whilst completingthis work: she may not understand what it means, but she, more than anyone, understandswhat it means to me!I �nish with a sentiment (a lesson from my parents which I have only just fully learned):When you value something by how much it has cost then you don't really valueit at all.



Contents1 Introduction 11.1 Scope: Software Engineering : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21.2 Context: Structured Development, Formal and Object Oriented Methods : : : : : : : : : : : : 21.2.1 Structured Software Development Methods : : : : : : : : : : : : : : : : : : : : : : : : : 31.2.2 Formal Methods : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 41.2.3 The Object Oriented Paradigm : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 51.2.4 Formal Methods and Object Orientation : : : : : : : : : : : : : : : : : : : : : : : : : : : 51.2.5 LOTOS : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 61.3 Formulation of an Ideal Development Environment : : : : : : : : : : : : : : : : : : : : : : : : : 71.4 Formal Object Oriented Development (FOOD): Prototyping An Ideal : : : : : : : : : : : : : : 81.4.1 Ful�lling The Ideal Requirements: An Overview : : : : : : : : : : : : : : : : : : : : : : 81.4.2 A Step-by-step Construction of the FOOD Environment : : : : : : : : : : : : : : : : : : 101.5 Contributions of the Thesis : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 121.5.1 FOOD: The Philosophy : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 121.5.2 FOOD: The Models : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 131.5.3 FOOD: The Method : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 132 Analysis: Modelling Problem Understanding 142.1 Introducing Formal Object Oriented Analysis (FOOA) : : : : : : : : : : : : : : : : : : : : : : : 152.1.1 Introducing Traditional (Functional) Approaches : : : : : : : : : : : : : : : : : : : : : : 152.1.2 Object Orientation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 152.1.3 Formalisation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 162.1.4 Formalising the Object Oriented Approach : : : : : : : : : : : : : : : : : : : : : : : : : 162.2 Analysis: An Overview : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 172.2.1 Analysis is Problem Domain Understanding : : : : : : : : : : : : : : : : : : : : : : : : : 172.2.2 Traditional Analysis Methods and Models : : : : : : : : : : : : : : : : : : : : : : : : : : 182.2.3 Features of Good Analysis : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 202.2.4 Introducing Object Oriented Analysis : : : : : : : : : : : : : : : : : : : : : : : : : : : : 222.2.5 Objects and Classes: The Problems with Terminology : : : : : : : : : : : : : : : : : : : 232.3 Object Oriented Analysis: An Informal Approach : : : : : : : : : : : : : : : : : : : : : : : : : : 242.3.1 Identifying Objects : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 242.3.2 Identifying Classes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 262.3.3 Classi�cation Relationships : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 272.3.4 De�ning Classes of Behaviour : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 282.3.5 Explicit Subclassing Relationships : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 37iv



CONTENTS v2.3.6 Reviewing Object Oriented Analysis Language Requirements: A Five Model Approach : 382.4 Formal Object Oriented Analysis Using Abstract Data Types (ADTs) : : : : : : : : : : : : : : 402.4.1 Background to Abstract Data Types : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 402.4.2 ADTS in an Object Oriented Semantic Framework : : : : : : : : : : : : : : : : : : : : : 412.4.3 ADTs in the Initial Stages of Object Oriented Development : : : : : : : : : : : : : : : : 412.4.4 A Formal Object Oriented Development Method : : : : : : : : : : : : : : : : : : : : : : 422.5 Classes and Types : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 432.5.1 Typing in Object Oriented Languages: An Introduction : : : : : : : : : : : : : : : : : : 432.5.2 Types : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 442.5.3 Type Systems : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 442.5.4 Mapping Classes to ADT Speci�cations : : : : : : : : : : : : : : : : : : : : : : : : : : : 452.6 A Formal Object Oriented Requirements Model in ACT ONE: A Preview : : : : : : : : : : : : 472.6.1 Modelling Object Oriented Requirements in ACT ONE : : : : : : : : : : : : : : : : : : 472.6.2 An Overview of the Class ! ADT Mapping : : : : : : : : : : : : : : : : : : : : : : : : : 472.6.3 Using the ACT ONE Object Oriented Model : : : : : : : : : : : : : : : : : : : : : : : : 483 An Object Oriented Semantic Framework 493.1 An Overview of the Semantic Framework : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 493.2 Object-Labelled State Transition System (O-LSTS) Semantics : : : : : : : : : : : : : : : : : : : 503.2.1 De�nition: an O-LSTS Speci�cation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 513.2.2 O-LSTS Examples : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 553.2.3 State Label Expressions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 593.3 An Object Oriented Interpretation of the O-LSTS Model : : : : : : : : : : : : : : : : : : : : : 593.3.1 O-LSTS Classi�cation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 603.3.2 O-LSTS Interaction: The Executable Semantics : : : : : : : : : : : : : : : : : : : : : : : 613.3.3 O-LSTS Subclassing (and Subtyping) : : : : : : : : : : : : : : : : : : : : : : : : : : : : 623.3.4 O-LSTS Composition : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 743.3.5 O-LSTS Con�guration : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 763.3.6 Structure Diagrams : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 783.4 OO ACT ONE: A Formal Object Oriented Analysis Language : : : : : : : : : : : : : : : : : : 783.4.1 Motivation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 783.4.2 The OO ACT ONE Syntax: Some Examples : : : : : : : : : : : : : : : : : : : : : : : : 793.4.3 Static Analysis of OO ACT ONE: Syntax and Semantics : : : : : : : : : : : : : : : : : 923.5 An ACT ONE Execution Model for O-LSTS Speci�cations : : : : : : : : : : : : : : : : : : : : 933.5.1 The Advantages of Using ACT ONE : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 933.5.2 Reviewing the ACT ONE Terminology : : : : : : : : : : : : : : : : : : : : : : : : : : : : 933.5.3 An Overview of the OO ACT ONE ! ACT ONE Translation : : : : : : : : : : : : : : : 943.5.4 Static Analysis of ACT ONE : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 993.5.5 Evaluating Act One Expressions: An Execution Model for OO ACT ONE : : : : : : : : 993.5.6 Event Diagrams : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1004 Formal Object Oriented Analysis: The Practical Issues 1014.1 Subclassing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1024.1.1 Categorising Class Hierarchies : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1024.1.2 Inclusion Polymorphism and Dynamic Binding : : : : : : : : : : : : : : : : : : : : : : : 103



CONTENTS vi4.1.3 OO ACT ONE: An Explicit Subclassing Approach : : : : : : : : : : : : : : : : : : : : : 1054.1.4 Abstract Classes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1054.1.5 A Polymorphism Problem: Heterogeneous Data Stores : : : : : : : : : : : : : : : : : : : 1064.2 Composition : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1064.2.1 Composition Structure : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1074.2.2 Con�guration : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1074.2.3 Interaction (Data Flow and Control Flow) : : : : : : : : : : : : : : : : : : : : : : : : : : 1074.2.4 Structures: Dynamic and Static : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1084.2.5 Shared Objects : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1104.2.6 Timing Properties : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1114.3 Other Object Oriented Analysis Issues : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1134.3.1 Concurrency : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1134.3.2 Communication: Synchronous vs Asynchronous : : : : : : : : : : : : : : : : : : : : : : : 1144.3.3 Exception Handling : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1144.3.4 Nondeterminism and Probabilistic Behaviour : : : : : : : : : : : : : : : : : : : : : : : : 1144.3.5 Active and Passive Objects : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1154.3.6 Persistency : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1164.3.7 Class Routines: Con�guration and Creation : : : : : : : : : : : : : : : : : : : : : : : : : 1164.4 Reviewing the OO ACT ONE Speci�cation Language : : : : : : : : : : : : : : : : : : : : : : : 1164.4.1 Does It Meet Our Expressional Requirements? : : : : : : : : : : : : : : : : : : : : : : : 1164.4.2 Is OO ACT ONE Purely an Analysis Language? : : : : : : : : : : : : : : : : : : : : : : 1174.5 The Practicalities of Building a Formal Model : : : : : : : : : : : : : : : : : : : : : : : : : : : 1174.5.1 The Skeleton Method to Object Oriented Analysis : : : : : : : : : : : : : : : : : : : : : 1184.5.2 Validation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1214.5.3 Tools : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1224.5.4 Analysis Style: High Level Decisions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1224.5.5 General Analysis Principles : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1254.6 FOOA and Object Oriented Design : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1254.6.1 Importance of Structure : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1254.6.2 Executable Models : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1264.6.3 Constructive vs Unconstructive Speci�cations : : : : : : : : : : : : : : : : : : : : : : : : 1264.6.4 Design and Design Transformations: A Preview : : : : : : : : : : : : : : : : : : : : : : : 1265 Formal Object Oriented Design (Using LOTOS) 1285.1 Introducing Design : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1295.1.1 Design: The Creative Process : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1295.1.2 Purposeful Design : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1305.1.3 Design Quality and Criteria : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1305.1.4 Introducing Software Design : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1315.2 Learning From Di�erent Design Areas : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1325.2.1 Allowing For Change: A Unique Problem : : : : : : : : : : : : : : : : : : : : : : : : : : 1325.2.2 Identi�cation of General Techniques and Principles : : : : : : : : : : : : : : : : : : : : : 1335.2.3 Software Design and Engineering : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1345.3 Object Oriented Software Design : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1355.3.1 Overview of Software Design : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 135



CONTENTS vii5.3.2 Comparing Object Oriented Design and Object Oriented Analysis. : : : : : : : : : : : : 1355.3.3 Removing Nondeterminism : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1365.3.4 Realising the Abstract Object Oriented Model : : : : : : : : : : : : : : : : : : : : : : : 1365.3.5 Restructuring The Requirements To Match An Implementation Environment : : : : : : 1365.3.6 Veri�cation and Correctness Preserving Transformations : : : : : : : : : : : : : : : : : : 1385.4 Object Oriented Design with LOTOS : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1395.4.1 Design in LOTOS : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1395.4.2 Abstract Data Typing in LOTOS : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1415.4.3 The Process Algebra in LOTOS : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1415.4.4 Balancing Processes and Types in Design : : : : : : : : : : : : : : : : : : : : : : : : : : 1415.4.5 De�ning an Object Oriented LOTOS Style of Speci�cation : : : : : : : : : : : : : : : : 1425.5 FOOA as Input to Formal Object Oriented Design : : : : : : : : : : : : : : : : : : : : : : : : : 1445.5.1 Generating Full LOTOS from the Requirements Model : : : : : : : : : : : : : : : : : : : 1445.5.2 Internal and External Communication : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1475.5.3 De�ning the Mappings from OO ACT ONE to Full LOTOS : : : : : : : : : : : : : : : : 1475.5.4 An Object Oriented Interpretation of the Initial LOTOS Designs : : : : : : : : : : : : : 1485.5.5 An Object Oriented Style of LOTOS Speci�cation : : : : : : : : : : : : : : : : : : : : : 1525.6 Correctness Preserving Transformations (CPTs): Formalising Design : : : : : : : : : : : : : : : 1535.6.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1535.6.2 Concepts : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1545.6.3 An Overview of CPTs in LOTOS : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1555.6.4 Graphical Views and Tools : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1575.6.5 CPT Driven Design: Some Other Concerns : : : : : : : : : : : : : : : : : : : : : : : : : 1585.6.6 Object Oriented LOTOS CPTs and the Resulting Design Trajectory : : : : : : : : : : : 1595.7 A Set of Object Oriented Design Decisions as CPTs : : : : : : : : : : : : : : : : : : : : : : : : 1605.7.1 Static Structure Expansion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1615.7.2 Compositional Re-Structuring For Re-Use : : : : : : : : : : : : : : : : : : : : : : : : : : 1655.7.3 Re-Structuring for Distributed Control : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1685.7.4 Resolving Explicit NonDeterminism : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1725.7.5 Removing Parallelism : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1746 Object Oriented Program Derivation 1766.1 High-level Object Oriented Design as Input to Implementation : : : : : : : : : : : : : : : : : : 1776.1.1 An Overview of Programming Languages and Implementation Concerns : : : : : : : : : 1786.1.2 Implementation Outside an Object Oriented Framework : : : : : : : : : : : : : : : : : : 1796.1.3 Implementation in an Object Oriented Environment: The Advantages : : : : : : : : : : 1836.2 Object Oriented Programming (OOP): The Alternatives : : : : : : : : : : : : : : : : : : : : : : 1836.2.1 The Roles of Object Oriented Programmers : : : : : : : : : : : : : : : : : : : : : : : : : 1836.2.2 Characterisation of OOP Languages : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1856.2.3 A Review of OOP Languages : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1896.2.4 Choosing Ei�el : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1906.3 Translating Design To Implementation: Mapping Semantics : : : : : : : : : : : : : : : : : : : : 1916.3.1 Implementation Languages: The Importance of Semantics : : : : : : : : : : : : : : : : : 1916.3.2 Peculiarities of LOTOS Designs : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1936.4 Producing Ei�el from Procedural Object Oriented LOTOS Designs : : : : : : : : : : : : : : : : 195



CONTENTS viii6.4.1 Setting Reasonable Bounds : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1956.4.2 Coding Design Requirements in Ei�el: An Overview : : : : : : : : : : : : : : : : : : : : 1966.4.3 Reference Semantics vs Value Semantics : : : : : : : : : : : : : : : : : : : : : : : : : : : 1966.4.4 Coding Object Based Requirements : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1996.4.5 Coding Object Oriented Properties : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2036.4.6 Using Ei�el Assertions and Exceptions : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2056.4.7 Other Aspects : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2066.5 A Question of Concurrency and Distribution : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2076.5.1 Concurrency and Objects: Opposing Views : : : : : : : : : : : : : : : : : : : : : : : : : 2086.5.2 Concurrency: A Problem of Scale : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2096.5.3 Concurrency and Object Orientation: Resolving Conicting Requirements : : : : : : : : 2096.5.4 The Future: Formality in Concurrent Compilers? : : : : : : : : : : : : : : : : : : : : : : 2107 Formal Object Oriented Development: A Case Study 2127.1 Introducing the Banking Network Problem : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2137.1.1 Choosing the Case Study : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2137.1.2 Limitations of the Case Study : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2137.1.3 The Scope of the Problem: An Informal Overview of Requirements : : : : : : : : : : : : 2147.2 Formal Object Oriented Analysis of the System : : : : : : : : : : : : : : : : : : : : : : : : : : : 2167.2.1 What not How : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2167.2.2 Applying the Skeleton Method to Requirements Capture : : : : : : : : : : : : : : : : : : 2167.2.3 A Review of the Analysis and Requirements Capture : : : : : : : : : : : : : : : : : : : : 2347.3 Design: Moving the System from Abstract to Concrete : : : : : : : : : : : : : : : : : : : : : : : 2377.3.1 From Analysis to Design: Choosing the Communication Model : : : : : : : : : : : : : : 2387.3.2 Decomposition of the Banking Network System : : : : : : : : : : : : : : : : : : : : : : : 2397.3.3 Decomposition of the Network Component Process : : : : : : : : : : : : : : : : : : : : : 2397.3.4 Restructuring the Network Component Process : : : : : : : : : : : : : : : : : : : : : : : 2407.3.5 Integrating the Transaction Set in the Network : : : : : : : : : : : : : : : : : : : : : : : 2417.3.6 An Explicit Routing Mechanism: Removing Nondeterminism : : : : : : : : : : : : : : : 2427.3.7 A Review of the Design Process : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2447.4 The Ei�el Implementation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2457.4.1 The Role of the Final Object Oriented LOTOS Design : : : : : : : : : : : : : : : : : : : 2457.4.2 Re-Use in the Implementation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2467.4.3 Implementing Exceptions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2467.4.4 Implementing A User Interface : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2467.5 A Review of the Case Study : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2467.5.1 Development Statistics : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2467.5.2 The E�ectiveness of FOOD : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2477.5.3 Extensions to the Behaviour : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2477.5.4 The Importance of Structure Throughout Development : : : : : : : : : : : : : : : : : : 2488 Conclusions 2498.1 Review of Thesis Objectives : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2498.2 Meeting Objectives: The Contributions of the Thesis : : : : : : : : : : : : : : : : : : : : : : : : 2498.3 Future Work : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 252



CONTENTS ixA Preconditioned Equations: The O-LSTS Model 261B Static Analysis of OO ACT ONE 264B.1 Preprocessing: Removing Syntactic Sugar : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 264B.2 Static Semantic Checks of Unsugared OO ACT ONE : : : : : : : : : : : : : : : : : : : : : : : : 266C Mapping OO ACT ONE to ACT ONE 270C.1 Object Based Requirements : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 270C.2 Example Queue Behaviour : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 274C.3 Translating Object Oriented Requirements: An Example : : : : : : : : : : : : : : : : : : : : : : 275D An OO ACT ONE Interpretation of Interaction 284D.1 Interaction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 284D.2 Data and Control Flow : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 285E Design Issues 287E.1 The ParXStack Process De�nition : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 287E.2 Two Mappings from OO ACT ONE to an Initial Full LOTOS Design : : : : : : : : : : : : : : 289E.2.1 The MakePar Mapping : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 289E.2.2 The MakeRPC Mapping : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 290



List of Figures1.1 Thesis Scope : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21.2 An Overview of the Problem Domain Structure : : : : : : : : : : : : : : : : : : : : : : : : : : : 31.3 Prototyping an Ideal Software Development Environment : : : : : : : : : : : : : : : : : : : : : 102.1 A Hall Residents Class Hierarchy : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 282.2 Five Object Oriented Relationships: A Simple Car Example : : : : : : : : : : : : : : : : : : : : 393.1 A Resetable Tra�c Light as an O-LSTSD : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 563.2 A Resetable Tra�c Light as a Sugared O-LSTSD : : : : : : : : : : : : : : : : : : : : : : : : : : 573.3 A Further Sugaring of the O-LSTSD : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 573.4 An O-LSTSD Speci�cation of an Integer Counter : : : : : : : : : : : : : : : : : : : : : : : : : : 583.5 Subtyping: A Simple Example : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 653.6 Subtyping is not Subclassing: An Example : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 653.7 An Extension Example : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 673.8 A Specialisation Example : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 683.9 Illustrating Contravariance and Covariance : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 693.10 A Ful�ls Example : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 713.11 A Transition Reduction Example : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 723.12 A State Reduction Example : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 723.13 A Re-structuring Example : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 733.14 An Inclusion Example : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 743.15 A Composition Example : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 763.16 System Con�guration: An Example : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 773.17 Structure Diagrams: An Example : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 783.18 Specifying Natural Numbers: A Nat O-LSTS : : : : : : : : : : : : : : : : : : : : : : : : : : : : 803.19 Class Hierarchies in O-LSTSDs : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 893.20 Static Analysis of OO ACT ONE : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 933.21 A System Event Diagram : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1004.1 A Single Inheritance Hierarchy : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1024.2 A Multiple Inheritance Hierarchy : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1034.3 A Structure Diagram of Recursive Behaviour : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1104.4 Sharing is not an Analysis Issue: An Example : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1114.5 The Skeleton Analysis Method : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1185.1 Restructuring for Re-use: A Design Sequence : : : : : : : : : : : : : : : : : : : : : : : : : : : : 137x



LIST OF FIGURES xi5.2 Restructuring for Re-use: A Design Choice : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1375.3 LOTOS: An Object Oriented Interpretation of Objects and Processes : : : : : : : : : : : : : : 1495.4 LOTOS: An Object Oriented Interpretation of Service Requests : : : : : : : : : : : : : : : : : : 1495.5 LOTOS: Representing Communication Models : : : : : : : : : : : : : : : : : : : : : : : : : : : 1535.6 A CPT: Illustrating the Concepts : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1575.7 The Formal Object Oriented Design Trajectory : : : : : : : : : : : : : : : : : : : : : : : : : : : 1595.8 Static Expansion (StExp) of a ParClass Process : : : : : : : : : : : : : : : : : : : : : : : : : : : 1615.9 StExp of a TwinStack Behaviour : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1645.10 A Composition CPT: Comp : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1665.11 A Composition Example : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1675.12 The Distributed Control CPT: Dist : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1685.13 CoinToss: An Example of Nondeterministic Behaviour : : : : : : : : : : : : : : : : : : : : : : : 1736.1 Categorising Control Flow Models : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1796.2 Characterising Object Oriented Programming Languages : : : : : : : : : : : : : : : : : : : : : 1916.3 Composition By Reference: A Form of Sharing : : : : : : : : : : : : : : : : : : : : : : : : : : : 1936.4 Sharing Objects: An Implementation Example : : : : : : : : : : : : : : : : : : : : : : : : : : : 1946.5 Composition in Ei�el : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2027.1 Scope of the Case Study : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2147.2 The Network Class Structure Diagram : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2197.3 A Network Object Structure Diagram : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2247.4 The Account Transaction Class Hierarchy : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2287.5 A Review of the BankingNetwork Components : : : : : : : : : : : : : : : : : : : : : : : : : : : 2327.6 The BankingNetwork Class Structure Diagram : : : : : : : : : : : : : : : : : : : : : : : : : : : 2337.7 BankingNetwork Design Diagram: Stage 2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2407.8 Network Design Diagram: Stage 3 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2407.9 Network Design Diagram: Stage 4.1 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2417.10 Network Design Diagram: Stage 4.2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2427.11 BankingNetwork Design Diagram: Stage 5.1 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2427.12 BankingNetwork Design Diagram: Stage 5.2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2437.13 BankingNetwork Design Diagram: Stage 6 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 244B.1 Preprocessing of OO ACT ONE Syntactic Sugar : : : : : : : : : : : : : : : : : : : : : : : : : : 264C.1 An Example O-LSTSD : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 275



Chapter 1IntroductionFormal languages, based on mathematical models, are essential in achieving correct software. Correct-ness, being a mathematical proof that software ful�ls requirements, depends on: a formal requirementsmodel, a formal implementation model and a means of relating the two. These requirements appearstraightforward until the complex nature of software is considered.Software development has reached the point where the complexity of the systems being mod-elled cannot be handled without a thorough understanding of underlying fundamental principles.Such understanding forms the basis of scienti�c theory as a rationale for software development tech-niques which are successful in practice. This scienti�c theory, as expressed in rigorous mathematicalformalisms, must be transferred to the software development environment. Only then can the devel-opment of software systems be truly called software engineering: the application of techniques, basedon mathematical theory, towards the construction of abstract machines as a means of solving wellde�ned problems.Object oriented methods encompass a set of techniques which have been, and will continue tobe, applied in the successful production of complex software systems. The methods are based on thesimple mathematical models of abstraction and classi�cation. Further, the conceptual consistencyo�ered by the object oriented paradigm across the software development process, together with anemphasis on re-use, promotes very fast code production cycles. However, the inherent exibilityin object oriented development environments often leads to an interactive and incremental style ofdevelopment, a consequence of which may be insu�cient rigour in software production. This lack ofrigour is re-inforced by the informal set of object oriented concepts and terminology which, althoughapplied in all stages of development and based on the same underlying principles, mean di�erentthings to di�erent people.Object oriented methods can be used to aid the construction of formal models. Formality canhelp to improve object oriented software development techniques. Object oriented and formal meth-ods are complementary: their integration has the potential for producing a software developmentenvironment which incorporates the bene�ts of both. Fundamental to the successful integration ofmathematical rigour and object oriented methodology is a formal model of object oriented conceptswhich is consistent throughout the whole software development process. Such a model forms the basis1



CHAPTER 1. INTRODUCTION 2of the work put forward by this thesis.1.1 Scope: Software EngineeringSoftware engineering, formal methods and the object oriented paradigm together form an enormousbody of work, much of which is beyond the scope of this thesis. The software engineering boundariesof the work are clearly de�ned in �gure 1.1. The analysis, requirements capture, design and im-plementation models and methods put forward by this thesis are collectively named FOOD: FormalObject Oriented Development.
and Analysis

Transformation

Gap
Implementation

Gap

Customer

and Analysis
Synthesis

Environment

Formal Object Oriented Development (FOOD)

Software Engineering

Thesis Boundaries

OO Requirements Model OO Design Model

ImplementationProblem
Domain Figure 1.1: Thesis ScopeFOOD is principally concerned with maintaining correctness between the initial customer orientedrequirements model and the �nal implementation oriented design. The formal boundaries break downat either end of the software development process because, in general, target implementation languagesare not formally de�ned and customer understanding of their requirements is not complete. An objectoriented approach helps to bridge these two gaps because of the conceptual consistency.The thesis makes a clear distinction between models and methods: models provide only a frame-work upon which software can be constructed, whilst methods de�ne ways in which models can besynthesised and analysed to aid all stages of development. Although FOOD puts forward analysisand requirements capture, design and implementation strategies, these do not de�ne an industrialstrength software development method, which is beyond the scope of this thesis.1.2 Context: Structured Development, Formal and Object Ori-ented MethodsThe context of the work in this thesis is represented in the diagram in �gure 1.2. The three mainareas of interest, within software engineering, are structured software development methods, formalmethods and object oriented methods. Within these areas we are most interested in formal object



CHAPTER 1. INTRODUCTION 3oriented development (FOOD) and the role of the speci�cation language LOTOS. These �ve areasare overviewed in sections 1.2.1 to 1.2.5, below1.
Software Engineering

Object Oriented Methods Formal Methods

Structured Software Development Methods

LOTOSFOODFigure 1.2: An Overview of the Problem Domain Structure1.2.1 Structured Software Development MethodsStructured software development techniques have emerged in response to the growing complexity ofthe systems being modelled. Constraints on the complexity of systems which can be handled havegradually moved from hardware to software. Consequently, programming languages have had to evolveto cope with much larger problems. In the early 1970s, the need for both methodological and formalapproaches to programming were identi�ed in a number of di�erent texts, the best known of which are[40, 44, 127, 45, 105, 116]. High-level programming languages encouraged structured programming:the development of programs composed of (sub)programs composed of etc. : : : , combined with theability to share complex data structures between programs ( Modula-2 [128] is a good example ofa language which encourages structured programming [18]). Structured programming leads to anatural functional decomposition of a problem. This is reected in the large number of softwaredesign methods which place emphasis on functional structure. Good examples of these methods arefound in [27, 90, 94, 36, 41, 51, 80]. A good overview of the di�erences and similarities between thesemethods is found in [17].The functionally based structured software development methods placed emphasis on data owmodelling (in various forms), which shows the transformation of data as it ows through a system.The transformations are carried out by functions and design involves the repetitive division of func-tions into (sub)functions until the lowest-level components are simple enough to implement directly.This simple view of the functional divide-and-conquer approach does not do justice to the complex-ity inherent in many of the structured methods, but it is the underlying strategy in each of thesetechniques.There are many reasons why functional approaches are in such wide use:� Programmers think in terms of functions and so �nd the transition to structured analysis anddesign methods easy to make.1These sections give an overview of, and references to, some of the most important work related to the thesis.More comprehensive references are given in the appropriate parts of the main body of the thesis. It was consideredcounterproductive to give references to all work at this introductory stage.



CHAPTER 1. INTRODUCTION 4� Functionally based methods were the �rst widely available and well documented techniques.� The techniques o�er good project management support, which plays a vital role in softwaredevelopment [49, 66].� The methods are founded on graphical models, which appeal to the users.However, as the rest of this thesis argues, approaches based on functional decomposition (data ow)are, in general, inferior to methods based on data structure. Further, the inherent informality in themost popular structured methods is not easily overcome.1.2.2 Formal MethodsMany software engineers do not acknowledge the value of formality. This thesis is founded on the beliefthat formal methods are just about ready for transfer to general software development in industry.This belief is supported by a major study of the current state-of-the-art in formal methods [32] whichconcludes by stating:\ : : : formal methods, while still immature in certain important respects, are beginning tobe used seriously and successfully by industry to design and develop computer systems: : :"This reinforces the statements made in [50, 71, 5] concerning the ever increasing importance of for-mality in the software development process.There are a wide and varied range of de�nitions of formal method which can be found in themajority of texts concerned with mathematical rigour in computer science. (A wide range of formalmethods are considered in [46, 115, 3, 96, 72, 19].) For the purposes of this thesis we propose thefollowing de�nition:A formal method is any technique concerned with the construction and/or analysis ofmathematical models which aid the development of computer systems.Formal methods are fundamentally concerned with correctness: the property that an abstract modelful�ls a set of well de�ned requirements. This notion is addressed in a number of di�erent texts andwith respect to a number of di�erent models, see [9, 10, 8, 15, 43, 34] for example.A major problem when using formal methods in software engineering is that much of the recentresearch places emphasis on analysis rather than synthesis. The means of constructing complex formalmodels is often overlooked in favour of techniques for analysing models. In this thesis, emphasis isplaced on the construction of formal models. Formal method engineers need to learn techniques forbuilding very large, complex systems. Such techniques have been followed, with various degrees ofsuccess, by programmers. In particular, object oriented programmers have evolved techniques whichhave been successfully transferred to the analysis and design phases of software engineering. Wherebetter then to look for aid in the construction of large formal models?



CHAPTER 1. INTRODUCTION 51.2.3 The Object Oriented ParadigmThe object oriented paradigm arose out of the realisation that functional decomposition is not theonly means of structuring code: an alternative is to construct a system based on the structure ofthe data2. Emphasis on data structure led to the encapsulation of functional behaviour within dataentities: objects3.Object oriented concepts were conceived in Simula [91], went through infancy in Smalltalk [58, 57]and could be said to be leaving adolescence, and approaching maturity, in the form of many di�erentlanguages (for example: Objective C [31], C++ [106], LOOPS [7], Flavours [21, 88], CLOS [42, 73],Ei�el [84] and Common Objects [103]) and methods (for example: those of Rumbaugh [101], Coadand Yourdon [25, 26], Cox [31], Meyer [84] and Booch [13, 12]). [89] provides a good review of objectoriented languages and methods with respect to object oriented analysis and design. Unfortunately,none of the well accepted methods provides a formal framework upon which the work in this thesiscould be based.1.2.4 Formal Methods and Object OrientationThere has been much interest in combining formal and object oriented methods. The research fallsinto two main categories:� i) Using Object Oriented Techniques To Construct Formal ModelsThe success of object oriented techniques in software development has led to much interestin using the same techniques for building formal models. Much of this work centres on thede�nition of object oriented constructs, or the interpretation of object oriented concepts, in anexisting formal language. Good examples of the type of work which has been done can be foundin [24, 6, 33, 75, 100, 118, 56, 97, 81, 77]. This work has led to recognition of the inconsistentuse of object oriented terminology, highlighting the need for a concensus of opinion. Further,much of the work shows the di�culties inherent in modelling object oriented behaviour in asemantic framework which was not designed for such a purpose.� ii) The Development of Object Oriented SemanticsThe lack of agreement on the meaning of object oriented constructs, reinforced by the informalsemantics of most object oriented programming languages, has led many people to produceformal object oriented semantics, for example see [14, 130, 95, 123, 47]. The thesis by Wolczko[129] provides a more complete view of the technical issues, whilst Wegner [124] and America[1] examine the philosophical aspects. Much of this research has had a positive inuence on thework in this thesis. However, the semantics examined were not deemed suitable for use in thiswork because they did not ful�l our three main requirements (apart from formality):2Of course, there are programming languages which do not place emphasis on functional or data structure, but wedo not consider them in any detail as part of this work.3Two well known data-based sofware development methods which are generally accepted as not being object orientedare the quite similar approaches put forward by Jackson [69] and Orr [93]. These approaches are closely related to theobject oriented paradigm in the initial analysis stages, but digress from the standard object oriented view as theyapproach implementation.



CHAPTER 1. INTRODUCTION 6� 1) We require a semantics which agrees with our intuitive understanding of object orientedconcepts, as recorded in chapter 2.� 2) We require a semantics which, with a suitable syntax, is accessible to the customers foruse during analysis4.� 3) We require a semantics which can be used during all stages of object oriented develop-ment, in other words we need a wide-spectrum language.Given these very speci�c requirements, it was necessary to de�ne a new semantic framework.The work in this thesis has a foot in both these areas, which share common ground. We developan object oriented semantics (based upon a constructive, easy to understand, state transition systemmodel). The abstract data type (ADT) part of LOTOS (Language Of Temporal Ordering Speci�ca-tions), see [15, 112, 113, 68, 117], is used to implement the requirements models which are de�nedusing this semantics. Then, full LOTOS (LOTOS with the ADT and process algebra parts) is usedto model the requirements in a more concrete framework. In the thesis, LOTOS speci�cations areconstructed using object oriented techniques and LOTOS is used to de�ne a high-level object orientedsemantics: these views are complementary.In this thesis, emphasis is placed on semantic continuity. The object oriented semantics, basedon the labelled state transition model, are present throughout development. LOTOS is used only tomake the object oriented models more concrete, as development approaches implementation.1.2.5 LOTOSLOTOS is chosen as the object oriented requirements capture and design language because:� Its natural division into ADT part (based on ACT ONE5 [48]) and process algebra part (similarto CSP [65] and CCS [87]) suits our need for semantic continuity from analysis to design: theACT ONE requirements model can be incorporated within the full LOTOS design model.� LOTOS has already been the subject of research with regard to its suitability for modellingobject oriented systems and incorporating object oriented principles: for example, see [6, 118,100, 81, 75, 33, 24].� LOTOS is a wide spectrum language, which is suitable for specifying systems at various levelsof abstraction. Consequently, it can be used at both ends of the design process.� There is wide support, often in the form of tools, for the static analysis and dynamic executionof LOTOS speci�cations: for example, see [117, 61, 10, 92].Although ACT ONE and LOTOS are prominent throughout FOOD, the main work in this thesisrevolves around the principles rather than the languages used to implement the principles. Anyabstract data typing language has the potential to implement the requirements models. Similarly,4We argue, in later chapters, that this is possible only if the requirements models being used are constructive.5In the remainder of this thesis the ADT part of LOTOS is referred to as ACT ONE, even though this identity isnot quite precise.



CHAPTER 1. INTRODUCTION 7any process algebra can be used to specify the internal and external communication models whichare introduced in design. The problem of going from analysis to design (abstract types to moreconcrete processes) is made easier in LOTOS because of the way in which the two di�erent parts ofthe language are integrated.1.3 Formulation of an Ideal Development EnvironmentIn an ideal software development environment the following requirements must be met:� ConsistencyThere must be a consistency in the models of conceptualisation used throughout development.Further, there must be a coherent approach which can be applied consistently in di�erentproblem domains.� CorrectnessIt must be possible to guarantee that the �nal implementation oriented design is correct withrespect to the initial customer oriented requirements model.� Re-UseIt is vital that re-use is prominent at all stages of software development, see [98, 52]. Whenconstructing any engineered artifact it is desirable to use materials whose behaviour is wellunderstood. In software engineering these materials are available in many di�erent forms: low-level language constructs, medium-level prede�ned code components and high-level developmentmethods.� OpportunismThe software development method should not be too prescriptive. A developer should be ableto do what seems best at any stage of development within well de�ned bounds, and the methodshould support this. The lack of opportunistic exibility often constrains software development,see [119, 76, 62, 79]. Uncontrolled opportunism is not desirable, but there is no reason whysoftware developers cannot be encouraged, by the method being employed, to both craft andengineer software.� Customer AwarenessThe analysis and requirements capture phases of software development should be customeroriented: it is generally agreed that customer communication is the most important aspect ofanalysis [67, 99, 114]. The successful synthesis of a requirements model is dependent on beingable to construct a system as the customer views the problem [54]: requirements validation isnot possible if the models cannot be communicated to the customer.� Implementation AwarenessIt is important that the design process can be targetted towards a wide range of implementationenvironments. In particular, the implementers must be able to make a correspondence betweenconstructs in the implementation domain with constructs in the �nal design.



CHAPTER 1. INTRODUCTION 8In industry, there are other requirements of a software development environment which, althoughimportant, are not listed above. We believe that meeting the six requirements, above, provides aframework upon which all other requirements can be met.1.4 Formal Object Oriented Development (FOOD): PrototypingAn Ideal1.4.1 Ful�lling The Ideal Requirements: An OverviewCombining formal and object oriented methods provides a framework upon which the ideal develop-ment requirements can be met:� Object Oriented ) ConsistencyThe object oriented paradigm provides a conceptual consistency throughout the developmentprocess. It is proposed that one abstract model of object oriented concepts is maintainedthroughout analysis, design and implementation. Certainly, the concepts are then realisedin more concrete terms as the models approach implementation, but the underlying abstractsemantics are constant. Experience suggests that object oriented techniques are applicablein most problem domains [110], and consequently their use can be consistent from project toproject6.� FOOD: The Road To CorrectnessThere are three important aspects to the development of correct software:� i) Validating Customer RequirementsA formal requirements model means that the customer does not have to deal with ambigu-ity, inconsistency or incompleteness. However, a formal model does not guarantee correctcustomer comprehension: the model can be wrongly interpreted7. An object orientedmodel is less likely to be misunderstood since it records the requirements in an intuitiveway.� ii) Correctness Preserving DesignDesign is required to take an abstract, customer oriented model and produce a more con-crete, implementation oriented model whilst preserving correctness. This can only be donewhen the two models are formally speci�ed. The present state-of-the-art in formal methodscannot cope with the task of verifying any given formal design against any given formalrequirements model. Consequently, this thesis advocates a transformational approach to6Whilst this thesis agrees with the general applicability of object oriented techniques, we believe that other approachesare superior in particular problem domains. It is beyond the scope of this thesis to identify these areas.7A further problem occurs when the customer misunderstands their requirements, rather than misunderstandingthe requirements model. Such complexities are beyond the scope of this work, but we do believe that the process ofconstructing a formal object oriented requirements model reduces the risk of this occurring because of the resultingimprovement in mutual understanding between customer and analyst.



CHAPTER 1. INTRODUCTION 9design: design is de�ned as a sequence of transformation steps which reect design deci-sions for moving from the abstract to the concrete. Each transformation must preservecorrectness, i.e. the designers must be prepared to show that the latest design satisi�esthe requirements imposed by the previous stage. Correctness preserving transformations(CPTs) are a means of automatically guaranteeing correct design steps. It is important tonote that there must still be a gap between the �nal requirements model and initial design(from what to how). However, a formal object oriented approach means that this gap canbe bridged in a rigorous fashion.� iii) Testing the ImplementationPresently, most implementation languages are not formally de�ned. Consequently, onecannot, in general, prove the correctness of an implementation with respect to a formaldesign. The formal object oriented approach does, however, make the testing of implemen-tations much more rigorous: the code can be veri�ed against unambiguous requirementsand the object oriented conceptual consistency means that there is a structural correspon-dence between design and implementation. This promotes a compositional approach totesting. Further, the emphasis on re-use means that much of the implemented system hasalready been tested elsewhere.� Object Oriented ) Re-UseThe object oriented paradigm gives rise to two di�erent types of re-use: composition and classi-�cation. Classes and class hierarchies provide re-usable components at all stages of developmentand at di�erent levels of abstraction, see [83, 70]. Care, however, must be taken when inheritanceis used as a code re-use facility [108].� Object Oriented Methods Support OpportunismThere is an inherent exibility in object oriented development:� Object oriented development is both bottom-up and top-down, supporting compositionand decomposition at all levels of abstraction. Developers, therefore, are not restricted toa simple repetitive analysis-synthesis-test sequence.� The scalability of object oriented methods and consistency between all stages of devel-opment means that di�erent parts of a system may be at di�erent levels of abstractionwithout undue complication. Consequently, developers can easily move between systemparts in a exible fashion.� Customer AwarenessThe need for customer oriented models has already been emphasised in this chapter. Objectoriented models certainly reect the way in which customers comprehend their problem, but notall object oriented models are accessible to customers, particularly those with formal semantics.It is important that these models are presented in the form of customer oriented notations:in practice, this means providing graphical representations of the formal models [53]. Theobject oriented paradigm has a number of similar, but inconsistent, graphical representations



CHAPTER 1. INTRODUCTION 10associated with particular development methods. These types of diagram can be provided in aformal framework without diminishing their ability to improve customer communication.� Implementation AwarenessFormal methods can provide designers with enough power to target the designs towards a widerange of implementation languages and environments. Further, object oriented designs canbe implemented in a wide range of programming languages, not just those which are objectoriented.This section has argued that a formal object oriented approach has the potential to provide an idealsoftware engineering environment. Figure 1.3 contains more details with respect to the components(models and methods) which are used, in this thesis, to construct a framework for the development ofsuch an ideal. This prototype construction is certainly not the only (or best) way of providing such aframework, but it does show the feasibility of developing an industrial strength formal object orientedsoftware development environment and illustrates the advantages in doing so.
Understanding of Object

ACT ONE Implementation
of   O-LSTS

Full LOTOS Implementation
of O-LSTS 

Graphical
Views

Bind ACT ONE to LOTOS

Software Engineering

Object-Labelled State Transition System
(O-LSTS) Semantics

When requirements capture
is complete

When requirements capture
is complete

Oriented Concepts

Customer-Analyst Communication Designer-Implementer Communication

Graphical
Views

Informal RelationshipLinking Method With ModelFormal Relationship

Methods Based on Formal Models Informal BoundariesFormal Models

KEY:

Problem 
Domain Domain

SolutionFigure 1.3: Prototyping an Ideal Software Development Environment1.4.2 A Step-by-step Construction of the FOOD EnvironmentThe main body of this thesis constructs a prototype of an ideal software development environment,based on the framework outlined in �gure 1.3. The work naturally progresses from analysis to designand onto implementation. An overview of the structure and contents of each of the remaining chaptersof this thesis is given below.Chapter 2. Analysis: Modelling Problem UnderstandingThis chapter introduces formal object oriented analysis and the object oriented paradigm. Anoverview of software analysis methods places emphasis on problem domain understanding, customer



CHAPTER 1. INTRODUCTION 11communication and requirements notation. A list of features which should be evident in a good anal-ysis method are then identi�ed. The object oriented paradigm is investigated as a means of providinga framework upon which all these features can be o�ered. The need for formal analysis models isintroduced, and abstract data types (ADTs) put forward as a natural means of modelling classes ofobjects during analysis. This leads to an initial investigation of the relationship between classes andtypes. The chapter concludes with a preview of the formal object oriented analysis models which aredeveloped in chapter 3.Chapter 3. An Object Oriented Semantic FrameworkThis chapter formalises the understanding of object oriented concepts arising from the investigationin chapter 2. An abstract object oriented semantics is de�ned as a particular type of state transi-tion system. From this simple basis the formal de�nitions of class, object, attributes, subclassing,composition, con�guration and interaction are derived. The semantics are then syntactically sug-ared, placing emphasis on the object oriented concepts, to provide a formal object oriented analysislanguage which is accessible to customers and analysts alike. Graphical views of the object orientedproperties, implicit in models de�ned using this language, are developed. An executable model of theanalysis language semantics is provided by a translation to ACT ONE.Chapter 4. Formal Object Oriented Analysis: The Practical IssuesThis chapter examines practical issues which arise when analysing and synthesising the formal objectoriented requirements models. Emphasis is placed on the construction of classi�cation and compo-sition hierarchies, with particular regard given to the di�erence between subclassing and delegation.Communication and interaction are considered at an abstract level: what rather than how. Otheranalysis issues, namely nondeterminism, exceptions and implementation freedom are also examined.A method, in the form of a high-level algorithm, is given for the development and validation of objectoriented requirements models. Finally, the step from requirements to design is previewed.Chapter 5. Formal Object Oriented Design (Using LOTOS)This chapter begins by introducing design and highlighting the importance of learning from di�erentdesign areas. Software design is then considered, with a focus on object oriented methods. This isfollowed by an overview of LOTOS and its suitablity for modelling object oriented systems. Then,the means of going from an ACT ONE requirements model to a full LOTOS design is examined.The importance of maintaining correctness across the design process is stated. With this in mind,the notion of correctness preserving transformation (CPT) is introduced. Finally, a small set ofCPTs are de�ned to correspond to decisions that are commonly made during object oriented design.Design is then de�ned as the process of transforming a customer oriented requirements model to animplementation oriented model, using CPTs wherever possible. The target implementation model isshown to have a great inuence on the design decisions.



CHAPTER 1. INTRODUCTION 12Chapter 6. Object Oriented Program DerivationThe implementation of high-level object oriented LOTOS designs is considered. Many di�erent targetimplementation environments are examined, not just those which are object oriented, with respectto their suitability for use in the �nal implementation stage of FOOD. It is argued that objectoriented programming languages provide the easiest targets at which object oriented designers canaim. Ei�el [84] is chosen, from a wide range of object oriented programing languages, to illustratethe implementation process. The importance of having a thorough understanding of programminglanguage semantics is stated. The informal Ei�el semantics are reviewed and a methodological,but informal, technique for generating Ei�el code from object oriented LOTOS designs is proposed.Finally, the future generation of concurrent implementations is identi�ed as an area which is wellsupported by FOOD.Chapter 7. Formal Object Oriented Development: A Case StudyThis chapter puts all the theory from chapters 2 to 6 into practice. A small banking network system isdeveloped using the analysis, requirements capture, design and implementation models and methodsproposed by this thesis. The case study does not utilise, or consequently test, all aspects of FOOD,but it does show that the method has the potential for use in real software development projects. Toconclude the chapter, a list of the more important lessons arising from the case study is given. Themost important lesson is that much more work remains to be done.Chapter 8. ConclusionsThis chapter concludes the thesis by reviewing the initial objectives, showing how the thesis meetsthese objectives and identifying areas of further work arising out of the thesis.1.5 Contributions of the ThesisThe main contributions of the thesis are: the philosophy and reasoning behind a formal object orienteddevelopment strategy, the object oriented mathematical models resulting from this reasoning, the soft-ware engineering methods which utilise the models in a consistent and coherent fashion (collectivelycalled FOOD) and the preliminary case study which shows the e�ectiveness of these methods.1.5.1 FOOD: The PhilosophyThe philosophy upon which FOOD was developed is a major contribution of the thesis:Formal and object oriented methods are complementary. Correctness is the most impor-tant property of software. Formality is the only means of guaranteeing correctness. Thecomplexity of constructing software models (at all levels of abstraction) can be managedusing object oriented techniques. Formal object oriented techniques help to bridge the



CHAPTER 1. INTRODUCTION 13informal gaps at either end of software development. Formal object oriented developmentis software engineering in a pure form.1.5.2 FOOD: The ModelsThe need for precision when de�ning object oriented concepts leads to the development of a numberof formal models. An abstract object oriented semantics is developed to form the basis of our under-standing of all object oriented models (from analysis to implementation). Customer oriented analysisand requirements models are de�ned, together with a formal means of stepping from requirementsmodels to initial designs. Correctness preserving transformations are de�ned to reect object orienteddesign decisions. The informal step from �nal design to an implementation model is strengthened bya rigorous investigation of the semantics of Ei�el (the chosen implementation language). The way inwhich LOTOS is used throughout FOOD is both original and e�ective.1.5.3 FOOD: The MethodThe emphasis during software development using FOOD is on rigour, re-use and opportunism. Askeleton method is provided for the requirements capture, design and implementation stages. Thismethod is not yet strong enough for industrial use8, but there is potential for either integrating FOODwith other more commercial techniques or extending FOOD with less technical but more practicalconstructs. The method has been used in a trial case study to illustrate its e�ectiveness.Contribution SummaryAs a whole, the thesis o�ers a clear and concise statement of the problems inherent in software devel-opment, together with proposals for solutions to these problems which are based on the integrationof formal and object oriented methods. A framework (FOOD) is developed for the implementationof these solutions.
8We believe that a method should evolve from experience of using the models.



Chapter 2Analysis: Modelling ProblemUnderstandingThe work in this chapter is structured as follows:� Section 2.1: Introducing Formal Object Oriented Analysis (FOOA)This section provides a brief review of object orientation and formalisation with respect tothe limitations of current analysis methods. It motivates the development of a formal objectoriented analysis method.� Section 2.2: Analysis: An OverviewThis section begins with a more complete overview of di�erent analysis methods and models. Itproceeds to de�ne a list of criteria for judging analysis techniques. Based on these criteria, wepropose formal object oriented analysis as a natural successor to more traditional approaches.� Section 2.3: Object Oriented Analysis: An Informal ApproachThis section examines object oriented analysis from an informal point of view. A number ofsimple example systems are analysed and these illustrate the types of properties that a customeris likely to want to express in an object oriented framework of understanding. This sectionconcludes by identifying �ve analysis models which combine in a coherent fashion to give acomplete view of object oriented requirements.� Section 2.4: Formal Object Oriented Analysis Using Abstract Data TypesThis section argues that there are advantages in using abstract data types (ADTs) duringrequirements capture and analysis. It reviews the informal links that already exist betweenADTs and the early stages of object oriented development.� Section 2.5: Classes and TypesThis section examines the more practical issues that arise when comparing class with type.In particular, it distinguishes between the di�erent roles that each concept plays within theframeworks in which they are found.� Section 2.6: A Formal Object Oriented Requirements Model in ACT ONE: APreview 14



CHAPTER 2. ANALYSIS: MODELLING PROBLEM UNDERSTANDING 15This section previews the work in chapter 3 by reviewing the way in which we propose to modelobject oriented requirements using ACT ONE. ACT ONE is not used as our object orientedanalysis language: it serves only as a semantic model onto which object oriented requirementsare mapped.2.1 Introducing Formal Object Oriented Analysis (FOOA)Requirements capture and analysis (RCA), within software development, is the �rst step in the long,often arduous, process of satisfying the needs of the customer. In short, it is the process of identifyingand recording what is required. Unfortunately, the RCA process must ful�l two very di�erent roles:� The customer must be convinced that the requirements are completely understood and recorded.� The designers must be able to use the requirements to produce a structure around which animplementation can be developed and tested.The requirements act as an interface between problem domain `experts', with potentially very littlecomprehension of computers, and solution domain professionals, who understand computer systems,languages, models and techniques but may have little knowledge of the problem environment. Thisdual role makes RCA a not insigni�cant problem. However, there is much hope in the knowledge thatmany of the same principles of structuring, organisation and method are found in both domains: thecommon theme is complexity management.2.1.1 Introducing Traditional (Functional) ApproachesTraditional analysis methods (see [67, 99, 51, 36], for example) de�ne ways in which to controlcomplexity using a functionally oriented divide-and-conquer strategy. These methods, in general,have two major de�ciencies:� They lack formality.Being informal, they are open to interpretation and inhibit rigorous means of validation andveri�cation. Lack of formality makes the notion of contractual software less appealing. Codere-use, which is dependent on the existence of libraries of well-de�ned components, is possibleonly through a formal statement of behaviour and a means of classifying behaviour to facilitateaccess to appropriate components.� The analysis does not lead to one consistent model.Traditionally, the modelling of requirements results in an unnatural division between processand data. This separation of concerns can lead to two models which, at best, are di�cult torelate, and, at worst, are contradictory.2.1.2 Object OrientationObject oriented techniques and concepts have been shown to be applicable in the analysis phase ofdevelopment (see [25], for example). This should not be surprising since object oriented programming



CHAPTER 2. ANALYSIS: MODELLING PROBLEM UNDERSTANDING 16is often said to be `real world modelling' [31] which, in general, is what analysts are doing. The idea ofapplying object oriented methods, which initially grew up in the programming domain, to design andanalysis corresponds to the way in which structured approaches, in the 1970's, gradually in�ltratedeach stage of software development.The object oriented philsophy does not throw away all the previous work on structured analysis; itre-uses many of the ideas and combines them in a consistent and coherent fashion. We argue that theapplication of object oriented methods does not make requirements capture easy, but it does make iteasier. Object oriented techniques can be applied to di�erent systems with much greater con�dence inthe underlying principles. In this way, the method becomes second nature and understanding of thesystems being analysed is given prominence. With traditional analysis techniques, the balancing ofthe process and data parts of the problem inhibits understanding. Consequently, the structure of theproblem domain is often compromised. The object oriented approach promotes the maintenance ofproblem domain structure throughout the whole development process. It is the conceptual integrityof the object oriented paradigm which provides the essential bridge between customer requirementsand program design.2.1.3 FormalisationIn light of the previous section, one could be forgiven for believing that object orientation doeseverything you could ever want (and more). However good object oriented methods are at modellingreal world requirements, they do not provide a formal framework for mathematical reasoning andmanipulation. Like traditional approaches, the diagrams central to object oriented methods are notformally de�ned. The strength of these diagrams is that the customer �nds them easy to understand.This is also the root of their weakness: by ensuring `lay-person' readability, the informal approacheslose much of their potential for reasoning and manipulation.A formal model of requirements is unambiguous | there is only one correct way for designers tointerpret the model. Although the model must still be mapped onto the real world, this mappingis in essence more rigorous than in previous approaches. Building a formal model requires a betterunderstanding of the problem domain and a better understanding of the way in which the prob-lem domain is understood. A formal model can explicitly model nondeterminism | when choice ofbehaviour is speci�ed1 . Another important feature of a formal method is that high levels of express-ibility allow de�nition of what is required without stating how it can be achieved. This, together withnondeterminism, supports a powerful freedom of implementation facility.2.1.4 Formalising the Object Oriented ApproachA formal approach to object oriented analysis requires:� A method for gaining understanding of the problem so that deciding the relevance of anypart of the problem domain is straightforward. In other words, a mechanism is needed for1Nondeterminism is not the same as ambiguity. An ambiguous statement is one which can be interpreted in morethan one way.



CHAPTER 2. ANALYSIS: MODELLING PROBLEM UNDERSTANDING 17formally identifying the scope of the problem in terms of its component parts, i.e. the classesand objects.� A means of recording the relevant information in a structured and coherent fashion. Thenotation used for capturing the properties of the model is fundamental to the method2. It mustbe able to reect the structure of the problem domain whilst also specifying requirements in animplementation independent way.� A way of validating the model against user requirements. Validation must check the modelfor well de�ned properties, allow analysts to test their understanding of the problem, andfacilitate customer accountability.Rather than promoting one particular formal method of representing object oriented requirements,section 2.3 identi�es the porperties that such a notation is required to express in an elegant and conciseway3. We stress that the object oriented aspects of the system being analysed must be prominent inthe formal representation. Diagrammatic representations of object oriented properties are encouragedprovided they have a formal semantics associated with them.2.2 Analysis: An Overview2.2.1 Analysis is Problem Domain UnderstandingAnalysis is the process of maximising problem domain understanding. Only through complete un-derstanding can an analyst comprehend the responsiblities of a system. The modelling of theseresponsiblities is a natural way of expressing system requirements. The modelling process increasesunderstanding. Once the model is su�ciently rich to express all that is needed, then the analysis iscomplete and design can begin.The simplest way for an analyst to increase understanding is through interaction with the cus-tomer. The customer may be one person, in which case the RCA process is much simpli�ed; however,it is more likely that the customer is a group of clients, each with their own particular needs. Theseclients may be people, machines, or both. One of the main problems in dealing with a set of cus-tomers is that the interelated set of requirements must be incorporated into one coherent framework.Each client must be able to validate his (or her) own needs irrespective of the other clients (unlessof course these needs are contradictory). The partitioning of requirements in this way may not beadvantageous to designers. An analyst must be able to understand the set of requirements as a whole:the structuring of requirements as a collection of client needs may or may not be recognised in thedesign, but it is important that such an option is available.2Method is often confused with diagrammatic notation | the obvious reason for this is that the diagrams are oftenthe most visible (and accessible) part of a method.3Although we do not promote one particular language for expressing requirements, the examples do require a concretesyntax. Consequently, we chose to de�ne the example speci�cations in OO ACTONE (the formal object oriented analysislanguage de�ned in chapter 3).



CHAPTER 2. ANALYSIS: MODELLING PROBLEM UNDERSTANDING 18Interaction with the customer is an example of informal communication. It is an important partof analysis and, although it cannot be formalised, it is possible to add rigour to the process. A well-de�ned analysis method can help the communication process by reducing the amount of information ananalyst needs to assimilate. By stating the type of information that is useful, it is possible to structurethe communication process. E�ective analysis is dependent on knowing the sort of information thatis required, extracting it from the customer, and recording it in some coherent fashion. This chapteris concerned with identifying the type of information that needs to be recorded during analysis, witha view to de�ning a suitable method of representing this information.2.2.2 Traditional Analysis Methods and ModelsThe past two decades has witnessed the establishment of many di�erent analysis techniques. Eachtechnique places di�erent degrees of emphasis on each of the following:� Functional decomposition, which manages complexity in terms of structured functionality.� Information modelling, which helps to structure understanding by imposing a frameworkbased upon the data in the system.� State Transition Diagrams, which place emphasis on the timing and control aspects ofcomplex behaviour.The underlying principle of each of these approaches is improving understanding through complexitymanagement. Each approach provides one consistent view of a system and its parts. The problemcentral to analysis is that some approaches are more useful than others in particular problem domains.Since most systems are complex, to various degrees, in three aspects | function, data, and timing| it is hard to see how three di�erent models can be balanced in one coherent method. An objectoriented analysis (OOA) method provides a framework in which all three aspects of system behaviourcan be represented, although the data provides the basis for the structure. Before OOA is examined,each of the other approaches is examined in more detail.2.2.2.1 Functional DecompositionWhilst functional decomposition is a straightforward application of the divide and conquer maxim,it has one fundamental aw | there is no explicit statement of problem domain understanding. Themapping between functional requirements and the subject matter is often indicative of the way theanalyst sees the problem rather than how the customer views it. By emphasising functionality, theneed for mutual understanding between customer and analyst is ignored.Another di�culty with functional decomposition arises when the system being analysed does notappear to be providing a service which can be characterised by one all encompassing function. Asystem may be meeting a number of di�erent needs whose inter-relationship can be seen only througha thorough understanding of the whole problem domain.A �nal problem with a functional approach to decomposition is volatility. It has been argued thatthe most volatile aspects of system requirements are the functions [84]. Consequently, the structure of



CHAPTER 2. ANALYSIS: MODELLING PROBLEM UNDERSTANDING 19a speci�cation which is based on functionality may not be stable. Stable structure is an important partof the analysis | identifying the most persistent elements of a problem, and basing understandingaround them, is fundamental to good requirements capture.Functional decomposition is not to be totally ignored. It is a useful approach when consideringsimple systems (or components). When decomposition (not necessarily functional) has produced acomponent whose behaviour is easily characterised as some function, or group of functions, then anyfurther decomposition should be functional. In an object oriented approach, the services an objectprovides can be thought of as providing system functionality.2.2.2.2 Data Flow ModelsThis modelling technique is fundamental to many of the structured analysis methods �rst proposedin the 1970's and carried through to the present, for example [90, 94, 49, 27]. System requirementsare modelled using data ow models as follows:A customer has a need, or set of needs. Each need is modelled as an interaction withthe system. An interaction is represented by input and output ows of data at nodes(which can be thought of as data processors). Data stores (which are also representedby nodes) are connected to other nodes in the system. Grouping nodes into subsystemsis the way in which structure is added to improve understanding. However, grouping isinformal and often arbitrary. Functional decomposition is applied to nodes at the lowestlevel.Data ow models are hard to reason about | especially in large systems where the environmentinterface is complex. The partitioning of nodes is not well understood, and this can result in adata ow model structure which bears no resemblance to the structure of the problem domain. It isdi�cult to to comprehend the overall behaviour of a reasonably sized data ow model. The di�cultiesin validating a data ow model against customer requirements are enormous.2.2.2.3 Information ModellingModelling the world in data is most closely related to the way in which humans view their environment.Entity relationship diagrams, semantic data models and information modelling all refer to objects orentities in the real world (see [17] for an overview of these techniques). Every object has an associatedset of attributes or properties, and there are ways of relating di�erent objects. In its purest form,information modelling shows only the structure of a problem in terms of the data. There is no explicitstatement of functional requirements. Therefore, the responsibilities of a system are not explicitlystated.2.2.2.4 State Transition DiagramsState transition diagrams are most useful for modelling systems whose behaviour progresses throughdi�erent states over time. For example, a person can be modelled as proceeeding through the following



CHAPTER 2. ANALYSIS: MODELLING PROBLEM UNDERSTANDING 20sequence of states | born, child, adolescent, single adult, married adult, widowed adult and dead.This type of behaviour is an important aspect of all systems but it is not clear how other properties canbe incorporated in such a simple model. Furthermore, some systems go through a large (potentiallyin�nite) number of states and the structuring of such behaviour is often quite di�cult. It is morereasonable to attempt to incorporate the notion of state transitions in a more constructive model.(State transition diagrams, in many di�erent guises, are a useful means of providing an underlyingsemantics to some other less abstract models. A labelled state transition system plays the semanticrole in the de�nition of OO ACT ONE (the formal object oriented analysis and requirements capturelanguage.)2.2.2.5 Combining Di�erent ModelsBefore object oriented analysis, the three approaches to handling complexity were `thrown together'in di�erent ways in di�erent methods. This gives rise to confusion when a precise statement of howto carry out the analysis is required. In many cases, there is a great deal of arm waving to connectdata, function and structure. An object oriented approach provides a much more meaningful way ofincorporating function and state attributes in the same model. The separation of function and stateis not an issue during object oriented analysis because the lowest-level building blocks (the objects)are de�ned as combinations of both parts.2.2.3 Features of Good AnalysisThere follows a list of features which should be present in an analysis technique for it to be con-sidered good. Each feature is seen to various degrees (or not at all) in each of the afore mentionedmodelling approaches. OO ACT ONE, the formal object oriented analysis language proposed in thisthesis, is examined in section 4.5.1. as one particular language which facilitates the meeting of theserequirements.A good analysis technique must:� Be amenable to changes in the requirements within a stable structureIt is important that an analysis method is exible enough to readily incorporate changes in therequirements. Three types of change must be catered for:� Extension: when new requirements are added.� Alteration: when old requirements are changed.� Re-conceptualisation: when the same requirements are expressed di�erently.These changes must be kept as localised as possible. Central to controlling change is thedevelopment of a stable structure upon which behaviour can be speci�ed as a set of distinctthough interrelated parts.� Encourage Re-useThe issue of re-use has been well debated in the programming environment (see [59]). A goodanalysis method must encourage component and structural re-use. This is one of the areas



CHAPTER 2. ANALYSIS: MODELLING PROBLEM UNDERSTANDING 21in which a formal approach is vital. A more di�cult type of re-use to quantify is the notionof experience, when insight is gained into methods of application in di�erent circumstances.Within analysis, the learning of a method should very quickly correspond to gaining experience.Only in the initial learning period should analysts be concerned with notation and concepts: agood analysis method should be based on very simple principles.� Act as an interface between customers and designersThe analysis model must be capable of ful�lling two very di�erent needs. Firstly, it must becustomer oriented, i.e. there must be a direct correspondence between the model and how thecustomer views the problem. Secondly, the model must be useful to designers. The systemrequirements must be easily extracted, and the structure of the problem domain must be visiblefor (potential) re-use in the solution domain. The easiest way in which a model can play thisdual role is if the same underlying notions and principles are present in the problem and solutionspaces.� Incorporate standard modelling techniquesThere are many tried and trusted techniques for complexity management. These are found inmany di�erent forms and in many di�erent areas. The �ve central concepts are:� i) Abstraction: any mechanism by which irrelevant information can be set aside (perhapsfor consideration at a later stage). Functional abstraction is a means of saying whatsomething does without saying how it does it. Data abstraction is a way of specifyingstate as an interface rather than as contents. (In object oriented approaches, the notion ofservice further abstracts away from the di�erence between function and state.) Functionaland data abstraction hide detail at a lower level. A di�erent kind of abstraction emphasisesdetail in one part of the system by hiding information in a di�erent part of the system atthe same level.� ii) (De)Composition: any mechanism by which a system (or component of a system)can be de�ned as a number of interacting (sub)components. Composition is the groupingtogether of behaviours to form a more complex behaviour. Decomposition is the realisationof a complex behaviour through division into simpler components. In other words, theyare opposite sides of the same coin.� iii) Classi�cation: a means of classifying components into meaningful hierarchies. Theway in which humans think is based on a conceptualisation of complex, often intertwinned,classi�cations. The ability to group together objects according to shared (common) prop-erties is fundamental to real world understanding. The same can be said of real worldmodelling.� iv) Communication: some means of modelling interaction between components. In acomplex system it is important that all interaction between components is well de�ned andclearly understood by customer, analyst and designers.� v) Relationship Co-ordination: categorisation, composition and communication prop-erties give rise to three di�erent types of relationship, namely is-a, has-a and interacts-with.



CHAPTER 2. ANALYSIS: MODELLING PROBLEM UNDERSTANDING 22It is important that the analyst models these relationships in a consistent and coherentfashion.� Have a formal basisMathematical rigour is necessary for formal validation, testing and completeness and consis-tency checking. The advantages of formal methods in the speci�cation of requirements are welldocumented (see [20, 50], for example).2.2.4 Introducing Object Oriented AnalysisThe principle upon which object oriented analysis (OOA) is based is the direct mapping of problemdomain entities and responsibilities into a requirements model. The entities (objects) are describedin terms of the interface through which they interact with their environment. The services o�eredat an interface abstract away from the how to the what. Encapsulation and abstraction, two of themost important modelling techniques, are implicit in an object oriented approach. OOA incorporatesall the desirable features (other than the requirement for formality) within a consistent framework ofunderstanding. The structure of problem understanding is the framework upon which the remainingstages of development, namely design and implementation, are based. OOA terminology has arisenfrom two very di�erent sources:� Object Oriented programming languagesA programming language is said to be object oriented4 if it includes the notions of object,encapsulation, message passing between objects, class, inheritance, dynamic binding and poly-morphism. The conceptual consistency between the di�erent development stages, which is one ofthe main advantages of the object oriented approach, is also a disadvantage when the terminol-ogy is not clearly de�ned. Generally, the programming notions of class, object and inheritanceare imprecise. It is important that this imprecision is not evident in analysis.� Information modellingInformation modelling has resulted in a more analysis-like view of objects/entities. However,information models do not facilitate the de�nition of function or behaviour. Also, the modellingdiagrams are informal and open to interpretation. Information modelling is good for representingthe structure of the data being considered. It is not good at representing the classi�cationrelationships between the data containers.As a preview of section 2.3, the key concepts of OOA are given below. They are not formallyde�ned and as such only introduce the notions. Object oriented terminology is employed di�erently indi�erent environments. This is one of the main problems with object oriented methods. A major partof the development of a FOOA technique is the provision of well-de�ned meaning to the concepts. Theinformal list of terminology, below, illustrates the problems | one person's class is another person'sobject!4[124] de�nes three catagories of `object language', namely object oriented, class oriented and object based.



CHAPTER 2. ANALYSIS: MODELLING PROBLEM UNDERSTANDING 232.2.5 Objects and Classes: The Problems with TerminologyFor each key concept, a number of de�nitions are given. Each of the de�nitions is `correct' in its ownparticular context. This illustrates the confusion that exists in object oriented terminology.� Objects:� An object is anything which can be uniquely identi�ed.� An object is an entity which plays some role in the behaviour of the system under consid-eration.� An object is some thing which encapsulates state, and the set of operations on that state.� Objects are instances of abstract data types.� An object is an element of a particular set (or class).� Classes:� A class is a collection of objects.� A class is a set of related behaviours.� A class is a type.� A class is a description of properties common to a set of objects.� A class describes an implementation, or group of implementations, of an abstract datatype.� Inheritance:� Inheritance is a means of representing relationships between classes.� Inheritance is a subtyping relation.� Inheritance is an incremental code modi�cation technique.� Inheritance is a means of de�ning a class as a modi�cation of one (or more) other classes.� Inheritance is a code re-use facility.� Inheritance is a tool for conceptually grouping together sets of behaviours with some prop-erties in common.� Inheritance is a tool for enforcing properties between instances of di�erent classes.� Object interaction:� Objects interact by passing messages to each other.� Object interaction is through a well de�ned interface.� A service is provided by one object when it is asked to do something by another object.� (De)Composition:� A class can be de�ned as some sort of composition of two (or more) other classes.� An object can be realised as a composition of instances of two (or more) interacting objects.� (De)composition is a code re-use facility.� (De)composition is a structuring mechanism.The statements above emphasise the informal (and sometimes inconsistent) use of object orientedterminology. A FOOA method must remove this informality by de�ning each of the terms in a clear,concise and unambiguous way.



CHAPTER 2. ANALYSIS: MODELLING PROBLEM UNDERSTANDING 242.3 Object Oriented Analysis: An Informal ApproachThis section does not continue the promotion of OOA through an extension of the list of well doc-umented object oriented `blessings'. The three main undisputed features of the object orientedparadigm are:� Consistency of method and notation throughout development.� Modelling of the problem as it is viewed in the real world.� Inherent abstraction and encapsulation.These are the foundations upon which claims for extensibility, re-usability, improved understanding,and maintainability are built. Rather than elaborating on the object oriented claims, this sectionmakes the assumption that object orientation provides the basis of a good approach to requirementscapture and analysis. In this way, the crux of OOA can �nally be considered: how? rather than why?Sections 2.3.1, 2.3.2 and 2.3.3 give an informal introduction to the notions of objects and class,and the relationships between them. This gives rise to a number of other important issues which arebest considered by adopting a particular language for the expression of object oriented requirements.In section 2.3.4, many examples which are used in which a concrete syntax for recording objectoriented properties of a system is introduced. This serves two purposes. Firstly, it introduces theconcepts and relationships that are important in object oriented analysis. Secondly, it provides ameans of examining the requirements that an analyst is likely to place on a formal object orientedlanguage.2.3.1 Identifying ObjectsAt �rst glance, the notion of object seems to be the key to the object oriented approach. It isimportant that our intuitive feel for what makes an object an object is reected in a formal de�nition.To stimulate thought, we list a wide variety of things that could be considered to be valid objects.These things may have been identi�ed during the analysis of a number of systems. We attempt toidentify their `objectness', i.e. the features that they share in common.� People: You, me, John Major, the British Prime Minister, my mother, etc.� Structures: The Ei�el Tower, Edinburgh Castle, the M25, your bank, the house you last sleptin, etc.� Places: Europe, Australia, Stirling University, Paris, the Ei�el Tower, your bank, the bankmanager's o�ce in your bank, etc.� Machines: The watch on your wrist5, the computer on which this was written, my car, etc.� Systems: The computer on which this was written, the M25, the BT telephone network, yourbank, etc.� Events: The second world war, your birth, the last world chess championships, the 1992Olympics, etc.5If there is one | a watch that is!



CHAPTER 2. ANALYSIS: MODELLING PROBLEM UNDERSTANDING 25� Concepts (Abstractions): Chess, the English language, the number 6, the Greek letter �,the mathematical constant �, etc.� Classi�cations: people, structures, cars, trains, beds, houses, games, trees, songs, tunes,computers, planets, number systems, etc.The �rst thing to notice is that there is always an informal link between the label (in this casea string of characters) and the object which the label identi�es. In fact, several di�erent labels canbe applied to the same object. Worse still is the fact that one label can be applied to two di�erentobjects | John Major is not always a reference to the British Prime Minister. A major6 di�culty isthat the context in which the label is used, and the assumptions made by the reader, are fundamentalin the mapping between label and object. It is clear that an analyst cannot work with the actualobjects and so the labels act as abstractions for the objects. A label is a form of identi�cation. Thisleads to the �rst property which must be ful�lled by an object: it must be uniquely identi�able byits label within the context of the problem domain.An attribute is some property of an object which plays a part in it being uniquely identi�ed.For example, an attribute of Paris is that it is the capital of France. A di�erent attribute is that itis the city in which the Ei�el Tower is found. A rather di�erent set of attributes may include thelatitude and longitude of the city centre, a list of all the street names, or even a list of all the peoplein the Paris telephone directory. Each of these attributes is su�cient to identify `Paris'; but, it is notclear if this `Paris' is a city, a part of a map, or a tourist centre. Abstraction is the means by whichonly the relevant attributes of some entity are considered. In di�erent systems, and di�erent problemdomains, one object may have di�erent model abstractions. To continue with Paris as an example:in a model of the globe, the latitude and longitude are important but, in a model of the telephonenetwork they do not play an obvious role. This leads to the second property of an object: it musthave some well de�ned set of attributes.An object must be encapsulated so that its internal mechanisms are used only through some wellde�ned interface. We de�ne the external attributes of an object as precisely those feature whichcan be accessed in this way. A class of objects is said to provide a set of services. Each servicecorresponds to an external attribute. A service request to an object (at its external interface)is a means of invoking some response. The object providing the service (the service provider) maychange its internal state, or output some `result', or a combination of both.It is evident that an object should be characterised by its external attributes, i.e. the operationswhich are serviced by its interface, if its representation is to be implementation independent. Theinternal structure, reecting function and state, is the means by which the external attributes arede�ned. It is often necessary to structure the statement of requirements to aid understanding. Fur-ther, structure is necessary to de�ne behaviour of objects which can attain in�nitely many di�erentstates. Structure inuences the implementation process. However, constructive speci�cations do notnecessarily impose implementation decisions on designers. The structure of problem domain under-standing is recorded during object oriented analysis. Implementers (and designers) are not obliged to6No pun intended.



CHAPTER 2. ANALYSIS: MODELLING PROBLEM UNDERSTANDING 26use the structure of the analysis in the solution domain but, in some cases, this re-use of structure isbene�cial.In conclusion, the de�nition of an object must incorporate:� A means of identi�cation.� An interface which encapsulates the object by forcing access to the object to be through a wellde�ned set of external attributes (services).� The `meaning' of the external behaviour, i.e. a statement of how an object responds to servicerequests.� An internal state, i.e. a mechanism such that an object, as a dynamic entity, is able to progressthrough a sequence of states depending on its interaction with its external environment.Two objects belong to the same class(i�cation) when they exhibit `the same behaviour' throughtheir interfaces7. Informally, they must o�er the same set of external attributes, and the way inwhich these attributes are ful�lled must be the same when two objects in the same class have thesame internal state. In object oriented terminology, a class embodies the concept of a set of objectstogether with some common behaviour characterised by a set of external attributes.2.3.2 Identifying ClassesA class is a set of member objects o�ering common behaviour. A class de�nition must contain thefollowing:� A list of external attributes which all member objects must provide.� A means of identifying member objects.� A semantics de�ning the behaviour resulting from the servicing of external attributes for everymember object of a class.For example, Range1to9 can be de�ned as follows:� The external attributes are addition, subtraction and equality.� The members are the integers 1, 2, 3, : : : , 9.� The semantics of the service methods associated with the three external attributes are thosenormally associated with integers.We chose to think of a class as a parameterised set of behaviour. Each member of a class isidenti�ed by one particular realisation of the behaviour parameters. An object refers to one particularclass member at any instance in its lifetime. Thus, a dynamic object references a sequence of classmembers as it progresses through a sequence of states prompted by interactions with its environment.Identifying classes in the problem domain is fundamental to OOA. Classi�cation provides us witha basis on which a framework of understanding and representation can be built. Moreover, humanunderstanding has evolved through our ability to classify and categorise to various levels of abstraction.Therefore, it is reasonable to assume that classi�cation must play a leading role in analysis.7This notion of class membership is formally de�ned in chapter 3



CHAPTER 2. ANALYSIS: MODELLING PROBLEM UNDERSTANDING 272.3.3 Classi�cation RelationshipsBy studying relationships between objects, between classes, and between classes and objects, it ispossible to gain a better understanding of these concepts with relation to analysis and requirementscapture. The two most fundamental relationships are class membership and subclassing:Class Membership: When an object a is said to be a member of a class A we write a 2 A.Subclassing: When a class A is said to be a subclass of a class B we write A v B.It is possible for a class to be a subclass of more than one superclass8. For example, a cat classis a subclass of the class of mammals, and a cat class is also a subclass of the class of pets9. Notethat a cat is classi�ed by two di�erent types of attributes: the physical attribute of being a mammal,and the functional attribute of being a pet. Analysis of most systems gives rise to the identi�cationof objects whose relevant set of external attributes is di�erent in di�erent contexts. Distinguishingbetween di�erent categories of attribute increases understanding of the problem domain, and thisunderstanding can be represented diagramatically in a class hierarchy. Class hierarchies provide afundamental way of structuring object oriented requirements.A simple way to structure the analysis of a problem is to �rst identify the class hierarchies. Thesestructures show one type of relationship between entities in the problem domain, namely subclassing.Identifying classes and putting them into a coherent framework is fundamental to formal objectoriented analysis. A simple example (a hall of residence) is examined below. It illustrates the powerof an approach in which classi�cation is the main form of analysis. It also focuses attention on thelimitations imposed by restricting analysis to the identi�cation of subclassing relationships.Classi�cation Example: A Hall of ResidenceA decision has been made to computerise the records for the halls of residence in a university. Inparticular, one part of the system is concerned with the residents. Analysis of the residents has ledto the following classi�cations:� Residents are either students or non-students.� Residents are either sta� or non-sta�.� Sta� are either wardens or porters.� Wardens are either subwardens or hallwardens.� Subwardens are students.� Hallwardens are non-students.� Ordinary residents are non-sta� and students.These relationships are shown in the class hierarchy in �gure 2.1.In this example, the class of Subwardens is a subclass of Wardens, and a subclass of Students.This multiple classi�cation is very powerful within analysis. A subwarden can be regarded as amember of sta� in one context, and a student in a di�erent context.8A v B , A is a subclass of B , B is a superclass of A.9In this case it is questionable whether such a simple classi�cation is appropriate | petting tigers is not recommended!



CHAPTER 2. ANALYSIS: MODELLING PROBLEM UNDERSTANDING 28
Ordinary ResidentsSubwardensHallWardens

WardensPorters 

Non-StudentsStudentsNon-StaffStaff 

ResidentsFigure 2.1: A Hall Residents Class HierarchySubclassing : The LimitationsRestricting analysis to the identi�cation of class relationships has a number of limitations. In theanalysis of the hall residents system, classi�cation does not:� Provide a means of recording the number of class members from each class in the residences.� Consider the functional aspects of the system. (Although none of responsibilities of the systemare shown, the class hierarchy does provide a structure upon which the functional aspects canbe decomposed.)� Represent the communication, synchronisation, or timing aspects of the system.The �rst limitation is overcome through the introduction of a di�erent type of relationship, namelycomposition. The functional aspects of a system are represented when classes are de�ned in terms oftheir external attributes. Timing and synchronisation aspects of analysis are more di�cult to mapdirectly onto the object oriented framework: they are considered in sections 4.2. and 4.3.2.3.4 De�ning Classes of BehaviourThis section introduces the concepts central to recording object oriented requirements during analysis.A number of simple object oriented behaviours are considered. A concrete syntax for the speci�cationof object oriented requirements, namely OO ACT ONE, is introduced. OO ACT ONE is formallyde�ned in chapter 3: its use at this stage of the thesis is intuitive and requires no knowledge of theunderlying formality.2.3.4.1 LITERALS: an explicit identi�cation of class membersThe simplest object oriented property to identify and specify must be class membership. In OO ACTONE, a literal is a label (de�ned as a sequence of characters) which uniquely identi�es one memberof a class. Consider the class ComparisonResult de�ned in example 1.(* Example 1: LITERALS *)CLASS ComparisonResult OPNSLITERALS: before, after, sameENDCLASS (* ComparisonResult *)



CHAPTER 2. ANALYSIS: MODELLING PROBLEM UNDERSTANDING 29The speci�cation de�nes the ComparisonResult class to have three members: before, afterand same. There are no external attributes o�ered by this class (it can be used only as a passivecarrier of data).2.3.4.2 STRUCTURES: parameterising the speci�cation of class membershipThe members of a class represent the set of states that an object can attain. It is necessary to extendthe LITERAL concept to enable the speci�cation of a set of class members in a parameterised fashionsince:� A class with a large number of literal members is unwieldy and inconcise.� Parameterisation of class members adds structure to the speci�cation and improves understand-ing.� Parameterisation is the only means of de�ning classes of behaviour with an in�nite number ofmembers.These points are reinforced by examples 2 and 3, which follow.(* Example 2: STRUCTURES for ease of expression *)CLASS C-RPair USING ComparisonResult OPNSSTRUCTURES: pair<ComparisonResult, ComparisonResult>ENDCLASS (* CR-Pair *)The set of C-RPair class members is not de�ned explicitly as a list of literal values. Rather, aSTRUCTURE operation is used to parameterise the speci�cation of class members. The set of classmembers can be realised through instantiation of the STRUCTURE parameters:fpair(before,before), pair(before,after), pair(before,same), pair(after,before),pair(after,after), pair(after,same), pair(same,before), pair(same,after), pair(same,same)g.In this example, the set of nine class members can be de�ned using nine LITERALS. However,the STRUCTURE de�nition is more concise and the labelling of the STRUCTURE operation as a pairimproves the speci�cation. In example 3, the Number class has an in�nite set of members: f0,succ(0), succ(succ(0)), : : :g. Classes with in�nite behaviours arise in two di�erent ways:� Recursive STRUCTURE de�nitions de�ne a STRUCTURE operation to have a parameter whose classis the same as the class in which the STRUCTURE is de�ned (see example 3).� Non-recursive STRUCTURE de�nitions de�ne an in�nite class when one of the component classesis in�nite.(* Example 3: STRUCTURES for specifying infinite classes*)CLASS Number OPNSLITERALS: 0STRUCTURES: succ<Number>ENDCLASS (* Number *)



CHAPTER 2. ANALYSIS: MODELLING PROBLEM UNDERSTANDING 302.3.4.3 ACCESSORS: external attributes for getting responses from objectsExamples 1 to 3 de�ne only classes as sets of passive members. The objects in each of these classes donot o�er external attributes. We require a means of de�ning objects which can be asked to performa service through their external interface. One such service an object can provide is to return someinformation about itself. Example 4 illustrates the speci�cation of three ACCESSOR attributes, i.e.attributes which give access to some internal details of the object servicing the request.(* Example 4: Unparameterised ACCESSOR operations *)CLASS ThreeOrderA USING ComparisonResult OPNSLITERALS:1,2,3ACCESSORS: compare1 -> ComparisonResult, compare2 -> ComparisonResult,compare3 -> ComparisonResultEQNS1..compare1 = same; 1..compare2 = before; 1..compare3 = before;2..compare1 = after; 2..compare2 = same; 2..compare3 = before;3..compare1 = after; 3..compare2 = after; 3..compare3 = sameENDCLASS (* ThreeOrderA *)An object of the class ThreeOrderA has state corresponding to one of the class members 1,2or 3. Such an object o�ers three external ACCESSOR attributes, namely compare1, compare2 andcompare3. Servicing an ACCESSOR results in the object servicing the request returning some value (amember of the class speci�ed after the right arrow in the ACCESSOR operation de�nition). The objectdoes not change its internal state.The way in which each object of a class responds to an ACCESSOR request must be de�ned as partof the OO ACT ONE speci�cation. ACCESSOR equations are de�ned in an expression of the form:obj..accessor = : : : , where obj is a class member, accessor is the name of an ACCESSOR operationand the right hand side of the equation represents the result returned when an object with state objservices accessor.(* Example 5: Parameterised ACCESSORS *)CLASS ThreeOrderB USING ComparisonResult OPNSLITERALS:1,2,3ACCESSORS: compare<ThreeOrderB> -> ComparisonResultEQNS1..compare(1) = same; 1..compare(2) = before; 1..compare(3) = before;2..compare(1) = after; 2..compare(2) = same; 2..compare(3) = before;3..compare(1) = after; 3..compare(2) = after; 3..compare(3) = sameENDCLASS (* ThreeOrderB *)The ThreeOrderB class, in example 5, shows how ACCESSOR operations can be parameterised.In this case, compare is parameterised by class ThreeOrderB. The parameterisation of the externalattributes of a class is necessary if we wish to model the service requester providing `input parametervalues' to the service provider.



CHAPTER 2. ANALYSIS: MODELLING PROBLEM UNDERSTANDING 312.3.4.4 TRANSFORMERS: de�ning external attributes for history dependent behaviourThe behaviours of the ThreeOrder classes are history independent: they have no external attributeswhich change the state of the object servicing the request. Such classes are similar to types inimperative programming languages. The class members are analogous to constant values.The behaviour of most objects depends on the previous services which they have `carried out'. Oneof the most common attributes of an object is the ability to accept some new information, rememberit, and use it in response to a later request. In an object oriented analysis language it is necessarythat history dependent behaviour can be de�ned. In OO ACT ONE, the simplest example of thistype of behaviour corresponds to the imperative notion of a variable (given below in example 6).(* Example 6: TRANSFORMERS: specifying history dependent behaviour *)CLASS int-var USING integer OPNSSTRUCTURES: an-integer<integer>TRANSFORMERS: update<integer>ACCESSORS: recall -> integerEQNSan-integer(integer1)..recall = integer1; an-integer(integer1).update(integer2) =an-integer(integer2)ENDCLASS (* int-var *).The update TRANSFORMER operation of the int-var class changes the internal state of the ob-ject servicing the request. The object does not return any value to the service requester. LikeACCESSORS, TRANSFORMER operations can be parameterised. The new state of an object after servic-ing a TRANSFORMER operation is de�ned by an expression of the following form: obj.transformer =: : : .2.3.4.5 Parameterised Structure Equation De�nitionsExample 6 illustrates the need to be able to de�ne in�nite behaviour in a parameterised form. Givena class integer de�ned to have an in�nite number of members, class int-var also has an in�nitenumber of members. The behaviour associated with each of these members must be de�ned in theequation body of the class. This is possible only through some form of equation parameterisation.For example, an-integer(integer1)..recall = integer1; speci�es that for every integer1which is a member of class integer, an object of class int-var with state an-integer(integer1)returns integer1 in response to a recall service request. Similarly, the TRANSFORMER behaviour isalso de�ned in a parameterised fashion.Note that it is the variable parameters integer1 and integer2 are used to de�ne the behaviourof int-var in a parameterised fashion. In our notation, the class of a variable parameter is identi�edby the string of characters which precede the last numeric character(s) of the variable identi�er. Allvariable parameters in equation de�nitions must be represented in this way10. Equations which are10An advantage of this approach is that the variable identi�er also identi�es the class to which the variable belongs.The disadvantage of variable names not describing their function is negated by using comments when it is necessary to



CHAPTER 2. ANALYSIS: MODELLING PROBLEM UNDERSTANDING 32(* Example 7: Dynamic Structure *)CLASS list USING integer,Bool OPNSLITERALS: emptySTRUCTURES: S-list<list,integer>ACCESSORS: check<integer> -> BoolTRANSFORMERS: store<integer>EQNSempty..check(integer1) = false;S-list(list1, integer1)..check(integer2) = (integer1..eq(integer2))..or(list1..check(integer2));list1.store(integer1) = S-list(list1, integer1)ENDCLASS (* list *)parameterised on variable parameters are, by de�nition, true for all values of these variables.2.3.4.6 Dynamic StructureThe int-var example shows how to record the attributes of an object which has constant statestructure. The state is said to be constant because all the data �elds are �xed at creation (althoughthe values in the �elds may not be �xed) by one structure operation. In example 7 we specify abehaviour which does not exhibit static internal structure.The list class is a simple store of integers which has two external attributes: store and check.The store attribute is used to put integer values into the receiving object of the list class. Thecheck attribute is used to test if a given integer value has been previously stored. The S-Listoperation is said to de�ne a recursive structure.2.3.4.7 Dependencies Between ClassesMany of the previous examples have class headers of the following form: CLASS A USING B,: : :OPNS.It is a requirement of an anlaysis language that pre-de�ned behaviours can be re-used in the spec-i�cation of new behaviour. The USING construct provides the basis for such re-use. Example 7 isthe �rst speci�cation in which the classes used are not just passive data carriers but actually play afundamental role in the behaviour of the new class being speci�ed. The check attribute of class listmakes comparisons between integers which have been stored and an input integer parameter.This comparison depends on the following behaviour being de�ned in the classes used by list:� Class integermust have an external ACCESSOR attribute de�ned as eq<integer> -> Bool.� Class Bool must have an external ACCESSOR attribute de�ned as or<Bool> -> Bool.2.3.4.8 Multiple Structure OperationsIn object oriented analysis we may identify a class of behaviour which is made up of 2, or more,distinct groups. For example, students at university may be either single honours students or jointhonours students. Although the external interface of these two groups must be the same when theysay what role a particular variable takes.



CHAPTER 2. ANALYSIS: MODELLING PROBLEM UNDERSTANDING 33are part of the same class, we require a mechanism to distinguish between them. Such a mechanismalready exists, namely STRUCTURE operations. In OO ACT ONE we record this type of behaviour asa class with more than one STRUCTURE operation (see example 8).(* Example 8: Multiple Structures *)CLASS Students USING Subject, Bool OPNSSTRUCTURES: Single<Subject>, Joint<Subject,Subject>ACCESSORS: studies<Subject> -> BoolEQNSSingle(Subject1)..Studies(Subject2) = Subject1..eq(Subject2);Joint(Subject1,Subject2)..Studies(Subject3) =(Subject1..eq(Subject3))..or(Subject2..eq(Subject3))ENDCLASS (* Students *)The STRUCTURE mechanism provides a natural way of describing this type of class partitioning.Note that a TRANSFORMER operation can be de�ned to model a single honours student changing to bea joint honours student (or vice-versa). Multiple STRUCTURE operations can be used to model objectswith dynamic structure.2.3.4.9 DUALS: A means of combining ACCESSORS and TRANSFORMERSThe previous examples have de�ned classes with two di�erent types of attribute | ACCESSORS andTRANSFORMERS. We identify the need for an attribute which is a combination of these. For example,a stack class may store integers. An attribute pop is required to model the removal of an integerfrom the stack (i.e. a change of state) and the return of this information to the pop requester. Tomodel this type of service in OO ACT ONE, a DUAL attribute is de�ned. This is illustrated in example9.(* Example 9: DUAL attributes *)CLASS stack USING integer, Bool OPNSLITERALS: emptySTRUCTURES: Sstack<stack, integer>DUALS: pop -> integerTRANSFORMERS: push<integer>EQNSempty.pop = empty AND �integer;Sstack(stack1, integer1).pop = stack1 AND integer1;stack1.push(integer1) = Sstack(stack1, integer1)ENDCLASS (* stack *)A DUAL equation is de�ned as the conjunction of an ACCESSOR equation and a TRANSFORMERequation. For example, empty.pop = empty AND �integer; speci�es that an empty stack `changes'state to being empty in response to a pop request and returns the value �integer to the servicerequester.Modelling DUAL behaviour is fundamental to object oriented analysis and requirements capture.It can be argued that such behaviour can be adequately represented by an ACCESSOR followed im-



CHAPTER 2. ANALYSIS: MODELLING PROBLEM UNDERSTANDING 34mediately by a TRANSFORMER. However, this dual model depends on some `lock out' facility betweenservicing the ACCESSOR and the TRANSFORMER. Such a facility is implementation oriented and as suchdoes not provide a good model for analysing this type of behaviour. The DUAL mechanism abstractsaway from the how to the what.2.3.4.10 Unspeci�ed Class Members: handling exceptionsExample 9 illustrates the �rst instance of explicitly de�ning behaviour of a class to be unspeci�ed.An empty stack cannot return a meaningful result in response to a pop request. Certainly, thereare a number of di�erent options for coping with such exceptions, but an analysis language musthandle them in as abstract a way as possible. In our object oriented model it is necessary that pop isde�ned for the member empty, otherwise empty would not be a valid stack. Rather than adoptinga particular implementation strategy to deal with exceptions (like `just return a 0') we de�ne amechanism to enable analysts to defer exception handling to the designers and implementers.In OO ACT ONE, all classes are de�ned to have an unspeci�ed literal member, represented by theclass name preceded by a `�' character. This member is implicit in every class speci�cation and is usedto represent behaviour which the analyst may not wish to specify at this stage of development. Bydefault, the external attributes of unspeci�ed members are de�ned to result in unspeci�ed behaviourof the appropriate class (see chapter 3).2.3.4.11 Distinguishing Between Accessors and TransformersExample 10 is included to emphasise the importance of distinguishing between TRANSFORMERS andACCESSORS. In some object oriented models this is not done (for example, see [14]). We de�ne a linkedlist of integers (Linked-List) with transformer and accessor operations which seem to de�ne identicalbehaviour. These operations are tailT and tailA. However, our object oriented interpretation ofthe behaviours o�ered by these attributes is very di�erent. A Linked-List object, in response to atailT request, updates its internal state by removing the last integer element which was added. Itdoes not return any result to the service requester. Contrastingly, the same object, in response to atailA request does not update its internal state, but it does return a result to the service provider.Ambiguous speci�cations arise if TRANSFORMERS and ACCESSORS are not distinguished.2.3.4.12 Invariant PropertiesA class invariant is some property which every member of that class must ful�l. We require an objectoriented analysis language to incorporate some sort of invariant mechanism.OO ACT ONE provides two types of invariant mechanism: class invariants and structure invari-ants. These are illustrated by examples 11 and 12. Again, the precise meaning of these invariants isunimportant at this stage: it is the principle behind invariant properties which is important.Class StudentsB is similar to class Students (see example 8) except that there is an additionalinvariant property which guarantees that a joint honours student studies two di�erent subjects.



CHAPTER 2. ANALYSIS: MODELLING PROBLEM UNDERSTANDING 35(* Example 10: Distinguishing between accessors and transformers *)CLASS Linked-List USING integer, Bool OPNSLITERALS: empty STRUCTURES: S-Linked-List<Linked-List,integer>ACCESSORS: tailA -> Linked-ListTRANSFORMERS: add<integer>, tailTEQNSempty..tailA = �list;S-Linked-List(Linked-List1, integer1)..tailA = Linked-List1;empty.tailT = �list;S-Linked-List(Linked-List1, integer1).tailT = Linked-List1;Linked-List1.add(integer1) = S-Linked-List(Linked-List1, integer1)ENDCLASS (* Linked-List *)(* Example 11: Structure invariants *)CLASS StudentsB USING Subject, Bool OPNSSTRUCTURES: Singles<Subject>, Joints<Subject, Subject >ACCESSORS: studies<Subject> -> BoolINVARIANTS: Joint(Subject1, Subject2) REQUIRES Subject1..neq(Subject2)EQNS : : :ENDCLASS (* StudentsB *)The class MathsStudents is constructed from the members of Students which study Maths.Chapter 3, section 3.4, examines the OO ACT ONE invariant mechanisms in much more detail.2.3.4.13 Composition vs Subclassing: Introducing the ProblemOften, object oriented programmers use inheritance (a subclassing mechanism) as a code sharingtechnique rather than in recognition of an actual subclassing relationship between classes (Meyer[84] often uses inheritance in this way and Stein [104] argues that delegation is inheritance). Thisis problematic in all areas of object oriented development. The following vector example illustratesthe problem from two di�erent points of view.A vector ClassTwo di�erent views are as follows:� Subclassing | A vector can be de�ned to be a subclass of both a magnitude class and adirection class. A vector incorporates all the attributes of a magnitude and all the attributesof a direction. Consequently, a vector is both these things. Subclassing is a natural way ofrepresenting these behaviour characteristics.(* Example 12: class invariants *)CLASS MathsStudents USING Subject, Bool OPNSSTRUCTURES: Singles<Subject>, Joints<Subject, Subject >ACCESSORS: studies<Subject> -> BoolINVARIANTS: MathsSudents1..studies(Maths);EQNS : : :ENDCLASS (* MathsStudents *)



CHAPTER 2. ANALYSIS: MODELLING PROBLEM UNDERSTANDING 36� Composition | A vector is constructed from two components, namely a magnitude and adirection. A vector is not a magnitude, it is not a direction, it is some almalgamation of bothbehaviours into a new class of behaviour.Depending on which object oriented method is being applied, either of these views is likely to bemodelled during the analysis of vector behaviour. During object oriented analysis we must alwaysask which model is a true reection of the customer's understanding of the behaviour being speci�ed?In example 13 we chose to de�ne a vector class in a compositional fashion. Every member ofthe vector class is represented by the parameterised structure expression a-vector(magnitude1,direction1). The a-vector operation is the only structure of the vector class. Consequently, weinterpret this to mean that every vector object is composed from two component objects (of typemagnitude and direction). We also say, without risk of ambiguity, that a vector class is composedfrom a magnitude class and a direction class.(* Example 13: Composition is not subclassing *)CLASS vector USING magnitude, direction OPNSSTRUCTURES: a-vector<magnitude, direction>ACCESSORS: length -> magnitude, angle -> directionTRANSFORMERS: newlength <magnitude>, newangle <direction>EQNSa-vector(magnitude1, direction1)..length = magnitude1;a-vector(magnitude1, direction1)..angle = direction1;a-vector(magnitude1, direction1).newlength(magnitude2) = a-vector(magnitude2, direction1);a-vector(magnitude1, direction1).newangle(direction2) = a-vector(magnitude1, direction2)ENDCLASS (* vector *)2.3.4.14 Structure and Implementation IndependenceThis representation of a vector is not the only way of expressing its external behaviour. It is possibleto de�ne a vector using Cartesian co-ordinates x and y, say. Then, the length can be calculatedas p(x2 + y2), and the angle can be calculated as tan�1( yx). This Cartesian representation, ratherthan the polar form given earlier, is more appropriate when the `addition' of vectors is prominentin the analysis. However, it is much easier to `multiply' vectors in polar form. The structure ofconceptualisation on which the vector class de�nition is based can thus be seen to be important withrespect to possible extensions to the external attributes.An analyst must chose one representation over the other. We must question whether it is usefulto say that a vector is composed of a magnitude and direction when it is equally likely that it isidenti�ed during the analysis as a co-ordinate in Cartesian space? The way in which an analyst viewsa problem is reected in the requirements speci�cation. Of necessity, it seems that analysis cannotavoid a predisposition in the view that is presented of the problem in the statement of requirements.It is wrong to ask an analyst to represent all possible conceptualisations | it would result in overlycomplex speci�cations without guaranteeing that all `reasonable' ways of viewing the behaviour had



CHAPTER 2. ANALYSIS: MODELLING PROBLEM UNDERSTANDING 37been recorded. An analyst must always chose the representation which is the best reection of theway in which the customer understands the behaviour being speci�ed.2.3.5 Explicit Subclassing Relationships2.3.5.1 Implicit vs Explicit RelationshipsBefore considering subclassing in our object oriented analysis models, it is necessary to make astatement concerning implicit and explicit subclassing relationships. In a large, complex system withmany classes, irrespective of the precise nature of the subclassing de�nition, it is probable that thereare a large number of subclassing relationships between classes. We distinguish between two di�erenttypes of relation:� ImplicitAn implicit subclassing relationship is one which has no relevance in the speci�cation. Forexample, consider a wine class which has two ACCESSOR attributes: name and year, and aperson class which has three ACCESSOR attributes name, year and age. Depending on howthese classes are de�ned, it is possible that person is a subclass of wine. In other words, allmembers of the person class are also members of the wine class. The consequences of this inan implementation of such a model are unthinkable! This type of relationship is referred to asimplicit since it is inherent in the speci�cation, but is not explicitly acknowledged or used.� ExplicitAn explicit subclassing relationship is one which is explicitly acknowledged within an objectoriented speci�cation. For example, if our analysis identi�es that all maths students are stu-dents then the subclassing relationship MathsStudentv Students should be recorded explicitly.Consequently, in object oriented analysis we require a mechanism for making such statementsand for verifying that the relationship is well-de�ned. There are two approaches to this problem:� i) De�ne classes in the normal fashion and separately include a list of subclassing relation-ships which are relevant in the speci�cation.� ii) De�ne explicit classi�cation mechanisms for de�ning a new class to be a subclass (orsuperclass) of an already existing class.In OO ACT ONE we chose the second approach because the explicit classi�cation mechanismscan be de�ned in a way that guarantees a valid class relationship between the new and old class. The�rst approach requires a general mechanism for checking subclassing relationships between any twoclasses. The analysis behind such a mechanism is much more di�cult to formulate than that whichguarantees subclassing in speci�c cases. Also, we argue that there are advantages in having a limitednumber of subclassing primitives.2.3.5.2 Specialisation and GeneralisationSpecialisation of a class's behaviour is a straightforward reduction in the number of member objectsthrough the addition of some property which must be ful�lled by members of the new subclass but



CHAPTER 2. ANALYSIS: MODELLING PROBLEM UNDERSTANDING 38which may not be ful�lled by every member of the original superclass. The new class memberscontinue to provide the corresponding external behaviour as the corresponding members in the oldclass. The old (super)class behaviour can be said to contain the new (sub)class behaviour. Forexample, the even integers are a specialisation of the integers.Generalisation is the inverse of specialisation. For example, the class of integers is a generalisationof the class of even integers and the class of odd integers.2.3.5.3 Extension and RestrictionExtension involves an addition of new attributes to an already existing class of behaviour. Forexample, a queue which can be reset to empty is an extension of a queue which cannot be reset.Restriction is de�ned as the inverse of extension. Rather than extending an existing class withnew attributes, restriction de�nes a subset of attributes in the existing (sub)class which are o�eredby the new (super)class.2.3.5.4 Subclassing: a look aheadThe four explicit class relationships are formally de�ned in chapter 3, together with a mechanism forcombining specialisation and extension. By their nature the explicit class relationships are di�cult toanalyse using informal examples and thus it is necessary to develop a formal framework for modellingobject oriented requirements before we can pursue a rigorous formulation. There are many typesof subclassing but, in our formal object oriented analysis, specialisation and extension (and theirinverses) are the only two relationships which are deemed a necessary part of an object orientedanalysis language.2.3.6 Reviewing Object Oriented Analysis Language Requirements: A Five ModelApproach2.3.6.1 Five Object Oriented ModelsWe propose that object oriented methods are dependent on �ve central relationships. These are asfollows:� Classi�cationThis is a relationship between an object and a class. All objects in a system are classi�ed.Classes correspond to a group of objects which share a particular classi�cation. Classi�cationis fundamental to human understanding.� SubclassingThis is a relationship between classes. If A is a subclass of B then all members (objects) of Aare also members of B. The subclassing relationship is also prominent in human understanding.� CompositionThis is a relationship between objects. One object is said to be composed from its componentparts (themselves objects). The classi�cation of an object's components and the relationships



CHAPTER 2. ANALYSIS: MODELLING PROBLEM UNDERSTANDING 39between these components de�ne the internal structure of an object. Often, all the objects ina class exhibit the same internal structure. In this case a class can be said, without risk ofambiguity, to be composed from its component classes. Class composition is a concise way ofde�ning a set of object composition relationships which hold for every class member.� Con�gurationThis is also a relationship between objects. Two objects which are components of the samecontaining object may, or may not, be `connected together'. When two objects are connectedwe say that they con�gure. More speci�cally, there is some link between their external interfaces.The car example in �gure 2.2 helps to clarify this notion.� InteractionInteraction is the only dynamic relationship considered during formal object oriented analysis.All the previous four relationships make up a static view of an object oriented system. Aninteraction represents an event (and the consequences of the event) that occurs in the lifetimeof an object oriented system. Interactions occur between objects which have been con�gured.Note that two objects which are con�gured do not necessarily interact in the lifetime of theobject. The external interactions of a system are de�ned as those which occur between thesystem and its environment. Internal interactions occur between the components of a system.Object oriented behaviour de�nes possible sequences of interactions between an object and itsenvironment.2.3.6.2 A Five-model ExampleObject oriented analysis is the identi�cation of objects in a system, and the subsequent modelling ofthese �ve relationships. For example, consider a system which is very well understood, namely thebehaviour of a car. The �ve relationships are illustrated in �gure 2.2.
Buses

Air VehiclesSea Vehicles

Cars

Road Vehicles

Modes of Transport

Class Hierarchy Object

classification My Car

engine

chassis
wheels

steering

composition

configuration

subclassing

interaction

Accelerate
5 MODELS:

Classification
Composition
Subclassing
Configuration
InteractionFigure 2.2: Five Object Oriented Relationships: A Simple Car Example



CHAPTER 2. ANALYSIS: MODELLING PROBLEM UNDERSTANDING 40Distinguishing between the �ve relationships in this analysis is fundamental to human understand-ing and recording such relationships is therefore crucial in object oriented analysis and requirementscapture. These relationships are the basis for the modelling techniques advocated within our ob-ject oriented development strategy. Using these models ensures that our object oriented approach iscustomer oriented.2.3.6.3 FOOA: a review of our model requirementsThis section has identi�ed a number of aspects which must be present in a FOOA notation. Theseare:� A means of de�ning classes of parameterised behaviour in terms of an abstract interface.� A means of uniquely referencing each instance of such a parameterised class.� A means of modelling a dynamic object as it changes its behaviour over time.� A subclassing relationship between classes of behaviour.� A composition facility for de�ning behaviours in terms of component behaviours.� A facility for di�erentiating between three types of external attribute | accessors, transformersand duals.� An interpretation of the internal structure of an object.All these requirements are met in an approach based on the generation of the �ve object orientedmodels de�ned above.2.4 Formal Object Oriented Analysis Using Abstract Data Types(ADTs)2.4.1 Background to Abstract Data TypesAbstract concepts can be represented in a number of di�erent ways. The means of representation,which is often refered to as the notation, is arbitrary in the sense that there are an in�nite numberof ways (syntactically) of labelling entities and representing the relationships between them. Naturallanguages illustrate the diverse range of notations that exist to provide, in general terms, the samerepresentational ability.A more formal example of a notation, which most everyone is familiar with, is the abstract conceptof a counting mechanism or representation; or, to put it in more concrete terms, the concept of apositive integer. The arabic system of enumeration (1, 2, 3, 4, : : : ) identi�es the same abstractions asthe roman numerals (I, II, III, IV, : : : ), and the binary patterns (1, 10, 11, 100, : : : ). Furthermore,the arithmetic operations on these entities (objects) can be expressed in many di�erent ways (e.g.pre�x, in�x or su�x notation).In programming environments we are familiar with the idea of abstract behaviour being repre-sented in di�erent ways. For example, a string of characters can be represented as a �xed array or



CHAPTER 2. ANALYSIS: MODELLING PROBLEM UNDERSTANDING 41as a linked list. Abstract Data Types (ADTs) are useful in computing because they can capturebehavioural properties of entities in a manner which allows di�erent implementations to be validrealisations of the same behaviour. In an ADT it is the abstract relationship between entities (ob-jects) which is important. The concrete syntax is inconsequential (except that it should promoteunderstanding of the underlying meaning and be amenable to manipulation within the conceptualframework to which it is being applied).2.4.2 ADTS in an Object Oriented Semantic FrameworkThe concrete syntax which we employ in formal object oriented analysis and requirements capturemust incorporate the following:� A means of categorising entities into classes of behaviour.� A mechanism for representing a set of operations associated with each class, where each oper-ation associates one or more classes of entity with a resulting class of entity. In other words, ameans of recording the external interface of a class so that all operations (on class members)can be statically `type checked' for correctness.� A means of de�ning the behaviour associated with each operation. In other words, a set ofequations or axioms which give meaning to the operations.� A facility for de�ning one class of behaviour in terms of other component classes of behaviour.� An explicit means of representing the structure of the problem domain.� Parameterised classes of behaviour (genericity)� Inclusion polymorphism (subclassing).Abstract data typing languages provide a suitable formal framework in which these types ofproperty can be expressed. However, the relationship between type and class is complex. ADTsprovide a good framework onto which object oriented requirements can be mapped.An ADT provides us with a means of specifying `implementation free' behaviour. This is idealfor requirements capture: analysts must try to identify and record what is required rather than howthese requirements are to be met. However, as is argued in the previous section, a set of requirementsmust always contain some structure otherwise it would be impossible to record or understand them.The object oriented method of analysis and requirements capture encourages the recording of certainstructural aspects of the problem domain. This aids understanding and gives the designers an initialstructure upon which the design can be developed. In this way a formal statement of object orientedrequirements is useful in later stages of development on two accounts: it unambiguously de�nes whatis needed and it provides a structure for understanding the needs.2.4.3 ADTs in the Initial Stages of Object Oriented DevelopmentThe idea of using ADTs at the beginning of an object oriented development strategy is not new.Meyer [84] states that:



CHAPTER 2. ANALYSIS: MODELLING PROBLEM UNDERSTANDING 42\In object oriented design, every module is organised around a class of data structures: : :To avoid implementation dependencies, the underlying description should be that ofan ADT."Meyer goes on to relate design and implementation:\Object oriented design is the construction of software systems as structured collectionsof ADT implementations."It is clear that Meyer believes that ADTs have an important role to play in the object orienteddevelopment of a system. But, Meyer does not further their cause in any way. He gives no indicationas to how ADT speci�cations arise from analysis, or even to show how they can direct the design ofan object oriented implementation. Perhaps the use of ADTs is so straightforward that no furtherinstruction is necessary? This thesis shows otherwise.The relationships between object oriented concepts and parts of an ADT speci�cation are men-tioned by Meyer. This informal interpretation is incomplete and imprecise; however, it has enoughsimilarities to the work in this thesis to warrrant inclusion below.� An ADT expression corresponds to an object.� The type of the expression corresponds to the class of the object.� The valid operations on a type correspond to the services (external attributes) which that classof object can provide.� The algebraic simpli�cation of an expression (as de�ned in the equations for each operation)can be viewed as equivalent to the internal execution of instructions in an object.� The value of an object (as an accumulation of its internal state) corresponds to the equivalencegroup of expressions of which that object is de�ned to belong in the equations. For example,the equivalence group f`3', `1+2', `2+1', `1+1+1', : : :g is represented by the object `3'.Other object oriented concepts which have not been mentioned in this informal list are primarilystructural. The structure of a system which arises from the class hierarchy identi�ed in the analysisis not evident in Meyer's interpretation of ADT speci�cations. Also, the structure arising from thedecomposition of behaviour into component behaviours has been acknowledged only in a very looseway.2.4.4 A Formal Object Oriented Development MethodIt is clear that Meyer's ideas on the role of ADTs in object oriented development need clari�cation.Before we examine the ADT ACT ONE, and show how it can be used for object oriented requirementscapture, it is necessary to re-de�ne the roles of the di�erent stages of development. This acts to putthe object oriented requirements capture process in a more concrete context and emphasises the roleof Formal Object Oriented Analysis (FOOA). We de�ne the stages of development as follows:� Analysis is the process of understanding a system.



CHAPTER 2. ANALYSIS: MODELLING PROBLEM UNDERSTANDING 43� Requirements Capture is the recording of the system understanding as a set of requirements.� Design is the restructuring of the requirements towards an implementation architecture.� Implementation is the realisation of behaviour speci�ed in the design.This thesis proposes a formal object oriented approach to development. The formal object orientedrequirements capture method is de�ned as follows:Formal object oriented analysis and requirements capture is the recording of therequirements of a system in terms of a set of ADTs, the structure of which correspondsto the structure of the problem domain. In e�ect, every object discovered in the analysishas a corresponding ADT speci�cation.Formal object oriented design is now de�ned as:Formal object oriented design is the restructuring of the ADT speci�cations so thatthey can be re-used, within a less abstract model, to express the requirements in terms ofsolution domain objects and architecture.In object oriented development there is a higher degree of correspondence between problem domainand solution domain structures than with traditional development methods. Designers should beencouraged to re-use analysis structure as much as possible. But, there will always be a conict ofinterest between the way in which a problem is recorded and the way it is solved.2.5 Classes and Types2.5.1 Typing in Object Oriented Languages: An IntroductionThere has been much interest in the relationship between static type checking and dynamic bindingin object oriented programming [85, 22, 38]:� Static Type Checking: when the code is statically checked to ensure that all service requestsin a system can be ful�lled by the system component receiving objects during the system lifetime.� Dynamic Binding: when the particular methods (code) are bound to service requests at runtime.Object oriented languages which facilitate dynamic binding can give rise to run time errors whenobjects are asked to provide services which are not part of their interfaces. This is not a desirablefeature of any system; in particular critical (real time) systems should not produce `message-not-known' results. Static type checking can help to prevent such errors. However, as pointed out in[85], such checking can also inhibit a dynamic binding facility. What is required is some means ofcombining static type checking and dynamic binding which guarantees that no run time errors arisefrom objects being unable to ful�l requests made of them, whilst also allowing service requests to bedynamically bound to services.



CHAPTER 2. ANALYSIS: MODELLING PROBLEM UNDERSTANDING 44Object oriented programmers have identi�ed the advantages of using abstract data types (ADTs)to support a type checking facility in dynamically bound object oriented languages [38, 22]. This workproposes using ADTs in the analysis and requirements capture stages of object oriented development.Before proceeding to relate the notions of type and class through the concept of data abstraction, itis necessary to examine the notion of type.2.5.2 TypesA type is a description in the abstract of a related group of entities. Without types it is impossibleto reason about all the di�erent objects in a complex system as they would appear to have unrelatedbehaviour. Typing facilitates the grouping together of values in such a way that the shared behaviouris emphasised whilst the di�erences are abstracted away from. Typing has three roles:� Abstraction: Values of the same type (in a programming language) share structure and se-mantics. The structure is used to represent the internal organisation of the value. The semanticsrepresent the external behaviour of the type values. The way in which the values can be in-terpreted is given by the set of operations applicable to the type and the `meaning' of suchoperations.� Re-use: New abstractions can be created from existing ones. Types provide a natural way ofstructuring libraries into well de�ned packages of behaviour.� Validation: Types provide a means of guaranteeing the validity of operations on given valuesthrough a static analysis of the system in question.2.5.3 Type SystemsThere are many di�erent typing systems which fall into two distinct catagories:� Monomorphic systems require all data values to belong to only one type.� Polymorphic systems allow values to belong to more than one type.Polymorphism, together with dynamic binding, is a key feature of object oriented systems. In lan-guages where functions are treated as types, the notion of a polymorphic function is widely accepted(see [111, 122], for example). For example, addition is applicable to both integers and reals, andconsequently `+' is an overloaded operation. It is also possible that `+' can be used to calculatethe sum of an integer and a real (with a real result). This is an example of coercion | the integeris coerced into being a real value11. These polymorphic techniques are available in a wide range ofprogramming languages (imperative, functional and object oriented). They work on only a speci�cnumber of types in an unprincipled way. More universal techniques are genericity and subtypingand these are sometimes refered to as universal polymorphism [22].11In object oriented systems, this is similar to a member of one class being dynamically bound to being a member ofone of its superclasses.



CHAPTER 2. ANALYSIS: MODELLING PROBLEM UNDERSTANDING 45� Genericity: a generic function works universally on a range of types (e.g. a swap function).Unconstrained genericity places no restrictions on the properties exhibited by these types. Con-strained genericity is necessary in more complex behaviours. For example, a generic ordered listof values (of the same type) requires the type to have some partial ordering property. Generictypes are said to be parameterised.� Subtyping: the range of types a function can operate on is determined by a subtyping rela-tionship. A function de�ned on a type can also operate on any subtypes. In object orientedterms this corresponds to the external attributes of a class including all the attributes of itssuperclasses. This is also known as inclusion polymorphism.Genericity and subtyping are very di�erent in principle and each have there own place in anobject oriented framework [82]. Most abstract data type languages (including ACT ONE) incorporatea facility for de�ning parameterised types. Parameterised types can be statically instantiated atspeci�cation time and as such they give rise to a distinct group of behaviours (which just happen tohave a similar structure). Subtyping relationships are much more interesting (in our object orientedframework) because they have an informal correspondence to our notion of subclassing.2.5.4 Mapping Classes to ADT Speci�cationsWe propose to show that it is bene�cial to distinguish the notions of class and type (in the sense ofa syntactic interface o�ered by some element in an implementation language). However, we relatethe more formal notion of ADT speci�cation (a well-de�ned semantic notion of type) with the objectoriented concept of class by de�ning a mapping from object oriented requirements to ADT speci�ca-tion. It is clear that type and class should not be confused [28], but we do believe that types can beused to implement the semantics of the class notion.Types are more general than classes. In this thesis we generate type speci�cations from a formalmodel of object oriented requirements. The set of behaviours that can be speci�ed in this way ismuch smaller than the set of all behaviours which can be speci�ed using ADTs.The di�erences between types and classes (subtypes and subclasses) arise from the way in whichthe terminology is applied rather than from di�erences in the underlying principles. The three rolesof types, namely abstraction, re-use and validation, are equally applicable to classes:� Abstraction: classes de�ne an abstract interface behind which all the properties of objects inthe class are encapsulated.� Re-use: classes provide a fundamental package of re-usable behaviour.� Validation: object oriented systems can be statically analysed to guarantee that all servicerequests to each object in the system, which may occur in the system lifetime, are available aspart of the interface of the class to which the object belongs.Problems arise in conceptually relating class with type when type is taken to represent a purely staticsyntactic interface. It is necessary to consider the behaviour o�ered by type `members' through their



CHAPTER 2. ANALYSIS: MODELLING PROBLEM UNDERSTANDING 46interfaces. Abstract data types provide both syntactic and semantic views of interface. Consequently,this thesis supports the view that classes and ADTs can be usefully related in a formal framework.Abstraction is necessary in object oriented analysis since the view of a class as an `implementationbody' is wrong:� Class de�nes behaviour | a stack provides LIFO behaviour no matter whether it is implementedin C++ or Ei�el, or whether it is represented (internally) as a linked list or an ordered bag.The notion of class as behaviour is vital when re-use and `correctness' are considered. Whendesigning a system it is desirable to be able to reason about components of a system withoutreference to implementation details. This is possible only if the notion of class is implementationindependent. Re-use is a behavioural concern: it is wrong to limit re-use to the level of codeintegration.� It is not easy to make a distinction between speci�cation and implementation. An abstractspeci�cation may have many di�erent valid implementations | an implementation resolves all(or some) of the abstraction. In many cases an implementation of one speci�cation can itselfbe viewed as a speci�cation of a less abstract set of implementations. There is no clear level ofabstraction at which we can distinguish implementation from speci�cation.We have argued that class is not an implementation concern alone12. Implementation classes, asde�ned in object oriented programming languages, are not to be confused with the notion of classas an abstract statement of behaviour as de�ned by a particular ADT speci�cation. ADTs providethe foundation upon which object oriented behaviour can be formally modelled. The notions of typeand subtype need to be strengthened to provide a formal object oriented interpretation of class andsubclass.ADTs provide an abstraction over data structures in terms of well de�ned (procedural) interfaces.It is important that classes are not de�ned solely on the syntax of the interface in their resulting ADTspeci�cation. The semantics of behaviour provided at the interface is fundamental in the de�nition ofclass relationships. The notion of type as de�ned by interface is useful only for static type checkingin the traditional sense: the non-introduction of syntax errors in code when a type is replaced by asubtype.Consider the speci�cations of a queue and a stack. Both speci�cations could have the same externalinterface (de�ned by the operations `add' and `remove', say), but it is confusing to say that they havethe same type. Type has three roles | abstraction, re-use and correctness. Type as a syntacticinterface de�nition does not ful�l the second role and only partially ful�ls the third role. We are notarguing that the notion of typing is without merit. However, within object oriented languages, it ismore bene�cial to incorporate the type concept in a more powerful means of categorisation, namelyclassi�cation. This is particularly important when de�ning inclusion polymorphism. In the followingchapters we retain the concept of type when referring to purely syntactic properties or relationships.12Classes can be implemented but these implementations de�ne class behaviour in a very constructive fashion | hownot what.



CHAPTER 2. ANALYSIS: MODELLING PROBLEM UNDERSTANDING 472.6 A Formal Object Oriented RequirementsModel in ACT ONE:A Preview2.6.1 Modelling Object Oriented Requirements in ACT ONEType is more general a concept than class. Consequently, we have two options if we wish to use ACTONE to model object oriented requirements:� Restrict the ACT ONE syntax (i.e. enforce an object oriented style) and/or incorporate addi-tional static analysis checks to ensure all speci�cations have a valid object oriented interpreta-tion.� De�ne a new object oriented analysis language and provide a mapping from speci�cations writ-ten in this new language to ACT ONE.We chose the second option because:� The ACT ONE syntax does not have an object oriented `avour'. Although ACT ONE speci-�cations can be given an object oriented interpretation, we feel that it is necessary to have theobject oriented concepts prominent in an object oriented statement of requirements.� ACT ONE is only one particular abstract data typing language. By de�ning a new language,we have an approach which can be generalised to modelling requirements in any given ADT (orany other formal language).2.6.2 An Overview of the Class ! ADT MappingThe mapping from object oriented requirements speci�cation to ACT ONE is similar to the map-ping suggested by Meyer and others (see section 2.4.3). The mapping transfers the structural andhierarchical aspects of an object oriented model speci�ed in OO ACT ONE to the ACT ONE code.Chapter 3, section 3.5, formalises the mapping from OO ACT ONE to ACT ONE. The fundamentalrelationships between these two di�erent languages are:� CLASS ! sort.� LITERALS ! literals.� STRUCTURES ! operations which are used to generate the terms which represent membersof the class.� INVARIANTS ! global preconditions on sort equations.� ACCESSOR, DUAL and TRANSFORMER attributes! operations which are term generators.� Service requests and service responses (i.e. interactions) ! evaluation of an ACT ONE expres-sion.� Composition ! parameterisation of structure operations.� Subclassing ! well de�ned relationship between the classes from which the sorts are generated.� Inclusion Polymorphism ! a form of value coercion between classes and superclasses.Although the mappings above are only infomally introduced, the avour of the ACT ONE objectoriented model is evident. Chapter 3 adds precision and formality to these informal correspondences.



CHAPTER 2. ANALYSIS: MODELLING PROBLEM UNDERSTANDING 482.6.3 Using the ACT ONE Object Oriented ModelThe ACT ONE generated from OO ACT ONE is used in three ways:� It helps in the static analysis of object oriented properties in the system being speci�ed.� It provides an execution model for the testing of dynamic behaviour.� It provides a natural mode of expression to bridge the gap between analysis and design.The ACT ONE code is not intended to be explicitly presented to the customer. There are diagram-matic representations of object oriented properties which are more customer oriented (see sections3.2 and 3.3). The structural information in these diagrams corresponds to much of the structuralinformation recorded in the ACT ONE model. The formality underlying the meaning of these objectoriented analysis diagrams does not make them any less practical than the widely accepted modelsadvocated in other, less formal, analysis methods.



Chapter 3An Object Oriented SemanticFramework3.1 An Overview of the Semantic FrameworkThe semantic framework, developed in this chapter, connects together the formality and high levelsof expressibility of the ADT ACT ONE and our informal understanding of object oriented models,relationships and concepts. At this point in the thesis, our object oriented framework of understandingis dependent on the example object oriented behaviours previously given in chapter 2, together withour own informal conceptualisation of the object oriented paradigm. The object oriented semanticframework is developed to provide a formal model of object oriented concepts which can be used duringobject oriented analysis and requirements capture. Rather than de�ning object oriented conceptsdirectly in ACT ONE, a more general approach is proposed in which a new object oriented semanticsis developed. This semantics provides a more abstract model which can be implemented by moreconcrete models. This chapter de�nes such a semantics and uses the ADT ACT ONE to provide anexecutable model for the more abstract speci�cations. The structure of the remainder of this chapteris as follows:� Section 3.2: Object-Labelled State Transition System (O-LSTS) SemanticsIn this section, the semantic model is de�ned as a particular kind of labelled state transitionsystem (called an O-LSTS1). It seems natural to conceptualise the dynamic behaviour of anobject as a sequence of states which the object can attain. The state transitions result fromthe object servicing requests at its external interface. This simple view is expanded upon toencompass the notion of class and relations between classes. A class is de�ned as a collection ofobject behaviours which form a set of states which are encapsulated within a common interface.An O-LSTS speci�cation formally de�nes this notion. A diagramatic representation of an O-LSTS (an O-LSTSD) is introduced as an equivalent way of expressing the information in anO-LSTS speci�cation.1Object-Labelled State Transition System. 49



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 50� Section 3.3: An Object Oriented Interpretation of the O-LSTS ModelSection 3.3 de�nes a mapping between the O-LSTS model and the object oriented paradigm.The informal notions of class, object, attribute, service and the relationships between them aregiven a formal interpretation in our O-LSTS semantics. These de�nitions add much neededprecision to the object oriented terminology. In particular, we formalise two di�erent types ofhierarchical model:� Classi�cation model: the subclassing relationships between all classes in a system arerepresented in a class hierarchy diagram.� Compositional model: the structure of an object (in terms of its component parts) isrepresented in a structure diagram.These hierarchical diagrams are used to complement O-LSTSDs.� Section 3.4: OO ACT ONE: A Formal Object Oriented Analysis LanguageThis section de�nes a concrete syntax for the speci�cation of O-LSTSs during analysis andrequirments capture. The O-LSTS model is de�ned in terms of the well understood mathe-matical notions of sets, cartesian products, relationships and functions. It is necessary to wrapthese constructs in a more `friendly' syntactically sugared syntax. The syntax we de�ne forthis purpose is similar to ACT ONE, with a distinctly object oriented avour: we call it objectoriented ACT ONE (OO ACT ONE). Explicit object oriented mechanisms for re-using prede-�ned classes of behaviour (O-LSTSs) are de�ned. These mechanisms facilitate the de�nition ofdi�erent types of subclassing, composition and parameterised classes. Other mechanisms allowthe de�nition of invariant properties, the hiding of internal behaviour and the speci�cation ofexceptions. Such a concrete syntax is also necessary when we consider the problem of staticallyanalysing an O-LSTS speci�cation.� Section 3.5: An ACT ONE Execution Model for O-LSTS Speci�cationsSection 3.5 provides a mapping from the O-LSTS semantics, as de�ned in an OO ACT ONEspeci�cation, to ACT ONE. This mapping formalises the relationship between object orientedterminology and ADT concepts (for example, type, sort, operation and equation). It shouldbe emphasised that, although ACT ONE speci�cations can be used to model object orientedrequirements, not all ACT ONE speci�cations have a meaningful object oriented interpretation.The ACT ONE which is produced from OO ACT ONE is used to provide the basis for a staticanalysis of the typing properties of an OO ACT ONE speci�cation. Furthermore, the ACTONE provides an `executable' model for testing the dynamic behaviour of objects de�ned inOO ACT ONE. The exact nature of this execution model is made clearer in section 3.5.5.3.2 Object-Labelled State Transition System (O-LSTS) SemanticsThe semantic framework is based around the de�nition of a particular kind of labelled state transitionsystem, namely an Object-LSTS (O-LSTS). It is de�ned as follows.



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 513.2.1 De�nition: an O-LSTS Speci�cationAn O-LSTS, C0 say, is a 7-tuple < O;UTT;HUTT;VTT;HVTT; USS; VSS > de�ned in an envi-ronment of O-LSTSs, EnvC0 . These eight separate elements of an O-LSTS are formally de�ned insections 3.2.1.1 to 3.2.1.8, below.3.2.1.1 The EnvironmentEnvC0 is speci�ed as a 2-tuple < C 0; RelC0 > where,� C 0 is a possibly empty set of prede�ned O-LSTSs fC1; : : : ; Ckg, say. We say that C0 usesCi; 8i 2 f1; : : : ; kg.De�nition: Visible Class SetThe visible class set of C0, written visible(C0), = fC0g [ C 0 [ki=1 visible(Ci).� RelC0 is a set of O-LSTS pairs f< Ci; Cj >j Ci v Cj and Ci; Cj 2 visible(C0)g.RelC0 represents all explicitly de�ned subclassing relationships between O-LSTSs visible in C0.The relationship v can be de�ned in many ways2. The particular relation which we chose isgiven in section 3.3.3. Explicit subclassing3 is reexive and transitive.� 8 < Ci; Cj >2 RelCk , if Ck 2 visible(C0) then < Ci; Cj >2 RelC0 . In other words, a class`inherits' the subclassing relationships which are de�ned in the environments of the classeswhich are visible to it.3.2.1.2 The Class MembersO is a nonempty set of typed state labels fO1; : : : ; Ong; n 2 f1; 2; : : :g, called the typed state set.Each typed state label is either unparameterised, parameterised or conditionally parameterised:� unparameterised, written as state-constructor4� parameterised, written as state-constructor(P1; : : : ; Pn) for n 2 f1; 2; : : :g where,� i) 8Pi 2 fP1; : : : ; Png, Pi 2 visible(C0)� ii) given S1(P1; : : : ; Pr); S2(Q1; : : : ; Qs) 2 O; then S1 = S2 ) r = s and Pi = Qi; 8i 2f1; : : : ; rgDe�nition: Parameter Classes:P1; : : : ; Pn are called the parameter classes of the state-constructor.� conditionally parameterised, written as state-constructor(P1; : : : ; Pn) on cond(P1; : : : ; Pn) forn 2 f1; 2; : : :g where,2The O-LSTS model can be said to de�ne a generic formal object oriented framework which is parameterised on thesubclassing relationship.3Explicit subclassing relationships are de�ned with respect to a class environment. We say that Ci v Cj in EnvC0when Ci is explicitly de�ned as a subclass of Cj in the environment of C0.4State-constructors are represented as strings of characters | the exact syntax is de�ned in 3.2.2.1. Conventionally,all other string identi�ers, in the O-LSTS de�nition, are represented in italics.



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 52� i) 8Pi 2 fP1; : : : ; Png, Pi 2 visible(C0)� ii) given S1(P1; : : : ; Pr); S2(q1 : Q1; : : : ; qs : Qs) 2 O; then S1 = S2 ) r = s and Pi =Qi; 8i 2 f1; : : : ; rg� iii) cond is a boolean expression de�ned on the parameters of the state constructor5.Additionally, implicit in every O-LSTS, C0 say, is an unspeci�ed state label which is representedby the unparameterised state-constructor, written �C0.De�nition: States functionStates(< O;UTT;HUTT;VTT; VUTT; USS; VSS >) = O, or States(C) = OC6.De�nition: Untyped State SetThe untyped state set of C0, written US(C0), is generated from the typed state set as follows:US(C0) = RemoveTypes(States(C0)), andRemoveTypes(fo1; : : : ; ong) = NoType(o1) [ : : :[NoType(on), andNoType(state-constructor) = fstate-constructorgNoType(state-constructor(P1; : : : ; Pn)) =fstate-constructor(p1; : : : ; pn) j pi 2 US(Pi); 8i 2 f1; : : : ; ngg, andNoType(state-constructor(P1; : : : ; Pn)on cond(P1; : : :Pn)) =fstate-constructor(p1; : : : ; pn) jcond(p1; : : :pn) and pi 2 US(Pi); 8i 2f1; : : : ; nggThe elements of the untyped state set are called the state labels. Consequently, the untypedstate set is also known as the state label set.3.2.1.3 External Transformer InterfaceUTT is a possibly empty set of unvalued typed transitions, called the unvalued typed transi-tion set.8ut 2 UTT , ut is either:� (i) an unvalued unparameterised typed transition of C0 written as transition-name� (ii) an unvalued parameterised typed transition of C0, written as transition-name<U1; : : : ; Ur >, such that < U1; : : : ; Ur >2 (visible(C0))rThe parameter tuple of transition-name< U1; : : : ; Ur > is de�ned to be < U1; : : : ; Ur >.Given an unvalued typed transition set, it is necessary to generate the set of all unvalued tran-sitions through an actualisation of all possible combinations of parameter tuple values. The setgenerated is de�ned as follows.De�nition: Unvalued Actualised Transition Set5The syntax and semantics of boolean expressions is de�ned by a state label expression with type boolean | see3.2.3.6Similarly, UTTC ;HUTTC ; V TTC ;HV TTC ; USSC ; V SSC represent the 2nd, 3rd, 4th, 5th, 6th and 7th elements ofthe 7-tuple O-LSTS C.



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 53UAT (UTT ) = RemoveUParameters(UTT ) where,RemoveUParameters(fg) = fg, andRemoveUParameters(fut1; : : : ; utng)= ActUParameters(ut1)[ : : :[ActUParameters(utn), whereActUParameters(transition-name) = ftransition-namegActUParameters(transition-name< U1; : : : ; Un >) =f transition-name(u1; : : : ; un) j ui 2 Ui; 8i 2 f1; : : : ; ngg.3.2.1.4 Hidden TransformersHUTT is a subset of UTT called the hidden unvalued typed transition set. We de�ne anunhidden unvalued typed transition to be any member of UTT which is not a member ofHUTT .3.2.1.5 External Accesors InterfaceV TT is a possibly empty set of valued typed transitions, called the valued typed transition set.8vt 2 V TT vt is either:� (i) a valued unparameterised typed transition of C0, written as transition-name:Vvt, where:Vvt 2 visible(C0) is called the result type of the transition� (ii) a valued parameterised typed transition of C0, written as transition name< U1; : : : ; Ur >:Vvt, such that Vvt 2 visible(C0) and < U1; : : : ; Ur >2 (visible(C0))rThe parameter tuple of transition-name< U1; : : : ; Ur >:Vvt is de�ned to be < U1; : : : ; Ur >.Given a valued typed transition set, it is necessary to generate the set of all valued transitionsthrough an actualisation of parameter tuple values. The set generated is de�ned as follows.De�nition: Valued Actualised Transition SetVAT (V TT ) = RemoveV Parameters(V TT ), whereRemoveV Parameters(fg) = fg andRemoveV Parameters(fut1; : : : ; utng), for n 2 f1; 2; : : :g;= ActV Parameters(ut1) [ : : :[ActV Parameters(utn), whereActV Parameters(transition-name:V) = ftransition-namegActV Parameters(transition-name< U1; : : : ; Un >: V ) =f transition-name(u1; : : : ; un) j ui 2 Ui; 8i 2 f1; : : : ; ngg.The result type of a valued actualised transition is de�ned to be the result type of the valuedtyped transition from which it was generated.



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 543.2.1.6 Hidden AccessorsHV TT is a subset of V TT , called the hidden valued typed transition set. We de�ne an unhid-den valued typed transition to be any member of V TT which is not a member of HV TT .3.2.1.7 Transformer BehaviourUSS is a possibly empty set of unvalued state-to-state transitions fFromOj : Oj 2 US(C0)g,one, and only one, for every Oj 2 US(C0), where FromOj � UAT (UTT )� US(C0).Now, 8Oj 2 US(C0) the following completeness conditions must be upheld:� (i) given ul 2 UAT (UTT ), 9Ok 2 US(C0) such that < ul; Ok >2 FromOj� (ii) given < ul1; O1 >2 FromOj and < ul2; O2 >2 FromOj , ul1 = ul2) O1 = O2The unvalued state-to-state transitions from the unspeci�ed state �C0 do not have to be explic-itly de�ned. Unless otherwise speci�ed, < ul;� C0 >2 From�C0 ; 8ul 2 UAT (UTT ).3.2.1.8 Accessor BehaviourV SS is a possibly empty set of valued state-to-state transitions fV alfromOj : Oj 2 Og, one,and only one, for every Oj 2 US(C0), where V alfromOj � V AT (V TT )� visible(C0)� US(C0)Now, 8Oj 2 US(C0) the following completeness conditions must be upheld:� (i) given vl 2 V AT (V TT ) with result type V , 9Ok 2 US(C0) and res 2 US(V ) such that< vl; res; Ok >2 V alfromOj� (iii) given < vl1; res1; O1 >;< vl2; res2; O2 >2 V alfromOj ;vl1 = vl2) res1 = res2 and O1 = O2The valued state-to-state transitions from the unspeci�ed state �C0 do not have to be explicitlyde�ned. Unless otherwise speci�ed, < vl;� C 0;� C0 >2 V alFrom�C0 ; 8vl 2 VAT (V TT ), where C 0is the result type of the valued typed transition vl.3.2.1.9 Additional Syntactic ConstraintsThe following additional syntactic constraints are de�ned to enable state labels and typed transi-tions to be uniquely identi�ed. They also make the O-LSTS models easier to translate to ACT ONE(see section 3.5). The additional constraints are as follows:� State-Constructors must be uniquely de�ned as being unparameterised, parameterised or con-ditionally parameterised.� All state-constructors and transition-names are uniquely de�ned in each O-LSTS by stringsof characters. These strings can include alphanumeric characters (and the `-' character forconstructing structured strings). The �nal character must not be a digit.� Transition-names must not correspond to state-constructors.� State labels in the USS and V SS tuples must be represented as state label expressions(see 3.2.3).



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 553.2.2 O-LSTS ExamplesTo clarify the formal de�nition, some examples follow. These examples do not illustrate every aspectof the O-LSTS model. In particular they do not show the signi�cance of the subclass hierarchy de�nedin the environment of an O-LSTS. The examples specify purely object based systems. We examinethe speci�cation of object oriented systems after de�ning subclassing in 3.3.3.O-LSTS Example 1: Resetable-Tra�c-LightThe environment of the O-LSTS Resetable-Tra�c-Light is de�ned to be < C 0; fg >, where C 0 = fBool, tra�c-light-colourg, States(Bool) = ftrue; falseg and States(tra�c-light-colour) = fred; green; amberg.Resetable-Tra�c-Light = < O;UTT;HUTT;VTT;HVTT; USS; VSS >, where� O = ft� l(traffic� light � colour)g(Consequently, US(Resetable � Traffic� Light) = ft� l(red); t� l(green); t� l(amber)g)� UTT = fnext; reset < traffic� light � colour >gConsequently, UAT (UTT ) = fnext; reset(red); reset(green); reset(amber)g� HUTT = fg� V TT = fsafe� to� go :Bool; eq <Resetable-Tra�c-Light>: BoolgConsequently, V AT (V TT ) = fsafe�to�go :Bool; eq(t�l(red)) :Bool; eq(t�l(amber)) :Bool; eq(t�l(green)) :Boolg.� HV TT = fg� USS = fFromOj : Oj 2 Og where� Fromt�l(red) = f< next; t� l(green) >;< reset(amber); t� l(amber) >;< reset(green); t� l(green) >;<reset(red); t� l(red) >g� Fromt�l(amber) = f< next; t� l(red) >;< reset(amber); t� l(amber) >;< reset(green); t� l(green) >;<reset(red); t� l(red) >g� Fromt�l(green) = f< next; t� l(amber) >;< reset(amber); t� l(amber) >;< reset(green); t� l(green) >;< reset(red); t� l(red) >g� V SS = fV alFromOj : Ojg where� V alFromt�l(green) = f< safe � to � go; true; t � l(green) >;< eq(t � l(red)); false; t � l(green) >;<eq(t� l(amber)); false; t� l(green) >;< eq(t� l(green))true; t� l(green) >g� V alFromt�l(red) = f< safe� to� go; false; t� l(red) >;< eq(t� l(green)); false; t� l(red) >;< eq(t�l(amber)); false; t� l(red) >;< eq(t� l(red)); true; t� l(red) >g� V alFromt�l(amber) = f< safe� to� go; true; t� l(amber) >;< eq(t� l(green)); false; t� l(amber) >;<eq(t� l(amber)); true; t� l(amber) >;< eq(t� l(red)); false; t� l(amber) >gThis 7-tuple is a valid O-LSTS, since it ful�ls all the necessary and su�cient conditions of thede�nition. It is represented by the O-LSTS Diagram (O-LSTSD) in �gure 3.1.The O-LSTSD is a rectangle containing a graph of labelled nodes and links. The class nameis given above the rectangle and the environment of the class is de�ned by the list of O-LSTSsfollowing the using keyword and NO HIERARCHY speci�es that there are no explicit class relationshipsto consider. Each node in the diagram contains a unique state label. All state labels in the O-LSTS are represented by nodes. The set of transitions between nodes (represented by the set of links)is isomorphic to the union of the state-to-state transition sets. In other words, 8 < ua;Ok >2FromOj , 9 a unique Node-LabelledLink-Node connection, in the O-LSTSD, from Oj to Ok. Similarly,8 < va; val; Ol >2 V alfromOm; 9 a unique Node-LabelledLink-Node connection, in the O-LSTSD,



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 56
NO HIERARCHY

eq<Resetable-Traffic-Light>:Bool

t-l<traffic-light-colour>

eq(t-l(green))=false

reset<traffic-light-colour>

next

safe-to-go:Bool

safe-to-go=false

safe-to-go=true

safe-to-go=true

eq(t-l(green))=true

eq(t-l(red))=false

eq(t-l(amber))=false

eq(t-l(amber)=true

eq(t-l(red))=false

eq(t-l(amber))=false

eq(t-l(red))=true

eq(t-l(green)=false

Resetable-Traffic-Light   using   Bool, traffic-light-colour

next

next

next
t-l(green)

t-l(red)

t-l(amber)

reset(green)

reset(green)

reset(green)

reset(amber)

reset(amber)

reset(amber)

reset(red)

reset(red)

reset(red)

Figure 3.1: A Resetable Tra�c Light as an O-LSTSDfrom Ol to Om. (When Oj = Ok, or Ol = Om, the link connects the node with itself.) These fourcases are illustrated in the diagram below:
From Valfrom<vt:V:val,Ol> Ol

Oj Okut

Oj
<vt:V,val,Ol> Valfrom

OmOjFrom<ut,Oj> <ut,Ok>

OlOm
vt=val

Ol vt=valOj utThe (valued and unvalued) typed transition sets are represented by connections to the outsideof the rectangle around the O-LSTSD. The hidden transitions (there are none in this system) mustbe identi�ed by appending the transition name with the label HIDDEN. Similarly, the state labeltypes are represented by connections on the inside of the rectangle, together with the conditionsplaced on the parameters (if there are any).Diagramatic Syntactic SugaringAs even simple O-LSTSDs get very cluttered with nodes and links, there are a number of extensionswhich can be used to sugar the diagramatic representation. In the example above, an obvious extensionis to parameterise the result of the reset transition from each node. This is done in �gure 3.2. Thedotted link represents a set of transitions (one for each value the parameter can take, i.e. one for everymember of the state label set of the parameter type). The result of a parameterised transition isa parameterised node (a node with a dotted circumference whose state label is also parameterised).All parameters in an O-LSTSD are represented between diamond brackets.It can be seen from �gure 3.2 that the parameterised resets are the same for each node. A furthersugaring permits the parameterisation of the node labels at both ends of a transition. The result



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 57
t-l<c>

t-l<c>

t-l<c>

t-l<traffic-light-colour>

reset<c>

t-l(amber)

t-l(red)

t-l(green)

next
next

next

Resetable-Traffic-Light   using   Bool, traffic-light-colour

reset<c>

reset<c>

safe-to-go=false

safe-to-go=true

safe-to-go=true

eq(t-l(amber))=false

eq(t-l(red))=true

eq(t-l(green))=false

eq(t-l(green))=false

eq(t-l(amber))=true

eq(t-l(red))=false

eq(t-l(red))=false

eq(t-l(amber))=false

eq(t-l(green))=true

safe-to-go:Bool

next

reset<traffic-light-colour>

eq<Resetable-Traffic-Light>:Bool

NO HIERARCHY

Figure 3.2: A Resetable Tra�c Light as a Sugared O-LSTSDof a transition is a parameterised expression (also in diamond brackets), 7 which is dependent onthe transition parameter values and the state label parameter values of the node from which thetransition is taking place. Two examples of such a parameterisation are illustrated in �gure 3.3.
NO HIERARCHY

eq<t-l<d>>= <c..eq<d>>

safe-to-go=false

eq<Resetable-Traffic-Light>:Bool

safe-to-go=true

safe-to-go=true

reset<traffic-light-colour>

next

safe-to-go:Bool

next

next
next

t-l(green)

t-l(red)

t-l(amber)

Resetable-Traffic-Light   using   Bool, traffic-light-colour

t-l<traffic-light-colour>

t-l<c>

t-l<c> t-l<d>
reset<d>

Figure 3.3: A Further Sugaring of the O-LSTSDO-LSTS Example 2: An Integer CounterThe resetable tra�c light example illustrates the speci�cation of a system with a �nite number of statesin which it is not necessary to parameterise the behaviour de�nition, although the parameterisationdoes simplify and clarify the speci�cation. It is necessary to provide facility for de�ning O-LSTSsin a parameterised fashion. An unbounded integer counter, for example, cannot be represented by a�nite state machine and so we must provide a suitable means of de�ning an in�nite set of behaviours7The syntax and semantics of such state label expressions is formalised later in this section. For now, theinterpretation is informal, but intuitive and well explained by the examples.



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 58in a parameterised form. Consider the O-LSTSD in �gure 3.4.
eq<succ<N>>=false

eq<Counter>:Bool

set<Counter> HIDDEN

succ<Counter>

Counter using Bool

inc

0
inc

succ(0)

<N>
set<M>

<M>

succ<M>

eq<0>=false
inc

succ<succ<M>>

eq<succ<N>>= M..eq<N>

NO HIERARCHY

eq(0) = true Figure 3.4: An O-LSTSD Speci�cation of an Integer CounterThe following should be noted:� The connection on the inside of the diagram is labelled by the expression succ < Counter >.This speci�es that 8n 2 US(Counter); succ(n) 2 US(Counter).� The inc transition from 0 to succ(0) speci�es that < inc; succ(0)>2 From0.� The eq(0) = true transition from 0 to 0 speci�es that < eq(0); true; 0>2 V alfrom0.� The parameterised transition eq(succ < N >) = false from 0 to 0 speci�es that 8N 2US(Counter);< eq(succ(N)); false; 0)2 V alFrom0.� The parameterised transition eq(0) from succ < M > back to itself speci�es that 8M 2US(Counter);< eq(0); false; succ(M)>2 V alFromsucc(M).� The parameterised transition inc from succ < M > to succ < succ < M >> speci�es that8M 2 US(Counter);< inc; succ(succ(M))>2 Fromsucc(M).� The parameterised transition eq < succ < N >>= M::eq(N) from succ < M > back to itselfspeci�es that 8N;M 2 US(Counter); < eq(succ(N));M::eq(N); succ(M)>2 Fromsucc(M). (Inthis caseM::eq(N) is a state label expression which represents a state label in the untypedstate set of Bool The meaning of such a state label expression is de�ned in the next section(3.2.3)).� The parameterised transition set < M > from N to M speci�es that 8N;M 2 US(Counter);< set < M >;M >2 FromN .The O-LSTSD is equivalent to the OLSTS speci�cation:Counter = < O;UTT;HUTT; VTT;HVTT; USS; VSS > in < fBoolg; fg >, where� O = f0; succ(Counter)g,consequently US(Counter) = f0; succ(0); succ(succ(0)); : : :g� UTT = finc; set < Counter >g;consequently UAT (UTT ) = fincg [ fset(n) j n 2 Og = finc; set(0); set(succ(0)); : : :g� HUTT = fset < Counter >g. This is the �rst example of a hidden transition.



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 59� V TT = feq < Counter >: Boolg;consequently VAT (V TT ) = feq(n) j n 2 Og = feq(0); eq(succ(0)); eq(succ(succ(0)); : : :g� HV TT = fg.� USS = fFromx j x 2 Og, where8x 2 O; Fromx = f< inc; succ(x)>g [ f< set(n); n >j n 2 Og� V SS = fV alFromy j y 2 Og, whereV alFrom0 = f< eq(0); true; 0>g [ f< eq(succ(n)); false; 0>j n 2 Og, and8y 2 O; V alFromsucc(y) = f< eq(0); false; succ(y) >g [ f< eq(succ(p); q:eq(y); succ(y) >j p 2Og.3.2.3 State Label ExpressionsThe state labels which represent the newstate of an object after it services a request and the valuereturned by a valued attribute can be de�ned by an expression (called a state label expression)which evaluates to a state label. The syntax and semantics of such expressions are de�ned below.C is the serving class, sl is the server and att is the service of the state label expression.When a state label expression is such that the service class cannot be uniquely identi�ed fromthe server and the serving class, then the class identi�er must be included in the expression toremove the risk of ambiguity. For example, in a system which uses theNat O-LSTS,M:eq(N) must berepresented by M :Nat:eq(N) if Nat is not the only visible class of the system which has eq < Nat >as a typed transition and M as a state label.Additional Hiding ConstraintThe members of HUTT and HV TT model internal transitions of a class which are available only tothe class in which they are de�ned. Consequently, we place the additional syntactic constraint onstate label expressions that if C0 6= C then att, the service, must be an unhidden transitionof C.3.3 An Object Oriented Interpretation of the O-LSTS ModelSection 3.3 identi�es �ve relationships which collectively must exist in an analysis model for it tobe considered object oriented: classi�cation, interaction, subclassing, composition and con�guration.Classi�cation and subclassing are static properties of an object oriented system. Composition andcon�guration have both static and dynamic aspects, although during analysis they are most usefullygiven a static interpretation. Interaction is the only purely dynamic property of an object orientedsystem which is important in analysis.



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 60De�nition: state label expressionA state label expression in an O-LSTS (C0) de�nition is said to be de�ned on a class C,where C 2 visible(C0). Such an expression is either:� i) a simple expression, written sl, where sl 2 US(C).C is called the type of the simple expresion.� ii) a transition expression, written sl.att, where� sl 2 US(C)� att is an unparameterised transition, oratt is a parameterised transition att(p1; : : : ; pn) such that 8i 2 f1; : : : ; ng:pi 2 US(Pi) and att(Q1; : : : ; Qn) 2 UTTC and Pi v Qi in EnvC0We de�ne sl.att to be an equivalent representation of the state label sl0, where either< att; sl0 >2 Fromsl 2 USSC or sl00 where < att; val; sl00 >2 V alFromsl 2 V SSC).C is called the type of a transition expression.� iii) a result expression, written sl..att, where� sl 2 US(C), and� att is an unparameterised value transition, oratt is a parameterised value transition att(p1; : : : ; pn) such that 8i 2 f1; : : : ; ng: pi 2US(Pi) and att(Q1; : : : ; Qn) 2 V TTC and Pi v Qi in EnvC0We de�ne sl..att to be val, where < att; val; sl0 >2 Fromsl 2 USSC .The type of a result expression is the result type of the valued actualised transitionattribute att.3.3.1 O-LSTS Classi�cationAn interpretation of classi�cation in the O-LSTS model is given through the following de�nitions ofclass, object and external interface8.� Class de�nitionAn O-LSTS de�nes a class of behaviour. A class is speci�ed by:� The set of class members, which is de�ned by the typed state label set in the O-LSTSde�nition.� The external interface (a set of attributes), which corresponds to the unhidden typedtransitions (UTT nHUTT )[ (V TT nHV TT ) in the O-LSTS de�nition.� The behaviour of the member objects in response to service requests at their externalinterface, which corresponds to the behaviour de�ned by the state-to-state transitionsets of the O-LSTS de�nition (USS [ V SS).8The de�nitions of class, object and external interface are mutually dependent | like the chicken and the egg, it isdi�cult to say in which order they come!



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 61� Object de�nitionThe term object is used to represent a dynamic instance of a member of a class. In the de�nitionof a class as an O-LSTS, the set of state labels are used only to represent the set of possiblevalues (or states) that an object of the class can attain. An object of a class must be associatedwith a unique identi�cation, which is then used to provide a reference to a particular memberof the state label set of the class (O-LSTS) of which the object is a member. Consequently,the state of an object is de�ned precisely by the typed state label being referenced by theobject. The external interface of an object is de�ned by the external interface of the class towhich it belongs. The behaviour provided by the external interface of an object is de�ned inthe valued and unvalued transition sets of its class (Fromobject and V alFromobject).� External Interface de�nitionThe external interface of a class is de�ned as a set of attributes. These external attributes arecategorised as follows:� Dual:a service request at a dual attribute results in the receiving object updating its internalstate and returning some result value to the service requester.� Transformer:a service request at a transformer attribute results in the receiving object updating itsinternal state without returning any result value to the requester.� Accessor:a service request at an accessor attribute results in the receiving object returning a resultvalue to the requester with no change to its state. (An accessor is a particular type of dualin which the state is `updated' to the value it was previously.)This categorisation is reected in the O-LSTS semantics as follows:� Dual attributes are de�ned by the valued state-to-state transitions of an O-LSTS.For example, a dual attribute of an object Oj is represented by: al, say, such that < al,result, Ok >2 V alfromOj� Transformer attributes are de�ned by unvalued state transitions of an O-LSTS. Forexample, a transformer attribute of an object Oj is represented by: al, say, such that< al; Ok >2 FromOj� Accessor attributes are particular types of dual attributes in which the state of theobject is not a�ected by ful�lling the accessor service. In other words, an accessor attributeof an object Oj is represented by: al, say, such that < al, result, Oj >2 V alfromOj3.3.2 O-LSTS Interaction: The Executable SemanticsDynamic behaviour of an object oriented system corresponds to the behaviour of the object repre-senting the system. Object behaviour is de�ned as a sequence of interactions between the object,



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 62O say, and its external environment9. The environment of O is made up of a set of service re-questers (themselves objects) which interact with O, the service provider, by requesting servicesof its external interface.Creating an object of a class, C say, corresponds to referencing the unique identi�cation for thenew object with one of the state labels, Oj say, in the set States(C). When the object receives aservice request which corresponds to an external attribute, the object behaves as follows:� When the corresponding external attribute is a transformer, ua 2 UTT say, then, by de�nition,there exists one and only one < ua;Ok >2 FromOj . The new state referenced by the objectis Ok, and this can be represented, without risk of ambiguity, by the state label expressionOj :ua. The object does not return any value to the service requester and it proceeds to ful�lthe external behaviour as de�ned for Ok in the O-LSTS C.� When the corresponding external attribute is a dual, va : V 2 V TT say, then, by de�nition,there exists one and only one < va : V; result; Ok >2 V alFromOj . The new state of the objectis set to be Ok (which can be represented by the state label expression Oj :va) and the valuereturned to the service requester is a reference to the state label result in the O-LSTS V(which can be represented by the state label expression Oj ::va). The object then behaveslike Ok in C.An implementation of this dynamic model is de�ned by a mapping from O-LSTS speci�cations toACT ONE. The evaluation of certain ACT ONE expressions corresponds to the processing that anobject performs in response to a service request (see 3.5 for more details).3.3.3 O-LSTS Subclassing (and Subtyping)A subclassing relationship between classes is de�ned as a relationship between the O-LSTSs cor-responding to these classes. Informally, there are four constraints which must be ful�lled for oneO-LSTS, A say, to be a subclass of another O-LSTS, B say, (written A v B):� i) A must provide the external interface of B. If B can service a particular request (i.e. if allthe members of B can service the request) then A must also be able to service that request.This is a subtyping relationship.� ii) All members of A must also be members of B. More precisely, all ways of identifying memberobjects of class A must also be valid identi�cations for members of class B.� iii) The members of A must o�er the same behaviour as their corresponding members in B. Inother words, it must be impossible to distinguish between corresponding members of A and Bby requesting services of these objects which B is capable of ful�lling (we abstract away fromthe fact that A may o�er services which B does not o�er).9Note that the environment of an object is not directly related to the environment of the class to which it belongs.The environment of a class represents a set of classes which are used in its de�nition.



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 63� iv) The environment of classes which B uses must be `contained' (in some way) in the environ-ment of classes which A uses. The exact de�nition of containment must take into account therelative visibility of classes and the subclassing relationships between them.These (informal) necessary and su�cient conditions are formally speci�ed in section 3.3.3.3. The �rsttwo conditions are purely syntactic constraints which are based on the static properties of the classesconcerned. The third condition is a semantic constraint founded on the dynamic behaviour of theclasses. The fourth condition needs examination only when the environments of the two classes aredi�erent.Informally, subclassing is similar to the mathematical notion of the subset relationship. Beforeproceeding to de�ne subclassing, we review our claim that subclassing is not the same as subtyping.To do this, we formally de�ne a subtyping relationship between O-LSTSs and argue that subtypingis a necessary, but not su�cient, condition for subclassing (in the intuitive sense). Then we formallyde�ne subclassing between O-LSTSs and prove that subclassing ) subtyping and subtyping6) subclassing3.3.3.1 SubtypingSubtyping between O-LSTSs guarantees that any object of a given class, C say, can be replacedby an object which is a member of any subtype (class) of C without introducing the possibility ofsyntax errors10 into the system in which the replacement is made. Subtyping between O-LSTSs mustsimilarly guarantee only the non-introduction of syntax errors when a subtype is used to provide a10In object oriented systems, a syntax error results when an object cannot respond to a service requested of it.



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 64replacement for a supertype. Such a relationship is de�ned below.De�nition: O-LSTS Subtyping (�)< O;UTT;HUTT;VTT;HVTT; USS; VSS >in Env1 �< O0; UTT 0; HUTT 0; V TT 0; HV TT 0; USS 0; V SS 0 >in Env2 ,� (UTT nHUTT ) = (UTT 0 nHUTT 0) or� (i) given an unvalued unhidden unparameterised typed transition ofUTT 0, written transition-name, then transition-name 2 (UTT nHUTT ).� (ii) given an unvalued unhidden parameterised typed transition of UTT 0,written t-n< U 01; : : : ; U 0r >, 9 t-n< U1; : : : ; Ur >2 (UTT nHUTT ), such thatU 0i � Ui; 8i 2 f1; : : : ; rg.� V TT = V TT 0 or� (iii) given a valued unhidden unparameterised typed transition of V TT 0,written transition-name:V 0,9 transition-name:V 2 (V TT nHV TT ), such that V � V 0.� (iv) given a valued unhidden parameterised typed transition of UTT 0,written t-n< U 01; : : : ; U 0r >: V 0,9 t-n< U1; : : : ; Ur >: V 2 (V TT nHV TT ) such that:a) U 0i � Ui; 8i 2 f1; : : : ; rg andb) V � V 0Conditions (ii) and (iv a) correspond to the `rule of contravariance' for subtyping | a subtypecan accept parameter values which are supertypes of the values which the supertype can accept.Conditions (iii) and (iv b) correspond to the `rule of covariance' for subtyping | a subtype canrespond with values which are subtypes of the values which the supertype responds with. Subtypingis reexive and transitive. Note that the hidden transitions are not important in the subtypingrelation. When two O-LSTS are subtypes of each other they are said to be type compatible:De�nition: Type CompatibilityTwo O-LSTSs, A and B, are type compatible, written A �� B, , A � B and B � A.Type compatibility is an equivalence relation.Example 1: A Simple Subtyping RelationshipThe Store-evens and Store-fours classes in �gure 3.5 illustrate a nontrivial subtyping relationship.The environments of these O-LSTSs are composed from the O-LSTSs evens; fours and eights, whichare de�ned such that evens � fours � eights, and States(evens) = f2; 4; 6; 8g, States(fours) =f4; 8g and States(eights) = f8g. Consequently, by the subtyping de�nition, Stores-fours � Stores-evens. The rule of contravariance is upheld since evens � fours. The rule of covariance is upheldsince fours � eights.



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 65
F<n>

NO HIERARCHYNO HIERARCHY

goto<n>

F<fours>

E<n>
goto<n>

is:fours goto<fours>next

is=8is=4

next

next

Store-fours using foursStore-evens using evens, eights

is:eights goto<evens>next

next

next

next

next is=8
E<evens>

E(2) E(4)

E(6)E(8)

F(4) F(8)Figure 3.5: Subtyping: A Simple Example3.3.3.2 Additional Syntactic Constraint Between State Label SetsFrom the previous examples, it is clear that subtyping does not place any requirements on therepresentation of state labels: it is purely a relationship between O-LSTS interfaces. In our informalde�nition of subclassing it was stated that all members of a class must also be members of itssuperclass(es). As O-LSTS members are state labels (or more precisely references to state labels)of the O-LSTS, it is necessary to place the additional restriction that the state label sets of O-LSTSs,which are related by the subclassing relationship, must be related by a subset relationship. Thisadditional syntactic constraint is a necessary but not su�cient condition for subclassing. Example2 shows that when both syntactic conditions hold a subclassing relationship is still not guaranteed.Example 2: Subtyping is not SubclassingAt the beginning of this section, subtyping was said to be `too weak' to be equated to our infor-mal behavioural notion of subclassing. Subclassing between classes of behaviour requires a formalrelationship between the behaviour o�ered by the members of each of the classes. The need for thisadditional behavioural requirement is re-iterated by the O-LSTSs de�ned in �gure 3.6.
next

next

next

is=1 is=2

is:TwoState

1 2

TwoState NO HIERARCHY

next next

is=1nextis=2

is:TwoState
1 2

TwoState’  using TwoState NO HIERARCHYFigure 3.6: Subtyping is not Subclassing: An ExampleThe two O-LSTSs are type compatible, even though the behaviour o�ered by them is quitedi�erent. It is not possible to replace a member of one O-LSTS with a member of the other whilstguaranteeing the behaviour of the system in which the change is made. In this case the subtypingrelationship guarantees only the non-introduction of syntax errors when a member of one class isreplaced by the corresponding member of another. Consequently, a semantic relationship (in whichreplacement somehow guarantees behavioural compatibility) must address the relationship betweenthe state-to-state transition sets of O-LSTSs, and not just their external interfaces. This semantic



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 66requirement is precisely the notion we capture in our subclassing relationship. We return to theformalisation of this relationship in the knowledge that subtyping must be a necessary but notsu�cient condition for subclassing.3.3.3.3 SubclassingDe�nition: Subclassing (v)Given A, speci�ed as < O;UTT;HUTT;VTT;HVTT; USS; VSS > and B,speci�ed as < O0; UTT 0; HUTT 0; V TT 0; HV TT 0; USS 0; V SS 0 > then A v B ,� i) US(A) � US(B).� ii) Every unvalued unhidden unparameterised typed transition of B is also an unvaluedunhidden unparameterised typed transition of A.� iii) For every unvalued unhidden parameterised typed transition of B, written transition-name< U1; : : : ; Ur >, there is an unvalued unhidden parameterised typed transition ofA, written transition-name< V1; : : : ; Vr >, such that Ui v Vi in EnvA; 8i 2 f1; : : :rg.� iv) For every valued unhidden unparameterised typed transition of B, written transition-name:V alB, there is a valued unhidden unparameterised typed transition of A, writtentransition-name:V alA, such that V alA v V alB in EnvA.� v) For every valued unhidden parameterised typed transition of B, written transition-name< U1; : : : ; Ur >:V alB, there is an valued unhidden parameterised typed transitionof A, written transition-name< V1; : : : ; Vr >:V alA, such that Ui v Vi in EnvA; 8i 2 f1; : : :rgand V alA v V alB in EnvA.� vi) When at is an unhidden typed transition:� 8 < at; b0 >2 Fromb 2 USSB; < at; b0 >2 Fromb 2 USSA, and� 8 < at; val1; b0 >2 V alFromb 2 V SSB; < at; val1; b0 >2 V alFromb 2 V SSA.� vii) EnvA =< C 0A; RelA > and EnvB =< C 0B; RelB > are such that:� visible(B) n fBg � visible(A) n fAg� 8Ci; Cj 2 C 0B such that Ci v Cj in EnvB, then Ci v Cj in EnvA.� 8C such that B v C in EnvB, then A v C in EnvA.� 8C such that B w C in EnvB, then A w C in EnvA.3.3.3.4 Subclassing ExamplesThe list of examples that follow do not exhaustively identify interesting properties of the O-LSTSssemantics with regard to the subclassing relationship. However, the following examples do introducesome of the more important concepts. In particular, the examples illustrate the types of behaviourwhich are related by a subclassing relationship, and contrasts them with similar behaviours whichare not related in this way.



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 67
switch

21

dec

dec

inc

inc21

TwoCount

inc dec decinc 

DoubleCount

inc
dec

dec

inc

switch

NO HIERARCHY NO HIERARCHYFigure 3.7: An Extension ExampleSubclassing Example 1: ExtensionConsider the O-LSTSs de�ned in �gure 3.7.Each of the O-LSTSs are `2-state machines'11. For simplicity, neither of the O-LSTSs has anyvalued transitions: they are said to be non-responsive. Furthermore, the O-LSTSs are de�nedin trivial environments (< fg; fg >). In this case, the subclassing relationship corresponds to somesort of structural (or topological) relationship between the internal representation of the O-LSTSs.It is straightforward to prove, by checking the necessary and su�cient conditions of v, thatDoubleCount v TwoCount whilst TwoCount 6v DoubleCount.Proof: DoubleCount v TwoCount, since conditions (i) to (vii) of the subclassing rela-tionship are upheld:� i) f1; 2g � f1; 2g� ii) finc; decg � finc; dec; switchg� iii) fg � fg� iv) fg � fg� v) fg � fg� vi) f< inc; 2 >;< dec; 1 >g � f< inc; 2 >;< dec; 1 >;< switch; 2 >g andf< inc; 2 >;< dec; 1 >g � f< inc; 2 >;< dec; 1 >;< switch; 1 >g andV SSDoubleCount = V SSTwoCount = fg� vii) The environments of both O-LSTSs are trivially identical.Proof: TwoCount 6v DoubleCount, sinceCondition (ii) of the subclassing relation is not ful�lled, since switch is an unhiddentransition of DoubleCount but switch is not an unhidden transition of TwoCount.These O-LSTSs illustrate a particular relationship which we refer to as extension.11An O-LSTS is said to be an `n-state' machine i� the cardinality of its state label set equals n.



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 68De�nition: extensionA is an extension of B, written A ext B ,A v B and (UAT (UTTA) [ V AT (V TTA)) � (UAT (UTTB) [ V AT (V TTB)).In other words, when A ext B, A o�ers all the attributes which B o�ers together with someadditional attributes. When these additional attributes are ignored, every object in A behaves exactlylike its corresponding object in B. The inverse of the extension relation is restriction:De�nition: restrictionA is a restriction of B, written A res B , B ext ASubclassing Example 2: SpecialisationThe simple subclassing example in the O-LSTSD in �gure 3.7 shows only a semantic relationshipbetween unresponsive O-LSTSs with identical state sets. Both these restrictions are removed in thebehaviours de�ned in �gure 3.8.
curr:TwoFloors

TwoFloors NO HIERARCHY

21

up

up

up

down

down

down

curr=1 curr=2

curr:FiveFloors

FiveFloors NO HIERARCHY
upup

down

down

curr=1 curr=2

downup

1 2

543

curr=5
curr=4curr=3

down

down

down

up
upupFigure 3.8: A Specialisation ExampleInformally, TwoFloors speci�es a lift system with 2 oors. The system can be requested to go upor down a oor. Also, it can respond with its current oor status when asked. It ignores requeststo go up when it is on its top oor (in this case oor 2). Similarly, it ignores requests to go downon oor 1. FiveFloors speci�es a lift system with 5 oors which cannot move between oors 2 and3 (perhaps the lift system is broken). FiveFloors also ignores requests to go up and down wheneverthese movements are not possible. It should be clear that, by de�nition, TwoFloors v FiveFloors.This is an example of specialisation.De�nition: specialisationA is a specialisation of B, written A spec B , A v B and States(A) � States(B).Informally, if A spec B then B is partitioned into distinct sets of behaviour and A provides thebehaviour of one or more, but not all, of these partitions. It is useful to be able to de�ne a new classas a partition of an existing class. Such a class, which we refer to as a partition class, is speci�ed byidentifying a subset of the state set of the original class, provided this set is disjoint from the otherstate members. We say that an O-LSTS is nonpartitionable i� it has no partition classes. Likeextension, specialisation has an inverse relation. It is called generalisation:



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 69De�nition: generalisationA is a generalisation of B, written A gen B , B spec A.Extension and specialisation (and their inverse relations restriction and generalisation) are theonly types of class relations which we consider in �gure=Sem-Chp3/Figures. Di�erent combinationsof these relationships give rise to an unlimited number of possibilities.3.3.3.5 Subclassing Guarantees SubtypingWe wish to show that A v B ) A � B (The TwoState example in �gure 4.8 has already shown thatA � B 6) A v B.) A simple example illustrates the relationship betwen subclassing and subtypingmore clearly. Consider Lift12s and Lift15s de�ned in �gure 3.9.
Nat12s using Nat, Bool

Move12s using Move15s,Bool

eq<Move15s>:Bool

staydownup

eq<Nat>: Bool

21

Nat12s hierarchy

Nat15s

Nat12s

Move15s hierarchy

Move12s

Move15s

Curr=2

Curr=1

M(stay)

M(down)

M(down)

M(up)

L(2)L(1)

M(stay)
M(up)

M(down)

M(up)

L(2)L(1)

M<Move12s> Curr:Nat12s

L<Nat12s>

curr:Move15s

Lift12s using Move12s,Nat12s,Lift15s

Lift12s hierarchy

Move12s 

Move15s

Lift12s

Lift15sNat15s

Nat12s

downup

eq<Move15s>:Bool

Move15s using Bool

curr:Move15s

NO HIERARCHY

NO HIERARCHYNat15s using Nat, Bool

1 2 3 4 5

eq<Nat>: Bool

Curr=3
Curr=5

L<Nat15s>

Curr=5

Curr=4

L(5)L(4)L(3)

M(up)

M(up)

Curr=2

Curr=1

L(2)L(1)

M(down)

M(down)

M(up)M(up)

Curr=2L(2)L(1)

M(up)

M(down)M(down)

M(down)
M(up)M(up)

NO HIERARCHYLift15s using Move15s, Nat15s

M<Move15s> Curr:Nat15s

Figure 3.9: Illustrating Contravariance and CovarianceThe O-LSTD representation has been extended in this example with two new constructs:� The O-LSTSs with dotted boundaries are partial speci�cations in which the state-to-state tran-sition sets are not shown. The partial speci�cations are used when we wish to represent onlythe interface of a class of behaviour: consequently, we refer to them as interface diagrams.� The class hierarchies associated with each O-LSTS environment are represented by class hier-archy diagrams (the syntax and semantics of such diagrams is de�ned in section 3.3.3.6).Consider the syntactic subtyping relationship between the di�erent Lift O-LSTSs. It is clear, bythe subtyping de�nition, that Nat12s �� Nat15s andMove12s ��Move15s. Subsequently, we can



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 70prove that Lift12s � Lift15s.Proof: Lift12s is a subtype of Lift15sThe subtyping relationship is true since the rules of contravariance and covariance hold.� contravariance:M < Move15s >2 UTTLift15s, M < Move12s >2 UTTLift12s and Move12s �Move15s� covariance:curr : Nat15s 2 V TTLift15s, curr : Nat12 2 V TTLift12s and Nat12s � Nat15sConsider now the semantic subclassing relationship. It is obvious that if we assume thatMove15s vMove12s and Nat12s v Nat15s then we can prove that Lift12s v Lift15s, and as such the O-LSTSsare well-de�ned.Proof: Lift12s is a subclass of Lift15s (given the above assuptions hold)All the necessary and su�cient conditions for subclassing hold:� The state label set of Lift12s is a subset of the state label set of Lift15s, sincefL(1); L(2)g v fL(1); L(2); L(3); L(4); L(5)g� The unvalued unhidden actualised transition set of Lift15s is a subset of the unval-ued unhidden actualised transition set of Lift12s, since fM(up);M(down);M(stay)g �fM(up);M(down)gand the valued unhidden actualised transition set of Lift15s is a subsetof the valued unhidden actualised transition set of Lift12s, since fcurrg = fcurrg� The input parameters of Lift12s are superclasses of the corresponding input parameters ofLift15s in EnvLift12s. This is true by the original assumption.� The output parameters of Lift12s are subclasses of the corresponding output parameters ofLift15s in EnvLift12s. This is true by our original assumption.� The state-to-state transitions of Lift15s are members of the state-to-state transitionsets of Lift12s:FromL(1)Lift15s � FromL(1)Lift12s and V alFromL(1)Lift15s � V alFromL(1)Lift12s� The environment of Lift12s is contained within the environment of Lift15s since:� visible(Lift15s)nfLift15sg= fBool; Nat;Nat15s;Move15sg � visible(Lift12s)nfLift12sg=fMove15s; Bool; Nat15s;Nat;Move12s;Nat12s; Lift15sg.� RelLift15s = fg and so there are no conditions to be met concerning the containment ofsubclassing relationships.



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 71Proof: subclassing implies subtypingQuite simply, removing conditions (i), (vi) and (vii) of the subclassing de�nition resultsin precisely the covariance and contravariance requirements for subtyping. Consequently,it is clear that subclassing is stronger than subtyping. More formally, A v B ) A � B.3.3.3.6 Class Hierarchy DiagramsThe class hierarchy diagrams given in the previous example are an explicit statement of subclassingrelationships which exist in the environment of an O-LSTS speci�cation. The diagram is a graph ofnodes and directed links between nodes. The nodes in the graph correspond isomorphically to the setof visible classes of the particular class, C say. We say that a path exists between nodes A and B i�there is a directed link from A to B, or 9 a node C such that there is a directed link from A to C andthere is a path from C to B. For every pair of visible classes, A and B say, related by the subclassingrelationship A < B in EnvC , there is a path from the superclass node to the subclass node12. It isimportant to note that when one class is used by another, its class hierarchy is contained within theusing class.4.3.3.6 Ful�ls | subclassing after syntactic relabellingStrict conditions on the syntactic labelling of states and transitions are placed between classes relatedby the subclassing relationship and this can be a hindrance to re-use. Consider the simple examplesof 2-state machines in �gure 3.10.
Coin using BoolOnOff using Bool

is-head:Boolflipis-on:Boolswitch

is-head=false

is-head=trueis-on=false
is-on=true

On Off Head Tail

flip

flip

switch

switch

NO HIERARCHY NO HIERARCHYFigure 3.10: A Ful�ls ExampleThese O-LSTSs are not related by the subclassing relationship. However, intuitively, they o�er`the same' behaviour. A simple syntactic relabelling of class names, state labels and transition labels`transforms' either class into the other. When such a syntactic relabelling, using the transformationT on the class C say, results in a O-LSTS then the new class produced is labelled T (C).De�nition: ful�lsA ful�ls B , 9 some syntactic relabelling transformation, T say, such that A v T (B).This de�nition introduces one particular means of identifying one class of behaviour as a suitablecandidate for providing the behaviour as speci�ed by another class of behaviour. The examples in12The symmetric subclassing relationships are not shown in the diagram.



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 72�gures 3.11 and 3.12 illustrate two particular types of ful�lment, namely transition reduction (tr)and state reduction (sr).Ful�ls Example 1: transition reduction
NO HIERARCHYNO HIERARCHY A’A

up
is=2is=1down

down

up

dec

inc

next

next

incis=twois=one
dec

twoone21

decinc is:A’nextis:Adownup Figure 3.11: A Transition Reduction ExampleConsider the O-LSTS in �gure 3.11. A ful�ls A0 since A v T (A0), where T (A0) = A, T (one) = 1,T (two) = 2, T (next) = up, T (inc) = up, and T (dec) = down. The central idea is that the next andinc transitions in A0 are equivalent (i.e. have the same e�ect). Consequently, the up transition in Acan be used to ful�l both next and inc functionality.This example illustrates how one class of behaviour simpli�es the speci�cation of the behaviour ofanother class. The O-LSTS A simpli�es the speci�cation of A0 by reducing two equivalent transitionsinto one. This is formally de�ned as transition reduction.De�nition: transition reduction (tr)A tr B , A ful�ls B and the cardinality of the union of the typed transition sets of Ais less than the cardinality of the union of the typed transition sets of B.Ful�ls Example 2: state reductionConsider the O-LSTSs de�ned in �gure 3.12.
NO HIERARCHYNO HIERARCHY

next

B’ using BoolB using Bool

odd:Boolnextodd:Boolnext

4’ 3’

2’1’
21

odd=false

odd=false

odd=true

odd=true

odd=falseodd=true

next
next

nextnext

next Figure 3.12: A State Reduction ExampleB ful�ls B0 since B v T (B0), where T (B0) = B, T (10) = 1, T (20) = 2, T (30) = 1 and T (40) = 2.T (B0) is an O-LSTS which simpli�es the speci�cation of the behaviour of B0 by reducing the number



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 73of states in the system. In B0 it is impossible to distinguish states 10 and 30 (and 20 and 40) throughthe external interface o�ered by the attribute set. The simpli�cation which almalgamates equivalentstates is called a state reduction.De�nition: state reduction (sr)A sr B , A ful�ls B and the cardinality of the state label set of A is less than thecardinality of the state label set of B.Ful�ls: A Preview of Design IssuesThe ful�ls relationship is important when we consider re-use. When the behavioural requirementsof a system (or system component) can be ful�lled by another already encoded component thenit is sensible to re-use that implementation (after the appropriate syntactic relabelling). Note thatthe ful�ls de�nition guarantees that a class always ful�ls the behaviour of all of its superclasses.Consequently, subclassing provides a very particular kind of re-use facility. Confusion arises in objectoriented terminology because subclassing is often thought of as a re-use mechanism rather than arelationship between classes which facilitates re-use.Ful�ls Example 3: Restructuring for designThe notion of ful�lment is important in design because it allows for the restructuring of class speci-�cations whilst guaranteeing that the restructuring does not alter the requirements being de�ned. Asimple example in �gure 3.13 illustrates this.
TwoTwo using Bool, Nat12s

xor:Bool

P<Bool,Bool>

P<b1,b2>
change(1)

change(2)

P<b1,b2.not>

P<b1.not,b2>

xor=<b1.xor<b2>>

NO HIERARCHY

change<Nat12s>

NO HIERARCHYFourState using Bool

out=false

out=false

out=true

out=true

out:Bool

4 3

21

switch switch switch switch

flip

flip

flip

flip

switchflip Figure 3.13: A Re-structuring ExampleTwoTwo ful�ls FourState since TwoTwo v T (FourState), where T (out) = xor, T (flip) =change(2), T (switch) = change(1), T (1) = P (true; true), T (2) = P (true; false), T (3) = P (false; true),and T (4) = P (false; false). TwoTwo is a more structured speci�cation than FourState. Addingmeaningful structure to a speci�cation (without changing the behaviour o�ered at the external inter-face) is an important aspect of design. Structure is fundamental to understanding | it encouragesthe re-use of pre-de�ned behaviours and the generation of re-usable behaviour. For example, thexor behaviour (provided by class Bool) is well understood and its re-use in TwoTwo improves thespeci�cation.



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 74In chapter 5, we consider design as a sequence of correctness preserving transformations. Thecorrectness property between designs is related to the ful�ls relationship in the analysis.3.3.3.8 InclusionThe inclusion example in �gure 3.14 illustrates a form of re-use which is neither compositionalnor subclassing. Nevertheless, this form of re-use is very common and e�ective. We refer to it asinclusion.
where:Nat13s

Floor3sa using Nat13s NO HIERARCHY

updown

where=3

where=3where=2

where=2

where=1

where=1

down
updownup

down
up

switch switch
switch

switch switch switch

down

down up

up

off3off2off1

321

up down switch

updown

up down

Floor3s using Nat13s NO HIERARCHY

where:Nat13s

where=3where=2where=1

up
down

downup 321 Figure 3.14: An Inclusion ExampleFloor3sa 6v Floor3s since the `o� states' in Floor3sa do not have any corresponding members inFloor3s. Also, Floor3s 6v Floor3sa since Floor3s does not o�er the switch attribute. Neither classcan ful�l the other behaviour and neither class is dependent on the other. By ignoring the switchoperator one can say that Floor3s specialises Floor3sa. Clearly, it is advantageous to be able tode�ne either one of these classes in terms of the other through some explicit re-use mechanism, whichis based on the inclusion de�nition, below.De�nition: inclusionB includes A , written B inc A,� 8x 2 US(B); Fromx 2 USS(B) is a subset of Fromx 2 USS(A)� 8x 2 US(B); V alFromx 2 USS(B) is a subset of V alFromx 2 USS(A)This simple de�nition provides the foundation for a powerful purely syntactic re-use mechanism.To de�ne A in terms of B it is necessary only to specify a subset of the typed transition set of Btogether with a subset of the state label set of B. To de�ne B in terms of A it is necessary only tode�ne new transitions and new states together with their associated behaviour.3.3.4 O-LSTS CompositionAn object in a class is represented by a typed state label. By de�nition, a typed state label iseither unparameterised or parameterised. An unparameterised typed state label is represented by



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 75a unique state-constructor. A parameterised typed state label is represented by a state-constructorfollowed by a list of parameter values.An object which references an unparameterised state label is said to be unstructured. Suchobjects are not said to be composed from any component objects. An object which references aparameterised state label is said to be structured. A structured object is said to be composedfrom a set of component objects, which are precisely the objects corresponding to the parametervalues. The optional boolean expression corresponds to an invariant property which collectively thecomponents of the object must ful�l.Reconsider the two O-LSTSs, FourState and TwoTwo, speci�ed in �gure 3.13. The state labelsof FourState are unparameterised and consequently the objects which reference those labels are un-structured. Contrastingly, the state labels of TwoTwo are parameterised | 8b1; b2 2 Bool; P (b1 :Bool; b2 : Bool) 2 States(TwoTwo).Composition is a relationship between objects. The notion can be extended to classes as follows.When all the state labels in an O-LSTS are represented by the same parameterised state-constructorthen, since by de�nition the parameter classes are uniquely de�ned, the class is said to be com-posed from the parameter classes of the state-constructor. The state-constructor is said to de�nethe �xed structure of the O-LSTS (class).De�nition: Composition� Object composition: An object, O say, with corresponding state label state-constructor(p1; : : :pn) is said to be composed from p1; : : : ; pn, which are called thecomponents of O.� State composition: A class, C say, is said to be composed from classesC1; : : : ; Cn , 9 a state constructor, sc say, such that 8o 2 States(C); 9 state la-bels c1; : : : ; cn such that o is represented as sc(c1 : C1; : : : cn : Cn).When an object recieves a service request at one of its external attributes, it responds by return-ing a value and/or updating its internal state. A structured object achieves this functionality byrequesting services of its components. These services may update the state of the components and/orreturn a result. With this in mind, it is now possible to formally de�ne an object oriented interpre-tation of the internal processing that occurs when an object services a request. This interpretationis then used to formalise the representation of parameterised expressions in the O-LSTSD syntax.Consider the speci�cation of two interacting stacks given in �gure 3.15.Two new pieces of syntax have been introduced:� Unspeci�ed operationsThe speci�ers may not wish to de�ne the result returned by a pop on an empty Stack. However,the implementors must provide the pop service for all Stack class members. The result of thepop operation must be a Nat. An unspeci�ed member of the Nat class is represented by �Nat.This value is used to de�ne the result returned by an empty Stack in response to a pop request.Unless otherwise speci�ed, a service requested of an unspeci�ed member always results in the



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 76
TS<S1,S2.pop> TS<S1.pop,S2>

S2>
TS<S1.push<N>,

push1<N>

pop2=S2..pop

NO HIERARCHYNO HIERARCHY

TS<Stack,Stack>
S

st<S,N>

st<st<S,N>,M>
st<empty,N>

st<Stack,Nat>

pop:Natpush<Nat>

pop=~Nat

pop=N

push<M>

push<N>

emptyS2.push<N>>
TS<S1,

push2<N>

push1<Nat> push2<Nat> pop1=Nat pop2=Nat

TwinStack using Stack Stack using Nat

TS<S1,S2>
pop1=S1..popFigure 3.15: A Composition Exampleunspeci�ed member of the appropriate class. This default behaviour is implicit in every O-LSTSspeci�cation.� Using Component ServicesA component object o�ers two `responses' when it is sent a message request: it updates itsinternal state and/or replies with a result. The pop operation on a Stack results in the Stackreplying with the last integer which had been pushed on, and updating its internal state byremoving the top value. It is necessary to consider how the pop operation of a Stack componentis used by the TwinStack. Service pop1 on a TwinStack returns the value on the top of the �rstStack component and updates the state of the component accordingly. Service pop2 returns thevalue on the top of the second stack component and updates its state accordingly. Operationspush1 and push2 are similarly de�ned.Two di�erent pieces of syntax are applied:� The value returned in response to a valued service request, SR say, at an object O isrepresented by O::SR.� The new state of an object O after receiving a service request SR is represented by O:SR.In section 4.2 we return to the notion of composition when using OO ACT ONE. More complexexamples are considered, and the notion of an object `restructuring' itself is examined. In particular,classes of objects with dynamic structure are investigated.3.3.5 O-LSTS Con�gurationCon�guration is related to the notion of composition. Composition de�nes a hierarchical relationshipbetween a client (containing object) and a server (component object). Con�guration is a relationshipbetween peer objects which are components of the same containing object. Components of the samecontaining object may, or may not, be con�gured.Consider again the TwinStack O-LSTS (in �gure 3.15). The class is composed from two compo-nents, both of which are Stacks. However, a TwinStack object never needs to use both components



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 77to service one single request: pop1 and push1 use only the �rst Stack whilst pop2 and push2 useonly the second component. In this case, the two Stack components are said to be uncon�gured.Consider the O-LSTS in �gure 3.16.
NO HIERARCHY

sys<p,q.pop>

q.push<p..pop>>sys<p.pop,
move

move

push<Nat>

pop:Nat

System using Stack, Nat

sys<stack,stack>

sys<p,q> pop=q..poppush<N>

q>sys<p.push<N>, Figure 3.16: System Con�guration: An ExampleSystem is composed from two Stack components. The push transition puts the input parameterNat value onto the �rst Stack. The pop transition removes the top Nat element from the secondStack and returns its value. The move transition transfers the top element of the �rst Stack onto thesecond Stack. The move transition is de�ned in terms of both components and so we say that thetwo Stacks are con�gured (by move). Note that con�guration between objects does not necessarilyimply interaction between the two components.Con�guration is formally de�ned below. The de�nition is based on the idea of one state labelexpression being used in the de�nition of another. The �rst expression is said to depend on thesecond. In particular, one object is said to depend on one of its components if the component isneeded to ful�l an external service request.De�nition: Con�gurationObjects A and B are con�gured (in object C) ,� A and B are components of C� Either:� i) 9 < uat; newstate >2 FromC such thatnewstate depends on A and newstate depends on B, or:� ii) 9 < vat; val; newstate >2 V alFromC such that(newstate depends on A or val depends on A) and (newstate depends on Bor val depends on B)De�nition: DependenceA state label expression, SLE say, depends on another state label expression, sl say, An expression of the form sl:att or sl::att appears in the representation of SLE.



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 783.3.6 Structure DiagramsThe internal structure of an object, i.e. an object's composition and con�guration properties, isusefully represented in diagramatic form. For example, the O-LSTSs System and TwinStack arerepresented in the class structure diagrams in �gure 3.17. The dotted circles represent classes ofobject. The class name is given above the circle. Attribute dependencies are shown as links joining thecontainer class with the component classes13 which it depends on to ful�l that particular attribute.Class structure diagrams are appropriate only when the class has a �xed structure.Object structure diagrams di�er from class structure diagrams in that actual objects are rep-resented by solid circles and components are given concrete values. Figure 3.17 shows an objectstructure diagram for an element of the O-LSTS system which has two empty stacks as its internalcomponents.
move

pop

push

pop2

push2

pop1

push1

pop

move

push

CLASS STRUCTURE DIAGRAMS OBJECT STRUCTURE DIAGRAM

System TwinStack System

empty

empty

Stack1Stack1 Stack1

Stack2Stack2 Stack2Figure 3.17: Structure Diagrams: An Example3.4 OO ACT ONE: A Formal Object Oriented Analysis Language3.4.1 MotivationIn this section we develop a concrete syntax for the speci�cation of O-LSTS behaviour. The previoustwo sections illustrate how O-LSTSs can be de�ned using mathematical notation. This syntax is�ne for the speci�cation and illustration of simple behaviours. However, for the speci�cation of morecomplex requirements, a better object oriented analysis language is required:� An object oriented language should have an object oriented `avour'. It must be possibleto reason about object oriented speci�cations in an object oriented conceptual framework. OOACTONE facilitates a more direct correspondence between the requirements being speci�ed andthe object oriented paradigm. It provides a number of high level mechanisms which syntacticallysugar the O-LSTS model. The advantage of using OO ACT ONE over an informal objectoriented language is that the underlying model is formally speci�ed. Furthermore, OO ACT13The components are identi�ed by their class name and their index in the �xed structure. This index is used todistinguish components of the same class.



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 79ONE speci�cations say what the system being speci�ed should do rather than how it should doit.� An O-LSTS speci�cation must be statically analysed to check that all the necessary and su�cientconditions are met. In particular, the environment of an O-LSTS speci�es a class hierarchy (setof subclassing relationships between O-LSTSs) which must be validated. Furthermore, there are`typing constraints' on the visibility of state constructor (and state transition) parameters andresult types which must be checked. A strict syntax for the speci�cation of O-LSTS behaviourcan help to make the `type checking' easier to perform14.� The �nal goal of this chapter is to map our formal object oriented model onto ACT ONE. Byde�ning a formal language which is similar in structure to ACT ONE, the translation to ACTONE is simpli�ed.OO ACT ONE provides a practical means of specifying object oriented requirements in a formalframework.3.4.2 The OO ACT ONE Syntax: Some ExamplesChapter 2 examines many of the practical issues in the design of a �gure=Sem-Chp3/Figures language.It identi�es the need for:� A means of distinguishing between accessor, transformer and dual attributes.� Comprehensive re-use facilities.� A means of de�ning invariant properties which all class members must ful�l.� A mechanism for hiding internal/local de�nitions or behaviour.� A means of representing the structure of an object.� A way of de�ning exceptions or unspeci�ed behaviour.� Explicit sub(super)classing mechanisms.OO ACT ONE, a formal language which fu�ls all these needs, is best illustrated by the followinglist of examples. The �rst eight examples consider object based speci�cations, in which no subclass-ing relationships are explicitly de�ned. The �nal four examples consider in turn the four explicit(sub/super)class mechanisms, namely specialisation, generalisation, extension and restriction. Weargue, in section 4.1, that these four mechanisms are su�ciently powerful for the general constructionof class hierarchies during formal object oriented analysis. For simplicity, we are not yet concernedwith the static analysis of the speci�cations which guarantees their correctness. All the exampleOO ACT ONE speci�cations that follow are well de�ned in the sense that they correspond to validO-LSTSs.14Perhaps `type checking' is more accurately termed `class checking'. However, since the notion of `type checking' ispervasive in all areas of computing (even in object oriented development), we persist with this `weaker terminology'.



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 80Example 1: Classes Nat, Stack and System RevisitedThe O-LSTS speci�cations of the O-LSTS System (see �gure 3.16), the O-LSTSs Stack (see �gure3.15) and the unspeci�ed Nat component provide good examples with which to illustrate the OO ACTONE syntax. The Nat behaviour was not previously de�ned in O-LSTS form because its behaviourwas not relevant to the example. For completeness, a simple Nat O-LSTS is de�ned in �gure 3.18.
inc

previous:Nat

succ<Nat>

0 <Nat1>

inc

succ<Nat1>

previous = ~Nat

Nat

previous = <Nat1> Figure 3.18: Specifying Natural Numbers: A Nat O-LSTSThe OO ACT ONE speci�cation corresponding to the Nat O-LSTS is given below.CLASS Nat OPNSLITERALS: 0STRUCTURES: succ<Nat> TRANSFORMERS: incACCESSORS: previous -> NatEQNSNat1.inc = succ(Nat1); 0..previous = �Nat; succ(Nat1)..previous = Nat1ENDCLASS (*Nat*)The following should be noted:� Class Nat is not dependent on any other classes and consequently there are no class relationshipsde�ned between Nat and any other classes.� The state label expression syntax and semantics is incorporated in OO ACT ONE.� Variable parameters of a particular class (in equation de�nitions) are represented by the classname followed by an integer. In this way, unlike ACT ONE, the speci�er does not need toexplicitly `type' the parameters of an expression. This elegantly concise syntax is unambiguousgiven the additional syntactic constraint that class names ending in an integer are not permitted(see 3.2.1.1).� The unspeci�ed member of a class is implicit in an OO ACT ONE speci�cation.� The OO ACT ONE syntax forces all operations and equations on a class to be de�ned in thatclass body. No new operation for a class can be de�ned in a di�erent class.The mapping between the Nat class and the Nat O-LSTS is very simple:� EnvNat = < fg; fg >, since Nat is de�ned independently of any other classes.� The LITERAL 0 corresponds to the unparameterised typed state label 0.



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 81� The STRUCTURE operation succ<Nat> corresponds to the parameterised typed state labelsucc(Nat).� The TRANSFORMER operation inc corresponds to the unvalued unparameterised typed tran-sition inc.� The ACCESSOR operation previous -> Nat corresponds to the valued unparameterisedtyped transition previous : Nat.� The equation Nat1.inc = succ(Nat1) corresponds to a parameterised set of unvalued state-to-state transitions: < inc; succ(Nat1)>2 FromNat1; 8Nat1 2 US(Nat).� The equation 0..previous = �Nat corresponds to the valued state-to-state transition:< previous;�Nat; 0 >2 V alFrom0.( As previous is an accessor attribute, the state of the object servicing a previous requestdoes not change.)� The equation succ(Nat1)..previous = Nat1 corresponds to a parameterised set of valuedstate-to-state transitions:< previous;Nat1; Nat1>2 V alFromsucc(Nat1); 8Nat1 2 US(Nat).� There are no hidden operations and consequently HUTT and HV TT in the correspondingO-LSTSs are empty sets.The OO ACT ONE speci�cation of the Stack O-LSTS uses the Nat behaviour. It is de�ned below.CLASS Stack USING Nat OPNSLITERALS: empty STRUCTURES: st<Stack, Nat>TRANSFORMERS: push<Nat>DUALS: pop -> NatEQNSempty.push(Nat1) = st(empty,Nat1);st(Stack1,Nat1).push(Nat2) = st(st(Stack1,Nat1),Nat2);empty.pop = empty AND �Nat;st(Stack1,Nat1).pop = Stack1 AND Nat1ENDCLASS (*Stack*)This OO ACT ONE speci�cation illustrates three new aspects of the OO ACT ONE syntax:� USING: the Stack class is de�ned to `use' the Nat class.� DUALS: the pop operation is de�ned by an equation of the form: state label expression1.pop= state label expression2 AND state label expression3. This de�nes a parameterised setof valued state to state transitions:< pop; state label expression2; state label expression3>2 V alFromstatelabelexpression1.� Paramaterised Attributes: the operation push<Nat> corresponds to a parameterised un-valued typed transition push(Nat). It has two associated equations:� empty.push(Nat1) = st(empty, Nat1), which corresponds to a parameterised set of un-valued state-to-state transitions:< push(Nat1); st(empty;Nat1)>2 Fromempty ; 8Nat1 2 US(Nat).



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 82� st(Stack1, Nat1).push(Nat2) = st(st(Stack1, Nat1), Nat2), which corresponds toaparameterised set of valued state-to-state transitions:< push(Nat2); st(st(Stack1; Nat1);Nat2)>2 Fromst(Stack1;Nat1);8Nat1; Nat2 2 US(Nat); Stack1 2 US(Stack).The Stack speci�cation is used by the System OO ACT ONE speci�cation, de�ned below.CLASS System USING Stack OPNSSTRUCTURES: sys<Stack, Stack>TRANSFORMERS: push<Nat>, moveDUALS: pop -> NatEQNSsys(Stack1,Stack2).push(Nat1) = sys(Stack1.push(Nat1), Stack2);sys(Stack1,Stack2).move = sys(Stack1.pop, Stack2.push(Stack1..pop));sys(Stack1,Stack2).pop = sys(Stack1, Stack2.pop) AND Stack2..popENDCLASS (*System*)Example 2: Grouping classes into modulesIn ACT ONE, one type (a group of related sorts) can be de�ned using the group of sorts de�nedin another type using the IS construct. In other words, the IS construct in ACT ONE de�nes arelationship between types (not sorts). In OO ACT ONE we are more interested in the dependenciesbetween classes of behaviour rather than the modules in which they are de�ned. However, it isstill desirable to be able to re-use sets of related classes. As a compromise, we de�ne a re-usefacility between a class and a set of other classes which have been grouped together in a modulede�nition. Module de�nitions are given before the set of class de�nitions which make up an OO ACTONE speci�cation. Module de�nitions are removed by a simple pre-processing of an OO ACT ONEspeci�cation. This syntactically substitutes the names of modules which are used by classes with thelist of classes which are grouped within these modules. In other words, the modules in OO ACT ONEare simple syntactic sugaring | they do not extend the semantics of the O-LSTS model in any way.Consequently, they do not need to be considered in the mapping between OO ACT ONE and theO-LSTS model.The classes grouped together in module Degrees, de�ned below, can be re-used by another classsimply by listing the module name in the class header. For example, we can de�ne a class `Example' touse the classes Bool, Nat, Stack and all the classes in the module Degrees as follows: Class ExampleUSES Bool, Nat, MODULE Degrees, Stack. The OO ACT ONE preprocessor removes the modulede�nition and changes the Example class header to: Class Example USES Bool, Nat, Joints,Singles, Stack.



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 83MODULE Degrees GROUPS Joints, Singles ENDMODULE (* Degrees *)CLASS Joints USING Subject, Type OPNSSTRUCTURES: JointDegree<Subject, Type, Subject>ACCESSORS: studies<Subject> -> BoolEQNSJointDegree(Subject1,Type1,Subject2)..studies(Subject3) =(Subject1..eq(Subject3))..or(Subject2..eq(Subject3))ENDCLASS (* Joints *)CLASS Singles USING Subject OPNSSTRUCTURES: SingleDegree<Subject>ACCESSORS: studies<Subject> -> BoolEQNSSingleDegree(Subject1)..studies(Subject2) = Subject1..eq(Subject2)ENDCLASS (* Singles *)Example 3: Invariant PropertiesTo illustrate the notion of an invariant property, consider a class similar to Joints except that it hasno Type component. This class is de�ned as Joints2 below.CLASS Joints2 USING Subject OPNSSTRUCTURES: JointDegree<Subject, Subject>ACCESSORS: studies<Subject> -> BoolEQNSJointDegree(Subject1, Subject2)..studies(Subject3) =(Subject1..eq(Subject3)).or(Subject2..eq(Subject3))ENDCLASS (* Joints2 *)JointDegree(Maths, Maths) is a member of the Joints2 class provided that Maths is a literalmember of the Subject class. This may not be desirable behaviour since we may require, in thesystem that we are modelling, that a joint degree consist of two di�erent subjects. To specify thiscondition we have two options:� Explicitly list all joint degree combinations which are valid.� De�ne an invaraint property on the structure JointDegree to specify that the �rst componentcannot be the same as the second component.The second option is better since an explicit statement of the invariant property improves theunderstandibility of the speci�cation. Furthermore, using an invariant property follows the principleof encapsulation and makes the speci�cation simpler to extend. For example, if the Subjects classis to be extended to include a new literal then this change should be possible without a�ecting theclasses which use the Subjects class. This is not possible with the �rst option, in which the principleof encapsulation has to be broken for the behaviour of the degree class to be well de�ned. TheJointDegree structure is respeci�ed in class Joints3 to incorporate the new invariant property.All the members of a class now correspond to the literals and the structure expressions whosecomponent values ful�l the relevant structure invariant(s) (if there are any). Invariant properties



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 84CLASS Joints3 USING Subject OPNSSTRUCTURES: JointDegree<Subject, Subject>ACCESSORS: studies<Subject> -> BoolINVARIANTS: JointDegree(Subject1, Subject2) REQUIRES Subject1..neq(Subject2)EQNSJointDegree(Subject1,Subject2)..studies(Subject3) =(Subject1..eq(Subject3)).or(Subject2..eq(Subject3))ENDCLASS (* Joints3 *)introduce the possibility of `run time' errors in an execution model. For example, consider an extensionto the JointDegrees class in which a new transformer operation allows either of the Subject �elds tobe changed. Now, a transformer service may result in a new state which does not ful�l the invariantproperty. In this case the behaviour of the resulting object is unde�ned.The invariant above is termed a structure invariant because the invariant property is de�nedin terms of properties of the components of a structure of the class. It is also often desirable to beable to de�ne an invariant on a whole class rather than a structure in a class. The syntax of sucha class invariant is illustrated by the MathsJoints speci�cation below. Class invariant propertiesare required to be true for all literal values (this is checked by a static analysis). This requirementmakes the speci�cation of class invariants much easier to transform (during pre-processing) into a setof structure invariants. It also makes the concept of class invariant much easier to understand | whyde�ne a literal value which does not ful�l an invariant property?CLASS MathsJoints USING Subject OPNSSTRUCTURES: JointDegree(Subject, Subject)ACCESSORS: studies<Subject> -> BoolINVARIANTS: MathsJoints1..studies(Maths)EQNSJointDegree(Subject1, Subject2)..studies(Subject3) =(Subject1..eq(Subject3))..or(Subject2..eq(Subject3))ENDCLASS (* MathsJoints *)Note that the class invariant mechanism is simply syntactic sugaring for de�ning sets of structureinvariants. For example, the invariant MathsJoints1..studies(Maths) can be re-written as:JointDegree(Subject1,Subject2) REQUIRES (Subject1..eq(Maths))..or(Subject2..eq(Maths)). As the exter-nal attributes of a structured class are de�ned in terms of the external attributes of its components, aclass invariant is just a more concise way of expressing a set of structure invariants. Consequently,in mapping OO ACT ONE to the O-LSTS model we must consider only how to map structure invari-ants: class invariants are removed by a simple pre-processing of an OO ACT ONE speci�cation.Structure invariants correspond to boolean conditions of conditioned parameterised typedstate labels in the O-LSTS model, represented as state label expressions of type Bool. Invariantproperties, in OO ACTONE, depend on the visibility of a Bool class (with members true and false).



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 85Example 4: An includes (re-use) mechanismThe advantages of having a purely syntactic re-use mechanism is illustrated by the Floor3s andFloor3sa OO ACT ONE speci�cations, below.CLASS Floor3s USING Nat13s OPNSLITERALS: 1,2,3TRANSFORMERS: up, downACCESSORS: where -> Nat13sEQNS 1.up =2; 2.up=3; 3.up=3; 1.down=1; 2.down=2; 3.down=3;1..where =1; 2..where=2; 3..where=3ENDCLASS (* ----------------- Floor3s ----------------- *)CLASS Floor3sa USING Nat13s OPNSLITERALS: 1,2,3,off1,off2,off3TRANSFORMERS: up, down, switchACCESSORS: where -> Nat13sEQNS 1.up =2; 2.up=3; 3.up=3; off1.up=off1; off2.up=off2; off3.up=off3; 1.down=1; 2.down=2;3.down=3; off1.down=off1; off2.down=off2; off3.down=off3; 1.switch = off1; 2.switch = off2;3.switch = off3; off1.switch = 1; off2.switch = 2; off3.switch = 3; 1..where =1; 2..where=2;3..where=3; off1..where =1; off2..where =2; off3..where =3ENDCLASS(* Floor3sa *)The O-LSTSs corresponding to these OO ACT ONE speci�cations are de�ned in the inclusionexample in �gure 3.14. Although there is no subclassing relationship between these two behaviours,it is clear that it is bene�cial to be able to de�ne either class in terms of the other. More generally, amechanism for including some of the operations and equations from one class in a new class de�nitionis required. The INCLUDES mechanism is illustrated by the Floor3s' speci�cation below.CLASS Floor3s' OPNS INCLUDE FROM Floor3saLITERALS: 1,2,3TRANSFORMERS: up, downACCESSORS: whereENDCLASS (* Floor3s *)This new de�nition re-uses part of the speci�cation of Floor3sa. The operations that are re-usedhave to be explicitly listed. The equations for these operations do not need to be listed. The equationsfor the included transformer, accessor and dual operations on the included literals and/or structuresare implicit in the new speci�cation. In this example, it is therefore not necessary to de�ne anyadditional equations. Note that Floor3s' is not de�ned to use Floor3sa. The includes mechanismdoes not copy the classes which are used by the class being included.The includes mechanism identi�es an operation of a class and `copies' its operation and equationde�nitions into the new class. (It is not a direct copy since all the occurrences of the old class namehave to be replaced by occurrences of the new class name in the included de�nition part of the newclass.) The includes mechanism is further sugared to give an includesall mechanism which statesthat all the operations and equations of the speci�ed class are copied into the new speci�cation. Theinclusion mechanisms are a sort of MACRO expansion facility. They do not extend the semantics of



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 86the ADT language. OO ACT ONE speci�cations are preprocessed to remove all include directives.Example 5: Internal OperationsThe speci�cation of internal (or hidden) operations is common to many object oriented programminglanguages (see chapter 6). It is useful to be able to de�ne attributes of a class which are available onlyto the class in which they are de�ned (i.e. attributes which are not part of the external interface).These attributes are then used to help specify the external behaviour. In OO ACT ONE, accessor,dual and transformer operations can be declared as HIDDEN. This is illustrated by the speci�cation ofa simple store of natural numbers, below.CLASS Store USING Nat, Bool OPNSLITERALS: empty STRUCTURES: st<Store, Nat>TRANSFORMERS: add<Nat>ACCESSORS: average -> Bool, sum -> Nat (* HIDDEN *), size -> Nat (* HIDDEN *)EQNSempty..average = �Nat; empty..sum = 0; empty..size = 0;st(Store1,Nat1)..average = (st(Store1,Nat1)..sum)..div(st(Store1,Nat1)..size);st(Store1, Nat1)..sum = Nat1.+(Store1..sum); st(Store1, Nat1)..size = 1.+(Store1..sum)ENDCLASS (* Store *)In this speci�cation, the HIDDEN operations are de�ned to simplify the de�nition of the externaloperation average. The HIDDEN operations have a direct correspondence with the elements of HUTTand HV TT (the hidden typed transitions) in the O-LSTS model. The de�nition of state labelexpressions constrains hidden operations to being used only inside the class in which they arede�ned. This constraint must be checked during the static analysis of OO ACT ONE speci�cations.Example 6: PreconditionsA parameterised equation de�nition, de�ned on a class or a structure of a class, can be precondi-tioned by a state label expression of type Bool. This expression must be parameterised on a(non strict) subset of the parameters in the equation de�nition (Such an expression can be repre-sented in general form as Pre(p1,: : :, pn), where p1 to pn are the parameters of the parameterisedequation.). Preconditions are a powerful mechanism for simplifying speci�cations and improving theirunderstandibility. The syntax of the precondition mechanism in OO ACT ONE is illustrated by thespeci�cation of class Queue, below.The Queue example shows the syntax for de�ning structure preconditions on dual operations.The syntax for de�ning the results of preconditioned transformer and accessor operations is the sameas the �rst and second parts, respectively, of the dual syntax (the parts separated by AND). Themapping between preconditioned equations and the O-LSTS model is straightforward. It is detailedin appendix A.



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 87CLASS Queue USING Nat, Bool OPNSLITERALS: empty STRUCTURES: Q<Queue, Nat>TRANSFORMERS: add<Nat>ACCESSORS: is-empty -> Bool (*HIDDEN*)DUALS: rem -> NatEQNSempty..is-empty = true; Q(Queue1, Nat1)..is-empty = false;empty.add(Nat1) = Q(empty, Nat1);Q(Queue1, Nat1).add(Nat2) = Q(Q(Queue1, Nat1),Nat2);empty.rem = empty AND �Nat;Queue1..is-empty =>Q(Queue1, Nat1).rem = empty AND Nat1 OTHERWISE Q(Queue1.rem, Nat1) AND Queue1..remENDCLASS (*Queue*)Example 7: Generic (Parameterised) ClassesGenericity is a powerful mechanism. A generic class does not specify a behaviour in the sense that itcorresponds to one O-LSTS speci�cation: it acts as a template (or structure) from which other classesof behaviour can be constructed. A generic class is parameterised on the classes which it uses. Aninstance of a generic class is created through an actualisation of the class parameters. The OO ACTONE generic mechanism (like many aspects of the syntax) is based on the corresponding mechanismin ACT ONE (with a few syntactic di�erences to reinforce the object oriented avour of the language).Classes of behaviour which are de�ned as instances of generic classes can be transformed into classeswhich are not de�ned generically.It should be noted that genericity is not a subclassing mechanism. Users of other object orientedlanguages, in which subclassing is not formally de�ned, often argue that a generic class is a superclassof its instances. However, we argue that a generic class is not a class in its own right, it is atemplate for creating classes. It is possible to de�ne a generic class such that there are subclassingrelationships between instances, depending on the actual parameterisation of the instantiated classes.In �gure=Sem-Chp3/Figures we believe that genericity and subclassing are two very di�erent conceptsand as such they should be kept distinct. Consequently, we choose to de�ne OO ACT ONE so thatgeneric classes cannot be related by `sets of subclassing' relationships. Thus, we do not allow genericclasses to be specialised, generalised, extended or restricted (see examples 9 to 13), although instancesof these classes can be used in this way. The genericity syntax is illustrated by the Pair class below.It is not necessary to further expand on the semantics of generic classes: they are handled inthe same way as generic types in ACT ONE. In fact, they map directly onto the ACT ONE genericconstruct when we generate an ACT ONE model from the OO ACT ONE requirements.Example 8: RenamingIt is often useful to be able to de�ne a new class to exhibit the same semantic behaviour as anotherbut to have a di�erent syntactic representation. In OO ACT ONE we allow one class to be de�nedby renaming the operation string identi�ers of another class. For example, consider the speci�cation



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 88GENCLASS Pair USING Bool, GCLASS elementA, GCLASS elementBGCLASS elementA GOPNSGACCESSORS: eq<elementA> -> BoolENDGCLASS (* elementA *)GCLASS elementB GOPNSGACCESSORS: eq<elementB> -> BoolENDGCLASS (* elementB *)OPNSSTRUCTURES: P<elementA, elementB>ACCESSORS: eq1<elementA> -> Bool, eq2<elementB> -> BoolTRANSFORMERS: set1<elementA>, set2<elementB>EQNSP(elementA1, elementB1)..eq1(elementA2) = elementA1..eq(elementA2);P(elementA1, elementB1)..eq2(elementB2) = elementB1..eq(elementB2)ENDCLASS (* Pair *)of the class TwoNats given below.CLASS TwoNats RENAMES NatPairSTRUCTURES: P WITH A2NatTRANSFORMERS: set1 WITH change1, set2 WITH change2ENDCLASS (*TwoNats*)The structure operation P and the transformer operations set1 and set2 are renamed in the newTwoNats class speci�cation. By default, all operations which are not renamed retain their originalnames. The renaming is removed by a simple pre-processing.Examples 1 to 8 show the object based mechanics of OO ACT ONE (i.e. the object orientedmechanics without class relationships). OO ACT ONE restricted to this syntax is called OB ACTONE15. All valid OB ACT ONE speci�cations are valid OO ACT ONE speci�cations. The OB ACTONE syntax allows for the formal speci�cation of:� Classes of behaviour which are protected behind strict interfaces.� The composition of prede�ned classes into new (more complex) classes of behaviour.� Invariant properties which all class members must uphold.� Internal (hidden) operations.It is necessary to extend the object based mechanisms with subclassing facilities. In particular, wewish to be able to de�ne a new class to be a subclass (or superclass) of an already existing class andbe guaranteed that the corresponding O-LSTSs are related by the formal subclassing relationship.Four such mechanisms are provided in OO ACT ONE, namely extension, restriction, specialisationand generalisation. These correspond to the relationships between O-LSTSs which are de�ned insection 3.3.3. These four mechanisms, together with a mechanism which combines specialisation andextension, provide the only means of explicitly de�ning class relationships in OO ACT ONE.15Object Based ACT ONE.



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 89Example 9: ExtensionIn the O-LSTS semantics, a class A is de�ned to be an extension of a class B when A o�ers thebehaviour of B together with some additional behaviour. Furthermore, all the members of A mustbe members of B. This notion of extension has a corresponding mechanism in OO ACT ONE.Reconsider the O-LSTS speci�cations of TwoCount and DoubleCount given earlier in �gure 3.7. TheOO ACT ONE speci�cation of class TwoCount is given below.CLASS TwoCount OPNSLITERALS: 1,2 TRANSFORMERS: inc, decEQNS 1.inc =2; 2.inc =2; 1.dec =1; 2.dec =1ENDCLASS (*TwoCount*)The EXTENDS mechanism can be used to explicilty de�ne the class DoubleCount as a subclassof TwoCount. This new class, DoubleCount2 say, is de�ned in OO ACT ONE below. The O-LSTSD which corresponds to DoubleCount2 also given in �gure 3.19; this should be compared withDoubleCount in �gure 3.7. Note that the environment of the new class records the explicit subclassingrelationship between DoubleCount2 and TwoCount.CLASS DoubleCount USING TwoCountEXTENDS TwoCount WITH OPNSTRANSFORMERS: switchEQNS1.switch = 2; 2.switch = 1ENDCLASS (* DoubleCount *)Class TwoCount corresponds to the O-LSTS speci�cation given in �gure 3.7.
uses TwoCountDoubleCount2

switch

21

decinc 

inc

dec

dec

inc

switch

switch

DoubleCount2

TwoCount

DoubleCount2 hierarchyFigure 3.19: Class Hierarchies in O-LSTSDsThe environment of TwoCount is trivial: EnvTwoCount =< fg; fg >. DoubleCount2 correspondsto the O-LSTS speci�cation in the �gure 3.19 with a non-trivial environment:EnvDoubleCount2 =< fTwoCountg; f< DoubleCount2; TwoCount >g >. Note that the same ob-ject based behaviour could have been de�ned using the INCLUDESALL mechanism. In this instance,the O-LSTS 7-tuple corresponding to the OO ACT ONE speci�cation would be the same, but theenvironment of the system would no longer explicitly acknowledge the subclassing relationship.



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 90The syntactic constraints of the EXTENSION mechanism prevent new literals or structures frombeing de�ned on a class extension. Furthermore, invariant properties cannot be strengthened orweakened (i.e. the sets of invariants which are de�ned for the original class are precisely the set ofinvariants de�ned for the new extended subclass).The explicit de�nition of the subclassing relationship DoubleCount2 v TwoCount is signi�cantin the semantics of state label expressions. Any state label expression in which an attributeparameter of class TwoCount is expected can accept a parameter of the class DoubleCount2.Example 10: RestrictionRestriction is the inverse relation of extension. Given the original DoubleCount speci�cation we wouldlike to be able to de�ne a class TwoCount as a superclass (restriction) of DoubleCount. A new classcan be de�ned as a restriction of another class by de�ning a strict subset of the accessor, transformerand dual operations of the class being restricted. Given the following OO ACT ONE speci�cationof class DoubleCount, it is possible to de�ne a new class TwoCount2 as a restriction of DoubleCount.This is illustrated below.CLASS DoubleCountDoubleCount OPNSLITERALS: 1,2TRANSFORMERS: inc, dec, switchEQNS1.inc =2; 2.inc =2; 1.dec = 1; 2.dec =1; 1.switch = 2; 2.switch = 1;ENDCLASS (* DoubleCount *)CLASS TwoCount USING DoubleCount RESTRICTS DoubleCount TO OPNSTRANSFORMERS: inc, decENDCLASS (* TwoCount *)Example 11: SpecialisationReconsider the O-LSTSs in �gure 3.9. Nat12s is de�ned explicitly (by its environment) to be asubclass of Nat15s. These behaviours were only partially speci�ed in the previous section so, forcompleteness, the actual behaviours are de�ned below.The SPECIALISES construct requires that the new class must explicitly identify the literals andstructures which it has in common with its superclass. (The static analysis of an OO ACT ONEspeci�cation must verify that these members form a valid partition of the original class | see 3.4.3).Example 12: GeneralisesGeneralisation is the inverse of specialisation. In �gure 3.9, Move12s gen Move15s. The two classesof behaviour are de�ned below.The Move12s class speci�cation illustrates how one class which generalises another o�ers thecomplete behaviour of the other class as a partition of itself. We extend the generalises mechanism to



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 91CLASS Nat15s USING Nat, Bool OPNSLITERALS: 1,2,3,4,5ACCESSORS: eq<Nat> -> BoolEQNS1..eq(Nat1) = succ(0)..eq(Nat1); 2..eq(Nat1) = succ(succ(0))..eq(Nat1);3..eq(Nat1) = succ(succ(succ(0)))..eq(Nat1);4..eq(Nat1) = succ(succ(succ(succ(0))))..eq(Nat1);5..eq(Nat1) = succ(succ(succ(succ(succ(0)))))..eq(Nat1)ENDCLASS (* Nat15s *)CLASS Nat12s USING Nat15s SPECIALISES Nat15s TO OPNS LITERALS: 1,2ENDCLASS (* Nat12s *)CLASS Move15s USING Bool OPNSLITERALS: up,downACCESSORS: eq<Move15s> -> Bool, curr -> Move15sEQNS up..eq(up) = true; up..eq(down) = false;down..eq(up) = false; up..eq(up) = true;up..curr = up; down..curr = downENDCLASS (* ----------------- Move15s ----------------- *)CLASS Move12s USING Move15s GENERALISES Move15s WITH OPNSLITERALS: stayEQNS stay..eq(up) = false; stay..eq(down) = false; stay..curr = �Move15sENDCLASS (* Move12s *)allow one class to be de�ned as a generalisation of a group of classes. For example, the stay memberof Move12s can be de�ned as a distinct (though very limited) class of behaviour in its own right. Thisnew class, JustStay say, can be generalised with Move15s to give the Move12s behaviour. This groupgeneralisation is illustrated below.CLASS JustStay USING Move15s OPNSLITERALS: stayACCESSORS: eq<Move15s> -> Bool, curr -> Move15sEQNS stay..eq(up) = false; stay..eq(down) = false; stay..curr = �Move15sENDCLASS (* ----------------------- JustStay ----------------------- *)CLASS Move12s USING Move15s, JustStay GENERALISES Move15s, JustStayENDCLASS (* Move12s *)Subclassing: contravariance and covariance mechanismsThe classi�cation examples given above do not consider subclassing relationships in which the rulesof contravariance and covariance are exploited: all the parameter types are de�ned by default to bethe same in the subclasses as they are in the superclasses. It is necessary to override this default inthree di�erent cases:� i) The class parameters of a structure operation of a subclass may be de�ned as subclasses ofthe corresponding parameters in the superclass.



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 92� ii) The result of a valued transition in a subclass may be de�ned as a subclass of the corre-sponding result type in the superclass.� iii) The parameters of a transition in a subclass may be de�ned as superclasses of the corre-sponding parameters in the superclass.These non-default options are illustrated by the O-LSTS speci�cations of Lift12s and Lift15s in�gure 3.9. All three non-default options are taken by Lift12s as a subclass of Lift15s. Thesetwo classes of behaviour are not connected by an extension or specialisation relationship alone. Thebehaviour of Lift12s is a combination of an extension and specialisation of Lift15s. In OO ACTONE we make this relationship explicit by de�ning Lift12s SPECIALISES AND EXTENDS Lift15s.The complete OO ACT ONE speci�cations corresponding to the two O-LSTSs are given below.CLASS Lift15s USING Move15s, Nat15s OPNSSTRUCTURES: L<Nat15s>TRANSFORMERS: M<Move15s>ACCESSORS: curr -> Nat15sEQNS L(1).M(up) = L(2); L(2).M(up) = L(2);L(3).M(up) = L(4); L(4).M(up) = L(5); L(5).M(up) = L(5);L(1).M(down) = L(1); L(2).M(down) = L(1);L(3).M(down) = L(3); L(4).M(down) = L(3); L(5).M(down) = L(4);L(1).curr =1; L(2).curr =2; L(3).curr =3ENDCLASS (* ------------------ Lift15s ------------------ *)CLASS Lift12s USING Move12s, Nat12s SPECIALISES AND EXTENDS Lift12s TO OPNSSTRUCTURES: L<Nat12s>TRANSFORMERS: M<Move12s>ACCESSORS: Curr<Nat12s>EQNS L(1).M(stay) = L(1); L(2).M(stay) = L(2); L(3).M(stay) = L(3)ENDCLASS (* Lift12s *)This example illustrates the only combination of class relationships which can be de�ned by onemechanism: SPECIALISES AND EXTENDS . A SPECIALISES AND EXTENDS B states that it is possibleto de�ne a class C such that A EXTENDS C and C SPECIALISES B. Using the combination mechanismmeans that the class C does not need to be explicitly de�ned. OO ACT ONE does not de�ne any other`combination mechanisms': in our experience SPECIALISES AND EXTENDS is the only combinationmechanism which is used as often as the other singular mechanisms (when provided). Furthermore,it is the only combination mechanism which is straightforward to statically analyse.A Note On Invariant PropertiesIt is important to note that all invariant properties are inherited by a subclass from its superclasses.3.4.3 Static Analysis of OO ACT ONE: Syntax and SemanticsOO ACT ONE speci�cations are statically analysed as shown in �gure 3.20.Appendix B1 examines the preprocessing of an OO ACT ONE speci�cation for the removal ofsyntactic sugar. Appendix B2 explains the static analysis of OO ACT ONE speci�cations which



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 93
Static Analysis 
of ACT ONE

ACT ONE  Executable Model

executable model
to be evaluated using
Literal preconditions

Executable Model

ACT ONE

Translate to 

peculiar to O-LSTS

remove syntactic sugar

no errors

no errors

no errors

no errors

no errors
against BNF
Check Syntax

OO ACT ONE

Preprocess to

Check semantics Figure 3.20: Static Analysis of OO ACT ONEcannot be done by translating the speci�cation to ACT ONE and letting the ACT ONE staticanalysis tools check the new code.3.5 An ACT ONE Execution Model for O-LSTS Speci�cations3.5.1 The Advantages of Using ACT ONETranslating an O-LSTS speci�cation, written in OO ACT ONE, into ACT ONE has three advantages:� It more formally relates the object oriented notions captured in the O-LSTS semantics with theADT concepts of type, sort, operation, equation, expression and value.� ACT ONE has a number of associated tools for the static analysis of syntax and semantics andthe evaluation of expressions. These tools can be used to complete the static analysis of theOO ACT ONE speci�cation from which the ACT ONE was developed, and to test the dynamicbehaviour being modelled.� ACT ONE forms a part of full LOTOS, which combines the ADT speci�cations within a processalgebra as a single coherent framework. This thesis proposes to use LOTOS as an objectoriented design language. The step from formal object oriented analysis to formal object orienteddesign is made simpler by choosing ACT ONE as the foundation upon which our �gure=Sem-Chp3/Figures language is modelled.3.5.2 Reviewing the ACT ONE TerminologyIn ACT ONE, a type speci�cation may de�ne a number of di�erent sorts. Every sort corresponds to aset of terms, with each term representing a particular value of that sort. Equations de�ne equivalencesbetween terms which represent the same value. Each equivalence class of terms represents one valueand members of the same equivalence class are identi�ed by that value. The member of the equivalenceclass which is used to represent the value of the class is normally taken to be the term which all theother terms are `evaluated to' when the re-writes (as de�ned by the equations) are applied.



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 94An operation relates 0,1 or more input sorts to a result sort. Operations are term generators.Operations with no input terms are called literals. These are commonly used to represent the valueof the equivalence class of terms to which they belong. Furthermore, they are the base terms fromwhich other terms can be generated.3.5.3 An Overview of the OO ACT ONE ! ACT ONE TranslationThe translation from OO ACT ONE to ACT ONE is best described in stages. Preprocessing hasremoved OO ACT ONE syntactic sugar and so there are just �ve object based elements of the syntaxto consider:� CLASSES, which are the fundamental behaviour building blocks.� The USING mechanism, which de�nes a dependency between classes.� OPNS, which de�ne the external interface and set of members for each class.� EQNS, which de�ne the dynamic behaviour of each class member.� INVARIANTS, which de�ne properties ful�lled by members of the classes in which they are de�ned.In addition, there are �ve explicit classi�cation mechanisms to be mapped to ACT ONE. AppendixC examines the semantics of the mapping from OO ACT ONE to ACT ONE.Additonal Object Based MechanicsThe ACT ONE mechanisms for de�ning the behaviour of an object which changes state and returns avalue in response to a service request are called the dual mechanics. Other object based `mechanics'are required to de�ne the behaviour of the implicit unspeci�ed members of OO ACT ONE classes.Further, additional operations (internal tests) are de�ned to simplify the speci�cation of the objectoriented execution model. The mechanics de�ned in each of these cases is as follows:� Dual MechanicsValues of an ACTONE sort corresponding to members of an OO ACT ONE class have two typesof representation, namely singular and dual. Singular representations are literals or structureexpressions. Dual representations of a class C are pairs of values whose �rst element correspondsto a singular representation of the class C and whose second element corresponds to any sortvalue which represents a member of the result type of an accessor or dual operation of C. Forevery result type, D say, of a class C there is an operation dualCD : C,D -> C which is usedto construct the corresponding dual representation. The external attributes (as de�ned by theaccessor, dual and transformer operations) of dual representations of values in C are de�ned asthe attribute operations applied to the �rst element of the dual expresssion.Singular representations are generated by transformer operations on singular or dual represen-tations. Dual representations are generated by accessor or dual operations. In OO ACT ONEwe represent the newstate of an object, obj say, after servicing a request req say, by the statelabel expression obj.req. Similarly, we represent the value returned by an accessor or dual



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 95operation as obj..req. State label expressions in OO ACT ONE are mapped into ACTONE as follows:� obj.req ! .(req(obj))� obj.req(p1,: : :,pn) ! .(req(obj,p1,: : :,pn))� obj..req ! ClassResult(req(obj)), where Class is the result type of req.� obj..req(p1,: : :,pn) ! ClassResult(req(obj,p1,: : :,pn)), where Class is the sortgenerated from the result type of req.This ACT ONE representation of OO ACT ONE state label expressions requires the speci-�cation of two additional operations:� .:C -> C is de�ned for every class C.� DResult: C -> D is de�ned for every result type D in class C.� Unspeci�ed ValuesImplicit in every OO ACT ONE speci�cation are the unspeci�ed literal values of each class. Forexample, �C represents the unspeci�ed literal value of class C. In translating to ACT ONE, wegenerate an operation unspecC: -> C for every sort C. All operations on this value are de�nedto return the unspeci�ed value of the appropriate class (by default). Static analysis of an OOACT ONE speci�cation determines when such defaults are overridden by the speci�er.� Internal TestsFor every class C we de�ne an operation CRep: C -> Bool which returns true if the inputparameter of the CRep operation is represented in singular form. This internal test operation isused to simplify the speci�cation of the object oriented `mechanics'.3.5.3.2 Example Object Based Behaviours in ACT ONEThe ACT ONE speci�cations that follow result from translating object based behaviour as speci�ed inOO ACT ONE. (The code that is listed is slightly di�erent from the ACT ONE code that is producedbecause the object oriented features which allow this class to be de�ned as a superclass of a new classare not included. We consider such object oriented concerns in section 3.5.3.3.) The three examplesare used to illustrate di�erent aspects of the object based properties speci�ed by the ACT ONE code.Example 1: Nat behaviourConsider the OO ACT ONE Nat class speci�ed in example 1 of section 3.4.2 (and its correspondingO-LSTSD in �gure 3.18). The ACT ONE code is given below.There are a number of things to note about this speci�cation:� Although class Bool is not speci�ed as being used by class Nat in the OO ACT ONE require-ments, a Boolean type with sort Bool is used in the ACT ONE speci�cation of sort Nat. Everysort generated from an OO ACT ONE speci�cation is de�ned in terms of boolean behaviour(it is necessary for de�ning the internal object oriented mechanisms). Consequently, the type



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 96TYPE Nat IS Boolean SORTS Nat OPNSO: -> Nat (* Literal*)succ: Nat -> Nat (* Structure *)inc: Nat -> Nat (* Transformer *)previous: Nat -> Nat (* Dual Accessor Nat *)unspecNat: -> Nat.: Nat -> NatNatResult: Nat -> NatdualNatNat: Nat, Nat -> NatNatRep: Nat -> BoolEQNS FORALL Nat1, Nat2: NatOFSORT Natinc(Nat1) = succ(Nat1); inc(unspecNat) = unspecNat;inc(dualNatNat(Nat1,Nat2)) = inc(Nat1);previous(0) = dualNatNat(0,unspecNat); previous(unspecNat) = unspecNat;previous(succ(Nat1)) = dualNatNat(succ(Nat1), Nat1);previous(dualNatNat(Nat1, Nat2)) = previous(Nat1);NatRep(Nat1) => .(Nat1) = Nat1; .(dualNatNat(Nat1, Nat2)) = Nat1;NatResult(dualNatNat(Nat1,Nat2)) = Nat2;OFSORT BoolNatRep(0) =true; NatRep(succ(Nat1)) = true; NatRep(unspecNat) = true;NatRep(dualNatNat(Nat1,Nat2)) = falseENDTYPE (* Nat *)Boolean with sort Bool is an integral part of the resulting ACT ONE code. This class isspeci�ed to exhibit the well understood behaviour of booleans (all the normal operations areavailable as transformer operations) together with the unspeci�ed value unspecBool.� The ACT ONE speci�cation has an intuitively object oriented style. Ignoring the additionalobject oriented mechanics (which are generated in the same way for all behaviours), we have aclear and concise correspondence between the ACT ONE and the OO ACT ONE from which itwas generated.� The list of variables after the forall clause in the ACT ONE code is de�ned to exactly matchthe variable parameters used in the equation de�nitions.� The translation to ACT ONE produces very ine�cient code. However, e�ciency is not impor-tant at this theoretical stage of development.Example 2: System behaviourConsider the OO ACT ONE System class also speci�ed in example 1 of section 3.4.2 (and its corre-sponding O-LSTSD in �gure 3.16). In this example we assume the ACT ONE code for class Stackhas been generated in sort Stack de�ned in the type of the same name. The ACT ONE code whichis generated from the class System speci�cation is given below.This speci�cation shows quite clearly the way in which the components of the System (i.e. theStacks) are used through their external interfaces alone to provide the external behaviour of theircontaining object.



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 97TYPE System IS Boolean, Stack SORTS System OPNSsys: Stack, Stack -> System (* Structure *)push: System, Nat -> System (* Transformer *)move: System -> System (* Transformer *)pop: System -> System (* Dual Nat *)unspecSystem: -> System.: System -> SystemNatResult: System -> NatdualSystemNat: System, Nat -> SystemSystemRep: System -> BoolEQNS FORALL System1: System, Nat1, Nat2: Nat, Stack1,Stack2: StackOFSORT Systempush(sys(Stack1, Stack2), Nat1) = sys(.(push(Stack1, Nat)), Stack2);push(unspecSystem, Nat1) = unspecSystem;push(dualSystemSystem(System1,Nat1), Nat2) = push(System1, Nat2);move(sys(Stack1, Stack2)) =sys(.(pop(Stack1)), .(push(Stack2, NatResult(pop(Stack1)))));move(unspecSystem) = unspecSystem;move(dualSystemSystem(System1,Nat1), Nat2) = move(System1, Nat2);pop(sys(Stack1, Stack2)) =dualSystemNat( sys(Stack1, .(pop(Stack2))), NatResult(pop(Stack2)));pop(unspecSystem) = unspecSystem;pop(dualSystemSystem(System1,Nat1)) = pop(System1);SystemRep(System1) => .(System1) = System1;.(dualSystemNat(System1, Nat1)) = System1;NatResult(dualSystemNat(System1,Nat1)) = Nat1;OFSORT BoolSystemRep(sys(Stack1, Stack2)) = true; SystemRep(unspecSystem) = true;SystemRep(dualSystemNat(System1,Nat1)) = falseENDTYPE (* Nat *)Example 3: Preconditions in the speci�cation of Queue behaviourThe ACT ONE speci�cation of the sort Queue given in Appendix C2 is used to illustrate the mappingof preconditioned expressions to ACT ONE. A less important feature of this example is the mappingof a hidden operation.3.5.3.3 Translating Object Oriented RequirementsAn OverviewTo translate object oriented requirements speci�ed in OO ACT ONE to ACT ONE, it is necessaryto group together classes of behaviour which are related by subclassing relationships into one typede�nition in ACT ONE. Consider the OO ACT ONE speci�cations of Lift12s and Lift15s de�nedat the end of section 3.3.3.5 (and their corresponding O-LSTSDs given in �gure 3.9). These classesof behaviour are translated into the framework of ACT ONE code given below in the type de�nitionof Lift12sRoot.



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 98TYPE Lift12sRoot IS Move12sRoot, Nat12sRootSORTS Lift12s (* using Move12s, Nat12s, Lift15s *)Lift15s (* using Move15s, Nat15s: superclass Lift12s *)OPNS : : :EQNS : : :ENDTYPETYPE Move12sRoot IS BooleanSORTS Move12s (* using Bool, Move15s *)Move15s (* using Bool: superclass Move12s *)OPNS : : :EQNS : : :ENDTYPETYPE Nat15sRoot IS Boolean, NatSORTS Move12s (* using Bool, Nat *)Nat12s (* using Bool, Nat: superclass Nat15s *)OPNS : : :EQNS : : :ENDTYPEThe three classes of object oriented behaviour that are modelled in this ACT ONE header areLift12s, Move12s and Nat15s, i.e the root classes of the separate trees in the class hierarchy ofLift12s. It is possible to execute a dynamic model of the other non-root classes but there is noguarantee that the environments of the these classes are correctly speci�ed. To guarantee that theenvironment of a class, C say, is correctly modelled in ACT ONE, it is su�cient to restrict the classeslisted in the OO ACT ONE code to be only those classes visible to C.Class Hierarchy MechanismsThere are two important aspects of modelling object oriented behaviour:� Polymorphism:In the object oriented paradigm, subclassing means that a member of one class is also a memberof each of its superclasses. Consequently, anywhere a member of one of its superclasses isused by an object, all the members of the subclass must also be able to be used. This isinclusion polymorphism. In OO ACT ONE there is one general instance of this rule, namely ina parameterised operation we require that an actual parameter is a member of the parameterclass or a member of a subset of the parameter class. The paramaterised operations which needto be considered are: structures, accessors, transformers and duals.When generating ACT ONE code from an OO ACT ONE speci�cation we model polymorphismby de�ning all the parameterised operations on any combination of valid parameter. This isdone by de�ning coercion routines between any two classes related by a subclassing relationship.Subclass parameters are coerced into being the corresponding members of the required super-class. The coercion operations are de�ned as follows: for every pair of classes, C1 and C2 say,such that C1 v C2 in the environment of the class being modelled, then there is an operationC1toC2: C1 -> C2 de�ned in the type of the class to which these classes are rooted. Theoperation C1toC2 is de�ned by a set of equations which equate all literal values of C1 to thesame literal values of C2. Further, all subclass structure expressions are coerced to superclassstructure expressions by applying a suitable coercion to the component values.� Inheritance:The existence of a subclassing hierarchy suggests that there is a duplication of behaviour between



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 99superclasses and subclasses. This duplication can be taken advantage of when creating anobject oriented model of OO ACT ONE requirements in ACT ONE. The behaviour de�nedby an operation applied to a member of a class is always, whenever possible, inherited froma superclass16 of that class. In ACT ONE we encode this inheritance by specifying explicitroot de�nitions for operations which are not inherited from superclasses. These root operations(de�ned as ClassOpn where Class is the name of the class in which the behaviour is rooted andOpn is the name of the operation) are then used in the subclass de�nitions to avoid duplication.Coercion plays an important part in this inheritance mechanism since it is now also necessaryto be able to coerce superclass values into subclass values.The additional machinery required to model this object oriented behaviour further complicatesthe ACT ONE code. In general, the ACT ONE code is between four and twenty times larger17 thanthe OO ACT ONE from which it was generated. An example of the ACT ONE code arising from thetranslation of object oriented properties in OO ACT ONE is given in Appendix C3.3.5.4 Static Analysis of ACT ONEThe static analysis of ACT ONE code generated from OO ACT ONE guarantees certain correctnessproperties of the underlying O-LSTS model. The ACT ONE static analyser checks the types of allparameters in equation de�nitions (their visibilty and compatibility). It also checks the correctnessof all state label expressions in the O-LSTS model speci�ed using OO ACT ONE. Thus, bytranslating to ACT ONE, the most di�cult static analysis is performed by an already existing toolset. One problem is that static analysis errors identi�ed in the ACT ONE code have to be translatedback into meaningful OO ACT ONE errors. It should be clear that, although such a mechanism isnot formulated in this work, providing an object oriented interpretation of these ACT ONE errors isnot a di�cult task.3.5.5 Evaluating Act One Expressions: An Execution Model for OO ACT ONETo model the behaviour of an object in response to a message request at its interface it is necessaryonly to evaluate an ACT ONE expression. For example, reconsider the System behaviour consid-ered earlier in section 3.5.3.2. To model the e�ect of a pop request at the object represented bysys(Stack1, Stack2) we evaluate the ACT ONE expression pop(sys(Stack1,Stack2)). The re-sult of this expression evaluation is a dual representation. The �rst element of this pair of values isthe newstate of the object, the second element represents the value returned by the pop operation.To model the dynamic behaviour of an object over a period of time it is necessary to create afeedforward loop of expression evaluations in which the result of an expression evaluation is used asthe server of the next expression to be evaluated. Such loops of behaviour are represented in event16When two superclasses o�er the same operation we are guaranteed that the behaviour de�ned in both superclassesis the same. Consequently, when a choice is available, an arbitrary decision is made as to which superclass a subclassinherits from.17Size in this case is an approximation for the number of operations and equations de�ned.



CHAPTER 3. AN OBJECT ORIENTED SEMANTIC FRAMEWORK 100diagrams (see below). By taking this simple view of object oriented behaviour, the static ADTmodel is given a dynamic object oriented interpretation.3.5.6 Event DiagramsAn event diagram for the behaviour of a System object is given in �gure 3.21, together with thecorresponding event trace.
st(empty,0))
sys(empty,

EVENT TRACE:  push(0) -> move -> push(succ(0)) -> pop =0 -> pop = ~Nat

pop =~Nat pop = 0

push(succ(0))

sys(st(empty,succ(0),

move
push(0)

empty)

sys(st(empty,succ(0),
empty)

sys(empty,empty) sys(st(empty,0),
empty)

sys(st(empty,succ(0),
st(empty,0))Figure 3.21: A System Event DiagramAn O-LSTS event diagram is simply an an abstraction of the whole O-LSTS(D) in which onlya particular set of connected states are represented. The initial state of the system is representedby the only state in the diagram with an incoming arrow which is not rooted in another state. The�nal state of the system is represented by the only state in the diagram without an outgoing arrow.The sequence of transitions which the system goes through is called an event trace. Such traces arecommon in process algebras: they specify possible behaviours of a process (or system). An O-LSTSgives rise to a peculiar set of event traces because of the constraint that an O-LSTS system mustalways be able to ful�l all of its service requests at all times during its life. The property whichdistinguishes di�erent instantiations of the same O-LSTS speci�cation are the sequences of valueswhich they return during execution.



Chapter 4Formal Object Oriented Analysis:The Practical IssuesThis chapter examines the more practical issues which arise during object oriented analysis andrequirements capture (when using OO ACT ONE). The discussions which are undertaken assumethat the underlying formality of OO ACT ONE is well understood. The object oriented-ness of OOACT ONE, and its suitability to the task of requirements capture and analysis, is no longer beingconsidered. Rather, we proceed to investigate more general object oriented analysis issues, using OOACT ONE to illustrate the points being made.The structure of this chapter is as follows:� Section 4.1: SubclassingThis section examines the role of subclassing during object oriented analysis. Two di�erent typesof subclassing hierarchy are identi�ed, namely those which o�er multiple inheritance featuresand those which do not. Polymorphism and dynamic binding are then considered. The needto di�erentiate between explicit and implicit subclassing relationships is emphasised. Then,the concept of abstract superclass is given a more rigorous formulation. Finally, the classicpolymorphism problem of heterogenous structures is explored.� Section 4.2: CompositionThis section examines the notion of composition and its fundamental role in object orientedanalysis. Emphasis is given to distinguishing composition from con�guration and interaction.Two di�erent types of compositional structures are introduced: dynamic and static. Then a purestyle of OO ACT ONE speci�cation is de�ned to model the object oriented notion of persistency.Finally, this section investigates the modelling of shared objects and timing properties duringanalysis.� Section 4.3: Other Object Oriented Analysis IssuesThis section examines a potpourri of other object oriented issues: concurrency, nondetermin-ism, communication models, exception handling, the active/passive categorisation of objects,persistency and class routines concerned with creation and con�guration.101



CHAPTER 4. FORMAL OBJECT ORIENTED ANALYSIS: THE PRACTICAL ISSUES 102� Section 4.4: Reviewing The OO ACT ONE Speci�cation LanguageSection 4.4 reviews the OO ACT ONE speci�cation language and asks if it is a good analysistechnique when judged by the criteria put forward in chapter 2.� Section 4.5: The Practicalities of Building a Formal ModelThis section begins by listing a set of critreria which an analysis method (as opposed to setof models) must ful�l. Then it de�nes a skeleton method for building a formal object orientedrequirements model using OO ACT ONE. This skeleton method is shown to place emphasison: re-use of pre-de�ned behaviours, recording of problem domain structure and improvingproblem domain understanding. After the method is formulated, some more general questionsconcerning analysis decisions, which inuence the style of a speci�cation produced using thismethod, are put forward. Then guidelines are given for making changes to the requirementsmodels. Finally, a list of general analysis principles are proposed, which analysts can rely on tohelp make di�cult development decisions.� Section 4.6: �gure=FormAnal-Chp4/Figures and Object Oriented DesignThis section introduces the process of going from analysis to design. It argues that the structureof a requirements speci�cation is fundamental to the initial design of a solution to the problem.It is argued that executable requirements models are advantageous to object oriented develop-ment. Finally, as a preview of chapter 5, the notion of correctness preserving transformation isintroduced.4.1 Subclassing4.1.1 Categorising Class HierarchiesWhen one class is de�ned as a subclass of another it is said to inherit features of its superclass.Object oriented languages support either single inheritance or multiple inheritance. We argue thatmultiple inheritance is necessary for modelling customer understanding.4.1.1.1 Single InheritanceIn single inheritance models, classes are allowed at most one parent (direct superclass). The classhierarchy diagram in �gure 4.1 illustrates the type of hierarchy which arises when such a restrictionis enforced.
HGFED

CB

A I

J

K LFigure 4.1: A Single Inheritance Hierarchy



CHAPTER 4. FORMAL OBJECT ORIENTED ANALYSIS: THE PRACTICAL ISSUES 103In such models, inclusion polymorphism retains an important role. For example, a member ofclass G is also a member of classes C and A, and so can be treated as a C or an A when necessary.However, using single inheritance, it is not possible to represent the behaviour of a class which isa subclass of two di�erent classes, which themselves are not related by a classi�cation relationship.More precisely, in a single inheritance model, (A v B and A v C), (B v C or C v B). Often thisrestrictive view of inheritance is not desirable.4.1.1.2 Multiple InheritanceIn multiple inheritance models, classes are not restricted in the number of parents they can have. Theclass hierarchy in �gure 4.2 illustrates a typical multiple inheritance model.
LKJ

IH

G

F

E

D

CB

A Figure 4.2: A Multiple Inheritance HierarchyConsider class D, in �gure 4.2. Class D is a direct subclass of classes B,C and F. However, C 6v Eand E 6v C, for example. Class D o�ers the behaviour of both C and F even though these classes maynot be related in any other way.Multiple inheritance is such an important object oriented modelling concept that we must questionwhy it is that some object oriented languages do not o�er a multiple inheritance facility (see chapter6). The answer is quite simply that in some cases, depending on the exact nature of the inheritancemechanism in the language in question, it is more trouble than it is worth. Fortunately, this is notthe case with OO ACT ONE.4.1.1.3 Multiple Inheritance is Problematic Only When Inheritance is not SubclassingIn object oriented programming languages, multiple inheritance can, and usually does, cause imple-mentation di�culties. This is because these languages use inheritance as a code re-use facility ratherthan as a means of explicitly identifying behavioural compatibility. Object oriented programminglanguages make it di�cult to distinguish between subclassing and composition. Using OO ACTONE, the formal de�nition of these two relationships makes it much easier to distinguish betweenthem. Multiple inheritance makes it appealing, when behaviour compatibility is not enforced, forprogrammers to use inheritance compositionally.4.1.2 Inclusion Polymorphism and Dynamic BindingThe principle behind polymorphism is that a value (object) should not be constrained to being strictlytyped (as a member of only one class). Polymorphic object oriented systems allow an object to be



CHAPTER 4. FORMAL OBJECT ORIENTED ANALYSIS: THE PRACTICAL ISSUES 104treated as a member of more than one class. This type of property should set alarm bells ringingwhen it is �rst met: how are polymorphic systems type checked? Polymorphism seems to imply thatno static type checking can be incorporated in an object oriented model which adheres to this exibleapproach. This is true only for uncontrolled polymorphism.In the most general case, uncontrolled polymorphism means that an object can be treated as ifit is a member of any class. In other words, type checking is non-existent. Consequently, unless theprogrammer is very careful, errors can occur when an object is asked to provide a service which isnot part of its external interface. Uncontrolled polymorphism is not a good feature for any languageto exhibit.Languages with hierarchical categorisation mechanisms are amenable to inclusion polymorphism.Two such types of language are those which include the notions of:� types and subtyping.� classes and subclassing.In a typed language a value of one type can always be used in place of a value of any of its super-types. In a classed language, an object of one class can always be used in place of an object in any ofits superclasses. Inclusion polymorphism in typed languages can guarantee only the non introductionof syntax errors when a value of one type is replaced by the value of another. Inclusion polymorphismin a classed language can, and should, guarantee that a behavioural equivalence between a systembefore and after a class member in that system is replaced by the corresponding member in one ofits subclasses.The notion of substitutability is central to polymorphism. We must address the question of whatit means to be able to accept a member of one class in place of a member of another class. It isdi�cult to address such a question without reference to a particular language. In OO ACT ONEthere are two instances of substitutability:� Creating new objects from component partsIn OO ACT ONE, STRUCTURE operations are the means by which objects can be constructedfrom components. The parameter values of the STRUCTURE operations are the componentsof the new object being created. Inclusion polymorphism allows a new object to be createdfrom component objects which are members of the class speci�ed by the STRUCTURE operationde�ned, or members of a subclass of the class speci�ed. For example, an object which is apair of integers can also be created, using the same STRUCTURE operation, from a pair ofodd-integers (provided odd-integersv integers).� Input parameters in external attributesIn OO ACT ONE, external attributes of a class can be parameterised on input values. Aparameter value can be a member of the class speci�ed in the operation de�nition, or a member ofa subclass of the class speci�ed. For example, an integer object with attribute add <integer>can be asked to add an odd-integer (again provided the appropriate subclassing relationshipis explicitly de�ned in the OO ACT ONE code).



CHAPTER 4. FORMAL OBJECT ORIENTED ANALYSIS: THE PRACTICAL ISSUES 105These two types of polymorphism are powerful mechanisms in an object oriented analysis model.Dynamic binding is primarily an implementation concern. When an object is asked to service arequest, the mechanism which it uses to service the request can be bound to the object at the timethe request is placed. This is dynamic binding. It is not an analysis issue because in our objectoriented requirements model we do not stipulate how the services between client and server shouldbe provided.4.1.3 OO ACT ONE: An Explicit Subclassing ApproachOO ACT ONE supports the speci�cation of multiple inheritance hierarchies in a peculiar way. Whenone class, A say, is identi�ed as being a subclass of two other classes, B and C say, there are twoways, in general, for this behaviour to be speci�ed:� i) First specify B, then explicitly de�ne A to be a subclass of B and, �nally, specify C as asuperclass of A.� ii) First specify A, then explicitly de�ne B to be a superclass of A and, �nally, specify C as asuperclass of A.In each of these speci�cations the resulting class hierarchy is the same.Note that multiple inheritance is possible in OO ACT ONE because we provide explicit super-classing mechanisms, de�ned as inverses of the explicit subclassing mechanisms. In object orientedprogramming all explicit class relationships (like inheritance) allow a new class to be de�ned only asa subclass of an already existing class. OO ACT ONE allows the relationship to be de�ned in theother direction: a new class can be de�ned to be a superclass of an already existing class. This isa new approach to the de�nition of object oriented behaviour which facilitates multiple inheritancemodelling in OO ACT ONE.4.1.4 Abstract ClassesThe term abstract superclass pervades object oriented programming languages. It arises in the fol-lowing type of scenario:A class of shapes (for display on a screen, say) is a superclass of triangles, squares andpentagons. Each of these subclasses exhibits the behaviour of superclass shapes. It is notpossible to instantiate a member of the shapes class which is not a triangle, square orpentagon. The shapes class is an abstract superclass.This notion is more formally represented in OO ACT ONE by a class which is de�ned to generaliseanother class, or classes, without de�ning new literal or structure operations. In terms of the O-LSTSsemantics, the de�nition of an abstract superclass is given below.De�nition: Abstract SuperclassClass C is an abstract superclass in EnvD ,8c 2 US(C); 9C 0 2 visible(D) such that c 2 US(C 0) and C 0 v C in EnvD.



CHAPTER 4. FORMAL OBJECT ORIENTED ANALYSIS: THE PRACTICAL ISSUES 1064.1.5 A Polymorphism Problem: Heterogeneous Data StoresConsider a class of items, which is an abstract superclass with subclasses integer, character andbool. We wish to de�ne a data store (a stack say) of items with external attributes push and pop.The main di�culty with this type of behaviour is the unidirectional aspect of polymorphism in objectoriented languages: an object can be polymorphised `up the class hierarchy but not down it'. In otherwords, a member of a class C can be treated as a member of a superclass of C but not a member of asubclass of C. Consequently, for example, if an integer becomes an item, when it is pushed onto anitem stack, then when it is popped o� the stack it remains a member of the item class and cannotbe used as an integer.The O-LSTS semantics conforms to the unidirectional polymorphic model. There are two reasonsfor de�ning the semantics in this way:� It simpli�es the understanding of O-LSTS behaviour since it is always clear how each object isclassi�ed.� It simpli�es the semantics since it is not necessary for every object to remember its polymorphichistory. For example, an item does not need to know that it was once an integer which wasonce an odd-integer : : : .4.2 CompositionThe composition relationship is fundamental to object oriented analysis and requirements capture.Human understanding of systems is based on a divide-and-conquer deconstructionist approach, whichcan be summarised as follows:If we wish to understand an object A then by identifying the parts A is made from, andattempting to understand these, the original problem of understanding A is simpli�ed.There are three questions which we need to ask about this deconstructionist philosophy:� 1) Is there always a unique set of components associated with a system being analysed?� 2) Why should a component of a system be easier to understand than the system in which it isfound?� 3) How do we know when the deconstruction of understanding should end?The answer to the �rst question is certainly NO, otherwise analysis would be `trivial'. The secondquestion is less easy clear since the rather paradoxical answer is that sometimes components of asystem are more di�cult to understand than the system in which they are found. This is especiallytrue when a component is used, in the particular system being analysed, to provide only a small setof the behaviours which it is capable of exhibiting. In such a system it may be easy to understand thelimited behaviour of such a component. However, if such a component is separately analysed thenthe usage constraints are no longer relevant and understanding its complete behaviour becomes verydi�cult. (This argument illustrates quite strongly why abstraction is such a powerful mechanism



CHAPTER 4. FORMAL OBJECT ORIENTED ANALYSIS: THE PRACTICAL ISSUES 107for human understanding. Deconstructionism depends on the ability to be able to identify usefulcomposition abstractions.) The �nal question is the bane of many an analysis process: too manysystems are over-analysed leading to an increase in development costs and bad design. It is vitalthat an analysis method incorporates a means of deciding when the requirements capture process iscomplete.4.2.1 Composition StructureWith respect to analysis alone it has already been stated that there are many ways of structuringproblem understanding. An analyst must chose the structure best suited to communicating therequirements model with the customer. The designers should not be considered at this stage: theyshould be familiar with the object oriented analysis models and therefore be able to cope with anystructure de�ned within the �gure=FormAnal-Chp4/Figures semantic framework.The compositional structure is fundamental to object oriented analysis. OO ACT ONE hasan explicit mechanism for capturing structure properties: the STRUCTURE operation. This makescomposition one of the most visible aspects of an OO ACT ONE speci�cation.Composition is a relationship between a container object and its contained parts. It tells us nothingabout the relationship between the parts. Con�guration and interaction are two relationships whicharise out of one object being decomposed into distinct parts. Two objects may con�gure and interactonly if they are components of a common container.4.2.2 Con�gurationSTRUCTURE operations only brush the surface with respect to the composition analysis of problems.One can state that a car is composed from an engine, a chassis, a suspension, body, wheels, lights,etc : : :(and each of these components can themselves be further decomposed) but this does say howthe components are connected together (or if they are connected at all).In section 3.3.5, con�guration of components is formally de�ned as an interdependency during theful�lment of a service request. Informally, two components con�gure if at least one of the servicesprovided by their containing object depends on both the components to ful�l that service. This is avery abstract way of conceptualising con�guration, but one which is appropriate to analysis. Analysisidenti�es what not how.4.2.3 Interaction (Data Flow and Control Flow)Interactions, with associated data and control ow, are much more concrete notions than con�gura-tion. They describe how behaviour is ful�lled rather than only saying what the behaviour requirementsare. These notions are common to structured analysis methods but are not given prominence in theobject oriented analysis advocated in this thesis: they are considered in greater detail as part of theobject oriented design process. An interpetation of these concepts can be derived from an OO ACTONE speci�cation, but such an interpretation should be taken only in the following two circumstances:



CHAPTER 4. FORMAL OBJECT ORIENTED ANALYSIS: THE PRACTICAL ISSUES 108� When the customer is more familiar with structured analysis methods than with object orientedtechniques.� When designers require a more traditional interpretation of a requirements model.Appendix D details a formal interpretation of interaction, data-ow and control-ow in OO ACTONE speci�cations.4.2.4 Structures: Dynamic and StaticThe notions of dynamic and static structure are important when attempting to provide an interpre-tation of composition properties. This section shows the di�culties that dynamic structures give riseto in an object oriented analysis model. They are open to abuse in the sense that, if used wrongly,they can make speci�cations hard to communicate with the customer. A pure style of speci�cation isintroduced to overcome this potential problem.4.2.4.1 Impure Object Oriented Speci�cation PracticesImpure Style: Example 1The following OO ACT ONE speci�cation of class TwoStacks is well de�ned but illustrates an impurestyle of speci�cation.CLASS TwoStacks USING Stack, Nat OPNSSTRUCTURES: S<Stack, Stack>DUALS: pop -> NatTRANSFORMERS: push<Nat>, swapEQNSS(Stack1, Stack2).pop = S(Stack1, Stack2.pop) AND Stack2..pop;S(Stack1, Stack2).push(Nat1) = S(Stack1.push(Nat1), Stack2.pop)S(Stack1, Stack2).swap = S(Stack2, Stack1)ENDCLASS (* TwoStacks *)The behaviour speci�ed in TwoStacks is straightforward to understand but on closer examinationraises some interesting points for designers. For example, the Stack components may be implementedon di�erent processors at di�erent sites and conceptually the speci�cation seems to suggest that aswap service results in all the data stored in one Stack being transferred to the other (and vice versa).Of course, this is an ine�cient way of implementing such behaviour. It is more natural to de�ne apointer component which addresses either Stack1 or Stack2 and makes the state of the pointer changein response to a swap request. Such a behaviour is speci�ed below in class TwoStacksB. (In O-LSTSsemantics it is simple to show that these speci�cations ful�l each others behaviour.)The TwoStacksB speci�cation is written in a pure object oriented style | the components of aTwoStacksB object persist throughout the life-time of the object and are used only through theirexternal interfaces. In the �rst class speci�cation of TwoStacks the structure components do notpersist, even though the structure is �xed.Impure Style: Example 2



CHAPTER 4. FORMAL OBJECT ORIENTED ANALYSIS: THE PRACTICAL ISSUES 109CLASS TwoStacksB USING Stack, Nat, Bool OPNSSTRUCTURES: S<Stack, Stack, Bool>DUALS: pop -> NatTRANSFORMERS: push<Nat>, swapEQNSBool1 => S(Stack1, Stack2, Bool1).pop = S(Stack1, Stack2.pop, Bool1) AND Stack2..popOTHERWISE S(Stack1.pop, Stack2, Bool1) AND Stack1..pop;Bool1 => S(Stack1, Stack2, Bool1).push(Nat1) =S(Stack1.push(Nat1), Stack2.pop, Bool1)OTHERWISE S(Stack1.push(Nat1), Stack2.pop, Bool1);S(Stack1, Stack2, Bool1).swap = S(Stack1, Stack2, Bool1..not)ENDCLASS (* TwoStacksB *)CLASS StacksAgain USING Stack, Nat OPNSSTRUCTURES: S-SA< Stack, Stack>DUALS: pop -> NatTRANSFORMERS: push<Nat>, moveEQNSS-SA(Stack1, Stack2).pop = S-SA(Stack1.pop, Stack2) AND Stack2..pop;S-SA(Stack1, Stack2).push(Nat1) = S-SA(Stack1.push(Nat1), Stack2);S-SA(Stack1, Stack2).move = S-SA(Stack1.pop, Stack2.push(Stack1..pop))ENDCLASS (* StacksAgain *)This StacksAgain speci�cation is also well de�ned but written in an impure style. The popoperation is de�ned impurely | it uses the result of a dual operation on the second componentwithout changing its state accordingly. In a pure object oriented style it is required that when dualoperations are requested the accessor part of the attribute cannot be utilised without the transformeracting on the internal state of the serving object. In other words, although OO ACTONE conceptuallyallows the two parts of a dual to be used separately, a pure speci�cation style does not let an accessorpart of a dual to appear in the right hand side of an equation de�nition without the new state of theserving component being updated to model the servicing of the whole dual. Note that such a checkonly makes sense in a class which is de�ned to have persistent components.4.2.4.2 Object Oriented Interpretation of Dynamic StructureIt is not possible to extend these pure styling conventions to cope with objects which have dynamicstructure. In particular, objects de�ned using recursive structure operations are di�cult to reasonabout compositionally. For example an integer stack object is illustrated using an object structurediagram in �gure 4.3.In the same �gure a new representation is introduced for more concise diagrammatic representa-tion of recursive structures. The formal meaning of both diagrams is given by the OO ACT ONESTRUCTURE expression which is common to both.The syntax of the new diagram is representative of the way in which linked list structures (com-mon to all forms of programming) have an informal yet powerful means of representation (as nodes



CHAPTER 4. FORMAL OBJECT ORIENTED ANALYSIS: THE PRACTICAL ISSUES 110
Nat succ(succ(0)) succ(0) empty

RECURSIVE  OBJECT STRUCTURE DIAGRAM
Stack

succ(succ(0))succ(0)

OBJECT STRUCTURE DIAGRAM

empty

OO ACT ONE STRUCTURE EXPRESSION:  S(S(empty, succ(0)), succ(succ(0))))

Stack

Nat1Stack1

Figure 4.3: A Structure Diagram of Recursive Behaviourand pointers). The recursive structure diagram emphasises that, although objects with recursivestructure have a complex embedded structure, the consistent relationship between components andsubcomponents (and subcomponents and their subsubcomponents, etc : : : ) means that such objectsare often understood in a linear or tree like fashion.Non-recursive Dynamic StructuresA non-recursive dynamic structure is speci�ed in OO ACT ONE when the structure expression onthe left hand side of an equation does not match the structure expression on the right hand side ofthe equation. This models an object (or objects) in a class which change their internal structuralcomposition in response to a service request. Modelling such behaviour is very powerful but shouldbe used only to represent special events in the life of an object. It should not be the normal meansof de�ning behaviour, since if it is not done sparingly it can severly reduce the clarity of the intendedmeaning.4.2.5 Shared ObjectsIn OO ACT ONE there is no notion of one object being shared between others. This thesis arguesthat such an idea is implementation oriented. It is not desirable for an analyst to worry about suchthings. A simple example, the TwinFunction class, illustrates this quite clearly.The class structure diagram for this speci�cation is given in �gure 4.4.In this example, a reasonable interpretation is that the two function components share the twoqueues1. For example, both function components depend on Queue1, and so Queue1 can be imple-mented as a (persistent) object shared between Function1 and Function2. This sharing interpreta-tion is not an analysis issue. A designer could choose a solution architecture in which sharing is notevident.1An alternative, but equally valid interpretation, is to say that the two queues share the two functions.



CHAPTER 4. FORMAL OBJECT ORIENTED ANALYSIS: THE PRACTICAL ISSUES 111CLASS TwinFunction USING Function, Queue, Nat OPNSSTRUCTURES: S-TF<Queue, Queue, Function, Function>DUALS: remove -> NatTRANSFORMERS: add<Nat>, process1, process2EQNSS-TF(Queue1,Queue2,Function1,Function2).remove =S-TF(Queue1,Queue2.pop,Function1,Function2) AND Queue2..pop;S-TF(Queue1, Queue2, Function1, Function2).add(Nat1) =S-TF(Queue1.push(Nat1), Queue2, Function1, Function2);S-TF(Queue1, Queue2, Function1, Function2).process1 =S-TF(Queue1.pop, Queue2.push(Function1.in(Queue1..pop)), Function1, Function2);S-TF(Queue1, Queue2, Function1, Function2).process2 =S-TF(Queue1.push(Function2.in(Queue2...pop)), Queue2.pop, Function1, Function2)ENDCLASS (* TwinFunction *)
add

remove

process2process1

TwinFunction

Queue2

Queue1

Function1 Function2Figure 4.4: Sharing is not an Analysis Issue: An Example4.2.6 Timing PropertiesThe formal speci�cation of timing properties has been the basis of a wide range of research in recentyears. Some semantic models are intended for general use (see [63], for example) whilst other semanticshave been given for more speci�c formal models: LOTOS, for example, has a simple timing modelfor de�ning behaviour as a temporal ordering of events. There has been much work done to extendthe LOTOS timing model (see [11], for example). It is useful to ask what sort of timing properties aformal object oriented requirements model should be able to exhibit, and whether OO ACT ONE issuitable for specifying these properties.4.2.6.1 A Categorisation of Timing PropertiesFor discussion purposes, timing properties are categorised into four groups:� Event SequencingLOTOS exhibits such a timing model. The sort of behaviour that this model speci�es is `event Amust occur before event B can occur'. In object oriented analysis, events correspond to servicerequests at the external interface of an object. Now, our object oriented semantics state that all



CHAPTER 4. FORMAL OBJECT ORIENTED ANALYSIS: THE PRACTICAL ISSUES 112service requests in the external interface of an object can be serviced at any time during thatobject's lifetime. Consequently, external event sequencing properties are not relevant. Section4.2.6.2 formulates an interpretation of internal event sequencing properties for structured objectsspeci�ed in OO ACT ONE.� State SequencingState sequencing is logically equivalent to event sequencing. The sort of behaviour speci�edin state sequencing models is `object A cannot be in state S before it has been in state T'.Such timing properties can be taken directly from the O-LSTS semantics for OO ACT ONEspeci�cations. However, such behaviour properties are not explicit in the OO ACT ONE andcan only be deduced after some appropriate analysis.� SynchronisationOne of the most common timing properties that is used in the speci�cation of behaviour issynchronisation. For example, `Object A must synchronise with object B on event C'. Otherthan for communication purposes, synchronisation constraints are predominantly design andimplementation issues. It is beyond the scope of this work to extend the O-LSTS semantics tofacilitate the explicit statement of such properties during object oriented analysis.� Quantitative TimingWe are not concerned in our object oriented semantic model with being able to specify timingproperties with respect to some sort of global passing of time.4.2.6.2 Interpretation of Timing Properties in an OO ACT ONE Speci�cationTwo interpretations of internal timing properties are given for OO ACT ONE speci�cations of struc-tured objects:I) Ordering of Internal Service RequestsA static analysis of OO ACT ONE equation de�nitions is su�cient to identify `timing properties'which are implicit in an object oriented requirements speci�cation. For example, in TwinFunction(see 4.2.6) the equation:S-TF(Queue1, Queue2, Function1, Function2).process1 =S-TF(Queue1.pop, Queue2.push(Function1.in(Queue1..pop)), Function1, Function2);can be given the following interpretation:When servicing a process1 request, the Queue1 component must have a pop serviced notafter the Function1 component has an in serviced, which in turn must then occur notafter the Queue2 component has a push serviced.In an implementation, the component services cannot occur concurrently, since the result of oneservice is used as input to another. Therefore the phrase `not after' can be read as `before', whendesign and implementation issues arise. Designers can interpret the speci�cation as saying that theinternal pop occurs before the internal in which occurs before the internal push, which all result fromone external process1 request. This property is not an explicit part of the object oriented semantics



CHAPTER 4. FORMAL OBJECT ORIENTED ANALYSIS: THE PRACTICAL ISSUES 113which do not specify how internal state transitions are achieved.II) Synchronisation of Internal RequestsConsider a system of two stacks and one queue component. Informally, the behaviour of such a systemis de�ned as follows. Natural numbers are pushed onto the queue. They can be moved synchronouslyto both the stacks and separately popped o� either stack. This is precisely stated in the OO ACTONE speci�cation of class QSS.CLASS QSS USING Queue, Stack, Nat OPNSSTRUCTURES: S-QSS<Queue, Stack, Stack>DUALS: pop1 -> Nat, pop2 -> NatTRANSFORMERS: push<Nat>, moveEQNS S-QSS(Queue1, Stack1, Stack2).push(Nat) = S-QSS(Queue1.push(Nat), Stack1, Stack2);S-QSS(Queue1, Stack1, Stack2).pop1 = S-QSS(Queue1, Stack1.pop, Stack2) AND Stack1..pop;S-QSS(Queue1, Stack1, Stack2).pop2 = S-QSS(Queue1, Stack1, Stack2.pop) AND Stack2..pop;S-QSS(Queue1, Stack1, Stack2).move =S-QSS(Queue1.pop, Stack1.push(Queue1..pop), Stack2.push(Queue1..pop))ENDCLASS (* QSS *)The `synchronisation' of the two Stacks on the move operation is represented by the state labelexpression Queue1..pop appearing twice in the state label expression on the right hand side ofthe move equation de�nition. The result of Queue1 popping o� a value is used by both the Stacks.In the OO ACT ONE speci�cation there is no explicit statement that both Stacks synchronise. Thissynchronisation is one way the designer of a solution to the system can guarantee that the same valueis given to both components: it is not the only solution.4.2.6.3 Timing is a Design ConcernThis section has shown that timing is not directly an analysis concern. It is necessary that anobject oriented requirements model can be interpreted by designers and so an informal mechanismfor extracting timing properties with respect to internal interaction between peer components hasbeen formulated. However, OO ACT ONE does not contain explicit timing mechanisms. The timingaspects of an object oriented requirements model are deliberately abstracted away from.4.3 Other Object Oriented Analysis Issues4.3.1 ConcurrencyIn OO ACT ONE, the servicing of a request is de�ned as the evaluation of a state label expression.The subexpressions of a state label expressions may be evaluated independently, and this can begiven a concurrent interpretation. Concurrency is examined in more detail in section 6.5.



CHAPTER 4. FORMAL OBJECT ORIENTED ANALYSIS: THE PRACTICAL ISSUES 1144.3.2 Communication: Synchronous vs AsynchronousAll computing systems exhibit communication properties. There are fundamentally two di�erent com-munication models: synchronous and synchronous. During object oriented analysis and requirementscapture, it is important that the communication model is abstracted away from.4.3.3 Exception HandlingUnspecified class members are used to model exceptions. When behaviour is required which cannotbe modelled in the requirements without making implementation decisions then the analyst can choseto model this behaviour using an unspecified value. It is important that these exceptions are notdealt with prematurely by the analyst. The unspecified mechanism allows the analyst to abstractaway from how exceptions are implemented to identify only what exceptions must be considered atlater stages of development.4.3.4 Nondeterminism and Probabilistic BehaviourNondeterminism is a powerful speci�cation facility. Until now, the systems we have analysed have allbeen deterministic. The reason for ignoring nondeterministic behaviour until this stage is that it isnot necessary to change the semantics to record this type of behaviour. Nondeterminism is recordedby commenting TRANSFORMER operations as being INTERNAL. An INTERNAL operation need not beinitiated through the external interface of the object in question.In the ACT ONE executable model, the INTERNAL transitions are treated no di�erent from theothers. However, in a concurrent model of the requirements, the INTERNAL transitions can occur inde-pendent of the environment in which the object in question is found. The commenting of transitionsas INTERNAL keeps the semantics simple whilst ensuring that the designers are explicitly informed ofthe nondeterminism.Nondeterminism is used in two ways:� To model probabilistic behaviour.� To specify implementation freedom.Both these aspects are important in the analysis of a system.4.3.4.1 Probabilistic BehaviourConsider the CoinToss class, de�ned below.CLASS CoinToss USING Bool OPNSSTRUCTURES: Coin<Bool>ACCESSORS: Toss -> BoolTRANSFORMERS: HorT<Bool> (*INTERNAL*)EQNS CoinToss.HorT(Bool1) = Coin(Bool1); Coin(Bool1)..Toss = Bool1ENDCLASS (* CoinToss *)



CHAPTER 4. FORMAL OBJECT ORIENTED ANALYSIS: THE PRACTICAL ISSUES 115A valid implementation of this OO ACT ONE class can, for example: always respond true inresponse to a Toss request, or always respond false, or alternate between true and false responses(to name but three options). When nondeterminism is used to model random behaviour then theanalyst must record the probabilisitic requirements outside the OO ACT ONE framework of speci�ca-tion. (It is beyond the scope of this thesis to examine how this can be done: [63] gives one particularview of probabilistic semantics which may be useful in this respect.)4.3.4.2 Implementation IndependenceConsider the behaviour speci�ed by class SysQSS, below.CLASS SysQSS USING Queue, Stack, Nat OPNSSTRUCTURES: SystemQSS<Queue, Stack, Stack, Bool> DUALS: pop1 -> Nat, pop2 -> NatTRANSFORMERS: push<Nat>, move, PickStack<Bool> (*INTERNAL*)EQNS SystemQSS(Queue1,Stack1,Stack2,Bool1).push(Nat1) =SystemQSS(Queue1.push(Nat1),Stack1,Stack2,Bool1);SystemQSS(Queue1, Stack1, Stack2, Bool1).pop1 = SystemQSS(Queue1, Stack1.pop, Stack2, Bool1) ANDStack1..pop;SystemQSS(Queue1, Stack1, Stack2, Bool1).pop2 = SystemQSS(Queue1, Stack1, Stack2.pop, Bool1) ANDStack2..pop;Bool1 => SystemQSS(Queue1, Stack1, Stack2, Bool1).move = SystemQSS(Queue1.pop,Stack1.push(Queue1..pop), Stack2, Bool1)OTHERWISE SystemQSS(Queue1.pop, Stack1, Stack2.push(Queue1..pop), Bool1);SystemQSS(Queue1,Stack1,Stack2,Bool1).PickStack<Bool2> = SystemQSS(Queue1,Stack1,Stack2,Bool2)ENDCLASS (* SysQSS *)This class models implementation freedom: when a move request is serviced, the implementer isfree to decide how the system chooses which Stack component the Queue should transfer its data to.4.3.5 Active and Passive ObjectsIn most object oriented systems it is common to distinguish between active and passive objects:� An active object is likened to a process whose existence persists over a sequence of events.� A passive object is likened to a piece of data which ows between active objects.In this thesis, this potentially confusing distinction is not made: the active and passive conceptsseem to have arisen from implementers attempting to conceptualise objects in non-object orientedterms.When using OO ACT ONE, there is a more useful division than active and passive: static anddynamic. Static objects are those whose classes do not o�er transformer attributes. Dynamic objectsare those whose classes do o�er transformer attributes. Static objects are important because theycan be implemented as shared objects, without risk of the principle of encapsulation being broken.



CHAPTER 4. FORMAL OBJECT ORIENTED ANALYSIS: THE PRACTICAL ISSUES 1164.3.6 PersistencyWhen an object oriented system is created, a component of the system is said to persist if it isidenti�able throughout the lifetime of the system. When a transformer request is serviced, the newstate of an object may be constructed from the same components. This interpretation can be takenwhen the OO ACT ONE speci�cation is de�ned purely (see 4.2.4.2).Dynamic objects which are purely de�ned can be implemented as a �xed set of components.History dependent behaviour is then realised by the set of persistent component objects changingtheir internal state through services delegated to them (by their containing object) at their externalinterfaces.The notion of persistency is not explicit in the OO ACTONE requirements model. We recommendthat a need for persistency should be recorded in the informal parts of the requirements document.Then, a simple static analysis of the OO ACT ONE code can check to ensure that the class in questionis purely de�ned. It is not an error if the speci�cation is impure, but a warning message can be givento state that persistency cannot be guaranteed.4.3.7 Class Routines: Con�guration and CreationCreation and con�guration routines provide a means of restricting the set of initial states which anobject of a speci�ed class can attain. In OO ACT ONE, an (* INITIAL *) comment can be used toidentify the literals and structures (and possible invariants on the structures) which can be used tode�ne a newly created object. Such a comment can be used to stimulate a static analysis to checkthat all dynamically created objects are correctly initialised. (Such an analysis is beyond the scopeof this thesis.)4.4 Reviewing the OO ACT ONE Speci�cation Language4.4.1 Does It Meet Our Expressional Requirements?The fundamental requirements for an object oriented analysis language are that it provides a meansof recording relevant information which: increases problem understanding, is amenable to customervalidation, and results in a formal requirements model useful to designers. OO ACT ONE ful�ls allthese requirements.In section 2.2.3 we identi�ed `features of good analysis methods' as a list of criteria by whichanalysis methods can be judged. This section re-examines these criteria with respect to OO ACTONE.� i) Amenability to change within a stable structureThe classes, objects and object compositions, within a system, provide a stable base upon whichchanges to requirements can be easily made.� ii) Encouragement of Re-UseThree types of re-use are evident in OO ACT ONE:



CHAPTER 4. FORMAL OBJECT ORIENTED ANALYSIS: THE PRACTICAL ISSUES 117� Compositional | re-use of prede�ned components and structures.� Categorisational | re-use of behavioural characteristics as de�ned in a class hierarchy.� Experience | OO ACT ONE is simple and straightforward since it is built arounda small set of well understood concepts and precisely de�ned mechanisms. Consequently,this thesis argues that analysts can quickly gain experience in developing technique foundedon experience, rather than learning the underlying model, when coding in OO ACT ONE.� iii) Interfacing between customers and designersThe 5-model approach to speci�cation is prominent in OO ACT ONE. This approach is customeroriented in the sense that it arose from a model of customer understanding and is amenableto customer validation. The diagrammatic notations are accessible to customers, analysts anddesigners alike, whilst the underlying mathematical model provides the formal basis upon whichone coherent framework of understanding is built.� iv) Incorporating Standard Modelling TechniquesWe consider �ve standard modelling practices to be inherent in OO ACT ONE speci�cations:� Abstraction (and encapsulation) are fundamental to the object oriented model.� (De)composition is provided by STRUCTURE operations� Class hierarchy constructs are provided by explicit subclassing mechanisms.� Communication between objects is modelled as one object requesting a service of another.The service is requested so that the client can utilise the encapsulated behaviour o�eredby the server. The information that ows between the objects is de�ned by the input andoutput parameters.� Model co-ordination is prominent in an OO ACT ONE speci�cation, where there aremany di�erent views of the behaviour de�ned, which combine in a consistent and coherentfashion.� v) Having a formal basisThe OO ACT ONE language is rigorously de�ned using the O-LSTS semantics.4.4.2 Is OO ACT ONE Purely an Analysis Language?Sections 4.2 and 4.3 emphasise the number of object oriented issues which are abstracted away fromwhen using OO ACT ONE during analysis and requirements capture. The most design-like featuresof OO ACT ONE speci�cations are the STRUCTURE operations. The composition relationship is acharacteristic which arises from problem domain structure, rather than from some arbitrary structureimposed by the analysts to aid their understanding. This thesis argues that it is necessary for suchstructure to be prominent in a set of object oriented requirements.4.5 The Practicalities of Building a Formal ModelThere are three aspects of analysis which group together under the heading `practicalities':



CHAPTER 4. FORMAL OBJECT ORIENTED ANALYSIS: THE PRACTICAL ISSUES 118� Models: syntax and semantics.� Development Method: how to generate, test and change the models to achieve the bestrequirements model.� Tools: automated mechanisms for support of model building, execution, validation and veri�-cationChapters 2 and 3 have developed a number of di�erent analysis models. Section 4.5.1 de�nes amethod2 (called the skeleton approach) for the development of OO ACT ONE requirements models.4.5.1 The Skeleton Method to Object Oriented AnalysisThe whole skeleton strategy is based around the application of seven di�erent processes, each ofwhich can be applied at any time during the analysis and, with careful control, can often be appliedin parallel. These processes are shown in �gure 4.5.
yes

yes

problems?

To Parts
Apply Skeleton Method

no

no

noyes

not complete? complete?

END SKELETON METHOD

Req.
Model

ITERATE

START SKELETON METHOD

problems?

problems?

COMPLETENESS

STATIC ANALYSIS

CHECK
CUSTOMER

BACKTRACK

DETAILS
ADD CLASS

HIERARCHY
EXPAND  CLASS

SEPARATE

Figure 4.5: The Skeleton Analysis Method4.5.1.1 The Opportunistic AlgorithmThe following simple algorithm provides a framework upon which a complex analysis method canevolve.BEGIN Skeleton MethodREPEATChoose a process (or processes) from (i) to (vii)� (i) SeparationRecognise distinct and separate parts of the system and apply the skeleton approach to eachof these. Reconnect the parts after their completion.2The method is no more than a simple algorithm which can be followed when learning how to use OO ACT ONE.A proper analysis method should evolve from this very primitive starting point.



CHAPTER 4. FORMAL OBJECT ORIENTED ANALYSIS: THE PRACTICAL ISSUES 119� (ii) Expand Class Hierarchy: either� Identify a new class in the system and add to hierarchy without de�ning it as a subclassor superclass of any other classes in the hierarchy.� Identify a new class explicitly as a (sub/super)class of an already identi�ed class.� Change a class which is separate from the other classes by explicitly de�ning it as a(super/sub)class of an already identi�ed class.� (iii) Add Details to some class in the hierarchy: either� Identify literal or structure members.� Identify invariant properties.� Specify an external attribute of a class as an accessor, transformer or dual operation.� Specify the behaviour associated with an external attribute in an equation de�nition(provided it has not been previously de�ned).� (iv) Backtrack: either� Disconnect a (sub/super)class link in the hierarchy.� Delete a class which is no longer needed (perhaps because it has been superseded byanother).� For some class in the hierarchy, remove literal or structure operations.� Delete an external attribute.� Delete an equation associated with an external attribute.� (v) Check with the customer: either� Execute, using the ACT ONE dynamicmodel, one or more of the classes whose behaviouris complete. In other words, validate customer expectations of the dynamic behaviourof the system (or a component of the system) being analysed.� Present the customer with graphical views of the OO ACT ONE code: class hierarchies,structure diagrams and O-LSTSD(s). This helps to check analyst understanding againstcustomer understanding of the problem domain.Then, if the checks have identi�ed `problems' these must be noted and resolved (either bybacktracking or by adding the extra understanding gained from customer interaction).Otherwise, the classes checked are noted as being validated and marked as such in the classhierarchy.� (vi) Statically Analyse Requirements Speci�cationThe whole of the system or distinct parts (classes) can be checked for correctness using thestatic analysis de�ned in section 3.4. After a successful analysis, the ACT ONE executionmodel can be used by the analyst alone to test their understanding of the speci�cation.Problems identi�ed during the static analysis stage or the execution stage must be noted andcorrected in the model.� (vii) Check The Analysis For CompletionThe following tests must be made before the analysis can be declared complete:� Check that all customer classes (i.e. those classes identi�ed by the customer in theproblem domain) have been speci�ed in the class hierarchy.� Statically Analyse the whole system (i.e. all the separate class trees) for correctnessproperties.� Validate that the customer is happy with the dynamic behaviour exhibited by everyclass in the speci�cation (this should be done as the speci�cation is developed so thatthe �nal check is straightforward) and the relationships between them. In particularcheck the classi�cation, composition and con�guration properties.



CHAPTER 4. FORMAL OBJECT ORIENTED ANALYSIS: THE PRACTICAL ISSUES 120UNTIL analysis is checked as completeEND Skeleton MethodIt is not practical for every single change to the analysis model to be formally tested, or validatedby the customer, as they are made. It is up to the analysis manager to decide the best strategy formaking intermediate checks.During application of the skeleton approach, di�erent parts of the system will be better understoodand more completely speci�ed than others. As analysis proceeds a skeleton class hierarchy graduallyappears and this skeleton is held together by the classi�cation and composition relationships. Themeat on the bones is provided by the operation and equation de�nitions in each class.Central to the skeleton method is some means of guaranteeing that one class of behaviour is notspeci�ed many times as a result of splitting the system up into separate analysis parts. Further, theremust be some standard way of re-using already existing components, and for making newly de�nedcomponent classes available for re-use.4.5.1.2 Re-use and CostingProject managers must take into account the need for di�erent costing strategies when re-use isprominent in a development method. In an ideal environment one could pay for prede�ned componentswith the formal speci�cation acting as some sort of contract between vender and consumer. However,it is more likely that companies will develop their own libraries of classes for use in-house. Softwarere-use is appealing in principle but does lead to many di�cult questions in practice. It is beyond thescope of this thesis to examine the consequences of re-use in the environment in which the developmentis taking place.4.5.1.3 Re-use: A Note On LibrariesIn a proper object oriented development environment pre-de�ned classes of behaviour should be aseasy to re-use as the application of any other language mechanism. The library classes should belooked upon as part of the semantics of the language. Object oriented programming languages areconstructed from three parts:� The language primitives.� The re-use mechanisms.� The libraries of re-usable components.It is these three things together which combine to produce an object oriented language. Most objectoriented languages come already with library class hierarchies to provide behaviour comparable tothat provided as language primitives in larger imperative languages. Object orientation places moreresponsibility on the user to control the library facilities. Unfortunately, OO ACT ONE does notpresently have a large set of library classes.



CHAPTER 4. FORMAL OBJECT ORIENTED ANALYSIS: THE PRACTICAL ISSUES 1214.5.2 ValidationOther than the static analysis of an object oriented speci�cation the only other means of testing therequirements model is by running event sequences on the ACT ONE executable model. The eventtraces produced (in response to a sequence of evaluations) must be validated against customer and/oranalyst understanding of the requirements. In the execution of some behaviour three types of resultoccur:� 1) The ACT ONE expression is evaluated (according to the well-de�ned re-write rules) torepresent a value which has a valid object oriented interpretation:� When the operation is a transformer, the expression evaluates to a member of the serverclass represented as a literal a structure expression of the server class sort.� When the operation is a dual, or an accessor, the expression evaluates to a dual expressionof the server class� 2) The ACT ONE expression evaluates to an unspeci�ed literal value of the appropriate class.This corresponds to behaviour which must be determined at a later stage in the development.� 3) The expression does not evaluate to either of the cases above. This occurs only when thedynamic behaviour of an object results in an invariant property being broken. It is not pos-sible to guarantee that all invariants are upheld during the lifetime of a class without severlyrestricting their use. For example, invariants could be permitted only in static classes (i.e thosewithout transformer attributes). However, this restriction limits the power of expression in OOACT ONE. It is up to the analysts to test the correctness of their speci�cations with respectto invariants. Consequently, the static analysis of OO ACT ONE warns the analyst when aninvariant is used in a dynamic class. Analysts must prove that invariants are never brokenotherwise correct behaviour cannot be guaranteed.There are many di�erent ways, in theory, that invariant properties can be guaranteed. This sectionidenti�es two solutions that work in practice.� Solution 1: Test Initial States and Validate TransitionsGiven a list of initial states that an object in a particular class can be initialised to, it isnecessary to �rst check that these states ful�l the invariants. Once this is done, it is necessaryonly to check that all invariant properties are upheld across the state transitions de�ned in thetransformer and dual equations.� Solution 2: Ignore Transformers Which Result In Broken Invariant PropertiesAll transformer operations are de�ned to result in no change of state when an invariant would bebroken as a consequence of their being ful�lled in the normal way. Dual operations are similarlyde�ned, with the additional property that the unspeci�ed value of the appropriate class isreturned as the result of an operation which results in a broken invariant. This conventionguarantees that the state of an object always ful�ls the invariants de�ned on it.There are certainly better approaches to dealing with invariant validation but this is a general problemwhich was not examined in this thesis.



CHAPTER 4. FORMAL OBJECT ORIENTED ANALYSIS: THE PRACTICAL ISSUES 1224.5.3 ToolsThis thesis has presented a set of models for developing object oriented requirements speci�cationsand a method for utilising these models. However, the thesis does not present any tools for aidingthis process. Clearly, tool support is vital to all development processes. Rather than creating thesetools, this thesis identi�es the type of tools which can and should be developed as future work:� A customer friendly, animation tool, is required. This tool can be supported by the ACT ONEevaluation mechanism.� A tool to aid the analyst in the synthesis of OO ACT ONE speci�cations is required. Inparticular, some sort of library browsing facility is required whereby components can be cutand pasted in and out of a system hierarchy.� There is a need for tool support in the areas of static analysis and veri�cation.� Finally, a range of tools are required to help managers get the best out of their resources whendeveloping large requirements models.4.5.4 Analysis Style: High Level DecisionsOO ACT ONE is still in its infancy. However, already the research has identifed di�erent ways ofapplying the skeleton method, which collectively can be considered to de�ne di�erent object orientedanalysis styles. These styles are characterised by a sequence of high level decisions which are takenwhen the skeleton method is applied.The analyst's job is to achieve a mutual understanding of problem domain structure with thecustomer and to record it in a meaningful way. Analysts can inuence the representation of problemdomain structure through interaction with the customer.4.5.4.1 Achieving a Mutual Understanding of the Problem DomainThe structure of the problem domain should never be compromised to make the recording of the re-quirements suit the analyst. An analyst, on identi�cation of a complex compositional problem domain,may suggest a better way for customers to structure their understanding. This better representationmay reect a simpli�cation, but if the customer does not agree with the suggested (de)compositionthen no changes should be made. Problems arise only when customers view a problem in a very con-voluted way and therefore make it di�cult to express their requirements in a comprehensible fashion.In such a case the analysts must `educate' the customer and attempt to relay a better understandingof the problem domain (if there is one). When the customer and analyst cannot �nd a mutuallyagreeable way of understanding the problem then there is no simple way to express the requirements.Requirements capture is not complete until both customer and analyst are sure that they have acommon understanding of the speci�cation produced.Analysts are free to chose any means of capturing customer requirements. Within the skele-ton approach there is enough analyst freedom to give rise to speci�cation styles. These styles arepredominantly related to achieving a balance between:



CHAPTER 4. FORMAL OBJECT ORIENTED ANALYSIS: THE PRACTICAL ISSUES 123� Inheritance and delegation.� Re-use and coding from scratch.� Extending class hierarchies and rede�ning existing classes.� Deep-and-narrow and shallow-and-wide structures.� Bottom-up and top-down development.4.5.4.2 Inheritance and DelegationAlthough subclassing and composition are very di�erent concepts, it is common within object orientedanalysis to confuse the two notions. It is the analyst's job to remove this confusion. In the processof recording requirements an analyst is often faced with the choice of specifying new behaviour byinheriting from an already existing class, or by delegating tasks to an already existing class, as acomponent of the new class. Clearly, if the customer can distinguish between these two mechanismsof re-use, and can identify which mechanism is appropriate in each case, then there is no problem.However, when a customer is unsure it is the analyst who choses the solution.4.5.4.3 Re-Use and New Class ProductionWhen behaviour is required that is `similar to' or `related to' an already existing class, the temptationis to work around the re-usable component. This can lead to additional problems if the work neededto include the prede�ned component is more than the work which would have been needed to generatethe required behaviour from scratch. We recommend that existing classes be re-used only in two cases:� the component to be re-used is identi�ed as being a (sub/super)class of another which is alreadypart of the speci�cation� the class to be re-used has been identifed as a structure component of a class already in thespeci�cationThis is a conservative form of re-use since we do not advocate adapting components to ful�l onesneeds. A less conservative (adaptive) style is one in which nearly all OO ACT ONE code is producedfrom already existing components. In other words, pick a class as close to what is required as ispossible and adapt it until it suits. Analysts can develop a style which reects their attitude tore-use.4.5.4.4 Class Changes and New SubclassesA high level decision is often required when deciding whether to de�ne a new class as a subclass ofan already existing class or to directly extend the existing class. Each choice has its advantages anddisadvantages:� i) Using the subclass relationship de�nes an explicit relationship which is guaranteed by thesubclassing mechanism; but it extends the class hierarchy which, in general, should be as simpleand uncluttered as possible.



CHAPTER 4. FORMAL OBJECT ORIENTED ANALYSIS: THE PRACTICAL ISSUES 124� ii) Changing the already existing class keeps the class hierarchy simple but there are no auto-matic guarantees that the class maintains its old behaviour. Thus, the change may a�ect otherclients of the class (those classes which inherit behaviour from it or use it compositionally).Adopting the �rst choice has many consequences for re-use and implementation. Large complexhierarchies make re-use much more di�cult since it makes it harder to �nd the behaviour which onerequires. Also, implementing such hierarchies often has major overheads [101].4.5.4.5 Structures: Deep and Narrow or Shallow and Wide?Structure appears in the OO ACT ONE composition and classi�cation hierarchies.I) CompositionOO ACT ONE STRUCTURES de�ne the composition properties of groups of objects whose componentsare members of the same class. There are two types of style for simplifying the recording andpresentation of compositional information:� Flat and Wide Compositions:The number of levels of (de)composition is kept to a minimum.� Deep and Narrow Compositions:The number of components in each STRUCTURE is kept to a minimum.As with all analysis problems, the exact style of speci�cation depends on the customer and theirproblem domain. In all cases, independent of style, OO ACT ONE compositions should never be toowide or too deep.II) Classi�cation StructureStructure in the class hierarchy is amenable to the same kind of reasoning as the compositionalstructure. To simplify understanding of a class hierarchy it is recommended that a class should nothave too many direct subclasses (children) or direct superclasses (parents). Further, a class shouldnot be too many subclass relationships away from its root superclass.In an OO ACT ONE speci�cation a large number of separate class trees commonly make up asystem class hierarchy. There is no bene�t, in our experience, of restricting the number of trees ineach case. In fact, there are many advantages in having many smaller disconnected trees rather thanconnecting together classes into larger trees of class relationships.As with the compositional structure, it is up to the analyst to interact with the customer toachieve the best mutual understanding of the system being analysed. The analyst's own particularstyle of seeing the problem is sure to inuence the way in which the customer views the classi�cationrequirements.



CHAPTER 4. FORMAL OBJECT ORIENTED ANALYSIS: THE PRACTICAL ISSUES 1254.5.4.6 Bottom-up vs Top-downObject oriented analysis is both bottom-up and top-down. Already existing classes are synthesisedinto the requirements model, whilst parts of the problem domain which are not well understood aredeconstructed in an attempt to improve understanding.An object oriented analysis technique must be exible so that problem domains which are wellunderstood can be analysed compositionally whilst those less well understood can be analysed de-compositionally. A certain style of speci�cation will result when an analyst is involved in the samesort of problems over and over again. Certain components will be used repeatedly and the way theyare incorporated in the new speci�cation will be standardised by a particular analyst. Contrastingly,analysts who face a wide range of problems will build up a style of speci�cation built around methodrather than components. These analysts will, with experience, acquire general techniques.4.5.5 General Analysis PrinciplesThe following is a list of principles which analysts should adhere to:� The customer is central to analysis. The requirements model must be customer led.� Keep things simple.� Specify for re-use, and re-use pre-de�ned components wherever practical.� Test any changes to the speci�cation which alter customer and/or analyst understanding.� Comment all non-functional requirements:� Unspeci�ed behaviour and the reason for its appearance.� Nondeterministic behaviour.� Persistency within a pure OO ACT ONE speci�cation.� Record all analysis decisions which re-structure customer understanding, together with customerreaction to such changes.� Never rush analysis: it is the most important part of software development.4.6 FOOA and Object Oriented Design4.6.1 Importance of StructureExplicit structure does not make a speci�cation into a design. The structures in an operationalspeci�cation are independent of speci�c resources in an implementation environment, whereas designsactually refer to speci�c resource allocation in a �nal implementation. Furthermore, the identi�cationof the structures, and the interaction and relation between them, is problem domain dependent: theyare chosen for the way in which they model customer understanding.This thesis argues that it is impossible within an object oriented framework to acquire problemdomain understanding of requirements free of structural bias. Even if this was possible, it would



CHAPTER 4. FORMAL OBJECT ORIENTED ANALYSIS: THE PRACTICAL ISSUES 126be very di�cult to specify them formally since all formalisms introduce internal structure to decom-pose complexity3. Structure is the only solution to capturing the requirements of complex systems.The structure explicit in an OO ACT ONE speci�cation is not a necessary part of the design orimplementation, but it does act as a good basis upon which a solution can be developed.4.6.2 Executable ModelsExecutable formal requirements models are easier to communicate with the customer. Executablespeci�cations make rapid prototyping straightforward and automatic. They improve the processof customer validation by allowing walk throughs of dynamic system behaviour. Test traces havetheir limitations but program proving, the other main approach to validation, has other well knowninadequacies too [3, 8]. Executable speci�cations are necessary, at least until the state-of-the-artin proving speci�cation correctness is further developed. From a project manager's point of view,executable models provide additional advantages with respect to early results and accountability. Anexecutable speci�cation is a clear statement of the progress being made during analysis.4.6.3 Constructive vs Unconstructive Speci�cationsThe debate for and against constructive requirements models has been proceeding in a wide range ofpublications without any agreement between the two factions. The non-executable advocates concedethe di�culties of relating speci�cations to a customer, but argue that better solutions should be soughtother than presenting the customer with an executable model (see [64], for example). It is arguedthat, in general, a speci�cation written in a notation that is not directly executable contains lessimplementation detail than an executable model. Matching such a speci�cation to user requirementsis, it is claimed, more straightforward since there are no additonal algorithmic details necessaryfor executability4 . It is also claimed that executable speci�cations unnaturally hinder designers byconstraining the possible choice of implementations [78]. This thesis argues that it is useful to providea concrete structure in which designers can begin their work.This thesis takes an executable approach to requirements capture. It is the only approach, cur-rently, of making a formal object oriented analysis model which is amenable to customer validation.Executing a requirements model is a vital part of customer validation [131, 107].4.6.4 Design and Design Transformations: A PreviewThe structure of an OO ACT ONE speci�cation is problem oriented, not necessarily implementationbased. During design, the speci�cation is subjected to transformations which preserve external be-haviour characteristics but alter or extend the internal structure to yield an implementation oriented3Axiomatic methods do not appear to bias structure in as extreme a manner as other speci�cation methods, butthese have proved to be limiting in the type of behavioural characteristics they can de�ne.4In the object oriented paradigm, this argument seems less convincing than when applied to traditional approachesto software development.



CHAPTER 4. FORMAL OBJECT ORIENTED ANALYSIS: THE PRACTICAL ISSUES 127architecture for the system being modelled. Much work has been carried out in developing and au-tomating these correctness preserving transformations (CPTs). The work by Partsch [96] argues thecase for CPTs in some detail. In chapter 5, we de�ne a set of CPTs which work on full LOTOSspeci�cations (with the ACT ONE as it is generated from the OO ACT ONE requirements model).We develop only a small set of CPTs, but these su�ce to illustrate the general principles.Using CPTs means that problem domain structure need not be compromised in a requirementsmodel. The initial requirements can be optimized for clarity, re-use, maintainability and, above all,customer accessibility. Design transformations manipulate this structure to achieve implementationideals based on e�ciency, use of available resources and current programming practices. For anobject oriented formal development approach to become widely used, CPTs must become standardisedelements of design, and tool support must be provided to control the sequential application of suchtransformations.



Chapter 5Formal Object Oriented Design(Using LOTOS)This chapter is structured as follows:� Section 5.1: Introducing DesignThis section introduces design. It argues that design is di�cult because it is a combinationof artistic and scienti�c abilities. Design quality is introduced, and the important di�erencebetween functional and nonfunctional requirements is briey explained. Finally, software designis introduced: a short historical background is given, together with the identi�cation of problemsunique to software design and statement of intent to reuse work in other design areas, wheneverpossible.� Section 5.2: Learning From other Design AreasThis section compares software design and other types of design. Software design is shownto have the problem of coping with change. Design principles and techniques, common to alldesign areas, are identi�ed: the importance of language, the role of structure, the advantage ofre-use and the necessity of testing. Finally, this section identi�es engineering as the area outsidecomputing most closely related to software design.� Section 5.3: Object Oriented Software DesignSection 5.3 examines object oriented software design. Initially it gives an overview of softwaredesign by listing a set of general software design criteria and principles. Then, an explicitde�nition of the roles of object oriented designers is proposed. Finally, testing, veri�cation andcorrectness preserving transformations (CPTs) are introduced.� Section 5.4: Object Oriented Design with LOTOSThis section considers object oriented design with LOTOS. We argue that LOTOS is a goodcandidate as a formal design language, even though it was not developed for this purpose.The importance of balancing the roles of the process algebra and ADT parts of LOTOS isstressed. Finally, the problems in de�ning an object oriented style of speci�cation in LOTOSare considered. 128



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 129� Section 5.5: FOOA As Input To Formal Object Oriented DesignSection 5.5 formulates the initial step from object oriented analysis to object oriented design.Four di�erent translations for mapping from OO ACT ONE to full LOTOS are considered. Anobject oriented interpretation of the �rst LOTOS speci�cations, produced using two of thesetransformations, is then given. The initial step from analysis to design is shown to be concernedwith making concrete the semantics of object communication and interaction. Two models ofcontrol ow are chosen for particular attention: a remote procedure call model and a parallelmodel.� Section 5.6: Correctness Preserving Transformations (CPTs): Formalising DesignAfter introducing CPTs with respect to design in general, and design with LOTOS in particular,the fundamental concepts are reviewed: design trajectory, implementation relation, veri�cationand CPT formulation. Internal and external properties are distinguished and this leads to asimple separation of CPTs into functional and nonfunctional categories. The importance ofwell de�ned non-standard semantic views of LOTOS (and their graphical representation) isre-iterated. Finally, the CPT design trajectory is introduced as forming the basis of an idealobject oriented design method, which this thesis goes a small step towards achieving.� Section 5.7: A Set of Object Oriented Design Decisions as CPTsThis section formulates �ve types of transformation for application during the design stage ofFOOD: static structure expansion (decomposition), compositional restructuring for re-use, re-structuring for distributing control, removing explicit nondeterminism and removing parallelism.In each case, the correctness of the transformations is discussed.5.1 Introducing DesignDesign, in general, is viewed as an artistic or creative process which combines natural ability withexperience. It is found in many spheres of human activity, but it is far from being well understoodand often seems inaccessible to the layman. The principles and practices which are applied to thedesign of software have a strong a�nity with more traditional engineering: there is a subtle blend ofscienti�c criteria with intuitive decision making.The question of why design is di�cult needs to be addressed. Most complex systems seem to havebeen built for a particular purpose. The designers of such systems obviously have this purpose inmind throughout the whole design process. In a sense, this type of design can be said to be targetted.5.1.1 Design: The Creative ProcessDesign is a creative process concerned with decision making1. Designers look for solutions to problems.They search a solution space to arrive at a �nal design. The way in which the search is carried outmay be methodical, but never deterministic. To design is to blend the old with the new: designers1Thus, to do something by design means to do it by choice.



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 130must use their experience and previous work (the old) to �nd a solution to their problem (the new).The creative side of design can be categorised as mixing three di�erent modes of work:� 1) Creating new components which are variations on already existing components and combiningthese new components in well-accepted ways (or structures).� 2) Finding new ways of using components or combining components.� 3) Gaining insight into a problem and building a design (component) to utilise this insight.Most designers work in the �rst mode. For example, car designers create new cars by designingsome new parts, utilising existing parts, and combining them in well established ways. Fewer designerswork in the second mode. In the construction industry, for example, buildings with original structure(or layout) can be created from standard components. Building designers are aware of the wayin which standard components can be combined and tend to concentrate on structure rather thanindividual components. The third mode of design is the rarest | perhaps these types of designersare better termed inventors?5.1.2 Purposeful DesignIn purposeful design, the designers have some goal to aim for and this goal is evident throughout thedesign process. Designers are involved in each design step in an attempt to reach thir goal. Central topurposeful design is the customer requirements. There are two extremes to the way in which designerscan develop understanding of the requirements:� Designers perform their own problem analysis to develop an initial requirements model.� Designers accept a requirements speci�cation in which the requirements are completely andconsistently recorded.In practice, design occurs somewhere between these two extremes. This thesis argues that designshould not involve an analysis of the problem domain, although it does involve analysis of the re-quirements model. It is the role of designers to restructure the requirements model to best use theresources in the target implementation environment.5.1.3 Design Quality and CriteriaA design provides, as an end product, one possible solution to a problem. The design describes thestructure of the solution by de�ning:� A set of components.� The relationship between components.� The method of construction, i.e. a means of realising the component relationships.Given a design, it is necessary to be able to assess its quality. In other words, what is required is aset of criteria by which a design can be judged. The �rst and foremost test must be whether it ful�ls



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 131the requirements as speci�ed by the analysts. Designs which do not ful�l their requirements are saidto be unacceptable.Requirements are traditionally divided into two groups: functional and non-functional (for a morecomplete analysis of the di�erence between these groups see [67]). Functional requirements are thosespeci�ed in the requirements model. Non-functional requirements are usually concerned with costs,physical constraints, previous practices, political issues, etc : : : . A design which ful�ls both type ofrequirements is said to be acceptable. Given two, or more, acceptable designs we must ask how adesigner chooses between them. In such cases it is di�cult to be objective. To say that one acceptabledesign is better than another is a subjective statement based on the (usually informal) criteria uponwhich judgement is made. In some less technical environments it would be called taste.5.1.4 Introducing Software Design5.1.4.1 A (Very) Brief History Of DesignIn the beginning, `programmers' analysed, designed and coded (they still do, in some instances). The1970's saw the beginning of structured programming [45, 127, 44], which identi�ed the need for amethod to software production (coding). Structured programming evolved into the widely used setof di�erent, though fundamentally similar, structured design methods. By the 1980's, structureddesign methods were widespread and their usage well documented [80, 94, 27, 36, 51, 41]. At thispoint structured designers designed and analysed2. The appearance of object oriented analysis anddesign methods, in the late 1980's and early 1990's [31, 25, 26, 13, 101, 84], were a consequence ofthe acceptance of object oriented principles within the programming community, and the transfer ofthese principles to the earlier stages of software development.5.1.4.2 Software Design: Too Di�cult For Words?Software designers are faced with a unique set of problems:� The requirements they are given make up a set of the most complex systems ever created byman.� Software requirements are dynamic.� Software design tools and methods are accessible to anyone with little experience in softwaredevelopment. When bad designers apply such methods, it is often the methods which getblamed for the resulting chaos. Software design is a complex process. The tools and methodsare important, but designers must understand the underlying complexity of what they are beingasked to produce and the principles behind the methods they employ. This is not always thecase. Complex software designs can be produced very simply, but complex software designswhich ful�l their requirements are not so simple to develop.2Many of them also coded.



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 132� Software designers work in a highly dynamic environment. As hardware capabilities improve andsoftware requirements grow, the tools which designers are expected to use become increasinglymore powerful (and complex). Designers are faced with a dilemma. They can either:� Stick with one method, become familiar with it and work within its limitations.� Continually evolve their methods to cope with all the new research on software develop-ment.� Change methods and techniques to suit the problem at hand.Each of these approaches has its advantages and disadvantages. Clearly, no matter which choiceis made, designers cannot be oblivious of the dynamic nature of their working environment.5.1.4.3 Software Design: Help Is At HandSoftware designers have two advantages over other types of designers. Firstly, software is pliableand can be manipulated so much more easily than other more concrete designs. Secondly, many ofthe other problems facing software designers have been faced by other types of designers in a widerange of problem domains. Software design is a new discipline, but many of the same principles andtechniques used in other design areas are applicable in software development.Design, in general, is about understanding requirements, understanding solution space, transform-ing structure and verifying design against requirements. A design method helps to co-ordinate theseactivities.5.2 Learning From Di�erent Design Areas5.2.1 Allowing For Change: A Unique ProblemSoftware design is the only discipline in which designers expect the requirements they are given tocontinually change. In other areas, designers may be asked to extend their designs to incorporatenew requirements, but only in computing are designers regularly expected to change their designsto accommodate requirements alterations. In other areas, designers consider such changes a majorproblem. In software design, such changes are the norm.Perhaps wrongly, software engineering is seen as being inherently exible: it is all too easy tochange a few lines of code! This is true, but it is not easy to control the changes and to understandtheir consequences. The extremely pliable nature of software is both an advantage and a disadvantage.The dynamic nature of software requirements is a persistent problem. Changes in requirements occurduring the design process, through the coding, and after the \�nal" product has been completed.Correcting mistakes and extending the software, otherwise known as maintenance, is an unendingprocess. It is the compliancy of software which makes this possible. Problems arise because this isadversely taken advantage of by programmers. Complex software systems are prone to being madeincomprehensible by uncontrolled change. Designers can, and should, play an important role inpreventing this from happening.



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 133The object oriented development strategy advocated in this thesis enforces controlled change.Designers should not be given a system (or parts of a system) to design until the requirements arefully understood and unlikely to change. In this way designers can work independent of analysts.Certainly mistakes will be made, but these are the analysts' responsibility, not the designers. Thecorrection of mistakes in the requirements model should be easy to �lter through to the design,provided the initial transformation to design maintains a mapping between components, and thesubsequent design decisions are well documented. Similarly, if the requirements model is de�ned withmodi�ability and extendibility in mind, the resulting designs should also exhibit these features (tosome degree).5.2.2 Identi�cation of General Techniques and PrinciplesThe central theme of design is structure management. Like analysts, designers manage complexity byenforcing structure on the way in which behaviour is represented. (The di�erence between these twodevelopment stages is that analysts work solely with problem domain structure, whilst designers workwith structure which, at each stage of design, is a �ne balance between problem domain and solutiondomain architectures). Consequently, some of the techniques and principles evident in analysis arealso evident in design:� The importance of notation (language of expression).� The importance of structure: hierarchical and con�gurational.� The role of re-use.� The ability to test a model against requirements.5.2.2.1 Design LanguageDesign is concerned with communication. Consequently, the design language is fundamental to thedesign process. Language is any means of communication through the use of conventional symbols.Everyone is familiar with their own natural language. What is surprising is the number of otherlanguages from which people can acquire some information: for example, maps of all various types,architectural plans, furniture construction instructions, mathematical equations, chemical formulae,pages of music, chess notation, recipes, etc : : : .Certainly there will always be a relationship between natural language and other forms of rep-resentation since natural language shapes the way in which we can think. There is always a goodreason why natural language is not used to communicate certain types of information:� Natural language is not good for communicating spatial properties.� Natural language is too expressive and often what is required is a simpler notation.� Natural language is open to interpretation.Languages are developed to make the recording of certain information simple, elegant and concise,whilst making the representation of other information very di�cult. Language is the most importanttool for abstracting away from unimportant information. Abstraction is fundamental to all areas ofdesign.



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 1345.2.2.2 Structure: (de)compositionThe doctrine \divide and conquer" is central to all human activities and can be applied particu-larly well to design processes. Targetted design involves taking a set of requirements and producingan object which can be said, in some way, to ful�l these requirements. Designers decompose a re-quirements model to achieve a structured understanding. All designers follow (or advocate in part)repeated application of the \divide and conquer" maxim. Structured requirements aid the process ofdecomposition by providing a natural means of initially decomposing a problem. Design is also aboutcomposition: putting components together to form new structures applicable to the solution domain.5.2.2.3 Re-useAll designers re-use elements of their working environment: experience, methods, structures and com-ponents. Software designers must learn from other areas in which re-use is prominent. This learningcan be passed on to a community of designers when it is incorporated in a general design method.The main form of re-use advocated for the object oriented design stage of FOOD is the repeatedapplication of correctness preserving transformations. Designers are then re-using well de�ned waysof taking designs from the abstract to the concrete. Component re-use is more prominent in theanalysis and implementation stage of FOOD.5.2.2.4 TestabilityAll designs must be tested against requirements. In many design areas these tests are informal anddi�cult to guarantee. Software designs are very di�cult to test because the requirements which theyare developed to ful�l are usually very complex. Rapid prototyping and modelling are well acceptedways of testing. This thesis shows that formal object oriented design is particularly well suited torapid-prototyping.5.2.3 Software Design and EngineeringSoftware design is often called software engineering. This is a reection of the similarities between theroles of software designers and engineers of all disciplines. Engineering, in general, has well establishedmethods which are governed by physical laws. Engineers learn to employ standard means of repre-sentation. Systems being engineered can, in general, have their approximate behaviour determinedthrough analysis of the design documentation. Standard mechanisms and tools exist for constructingsolutions from many types of engineered design.Rather than expanding on the engineering analogy, this thesis acknowledges that software devel-opment should be extended to reect the practices evident in engineering disciplines. In particular,formal techniques of software development are lacking in development method. Formal methods arereally a set of models and tools which are usually distinct from a particular method (way of usingthe models and tools). Engineering balances method with the underlying models (based on physicallaws and mathematical systems) in a way which software designers should attempt to emulate.



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 1355.3 Object Oriented Software Design5.3.1 Overview of Software DesignRather than reviewing a wide range of particular software design methods, whose main role is to gofrom problem domain structure to solution domain structure, this section borrows an approach byMeyer [84] by identifying criteria for evaluating design methods and stating the principles upon whichgood software design should be based.5.3.3.1 Design CriteriaThe criteria for judging design methods are similar to the criteria for judging analysis methods (seechapter 2):� Design languages must incorporate explicit structuring mechanisms.� Design methods must encourage a structuring in which there are components to match elementsin both the problem domain semantics and solution domain semantics.� Design methods and models must combine in a consistent and coherent fashion.� Design methods must be exible to allow for designer creativity.� Design methods must facilitate re-use and encourage the rapid development of experience.5.3.3.2 Design PrinciplesWhen communicating complex ideas, it is important to keep things as simple as possible. Theunderlying principle is therefore to make the �nal design only as complex as the requirements demand,and to make the process of achieving this design as simple as possible to understand.Most software development methods recommend the following as a means of reducing complexity:� Strong cohesion.� Weak coupling.� Well de�ned interfaces between components.� Encapsulation of components.� Limiting the number of components at each level of abstraction.Re-use is also a prominent feature of design. It is argued that re-use aids understanding. Thedi�erent types of re-use in software engineering are well documented: [59] provides a good overviewof the subject. This thesis advocates re-use at all stages of software development.5.3.2 Comparing Object Oriented Design and Object Oriented Analysis.We have argued that object oriented development is superior to other development methods becauseof the conceptual integrity between problem domain and solution domain. In particular, we havestated that the problem domain structure should be present in the design. This begs the question:



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 136what does an object oriented designer do if the structure is maintained throughout the whole objectoriented development method? In answer to this question, we identify four responsibilities of anobject oriented designer:� The removal of nondeterminism.� The concrete realisation of the abstract object oriented concepts as speci�ed in the requirementsmodel.� The restructuring of requirements to suit an implementation environment.� Veri�cation of design against requirements.Each of these responsibilities are examined in the following sections: 5.3.3 to 5.3.5.5.3.3 Removing NondeterminismIn chapter 5, two types of nondeterminism arise from the speci�cation of probabilistic behaviour andimplementation freedom in the requirements model. Designers must remove both types.Removing probabilistic nondeterminism involves specifying the probabilistic requirements in somestandard way which is amenable to immediate coding. This type of design step is not examined in anydetail in this thesis. The analysis method in chapter 4 identi�es a means of recording the probabilisiticbehaviour which separates probabilistic properties from other behavioural concerns. Consequently,these less-abstract properties can be abstracted away from during design. It is beyind the scope ofthis thesis to investigate the design and implementation of probabilistic behaviour.Removing the nondeterminism due to implementation freedom in the requirements is one of themajor responsibilities of design. Analysts are encouraged to o�er sets of alternate permissable be-haviours from which a designer is required to choose one particular solution. One way of removingthis type of nondeterminism is speci�ed by the Rend CPT, de�ned in section 5.7.4.5.3.4 Realising the Abstract Object Oriented ModelThe object oriented requirements model must not specify implementation concerns. An analyst isnot concerned with whether the objects are going to be implemented as, for example, concurrentprocesses (on distinct processors), imperative records or Ei�el class instances. At the simplest level,the analysis model does not even state how objects communicate with each other, or how their stateis realised. The designer must know the way in which the abstract semantics in the requirementsmodel can be mapped on to the target implementation language semantics.5.3.5 Restructuring The Requirements To Match An Implementation Environ-mentRestructuring has two main goals:� To facilitate re-use of implementation code.� To take advantage of the high level language constructs in the implementation language.



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 1375.3.5.1 Restructuring For Re-useA avour of the designers role in the process of restructuring for re-use is illustrated by the twoexamples in �gures 5.1 and 5.2.
Imp(A1)

Imp(C)Imp(C)
Imp(A1)Imp(A1)

Imp(C)

CA2
A1BA1

A2 A3

match

BA

Remove StructureAdd StructureEXAMPLE ONE

Design

Implementation match
matchFigure 5.1: Restructuring for Re-use: A Design SequenceIn example one, in �gure 5.1, the designer has identifed two re-usable implementation componentswhich provide part of the behaviour in the �rst design. Implementation component A1 provides partof the behaviour of design component A. Implementation component C provides all of the behaviourof design component B, together with some of the behaviour of A. The designer can restructure thedesign to utilise the already existing components, and make the job easier for the coders. The �rstdesign step is to decompose A (i.e. add structure) so that one of the design subcomponents matchesthe implementation component A1. In this step the designer also structures the other subcomponentinto parts (A2 and A3) in anticipation of the next composition step. The next design step is tocompose design components A3 and B to make a match with implementation component C. At thispoint of the design, the implementers must code only one new component, an implementation of A2,and combine three components, namely A1, A2 and C.Example two, in �gure 5.2, represents a branching in the design.

QPO

Imp(R2)
Imp(O)

Imp(R2)
Imp(O)

Imp(O)
Imp(R2)

R

Add StructureAdd StructureEXAMPLE TWO
Design Two

Design One

R1 R2

Design Two’

match

matchFigure 5.2: Restructuring for Re-use: A Design ChoiceThe designers are aware of two components which each provide a part of the behaviour speci�edin the design. However, the two components cannot be used together (perhaps because of someconstraints in the implementation environment). The designers would like to re-use at least one ofthem, and so must choose which design trajectory to follow (both involve adding structure).Example two also illustrates a more complex design trajectory. Consider Design Two as the initial



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 138design. A `small' part of the design, namely O, is directly implementable (i.e. a piece of pre-writtencode exists). However, a di�erent implementation component, represented as Imp(R2), provides alarge amount of behaviour of the design components O, P and Q. The designer ignores the obvious re-use of component O and restructures the design to �nish with stage Two' (via stage One). These typesof restructuring design steps are facilitated by the correctness preserving transformations de�ned insection 5.7.1. and 5.7.2.5.3.5.2 Restructuring For Implementation Language UtilisationThe implementation language which the designer is aiming towards may o�er high level constructswhich the designer must attempt to utilise. The implementation environment may o�er, for example,concurrency, distributed processing, multiway synchronisation or sharing. Designers must structuretheir designs to make these properties explicit in the design, so that there is a better match with com-ponents in the implementation language. The correctness preserving transformation Dist, speci�edin section 5.7.3, performs this type of role.5.3.6 Veri�cation and Correctness Preserving Transformations5.3.6.1 The Need For FormalityThe most important role of the designer is to verify that the designs produced ful�l the requirements.Formal requirements models and formal designs are essential in improving the veri�cation process,and making the customer (and software producer) con�dent in the �nal product. Given a formalrequirements model, the general veri�cation of any given formal design against the requirements isvery di�cult and, except in the most simple circumstances, impossible to guarantee in the presentdevelopment environment. However, all is not in vain. Designers can be encouraged to follow a designtrajectory in which the design evolves in a number of stages. Each stage can then be veri�ed againstthe original requirements model.The design trajectory method works for the following reason. The �rst design can be veri�edagainst the requirements. Then this design can be manipulated to achieve the next design, and soforth. Provided each design is veri�ed against the previous one, by induction, the �nal design isveri�ed against the original requirements. (Note that the correctness relationship must be transitive.)Following a design trajectory does not make the veri�cation process at each stage of the design anyeasier. For example, a designer can make any number of complex changes between each stage. In suchcases, designers are back to the original problem: verify any given design against the requirementsmodel. Consequently, most design trajectories restrict the type of changes that can be made at eachdesign stage.Correctness preserving transformations (CPTs) take this restriction one step further. Designerswhich restrict themselves to using CPTs do not need to do any veri�cation at all! The CPTs arede�ned, and proven, to guarantee that, if a design, D1 say, is transformed by a CPT into anotherdesign, D2 say, then some properties of D1 are guaranteed to be ful�lled by D2.



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 1395.3.6.2 The Advantages of an Object Oriented EnvironmentThe speci�cation of CPTs is not easy. Designs go from the abstract to the concrete. CPT development,in an object oriented framework, is aided by consistency in the underlying semantic model at all levelsof abstraction. A major di�culty is in identifying transformations which are used throughout thedesign process, and formally de�ning them as CPTs. Another di�culty in de�ning such a designtrajectory is in verifying the �rst design against the requirements model, especially if the semanticsof the two models are very di�erent.The approach taken in this thesis means that the original requirements model is directly incor-porated in the �rst design. The ACT ONE model of the object oriented requirements is carried overto the initial full LOTOS design speci�cation. Further, the CPTs are de�ned only on the object ori-ented LOTOS speci�cations which, by de�nition, contain the original ADT requirements model. Thismakes the speci�cation of CPTs much easier than in the general case, where they must be de�ned onthe domain of all valid LOTOS speci�cations.5.4 Object Oriented Design with LOTOS5.4.1 Design in LOTOS5.4.1.1 An Overview Of Design and Veri�cationLOTOS may not appear, at �rst glance, entirely appropriate for formal software design. It was devel-oped for use in the area of standards (particularly service and protocol speci�cation) and consequentlyits semantics is abstract: the speci�cation of standards must be implementation independent so thatmanufacturers are not restricted in the way they can develop products to ful�l the standards. Man-ufacturers must permit testing of their products against standards, without having to give access tointernal details. Thus, most conformance relations in LOTOS have been de�ned to be observational[10]. Veri�cation of LOTOS designs is not restricted to `black box' testing. Designers have completeviews of the designs before and after each design stage. Thus, the conformance realtionships used bydesigners need not be restricted to being observational in nature.5.4.1.2 Design Is About StructureInherent in the design process is the notion of structure. Design is the process of creating a frameworkupon which a set of requirements can be realised. Design languages must have explicit structuringmechanisms. An advantage of software design is that the requirements are (formally) speci�ed andas such will be structured. This gives designers an initial framework from which they can gainunderstanding of the requirements, and on which they can start to create a design. An object orientedrequirements model is even more advantageous since the requirements model structure is likely toprovide a good framework on which to start the production of an object oriented implementation.There are two types of structure which are fundamental to design:



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 140� HierarchicalHierarchical structure is one in which elements of the design are related by an ordering. Inobject oriented design, subclassing between classes and composition between objects de�ne twodi�erent types of hierarchical relationship.� Con�gurationalCon�gurational structure is one in which elements of the design are connected by relationshipswhich do not have an implicit ordering.LOTOS provides facility for de�ning both types of structure property. Consequently, LOTOSful�ls one of the necessary (but not necessarily su�cient) conditions for a language to be suitable forsoftware design: it must support structured speci�cations.5.4.1.3 Software Design Is About Controlling ChangeAnother aspect of software design is that the designs must be manipulatable. Designs must beamenable to change so that a design trajectory is simple to follow. This is certainly true of LOTOS,but pliability is only half the story. The manipulations must be controllable: the reasons for makinga design change must be fully understood, and the consequences deterministic.All structured design methods (including object oriented approaches) argue that their techniquesare advantageous because changes can be kept as local as possible. Often they identify the need onlyto change one component of the design at a time. Certainly LOTOS o�ers this type of local changefacility: ACT ONE sorts and LOTOS processes can be treated as modular elements. However, designis not just about localising change. For example, a high level design decision might be to changethe server-client communication model throughout the whole design (in response to a change in thetarget implementation language, for example). Such a change is inherently global. The use of CPTshelps to make such changes in a controlled way. LOTOS speci�cations are formal and are thereforeamenable to controlled global change.A �nal requirement of a design language, with respect to structure and structure manipulation,is that it can express behaviour at very di�erent levels of abstraction. The initial design must bevery close to the requirements model, whilst the �nal design must be very close to an implementationmodel. A language which can represent a range of behaviours, from abstract to concrete, is calleda wide-spectrum language. Software design languages which are used throughout a comprehensivedesign trajectory must be wide-spectrum. LOTOS is such a language.5.4.1.4 Designs Must Be Veri�ableDesigns must be veri�able against requirements. LOTOS, as a formal language, is open to mathe-matical veri�cation against a formal requirements model. However, formality alone is not su�cient.Formal methods are dependent on tool support. It is impossible to verify even the simplest set of re-quirements by hand. Consequently, we require that a formal design language must have a reasonabletool support, with further support in the forseeable future. LOTOS ful�ls this requirement.



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 1415.4.2 Abstract Data Typing in LOTOSLOTOS contains an abstract data typing language based on ACT ONE. Chapters 2 to 4 illustrate thepower of ADTs to express structural properties (albeit in an object oriented framework of interpreta-tion). Chapter 4 also identi�es the weakness of the ADT approach to modelling: ADTs are not goodfor for recording communication, synchronisation, timing, concurrency and distribution properties.Quite deliberately, in this thesis, these high-level design features are abstracted away from duringrequirements capture. The requirements model says what rather than how. ADTs do play a majorrole in LOTOS designs: they maintain the underlying abstract behaviour whilst the process algebrais used to de�ne the more concrete high-level design properties.5.4.3 The Process Algebra in LOTOSLOTOS is also constructed from a process algebra. These languages can, by themselves, recordrequirements in a highly structured fashion, which can then be interpreted as high-level designs. Forexample, processes can be decomposed into component processes which combine (using the paralleloperators). This type of decomposition gives rise to hierarchical and con�gurational relationshipsstructure. The components' interaction during event synchronisation is con�gurational, whilst the(de)composition is hierarchical. There has also been much work in de�ning hierarchical relationshipsbetween processes, based on the behaviour they o�er. For example, there are many inter-processrelationships which attempt to model subclassing and implementation properties, see for example[9, 33, 8].Given the structural expressiveness of the process algebra part of LOTOS alone, we must questionwhy the ADT part is required. The ACT ONE is necessary for de�ning (or modelling) the following:� Parameterised behaviours in the shape of parameterised process de�nitions.� Systems with explicit state components, also in the form of parameterised processes.� Non-constructional properties in the form of preconditoned (guarded) behaviour.� Structured events, which are necessary to model value matching, value passing and value gen-eration.� Process functionality.LOTOS without the abstract data typing, often called basic LOTOS3, can specify only a limitedrange of behaviours. This thesis uses the ACT ONE speci�cation, as it is generated from the objectoriented requirements, in conjunction with the process algebra.5.4.4 Balancing Processes and Types in DesignOne of the main problems with designing in LOTOS is in achieving the correct balance betweenADT speci�cation and process algebra speci�cation. This thesis advocates using the ADT part as3The terms `basic LOTOS' and `full LOTOS' are used to distinguish between LOTOS speci�cations with and withoutADT parts, respectively.



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 142a functional behaviour carrier and the process algebra as a high level structuring mechanism forspecifying communication, synchronisation, concurrency, etc: : : . Generally, in LOTOS speci�cations,the balance between the two parts of the language is not so clearly de�ned.A good introduction to LOTOS speci�cation and the di�erent roles of the process algebra andADT parts is given in [120]. It also introduces the notion of speci�cation style, and the way in whichdi�erent speci�cation styles place di�erent emphasis on the roles of each part of the language. Ingeneral, di�erent styles are best suited to speci�cation at di�erent levels of abstraction. Consequently,one approach to design is to specify a number of transformations between LOTOS styles. However,it is not yet possible to automate the whole design trajectory in the form of a complete set of CPTs.Rather, designers will be expected to directly interact with, and perform manipulations on, theLOTOS designs. Designers should not be asked to cope with LOTOS speci�cations written in manydi�erent styles. Jumping between di�erent conceptual frameworks does not aid the design process.This thesis advocates a design trajectory in which the style of LOTOS speci�cation remainsconsistent. The speci�cations progress from the abstract to the concrete, but the underlying objectoriented conceptual framework is maintained. It is the balance between the amount of behaviourspeci�ed in ACT ONE , and the amount speci�ed in the process algebra which changes as the designevolves. In this way there is a clear reasoning behind the balance at any particular point in the designprocess.LOTOS speci�ers often have their own preferences in the way in which they use the ADT andprocess algebra parts. This favouritism is probably a consequence of their familiarisation with, andunderstanding of, the two di�erent types of semantics underlying the two languages. It is not goodthat speci�cation designers can inuence the structure of their designs in a way which is not amenableto analysis. Another reason why the balancing between ADT and process algebra parts is so subjectiveis that there are no well accepted methods for developing formal speci�cations in LOTOS. There areplenty of tools for automation, validation and veri�cation, and a wide range of example speci�cations,but there is little advice (and tool support) for the actual process of constructing the speci�cations. Inparticular, there is a real lack of management support4. Consequently, there are no existing methods(or tool support) for combining the ADT and process parts in a consistent and coherent way. Bothparts can be used to record structured information but, without a method (or guidelines, at the veryleast), it is di�cult to say which types of behaviour should be de�ned using which part.5.4.5 De�ning an Object Oriented LOTOS Style of Speci�cationMany attempts have been made to de�ne object oriented (or object based) styles in LOTOS, forexample [118, 100, 81, 24, 35, 6]. There is a vague concensus of understanding concerning the mappingbetween LOTOS constructs and the object oriented paradigm:� Processes de�ne classes of behaviour, usually of type noexit.� Objects are instances of processes. The state of an object is represented by the parameterisationof the process.4Perhaps this is the real reason why formal methods, like LOTOS, have not become accepted in industry?



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 143� Objects (process instances) service requests through interaction at their external gates.� The passing of parameters (input and output) between client and server corresponds to eventsynchronisation (and value agreement) at these gates.� Subclassing is some relationship between process instances (objects).There are two problems with this informal correspondence:� The ADT part does not seem to have an active role.� There is no relationship between classes of behaviour: the parameterised process de�nitions.The behavioural relationships are de�ned between process instances, and thus there can beconfusion in di�erentiating between object and class.In the object oriented LOTOS designs developed in this thesis, the ADTs play a very importantrole: they maintain the behaviour speci�ed in the requirements model.In object oriented design, there needs to be a clear distinction between classes and objects. Whenusing LOTOS, confusion arises because process instances de�ne a set of behaviours and this givesthe impression that such a set is a class. This thesis argues di�erently. In our object orientedinterpretation of LOTOS, each process de�nition corresponds to a class. Process instances correspondto objects and the set of behaviours de�ned by each object represents the set of valid implementations.The ADTs de�ne the underlying behaviour of each class and the process algebra part of each classde�nition de�nes the high-level properties of the system.The fact that one standard object oriented style of LOTOS speci�cation has not been formallyde�ned and well-accepted is indicative of the problems in the object oriented community. This thesisargues that the problem is not with LOTOS, it is with the inherent informality in object orientedsystems and the many di�erent interpretations of the object oriented concepts.Object oriented concepts are not well understood, although there has been some recent work inde�ning object oriented semantics [47, 95, 129, 37, 29, 130]. These semantics were not chosen for usein this thesis because:� They do not take a natural state-transition-system view of objects and classes.� They do not recognise the importance of an object o�ering a constant interface during itslifetime.� They do not match our intuition of objects and classes at all stages of software development.De�ning an object oriented semantics in LOTOS appears, at �rst glance, to be a rather appealingsolution to the problem of informality in object oriented designs. However, such a solution is notgeneral enough since the object oriented model so produced is too concrete for use during analysis.For example, even something as simple as the client-server communication model cannot be speci�edin the process algebra part of LOTOS without straying into implementation details. Such a modelinherently restricts object oriented implementers to: synchronous or assynchronous communication,concurrency or sequentiality, distributed or centralised control etc: : : . Full LOTOS is a good languageto specify object oriented models at a concrete level, but using the process algebra during analysisand requirements capture may be too soon.



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 1445.5 FOOA as Input to Formal Object Oriented Design5.5.1 Generating Full LOTOS from the Requirements ModelThe requirements model, as speci�ed in OO ACTONE, and realised in the translation to ACTONE, isan abstract statement of the behaviour a system is required to o�er. The object oriented requirementssay what is required rather than how a solution should be implemented. This is illustrated very wellwhen the initial mapping to full LOTOS is considered.Given a set of requirements of a system speci�cation in an OO ACT ONE class de�nition, thereare a number of ways in which these requirements can be translated to an initial abstract LOTOSdesign speci�cation. Common to all such translations must be the retention of the ACT ONE classde�nitions (as represented in ACT ONE) in the full LOTOS code. This makes veri�cation of theinitial design against the requirements model straightforward.Object oriented designers must initially identify the communication aspects of the way in whichthe underlying object oriented behaviour is to be ful�lled. The designers of a system must decide howthe behaviour is to be o�ered at its external interface (and what this external interface should looklike). This simple decision can a�ect the rest of the design process. Identifying an object orientedcommunication model and specifying the translation from OO ACT ONE, is not simple. There area number of alternative models and a number of ways in which these can be speci�ed. Four of thesealternatives are examined in the following sections (5.5.1.1 to 5.5.1.4). The list is not exhaustive andthe ways of specifying the models are limitless.5.5.1.1 Remote Procedure Call (RPC) ModelThe RPC model is based on the principle that while an object is servicing a request, no more requestscan be accepted. Consider such a speci�cation for the well accepted Stack behaviour5. The Stackelements are arbitrarily chosen to be Nats. This same Stack behaviour is also used to illustrate theother initial design alternatives. The RPC Stack behaviour is de�ned in the RPCStack process, below.RPC: Stack example oneprocess RPCStack[push,pop](SStack: Stack): noexit:=(push? Nat1: Nat; RPCStack[:: :](.(push(SStack, Nat1))))[](pop; pop! NatResult(pop(SStack)); RPCStack[:: :](.(pop(SStack))))endproc (* RPCStack *)This style of speci�cation is useful when the target implementation language has a procedural com-munication/interaction semantics. The RPCStack clients must wait for the Stack object (RPCStackprocess instance) to �nish servicing its current request before their requests are accepted. In e�ect,5In this example, and all others that follow, non standard syntax for the speci�cation of the process gate list is used.When a gate list in a process instance is to be speci�ed exactly as the gate list in the process header then it is moreconcisely written as [: : :].



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 145the RPCStack refuses to participate in service request events if it has not yet �nished servicing itscurrent request. Note that this lock-out does not occur when TRANSFORMER attributes are serviced.5.5.1.2 Parallel Access Model (Ordered In)In this communication model, an object can service all requests at any time in its life (i.e. there isno lock-out). The order in which the requests are serviced is the order in which they are requested.However, the order in which the replies are given back to the requesting environment may not bemaintained. The LOTOS speci�cation of the Stack behaviour in this communication framework isgiven in the PAMStack process de�nition, below.Parallel Access Model (Ordered In): Stack Example 2process PAMStack[push,pop](SStack: Stack): noexit:=(push?Nat1:Nat; PAMStack[:: :](.(push(SStack, Nat1))))[](pop; ((pop!NatResult(pop(SStack)); exit) jjj PAMStack[:: :](.(pop(SStack)))))endproc (* PAMStack *)The PAMStack process can always accept a push or pop request (i.e. participate in a push orpop event). The transformer attribute push, like in the RPC model, is served instantaneously:the resulting state transition (re-instantiation of the PAMStack process with new state parame-ter) is achieved without need for a sequence of internal events. The dual operator pop is de-�ned in terms of two event synchronisations: the attribute request pop and the attribute responsepop!NatResult(pop(SStack)). Unlike in the RPC model, the PAMStack process can accept otherservice requests between receiving a pop service request and returning the pop result. This is speci�edusing the parallel operator (jjj). The result of the pop request is o�ered in parallel with the behaviourof the PAMStack. A consequence of this communication model speci�cation is that, since multipleresults can be o�ered in parallel, results do not necessarily have to be popped o� in the order inwhich they are requested. This type of property is, in general, undesirable. Consequently, we do notconsider this model for use during FOOD.5.5.1.3 Parallel (Ordered In Ordered Out) ModelIn this model, an object can service all requests at any time. The order in which the requests areserviced is the order in which they arrive. The order in which replies are sent is also maintained bythe serving object. The Ordered In Ordered Out Stack behaviour is speci�ed by the ParStack processin example three.This LOTOS speci�cation is much more complex than the others. It is providing Stack behaviourwrapped between input and output queues. The StackIn and StackOut processes are parameterisedon a Nat. These parameters are used to tag requests as they come in and guarantee the order ofresponses on the way out, respectively6 The queueing of service requests and responses is achievedby the parallel operators in the speci�cation. There is no explicit queueing behaviour de�ned in the6The state parameters of the In and Out processes can be initialised to any value provided it is common to both.



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 146Parallel (Ordered In Ordered Out): Stack example threeprocess ParStack[push,pop](SStack: Stack): noexit:= hide request, response inStackIn[push, pop, request] (0) j [request] jStackBody [request, response](SStack) j [response] jStackOut [pop, response](0) whereprocess StackIn[push, pop, request] (ID: Nat): noexit :=Reqs[push,pop,request](ID) j [request] j ReqController[request](ID) whereprocess Reqs[push,pop,request](IDsStackIn:Nat): noexit:=(push? Nat1:Nat;( Reqs[push, pop, request] (.(inc(IDsStackIn))) jjj (request!push!Nat1!IDsStackIn; exit)))[](pop;(Reqs[push,pop,request]( .(inc(IDsStackIn)))jjj (request!pop!IDsStackIn; exit)))endproc (*Reqs*)process ReqController[request](ServeID:Nat):noexit:=(request!push?Nat1:Nat!ServeID; ReqController[request](.(inc(ServeID))))[](request!pop!ServeID; ReqController[request](.(inc(ServeID))))endproc (* ReqController *) endproc (*StackIn*)process StackBody[request, response](SStack: Stack): noexit:=( request!push? Nat1: Nat?ID:Nat;(StackBody[request, response](.(push(SStack, Nat1)))jjj (response!push!ID; exit)))[]( request!pop?ID:Nat;(StackBody[request,response](.(pop(SStack)))jjj (response!pop!NatResult(pop(SStack))!ID; exit)))endproc (*StackBody*)process StackOut[pop, response](CountStackOut: Nat): noexit:=(response!pop?NatStackOut:Nat!CountStackOut;pop!NatStackOut; StackOut[pop, response](.(inc(CountStackOut))))[](response!push!CountStackOut;StackOut[pop, response](.(inc(CountStackOut))))endproc (* StackOut *) endproc (* ParStack *)ADT. The translation to the parallel (ordered in ordered out) LOTOS model (for conciseness wecall this the Par model of communication) requires an ACT ONE sort Nat, to provide the uniqueidenti�cation for each request, and an ACT ONE sort with literal members push and pop, whichby convention is named StackServiceRequests, in order to di�erentiate between internal servicerequests. In translation, all classes in the OO ACT ONE speci�cation have their external attributesde�ned as literals in a ClassNameServiceRequests sort. All these sorts are de�ned in a globalServiceRequests type speci�cation.Further, the Nat parameter sort can be replaced by any sort which o�ers a means of allocating an in�nite set of uniqueidenti�cations. Nat was chosen for its simplicity.



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 1475.5.1.4 Parallel Explicit Routing ModelIn this model, an object can service all requests at all times. The ordering of servicing is maintained,but the ordering of replies is not. However, each service is tagged, by the environment, with a uniqueidenti�er. This means that the environment can control the ordering and guarantee that the repliesget returned to the correct clients. The explicit routing model of Stack behaviour is de�ned by theExpStack process, below.Explicit Routing: Stack example fourprocess ExpStack[push,pop](SStack: Stack): noexit:=(push? Nat1: Nat? ID: Nat; ExpStack[:: :](.(push(SStack, Nat1))))[](pop?ID:Nat; (pop!NatResult(pop(SStack))!ID; exit) jjj ExpStack[:: :](.(pop(SStack))))endproc (* ExpStack *)This speci�cation is similar to the Stack behaviour de�ned in example two. The only di�erenceis that the requests are accompanied by an identi�cation (ID) which must be provided by the clientof the Stack. These IDs are then tagged to the pop replies. This type of communication model canbe utilised in the design process to de�ne internal communication. However, explicit routing is, ingeneral, too concrete a model to be used in the initial design stages. Consequently, we do not considerit for use in FOOD.5.5.2 Internal and External CommunicationThe four models, above, de�ne external communication properties for classes of objects. Two of these,namely the RPC and Par models, are used to de�ne two fundamentally di�erent communicationmodels. These models de�ne only the external interaction between a client and a server. They do notspecify the internal communication which occurs when an object is servicing a request. The reason forthis is simple: there is no internal communication in the RPC and Par processes. These processes arenot de�ned as interacting systems of component processes (i.e. they are unstructured7). In section5.7 we examine a means of structuring LOTOS designs. The means of interaction between componentprocesses of a system is said to be de�ned by the resulting internal communication model.5.5.3 De�ning the Mappings from OO ACT ONE to Full LOTOSGiven an OO ACT ONE class speci�cation, class say, then we de�ne two transformations for thegeneration of full LOTOS speci�cations of class behaviour:� MakeRPC(class) produces the RPC LOTOS design of class behaviour in a RPCclass processde�nition.� MakePar(class) produces the Par LOTOS design of class behaviour in a ParClass processde�nition.7More precisely, all the composition structure is contained within the ADT part of the design.



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 148Appendix E2 de�nes these two mappings. Central to each mapping is the inclusion of the ACT ONErequirements model of class behaviour.In the remainder of this thesis, any process identifed as RPCclassname or Parclassname is assumedto have been derived from the OO ACT ONE speci�cation of classname using the appropriatemapping.5.5.4 An Object Oriented Interpretation of the Initial LOTOS Designs5.5.4.1 Notation ConventionsThe OOLOTOS8 speci�cations follow the following syntactic conventions:� Every class in the OO ACT ONE system requirements has an ACT ONE sort of the same name.These sorts are speci�ed in the ACT ONE requirements model generated from the OO ACTONE speci�cation.� An instantiation of the system class corresponds to an instantiation of an RPC or Par process.� The gate list of the system class process corresponds to the list of transformer, accessor anddual attributes of the class. (The ordering in the OO ACT ONE speci�cation is maintained inthe LOTOS code.)� The state of the system class process is identi�ed by the variable Ssystem, a value of the ACTONE sort system.5.5.4.2 Processes and ObjectsThe relationship between OO ACT ONE classes, ACT ONE sorts, and LOTOS processes is illustratedin the top half of �gure 5.3. The internal aspects of the process speci�cations expand out as designprogresses: they are not represented in the �gure. The structure of the problem domain is retainedin the ADT part of the LOTOS designs. The CPTs can be used to transfer this structure to theprocess algebra for further manipulation. The bottom half of �gure 5.3 shows the simple relationshipbetween objects in the three di�erent notations.5.5.4.3 External Attributes and Servicing RequestsThere is a direct correspondence between the gates of a process and the external attributes of theclass which it is modelling. The hidden attributes of a class are not included as part of the externalgate list of the class process and, consequently, the behaviour o�ered by the hidden attributes canbe accessed only through the ADT speci�cations. The internal (nondeterministic) transitions in therequirements are modelled as internal events by the LOTOS hide operation.The parameterisation of the external attributes is matched by the event synchronisations betweenthe process and its environment. A service request is modelled, in the server process, as an `input8OOLOTOS speci�cations are de�ned to be those speci�cations which are derived from OO ACT ONE requirementsmodels.



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 149
Type class IS ...

Analysis

To Design

CLASS RELATIONSHIPS

OBJECT RELATIONSHIPS OO ACT ONE  ACT ONE LOTOS
literal literal Pclass[...](literal)
structure(p1,...pn) structure(p1,...pn) Pclass[...](structure(p1,...,pn))

ADT
+

Process
Algebra

= Full LOTOS

CLASS class USING ...
OO ACT ONE  

PROCESS Pclass[attribute list](Sclass: class): noexit:= Figure 5.3: LOTOS: An Object Oriented Interpretation of Objects and Processesevent' of the form: attribute?p1:P1?: : :?pn:Pn, where there is an external attribute, attribute,de�ned to have class parameters P1,: : :,Pn. The result of an accessor or dual attribute is modelledas an `output event' of the form: accdual!result, where result is a value of the appropriate ACTONE sort. These correspondences are shown, for Stack behaviour, in �gure 5.4.
(PStack[push,pop](empty)|||(pop!unspecNat;exit)))

(Q[push,pop] |[push,pop]|
PStack[push,pop](S(empty,0)))

push!0;
(push!0; Q[push,pop]) ) =
(PStack[push,pop](empty) |[push,pop]|

OO ACT ONE

TRANSFORMER DUAL/ACCESSOR

LOTOS

ACT ONE

empty.push = S(empty,0)

.(push(empty,0)) = S(empty,0)

pop;
(pop; Q[push,pop]) =
(PStack[push,pop](empty) |[push,pop]|

(Q[push,pop] |[push,pop]|

empty.pop = empty AND  ~Nat

pop(empty) =

dualStackNat(empty, unspecNat)Figure 5.4: LOTOS: An Object Oriented Interpretation of Service Requests5.5.4.4 CompositionThe object oriented composition properties of the initial designs are contained in the ACT ONE partof the full LOTOS speci�cation. The compositional properties can be derived from the ACT ONEcode, or from examination of the OO ACT ONE speci�cation (and associated diagrams). Duringthe design process, expansion transformations (see StExp in 5.7.1, for example) facilitate the internaldecomposition of a given unstructured process into a system of component processes running inparallel. The con�guration and communication aspects of component interaction are made concreteby the design CPTs.



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 1505.5.4.5 Subclassing In DesignAn obvious question is whether the subclassing relationships in the requirements models are somehowmaintained across the transformation. More formally, given OO ACT ONE classes, A and B say,such that A v B and a transformation function, T say, which maps OO ACT ONE classes to LOTOSprocesses, is there any relationship between processes T (A) and T (B)? In OO ACT ONE, only twosubclassing relations are de�ned, namely extension and specialisation. Consequently, it is necessaryonly to investigate how these two relationships are carried across the analysis to design translation.A Design ExtensionThe Stack behaviour is extended below for the RPC communication model. The extension is a sizeattribute which returns the number of elements currently on the stack. The new class of behaviour,which o�ers this additional attribute, is named XStack. The RPC model of XStack behaviour isde�ned below.process RPCXStack[push,pop,size](SXStack: XStack): noexit:=(push? Nat1: Nat; RPCXStack[:: :](.(push(SXStack, Nat1))))[](pop; pop! NatResult(pop(SXStack)); RPCXStack[:: :](.(pop(SXStack))))[](size; size!NatResult(size(SXStack)); RPCXStack[:: :](SXStack))endproc (* RPCStack *)In the RPC model of communication, it is evident that corresponding9 instances of processesXStack and Stack are not related by any of the standard testing equivalences [9, 10]: the RPCStackalways deadlocks on event size whilst the RPCXStack does not. However, without going into formaldetails, the two process instances are related by a standard implementation relation, as de�ned in [16]:in a system containing an instance of RPCStack, the RPCStack can be replaced by the correspondingRPCXStack without the non-deadlocking behaviour of the system being compromised.Consider the extension as it is carried across the MakePar mapping from analysis to design. TheParXStack code resulting from the MakePar mapping is given in Appx E1. The implementationrelationship holds between ParStack process instances and ParXStack process instances.A Design SpecialisationIt is not possible to specialise the Stack behaviour since it is nonpartitionable. Consider instead alift moving mechanism. The OO ACT ONE de�ning the SMove (`specialised move') and Move classinterfaces, used in this example, is given below.Consider the translation of this behaviour to an initial RPC LOTOS speci�cation. (The samearguments apply for this model as for the Par model.) By de�nition, Move v SMove (since Move specSMove). The LOTOS RPCMove and RPCSMove process classes are de�ned below.9Corresponding instances of two processes are those instances with the same state representation.



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 151CLASS SMove USING BOOL OPNSLITERALS: up,down,stayTRANSFORMERS: flipACCESSORS: goingup -> BoolEQNS : : :ENDCLASS (* SMove *)CLASS Move SPECIALISES SMove TO OPNS LITERALS: up, down ENDCLASS (* Move *)process RPCMove [flip, goingup ](SMove):noexit:=(flip; RPCMove[:: :](.(flip(SMove))) [](goingup; goingup!BoolResult(goingup(SMove)); RPCMove[:: :](.(goingup(SMove)))endprocprocess RPCSMove [flip, goingup ](SSMove):noexit:=(flip; RPCSMove[:: :](.(flip(SSMove))) [](goingup; goingup!BoolResult(goingup(SSMove)); RPCSMove[:: :](.(goingup(SSMove)))endprocThe process algebra de�nitions for these two behaviours are identical, except in the naming ofthe processes and process parameters, and the typing of these parameters. It is immediate thatcorresponding instances of these processes are weak bisimulation equivalent (written �) as de�ned by[9]. In other words, PMove[: : :](up) � PSMove[: : :](up) and PMove[: : :](down) � PSMove[: : :](down).The process instance PMove[: : :](stay) has no correspondences to any of the instances of PMove. Thisis precisely what is meant by specialisation in the object oriented semantic framework.De�nition: Class RelationshipsThe notion of a relationship between process instances is naturally extended to the notion of a setof relationships between sets of process instances. In this way, the notion of a class relationship canbe developed in LOTOS. In LOTOS one says that process instances are related by some well de�nedrelation. In an object oriented LOTOS, based on OO ACT ONE, this relation must be extended toparameterised process de�nitions, which correspond to classes. Given a relation R, between LOTOSbehaviour expressions, a class relationship ClassR is de�ned as:PROCESS PX ClassR PROCESS PY ,8x such that x is a value expression of sort X, then PX[: : :](x)R PY[: : :](x).5.5.4.6 Polymorphism in DesignThe RPC and Par models of communication, as presented above, do not incorporate the notion ofpolymorphism in the process algebra parts of the design. The polymorphic properties are de�nedin the ADT part of the designs but problems arise if polymorphism is not incorporated in the pro-cess algebra. For example, consider the Stack behaviour. The Stack is de�ned to accept Nats asinput parameters of the push operation. However, if Nat is de�ned to have a subclass, evenNatsay, the ParStack process cannot synchronise on a push!evenNat1:evenNat event, even thoughStack1.push(evenNat1) is well de�ned in the requirements (in the OO ACT ONE and ACT ONE



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 152models).ACT ONE does not incorporate inclusion polymorphism semantics, but the ACT ONE classmodels (sorts) are speci�ed to accept subclass parameter values through use of coercion and operationoverloading. A similar approach must be taken when transferring the polymorphic requirements tofull LOTOS. The RPC and Par communication models need to be expanded to cope with subclassinput parameters. This is easily done: for example, the ParStack process contains the code fragment:push!evenNat1; ParStack[: : : ](.(push(SStack, evenNattoNat(evenNat1)))).The inclusion of polymorphism properties in the process algebra part of the LOTOS designs is nec-essary, but its presentation can be ignored. Rather than including all the subclass parameter optionsin our full LOTOS design listings, the polymorphic behaviour is not presented. The design transfor-mations presented in this thesis do not a�ect the subclassing hierarchy and so it is not, at present,necessary to consider the polymorphism properties when designing. The RPC and Par models are de-�ned to specify the required polymorphic behaviour, even though it is not presented in the remainingsections of this chapter.5.5.5 An Object Oriented Style of LOTOS Speci�cationAn important aspect of the object oriented LOTOS designs is the speci�cation of the MakeRPC andMakePar mappings, which de�ne the style of the RPC and Par processes. Appendix E2 de�nes thesetwo mappings. The RPC and Par processes are unstructured. They form the basic building blocksin the OO LOTOS style of speci�cation. Three other basic building blocks are de�ned as the resultof applying CPTs to these process de�nitions:� ERPC (`expanded' RPC) processes result from applying a static expansion CPT (StExp in 5.7.1)to RPC processes. This produces a structured de�nition of the required behaviour in which thebehaviour is composed from a number of RPC component process (in parallel) under the controlof a centralised process.� EPar (`expanded' Par) processes are a result of applying StExp to Par processes. This CPTresults in a structured de�nition of the required behaviour in which the speci�cation is composedfrom a number of Par component process under the control of a centralised process.� Dist (`distributed') processes are a result of applying the Dist CPT (see 5.7.3) to EPar processes.This transforms a structured system of Par processes which have centralised control into astructured system of self-controlled (no pun intended) processes.The OO ACT ONE style of speci�cation is one in which the system is de�ned as a Par, RPC,EPar, ERPC, or Dist process. Further all the classes in the system which have been expanded toprocess form must also be represented in one of these �ve ways. In e�ect, the style of speci�cation isde�ned by the initial communication models (RPC and Par) and the design transformations whichcan be applied to classes speci�ed using these models. Consequently, the style is dynamic: whenCPTs become well accepted design mechanisms, then the resulting process de�nitions will becomewell accepted design components.



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 153In FOOD, the limited number of base style components can be usefully represented in diagram-matic form. The graphical notation is illustrated in �gure 5.5
(RPC or Par)
Unstructured Expanded RPC Expanded Par

(centralised concurrency)(centralised control) Distributed concurrencyFigure 5.5: LOTOS: Representing Communication Models5.6 Correctness Preserving Transformations (CPTs): FormalisingDesign5.6.1 IntroductionThis thesis examines the role CPTs can play in the process of design in general, and FOOD in particu-lar. A transformation can be applied to a speci�cation which reects some architectural/implementationchoice, without altering the external (observable) behaviour of the system. Such a design transfor-mation is dependent on some nonstandard, though not necessarily informal, means of interpretingthe internal details of the speci�cation. The object oriented framework provides the basis for such aninterpretation.LOTOS, as a wide-spectrum language, can specify the properties of systems at various levels ofabstraction. Design is the process which transforms an initially abstract (implementation indepen-dent) speci�cation of system requirements into a �nal, more constructive, implementation orientedspeci�cation. An ideal LOTOS based software development environment should provide a compre-hensive set of CPTs and a framework in which designers can apply these transformations to reectdesign decisions. Such an ideal is a long way o�. This thesis provides a small set of CPTs (in section5.7) which are useful within our object oriented development method. These transformations are usedto: � Illustrate the CPT concept.� Show the importance of matching design needs with CPTs.� Highlight the di�culties involved in proving the correctness of the design transformations.� Emphasise the power of a CPT-driven approach to design.The small set of transformations proposed in this thesis do not constitute a design method. However,they do show how such a method could be constructed.



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 1545.6.2 Concepts5.6.2.1 Design TrajectoryA fundamental notion in this work is design trajectory: a sequence of steps which take a problem ori-ented speci�cation of requirements to an implementation oriented speci�cation of a possible solution.Each step changes the previous speci�cation in some way. The important thing is that somethingmust also be preserved along this trajectory: the `correctness of the design'.5.6.2.2 Design Veri�cationIn theory, it is possible to verify the correctness of any given design step by mathematical means. Inpractise, the complete formal veri�cation of most design steps is not possible because of combinatorialproblems. In these cases, speci�cations are partly veri�ed by simulation and testing.This thesis has already identifed the advantages of simulation and testing with regard to analysismodels. The same arguments are true for design models. The design approach advocated in this workdoes not restrict all design changes to be made through application of CPTs. Consequently, theremay be a need for alternative veri�cation methods. Two di�erent types of LOTOS tools have beendeveloped to help in this respect. Firstly, there are a wide range of simulation and automation tools(see [117, 10, 8], for example). Secondly, and more importantly, tools have been developed towardsderiving tests from given LOTOS speci�cations (for example, [125] explains the theory behind ameans of deriving canonical testers for LOTOS speci�cations). We do not examine any of thesemechanisms, but we do recognise their value in this, and future LOTOS design methods. Rather,FOOD concentrates on a di�erent approach to design veri�cation, namely the application of CPTs.5.6.2.3 Correctness Preserving TransformationsA di�erent means of verifying a design is to perform only transformations (design changes) whosecorrectness has already been proven. Before examination of particular CPTs, a brief overview of theterminology is useful:A speci�cation can be said to be correct if it ful�ls some property. Assume a speci�cationS, a transformation T and de�ne S 0 = T (S), i.e. S 0 is the result of applying T to S. Tcan be said to be correctness preserving with respect to the property P if P (S)) P (S 0).In other words, the property P is preserved across the transformation T .This type of formulation raises a number of interesting questions:� What sort of properties can be usefully preserved?� How can these properties be formalised?� Over what domains should T operate?� What is the di�erence between S and S 0 which makes T a useful transformation for applyingduring design?



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 155� Can we specify appropriate transformations to correspond with decisions most commonly takenby designers in practice?Before these questions are more rigorously examined, the concept of property is given a usefulcategorisation:� External PropertiesExternal properties are those which can be observed through interaction with a system at itsexternal interface (in LOTOS the external interface of a process is de�ned by its gate set). Ex-ternal properties, said to be purely functional, are ful�lled by a standard semantic interpretationof the speci�cation. These properties are concerned with what the system does rather than howit does it.� Internal PropertiesInternal properties are those which can be derived through examination of the text whichspeci�es the system in question. They cannot be `extracted' through interaction with thesystem interface alone. Formulation of these properties requires the de�nition of a non-standardinterpretation of the speci�cation. This interpretation is said to provide a view on the system.This categorisation gives rise to the classi�cation of two di�erent types of CPT:� Structural CPTsA structure CPT does not change the external properties of a system in any way. There are noways of distinguishing the design before and after transformation through interaction with theirexternal interfaces alone. Structure transformations change only internal aspects of the system.� Functional CPTsA functional CPT changes the external properties of a system but guarantees some sort ofconformance between the design before and after transformation. In other words, a functionaltransformation compromises some external properties but maintains others.5.6.3 An Overview of CPTs in LOTOS5.6.3.1 The CPT ProblemBy di�erentiating between what should stay the same and what should be di�erent, as the result ofa design change, an elegant and formal statement of the requirements of a design step can be givenas follows. De�ne:� A speci�cation S1� An implementation relation R� A view function V , which has S1 in its domain� A view property P which is ful�lled by V (S1), i.e. P (V (S1)) is true.� A view property P 0 and a second view V 0 such that not(P 0(V 0(S1)))A structured design change corresponds to the speci�cation of S2, the next design, such that:



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 156� R(S1; S2), and R is a strong bisimulation equivalence10 .� P (V (S2)) and P 0(V 0(S2))In other words, S2 maintains the external behaviour of S1, maintains the view property P and adheresto a new view property P 0, which was not ful�lled by S1. One could say that the reason for de�ningS2 was the ful�lment of this new property.A functional design change corresponds to the speci�cation of S2 such that: R(S1; S2), and Ris an implementation relationship which is not a strong bisimulation equivalence. In other words,a functional design changes the behaviour tree of the speci�cation being transformed. The e�ect ofsuch a change on view properties is speci�c to each design.Some design steps can be de�ned as a mixture of the structure and functional approaches. In suchinstances, the behaviour tree is changed and view properties are maintained. Design CPTs provide ameans of generating a suitable S2 from any given S1 such that the appropriate properties and relationsare guaranteed.5.6.3.2 The CPT FormulationSection 6.6.3.1 focuses on the notion of a relation between two already speci�ed design stages. It isuseful to express the CPT problem in terms of transformations and constraints. We wish to discovera transformation T such that:Given any S1 such that P (V (S1)) and not(P 0(V 0(S1))), then:R(S1; T (S1)) and P (V (T (S1))) and P 0(V 0(T (S1))A Simple CPT ExampleA LOTOS speci�cation of a system is as a set of communicating processes. At this stage of devel-opment, the speci�cation (design) has no multiway synchronisation. Between each pair of communi-cating processes there may be more than one synchronisation gate. We want a transformation whichcreates a new speci�cation which conforms to the no multiway synchronisation constraint whilst guar-anteeing the new property that there must be at most one gate shared between processes. Further,we require that the new design is a valid implementation of the old design.This can be more formally speci�ed, using the above notation, as follows:� V , the view function, is de�ned to return a set of (process identi�er � process identifer � gateidenti�er) triples, such that:(p1; p2; g) 2 V (Si),p1 and p2 are de�ned to synchronise on gate g in LOTOS speci�cation Si.� P the internal property is de�ned on Si as:P (V (Si)),((p; q; g); (r; s; g) 2 V (Si)) (((p = r)) (q = s))or((p = s)) (q = r)))10Strong bisimulation equivalence states that the behaviour trees o�ered by S1 and S2 are the same (even if the wayin which they are speci�ed is di�erent).



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 157� V 0 = V� P 0 is de�ned on Si as: P 0(V (Si)),((p; q; g1); (r; s; g2)2 V (Si)) ((((p = r)and(q = s))or((p = s)and(q = r)))) g1 = g2)A transformation, T say, which ful�ls these requirements is represented in diagramatic form in �gure5.6.
PS2 = T(PS1)

P(V(PS2)) and P’(V(S2))P(V(PS1)) and not(P’(V(S1)))

PS2 imp PS1

PS2PS1
req

out
in Int

c
d

ba
CB

A A

B C
ab

d
c

Intin
out

req

B[a,b,d] |[d ]| C[d,c]

PROCESS PS1[in,out]:noexit:=
HIDE a,b,c,d IN

Int[in,out,req] |[req]|

PROCESS PS2[in,out]:noexit:=
HIDE ab,c,d IN

Int[in,out,req] |[req]|
A[req,a,b,c] |[a,b,c]| A[req,ab,c] |[ab,c]|

B[ab, d] |[d]| C[d,c]

V V

Figure 5.6: A CPT: Illustrating the Concepts5.6.4 Graphical Views and Tools5.6.4.1 The Need For GraphicsDesigns and structures are often represented quite naturally in graphical notation. It is thereforedesirable to be able to view a system of parallel communicating LOTOS processes in such a way thatit is possible to extract a unique, meaningful, graphical representation. Then, design decisions can berepresented as transformations on a view, with all the advantages of an underlying formal method.Chapters 2,3 and 4 introduce graphical views of static and dynamic behaviour as speci�ed inOO ACT ONE. This thesis recognises that the presentation of graphical views of process algebraspeci�cations is much more di�cult (the language constructs are much more complex) than that forproducing ADT views. A recent thesis by Winstanley [126] examines the graphical presentation ofstatic and dynamic properties of process algebra speci�cations. This work, however, does not considerthe presentation of object oriented properties. It is important that a graphical notation for our objectoriented LOTOS designs emphasises object oriented aspects. Graphs are useful to help customers(and analysts) to understand requirements models. This thesis supports the opinion that similarviews would be useful to help designers communicate with each other, and the programmers. Theformality underlying the graphical models used during object oriented requirements capture mustalso be evident during design. Graphics should not be open to interpretation.



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 1585.6.4.2 The Need For Tool SupportThe LOTOS object oriented designs lend themselves to the production of some sort of automatedformal design environment:� There are a limited number of standard class and object representations, each with well-de�nedproperties.� The CPTs can be easily automated.� There is potential for developing a graphical syntax for the representation of the OO designs,based on OO ACT ONE graphics and the communication model notation.� There is potential for the execution of such designs using existing toolsCertainly, the designers can use the object oriented analysis tools and models to understandthe underlying functional behaviour. However, separate tools are needed to help the analysis ofthe communication and interaction properties of the object oriented designs. Graphical tools areparticularly important for the representation of structural properties.5.6.5 CPT Driven Design: Some Other Concerns5.6.5.1 Problems With The Dichotomy of LOTOSIt is much easier to reason about a system when there is a `conceptual consistency' in the way it isspeci�ed. Conceptual consistency depends on a reasoned approach to the way in which a problem isdecomposed into its component parts. In LOTOS, a behaviour can be speci�ed with di�erent emphasisplaced on the roles of the data typing and process algebra. However, there has been little researchinto how this division takes place; and more particularly, why some speci�ers favour one `half' of thelanguage over the other. A consistent speci�cation approach requires that the roles of each `half' ofthe language is clearly de�ned at each stage of the development. In practice, speci�cations do notseem to have this consistency. The object oriented development strategy in this thesis makes a cleardistinction between the fundamental behaviour, as de�ned by the ACT ONE part of the speci�cation,and the communication, timing and architectural aspects, as speci�ed in the process algebra part.A more pressing problem with full LOTOS, with respect to formilising transformations, is thatproof systems for data algebras are generally distinct from proof systems for process algebras. Com-bining two systems in one coherent transformation proof framework is very di�cult. This thesis avoidsthe problem of proving correctness in two di�erent formal frameworks by maintaining the ADT partthroughout the whole design process.5.6.5.2 Practicality must be the driving force.The notion of basing a whole development method on a CPT system is very tempting. However, webelieve that, although the area of formal design is amenable to CPT techniques, it is not possibleto force all design changes to be done using CPTs. CPT research must be driven by the needs ofdesigners. At the moment, designers are repeatedly making the same sort of structure decisions on



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 159di�erent problems. These types of decisions must be identi�ed and then formilised within the CPTframework: designers will then be able to incorporate formal techniques within their work withoutneeding to directly manipulate the LOTOS code. There is potential for automation of the underlyingformal transformations. This thesis gives only a avour of what is possible. The CPTs are de�nedonly in an object oriented framework and it is clear that many more CPTs are needed. CPTs mustbe the main tool for formal object oriented design.5.6.6 Object Oriented LOTOS CPTs and the Resulting Design TrajectoryThe CPTs in this thesis are de�ned only on LOTOS speci�cations which have been derived from theOO ACT ONE speci�cation, using the initial transformation to LOTOS. A sequence of CPTs canbe applied to this initial speci�cation to result in a correctness preserving design trajectory. Withinthis trajectory CPTs can be applied to the speci�cation components (and the components of thecomponents : : :). It is not necessary for all transformations being applied to be pre-de�ned CPTs.In some cases, a CPT may be identi�ed which may be of use in many di�erent problem domains,but is not yet formulated for re-use. It is recommended that, in such cases, the designer attempt toformulate such a general CPT (if they can). However, if this is not possible (or desirable) then thedesigners must verify the particular transformation which they employ. The formal object orienteddesign trajectory, which forms the basis of our object oriented development method, is illustrated in�gure 5.7.
PROCESS ALGEBRA

definitions
sort
extraACT ONE

REQUIREMENTS
MODEL

FINAL DESIGN
INITIAL LOTOS DESIGN

definitions
sort
extra

ALGEBRA
PROCESS

ACT ONE
REQUIREMENTS
MODEL

OO ACT ONE

REQUIREMENTS

Generation
of initial
design

The Design ProcessFigure 5.7: The Formal Object Oriented Design TrajectoryNotice that the ACT ONE code produced from the OO ACT ONE is maintained throughoutdevelopment. There are two types of step in the design trajectory:� A CPT-driven step, which does not need to be veri�ed by the designer.



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 160� A step, not achieved through application of a general CPT, which does need to be veri�ed bythe designer.5.7 A Set of Object Oriented Design Decisions as CPTsThis section proposes �ve types of transformation which can be said to preserve the requirements asspeci�ed in the ACT ONE part of an initial LOTOS design. The transformations are used to illustratethe type of formal design which is possible within FOOD. The correctness of each transformation isargued informally: some rigorous reasoning is included, but it was beyond the scope of the thesis toprove the correctness of these transformations within the full LOTOS semantic framework. Futurework must either:� De�ne an object oriented design language whose semantics promotes the mathematical formu-lation of correctness and correctness preserving transformation.� Address the problem of correctness formulation in full LOTOS, which arises out of the languagebeing de�ned as a combination of an ADT and a process algebra. (The way in which our OOLOTOS speci�cations balance these parts of the speci�cation makes this problem much moreapproachable than in the general case.)The �ve transformations which we de�ne are as follows:� StExp (`static expansion') is de�ned on the domain of Par and RCP process classes which havea �xed structure and are de�ned purely. This transformation replicates the structure of a classin the requirements model in the speci�cation of a system of component processes.� Comp (`composition') is de�ned on the domain of statically expanded process classes. It providesa means of re-grouping a subset (or subsets) of the components of a system.� Dist (`distribution') is de�ned on the domain of Par processes which have been statically ex-panded. It provides a means of removing a centralised control by distributing the controlamongst the component processes. It relies heavily on the multi-way synchronisation mecha-nism in LOTOS.� Rend (`remove nondeterminism`) is a simple mechanism for the removal of nondeterminism inthe requirements model.� Finally, a general technique (not identi�ed by a particular transformation) for the removal ofparallelism is proposed.The case study, in chapter 7, requires the designs to be targetted towards an Ei�el implementation.Consequently, since Ei�el has a procedural model of communication, the case study does not illustratethe Dist transformation. However, it does illustrate: the static expansion of purely de�ned classeswith �xed structure, composition as a means of restructuring and the removal of nondeterminism.



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 1615.7.1 Static Structure ExpansionExpansion is the term given to any transformation which expands out the process alegabra part ofthe OO LOTOS design with structure which is in the ADT part. The static expansion CPT (StExp)can be applied to Par and RPC class processes which have a �xed structure and pure speci�cation.Informally, the static expansion transforms the unstructured class body process into a system ofparallel processes. The static expansion of a ParClass process is shown in �gure 5.8.
StExp(PClass)

ALGEBRA
PROCESS ParClass[g1,...,gn](SClass:Class):noexit:=

request ClassOutClassIn

g1: Class ... -> Class (* attribute type *)..
Str: Comp1,...,Compm -> Class (* structure *)ACT ONE

..

..

gn

g1

response
[..](..) [..](..)

ClassBody[..]
(SClass)

EParClassBody[...](SClass)
EParClass[g1,...,gn](SClass:Class):noexit :=

ClassOut
response

request

ClassIn
.
.
.

gn

g1

parm: Class -> Compmpar1: Class -> Comp1As Before, with new operations:

[..](..) [..](..)

EClassControl[..]

... ......
...

ParComp1(par1(SClass)) ParComp1(parm(SCLass))Figure 5.8: Static Expansion (StExp) of a ParClass ProcessThe static expansion of a RPCClass process is much simpler than that for the ParClass. It isillustrated in the design part of the case study (section 7.3). We do not report it here.5.7.1.1 StExp Example: A System of Two StacksConsider a simple system of two stacks. The behaviour of the system is de�ned in the OO ACT ONEclass TwinStack.CLASS TwinStack USING Stack OPNSSTRUCTURES: TS< Stack, Stack >TRANSFORMERS: push1<Nat>, push2<Nat>DUALS: pop1 -> Nat, pop2 -> NatEQNSTS(Stack1,Stack2).push1(Nat1) = TS(Stack1.push(Nat1), Stack2);TS(Stack1,Stack2).push2(Nat1) = TS(Stack1, Stack2.push(Nat1));TS(Stack1,Stack2).pop1 = TS(Stack1.pop, Stack2) AND Stack1..pop;TS(Stack1,Stack2).pop2 = TS(Stack1, Stack2.pop) AND Stack2..popENDCLASS (* TwinStack *)The initial LOTOS design for this behaviour is generated using the MakePar mapping. Thisdesign is speci�ed in process ParTwinStack. The process algebra speci�cation for PTwinStack isgiven below.



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 162process ParTwinStack[push1, push2, pop1, pop2 ](STwinStack):noexit:=hide request, response inTwinStackIn[ push1,push2,pop1,pop2,request ](0) j [ request ] jTwinStackBody [ request, response ](STwinStack) j [ response ] jTwinStackOut[ pop1, pop2, response ](0) where : : :The StExp CPT takes the PTwinStack process de�nition and produces a new process de�nition,named EParTwinStack. The CPT does this by leaving the de�nitions of the TwinStackIn andTwinStackOut processes alone whilst changing the TwinStackBody process speci�cation. This isspeci�ed below.process EParTwinStack[push1, push2, pop1, pop2 ](STwinStack):noexit:=hide request, response inTwinStackIn[ push1,push2,pop1,pop2,request ](0) j [ request ] jEParTwinStackBody [ request, response ](STwinStack) j [ response ] jTwinStackOut[ pop1, pop2, response ](0)where : : :The new EParTwinStackBody is de�ned as a structured process in which there are three component(sub)processes:� A control process, named EParTwinStackControl by convention, which, as its name suggests,controls the way in which the other components interact to produce the required behaviour.� Two ParStack component processes: one for each component of the structure operation TS.process EParTwinStackBody[request, response](STwinStack):noexit:=hide Stack1push, Stack1pop, Stack2push, Stack2pop inEParTwinStackControl[ Stack1push, Stack1pop, Stack2push, Stack2pop, request, response ](0)j [ Stack1push, Stack1pop, Stack2push, Stack2pop ] j( ParStack [ Stack1push, Stack1pop ](par1(STwinStack)) jjjParStack [ Stack2push, Stack2pop ](par2(STwinStack)) )where : : :There are a number of things worth noting about this speci�cation, before details of the EParTwinStackControlprocess are considered.� The hidden gates, namely Stack1push, Stack1pop, Stack2push, Stack2pop, have a 1-1 cor-respondence with the set of external attributes o�ered by the component classes of the TwinStack.These gates are identi�ed by the component class name, followed by the parameter index ofthat class in the structure operation and �nished by the attribute name.� New sort operations, namely par1 and par2, are used to return the individual parameter valuesof any given TwinStack TS structure representation. These new operations are generated bythe StExp transformation, and added to the ADT part of the speci�cation.� The composition structure of the TwinStack has been expanded out in the process algebra partof the resulting design. This structure is still present in the ADT part, but it is now explicit inthe communications model.



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 163� The underlying functionality is contained in the ParStack components.The StExp transformation is concerned mainly with the generation of a suitable Control pro-cess for any given statically structured class. ETwinStackControl illustrates how such a process isgenerated, for a simple behaviour.process EParTwinStackControl[ Stack1push, Stack1pop, Stack2push, Stack2pop, request, response ]:noexit:=(request!push1?Nat1:Nat?ID:Nat;Stack1push!Nat1; (EParTwinStackControl[:: :] jjj (response!push1!ID; exit))[](request!pop1?ID:Nat;Stack1pop; Stack1pop?Result:Nat;(EParTwinStackControl[:: :] jjj (response!pop1!Result!ID; exit))[](request!push2?Nat1:Nat?ID:Nat;Stack2push!Nat1; (EParTwinStackControl[:: :] jjj (response!push2!ID; exit))[](request!pop2?ID:Nat;Stack2pop; Stack2pop?Result:Nat;(EParTwinStackControl[:: :] jjj (response!pop2!Result!ID; exit))endproc (* EParTwinStackControl *)The EParTwinStackControl speci�cation is simple to generate because the two Stack componentsare not con�gured. The external attributes of the TwinStack are serviced by the Control `passingthem on' to the components, using the new internal gates.Consider now extending the TwinStack behaviour with a swaptops transformer such that Stack1and Stack2 are con�gured on swaptops. The swaptops attribute is more formally de�ned as:TS(Stack1,Stack2).swaptops = TS((Stack1.pop).push(Stack2..pop), (Stack2.pop).push(Stack1..pop));This attribute is translated into the EParTwinStackControl process by the inclusion of a new choicebehaviour expression:: : : [] (request!swaptops?ID:Nat;(( Stack1pop; Stack1pop?Result1:Nat; exit)jjj( Stack2pop; Stack2pop?Result2:Nat; exit ) )>>(( Stack1push!Result2; exit) jjj ( Stack2push!Result1; exit) )>>(EParTwinStackControl[:: :] jjj (response!swaptop!ID; exit)) ) : : :This more complex attribute gives a better avour of how, in general, external attributes aretranslated by the StExp CPT. The resulting behaviour expression is made up of four parts:� i) Accept the request and input parameters.� ii) Perform internal accessor and dual operations for each dependent component.� iii) Use the information gathered, if necessary, to perform internal state transitions (via externaltransformer requests).� iv) O�er the response (with result in the case of a dual or accessor) in parallel with the originalControl behaviour



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 164When an external attribute depends on only one component then the translation is simpli�edby not having to use the jjj or >> operators. The push1, pop1, push2 and pop2 attributes, inTwinStack, are a good example of this.5.7.1.2 The Correctness Of The Static ExpansionWe are required to prove that ETwinStack is a class implementation11 of PTwinStack. In otherwords, given STwinStack, a value of the TwinStack sort, then ETwinStack[: : :](STwinStack) implPTwinStack[: : :](STwinStack). The StExp relation between these two behaviours is illustrated in�gure 5.9.
EParTwin

TwinStackOut[..](0)

push1 pop1 push2 pop2

pop2pop1

request

response

request

StExp

[..]
Control
Stack

Stack1pop

Stack1push

Stack2push

Stack2pop

...

...

push1 pop1 push2 pop2

pop2pop1

responseTwinStackOut[..](0)

TwinStackIn[..](0)TwinStackIn[..](0)

ParTwinStack[...](TS(Stack1,Stack2)) EParTwinStack[...](TS(Stack1,Stack2))

ParStack(Stack1)

ParStack(Stack2)
ParTwinStackBody[...](TS(Stack1,Stack2))Figure 5.9: StExp of a TwinStack BehaviourThe two speci�cations have TwinStackIn and TwinStackOut components in common. The onlydi�erence is betwen the unstructured ParTwinStackBody and the structured EParTwinStackBodyprocess instances. The EParTwinStack is an implementation of the corresponding ParTwinStack in-stance because of a simple property of the implementation relationship: any behaviour expressionwhich contains an internal event can have that internal event transformed into a sequence of internalevents (or vice-versa) without changing the external behaviour of the expression The StExp transfor-mation changes internal requests (and responses) into sequences of internal events which model thepassing on of the requests to the component processes, and responses back again.The TwinStackIn and TwinStackOut processes, common to the design speci�cation before andafter the transformation, guarantee the external ordering of service requests and responses, no matterwhat changes are made to the internal sequence of events. Further, the use of the ADT speci�cationto provide the underlying functionality guarantees comptibility between the behaviours o�ered. Thetransformation cannot introduce livelock or deadlock and so correctness is preserved.11The implementation relationship is one which guarantees the preserving of the requirements in the original OOACT ONE model.



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 1655.7.1.3 Other Complexities To Be AddressedThe TwinStack example was chosen for its simplicity, and as such it does not address all the com-plexities of the transformation. These are as follows:� Preconditioned Equations in the Requirements Model.Preconditioned equations are de�ned on structured classes as boolean expressions which de-pend on accessor12 service replies from components. Preconditioned equations translate quitenaturally into guarded expressions in the process algebra. Note that the completeness of thepreconditioned equation (guaranteed by the OTHERWISE construct) means that no deadlocks canbe introduced by the generation of guarded expressions in the new design speci�cation. Fur-ther, no additional nondeterminism can arise from more than one guarded expression being true(across a choice of behaviours).� Invariants in the Requirements Model.Invariants are realised by `global preconditions' on every attribute in a class. Consequently,invariants are translated into `global guards' in the process algebra. This can, unfortunately, leadto deadlocks when invariants are not proven, in the analysis stage, to be maintained throughoutthe lifetime of an object.The complexities arising from the handling of preconditions and invaraints are not considered inany of the CPTs that follow.5.7.2 Compositional Re-Structuring For Re-UseThere are two important aspects to restructuring for re-use: decomposition and composition. It isnecessary to be able to decompose larger components into smaller ones so that the smaller componentswhich have already existing implementations can be re-used. The static expansion transformation(StExp) provides a decomposition mechanism. It is also necessary to be able to compose smallercomponents into larger ones so that the implementation of the larger component can be re-used. Itis this type of transformation which is considered in this section.A simple solution to the re-structuring problem is to de�ne a CPT which is the inverse of theStExp CPT. However, this is not general enough, since the designer may wish to combine only asubset of the component parts rather than all of them. Consider a Class which has �ve components.The designers wish to combine components 1,2 and 3, and components 4 and 5 to create new com-ponents (component1' and component2'). These new design components correspond to some alreadyimplemented behaviour which can be re-used directly. This restructuring is illustrated in �gure 5.10.The Comp CPT acts on any given statically expanded LOTOS speci�cation. It is parameterised ona partitioning of the component set. In the diagram above, the partitioning is: ffcomponent1; component2; component3g,fcomponent4; component5gg.12In the requirements model preconditioned equations can be de�ned only on accessor attributes so that componentstate changes cannot arise from the evaluation of the precondition boolean expression.



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 166
EClassControl

ECLassBody ClassOutClassIn

Component 1 Component 2 Component 3 Component 4 Component 5

Component 1’ Component2’

CEClass
Comp(ECLass,...)

EClassControl

ECLassBody

ECLass

ClassOutClassIn

Component 1

Component 2

Component 3

Component 4

Component 5

Figure 5.10: A Composition CPT: Comp5.7.2.1 Comp CPT ExampleConsider a system of two queues (of natural numbers) and a transformer The system accepts Nats viathe on attribute, transforms and then queues them up via the internal trans attribute, and outputsthe results in their original order via the off attribute. This is more precisely speci�ed by the OOACT ONE System class de�nition, below.CLASS System USING Queue, Transformer OPNSSTRUCTURES: SQQT < Queue, Queue, Transformer >TRANSFORMERS: on<Nat>, trans (* internal *)DUALS: off -> NatEQNSSQQT(Queue1,Queue2,Transformer1).on(Nat1) = SQQT(Queue1.push(Nat1),Queue2,Transformer1);SQQT(Queue1, Queue2, Transformer1).trans =SQQT(Queue1.pop, Queue2.push(Transformer1.tr(Queue1..pop)), Transformer1);SQQT(Queue1,Queue2,Transformer1).off = SQQT(Queue1,Queue2.pop,Transformer1) AND Queue2..popENDCLASS (* System*)The System class structure diagram is represented in �gure 5.11.Static expansion of the ParSystem process results in the EParSystem process de�nition, as partiallyde�ned by the EParSystemBody process, below (the other parts of the EParSystem speci�cation arenot a�ected by the Comp transformation).Now, the designers may be aware of a precoded component, DoubleQ say, which provides the



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 167
System

Queue1

Queue2

Transformer1
on(Nat)

off -> Nat

transFigure 5.11: A Composition Exampleprocess EParSystemBody[request, response] (SSystem:System): noexit :=hide Queue1push, Queue1pop, Queue2push, Queue2pop, Transformer1tr inSystemControl[:: :] j [: : :] j( ParQueue[ Queue1push, Queue1pop] (par1(SSystem)) jjjParQueue[ Queue2push, Queue2pop] (par2(SSystem)) jjjParTransformer[ Transformer1tr] (par3(SSystem)) )where : : :endproc (* ESystemBody *)functionality of two natural number queues which are linked in some unspeci�ed way. Rather thanhaving two distinct Queue components in the design, it is advantageous to combine them togetherinto a single component. This can be done using the Comp CPT.Comp(ESystem, ff1; 2g; f3gg) results in a new process speci�cation which di�ers from the oldprocess only in the speci�cation of the ClassBody. The new process class body is named CEClassBody,in this case. The speci�cation of CESystemBody, resulting from Comp(Esystem, ff1; 2g; f3gg) is givenbelow.process CESystemBody[request, response] (SSystem:System): noexit :=hide Queue1push, Queue1pop, Queue2push, Queue2pop, Transformer1tr inSystemControl[:: :]j [: : :] j(CQueueQueue[Queue1push,Queue1pop,Queue2push,Queue2pop] (par1(SSystem), par2(SSystem))jjj ParTransformer[ Transformer1tr] (par3(SSystem)))whereprocess CQueueQueue[Queue1push,Queue1pop,Queue2push,Queue2pop](Queue1:Queue,Queue2:Queue):noexit:=ParQueue[ Queue1push, Queue1pop] (Queue1) jjj ParQueue[ Queue2push, Queue2pop] (Queue2)endproc (* CQueueQueue *) : : :endproc (* ESystemBody *)The new CQueueQueue process can now be implemented using the pre-coded DoubleQueue com-ponent. For consistency, it is bene�cial to be able to respecify the CQueueQueue process in standardParClass form. Then, it can be transformed by any of the design CPTs. This standardisation re-quires the creation of a new ADT class, de�ned as a static structure with two Queue components. Inother words, the ADT model of the new component is reverse engineered into a new OO ACT ONEclass speci�cation.



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 1685.7.2.2 An Overview of the Correctness of CompThe Comp CPT is doing nothing more than bracketing together sequences of interleaved operationsand substituting internal events with sequences of internal events. Since the jjj operator is associativeand the components being combined are interleaved processes, any bracketing of these processes canbe done without altering the behaviour being speci�ed.5.7.2.3 Limitations of CompThe Comp CPT works only on LOTOS speci�cations which have expanded static structure, with acentralised control component. Part of the job of an object oriented designer is to distribute the controlaspects of a system among its component parts (see the Dist CPT in section 5.7.3). This distributionoften means that the component processes are no longer interleaved, but must synchronise on sharedgates. It is much more di�cult to formulate a composition CPT for these types of distributed systemspeci�cations. This line of research is not examined in the design part of this thesis. Rather, duringdesign we recommend that the expanded class speci�cations are compositionally restructured beforethe Dist CPT is applied.5.7.3 Re-Structuring for Distributed ControlAll structured LOTOS EParCLass processes have a centralised control to manage the way in whichthe component processes are used to provide the external functionality. The EParClass processeshave a structure as shown in the left hand side of �gure 5.12. The Dist CPT produces a DistClassstructure, as shown on the right hand side of the same �gure.
..

ParComp1(..)

.

.

.

.

..
[..](..)

[..](..)
ClassIn

ClassOut

..
EParClass
Control[..]

ParComp1(..)

.

.

.

.

..[..](..)

[..](..)
ClassIn

ClassOut

DComp1
Control

Dist
EParClass(SClass:Class) DistClass(SClass:Class)

ParCompm ParCompmDComp2
ControlFigure 5.12: The Distributed Control CPT: DistBefore the Dist CPT is applied, the ClassBody process has its concurrent processes under thecontrol of the ClassControl process. In e�ect, there is a centralised process through which all requestsand responses go. Object oriented designers may wish to remove this centralisation and distributecontrol in a decentralised fashion. There are potentially an in�nite number of ways in which a designercould choose to do this. This section de�nes one CPT, namely Dist, which distributes the centralised



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 169control of a EClass process amongst all of the Class component processes. The Dist CPT is de�nedon EParClass processes.5.7.3.1 Dist of NonCon�gured Structure: a TwinStack ExampleConsider the TwinStack behaviour de�ned in 5.7.1. The Dist CPT applied to EParTwinStack pro-duces the DistTwinStack process speci�cation, below.process DTwinStack[push1, push2, pop1, pop2 ](STwinStack):noexit:=hide request, response inTwinStackIn[ push1,push2,pop1,pop2,request ](0) j [ request ] jDTwinStackBody [ request, response ](STwinStack: TwinStack) j [ response ] jTwinStackOut[ pop1, pop2, response ](0)where(* TwinStackIn and TwinStackOut are specified as before *)process DTwinStackBody[request, response](STwinStack: TwinStack):noexit:=DStack1[request,response](par1(STwinStack))jjjDStack2[request,response](par2(STwinStack))where : : :endproc (* DTwinStackBody *)endproc (* DTwinStack *)In the EParTwinStack class, the ParStack components are not con�gured. Consequently, there isno need for synchronisation between the DStack1 and DStack2 components of DistTwinStackBody.These two processes are interleaved to provide the required behaviour. Their speci�cations are givenbelow.process DStack1[request,response](SStack:Stack):noexit:=hide Stack1push, Stack1pop inParStack[ Stack1push, Stack1pop ](SStack) j [ Stack1push, Stack1pop] jDStack1Control[ request, response, Stack1push, Stack1pop ]where(* ParStack is specified in the normal way *)process DStack1Control[ request, response, Stack1push, Stack1pop ] :noexit:=(request!push1?Nat1:Nat?ID:Nat; Stack1push!Nat1;(DStack1Control[:: :] jjj response!push1!ID; exit)) [](request!pop1?Nat1:Nat?ID:Nat; Stack1pop; Stack1pop?Result:Nat;(DStack1Control[:: :] jjj response!pop!Result!ID;exit))endproc (* DStack1Control *) endproc (* DStack1 *)process DStack2 : : :(* Defined similarly to DStack1 *)5.7.3.2 Distribution of Con�gured Structure: A TwinStack Extension ExampleConsider an extension of the TwinStack behaviour in which the two components are con�gured by aswaptops attribute, which is de�ned as:



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 170TS(Stack1,Stack2).swaptops =TS((Stack1.pop).push(Stack2..pop), (Stack2.pop).push(Stack1..pop));This results in the extended TwinStackControl process as de�ned earlier in this section. We mustconsider how such a con�guration is transformed by the Dist CPT. Intuitively, there now must besome sort of internal gate shared by the component Stacks. The passing of information betweencomponents, which was originally done by the centralised control process, must now be done by thecomponents.In theDist transformation, when processes i1; : : :ir are con�gured by an external attribute, then aninternal con�guration gate named configi1: : : ir is de�ned in the resulting ClassBody. For example,since components 1 and 2 con�gure in the TwinStack (on the swaptops attribute) there is an internalgate de�ned as config12 in the DistTwinStackBody process.In the case where class components are con�gured, the Dist CPT produces a structured controlprocess for every component. Each control is made up of ServiceThese and IgnoreThese compo-nents running in parallel, but not synchronised. The ServiceThese process controls the servicing ofrequests which depend on the particular component which it is controlling. The IgnoreThese processparticipates in all requests and responses which do not depend on the component to be ful�lled. Thisis necessary because all components must multi-way synchronise on request and response events. ThePStack process, running in parallel with the control process, is de�ned in the normal way. Conse-quently, it can also be manipulated using CPTs whilst maintaing correctness. This is illustrated inthe following code for process DistTwinStack.The DistTwinStack example illustrates quite clearly how the con�gured servicing of a transformerswaptops is distributed amongst the two components. It is not clear, without further investigation,whether the distribution of control is as straightforward for dual (and accessor) attributes. In a `wellde�ned' OO ACT ONE speci�cation of requirements, the result of a dual (and accessor) is always theresult of a dual (or accessor) at one of the components of the structure. It is therefore quite naturalin the distributed design for this one component to take responsibility for the result response. Forexample, consider a dual attribute op de�ned on a TwinStack as follows:TS(Stack1, Stack2).op = TS((Stack1.pop).pop, Stack2.push(Stack1..pop)) AND T(Stack1.pop)..pop;This results in additional fragments of LOTOS code in the distributed TwinStack design: the twoControl processes, in each Stack component, are extended in the code below.5.7.3.3 Overview of the Dist CPT De�nitionThe main complexity in the de�nition of Dist is the analysis of the con�gured attribute requirements.This analysis must identify whether attributes con�gure components. The parsing of the con�guredattribute requirements then splits the service into four parts:� Performs accessors (and duals) on components which provide results for use in the internalrequests in the remainder of the service. In the transformation, these result in a set of parallelinternal events with `data ow' modelled by the internal config event synchronisations.� Dual events must be then be processed in order of nesting The ordering is maintained by thecontrol parts of each component.



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 171process DistTwinStackBody[request,response] (STwinStack:TwinStack):noexit:=hide config12 inDStack1[ request, response, config12](par1(STwinStack))j [ request, response, config12 ] jDStack2[ request, response, config12 ](par2(STwinStack)) whereprocess DStack1[ request, response, config12 ] (SStack: Stack):noexit:=hide Stack1push, Stack1pop inPStack[ Stack1push, Stack1pop ](SStack) j [ Stack1push, Stack1pop ] jDStack1Control [ request, response, Stack1push, Stack1pop ] where(* PStack is defined in the normal way *)process DStack1Control[:: :]:noexit:=ServiceThese[request, response, Stack1push, Stack1pop] jjjIgnoreThese[ request, response ] whereprocess ServiceThese[ request, response, Stack1push, Stack1pop ]:noexit:=(request!push1?Nat1:Nat?ID:Nat; Stack1push!Nat1; (ServiceThese[:: :] jjjresponse!push1!ID; exit)) [](request!pop1?Nat1:Nat?ID:Nat; Stack1pop; Stack1pop?Result:Nat; (ServiceThese[:: :] jjjresponse!pop!Result!ID; exit))(request!swaptops?ID:Nat; Stack1pop; Stack1pop?Result1:Nat; config12!Result1?Result2:Nat;Stack1push!Result2; (ServiceThese[:: :] jjjresponse!swaptops!ID; exit))endproc (* ServiceThese *)process IgnoreThese[ request, response ]:noexit:=(request!push2?Nat1:Nat?ID:Nat; IgnoreThese[:: :]) [](request!pop2?Nat1:Nat?ID:Nat; IgnoreThese[:: :]) [](response!push2!ID:Nat; IgnoreThese[:: :]) [](response!pop2?Result:Nat?ID:Nat; IgnoreThese[: : :])endproc (* IgnoreThese *) endproc (* DStack1Control*) endproc (* DStack1*)process DStack2[ request, response, config12 ] (SStack: Stack):noexit:=(* Defined similarly to DStack1 *)� The additional internal services that are required to achieve the correct global state of thesystem are treated separately as the penultimate part of the distributed service.� Finally, the analysis identi�es the component which is responsible for returning the result of therequest (if it has a result). The reponse event is synchronised on by all components, but onlyone provides the result (the others accept any result value).5.7.3.4 Overview of the Correctness of Dist On Con�gured Expanded ClassesAs for the other structural CPTs, Dist does not change the external functionality of the system(class) being speci�ed: it restructures the internal events (or sequences of events) which control theinteraction between components of the system. Rather than having one central control process, thecontrol is distributed amongst the components using multi-way synchronisation. Each componentthen decides which service requests it has to be involved in. Correctness is guaranteed because theServiceThese and IgnoreThese processes guarantee the non-introduction of internal deadlock orlivelock, the TwinStackIn and TwinStackOut processes maintain the same external communication



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 172process DStack1Control[:: :]:noexit:=ServiceThese[request, response, Stack1push, Stack1pop] jjjIgnoreThese[ request, response ] whereprocess ServiceThese[ request, response, Stack1push, Stack1pop ]:noexit:= : : :(request!op?ID:Nat; Stack1pop; Stack1pop?Result1:Nat; config12!Result1; Stack1pop?Result2:Nat;(ServiceThese[:: :] jjjresponse!op!Result2!ID; exit)) : : :endproc (* ServiceThese *)(* Process IgnoreThese defined as before *)endproc (* DStack1Control*)process DStack2Control[:: :]:noexit:=ServiceThese[request, response, Stack1push, Stack1pop] jjjIgnoreThese[ request, response ] whereprocess ServiceThese[ request, response, Stack1push, Stack1pop ]:noexit:= : : :(request!op?ID:Nat; config12?Result1:Nat; Stack2push?Result1:Nat;(ServiceThese[:: :] jjj response!op?Result2:Nat?ID:Nat; exit)) : : :endproc (* ServiceThese *)(* Process IgnoreThese defined as before *)endproc (* DStack2Control*)interface, and the ACT ONE part of the design maintains the external functionality.5.7.3.5 The Importance of the Distribution CPT DistThe Dist CPT is the �rst step towards the formalisation of very complex systems of distributedobjects (processes). It introduces the possibilty of modelling concurrent objects and shared objects atthe high levels of design. This thesis is not concerned with the development of distributed software.However, the Dist CPT does illustrate how such work may be instigated in FOOD. There is muchscope for developing a set of CPTs which can be applied to distributed DistClass processes.5.7.4 Resolving Explicit NonDeterminismThis section addresses the need for designers to remove nondeterminsim in speci�cations. The CPTwhich we examine in this section is concerned with removing the nondeterminism due to (* INTERNAL*) transformations in the requirements model. One approach to removing nondeterminism is providedthe by Rend (`remove nondeterminism`) CPT.5.7.4.1 Resolving Explicit NonDeterminism Using Rend: A CoinToss ExampleReconsider the simple CoinToss Class in section 4.3.4. The O-LSTSD is given, in �gure 5.13, as areminder of its behaviour.The LOTOS ParCoinToss process, de�ned below, is the �rst high-level object oriented design ofthis behaviour13.13The removal of nondeterminism in the other types of object oriented LOTOS speci�cations is done similarly.



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 173
CoinToss USING Bool

Coin(True) Coin(False)

Toss -> Bool

HorT<Bool> 

INTERNAL

Coin<Bool>

HorT(False)

HorT(True)

HorT(True)

Toss=True

HorT(False)

Toss=FalseFigure 5.13: CoinToss: An Example of Nondeterministic Behaviourprocess PCoinToss[ Toss ] (SCoinToss: CoinToss):noexit:=hide request, response, HorT inCoinTossIn[ Toss, request, HorT ](0) j [ request ] jCoinTossBody[ request, response ](SCoinToss) j [ response ] jCoinTossOut[ Toss, response ](0) where : : :(* These processes are defined as if HorT was an external attribute. *)The PCoinToss speci�cation says nothing about how, why or when the HorT internal transitionsoccur. Clearly, the designers must resolve this nondeterminism before implementation can begin. TheRend approach requires the speci�cation of a new process which runs in parallel with the CoinTossInprocess. This new process restricts when the internal transitions can take place. The Rend CPTtakes a process, DetCoinToss say, as a parameter and produces a new DetPCoinToss speci�cation,as de�ned below.process DetPCoinToss[ Toss ] (SCoinToss: CoinToss):noexit:=hide request, response, HorT in( DetCoinToss[ request, HorT ] j [ request, HorT ] jCoinTossIn[ Toss, request, HorT ](0) )j [ request ] jCoinTossBody[ request, response ](SCoinToss) j [ response ] jCoinTossOut[ Toss, response ](0) where : : :DetCoinToss can be any process speci�cation which has a gate list [request, HortT] and is of typenoexit. The correctness of the Rend transformation on PCoinToss depends on DetCoinToss ful�llinga simple property: at any stage in the behaviour of DetCoinToss, all external attribute request events(of the correct form) must be o�ered immediately or after a �nite number of HorT events. Thisproperty guarantees the correctness of the Rend transformation. Rend places the responsibilty on thedesigners to prove that the required property is upheld. Fortunately, as the examples below show,this is often trivial.



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 1745.7.4.2 A Set of More Deterministic Coin TossesIn this section we de�ne a set of DetCoinToss processes, each of which models a di�erent way ofremoving some, or all, of the HorT nondeterminism in the CoinToss behaviour.� I) DetCoinToss[: : :]:noexit:=request!Toss; HorT?Bool1:Bool; request!HorT!Bool1?Nat1:Nat; DetCoinToss[: : :]In this speci�cation, DetCoinToss resolves only some of the nondeterminism by stating thatafter every request!Toss a state transition must take place before another request!Toss canbe accepted. It says nothing about what state transitions occur between tosses.� II) DetCoinToss[: : :]:noexit:=HorT!true; request!HorT!true?Nat1:Nat; request!Toss;HorT!false; request!HorT!false?Nat2:Nat; DetCoinToss[: : :]In this case, the designers resolve the nondeterminsim by stating that the coin tosses true andfalse, alternately.� III) DetCoinToss[: : :]:noexit:=HorT!true; request!HorT!true?Nat1:Nat; request!Toss; DetCoinToss[: : :]In this case, the designers resolve the nondeterminsim by stating that the coin always tossestrue.These simple examples show the power in separating out the explicit resolution of internal transi-tions from the rest of the DetClass behaviour. The Rend CPT shows only one mechanism of resolvingexplicit nondeterminism in a controlled fashion. The domain of the Rend transformation is ParClassprocess speci�cations, but this can be easily extended. Like all the CPTs put forward in this thesis,Rend is used to show only that CPT based-design, in an object oriented LOTOS framework, has thepotential for practical application.5.7.5 Removing ParallelismThe object oriented LOTOS speci�cations, in this work, model concurrency using the parallel op-erators jjj, jj and j [: : :] j. Two processes combined by the parallel operator(s) can be said to beconcurrent | of course the concurrency is just represented by an arbitrary interleaving of events. Ifthe target implementation language supports concurrent entities then it is the job of the designersto match LOTOS processes to these entities. However, designers may wish to remove the parallelismwhen it is not supported at the implementation level, or if it is too �ne-grain to warrant a mappingto separate implementation entities.



CHAPTER 5. FORMAL OBJECT ORIENTED DESIGN (USING LOTOS) 1755.7.5.1 Removing Arbitrary Interleaving In Behaviour ExpressionsThe extension CPTs tend to produce design speci�cations in which parallelism models the arbitratryinterleaving of communication events between a centralised control process and the component pro-cesses of which it requests services. For example, the ETwinStack services the swaptops attribute inthe following way:request!swaptops?ID:Nat;((Stack2pop; Stack2pop?Result1:Nat; exit) jjj (Stack1pop; Stack1pop?Result2:Nat; exit))>> : : :The order in which the elements are popped o� the two Stack components is not determined bythe ETwinStack design. This leaves the designers some implementation freedom: the TwinStack mayaccess the information concurrently or it may do it sequentially. The designer is free to remove theparallelism by changing the attribute de�nition. For example, a design decision to access Stack1,followed by Stack2, results in the following code:request!swaptops?ID:Nat;(Stack1pop; Stack1pop?Result1:Nat; Stack2pop; Stack2pop?Result2:Nat;)>> : : :Rather than attempting to specify a CPT which controls this type of design decision, we say thatany behaviour expression in the object oriented designs written as (P;exit) jjj (Q;exit) can betransformed into ( P;Q; exit) or (Q;P; exit) whilst preserving correctness.



Chapter 6Object Oriented Program DerivationThis chapter examines how implementations can be derived from the formal object oriented LOTOSdesigns which arise from application of the methods de�ned in chapters 2 through to 5.� 6.1: High-level Object Oriented Design as Input to ImplementationThis section introduces implementation as an extension to design, and reviews a range of pro-gramming languages and environments which could be used to implement the object orientedLOTOS design speci�cations. It argues that, in general, executable languages can express threeaspects of software speci�cation: data structure, function (data transformation) and ow ofcontrol, and shows that di�erent programming languages place di�erent degrees of emphasis oneach. With this in mind, the implementation of object oriented requirements using non-objectoriented languages is �rst considered. Then, the advantages of working in an object orientedprogramming environment are put forward.� 6.2: Object Oriented Programming: The AlternativesSection 6.2 examines the di�erent types of object oriented programming languages (and envi-ronments) which are currently available. It begins by de�ning the four main roles of objectoriented programmers: interfacing with designers, writing code, producing documentation andtesting. Di�erent characteristics of object oriented languages are identifed and, based on thesecharacteristics, a review of object oriented programming languages is given. Finally, Ei�el ischosen as the object oriented programming languages most suitable for implementing the formalobject oriented LOTOS designs.� 6.3: Translating Design To Implementation: Mapping SemanticsThis section begins by reviewing the concept of targetted design: informality, in programminglanguage semantics, is argued to make the targetting process more complex, and the futuredevelopment of a programming language with formal semantics (based on the O-LSTS functionalmodel, and a process algebra communication model) is recommended. The informal semanticsof object oriented programming languages are reluctantly accepted as a necessary evil at thisstage of the research. The remote procedure call communication model (RPC) is put forwardas the best option when targetting design towards an Ei�el implementation.176



CHAPTER 6. OBJECT ORIENTED PROGRAM DERIVATION 177� 6.4: Producing Ei�el from Procedural Object Oriented LOTOS DesignsSection 6.4 shows how Ei�el code can be developed from the formal object oriented designs,in order to meet the requirements. Initially, the implementation work of this thesis is placedwithin a set of reasonable bounds. It is not possible to examine all implementation issues andso restrictions are placed on the type of work which this thesis addresses. Then, an overviewof the main implementation problem is given, namely matching value and reference semantics.The main body of this section gives a high-level view on the production of Ei�el code fromformal designs: implementing object-based requirements, object-oriented requirements, usingassertions and exceptions, and a potpourri of other relevant issues.� 6.5: A Question Of Concurrency And DistributionThis section concludes this chapter by examining how the formal object oriented developmentprocess can be targetted towards concurrent or distributed implementations. It begins by statingthe obvious advantages of concurrency and distribution in software systems, whilst re-stating thereasons for concentrating on a sequential implementation approach in this thesis. Alternativeviews of the relative merits of combining object oriented and concurrent models are given. Themain problem for concurrent object oriented languages is argued to be that of scale. Usingour object oriented design method is shown to provide a solution to the problem of complexityexplosion when mapping objects to processes. Then, references to the conicting requirementsof object oriented and concurrent semantics are given. This section concludes by stating thatthe formal object oriented development approach, as advocated in this thesis, has the potentialfor being used to construct concurrent implementations.6.1 High-level Object Oriented Design as Input to Implementa-tionIn chapter 5, the importance of targetting a design towards a particular implementation language(environment) is stressed. Provided this is done appropriately, coding should then be a naturalextension of the design process. Writing code should, in theory, be almost mechanical in nature, sincethe designers have done all the hard work. However, matching design speci�cation semantics withdi�erent implementation language semantics is not always a simple task.There are three orthogonal aspects to object oriented LOTOS designs:� The communication model, i.e. the semantics of message passing (service requests and serviceful�lment).� The composition structure.� The subclassing hierarchy and associated static and dynamic classi�cation properties.Each of these aspects must be mapped onto the implementation language. It is the designer's role tomake this mapping as simple as possible.The implementation process is made easier when the design semantics are close to the program-ming language semantics. Chapter 5 de�nes the object oriented design semantics in a way which



CHAPTER 6. OBJECT ORIENTED PROGRAM DERIVATION 178separates the functional, compositional and classi�cation properties (in the ADT part) from theinteraction, control and communication properties (in the process algebra part). Clearly, some lan-guages will be better suited to implementing the formal designs than others. However, since, ingeneral, programming languages provide the same computational power, the object oriented conceptscan be mapped into non-object oriented language constructs.6.1.1 An Overview of Programming Languages and Implementation ConcernsIn general, executable (programming) languages can express properties with regard to three di�erentaspects of a software system: data structure, data transformation (function) and ow of control. (This3-dimensional categorisation is �rst commented on in chapter 2, when di�erent aspects of analysis areconsidered.) Formal object oriented analysis concentrates on data structure and data transformation,whilst providing a service-request semantics which can be used to form the basis of a wide rangeof communication and control-ow models. The process algebra part of the formal object orienteddesigns make more concrete the ow-of-control aspects of the proposed solution to the requirements.Consequently, for implementation to be straightforward, it is necessary that the chosen programminglanguage is rich in expression with respect to data structure, data transformation and control ow(data communication).6.1.1.1 Data Structure and Data RelationshipsThe declarative composition and subclassing relations are fundamental aspects of the object orientedformal models. Programming languages, in general, have a declarative (non procedural) element,used to de�ne problem speci�c data structures. Most programming languages provide a means ofde�ning new data structures as groups (commonly called records or structures) of already de�neddata structures. These mechanisms provide an obvious means of modelling composition. However,most programming languages do not provide a mechanism for de�ning subclassing-like relationshipsbetween data structures. In such cases, a subclassing model must be built on top of the declarativeconstructs, using composition in some conventional way. Such a work-around solution is made evenmore complex by the polymorphic requirements inherent in formal designs.6.1.1.2 Data Transformation (Function)Data transformation is commonly provided by primitive operators (whose semantics are de�ned aspart of the language), together with a means of constructing non-primitive operations (usually in theform of subprograms which can be called `as-if' primitive). Procedural languages o�er a similar degreeof support for expressing data transformation properties. These transformation constructs providea natural means of modelling the object oriented notion of attributes/methods. Non-procedurallanguages provide a di�erent challenge to object oriented modellers.



CHAPTER 6. OBJECT ORIENTED PROGRAM DERIVATION 1796.1.1.3 Flow of ControlThe di�erent models of control ow evident in programming languages are categorised in �gure 6.1.The main body of this chapter, namely sections 6.2 to 6.4, concentrates on non-concurrent imple-mentation models. Section 6.5 examines the suitability of our formal object oriented developmentstrategy with respect to the production of a concurrent implementation.
Single Thread of Control

Section 6.5

Rules, Tables, Constraints

Rules, Tables, Constraints

Multiple Threads of Control

NONPROCEDURALPROCEDURAL

NonConcurrent

Concurrent

Outside Thesis Scope

KEY:

Sections 6.2 to 6.4

calls etc...
Standard control constructs are condions, loops,
Only one thread of control during execution

Multiple Threads of Control
Forks and Joins etc...
Combined with standard control constructsFigure 6.1: Categorising Control Flow Models6.1.2 Implementation Outside an Object Oriented FrameworkAll languages (including object oriented programming languages) vary in their ability to supportobject oriented concepts. In particular, they di�er in their ability to support the primitive conceptsin the formal designs. Programming languages represent a compromise between: achieving a con-ceptual framework of understanding, being e�cient and o�ering compatibility with other systems(and languages). Achieving a balance between these three requirements is, principally, what tempersthe programming language semantics. Implementation is the process of matching these programminglanguage semantics to the given design semantics. Using a non-object oriented language to implementobject oriented requirements needs great care since there is no direct support, from the implemen-tation environment, in maintaining the object oriented properties. However, it can be done. Forexample, Ei�el [84] is compiled into C, and the resulting C adheres to syntactic conventions whichgive it an object oriented avour. By directly following these conventions, it is possible to producea C implementation without using Ei�el. This implementation approach is very di�cult withoutthe type of support that the Ei�el programming environment provides. To give a avour of howLOTOS object oriented designs can be implemented in non-object oriented programming languages,implementation in three di�erent environments is considered:� Using a purely functional programming language.� Using an imperative programming language.� Using a relational database language.



CHAPTER 6. OBJECT ORIENTED PROGRAM DERIVATION 1806.1.2.1 Functional ImplementationFunctional and object oriented languages appear, at �rst glance, to have much in common: bothplace emphasis on the the notion of categorisation in the form of type and class, respectively. Muchdebate has arisen concerning the di�erences and similarites between the notions of type and class(and subtyping and subclassing). Section 2.5 provides an overview of the discussion and puts forwardthe stance of this thesis.Given an ADT speci�cation of object oriented requirements, as generated by the object orientedanalysis, it is clear that it should be possible to directly implement it in a functional language: asimple mapping between sort and type, and operation and function would form the basis of suchan implementation. However, as with the ACT ONE analysis model, a functional language whichdoes not provide polymorphism will require additional work on the part of the programmer (or codegenerator) to ful�l the polymorphic requirements. Some functional programming languages providepolymorphic types, e.g. Miranda [111], but such polymorphism is ad-hoc rather than constrained. Thework byWadler and Blott [122] reviews the problems introduced by ad hoc polymorphism in functionallanguages. The research language Haskell [4] is an attempt to introduce object oriented propertiesinto a purely functional programming framework, but this work is still incomplete. Perhaps themost interesting work in combining object oriented semantics with functional semantics is embodiedin FOOPS (Functional Object Oriented Programming System) [60]. Unfortunately, the primitivede�nitions in the object oriented semantic framework used in this thesis do not correspond directly tothe FOOPS notions. As such, although the mapping between the O-LSTS semantics and a functionalsemantics is an interesting task, a functionally based implementation was not carried out as part ofthis work.6.1.2.2 Imperative ImplementationThe expressive similarities of di�erent imperative programming languages can be taken advantage ofin the de�nition of a general algorithm for the imperative implementation of object oriented require-ments. The key stages to such an algorithm are:� Stage 1: Model classes as data structures.Classes are speci�ed in the formal designs as structured processes. The composition structure iseither: explicit in the decomposition of the process into a set of component processes, or implicitin the ACT ONE sort which parameterises the behaviour of class instances. In both cases, thisstructure can be directly translated into a record structure in an imperative implementationlanguage. The �elds of the record correspond to the components of the class. Variable recordmechanisms (whether provided as primitive language constructs or de�ned by the programmer)can be used to model classes with di�erent structures. Class literals can be simply implementedas enumerated types.� Stage 2: Model subclassing in data structures.One approach to modelling subclassing is to atten the class hierarchy structure: all the codefor each attribute of a class is then de�ned in the particular class body. This can lead to



CHAPTER 6. OBJECT ORIENTED PROGRAM DERIVATION 181multiple copies of the same code, although in many imperative languages this duplication canbe controlled using meta-language constructs like macros. A second approach is to model aninheritance facility using pointers to code bodies (which are shared among classes with commonroots in the subclassing hierarchy). This second approach can be extended to model the dynamicbinding of a service request to code at run-time. A third approach is to translate subclassingrelationships into delegation relationships. Instead of a group of subclasses `inheriting' codefrom a common superclass, the superclass behaviour being inherited can be de�ned in an extracomponent common to each of the subclasses. In this way, `inherited' behaviour is providedby delegation. The programmers must choose which approach is best suited to their particularlanguage.� Stage 3: Model polymorphism in data structures.In our object oriented model, an object can be treated as if it was a member of any of itssuperclasses. This is polymorphism: the object is dynamically bound1 to a particular class atrun-time. The polymorphism must be controlled so that an object is only ever re-bound toa superclass of its current class. Polymorphism makes type checking complex. In imperativeimplementation languages, where the static type checking is comprehensive, it is necessary tomodel polymorphism using operation overloading and coercion. In languages with weak statictyping, often the compiler does not check that typing properties are met, and so polymorphismis ad-hoc. This type of language can be used for the implementation of object oriented require-ments, provided the typing requirements have been statically checked outside the domain of theprogramming language semantics.� Stage 4: Model attributes as functions.Every attribute must be de�ned to have at least one argument, the implicit notion of self, i.e.the object being asked to service the attribute request. It is useful to de�ne a convention thatthis argument is always the �rst one in the list of attribute operation parameters. Implementersmust decide whether the other parameters should be passed by value or by reference. Whenpassing parameter values as references, there may be side-e�ects if accessor or dual attributesare requested of the parameter. Consequently, for safety, it is better to pass the arguments asvalues. However, for e�ciency reasons, it is often better to pass parameter values as references.A second concern when de�ning functions is the way in which they are named. Di�erentprogramming languages have di�erent syntactic restrictions placed on the naming of identi�ers.It is important that a naming convention is found which, within these restrictions, can be usedcoherently and consistently. For example, a unique identity for each function can usually begenerated by combining the class and attribute names in an appropriate fashion.� Stage 5: Model creation/initialisation routines.Creating a system corresponds to instantiating a member of a class. Classes can be either:� Purely static.When a purely static class instance is created, the resulting system has a persistent struc-1This is di�erent from the notion of dynamically binding a service to code.



CHAPTER 6. OBJECT ORIENTED PROGRAM DERIVATION 182ture, i.e. servicing an arbitrary sequence of external attribute requests does not changethe structured representation of the initial object. Further, in a purely static class, thecomponents of the class are required to be purely static instances.� Impurely static.As with a purely static class, the instances have persistent structure but, in the impurecase, class components are not required to be purely static.� Dynamic.A dynamic class instance, de�ned as a particular set of component objects, may be trans-formed into a di�erent set of components by ful�lling some sequence of service requests.Except in the purely static case, it will be necessary to be able to create and destroy system com-ponent objects (subsystems) during the lifetime of the system. These subsystems can, when theuse of references is strictly controlled, be implemented as stack-based variables. The imperativelanguage compiler can then automatically cope with memory allocation and deallocation.� Stage 6: Model encapsulation.Object oriented semantics require encapsulation of an object so that access to its state must bedone through its external interface. This requirement is not standard in imperative program-ming languages. Module-like constructs provide encapsulation in some languages, but there aredi�culties in de�ning a correspondence between objects and modules, especially in dynamicallystructured systems. Furthermore, confusion can arise when systems have multiple instances ofthe same module. It is better to enforce a convention that all access to structured data (inrecord form) must be through the external attribute functions.� Stage 7: Model concurrency, or lack of it.The object oriented LOTOS design models are easier to implement if the concurrency (modelledusing the parallel operators) is removed. In this case, message passing (service request/serviceresponse) events can be modelled imperatively using remote procedure calls. Section 6.5 exam-ines the issues which arise when the �nal design has concurrent aspects which are intended tobe carried through to concurrent implementation language constructs.These seven stages provide the basis for implementing object oriented requirements in an impera-tive language. Of course, this mapping of object oriented requirements is not the whole story for theimplementers. They must also consider coding a user interface, ful�lling non-functional requirements,documentation, testing, etc : : : (see 6.2). However, these aspects can be done as-if the implementationlanguage was object oriented, provided the seven stages above are complete.6.1.2.3 Implementation Using a Relational DataBaseBefore examining implementation using object oriented programming languages, a �nal, less obvious,alternative is briey considered: using a relational database.When the object oriented requirements place emphasis on the persistence of data, i.e. data thatexists beyond the lifetime of a single program execution, then a permanent data store is required.



CHAPTER 6. OBJECT ORIENTED PROGRAM DERIVATION 183Further, often the functional requirements of such systems are concerned with information retrievaland update: controlled access to di�erent �elds of data in a large data structure. Given such arequirements model, it is natural to think of implementing the system as a data base. Fortunately,high-level database languages exist to provide the core behavioural framework onto which particulardata structure, and associated functionality, can be built. Relational database languages (see [23, 74]for example) have the potential to provide a sound basis on which to implement complex softwaresystems of persistent objects.6.1.3 Implementation in an Object Oriented Environment: The AdvantagesComputational power is not an issue when choosing one implementation language over another,since programming languages can, in general compute whatever is computable. Section 6.1.2 gives anoverview of how object oriented constructs can be modelled (and therefore implemented) in non-objectoriented programming languages. In such an approach, the imperative language is used to constructa model of the object oriented semantics. There are inherent di�culties when implementing on topof such a model:� The mapping between the object oriented primitives, in the LOTOS designs, and the �nalimplementation language primitives is more complex than necessary.� The imperative language does not provide error protection facilites, in the form of type checking,which can automatically check the object oriented implementation to guarantee it ful�ls thecomplex correctness properties associated with a polymorphic language.� The testing of the implementation becomes more complex since it is necessary to test both thefunctional requirements and the correct modelling of object oriented primitives.One of the advantages of using an object oriented programming language is the consistent frame-work of conceptualisation between analysis, design and implementation2. Unfortunately, although theprimitive concepts are common, the underlying semantics of the primitive concepts is not standard.Consequently, there is still a need to model the object oriented requirements primitives, as speci�edin our LOTOS designs, onto an object oriented implementation language. However, in most cases,the object oriented programming language semantics are closer to our design semantics than for non-object oriented programming languages, and the mapping is therefore much simpler. In particular,many of the mapping steps needed for imperative implementation (see 6.1.2.2) are unnecessary whenusing an object oriented programming language.6.2 Object Oriented Programming (OOP): The Alternatives6.2.1 The Roles of Object Oriented ProgrammersObject oriented programmers have four main roles: interfacing with designers, coding, documentingand testing.2Chapter 2 examines all the advantages of working in an object oriented framework, many of which are related tothe conceptual consistency.



CHAPTER 6. OBJECT ORIENTED PROGRAM DERIVATION 1846.2.1.1 Interfacing With DesignersThe role of designers is to target the requirements towards a particular implementation architecture.This targetting is at three di�erent levels:� Matching the object oriented semantics in the design with the programming language semantics,particularly with regard to the dynamic classi�cation and communication properties.� Matching the compositional structure of the design to resources in the implementation language.In particular, this means re-using already coded design/implementation components.� Ensuring that non-functional requirements can be met by the chosen implementation environ-ment.It is advised that implementers help designers to make appropriate design decisions.6.2.1.2 CodingAfter object oriented analysis and design, the implementers may still have much to do:� Code new classes and make these available for re-use (in some sort of package facility).� Place new design classes into the class hierarchy, if not already done during design.� Identify new generic classes and de�ne these for re-use.� Ful�l the non-functional requirements.� Match the static and dynamic typing requirements to the programming language.� Provide a user interface to the system: de�ne a means of representing system state, a means ofdynamically interacting with the system, and a way of storing and retrieving previous systems.� Resolve the unspeci�ed behaviour associated with exceptions, which was not dealt with duringdesign.� Resolve implementation freedom.These tasks are clearly inter-related in a complex way. This thesis is not an examination of objectoriented programming techniques and as such we do not examine the programming process in greatdetail.6.2.1.3 Document The Implementation With Respect To DesignThe formal design forms the basis of the code documentation. Each implementation class has anassociated design component. The OO ACT ONE speci�cation (de�ned by the ACT ONE code) foreach sort acts as a good statement of functional and structural properties. As such, we recommendthat it be included in the code (in the form of a comment). The process algebra speci�cation of thecommunication model can be included when its requirements are complex: when a consistent RPCmodel is enforced it is not necessary to include the communication information.Another important role of the documentation is to comment on di�erences between design andimplementation. For example, when sharing is used for e�ciency, or concrete state does not match



CHAPTER 6. OBJECT ORIENTED PROGRAM DERIVATION 185abstract state. Further, documentation must deal with re-use issues: where prede�ned code has comefrom, and where re-usable components are stored for future use. Documentation must also deal withtesting and user manuals3.6.2.1.4 TestingThe formal approach advocated in this thesis cannot guarantee that the resulting implementationprovides the required behaviour since there are two informal steps: customer communication ofrequirements4 and implementation. Implementation is said to be informal because there is no formalmapping between the semantics of the LOTOS designs and the semantics of the resulting executablecode. However, the formal analysis and design stages do guarantee that the requirements modelis ful�lled by the �nal design, and this �nal design is unambiguous. Further, the object orientedframework aids understanding of these formal models. As such, it helps to cover the informality gapat each end of the development process. Testing is the process by which implementers bridge thegaps at their end of development.Code is tested against the �nal object oriented design (the initial requirements, implicit in thedesign, have already been validated by the customer). The structure in the design matches structurein the implementation, to a great extent, and consequently the testing process can be incremental.6.2.2 Characterisation of OOP LanguagesObject oriented programming languages vary in their support of object oriented concepts. Theobject oriented semantic framework, de�ned in chapter 3, is the basis upon which we evaluate thesuitablility of languages for implementing formal object oriented designs in LOTOS. Object orientedcharacteristics are categorised into three groups:� EssentialThese characteristics are the minimum requirements for a language to be considered suitablefor implementation.� ImportantIt is important that these characteristics are evident in the chosen programming language ifthe formal object oriented development method is to progress past the research stage, and gaininitial acceptance in industry.� Bene�cialBene�cial characteristics are those which could eventually positively inuence the widescaleadoption of formal object oriented development within industry.It is not always clear whether or not an implementation language (or environment) exhibits aparticular characteristic. When a distinction is necessary, the following categorisation is useful:3It is beyond the scope of this thesis to examine the production of customer documentation.4It is common for the customer to validate the requirements model as being correct even when it does not exactlyrepresent their needs. In an ideal environment, the formal requirements act as a contract between customer and softwaredeveloper so that there is a level of customer liability.



CHAPTER 6. OBJECT ORIENTED PROGRAM DERIVATION 186� Directly SupportedDirectly supported characteristics are provided by the language primitives, but not necessarilyenforced.� SupportedSupported characteristic are provided as elements of the language libraries, or can be easilycoded as such.� UnsupportedUnsupported characteristics can be modelled by the language, but there is no language or librarysupport.6.2.2.1 Essential CharacteristicsWe regard the following characteristics to be essential in a programming language which is to be usedfor implementing the object oriented LOTOS designs:� Classi�cationAll object oriented languages provide a means of de�ning classes of behaviour. In most cases,these classes are de�ned to have state attributes5. Objects are references to particular instancesof a class, in which the state attributes have been set to particular values.� EncapsulationObject state must be encapsulated behind an interface. In some languages, the state attributescannot be accessed directly. In others, attributes must be declared private if direct access is tobe prohibited. Unfortunately, some languages facilitate the declaration of state attributes asprivate, but do not enforce the privacy (see Smalltalk [58, 57], for example).� CompositionAll object oriented languages facilitate a form of composition, usually by allowing state at-tributes to be de�ned as objects. An object can then be said to be composed from its stateattribute values. This simple notion of composition is complicated when state attributes arede�ned as references to shared objects. Sharing is an e�ciency matter which is not necessaryfor correct implementation of the object oriented designs.� SubclassingAll object oriented languages o�er a subclassing mechanism. This mechanism is essential forpolymorphic properties to be o�ered in a controlled manner. Unfortunately, object orientedprogramming languages provide subclassing in the form of inheritance, which performs twodistinct roles: it de�nes the class relationships in the system and de�nes how these relationshipscan be used to implement the e�cient binding of `shared code' to a service request. In thisthesis, the subclassing relationships are essential to provide inclusion polymorphism, whilst thecode sharing aspects are secondary to this main issue.5This notion of attribute is di�erent from our well de�ned notion of attribute (as part of an object's interface), butmore of this di�erence later.



CHAPTER 6. OBJECT ORIENTED PROGRAM DERIVATION 187It is also essential that the subclassing is supported by a `multiple inheritance' mechanism, sincewe require that a class can be de�ned as a subclass of di�erent superclasses which themselvesare not related by a subclassing relationship. (Unfortunately, the way in which object orientedprogramming languages cope with conicts in multiply inherited attributes is not consistent.)� Substitution PolymorphismAn object which is typed to be a member of a class, C say, must be acceptable as a member ofany of the superclasses of C (this is the well accepted notion of substitutability). This type ofrequirement can be met by any untyped (ad-hoc polymorphic) language. However, this optionis ruled out by the next essential characteristic: strong typing.� Strong TypingWhen each variable in a system is known merely to be an object, of some unspeci�ed sort,this is known as weak typing. Contrastingly, in strongly typed object oriented languages, everyvariable is precisely de�ned as belonging to a particular class. Strong typing is essential, in ouropinion, because it provides facility for actively supporting the implementation of correct code.Ideally, type correctness in the implementation language is guaranteed by type correctness inthe LOTOS design. However, in practice, implementations have typing aspects which are notdirectly checked by earlier development stages.6.2.2.2 Important CharacteristicsThe characteristics which we consider important, but not essential are:� (Incremental) CompilationIt is important that the implementation code can be compiled into machine code. This require-ment is purely an e�ciency and portability concern. Incremental compilation is an additionaladvantage because it leads to the generation of autonomous re-usable implementation compo-nents.� GenericityGenericity is not a subclassing mechanism, but it is a powerful technique for de�ning param-eterised behaviour. Genericity improves understandibilty (by highlighting common structures)and encourages re-use.� Comprehensive Class LibrariesMost object oriented programming languages include a library of standard classes for generalpurpose data structures, �le handling, user-interfacing, graphics, mathematics, etc : : : . Withoutthese class libraries, object oriented programming is very di�cult.6.2.2.3 Bene�cial CharacteristicsIt is bene�cial for the following characteristics to be o�ered by the chosen implementation language,but not essential at this early research stage.



CHAPTER 6. OBJECT ORIENTED PROGRAM DERIVATION 188� AssertionsAssertions can improve the mapping between requirements and implementation. Provided thatthe object oriented design assertions (de�ned as boolean expressions) can be expressed directlyin the implementation language, there can be automatic checks, made during execution, thatthe requirements are ful�lled. Thus assertions (of some sort) in the implementation languagecan improve the testing process. A second consideration is that assertions improve the under-standability of the code. Consequently, it is advised that assertions are placed in the code ascomments, even when no mechanism exists for making the checks during execution.� Garbage CollectionDynamic object oriented systems require the production and destruction of component objectsduring execution. Garbage collection is an important memory management facility which freesunreachable object space for future use. Some object oriented programming languages do notprovide automatic garbage collection, but expect programmers to explicitly deallocate memorywhen an object is no longer needed.� Wide Acceptance (in industry)It is important that we target our designs towards implementation languages which have a wideacceptance (industrial as well as academic). Widely used languages o�er continual support viapublished work and second-hand user experience.� PackagingA class is not an ideal fundamental building block for re-use. In many cases it is bene�cial tobe able to re-use groups of related classes (a package). Packages can help to control visibilitybetween classes. Object oriented programming languages often require unique class identi�ers.This is counter-productive to the independent production of compatible re-usable classes. Pack-aging can provide a means of de�ning name-space domains to avoid this problem.� Concurrent ConstructsConcurrent constructs have the potential to improve e�ciency, increase resource utilisation andmore naturally model the real world requirements of highly parallel systems. Concurrent con-structs free designers from having to target the designs towards the constraining non-concurrentsemantics which dominate programming languages at the moment. Concurrency also improvesthe extendibility of the system. Section 6.5 examines the issue of concurrency in more detail.� Tool SupportSoftware development tools (for example, debuggers, browsers, interpreters and syntax directededitors) have the potential to improve productivity. Also, they can improve the chances ofthe code meeting customer requirements. Tool support is particularly important in an objectoriented implementation environment [57].� Persistency SupportA permanent data store is required by a large number of software systems. A persistencymechanism can simplify the implementation of a data store, and consequently make the codeeasier to understand.



CHAPTER 6. OBJECT ORIENTED PROGRAM DERIVATION 189� PurityObject oriented programming languages are categorised as being pure or hybrid. Pure languagesare those which do not provide language constructs whose roles are outside the object orientedparadigm. Hybrid languages, being extensions of non-object oriented languages, provide lan-guage constructs whose roles are not necessarily object oriented. The problem with many hybridlanguages is that object oriented principles are not enforced. Further, the non-object orientedconstructs can be used to violate the object oriented requirements. Purity also makes the im-plementation code much more consistent. In general, consistency implies coherency. (Smalltalk,by enforcing the consistent notion that everything is an object, is an excellent counter exampleto this claim.)6.2.2.4 A Note On The Importance Of SemanticsA separate problem occurs when characterising programming languages if their semantics for partic-ular characteristics do not match the formal semantics in the formal designs. Ei�el and C++ providetwo interesting examples of this:� Ei�el o�ers a subclassing mechanism (inheritance), but this does not ful�l the contravariancerequirement in the formal object oriented design model. In this case, Ei�el provides a subclassingmechanism, but does not fully support the subclassing requirements.� C++ claims to o�er polymorphism when what it actually o�ers is the dynamic binding of codeto message requests. It does not o�er replacement polymorphism.These types of subtle semantic di�erences plague the process of translation between languages withdi�erent semantics, particularly when the target implementation language semantics are not formallyde�ned.6.2.3 A Review of OOP LanguagesIt is not possible to review all available object oriented programming languages. Five of the mostpopular languages, namely Simula, Smalltalk, C++, Ei�el and CLOS, are considered in sections6.2.3.1 and 6.2.3.2, below.6.2.3.1 Overview of Language HistoryThis section gives an introduction to each of the �ve languages by giving a brief review of theirhistories.� Simula was designed in 1967 as an extension to Algol 60 [91]. It is a general purpose languagewhich, although often ignored by object oriented programmers, is still widely used. Simulationis just one application of Simula.� C++, an extension of C, was designed by Stroustrup in 1984 [106]. It is widely distributedin many forms (by commercial vendors and as public domain software). It is likely to be



CHAPTER 6. OBJECT ORIENTED PROGRAM DERIVATION 190the dominant object oriented programming language of the 1990s. The main weaknesses ofC++ are: the lack of substitution polymorphism, its hybrid nature and its lack of support fororganising libraries (di�erent library classes often turn out to be incompatible). As with C, thesyntax is awkward and di�cult to parse. A good reference to the latest versions of the languageis [2]. C++ is still evolving but there are standardisation e�orts. Unfortunately, at the present,the semantics of C++ are such that formality is out of the question.� Smalltalk-80 was the �rst popular object oriented language, developed at Xerox Parc by Kay,Goldberg and Ingalls [58, 57]. It is best known for its contribution to the development ofgraphical user interfaces, and the manner in which it provides a programming environment(set of complementary tools) rather than just a programming language. Its purity is taken toextremes: all things are objects (even classes). This consistency, paradoxically, can be quiteconfusing to beginners and experts alike. It is an interpreted language which does not performany strong type checking. It is a good language for learning about object oriented programming,but it is not suitable for large scale software development.� Ei�el was developed by Bertrand Meyer in 1988 [84], in response to the need for a stonglytyped but dynamically bound object oriented programming language. It has many innovativefeatures and appears to provide all that one would require in an object oriented language, butit has its problems (particularly in its implementation). Ei�el is examined in more detail insection 6.4, as the language chosen for implementing object oriented LOTOS designs.� CLOS (Common Lisp Object System) is an extension of common Lisp (see [73, 42], for exam-ple). It was developed to include the best features of a wide range of Lisp-based object orientedlanguages (e.g. Flavours [88] and CommonLoops [7]). Although it is a hybrid language, theobject oriented language constructs are so well integrated with the Lisp features that it can betreated as if it was pure. CLOS adheres to the Lisp philosophy of exibility: it is weakly typedand encapsulation is not enforced.6.2.3.2 Comparing CharacteristicsThe table in �gure 6.2 identi�es the three types of characteristic (esssential, important and bene�cial)each of the �ve languages support and, in appropriate cases, the degree to which they are supported.6.2.4 Choosing Ei�elExamination of the table in �gure 6.2 clari�es the reasoning behind choosing Ei�el for implementationof the formal object oriented LOTOS designs: it is the only language, under consideration, whichful�ls all the essential requirements6. Ei�el is not ideally suited to our needs (see section 6.4), butis the best option available within the timescale of the thesis. Currently, work is being done towardsautomating the generation of Ei�el code from object oriented LOTOS designs. This thesis reportsonly on the manual production of code.6C++ was originally used in the case study, together with Ei�el, but there were great problems with its lack ofsubstitution polymorphism and its informal, yet very complex, de�nition.



CHAPTER 6. OBJECT ORIENTED PROGRAM DERIVATION 191
MinimalLittleLittle

Hybrid(used purely)

UnsupportedSupported Supported 

PurePure

UnsupportedSupported Direct

AverageGoodGood

No No Yes

YesYesYes

No YesYes

Not ApplicableNot Applicable Direct

Supported DirectUnsupported

Minimal

Unsupported UnsupportedDirect
(ad hoc)Direct(ad hoc)Direct Direct

UnsupportedDirect

DirectDirectDirect
MultipleMultipleSingle

DirectDirectDirect

Smalltalk-80 CLOSEiffel

Unsupported

(incremental)

Excellent Excellent

Direct Unsupported

Excellent

Acceptance
Industrial

Collection
Garbage

characteristic
language Simula C++

Classification

Encapsulation
Composition
Subclassing

Polymorphism
Strong Typing

Assertions

Genericity

Library Support

Compilation

Packaging
Concurrency

Tool Support

Persistency

Purity

Direct Direct

Direct
Direct
Single Multiple

Direct

Direct

Direct Direct

Unsupported

Unsupported

Minimal

Yes

Yes

No
Direct

Average

Unsupported

Hybrid

Supported 

Direct

Yes

No

Yes

Limited

Good

Supported 

Hybrid

Supported 

MinimalFigure 6.2: Characterising Object Oriented Programming Languages6.3 Translating Design To Implementation: Mapping Semantics6.3.1 Implementation Languages: The Importance of SemanticsGood programmers understand the semantics of their chosen implementation language. Bad program-mers su�er from a lack of semantic understanding: they must continually check their understandingof the language.6.3.1.1 The (Reluctant) Acceptance Of InformalityThe high-level object oriented designs are constructive in nature and, as such, have potential for directcompilation. A direct compilation approach is not advocated in this work because it is necessary forprogrammers to be able to manipulate and interact with the implementation code, and the objectoriented LOTOS code (in its present form) is certainly not suitable for use by object oriented pro-grammers. Consequently, this thesis advocates using a di�erent language for implementation. Thereare di�culties which arise from this approach:� The chosen implementation language Ei�el, like most object oriented programming languages,has no formal semantics. Consequently, there is no way to prove that the code is a validimplementation of the design (and therefore ful�ls the initial requirements). Certainly, having



CHAPTER 6. OBJECT ORIENTED PROGRAM DERIVATION 192a formal object oriented design helps to test the code, but it cannot guarantee correctness.� The informal semantics of Ei�el appear, at �rst glance, to correspond to the semantics of the ob-ject oriented LOTOS designs (using the procedural communication model). However, there aremany di�erences between the design semantics and implementation language semantics (theseare covered in more detail in section 6.4). The naive view is that the design and implementa-tion languages share a common semantics (i.e. object orientedness) and this can lead to manyproblems. Implementations may appear to ful�l their requirements (as speci�ed in the design),but without formal semantics these appearances can deceive.These problems arise from informality in the programming languages. Programmers can, in prin-ciple, do what they want with the design provided they can verify their executable model againstthe requirements. In practice, this is of course impossible. A formal design phase is needed in soft-ware development to ensure the requirements are correctly stated in the design. Formally de�nedprogramming languages are necessary to guarantee the correct implementation of the design.6.3.1.2 Object Oriented LOTOS: A Formal Executable Model For The Future?An alternative to mapping the LOTOS designs to an existing object oriented programming languageis to create a new formally speci�ed programming language (based on the object oriented designsemantics). Such a language could be a simple syntactic sugaring of the LOTOS object orienteddesign style of speci�cation. Using a formal implementation language retains formality in the stepfrom design to implementation. However, it was not the approach taken in this thesis:� The thesis argues that formal object oriented development of software systems using LOTOS ispossible. It is easier to show this by mapping the designs towards well accepted object orientedprogramming environments than by producing such an environment from scratch.� It is hoped to transfer this work to industry. Industrial acceptance is di�cult to achieve withouta well accepted base: in this case, a mature programming language and environment provide afoundation upon which industrial interest can be developed.� By carrying out the implementations in Ei�el, it is possible to show that our approach tosoftware development is practical, whilst also emphasising the problems which can arise whenthe implementation language has no formal semantics.There is a need for a formally speci�ed object oriented programming language. A natural extensionto this thesis is the development of a programming language based on the object oriented semanticsof the formal designs.6.3.1.3 The Remote Procedure Call Communication Model: An Easy TargetWegner de�nes four fundamental types of object: functional, server, autonomous and slot-based,according to their external and internal communication models [124]. Ei�el objects are of the servertype: the objects are active only when a message is received that triggers the object's internal



CHAPTER 6. OBJECT ORIENTED PROGRAM DERIVATION 193operations. These internal operations are themselves sequences of service requests to state attributeobjects of the server. Consequently, there is a single thread of control in an Ei�el implementation.Control goes from client to server and returns to the client after the server updates its internal stateand/or returns some result.6.3.2 Peculiarities of LOTOS DesignsThere are many aspects of the LOTOS designs which are peculiar to the approach advocated in thisthesis. These must be kept �rmly in mind when deriving object oriented code.6.3.2.1 SharingIn LOTOS designs whose communication models are procedural, there is no notion of shared objects.For example, when an object A is composed from components B, C and D then there is no access to B,C and D except through A. In e�ect, all external events of B, C and Dmust synchronise with the controlprocess of A. This is illustrated in the left hand side of �gure 6.3. Contrastingly, in object orientedprogramming languages, it is common to be able to de�ne components as references to objects7. Thisis illustrated by the right hand side of �gure 6.3.
POSSIBILITY OF SHARING

A

DCB

OOPL (REFERENCE COMPOSITION)OOLOTOS (RPC COMMUNICATION)

NO POSSIBILITY OF SHARING B, C or D

A

B C DFigure 6.3: Composition By Reference: A Form of SharingConsider a LOTOS design of a database enquiry system. There are two components: the databaseand the interface (which interprets user interactions). A new multi-user system is required to allowparallel access to three users, for example. This type of behaviour is most naturally implemented usingsharing, even though it cannot be speci�ed in that way using the formal procedural communicationmodel. Rather than having all access to the database to be through the system control, sharingpermits each individual interface to have a reference to the database (and thus have direct access toinformation). The shared database system can be said to be composed from a number of single-userdatabase components. The underlying components in the design and implementation are the same:the three interfaces and one database. However, the way in which they communicate and interact isvery di�erent. This is illustrated in �gure 6.4.Sharing is a powerful implementation mechanism, but it breaks the principle of encapsulation.The state of each of the components of the shared database implementation can be accessed without7In Ei�el, this is the only way of de�ning object components.



CHAPTER 6. OBJECT ORIENTED PROGRAM DERIVATION 194
Single User DataBase Implementation

Interface1 DataBase

Shared DataBase in OOLOTOS

DataBaseInterface1

Single User DataBase in OOLOTOS

Shared DataBase Implementation

DatabaseShared Interface1 Interface2 Interface3

Composition of shared database is:
three single-user databases

Interface3Interface2Interface1

DataBase

Composition of shared database is:
three interfaces and one databaseFigure 6.4: Sharing Objects: An Implementation Exampleusing the component's interface. Alternatively, one could argue that the database is not actually acomponent of any of the components but is a component of the whole multi-user system (a globalvariable). Sharing is examined in more detail in section 6.4, when the Ei�el reference semantics areconsidered.6.3.2.2 Polymorphism: Parameter ReplacementThe OO ACT ONE requirements model states that all parameters of an operation can be actualisedby an instance of the speci�ed class or by an instance of a subclass of the speci�ed class. Thisproperty of object oriented systems is known as polymorphic replacement. The ACT ONE modelspeci�es polymorphic replacement using coercion and operation overloading. The transfer of ACTONE structure to the formal process algebra is complicated by the polymorphic requirements8.Polymorphic replacement must be considered during implementation. In some languages, thistype of polymorphism will be provided for automatically. However, in languages whose semantics donot provide this polymorphic property, it is necessary to code it explicitly where necessary.6.3.2.3 Implementation FreedomIn the analysis model, a service request is de�ned as the evaluation of a state label expression.When this is translated to ACT ONE, a service request is de�ned as the evaluation (simpli�cationusing standard re-write rules) of an ACT ONE expression. Now, when a system services a request by8The main weakness of using LOTOS for our object oriented design language is that it does not directly supportreplacement polymorphism.



CHAPTER 6. OBJECT ORIENTED PROGRAM DERIVATION 195using its components, these expressions will be constructed from subexpressions which correspond tointernal service requests. Often, the order in which these subexpressions is evaluated is arbitrary. Thisis speci�ed using the interleaving operator (jjj). In a procedural implementation, the implementermust resolve this freedom of implementation feature by removing the internal parallelism. This doesnot change the external behaviour.6.3.2.4 ExceptionsExceptions, in the LOTOS designs, are handled in a very distinctive manner: exceptions are returned(as unspeci�ed results) to the service requesters (clients) rather than resulting in a run-time error.For example, just because a stack is empty should not prevent it from servicing pop requests, otherwisestatic analysis cannot, in general, guarantee the absence of a run-time error due to an empty stackreceiving a pop request. In the stack case, the designers can either chose to explicitly handle theexception or they can leave the programmers to cope with it. Exceptions are not necessarily errorcases, they represent some abstract behaviour which is to be made concrete at less abstract stages ofdevelopment. Implementers must handle all exceptions in a consistent and coherent fashion. Havingexceptions in the design is useful if the target implementation language provides a mechanism forhandling them.6.4 Producing Ei�el from Procedural Object Oriented LOTOSDesigns6.4.1 Setting Reasonable BoundsImplementing object oriented requirements using Ei�el is a large area of research in its own right.Further, the production of executable code for any given formal speci�cation is a non-trivial task. Itis not possible within the implementation part of this thesis to examine formal code generation inany detail. Rather, we set reasonable bounds for the implementation.6.4.1.1 Restricting Designs to The RPC Communication ModelRather than attempting to show how Ei�el can be used to implement any given LOTOS design, werestrict ourselves to those written using the procedural communication model.6.4.1.2 Restrictions on the Ei�el SyntaxEi�el is a large, complex language with many mechanisms, not all of which are a direct consequenceof an object oriented philosophy. Rather than attempting to examine the complete language, onlythose aspects which are directly relevant to the implementation of formal designs are considered. Thissimpli�es the process of code generation, but means that the code produced in this way may not bethe most e�cient. It is beyond the scope of this thesis to consider all the ways programmers can tunetheir code whilst retaining correctness, particularly with respect to the choice of certain language



CHAPTER 6. OBJECT ORIENTED PROGRAM DERIVATION 196constructs over others. We are primarily concerned with producing code which ful�ls its functionalrequirements.6.4.1.3 Emphasis On SemanticsThis section does not attempt to analyse the suitability of Ei�el as an object oriented programminglanguage. Such an analysis necessitates:� A study of Meyer's object oriented philosophy.� A critique of the Ei�el environment (the language implementation and tools) with respect totheir practical application in large scale software development.� The undertaking of a variety of case studies using Ei�el.Meyer, of course, gives his opinions on these aspects. A more objective view is given in [121].6.4.1.4 The Language VersionEi�el is continually being updated and errors corrected. Meyer has listened to much of the criticismof the language and attempted to make improvements. Unfortunately, it is not possible to alwayshave the most up-to-date version of the language. Further, it is often best to stick to using an olderversion, rather than continually changing ones understanding of the semantics. Many aspects of thelanguage have remained constant, whilst other important features of the language are very unstable.Analysis of these features is restricted to an early version of the language, namely version 2.3. Thereason for this being that the coding in the case study (see chapter 7) was carried out over a yearbefore this research was written up. The newest version of Ei�el is de�ned by Meyer in [86].6.4.2 Coding Design Requirements in Ei�el: An OverviewThe production of Ei�el code is considered in three main sections:� Modelling object based requirements.� Modelling object oriented requirements.� Utilising assertions and exceptions.Then, some other interesting aspects of Ei�el are considered. This work is usefully preceded by acomparison between the semantics of Ei�el and the semantics of the object oriented LOTOS designs.6.4.3 Reference Semantics vs Value SemanticsThe object oriented LOTOS and Ei�el have fundamentally quite di�erent semantics, even thoughthey both have an object oriented avour. The mapping between the two languages appears quitestraightforward until the semantics are studied in more detail. Call-by-reference semantics, as isprominent in Ei�el, is appropriate for the speci�cation of an executable language in which how notwhat is a prime concern. Further, call-by-reference gives much more control to the programmer with



CHAPTER 6. OBJECT ORIENTED PROGRAM DERIVATION 197respect to e�cient allocation and use of resources. The value semantics, as is evident in the formaldesigns, is appropriate for the speci�cation of behaviour at a higher level of abstraction (and whosee�cient execution is not a prime concern). Before addressing the problems of relating the two di�erentsemantics, it is useful to examine the relative merits of each.6.4.3.1 Advantages of Reference SemanticsThe advantages of reference semantics arise from the extra control given to a programmer with respectto the way in which memory is utilised. By using references, programmers can explicitly access andmanipulate state rather than state variables. This is a powerful facility which is often abused. Ei�elreference semantics supports two very powerful programming techniques:� SharingSharing is necessary when state attributes of di�erent objects must refer to the same object: asopposed to distinct but identical objects. Sharing leads to an economy of space, e�cient memoryaccess and update, and semantic integrity (if something in the shared object changes, then thischange is simultaneously reected in all the clients of the shared object). To implement sharing,state attributes are declared as references to other objects. In Ei�el, all state attributes (otherthan those of simple types) are implemented as references. The global scope of references inEi�el means that any object can be referenced by any other object. A limited form of sharingcontrol is provided by the Ei�el constant references and the once construct. This allows objectsto be shared amongst instances of a particular class (and no other).� Linked data structuresAll programmers are familiar with the notion of linked data structures: stacks, lists, trees, etc: : : . Linked data structures are most useful when there is recursion, or even self reference. Theyprovide the most e�cient means of constructing large data stores, with high degrees of controlover how the structure is traversed. Linked data structures o�er a natural way of implementingrecursively de�ned class structures.6.4.3.2 Disadvantages of Reference SemanticsMany complications arise when using references:� Creation and InitialisationBecause the state attributes of an object can themselves be references to other objects, objectcreation and initialisation must be done in two steps: a declaration (for example, x:X declares xto be a reference to class X and sets the state of x to be void) and an association (for example,x.Create creates an object of class X and associates it with reference x). There is a confusingduality between the references and the instances.� Memory ManagementObject instances may, at run time, be unreferenced. It is necessary for this state to be madeavailable for re-use (garbage collection). Ei�el provides an automatic garbage collection facility



CHAPTER 6. OBJECT ORIENTED PROGRAM DERIVATION 198(as opposed to requiring the programmer to handle it), but it does make the code producedmuch less e�cient.� Dynamic AliasingIt is dangerous to have one object which is accessed through two di�erent references. In par-ticular, when references are passed as operation arguments (external attribute parameters) it isnot possible to guarantee that the execution of the routine does not change the state of objectsother than the one currently servicing the request.� Testing for equality and copyingWith references there are two ways of de�ning equality: by reference, or by `state'. Testing forequality of `state' can be shallow (where all �elds are tested for equality of reference) or deep(where all �elds are tested for equality of `state'). In some complex, recursive data structures itis necessary to de�ne even more complicated equalities. The same complexities arise when oneconsiders de�ning assignment and cloning.6.4.3.3 References and Values: a Logical EquivalenceIt is very simple to implement call-by-value semantics in a call-by-reference language: all calls to areference are simply replaced by making a deep copy of the object being referenced and passing areference to the new copied object. In this way, the absence of sharing is guaranteed.It is also simple to implement call-by-reference semantics using a call-by-value language: everyobject is uniquely identi�ed and kept (together with its identi�cation) in some global data store. Theobject identi�ers can then be used as state attributes of other objects. Access through identi�er canbe provided by a global system function which is visible to all objects.The advantage of a reference semantics is that the global state (and global means of allocationand access) are provided by the language rather than needing explicit control by the programmer.Reference semantics are very powerful, but do make the production of correct code much moredi�cult. When implementing the formal designs we do not advocate the `do everything by value'approach. However, we do not wish every object to be made available for sharing. Consequently, weadvocate the use of sharing only in special cases and code the Ei�el so that, by default, operationarguments are passed as references to copies rather than sent as references to the actual parameter.In special cases, sharing can be contained within prede�ned classes: trees, lists, rings etc : : : . Forexample, a linked list structure can be used to implement the following List class behaviour.Class List USING listelm OPNSLITERALS: emptySTRUCTURES: ListStr <List, listelm>: : :endclass (* List *)An Ei�el implementation has a structure as de�ned below.The object, AList = List(List(List(empty,3),2),1) can be created in Ei�el as follows:AList, BList, CList, DList: ListCList.ListCreate(DList, 3); -- By default DList is empty



CHAPTER 6. OBJECT ORIENTED PROGRAM DERIVATION 199class List : : :featureNext: List;Elm: ListElm; : : :end -- class ListBList.ListCreate(CList, 2);AList.ListCreate(BList, 1);6.4.4 Coding Object Based Requirements6.4.4.1 A Class Instance Is A SystemMeyer states that:`The absence of a notion of main program and of any structuring mechanism at a higherlevel than the class is an important element of the Ei�el software design philosophy.'Each class is an executable entity in its own right. The process of creating a system from a class iscalled assembly. A system is characterised by a root class. System execution is done in two steps:root declaration and execution of the root class Create routine.This suggests that every class can somehow be instantiated and executed. However, in mostcases, the creation routine of a class just instantiates the state attributes. Such a creation routineshall be known as a base creation. The execution of a base creation will not produce a systemthat performs any useful purpose (other than its very existence). Classes which are intended to besystemised (i.e. turned into systems) are more commonly de�ned to have a creation routine whichacts as a type of main program.It is not desirable for all classes to have create routines that act as programs in their own right.It is desirable, however, that system classes can be generated from any given class corresponding toa component in the formal design. Object oriented Ei�el implementations generally have a complexroot creation routine which provides the user-interface to the system. The coding of such an interfaceis important for the system, but it is not important for subcomponents of the system. Ratherthan having programmers de�ne system containers for every class, it is useful to provide a defaultmechanism to produce a primitive system with minimal human-computer-interface (HCI) features.Such a mechanism is very easy to develop.6.4.4.2 De�ning Class MembersClass members are de�ned by the di�erent states which objects of a class can attain. In other words,objects are references to particular class members, and every object of a class is uniquely identi�edwith one class member. In Ei�el, every class has a �xed set of state attributes. This is inexible:� Literal values cannot be directly de�ned.� Classes with 2, or more, structures cannot be directly represented.



CHAPTER 6. OBJECT ORIENTED PROGRAM DERIVATION 200Literal values are the object oriented equivalent of enumerated types. Ei�el does not supportenumerated types: they must be declared as literal constants (normally integers). For example, theclass t-light, with three literals red, amber and green, is implemented in Ei�el below.class t-light : : :featurered: INTEGER is 0;amber: INTEGER is 1;green: INTEGER is 2;t-light-state: INTEGER : : :Multiple structures can be implemented by de�ning a structure enumeration to identify the struc-ture (or literal) currently being used as the state constructor of the object. This requires the param-eters of every structure operation to be included in the state attribute set (of the Ei�el code), withonly a subset of the parameters having meaning at any particular moment in an object's life-time.For example, consider the partial behaviour of the Student class, de�ned below.CLASS Student USING : : :OPNSLITERALS: unregisteredSTRUCTURES: single<subject>, joint<subject, subject> : : :This is implemented in the Ei�el Student class below.Class Student : : :featureunregistered: INTEGER is 0;single: INTEGER is 1;joint: INTEGER is 2;student-state: INTEGER;single-subject1, joint-subject1, joint-subject2: subject; : : :The state of an object is determined by the student-state attribute, together with the relevantparameter attributes. The naming convention for the structure parameter state attributes makes itsimple to identify the role of each state attribute: the structure name is followed by the parameterclass name and index. (Note that there is a redundancy when di�erent structures have commonparameters, but it is better to keep the redundancy as it improves the mapping between speci�cationand implementation.)6.4.4.3 De�ning Class Interfaces: Exporting Ei�el FeaturesEi�el groups state attributes and operations (methods) together as features. By default, all featuresare private (not part of the external interface). Public features must be listed in the export clauseat the beginning of the class de�nition. Meyer does not distinguish between state attributes andoperations because, as he correctly argues, it does not matter whether a feature is stored as a state orprovided as an operation. This is certainly true, but we believe that distinguishing between state and



CHAPTER 6. OBJECT ORIENTED PROGRAM DERIVATION 201operation is important since the state structure corresponds to our notion of composition. The stateattributes can still be o�ered as features by de�ning particular operations for this purpose. This is theapproach taken in our Ei�el implementations: none of the state attributes are exported (directly) andthere is a one-to-one correspondence between the exported Ei�el features and the external attributesof the design classes. Ei�el procedures are used to implement transformer attributes, whilst Ei�elfunctions are used to implement duals and accessors: duals are implemented as functions with side-e�ects.A simple stack class illustrates the way in which an object oriented class speci�cation is imple-mented in Ei�el. The OO ACT ONE code for the Stack class is given below.Class Stack USING Int OPNSLITERALS: emptySTRUCTURES: St<Stack, Int >TRANSFORMERS: push<Int>DUALS: pop � > IntEQNSStack1.push(Int1) = St(Stack1, Int1)empty.pop = empty AND 0; (* ignore exceptions, for the moment *)St(Stack1, Int1).pop := Stack1 AND Int1ENDCLASS (* Stack *)This behaviour is implemented in Ei�el below.This simple implementation of stack behaviour illustrates some interesting points:� The INTEGER base type is used to provide the behaviour of class Int. Base types are reconsideredin section 6.4.7.� The Create operation is the default means of initialising the state of an object. Ei�el does notpermit creation routines to be overloaded and so we cannot de�ne one creation routine for eachliteral and structure of a class. In some speci�cations, like the one above, it is useful to be ableto create an object as an instance of a literal or structure. In such cases, we de�ne operationsLiteralNameCreate and StructureNameCreate(: : :) in an appropriate fashion.� The code for the implementation of each of the external attributes (push and pop) is morecomplex than the speci�cation code because extra care is needed when coding with referencesin Ei�el.6.4.4.4 CompositionEvery structured object in the formal design is represented as a process in which the structure is eitherspeci�ed in the ADT part, or speci�ed as a set of component processes. The structured objects in theformal designs can be said to contain their components. In Ei�el the components (state attributes)are de�ned as object references. Therefore, to implement containment (encapsulation) we implementevery state attribute as a unique reference which is never passed out of the containing object. In thisway, complex Ei�el systems (without sharing) are given a conceptual composition hierarchy based onencapsulation. This is illustrated in �gure 6.5.



CHAPTER 6. OBJECT ORIENTED PROGRAM DERIVATION 202class Stack export push, popfeatureempty: INTEGER is 0;St: INTEGER is 1;Stack-State: INTEGER;St-Stack1: Stack;St-Int1: INTEGER;emptyCreate is do Stack-State := empty endStCreate(Stack1: Stack, Int1: INTEGER) is doStack-State := St;St-Stack1 := Stack1;St-Int1 := Int1 endpop is local tempstack :Stack doif Stack-State = empty then Result:= 0 elsetempstack.Create;tempstack:= Current;St-Stack1:= tempstack.St-Stack1.St-Stack1;St-Int1:= tempstack.St-Stack1.St-Int1;Stack-State:= tempstack.St-Stack1.Stack-State;Result:= tempstack.St-Int1end; -- poppush (int1: INTEGER) is local tempstack: Stack dotempstack.Create;tempstack := Current;Stack-State:= St; St-Stack1:= tempstack; St-Int1:= int1;end; -- pushend -- class Stack
Eiffel IMPLEMENTATIONOOLOTOS COMPOSITION TREE

root

g

h

f
d e

c

b

a

e

root
a

b

c

d

f

g

h e

root
a

b

c

d

f

g

h

No sharing =>
Conceptual Composition HierarchyFigure 6.5: Composition in Ei�elBy convention, unshared component attributes are commented as: -- components. The pro-



CHAPTER 6. OBJECT ORIENTED PROGRAM DERIVATION 203gramer must then ensure that such references are never passed outside the containing class. In thespecial cases where sharing is required, or a linked data structure is being used, then these sharedattributes must be commented with an explicit statement of why and how the reference is beingshared (this is good programming practice).6.4.4.5 Implementing State ChangesThe state changes of a structured process are implemented as follows:� RestructuringThis is implemented in Ei�el by changing the enumerated structure value and updating theother state attributes appropriately.� Pure UpdatesThese occur when the structure representation remains the same and the state of the systemchanges only as a result of service requests to component objects changing the components' state.In Ei�el, this means that the state attribute references do not need to be directly manipulated.� Impure UpdatesThese occur when the structure remains the same, but at least one of the components changesbecause of direct manipulation. In Ei�el this can only be implemented by an explicit change toone or more of the state attribute references.During design, emphasis is placed on purity: such classes can be very simply implemented in a ref-erence semantics because no direct manipulation of the referenced component attributes is necessary.Impure state changes are prone to errors because the state attribute references need re-allocation. Insome cases, the extra work required of programmers does not justify the exibility of allowing impurechanges to state. Contrastingly, restructuring of state corresponds to special events in the lifetime ofan object and therefore the additional work required on the programmers part is justi�ed.6.4.4.6 Implementing EncapsulationIt seems strange, when encapsulation is fundamental to object oriented programming, that objectoriented programming languages use reference semantics in such an uncontrolled fashion. The Ei�elimplementations of the formal designs use shared references only in very particular instances. Shar-ing cannot be discarded, but should be used only with due care and attention. Implementationswhich used shared references must always contain the sharing within well understood encapsulatedbehaviours. When such behaviours are re-used there is no evidence of the sharing at the componentinterface.6.4.5 Coding Object Oriented PropertiesSubclassing (extension and specialisation) in the formal object oriented designs is concerned with twoaspects of behaviour:



CHAPTER 6. OBJECT ORIENTED PROGRAM DERIVATION 204� Behaviour Compatibility: An instance of a class always o�ers equivalent behaviour as thecorresponding instance of the superclass.� Polymorphic Replacement: A subclass is type compatible with all its superclasses, i.e. typechecking involves checking the class of actual parameters against all the subclasses of the formalparameters (including, of course, the class of the formal parameter).Inheritance, in object oriented programming languages, is primarily concerned with code re-useand dynamic binding. Both these are e�ciency concerns: the faster production, compilation and exe-cution of code. However, the ability to override inherited methods means that behaviour compatiblityis no longer guaranteed.6.4.5.1 Multiple InheritanceBoth OO ACT ONE (and the LOTOS designs in which OO ACT ONE is used) and Ei�el o�ermultiple inheritance. However, multiple inheritance in Ei�el has many associated di�culties whichare not present in the design language. These must be addressed when implementing the formalrequirements:� Repeated InheritanceAll multiple inheritance systems must be able to cope with repeated inheritance: when a classhas a superclass which can be reached by more than one route up the class hierarchy. Ei�elresolves this problem by adhering to the following rule:In repeated inheritance, any feature from a common parent is considered shared if ithas not been renamed along any of its inheritance paths. Any feature which is renamedat least once is considered replicated.Consequently, when implementing repeated inheritance properties it is necessary for the Ei�elprogrammer to rename some features.� Name ClashesLanguages with multiple inheritance must deal with name clashes, i.e. when features inheritedfrom di�erent superclasses have the same name. In Ei�el, name clashes are forbidden. Thisplaces the onus on the programmer to cope with name clashes (using a construct for renaminginherited features) and weakens ones ability to re-use classes (by inheritance) without undueproblems. This renaming approach is de�nitely not an ideal solution [121] and newer versionsof Ei�el [86] allow explicit routing quali�cation to cope with name clashes.6.4.5.2 Implementing Extension and SpecialisationImplementing the extension and specialisation relationships in Ei�el appears to be straightforward:� ExtensionAn extension class is de�ned by including the new function in the subclass, and perhaps re-de�ning other features to take advantage of the new function for improved e�ciency.



CHAPTER 6. OBJECT ORIENTED PROGRAM DERIVATION 205� SpecialisationA specialisation is declared by de�ning a new invariant of the superclass. This invariant identi�esthe particular state partition of the superclass which makes up the new state of the subclass.The subclass state enumeration is useful in this respect.This subclassing seems to be a perfect match until one considers the rules of contravariance andcovariance. The formal design semantics state that:� The class parameters of a structure operation of a subclass may be de�ned as subclasses of thecorresponding parameters in the superclass.� The result of a valued transition in a subclass may be de�ned as a subclass of correspondingresult in the superclass.� The parameters of a transition in a subclass may be de�ned as superclasses of correspondingparameters in the superclass.Unfortunately, Ei�el does not support the last contravariance property. Cardelli [22] providesan in-depth study of the reasons for and against contravariance. Cardelli advises that subclassingmust support contravariance otherwise the polymorphic replacement property is not guaranteed tomaintain correctness. Unfortunately, contravariance is very di�cult to implement cleanly in Ei�el: itis necessary to override the Ei�el typing system with ones own (as in an imperative implementation)and graft this onto the Ei�el class hierarchy (a non-trivial task). Consequently, we chose to ignorethe need for contravariance and keep it in mind for future development.6.4.5.3 Typing ProblemsThe type checking of the formal designs should, in theory, guarantee type checking correctness ofthe resulting Ei�el (except the instances of contravariance in subclassing de�nitions). However, im-plementation often produces code which requires its own type checking. Ei�el type checking is verycomplex. The implementation of Ei�el, to date, cannot cope with the checks required by the informalsemantics. This is design oversight. Cook [30] analyses the holes in Ei�el type checking and proprosesremoving some Ei�el exibility as a solution. The thesis by Dinesh [47] analyses Ei�el type checkingwith respect to incremental development.6.4.6 Using Ei�el Assertions and ExceptionsAssertions de�ne properties of some value(s) of program components. The Ei�el assertion languageis not as powerful as full predicate calculus but it does provide a means of de�ning simple booleanexpressions.Assertions take three forms in Ei�el:� PreconditionsThe require construct places a precondition on a routine being executed. This is not importantwhen implementing the formal designs because the class instances are always able to service allrequests in their external interfaces.



CHAPTER 6. OBJECT ORIENTED PROGRAM DERIVATION 206� PostConditionsThe ensure construct is used to guarantee some property after a request has been serviced.Postconditions can be used to record some of the abstract behaviour de�ned for the class inwhich the routine is found. For example, after a push on a Stack, a suitable postcondition isthe boolean expression Stack.notempty.� Class InvariantsPreconditions and postconditions describe only properties associated with individual routines.We require, when implementing formal requirements, a means of implementing class invariants:global properties of class instances. Ei�el provides a class invariant construct. Class invariantsare useful in our implementations because they are checked on creation and at all stable timesin the lifetime of an object. Further, they are passed down the inheritance hierarchy. This isimportant for the correct implementation of specialisation relationships.Assertions are advantageous in our object oriented implementations because they:� Improve the relationship between speci�cation and implementation.� Act as a documentation aid.� Can be used to explicitly handle exceptions in a coherent fashion.In principle, runtime checking of assertions should not be necessary. However, it is currentlybeyond the state-of-the-art in software development tools to perform a static analysis of such correct-ness. Consequently, it is necessary, whilst testing, to monitor for exceptions in the Ei�el code at runtime. After testing, this monitoring can be turned o� to improve performance.Note that assertions and exceptions are useful for implementers both as a debugging mechanismand as a way of relating requirements with code. However, the Ei�el mechanisms do not constitutea formal approach to software development: the mechanisms are purely syntactic sugar. Ei�el does,however, encourage a methodological approach to exception handling, which can be used to implementthe exceptions in the formal designs.In conclusion, we note the limitations of the assertion language in Ei�el. For example, in the Stackbehaviour it is not possible to assert that pop(push(x,s)) =s. Meyer acknowledges this problem bystating that this behaviour should be incorporated as a comment. When implementing the formaldesigns in Ei�el, we recommend that the complete code for each class is included as a comment (orcomments) in the Ei�el code.6.4.7 Other AspectsOther important issues when coding with Ei�el are:� GenericityInheritance and composition are not powerful enough for general re-use. A mechanism forde�ning parameterised classes (generic behaviour) is required. Generic classes are simple tode�ne using Ei�el. The mapping from generic ACT ONE types is straightforward.



CHAPTER 6. OBJECT ORIENTED PROGRAM DERIVATION 207� PackagingThe lack of a packaging facility is one of the major weaknesses of Ei�el. Much of the abuseof multiple inheritance results from the need to inherit shared features which would be bettergrouped in some sort of package construct.� Simple TypesEi�el simple types (INTEGER, BOOLEAN, CHARACTER and REAL) are called-by-value.They are useful in providing e�cient implementations of well-understood behaviour. However,there is one problem with them: they cannot be placed in the class hierarchy. When it isnecessary to provide these behaviours in the class hierarchy (for example, one may wish tode�ne a class EvenInt as a specialisation subclass of INTEGER) then these simple types can becontained within classes which contain the simple types as their only state attributes. Thisresults in a loss of performance, but improves the consistency of the code.� PersistenceEi�el supports persistence using classes STORABLE and ENVIRONMENT. They are very useful, butagain inheritance is often abused to utilise these mechanisms. These classes are most useful inthe de�nition of the root system class.� External InterfacingThe EXTERNALmechanism provides for the incorporation of non-Ei�el code into Ei�el programs.It is beyond the scope of this thesis to examine this mechanism.6.5 A Question of Concurrency and DistributionThis section is primarily concerned with concurrency, and the potential for application of the formalobject oriented development method towards a concurrent implementation. Distribution of imple-mentation resources is also fundamentally a concurrency issue: distributed systems are constructedfrom concurrent processes9. Utilisation of distributed resources can be a performance issue, particu-larly when the problems being solved are highly concurrent in nature. Parallel code can be used tosolve some problems much more e�cienctly than others but, in general, this is not the case. Thereis a much more common reason, other than e�ciency, for requiring concurrent software: the externalinterface of the system being coded may be physically distributed. By considering concurrency inobject oriented implementations, the problem of distribution is also being addressed, albeit indirectly.The preceding sections of this chapter have addressed only sequential implementation, and chapter5 shows how designs can be targetted towards such an implementation environment. There are threemain reasons for concentrating on sequential implementation, at this stage of the work:� Ei�el does not directly support concurrency10.9The problem of implementation in a parallel architecture and implementation in a distributed architecture arelogically the same, but of course there are additional problems in distributed systems: for example, the inter-processcommunication is slow and may be prone to errors.10Meyer is currently working towards a concurrent Ei�el, but this extension is not available commercially.



CHAPTER 6. OBJECT ORIENTED PROGRAM DERIVATION 208� Concurrent semantics are, by their nature, much more complex than procedural (sequential)semantics.� The current state of the art in concurrent object oriented programming languages are neitherrobust enough nor well enough supported for the implementation stage of a general softwaredevelopment method.In general, the following principle should be followed:Don't make object oriented programming more di�cult than it needs to be: if concurrencyis not necessary then don't introduce it.However, if a concurrent implementation is required then this section argues that formal objectoriented development using LOTOS can help to deal with it. In particular, the CPT-based designprocess has great potential for application towards concurrent software development.Object oriented development adheres to the most elemental engineering principle: make the so-lution look like the problem. Implicit in the formal analysis models is the notion that components ofa system are concurrent. Designers must decide whether to ignore or utilise this feature. Generally,designers chose to ignore the concurrency because they know that it is much more complex to dealwith than sequentiality. Concurrent designs should be speci�ed only when the target implementationenvironment is capable of coping with such requirements.6.5.1 Concurrency and Objects: Opposing ViewsThe object oriented community is divided on the notion of concurrency. The two extremes to thisdivision can be categorised as optimistic (or naive) and pessimistic (or conservative).� The optimistic view:Object oriented approaches, rather than placing control with some sort of master process, o�era means of handling concurrency which is quite di�erent from traditional approaches. In theobject oriented paradigm, objects can `look after themselves' within a concurrent environment.The shifting of responsibility from centralised control to decentralised control is natural in anobject oriented approach. Further, such distributed control can simplify the system.� The pessimistic view:Concurrency issues, contrary to initial expectations, are not orthogonal to object oriented con-cepts. The interference of concurrency and object oriented features makes it di�cult, if notimpossible, to combine them in a consistent and coherent fashion. In particular, the e�cientimplementation of concurrent object oriented semantics is in doubt.The remainder of this section attempts to give a more balanced view of the future of concurrentobject oriented languages. In particular, it examines the potential bene�ts of using formal objectoriented development when heading towards a concurrent implementation language.



CHAPTER 6. OBJECT ORIENTED PROGRAM DERIVATION 2096.5.2 Concurrency: A Problem of Scale6.5.2.1 The ProblemObjects may be considered as independent abstract machines that interact in response to servicerequests. To consider each object as an independent concurrent unit (process) results in an overdoseof concurrency: hundreds, thousands or even millions of concurrent entities are required in even thesimplest software systems. Implementation environments have not yet reached the stage where suchhigh degrees of concurrency can be adequately dealt with (in hardware or software). Consequently,such a naive approach to modelling concurrency will result in poor performance (if any performanceat all). Further, the complex structure of a program is di�cult to analyse as a large set of interactingconcurrent behaviours.6.5.2.2 A Solution: Mixing Communication ModelsThere is a simple way of coping with the problem of scale, without having to reject concurrency asan implementation strategy. Instead of every object in the system being implemented as some sort ofindependent abstract machine, the designers must explicitly identify (sub)systems of concurrent ob-jects. Then, only particular parts of the system (hopefully the ones whose concurrent implementationwould be most bene�cial) need be modelled concurrently.The formal CPT driven object oriented design method provides the exibility to deal with such adistribution of concurrency. Throughout the LOTOS designs there are, at the moment, three standardinternal communication models which structured processes can adhere to: procedural, centralisedconcurrency and distributed concurrency (see 5.5.5). Object oriented designers can, using LOTOS,mix these communication models throughout the design. Using such a exible design technique meansthat concurrent aspects of the requirements model can be explicitly mapped onto concurrent resourcesin the implementation.6.5.3 Concurrency and Object Orientation: Resolving Conicting RequirementsIt has been said that concurrency has no respect for the spirit of the object oriented paradigm [95].Papathomas, in his thesis, identi�es �ve requirements for satisfactory integration of concurrent andobject oriented features:� Mutually exclusive protection of object's state.� Request Scheduling Transparancy.� Internal Concurrency.� Reply Scheduling Transparancy.� Compositionality and Incremental Modi�cation.He argues that a concurrent object oriented language cannot o�er abstraction, encapsulation andsubclassing if it does not ful�l these requirements. However, a concurrent object oriented semanticswhich ful�ls these requirements may not be amenable to e�cient execution. Further, such semantics



CHAPTER 6. OBJECT ORIENTED PROGRAM DERIVATION 210may not be suitable for use throughout the whole of the development process. We believe that theobject oriented LOTOS designs can be used to model object oriented properties and concurrency ina consistent and coherent fashion.6.5.4 The Future: Formality in Concurrent Compilers?A design technique in which di�erent communication models are distributed throughout the designis inexible with respect to matching resources to design components. This matching must be doneat compile time and so the mapping of processes to processors is static. Although the area of realconcurrent compilers, where the compiler actually maps components of the design onto real hardwareresources (chips/processors), is still in its infancy, it is clear that static allocation of resources hasmajor disadvantges:� When a resource fails, the whole system is a�ected.� When more resources become available (which may be the case in a truly open distributedsystem) it is not possible for the compiled code to take advantage of this.� As more demand is placed on the set of shared resources, it is not possible to release resourcesfor other users.Correctness preserving design transformations may hold the key to exible concurrent compilation:� Given a static concurrent compiler, it is important that di�erent design models are tested beforea �nal design is chosen for implementation. Such testing can evaluate the performance of thesystem when the concurrency is distributed in di�erent ways. Then, when the �nal design isimplemented, it is more likely that the resources are used e�ectively.� The future for concurrency, and object oriented programming, may be exible compilation,where the mapping from system component to resource is dynamic. It may be possible to compilethe design to produce a virtual machine which can be executed in a number of di�erent forms.The di�erent forms can be virtual designs, composed from virtual processes, whose behavioursare related by a set of correctness preserving transformations. The executable machine must beaware of resource allocation in the implementation environment and change virtual design formin response to an increase in supply (or demand) of implementation resources. Of course, therewill be overheads in performing such virtual form changes, but it is possible to envisage a casewhen such overheads would be negligible compared with the increase in performance. Perhapssome form of process caching, working in the same way as state caching, will become standardin such systems.The point being made is not that these notions of exible compilation are new, but that the formal ob-ject oriented design framework provides a semantics upon which such compilers could be constructed.Formality is essential in proving that changes of design form (in the virtual machine) do not a�ectthe external behaviour of the system. Correctness preserving transformations appear to be an idealtheoretical tool for reasoning about such models. This (hypothetical) work is beyond the scope of this



CHAPTER 6. OBJECT ORIENTED PROGRAM DERIVATION 211thesis, but it acts as a good motivator for using formal methods: such concurrent compilation wouldbe impossible to control without underlying formality. It is di�cult to predict the future, particularlywith regard to concurrency and objects, but formality is sure to be a play a major role.



Chapter 7Formal Object Oriented Development:A Case StudyThis chapter reports on a case study which investigated the practical application of FOOD. The goalof the case study was to model the requirements of a simple banking network and, using FOOD, toproduce an Ei�el implementation of these requirements. The structure of this chapter is as follows:� Section 7.1: Introducing the Banking Network ProblemThis section introduces the case study. The criteria by which the case study was chosen are given.Then, the limitations of the case study are reported. The section concludes by giving an informaloverview of the banking network problem, which is the starting point for the development of aformal requirements model.� Section 7.2: Formal Object Oriented Analysis of the SystemThis section reviews the process by which a formal OO ACT ONE model of the banking networksystem is developed. In particular, it illustrates how the analysis and synthesis of a formal modelimproves mutual understanding between customer and analyst. The opportunistic avour ofthe analysis and requirements capture method is emphasised.� Section 7.3: Design: Moving the System from the Abstract to the ConcreteThis section reviews the process by which the banking network requirements were transformedinto a high-level LOTOS speci�cation which was ready for implementation in Ei�el. Particularattention is given to the means by which the internal routing of messages was designed forimplementation.� Section 7.4: The Ei�el ImplementationThis section records how the Ei�el implementation was developed from the �nal LOTOS designof the banking network. We emphasise how the analysis and design stages make the implemen-tation process straightforward.� Section 7.5: A Review of the Case StudyThis section examines the lessons which arose out of the banking network case study. Threemain aspects of the development process are highlighted: the extendibilty of systems produced212



CHAPTER 7. FORMAL OBJECT ORIENTED DEVELOPMENT: A CASE STUDY 213using FOOD, the production of re-usable components at all stages in FOOD and the need tore-evaluate software development planning due to FOOD placing greater emphasis on the earlystage of development.7.1 Introducing the Banking Network Problem7.1.1 Choosing the Case StudyA banking network was chosen to form the basis of the case study for the following reasons:� Familiarity and UnderstandabilityThe problem of communicating across a network is well understood and there is a wide rangeof documentation available, for example [109, 102, 39]. Further, the facilities o�ered by a bankprovide a functionality which is accessible to a wide readership.� Size and ComplexityIt is important to chose a case study which is large enough to illustrate the FOOD method,whilst small enough to be e�ectively presented in this thesis. Although the networking conceptis very simple, it does deal with complex issues. Further, banking functionality is neither trivialnor overly complex.� ExtendibilityThere has to be scope within the case study for extending and re�ning the system requirements.The banking network provides two orthogonal dimensions of complexity which can be extended:the architectural and communicational aspects, and the accounting behaviour.� MultidimensionalIt is important that the case study places demands on all three dimensions of software com-plexity: data structure, data transformation and data communication. Networking is primarilyconcerned with the communication of data. The banking functionality is complex with respectto the structure and transformation of data. The banking network problem domain providesa case study which naturally combines the complexities of networking and accounting, and soful�ls the multidimensional requirement.7.1.2 Limitations of the Case StudyThe major limitation of the case study is that it does not adequately address the informal aspectsof FOOD: in particular, the processes of customer-analyst communication and designer-implementerinteraction were not studied. In the case study, the roles of customer, analyst, designer and imple-menter were played by one person, namely the author1. The case study provides a good evaluation1In a preliminary investigation, a network routing model was developed in a project involving both a speci�er (theauthor) and an implementer (David Freer, of British Telecom, must be thanked for his contribution in the developmentof the C++ code). [55] reviews this preliminary investigation and discusses the process of speci�er-implementer commu-nication. It concludes by stating that this communication is improved by the synthesis and analysis of a formal modelof requirements.



CHAPTER 7. FORMAL OBJECT ORIENTED DEVELOPMENT: A CASE STUDY 214of the mathematical models, but only a limited evaluation of the methods in FOOD. We believe thata method should evolve from repeated use of models rather than sprouting automatically from thetheory. The application of FOOD in one case study does not justify the de�nition of a prescriptivedevelopment method.The size of the case study was also a limitation: it was not possible to investigate all aspects of theFOOD approach. The case study does, however, illustrate the application of FOOD in a non-trivialproblem domain. There is good reason to believe that, given the object oriented nature of FOOD, itcan be applied to even larger systems, requiring the co-ordinated attention of groups of developers.7.1.3 The Scope of the Problem: An Informal Overview of RequirementsThe scope of the requirements is represented in �gure 7.1. An informal description of the problemdomain is given in sections 7.1.3.1 to 7.1.3.4. This informal description forms the basis upon whichthe analysis and synthesis of the requirements model are initiated.
Banking Network System

Network Routing Accounting

Dynamic Network Model Network InterfaceInternal Routing

Banking RequirementsCommunication RequirementsFigure 7.1: Scope of the Case Study7.1.3.1 Dynamic Network ModelIt is a requirement of the system that the network is composed of a set of nodes and a set of links,each of which must connect two of the nodes. The topology of the network must be dynamic: it mustbe possible to add nodes and links during system execution. The links provide communication linesbetween nodes along which banking transactions are routed.7.1.3.2 Network InterfaceThe interface to the network system is constructed from the interfaces of each of the node components.There are four di�erent types of node, each of which o�ers its own type of interface:� Relay NodeA relay node acts purely as a communication bu�er for the receiving, routing and sending ofmessages. Relay nodes o�er an interface to system engineers to permit their switching on ando�: nodes which are o� cannot service requests. All nodes in the system are uniquely identi�edas relay nodes.



CHAPTER 7. FORMAL OBJECT ORIENTED DEVELOPMENT: A CASE STUDY 215� Automatic Teller Machine (ATM)An ATM provides an interface to account holders for the reading and writing of account detailsin response to deposit, withdrawal and enquiry transactions.� Control NodeA control node provides an interface to bank employees for the purpose of account maintenace.They also act as the access points to a subset of the database of account information. Everyaccount transaction must be routed to one of the control nodes in the network for processing.� Teller NodeA teller node o�ers all the functionality of a control node and an ATM. These are used whenaccount holders and bank employees access account information together.7.1.3.3 Internal Routing of Accounting InformationAll account transactions must be routed through a speci�ed control node. We do not require that everytransaction is processed, but an internal timeout facility must inform the customer (account holderor bank employee) when a transaction has not been processed. The means by which transactions arerouted to/from control nodes is a design and implementation decision.7.1.3.4 AccountingThe database of accounts can be altered by the control nodes in the following ways:� Creating a new accountA new account is created when the appropriate details are provided, depending on the accounttype (see below).� Closing an existing accountAn account, speci�ed by a given identi�cation, can be closed only when the balance is zero.� Changing the restrictions on an accountA restricted account (see below) has a limit placed on the size of individual withdrawals. Thislimit can be changed at a control node.� Changing the overdraft facilityThe overdraft limit for any given account be changed at a control node.There are three types of account:� A basic account permits the customer to deposit and withdraw money. Further, the customercan request details of the amount of money available to them (i.e. their balance plus theiroverdraft limit).� A business account permits the customer to deposit and withdraw money, and request astatement of their last three money transactions or the current amount available.� A restricted account permits the customer to deposit and withdraw money. The customeris restricted to withdrawing no more than a prede�ned amount at any one transaction. Astatement of the amount available can also be given for a restricted account.



CHAPTER 7. FORMAL OBJECT ORIENTED DEVELOPMENT: A CASE STUDY 216Customers interact with their accounts, which must be uniquely identi�able, from the ATM nodes ofthe banking network.7.2 Formal Object Oriented Analysis of the SystemThe informal requirements, given in the previous section, provide a good overview of the scope of theproblem. They also provide the basis upon which a formal requirements model can be constructed.The construction of the formal requirements model plays three main roles:� It improves customer and analyst understanding of the problem.� It provides an executable model for customer validation.� It acts, in its �nal form, as an input to the design stage.7.2.1 What not HowThe formal object oriented analysis language, OO ACT ONE, is used to de�ne the accounting func-tionality o�ered at the external interface of the banking network system. Further, OO ACT ONE isused to model the dynamic network requirements: how these are realised is not an analysis concern.OO ACT ONE is not used to specify how the internal routing of transactions, from ATM node tocontrol node, takes place.7.2.2 Applying the Skeleton Method to Requirements CaptureSection 4.5.2 de�nes a skeleton method for the synthesis and analysis of requirements models in OOACT ONE. An important aspect of this method is customer interaction. Although there was no directcustomer involvement in the case study, the process of customer interaction was replaced by the needfor the requirements model to be tested against relevant documentation and intuition. Consequently,in the remainder of this chapter, when referring to customer interaction it is this testing process towhich we are alluding.Other than customer interaction, all other parts of the skeleton method were carried out asintended. The opportunistic aspect of the method meant that there were many ways in which therequirements model could have been constructed and validated. The sequence of steps which wasfollowed is reported below.Step 1: Composition Analysis of the BankingNetwork System ClassTo start, there is only one class to be considered: the BankingNetwork. From the informal require-ments it is clear that a composition analysis will improve ones understanding of the requirements.Consequently, the analysis is started with a structured decomposition of the problem based on thehas-a relationship. The diagram below illustrates the initial decomposition of the banking network.



CHAPTER 7. FORMAL OBJECT ORIENTED DEVELOPMENT: A CASE STUDY 217
A transaction set (of class Transactions) which is composed from:

Two node identifiers (of class NodeID)
A unique identifier (of class LinkID)

Links (of class Link) in a recursive structure, each Link composed from:

A type identifier (of class NodeType)
A unique identifier (of class NodeID)

Nodes (of class Node) in a recursive structure, each Node composed from:
A set of nodes (of class NodeSet) which is composed from:

An account database (of class AccDB) which is composed from:

A network (of class Network) which is composed from:

Accounts (of class Acc) in a recursive structure

A BankingNetwork is composed from:

A set of links (of class LinkSet) which is composed from:

Note: A recursive structure, represented as Element ->, is the means in OO ACT ONE of modelling linked lists of Elements.

A generator of unique node identifications (NodeIDGen)

A generator of unique link identifications (LinkIDGen)

Transactions (of class TransMessage) in a recursive structure

BankingNetwork

TransactionsAccDB

Network

NodeSet  LinkSet

NodeIDGen

LinkIDGen

Node -> Link ->

NodeID

NodeType

LinkID
NodeID

NodeID

Acc -> TransMessage ->

Step 2: Classi�cation AnalysisExamination of the informal requirements leads to the initial identi�cation of two2 subclass hierarchies:account classes, speci�ed as class Acc, and node classes, speci�ed as class NodeType. It is importantthat these two subclassing relationships are explicitly de�ned at some point in the requirementscapture.
NodeType

Relay

ATM Control

Teller

Acc

Basic Business Restricted

Network NodesBank AccountsStep 3: Analysis and Synthesis of Network Requirements ModelThe network component of the system appears, from the composition analysis, to play a major rolein providing the behaviour of the banking network. Consequently, we chose to analyse and synthesisea network requirements model. The behaviour of the network component is de�ned by an OO ACTONE Network class3.Step 3.1: The External Interface of the NetworkThe composition of the Network class has already been analysed in step 1. It is necessary now toconsider how the components of Network combine to provide network behaviour. An initial OO ACTONE speci�cation of the Network class facilitates further investigation of the requirements. TheNetwork header, below, de�nes the external interface of the class. The header also de�nes a Network2Although there are only two hierarchies identi�ed at this stage, this does not mean that there are only two hierarchiesin the system. Step 4.4 identi�es another hierarchy which was `missed' in this early stage. The opportunistic approachto building a formal requirements model encourages the analyst to record understanding even when it is incomplete.3By convention, all class identi�ers in the case study have an initial capital letter.



CHAPTER 7. FORMAL OBJECT ORIENTED DEVELOPMENT: A CASE STUDY 218to have a �xed structure4, i.e. a static set of component classes.CLASS Network USING NodeSet, LinkSet, NodeIDGen, LinkIDGen OPNSSTRUCTURES: ANetwork<NodeSet,LinkSet,NodeIDGen,LinkIDGen> (*FIXED*)TRANSFORMERS: addNode<NodeType>, addLink<NodeID,NodeID>, switch<NodeID>ACCESSORS: getNode<NodeID> -> Node, isNode<NodeID> -> Bool,areConnected<NodeID,NodeID> -> Bool EQNS : : :Step 3.2: The Behaviour at the External InterfaceThe behaviour intended for each of the Network attributes5 is as follows:� addNode: Takes a NodeType as an input parameter and allocates it a new identi�er (providedby the NodeIDGen component). These two values are made into a single Node, which is thenadded to the NodeSet.� switch: Takes a NodeID as an input parameter and switches the corresponding Node in theNodeSet from off to on (or vice versa).� getNode: Takes a NodeID as an input parameter and returns the corresponding Node in theNetwork, and false otherwise.� isNode: Takes a NodeID as input parameter and returns true if there is a Node in the NodeSetwith NodeID as its identi�er.� areConnected: Takes two NodeIDs as input parameters and returns true if there is a Link inthe LinkSet which connects the two speci�ed Nodes.� addLink: Takes two NodeIDs as input parameters and adds a new Link to the LinkSet. Thenew Link is allocated a unique identi�er by the LinkIDGen component.When a NodeID input parameter does not identify a node in the NodeSet of the network then anexception must be de�ned. (All exceptions must be dealt with during design and implementation.)A class structure diagram (see �gure 7.2) is used to show how the Network depends on each of itscomponents to ful�l its external functionality.
4By convention, in the case study, all �xed structures of a class ClassName are labelled AClassName.5The attribute labels have, by convention, a non-capital initial.



CHAPTER 7. FORMAL OBJECT ORIENTED DEVELOPMENT: A CASE STUDY 219
NodeSet1 LinkSet1

NodeIDGen1 LinkIDGen1
switch<NodeID>

addNode<NodeType>

isNode<NodeID>->Bool
areConnected<NodeID,NodeID>

-> Bool

addLink<NodeID,NodeID>

Network

getNode<NodeID>->Node Figure 7.2: The Network Class Structure DiagramThe OO ACT ONE equation de�nitions for the Network class are given below6.CLASS Network : : :(* Header is given above *) EQNSANetwork(:: :).addNode(NodeType1) =ANetwork(NodeSet1.add(NodeIDGen1..nextN,NodeType1),LinkSet1,NodeIDGen1.nextN,LinkIDGen1);((NodeSet1..isNode(NodeID1)).and(NodeSet1..isNode(NodeID2))).not =>ANetwork(:: :).addLink(NodeID1,NodeID2) = �NodeSet OTHERWISEANetwork(NodeSet1,LinkSet1.link(NodeID1,NodeID2,LinkIDGen1..nextL),NodeIDGen1,LinkIDGen1..nextL);(NodeSet1..contains(NodeID1)).not =>ANetwork(:: :).switch(NodeID1) = �NodeSet OTHERWISEANetwork(NodeSet1.switch(NodeID1), LinkSet1, NodeIDGen1, LinkIDGen1);(NodeSet1..contains(NodeID1)).not =>ANetwork(:: :)..getNode(NodeID1) = �NodeSet OTHERWISE (NodeSet1.getNode(NodeID1))..getNode;ANetwork(:: :)..isNode(NodeID1)= NodeSet1..contains(NodeID1);ANetwork(:: :)..areConnected(NodeID1, NodeID2) = LinkSet1..areConnected(NodeID1, NodeID2)ENDCLASS (* Network *)Step 3.3: Analysis of the IDGen ClassesOne class, IDGen, is de�ned for the generation of unique identi�ers. It is de�ned to have a DUALattribute, next, for the generation of unique identi�ers, and an ACCESSOR attribute, eq, for testingthe equality of identi�ers. NodeIDGen and LinkIDGen are de�ned as renamings of IDGen.IDGen must be able to generate an in�nite number of identi�ers. The simplest way of specifyingthis is to de�ne an ID class with a recursive STRUCTURE operation, together with a base LITERALvalue. Rather than specifying IDGen as a store of the previously allocated IDs, a standard schemeis employed whereby a unique identi�er can always be generated when only the previously allocatedidenti�er is known. Classes ID and IDGen are de�ned below. These classes are added to a library forre-use.NodeID is de�ned, below, using the OO ACT ONE renaming construct.6A simple syntactic sugar is used in the remainder of this chapter to simplify the representation of OO ACT ONEequation de�nitions in a class with a �xed structure. Rather than writing Structure(par1,:: :,parn) = : : : on the lefthand side of equation de�nitions, Structure(:: :) = : : : is used without risk of ambiguity.



CHAPTER 7. FORMAL OBJECT ORIENTED DEVELOPMENT: A CASE STUDY 220CLASS ID USING Bool OPNSLITERALS: 0 STRUCTURES: IDSt<ID>ACCESSORS: eq<ID> -> BoolEQNS 0..eq(0) = true; 0..eq(IDSt(ID1)) = false; IDSt(ID1)..eq(0) = false;IDSt(ID1)..eq(IDSt(ID2)) = ID1..eq(ID2)ENDCLASS (* ----------------- ID ----------------- *)CLASS IDGen USING ID EXTENDS ID WITH OPNSDUALS: Next -> IDEQNS IDGen1.Next = IDSt(IDGen1) AND IDGen1ENDCLASS (* IDGen *)CLASS NodeID RENAMES ID LITERALS: O WITH N0 STRUCTURES: IDSt WITH NENDCLASS (* --------------------- NodeID --------------------- *)CLASS NodeIDGen USING NodeID EXTENDS NodeID WITH OPNS DUALS: NextN -> NodeIDEQNS NodeIDGen1.NextN = N(NodeIDGen1) AND NodeIDGen1ENDCLASS (* NodeIDGen *)This simple example illustrates the limited use of the RENAMES facility. It is not possible to renameboth ID and Gen to create NodeID and NodeIDGen because the subsequent subclassing relationshipbetween these two classes will not be properly de�ned. Consequently, it is necessary to de�ne NodeIDas a renaming of ID, and NodeIDGen as an extension of NodeIDGen7. LinkIDGen and LinkID are alsode�ned similarly: the STRUCTURE operation is renamed L, the LITERAL is renamed L0 and the DUAL isrenamed NextL.Step 3.4: Analysis of the NodeSet ClassNodeSet is required, by the Network, to o�er the following external atributes:� TRANSFORMER: add< NodeID, NodeType >Create a node from identi�er and type components, and add it to the NodeSet.� TRANSFORMER: switch< NodeID >Search the node set for the node identi�ed by the NodeID parameter and switch the state ofthis node from on to off (or vice versa).� ACCESSOR: isNode< NodeID > -> BoolReturn true if there is a node in the network which is identi�ed by NodeID.� ACCESSOR: isOn< NodeID > -> BoolReturn true if there is a node in the network identifed by NodeID which is on, otherwise returnfalse if the identi�ed node is off.The NodeSet class de�nition is given below.7An obvious extension to OOACTONE is to provide a more powerful renaming facility which `copies' class hierarchiesrather than individual classes. The investigation of the semantics of such a copy is beyond the scope of this thesis.



CHAPTER 7. FORMAL OBJECT ORIENTED DEVELOPMENT: A CASE STUDY 221CLASS NodeSet USING Node OPNS : : :(* Operations as specified above *)EQNS emptyNodeSet..isNode(NodeID1) = false;(Node1.getID).eq(NodeID1) =>NodeStr(Node1, NodeSet1)..isNode(NodeID1) = true OTHERWISE NodeSet1..isNode(NodeID1);emptyNodeSet..getNode(NodeID1) = �Bool; emptyNodeSet..switch(NodeID1)= �NodeSet;(Node1.getID).eq(NodeID1) => NodeStr(Node1, NodeSet1)..getNode(NodeID1) =Node1 OTHERWISE NodeSet1..isOn(NodeID1);NodeSet1.add(NodeID1,NodeType1) = NodeSetStr(ANode(NodeID1,NodeType1),NodeSet1);(Node1.getID).eq(NodeID1) => NodeSetStr(Node1, NodeSet1)..switch(NodeID1) =NodeSetStr(Node1..switch, NodeSet1) OTHERWISE NodeSet1.isNode(NodeID1) =>NodeSetStr(Node1, NodeSet1.switch(NodeID1)) OTHERWISE �NodeSetENDCLASS (* NodeSet *)Step 3.5: Analysis of the Node ClassThe composition of the Node class has already been identi�ed as a �xed STRUCTURE (ANode) of twocomponents: a NodeID and a NodeType. The NodeSet class places requirements on the externalinterface of Node which are ful�lled by the OO ACT ONE speci�cation given below.CLASS Node Using NodeID, NodeTypeSTRUCTURES: ANode<NodeID, NodeType> (*FIXED*)ACCESSORS: isOn -> Bool, isControl -> Bool, isATM -> Bool, getID -> NodeIDTRANSFORMERS: switchEQNS ANode(: : :)..isOn = NodeType1..isOn; ANode(:: : )..isATM = NodeType1..isATM;ANode(: : :)..isControl = NodeType1..isControl; ANode(:: :)..getID = NodeID1; ANode(: : :).switch =ANode(NodeID1, NodeType1.switch)ENDCLASS (* Node *)The isOn, isControl, isATM and switch service requests are `passed on' to the NodeType com-ponent. The getId attribute returns the node identi�er. The NodeID class has already been speci�edand so we now consider the NodeType class.Step 3.5.1 Analysis of the NodeType classThe NodeType class has been identi�ed as the root of a subclass hierarchy:
NodeType

Relay
ATM Control

TellerAt the analysis stage of this case study, the precise role of the NodeType classes is not speci�ed. Theonly requirements placed on NodeType objects is that they can be either on or of, and o�er ACCESSORattributes isOn, isControl and isATM. The NodeType class (and its subclasses) are speci�ed in OOACT ONE, below.



CHAPTER 7. FORMAL OBJECT ORIENTED DEVELOPMENT: A CASE STUDY 222CLASS NodeType Using Bool OPNSLITERALS: on, offACCESSORS: isOn -> BoolEQNS on..isOn = true; off..isOn = false ENDCLASS (* NodeType *)CLASS Relay USING NodeType EXTENDS NodeType WITH OPNS TRANSFORMERS: switchEQNS on.switch = off; off.switch = on ENDCLASS (* Relay *)CLASS ATM USING Relay EXTENDS Relay WITH OPNS ACCESSORS: isATM -> BoolEQNS ATM1..isATM = true ENDCLASS (* ATM *)CLASS Teller USING ATM EXTENDS ATM WITH OPNS ACCESSORS: isControl -> Bool, isTeller -> BoolEQNS Teller..isControl = true; Teller..isTeller = true ENDCLASS (* Teller *)CLASS Control USING Teller RESTRICTS Teller TO OPNSACCESSORS: isControl TRANSFORMERS: switchENDCLASS (* Control *)Step 3.6 Analysis of LinkSet ClassThe LinkSet class has been identi�ed as recursive structure of Links, with ACCESSOR attributeareConnected and TRANSFORMER attribute link. The behaviour of LinkSet is formally de�ned below.CLASS LinkSet Using Link OPNSLITERALS: emptyLinkSet STRUCTURES: LinkStr<Link, LinkSet>ACCESSORS: areConnected< NodeID, NodeID > -> BoolTRANSFORMERS: link < NodeID, NodeID >EQNS LinkSet1.link(NodeID1, NodeID2, LinkID) = LinkStr(ALink(NodeID1,NodeID2,LinkID), LinkSet1);empty..areConnected(NodeID1, NodeID2) = false;(Link1..conn1)..eq(NodeID1)).and((Link1..conn2)..eq(NodeID2)).or((Link1..conn2)..eq(NodeID1)).and((Link1..conn1)..eq(NodeID2))) =>LinkStr(Link1,LinkSet1)..areConnected(NodeID1,NodeID2)= true OTHERWISELinkSet1..areConnected(NodeID1,NodeID2)ENDCLASS (* LinkSet *)The Link class is a simple passive holder of data in a �xed structure. It has three externalattributes for accessing the values of each of its three components. The OO ACT ONE speci�cationof Link is given below.CLASS Link Using LinkID, NodeID OPNSSTRUCTURES: ALink<NodeID, NodeID, LinkID> (*FIXED*)ACCESSORS: conn1 -> NodeID, conn2 -> NodeID, getID -> LinkIDEQNS ALink(: : :)..conn1 = NodeID1; ALink(: : :)..conn2 = NodeID2; ALink(:: :)..getID = LinkID1ENDCLASS (* Link *)Step 3.7: Customer Validation of NetworkThe OO ACT ONE speci�cation of the Network class is now put forward for customer validation.The executable ACT ONE Network model is successfully generated and this is used to test theNetwork requirements model. Customer validation of the Network resulted in two changes beingmade to the Network requirements model. Firstly, an invariant property was added to the Link



CHAPTER 7. FORMAL OBJECT ORIENTED DEVELOPMENT: A CASE STUDY 223class to specify that a link cannot connect a node to itself: ALink(NodeID1, NodeID2, LinkID1)REQUIRES (NodeID1..eq(NodeID2))..not. Secondly, in order to ensure the correct addition of linksto the network, an exception was de�ned to occur when a request is made to connect a node to it-self: NodeID1.eq(NodeID2) => Network1.addLink(NodeID1, NodeID2) = �Network OTHERWISE(* as before *).The process of validation brought the quality of the requirements model into question:� Question: Could NodeSet and LinkSet be better de�ned as instances of a generic Set?Answer: The NodeSet and LinkSet classes provide quite speci�c behaviour: di�erent types ofaccess to (and transformation of) individual set elements. A standard generic set de�nition isnot suitable for the parameterisation of these two behaviours.� Question: Could the Network behaviour be de�ned, for re-use, in a generic class?Answer: Generic network behaviour can be usefully de�ned: graphs of nodes and links arecommon in computing systems. This is noted for future investigation and development.� Question: Is the customer view of the network as having separate NodeSet and LinkSetcomponents the best way of conceptualising (and communicating) the requirements?Answer: As the requirements model was developed and validated, a better understanding ofthe Network evolved. It was felt that a better understanding of the requirements could have beenachieved if the nodes in the network had been speci�ed as `knowing' the other nodes to whichthey were connected, rather than having a separate LinkSet. This type of reconceptualisationmust always be proposed to the customer: only after they agree that the new model is a betterrecording of their understanding of the requirements can appropriate changes be made. Inthe case study, for reasons explained at the beginning of this chapter, the process of customervalidation could not be properly evaluated, and the process of reconceptualisation was notcarried out. Examination of the process of communication between customer and analyst,particularly the inuence of the analyst on the way in which the customers conceptualise theirrequirements, is beyond the scope of this thesis.Step 3.7: Provide a Graphical View of Network StateThe OO ACT ONE requirements model provides an excellent statement of Network behaviour, whichcan be supplemented by graphical views. It is often advantageous (particularly for complex classesof behaviour) to record, in the requirements documentation, the correspondence between:� The OO ACT ONE representation of a class member.� The structure diagram of a class member.� The customer's conceptualisation of a class member.When it is clear that the customer's view of the requirements provides a useful way of representingthe behaviour of the system then an attempt should be made to provide a formal semantics, foundedon the OO ACT ONE speci�cation, of their representation. An example of this is given in �gure 7.3,where the customer's view of a particular network is given a formal meaning.



CHAPTER 7. FORMAL OBJECT ORIENTED DEVELOPMENT: A CASE STUDY 224
CUSTOMER VIEW

N(N(N0))

on:Teller

N(N0)
off:ATM

N0

on:Control

L0

,L(L0) )

,N(N(N(N0)))

,LinkSetStr(ALink(N0,N(N0),L0), emptyLinkSet)

emptyNodeStr)))
NodeSetStr(ANode(N0, on:Control),

NodeSetStr(ANode(N(N0)),off:ATM),

ANetwork(NodeSetStr(ANode(N(N(N0)), on:Teller),
OO ACT ONE EXPRESSION

N0,N(N0),L0

LinkSet1

NodeSet1

LinkIDGen1NodeIDGen1

Node

L(L0)
N(N(N(N0)))

N(N(N0))
on:Teller N(N0)

N0
on:Control emptyNodeSet

off:ATM

Link emptyLinkSet

NetWork

STRUCTURE DIAGRAM

Figure 7.3: A Network Object Structure DiagramStep 3.7: Make The Network Available For DesignAfter customer validation, the Network is ready for design and implementation. The decision to pro-ceed with its development must be taken by the project managers. The risk of developing the Networkbefore the analysis of the BankingNetwork is complete must be weighed against the advantages ofrunning design and implementation in parallel with the un�nished analysis and requirements process.This risk must be evaluated for every class in the system being analysed.Step 4: Analysis of the AccDB Class and Synthesis of the Requirements ModelAfter the Network, the account database (AccDB) appears to play the next most signi�cant role inthe behaviour of the banking network. The AccDB class is a recursive structure of Acc classes. Beforewe analyse AccDB behaviour we analyse the behaviour of its Acc components.Step 4.1 Analysis of Acc BehaviourIt is useful to analyse the relationship between Acc and each of its subclasses, namely Basic, Businessand Restricted. Further analysis of the informal requirements leads to a more informative classhierarchy:



CHAPTER 7. FORMAL OBJECT ORIENTED DEVELOPMENT: A CASE STUDY 225
extend

specialisespecialise
extend

specialise

return the amount available for withdrawal: available
change the overdraft facility: chOver

withdraw money: withdraw
deposit money: deposit

Attributes:
Further Analysis

RestrictedBusinessBasic

Acc

Acc

Basic Business Restricted

Extra Attributes: Extra Attributes:

statement chRestEvery account has identi�er, balance and overdraft components. Restricted accounts have arestriction on the amount of money which can be withdrawn in one transaction. Business accountscan supply, on request, a statement of the last three transactions which the account has processed.The balance, overdraft and restriction components are de�ned to belong to the class Sum, whichrepresents an amount of money (positive or negative).As a result of this analysis, three new classes are identi�ed:� AccID, which de�nes a means of uniquely identifying accounts. This is de�ned as a renamingof ID: the LITERAL 0 is renamed A0, the STRUCTURE IDSt is renamed A and the DUAL Next isrenamed NextA.� Trans3X, which de�nes a record of the last three transactions that a business account hasserviced. This class of behaviour is synthesised and analysed in step 4.3.� Sum provides a means of recording positive and negative amounts of money. It also provides thenecessary arithmetic for the manipulation and testing of these amounts. The class Sum can bede�ned as a renaming of some standard class of numbers8.Step 4.1.1 An initial Acc modelA sequence of OO ACT ONE Acc models were developed to improve understanding of the require-ments. The �rst such model is de�ned below (as version91).Analysis of version 1 of the Acc requirements model gives rise to a number of questions whichmust be answered by the customer:� i) What happens when a withdrawal is requested which is greater than the amount available?� ii) What happens when a withdrawal is requested of a restricted account which exceeds therestriction?� iii) What happens when a change of the overdraft facility is requested which would result in theoverdraft being exceeded?8Like ACT ONE, OO ACT ONE is not well suited to representing numerical behaviour. The de�nition of numbersis not reported in this thesis.9Often it is necessary to construct a prototype model (or models) as a means of improving the mutual understandingbetween customer and analyst. These prototypes must be clearly distinguished from the �nal requirements models: itis recommended that every prototype is given a version number and the documentation include details of what waslearned from the analysis of each version.



CHAPTER 7. FORMAL OBJECT ORIENTED DEVELOPMENT: A CASE STUDY 226CLASS Acc Using AccID, Sum, Trans3X OPNS (* Version 1 *)STRUCTURES: BasicStr<AccID, Sum (*balance*), Sum (*overdraft*) >,BusinessStr<AccID, Sum (*balance*), Sum (*overdraft*), Trans3X>,RestStr<AccID, Sum (*balance*), Sum (*overdraft*), Sum (*restriction*)>ACCESSORS: available -> Sum, getID -> AccIDTRANSFORMERS: deposit<Sum>, withdraw<Sum>, chOver<Sum>EQNS BasicStr(AccID1,Sum1,Sum2)..available = Sum1.add(Sum2);BasicStr(AccID1,Sum1,Sum2)..getID = AccID1;BasicStr(AccID1,Sum1,Sum2).chOver(Sum3) = BasicStr(AccID1,Sum1,Sum3);(* available, getID and chOver are defined similarly for the other structures *)BasicStr(AccID1,Sum1,Sum2).deposit(Sum3) = BasicStr(AccID1,Sum1.add(Sum3),Sum2);BasicStr(AccID1,Sum1,Sum2).withdraw(Sum3) = BasicStr(AccID1,Sum1.sub(Sum3),Sum2);BusinessStr(AccID1,Sum1,Sum2,Trans3X1).deposit(Sum3) =BusinessStr(AccID1,Sum1.add(Sum3),Sum2,Trans3X1.insert(ATrans(DepositStr(Sum3))));BusinessStr(AccID1,Sum1,Sum2,Trans3X1).withdraw(Sum3) =BusinessStr(AccID1,Sum1.sub(Sum3),Sum2,Trans3X1.insert(ATrans(WithdrawStr(Sum3)))));RestStr(AccID1,Sum1,Sum2,Sum3).deposit(Sum4) = RestStr(AccID1,Sum1.add(Sum4),Sum2,Sum3);RestStr(AccID1,Sum1,Sum2,Sum3).withdraw(Sum4) = RestStr(AccID1,Sum1.sub(Sum4),Sum2,Sum3);ENDCLASS (* Acc *)� iv) Can the overdraft, restriction, deposits and withdrawals be negative? If so, what happensin each case?Step 4.1.2: BacktrackingThe analysis also identifed a misrepresentation in the way in which the available attribute is de�nedfor restricted accounts: the restriction amount should be returned when this is smaller than the sumof the balance and overdraft amounts. This misrepresentation was corrected by making a changein the �nal version of the Acc requirements model. The Acc model was also changed to record thefollowing additional requirements:� All the scenarios in questions (i) to (iii) result in exceptions which must be dealt with bydesigners and/or implementers.� A negative overdraft is used to model a minimum amount that must be kept in an account.� A negative restriction is not permitted by the de�nition of an invariant property, and a requestto change a restriction to a negative amount results in an exception.� Requests to deposit or withdraw negative amounts are also de�ned as exception cases.� Additional ACCESSOR attributes are de�ned to test the type of a given account.� An additional ACCESSOR zeroBalance is de�ned to return true if the balance of an account iszero. This test is needed for closing accounts.Step 4.1.3 A Final Acc modelThe new version of the Acc requirements is re-tested and customer validated. This �nal version ofthe model is de�ned below.



CHAPTER 7. FORMAL OBJECT ORIENTED DEVELOPMENT: A CASE STUDY 227CLASS Acc Using AccID,TransResult,Sum,Trans3X (*FINAL*) STRUCTURES: (*As in version 1*)ACCESSORS: available -> Sum, getID -> AccID,zeroBalance -> Bool, isBasic -> Bool, isBusiness -> Bool, isRest -> Bool;INVARIANTS: Reststr(AccID1,Sum1,Sum2,Sum3) REQUIRES Sum3..positiveEQNS (* available, getID and chOver: as defined in version 1 *)BasicStr(AccID1, Sum1, Sum2)..isBasic = true; (* other structures defined similarly *)BasicStr(AccID1, Sum1, Sum2)..isBusiness = false; (* other structures defined similarly *)BasicStr(AccID1, Sum1, Sum2)..isRest= false; (* other structures defined similarly *)BasicStr(AccID1, Sum1, Sum2)..zeroBalance= Sum1.eq(0); (* other structures defined similarly *)Sum3..positive => BasicStr(AccID1, Sum1, Sum2).deposit(Sum3) =BasicStr(AccID1, Sum1.add(Sum3), Sum2) OTHERWISE �Acc;Sum3..positive => BasicStr(AccID1, Sum1, Sum2).withdraw(Sum3) =BasicStr(AccID1, Sum1.sub(Sum3), Sum2) OTHERWISE �Acc;Sum3..positive => BusinessStr(AccID1, Sum1, Sum2, Trans3X1).deposit(Sum3) =BusinessStr(AccID1,Sum1.add(Sum3),Sum2,Trans3X1.insert(ATrans(DepositStr(Sum3))))OTHERWISE �Acc Sum3..positive => BusinessStr(AccID1,Sum1,Sum2,Trans3X1).withdraw(Sum3) =BusinessStr(AccID1,Sum1.sub(Sum3),Sum2,Trans3X1.insert(ATrans(WithdrawStr(Sum3)))))OTHERWISE �Acc;Sum4..positive => RestStr(AccID1,Sum1,Sum2,Sum3).deposit(Sum4) =RestStr(AccID1,Sum1.add(Sum4),Sum2,Sum3) OTHERWISE �Acc;Sum4..positive => RestStr(AccID1,Sum1,Sum2,Sum3).withdraw(Sum4) =RestStr(AccID1,Sum1.sub(Sum4),Sum2,Sum3) OTHERWISE �Acc ENDCLASS (* Acc *)Step 4.2 Analysis and Synthesis of Acc SubclassesThe Basic class is de�ned as a specialisation of Acc, restricted to values represented by the BasicStrSTRUCTURE. The Business and Restricted classes are de�ned to specialise and extend Acc. Theseclasses are de�ned below. Their behaviours, being based on the already validated Acc class, are easyto check with the customer. An important point to note is that Business and Restricted are notde�ned as subclasses of Basic. These classes could have been de�ned in this way but it was clear thatthe three di�erent types of account were intended to be unrelated: for example, a business accountis not a basic account.CLASS Basic USING Acc SPECIALISES ACC TO OPNS STRUCTURES: BasicStrENDCLASS (* Basic *)CLASS Business USING Acc SPECIALISES AND EXTENDS ACC TO OPNSSTRUCTURES: BusinessStr ACCESSORS: statement -> Trans3XEQNS BusinessStr(AccID1, Sum1, Sum2, Trans3X1)..statement= Trans3X1ENDCLASS (* Business *)CLASS Restricted USING Acc SPECIALISES AND EXTENDS ACC TO OPNSSTRUCTURES: RestStr TRANSFORMERS: chRest<Sum>EQNS Sum4..positive => RestStr(AccID1, Sum1, Sum2, Sum3).chRest(Sum4) =RestStr(AccID1, Sum1, Sum2, Sum4) OTHERWISE �RestStrENDCLASS (* Restricted *)



CHAPTER 7. FORMAL OBJECT ORIENTED DEVELOPMENT: A CASE STUDY 228Step 4.3: Analysis of Trans3X ClassThis class is required to record the last three transactions which have been serviced on a businessaccount. A transaction is added using the insert attribute. The most recent transaction is storedas the �rst component, and the least recent as the third component, of a �xed STRUCTURE. Thisbehaviour is speci�ed below.CLASS Trans3X USING TrReq OPNSSTRUCTURES: ATrans3X< TrReq, TrReq, TrReq > (*FIXED*)TRANSFORMERS: insert<TrReq>EQNS ATrans3X(TrReq1, TrReq2, TrReq3).insert(TrReq4) = ATrans3X(TrReq4, TrReq1, TrReq2)ENDCLASS (* Trans3X*)Step 4.4: Identifying an Account Transaction HierarchyThe di�erent types of account transactions are represented in the class hierarchy in �gure 7.4.
EnqReq

Statement Available

ChangeReq

ChangeRestChangeOver

BalanceEnq

WithdrawDeposit

AccTrans

TrReq

ServiceReqFigure 7.4: The Account Transaction Class HierarchyThe most important class in this hierarchy is ServiceReq. This is used to parameterise theTRANSFORMER attributes on the account database, and consequently simplify the speci�cation. All theclasses in the account transaction hierarchy are de�ned, in OO ACT ONE, below.Step 4.5: Analysis and Synthesis of AccDBThe account database must provide a store for accounts and a means of accessing and updating theinformation associated with each account in the store. The analysis and synthesis of the accountdatabase class AccDB required many iterations of the analysis-synthesis-backtrack sequence. Theheader for the �nal version of the AccDB class is speci�ed below.All AccDB TRANSFORMER services are o�ered through one external attribute, namely service.The attribute service is then parameterised on an account identi�er and transformer transaction(of class ServiceReq. This parameterisation helps to simplify the external interface of the AccDBclass. Another important aspect of the AccDB class is that exceptions are speci�ed when services arerequested of accounts which are not in the account database. The hidden attribute serviceOK, usedby the external attribute service, is de�ned (and called) only for services on valid accounts. Thisbehaviour is speci�ed by the equation de�nitions of the AccDB class, below.An important aspect of the AccDB speci�cation is the way in which changes to particular accountsin the database are made. The TRANSFORMER operations are de�ned by removing the identi�ed account,



CHAPTER 7. FORMAL OBJECT ORIENTED DEVELOPMENT: A CASE STUDY 229CLASS TrReq USING Sum OPNS STRUCTURES: DepositStr<Sum>,WithdrawStr<Sum> ENDCLASSCLASS EnqReq OPNS LITERALS: StatementLit, AvailableLit ENDCLASS (*TrReq*)CLASS BalanceEnq OPNS LITERALS: BalanceLitACCESSORS: isService -> Bool,isStatement -> Bool,isAvailable -> Bool ENDCLASS (*BalanceEnq*)CLASS ChangeReq OPNS STRUCTURES: ChOverStr<Sum>, ChangeReqStr<Sum> ENDCLASS(* ChangeReq*)CLASS Deposit USING TrReq SPECIALISES TrReq TO OPNS STRUCTURES: DepositStrACCESSORS: isService -> Bool, isStatement -> Bool, isAvailable -> Bool ENDCLASS (*Deposit*)CLASS Withdraw USING TrReq SPECIALISES TrReq TO OPNS STRUCTURES: WithdrawStrACCESSORS: isService -> Bool, isStatement -> Bool, isAvailable -> Bool ENDCLASS (*Withdraw*)CLASS Statement USING EndReq SPECIALISES EndReq TO OPNS LITERALS: StatementLitACCESSORS: isService -> Bool, isStatement -> Bool, isAvailable -> Bool ENDCLASS (*Statement*)CLASS Available USING EndReq SPECIALISES EndReq TO OPNS LITERALS: AvailableLitACCESSORS: isService -> Bool, isStatement -> Bool, isAvailable -> Bool ENDCLASS (*Available*)CLASS ChOver USING ChangeReq SPECIALISES ChangeReq TO OPNS STRUCTURES: ChOverStrACCESSORS: isService -> Bool, isStatement -> Bool, isAvailable -> Bool ENDCLASS (*ChOver*)CLASS ChRest USING ChangeReq SPECIALISES ChangeReq TO OPNS STRUCTURES: ChRestStrACCESSORS: isService -> Bool, isStatement -> Bool, isAvailable -> Bool ENDCLASS (*ChRest*)CLASS ServiceReq USING TrReq, ChangeReq GENERALISES TrReq, ChangeReq ENDCLASS (*ServiceReq*)CLASS AccTrans USING ServiceReq,BalanceReq,ChangeReqGENERALISES ServiceReq,BalanceReq,ChangeReq ENDCLASS (*AccTrans*)(* The ACCESSOR equations are not given above: their definitions are intuitive *)CLASS AccDB USING Acc, ServiceReq OPNSLITERALS: emptyAccDB STRUCTURES: AccStr< Acc, AccDB >ACCESSORS:available<AccID> -> Sum,statement<AccID> -> Trans3X,getAcc<AccID> ->Acc(*HIDDEN*),isAcc<AccID>->Bool(*HIDDEN*),zeroBalance<AccID>->Bool(*HIDDEN*)TRANSFORMERS: newAcc<Acc>,delAcc<AccID>,service<AccID,ServiceReq>,deposit<AccID,Sum> (*HIDDEN*), withdraw<AccID,Sum> (*HIDDEN*),chOver<AccID,Sum>(*HIDDEN*),chRest<AccID,Sum>(*HIDDEN*),serviceOK<AccID,ServiceReq>(*HIDDEN*)EQNS : : :ENDCLASS (* AccDB *)updating the account in an appropriate fashion and reconstructing the database by adding in the oldaccount with its new state. The behaviour de�ned in this way is simple to understand but it shouldbe clear that it is de�nitely not e�cient. The analyst must not change the requirements model justbecause it is ine�cient: the most important property of the requirements model is that the customercan understand it.Step 5: Analysis of Transaction Class and Synthesis of Requirements ModelThe Transactions class is used to store the account transaction messages, of class TransMessage,which are currently being routed to/from the target control node. It is de�ned as a recursive structureof TransMessage elements. It has an external interface composed from two attributes: a TRANSFORMERadd and a DUAL remove. The class is de�ned below.The behaviour of the Transactions class is simple to understand and easy to communicate withthe customer. Consequently, customer validation of its behaviour is straightforward.



CHAPTER 7. FORMAL OBJECT ORIENTED DEVELOPMENT: A CASE STUDY 230CLASS AccDB : : :(* Header as above *) EQNS emptyAccDB.getAcc(AccID1) = �Acc;emptyAccDB.isAcc(AccID1) = false;emptyAccDB.zeroBalance(AccID1) = �Bool; emptyAccDB.available(AccID1) = �Sum;emptyAccDB.delAcc(AccID1) = �AccDB;(Acc1.getID).eq(AccID1) => AccStr(Acc1, AccDB1).getAcc(AccID1) = Acc1OTHERWISE AccDB1.getAcc(AccID1);(Acc1.getID).eq(AccID1) => AccStr(Acc1, AccDB1).isAcc(AccID1) = trueOTHERWISE AccDB1.isAcc(AccID1);(Acc1.getID).eq(AccID1) => AccStr(Acc1, AccDB1).zeroBalance(AccID1) = Acc1.zeroBalanceOTHERWISE AccDB1.zeroBalance(AccID1);(Acc1.getID).eq(AccID1) => AccStr(Acc1, AccDB1).available(AccID1) = Acc1.availableOTHERWISE AccDB1.available(AccID1);AccDB1.getAcc(AccID1)..isBusiness => AccDB1..statement(AccID1) =AccDB1.getAcc(AccID1)..statement OTHERWISE �Trans3X;AccDB1.newAcc(Acc1) = AccStr(Acc1,AccDB1);(Acc1.getID).eq(AccID1)).not => AccStr(Acc1, AccDB1).delAcc(AccID1)) =AccStr(Acc1, AccDB1.del(AccID1)) OTHERWISE (Acc1..balance).eq(0) => AccDB1 OTHERWISE �AccDB;AccDB1.getAcc(AccID1)..isRest => AccDB1..chRest(Acc, Sum1) =(AccDB1.delAcc(AccID1)).newAcc(AccDB1..getAcc(AccID1)..chRest(Sum1)) OTHERWISE �AccDB1;AccDB1.deposit(AccID1, Sum1) =(AccDB1.delAcc(AccID1)).newAcc(AccDB1..getAcc(AccID1)..deposit(Sum1));AccDB1.withdraw(AccID1, Sum1) =(AccDB1.delAcc(AccID1)).newAcc(AccDB1..getAcc(AccID1)..withdraw(Sum1));AccDB1.chOver(AccID1, Sum1) =(AccDB1.delAcc(AccID1)).newAcc(AccDB1..getAcc(AccID1)..chOver(Sum1));AccDB1.isAcc(AccID1) => AccDB1.service(AccID1, ServiceReq1) =AccDB1.serviceOK(AccID1, ServiceReq1) OTHERWISE �Acc;AccDB1.serviceOK(AccID1, ChOverStr(Sum1)) = AccDB1.chOver(AccID1, Sum1);AccDB1.serviceOK(AccID1, ChRestStr(Sum1)) = AccDB1.chRest(AccID1, Sum1);AccDB1.serviceOK(AccID1, DepositStr(Sum1)) = AccDB1.deposit(AccID1, Sum1);AccDB1.serviceOK(AccID1, WithdrawStr(Sum1)) = AccDB1.withdraw(AccID1, Sum1);ENDCLASS (* AccDB *)CLASS Transactions USING TransMessage OPNSLITERALS: NoTrans STRUCTURES: TransStr< Trans, Transactions >TRANSFORMERS: add<TransMessage> DUALS: remove<MessageID> -> TransMessageEQNS Transactions1.add(TransMessage1) = TransStr(TransMessage1, Transactions1);NoTrans.remove(MessageID1) = NoTrans;(TransMessage1.getID).eq(MessageID1) =>TransStr(TransMessage1, Transactions1).remove(MessageID1) = Transactions AND TransMessage1OTHERWISE TransStr(TransMessage1,Transactions1.remove(MessageID1)ENDCLASS (* Transactions *)Step 5.1: Analysis of TransMessage Class and Synthesis of Requirements ModelThe TransMessage class is de�ned as a �xed STRUCTURE of �ve components:� A message identi�er, which is de�ned as a renaming of ID. The LITERAL 0 is renamed M0 andthe STRUCTURE IDStr is renamed M.



CHAPTER 7. FORMAL OBJECT ORIENTED DEVELOPMENT: A CASE STUDY 231� An identi�cation of the target control node, de�ned as a NodeID.� An identi�cation of the node which originated the transaction request, de�ned as a NodeID.� An identi�cation of the account to which the request is being sent, de�ned as an AccID.� The request details, de�ned as an AccTrans.The TransMessage class o�ers three external attributes:� an ACCESSOR getAccTrans to return the AccTrans component.� an ACCESSOR getAccID to return the AccID component.� an ACCESSOR getMessageID to return the MessageID component.The behaviour of class TransMessage is speci�ed below.CLASS TransMessage USING AccTrans, NodeID, MessageID OPNSSTRUCTURES: ATransMessage< MessageID, NodeID (*to*), NodeID (*from*), AccID, TrReq >ACCESSORS: getMessageID ->MessageID,getAccTrans ->AccTrans, getAccID ->AccIDEQNS ATransMessage(MessageID1,NodeID1,NodeID2,AccID1,AccTrans1)..getMessageID = MessageID1;ATransMessage(MessageID1,NodeID1,NodeID2,AccID1,AccTrans1)..getAccID = AccID1;ATransMessage(MessageID1,NodeID1,NodeID2,AccID1,AccTrans1)..getAccTrans = AccTrans1ENDCLASS (* TransMessage *)Step 6: Specifying a class for returning enquiry resultsA new class, AccTransResult, is required to represent the result of a transaction enquiry at theBankingNetwork interface. This class was not initially identifed in the composition analysis becauseit is not a component of the BankingNetwork. However, it is now clear that such a class is requiredfor the transfer of enquiry results across the network. AccTransResult is de�ned below.CLASS AccTransResult USING Sum, Trans3X OPNSSTRUCTURES: StatementRes< Trans3X >, AvailableRes < Sum >ENDCLASS (* AccTransResult *)AccTransResult requires no external attributes because it is being used as a passive data rep-resentation. Classes which use the BankingNetwork can re-use AccTransResult and extend it withexternal attributes, if necessary.Step 7: Synthesis of BankingNetwork ClassThe classes which BankingNetwork depends on have been customer validated. The last step in thecase study is the synthesis and analysis of the BankingNetwork class. Again, like its componentclasses, the BankingNetwork required many iterations of the analysis-synthesis-backtrack sequencebefore the requirements model was customer validated.



CHAPTER 7. FORMAL OBJECT ORIENTED DEVELOPMENT: A CASE STUDY 232Step 7.1 Review of the BankingNetwork Component ClassesThe BankingNetwork is composed from three component classes:� Network: a network of nodes and links.� Transactions: a set of internal message transactions which are in the process of being routed.� AccDB: the data base of accounts which is the target for all the transactions in the system.The Interface O-LSTSD for each of these classes is given in �gure 7.5. The BankingNetwork providesits external functionality by delegating requests to these component classes.
getNode<NodeID>->Node

isNode<NodeID>->Bool

areConnected<NodeID,NodeID>->Bool

statement<AccID>->Trans3X

available<AccID> -> Sum

newAcc<Acc>

remove<MessageID> -> TransMessage

add<TransMessage>

NodeIDGen, LinkIDGen

Network USING NodeSet,LinkSet
AccDB USING Acc,ServiceReqTransactions USING TransMessage

service<AccID,ServiceReq>

delAcc<AccID>

addNode<NodeType>

switch<NodeID>

addLink<NodeID,NodeID>Figure 7.5: A Review of the BankingNetwork ComponentsStep 7.2 The External Interface of the BankingNetworkThe external interface of the BankingNetwork is de�ned by the class header, below.CLASS BankingNetwork USING AccDB, AccTransResult, Network, Transactions OPNSSTRUCTURES: ABankNet< AccDB, Network, Transactions >TRANSFORMERS: addNode<NodeID,NodeType>, addLink<NodeID,NodeID,NodeID>, switch<NodeID>,accRequest<NodeID, TransMessage>, delAcc<NodeID, AccID>, newAcc<NodeID, Acc>,arrived<MessageID>(*INTERNAL*), timeout<MessageID>(*INTERNAL*)DUALS: returned<MessageID> -> AccTransResult (*INTERNAL*) EQNS : : :There are four important aspects of the BankingNetwork header de�nition:� i) The INTERNAL transformers are used to model the communication aspects of the system:� The arrived sevice models a message transaction arriving at the appropriate control node,and results the account information being updated.� The returned service models the arrival of an enquiry reply at the node which originatedthe enquiry.� The timeout service models the nonservicing of a message transaction.� ii) All the external attributes are de�ned as TRANSFORMERS. The enquiry services cannot bede�ned as DUALS because there is no guarantee that these requests will be serviced.



CHAPTER 7. FORMAL OBJECT ORIENTED DEVELOPMENT: A CASE STUDY 233� iii) All the external attributes have a NodeID as their �rst parameter which is used to identifythe node at which a transaction is originated. The BankingNetwork must ensure that only thecorrect sort of transactions are requested at particular types of node.� iv) The switch attribute is interesting because the one NodeID parameter identi�es both thenode to be switched and the node at which the switch request is being made. In other words,switch requests cannot be routed across the network: they must occur at source.The BankingNetwork class structure diagram is given in �gure 7.6.
returned<MessageID> -> AccTransResult (*INTERNAL*)

delAcc<NodeID,AccID>

newAcc<NodeID,Acc>

addNode<NodeID, NodeType>
addLink<NodeID, NodeID, NodeID>

Network1

Transactions1AccDB1

BankingNetwork

switch<NodeID>
accRequest<NodeID,TransMessage>

arrived<MessageID> (*INTERNAL*)

timeout<MessageID> (*INTERNAL*)Figure 7.6: The BankingNetwork Class Structure DiagramStep 7.3 Speci�cation of BankingNetwork BehaviourInformally, the external attributes of the BankingNetwork o�er the following behaviour:� addNode<NodeID, NodeType>:The node identi�er is checked, using the Network component, to guarantee that it correspondsto a control node in the system which is on: if so, a new node of type NodeType is added to theNetwork, otherwise the system ignores the request.� addLink<NodeID, NodeID, NodeID>:All three node identi�ers are checked, using the Network component, to test that:� the �rst node identi�er corresponds to a control node which is on.� the other two node identi�ers correspond to di�erent nodes in the NetworkIf so, a new link, joining the nodes identi�ed by the second two NodeID parameters, is added tothe Network, otherwise the system ignores the request.� newAcc<NodeID,Acc>:The node identi�er is checked, using the Network component, to guarantee that it correspondsto a control node in the system which is on: if so, a new account (Acc) is added to the AccDB,otherwise the system ignores the request.� delAcc<NodeID, AccID>:The node identi�er is checked, using the Network component, to guarantee that it corresponds



CHAPTER 7. FORMAL OBJECT ORIENTED DEVELOPMENT: A CASE STUDY 234to a control node in the system which is on: if so, the account is checked to ensure that it hasa zero balance, in which case it is deleted from the database, otherwise the system ignores therequest.� switch<NodeID>:The NodeID is tested to verify that it corresponds to a node in the Network: if so, this node isswitched, otherwise the system ignores the request.� accRequest<NodeID, TransMessage>:The NodeID is tested to verify that it corresponds to an ATM node which is on: if so, theTransMessage request is added to the system Transactions component for routing to theappropriate control node, otherwise the system ignores the request.The INTERNAL attributes model nondeterministic state transitions:� timeout<MessageID>:This removes the speci�ed message from the Transactions component of the BankingNetwork.� arrived<MessageID>:This removes the speci�ed message from the Transactions component of the BankingNetwork.The message is then used to update the account database AccDB. The request is ignored if themessage identi�er does not correspond to a service request (deposit or withdraw).� returned<MessageID>:This removes the speci�ed message from the Transactions component of the BankingNetwork.The message is then used to access the relevant account information in the account databaseAccDB, and this data is returned. The request is ignored if the message identi�er does notcorrespond to an enquiry request (statement or available).The BankingNetwork behaviour is formally de�ned in OO ACT ONE below.The BankingNetwork is now ready for design.7.2.3 A Review of the Analysis and Requirements CaptureThe formal object oriented analysis, as performed in the case study, illustrates many of the mainanalysis and requirements capture issues:� Flexibility: The need for an opportunistic method.� Executability: The advantages of an executable model.� Customer Orientation: The advantages of graphical notations.� Formality: Abstraction and Nondeterminism.Each of these issues is reviewed, with respect to the case study, in sections 7.2.3.1 to 7.2.3.4, below.



CHAPTER 7. FORMAL OBJECT ORIENTED DEVELOPMENT: A CASE STUDY 235CLASS BankingNetwork (* Header above *) EQNS(((Network1.getNode(NodeID1))..isControl).and((Network1.getNode(NodeID1))..isOn) =>ABankNet(:: :).addNode(NodeID1,NodeType1) =ABankNet(AccDB1,Network1.addNode(NodeType1),Transactions1) OTHERWISE ABankNet(:: :);(((Network1.getNode(NodeID1))..isControl).and((Network1.getNode(NodeID1))..isOn ) =>ABankNet(:: :).addLink(NodeID1, NodeID2, NodeID3) =ABankNet(AccDB1,Network1.addLink(NodeID2,NodeID3),Transactions1) OTHERWISE ABankNet(:: :);ABankNet(:: :).switch(NodeID1) = ABankNet(AccDB1, Network1.switch(NodeID1), Transactions1);(((Network1.getNode(NodeID1))..isControl).and((Network1.getNode(NodeID1))..isOn) =>ABankNet(:: :).newAcc(NodeID1,Acc) =ABankNet(AccDB1.newAcc(Acc),Network1,Transactions1) OTHERWISE ABankNet(:: :);(((Network1.getNode(NodeID1))..isControl).and((Network1.getNode(NodeID1))..isOn) =>ABankNet(:: :).delAcc(NodeID1,AccID) =ABankNet(AccDB1.delAcc(AccID),Network1,Transactions1) OTHERWISE ABankNet(:: :);(((Network1.getNode(NodeID1))..isATM).and((Network1.getNode(NodeID1))..isOn) =>ABankNet(:: :).accRequest(NodeID1,TransMessage1) =ABankNet(AccDB1,Network1,Transactions1.add(TransMessage1)) OTHERWISE ABankNet(:: :);ABankNet(:: :).timeout(NodeID1,MessageID1) =ABankNet(AccDB1,Network1,Transactions1.remove(MessageID);((Transactions1..remove(MessageID))..getAccTrans)..isStatement =>ABankNet(:: :).returned(NodeID1,MessageID1) =ABankNet(AccDB1,Network1,Transactions1.remove(MessageID1)) ANDStatementRes(AccDB1..statement((Transactions1..remove(MessageID))..getAccID))OTHERWISE ((Transactions1..remove(MessageID))..getAccTrans)..isAvailable =>ABankNet(AccDB1,Network1,Transactions1.remove(MessageID1)) ANDAvailableRes(AccDB1..available((Transactions1..remove(MessageID))..getAccID))OTHERWISE ABankNet(:: :);((Transactions1..remove(MessageID))..getAccTrans)..isService =>ABankNet(AccDB1,Network1,Transactions1).arrived(MessageID1)=ABankNet(AccDB1.service((Transactions..remove(MessageID1))..getAccID,(Transactions..remove(MessageID1))..getAccTrans1),Network1,Transactions1.remove(MessageID1)) OTHERWISE ABankNet(:: :)ENDCLASS (* BankingNetwork *)7.2.3.1 FlexibilityThe case study illustrates how the requirements model was developed in an opportunistic fashion.The analysis was both bottom-up and top-down:� Bottom-upThe BankingNetwork was analysed bottom-up. The classes which the BankingNetwork dependson, including its component classes, were speci�ed and validated before theBankingNetwork behaviour was fully understood: they were developed to achieve this under-standing.� Top-downThe Network behaviour was analysed top-down. The classes it depends on were speci�ed andvalidated after the Network behaviour was understood: they were developed to record this



CHAPTER 7. FORMAL OBJECT ORIENTED DEVELOPMENT: A CASE STUDY 236understanding.In general, it is not possible, given a collection of classes requiring speci�cation, to predeterminethe best order in which these classes should be analysed, synthesised and validated. Customers andanalysts must be encouraged to develop the requirements models as they see �t at the time. Oppor-tunistic approaches are more di�cult to organise (the size of the case study does not fully illustratethis) and so it is important that the requirements capture process is supported by management tools.Providing such support is beyond the scope of this thesis.7.2.3.2 ExecutabilityThe OO ACT ONE requirements models are executable. This is very important in the processof customer validation. It is very di�cult to communicate dynamic properties of a model if therequirements cannot be executed. Executing the requirements models helps the analyst to test theirmodel against the behaviour they think the customer requires. It also helps the customer to validatethe analyst's model against their requirements. Further, an executable model helps the customer andanalyst to explore behaviour which is not well understood.The development of the BankingNetwork requirements model involved many executions of thesystem class (and classes which the system depended on). Most of the backtracking took place inresponse to misunderstandings in the requirements model being identi�ed during execution. It is un-likely that such problems would have been identifed before the system was subsequently implemented.Only after the implementation was tested by the customer would these errors become evident. Ex-ecutable requirements models reduce the risk of carrying errors into the design and implementationstages of software development.Executable models are more costly to produce, but have the potential to reduce the expense ofcorrecting errors during design and implementation. Further, the executable OO ACT ONE modelis directly re-used in the object oriented designs. Consequently, there is no sense of losing work whenthe analysis is complete and design begins.7.2.3.3 Customer OrientationThe OO ACT ONE requirements models are customer oriented. The BankingNetwork behaviour canbe presented to the customer in a number of di�erent forms:� The dynamic model can be presented as sequences of state transitions. Event diagrams (see3.5.6) provide a customer oriented view of system executions.� The static properties, namely classi�cation, subclassing, composition, dependency and con�gu-ration, can be presented in class structure diagrams and subclassing hierarchy diagrams. Thesegraphical views were prominent in the BankingNetwork case study.� The object oriented framework provides a consistent approach for the analyst to develop mutualunderstanding with the customer. The customer does not have to change conceptual frameworkswhen going between their understanding of the requirements and their understanding of the



CHAPTER 7. FORMAL OBJECT ORIENTED DEVELOPMENT: A CASE STUDY 237requirements model: the object oriented style of speci�cation means that these should be thesame. Analysts must build the requirements model for the customer. This customer awarenessis evident in the BankingNetwork: for example, we questioned the way in which the Networkbehaviour was speci�ed.Although the graphical views of the requirements were prominent in the case study, it becameclear that the synthesis, analysis and validation of behaviour would bene�t greatly from comprehensivetool support: all models and views were generated by hand. The ability to make quick changes to arequirements model was not matched by a similarly quick means of presenting the graphical views.This is an area of further work.7.2.3.4 Abstraction and NondeterminsimTwo main types of abstraction are evident in the formal requirements model:� Functional abstraction | every class of behaviour can be treated as an interface of well-de�ned(and well understood) external attributes.� Exceptions | when a customer wants some sort of behaviour to be coped with in the �nalimplementation, but is not yet willing (or able) to be more precise then exceptions are usefulabstraction mechanisms.Nondeterminism is a very important part of most requirements models. In the case study non-determinism (in the form of INTERNAL state transitions) was used to model the internal routing ofmessages. Some messages are routed correctly whilst others are lost (timed out): how this behaviouris de�ned is not speci�ed. It is the role of the analyst to communicate the nondeterministic aspects ofthe requirements model with the designers. It is the designers who must remove the nondeterminism.7.3 Design: Moving the System from Abstract to ConcreteThis section reviews the process by which the OO ACT ONE BankingNetwork requirements weredesigned for implementation in Ei�el. Design proceeded in distinct steps. At the end of each stepthe new design was veri�ed against the old design: when a correctness preserving transformation(CPT) was used then this veri�cation was immediate. However, some of the design steps were notapplications of pre-de�ned CPTs. In these cases, we either: formally veri�ed the design step with aproof of correctness, or informally justi�ed the design step as being correctness preserving and testedour reasoning by executing the LOTOS speci�cation of the new design.It is intended, in the future development of FOOD, that the OO LOTOS designs are hiddenbeneath some high-level object oriented design interface. The case study, however, required directmanipulation of the OO LOTOS code. At certain key stages in this section, LOTOS code fragmentsare presented. When appropriate, diagramatic representations of the design (and design components)are given.



CHAPTER 7. FORMAL OBJECT ORIENTED DEVELOPMENT: A CASE STUDY 238The underlying BankingNetwork functionality is contained within the ACT ONE implementationof the OO ACT ONE requirements model. This ACT ONE code is not reviewed as part of the thesis.In some instances, new classes of behaviour are required in the design: these classes are coded in OOACT ONE and then translated to ACT ONE for use in the design.The case study does not make use of all the CPTs, which are de�ned in chapter 5. Design is tar-getted towards a non-concurrent implementation (in Ei�el). As such, the transformations concernedwith concurrency and distribution are not illustrated by the case study. However, there is reason tobelieve that the BankingNetwork model could be designed towards a concurrent implementation. Aninvestigation of such a development is beyond the scope of this thesis.It is not possible to examine, within this thesis, all aspects of the design of the BankingNetworksystem. The main design steps are reviewed in sections 7.3.1 to 7.3.6. A review of the design processis given in section 7.3.7.7.3.1 From Analysis to Design: Choosing the Communication ModelEi�el is the target implementation language and so, for reasons given in chapter 5, the �rst design deci-sion is to chose the remote procedure call (RPC) model of communication for the BankingNetwork sys-tem. The initial OO LOTOS design of the BankingNetwork is given below in the PBankingNetwork1process de�nition10.process PBankingNetwork1[newAcc,delAcc,addNode,addLink,switch,accRequest](SBankingNetwork: BankingNetwork): noexit:= hide returned, arrived, timeout in(* EXTERNAL INTERFACE *)(newAcc?NodeID1:NodeID?Acc1:Acc;PBankingNetwork[:: :](.(newAcc( SBankingNetwork, NodeID1, Acc1))))[] : : : [](* INTERNAL TRANSITIONS *)(returned?MessageID1:MessageID?;returned!AccTransResultResult(returned(SBankingNetwork, MessageID));PBankingNetwork[:: :](.(newAcc( SBankingNetwork, NodeID1, Acc1))))[] : : :endproc (* PBankingNetwork1 *)This initial design facilitates a review of syntactic conventions in the OO LOTOS designs:� Classes from the requirements model are de�ned as PClass processes in the LOTOS designs.The version of the class de�nition is identifed by a numeral at the end of the process identi�er.As design progresses we verify that correctness is preserved from one version of the processde�nition to the next.� The ACT ONE sorts, corresponding to classes in the requirements model, retain the class namesused in the analysis. Class variables are represented by the class name preceded by an S (forstate).10The OO LOTOS process de�nitions that follow are not given in standard LOTOS syntax. For the sake of brevity,lists of gates, choices and operation parameters are often presented as listElement1, : : :listElement2, when thecontext in which this syntax is used makes the identi�cation of the complete list immediate and unambiguous.



CHAPTER 7. FORMAL OBJECT ORIENTED DEVELOPMENT: A CASE STUDY 239� The external attributes of the requirements model classes have two correspondences in theLOTOS designs: as gate names in the process algebra and operation names in the ADT part.� The ACT ONE operations .(req(object, : : :)) and ClassResult(req(object, : : :)) areused, respectively, to de�ne the new state of an object after servicing a req, and the result, ifany, returned from servicing a req.7.3.2 Decomposition of the Banking Network SystemThe initial design is a more concrete implementation of the requirements model since it speci�eshow a BankingNetwork communicates with its environment through its external interface. The OOACT ONE requirements are contained within the ADT part of the speci�cation, and used directlyin specifying what behaviour is o�ered at the interface. The initial design does not state how theBankingNetwork o�ers this behaviour: it is the designers who must specify how this behaviour is tobe implemented.A �rst step in the design process is to transfer the structure in the requirements into structure inthe design: this structure is then amenable to manipulation. The BankingNetwork has a static struc-ture and so we apply the static expansion CPT StExp to the PBankingNetwork1 process de�nition.The second BankingNetwork design, resulting from the application of StExp, is de�ned as processPBankingNetwork2, below.process PBankingNetwork2[newAcc,delAcc,addNode,addLink,switch,accRequest](SBankingNetwork: BankingNetwork): noexit:=hide returned, arrived, timeout, Transactions1add, Transactions1remove, AccDB1service,AccDB1delAcc, AccDB1newAcc, AccDB1statement, AccDB1available, Network1switch,Network1addNode, Network1isNode, Network1getNode, Network1addLink, Network1areConnected inBankingNetwork2Control[newAcc, : : :, Network1areConnected]j [ Transactions1add, : : :, Network1areConnected] j]( PTransactions[Transactions1add, Transactions1remove] (par1(SBankingNetwork)) jjjPAccDB[AccDB1service, : : :, AccDB1available] (par2(SBankingNetwork)) jjjPNetwork[ Network1switch, : : :, Network1areConnected] (par3(SBankingNetwork)))endproc (* PBankingNetwork2 *)The BankingNetwork2 component processes PAccDB, PTransactions and PNetwork are gener-ated as RPC-model designs from their OO ACT ONE speci�cations. The BankingNetwork2Controlprocess co-ordinates the way in which these components are used to provide the external behaviourof BankingNetwork2. It is de�ned below.The second version of the design is represented in the diagram in �gure 7.7, which shows quitee�ectively the result of the static expansion. Henceforth, similar diagrams are used to illustrate theprocess structure in the OO LOTOS designs. LOTOS text is included only where necessary.7.3.3 Decomposition of the Network Component ProcessThe next design step is the static expansion of the PNetwork1 process. The result of applying StExpto PNetwork1 is illustrated in �gure 7.8. This expansion is necessary because we intend to change the



CHAPTER 7. FORMAL OBJECT ORIENTED DEVELOPMENT: A CASE STUDY 240process BankingNetwork2Control[ newAcc,: : :, Network1areConnected]: noexit:=(newAcc?NodeID1:NodeID?Acc1:Acc;Network1getNode!NodeID1?Node1:Node;( [and(BoolResult(isControl(Node1), BoolResult(isOn(Node1)))] ->AccDB1newAcc!Acc1; BankingNetwork2Control[:: :] )[]([not(and(BoolResult(isControl(Node1),BoolResult(isOn(Node1))))] -> BankingNetwork2Control[:: :]))[]: : :endproc (* BankingNetwork2Control *)
Network1getNode

PNetwork1

PAccDB1

PTransactions1BankingNetwork2Control

accRequest

switch

addLink

addNode

delAcc

newAcc

Network1areConnected
Network1addLink

Network1isNode
Network1addNode

Network1switch

AccDB1available
AccDB1statement
AccDB1newAcc

AccDB1service

Transactions1remove

Transactions1add

PBankingNetwork2

returned arrived timeout

A

g1...gn are internal gates of A

gn

g1

g1...gn are external gates of A

A

gn

g1

A and B at gate.
Synchronisation between processes

BA

gate

KEY:

AccDB1delAcc

Figure 7.7: BankingNetwork Design Diagram: Stage 2internal structure of the Network.
Network1areConnected

Network1addLink
Network1isNode

Network1addNode

Network1switch

Network1getNode

Network2Control

LinkSet1areConnected
LinkSet1link

LinkIDGen1NextL

LinkIDGen1NextN

PLinkSet1

PNodeSet1

PLinkIDGen1

PNodeIDGen1

PNetwork2

NodeSet1isNode
NodeSet1getNode
NodeSet1add
NodeSet1switchFigure 7.8: Network Design Diagram: Stage 37.3.4 Restructuring the Network Component ProcessThe purpose of the restructuring is to change the way in which Network toplogy is de�ned. Ratherthan having a distinct set of Links, all the LinkSet elements are to be distributed between the Nodesin the NodeSet. This is achieved in two steps:



CHAPTER 7. FORMAL OBJECT ORIENTED DEVELOPMENT: A CASE STUDY 241� i) Compose the NodeSet and the LinkSet in the Network, using the Comp CPT.� ii) Integrate the two recursive structures in the ADT parts of the NodeSet and LinkSet intoone recursive structure of LinkedNodes in a LinkedNodeSet.7.3.4.1 Composing NodeSet and LinkSetThe next version of the Network design is de�ned as a composition of the NodeSet and LinkSet com-ponents: PNetwork3 = Comp(PNetwork2, ff1g, f2g, f3,4gg). This new structure is illustratedin �gure 7.9.
PLinkedNodeSet1

LinkedNodeSet1Control

NodeSet1switch
NodeSet1add
NodeSet1getNode
NodeSet1isNode

LinkSet1areConnected
LinkSet1link

PLinkSet1

PNodeSet1

LinkSet1areConnected
LinkSet1link
NodeSet1switch
NodeSet1add
NodeSet1getNode
NodeSet1isNode

Network1getNode

Network1switch
Network1addNode

Network1isNode
Network1addLink

Network1areConnected

PNetwork3
Network3Control PNodeGen1

PLinkGen1

Node->

Link->Figure 7.9: Network Design Diagram: Stage 4.1The initial composition is important because it permits manipulation of the LinkedNodeSet spec-i�cation, independent of the other Network components.7.3.4.2 Merging the NodeSet and the LinkSetA CPT for the merging of two recursive structures has not been developed as part of this thesis.Consequently, we must examine the transformation in some detail in order to be sure of its correctness.The idea behind the transformation is very simple: every component of the LinkSet should beplaced somewhere in the NodeSet. The simplest way of achieving this is to give each Node in theNodeSet an extra component: a LinkSet. Then, this extra component can be used to store a subsetof the Network's LinkSet. We require that every Link in the Network LinkSet is represented in thenew set of `Nodes with Links', named LinkedNodeSet. The LinkedNodeSet is de�ned as a recursivestructure of LinkedNode elements. It is this new set which de�nes version 2 of the PLinkedNodeSetprocess de�nition. This new process is illustrated in �gure 7.10.7.3.5 Integrating the Transaction Set in the NetworkThe mechanism used to merge the LinkSet and NodeSet is re-applied to merge Transactions, a setof Transaction components, with the LinkedNodeSet. This merging requires an initial restructuringof the BankingNetwork, as illustrated in �gure 7.11.The merging requires a new Transactions component to be added to the LinkedNode structureto de�ne a new class, namely TransLinkNode. The LinkedNodeSet and Transactions components



CHAPTER 7. FORMAL OBJECT ORIENTED DEVELOPMENT: A CASE STUDY 242
ALinkedNode<ANode<NodeID,NodeType>, LinkSet>
the LinkNode class is a fixed structure:
where,

PLinkedNodeSet2

LinkedNode ->

LinkSet1areConnected
LinkSet1link
NodeSet1switch
NodeSet1add
NodeSet1getNode
NodeSet1isNode Figure 7.10: Network Design Diagram: Stage 4.2

RESTRUCTURING

Acc ->

PAccDB1
PNetwork4

PTransactions1

PBankingNetwork4
BankingNetwork4Control

PLinkedNodeSet1 PNodeIDGen1 PLinkIDGen1

LinkedNode ->

Transaction ->

PTransNetwork1

PTransactions1 PLinkIDGen1
PNodeIDGen1PLinkedNodeSet1

PBankingNetwork5

BankingNetwork5Control

Acc ->

PAccDB1

LinkedNode -> Transaction ->Figure 7.11: BankingNetwork Design Diagram: Stage 5.1are merged into one component (a TransLinkNodeSet) which is de�ned as a recursive structure ofTransLinkNode elements. Every Transaction in the BankingNetwork is recorded in one, and onlyone, of the TransLinkNodes (as a member of its Transactions component). The BankingNetworkdesign, after the merging of Transactions and the Network components, is illustrated in �gure 7.12.7.3.6 An Explicit Routing Mechanism: Removing NondeterminismThe BankingNetwork design has been transformed with the intention of explicitly specifying aninternal mechanism for the routing of transaction messages. The TransLinkNodeSet class is readyfor modelling the routing of messages between nodes. This is done in two stages:� i) Modelling the movement of messages along links.� ii) Designing a routing mechanism as a means for nodes to determine on which link outgoingmessages are to be sent.



CHAPTER 7. FORMAL OBJECT ORIENTED DEVELOPMENT: A CASE STUDY 243
TransLinkNode ->

PBankingNetwork5

BankingNetwork5Control

returned arrived timeout

newAcc

delAcc

addNode

addLink

switch

accRequest

PAccDB1

AccDB1available
AccDB1statement

AccDB1newAcc

AccDB1service

PTransLinkNodeSet1

PTransNetwork1

PLinkIDGen1

PNodeIDGen1

AccDB1delAcc

Network1getNode

Transactions1add

Transactions1remove

Network1switch
Network1addNode

Network1isNode

Network1addLink

Network1areConnectedFigure 7.12: BankingNetwork Design Diagram: Stage 5.27.3.6.1 Modelling the internal movement of messagesA new internal transition move<NodeID, NodeID> is de�ned to model the movement of a mes-sage transaction from the �rst node to the second (as speci�ed by the NodeID parameters). TheTransLinkNode identi�ed by the �rst NodeID must decide which of its currently held transactions issent across the link to the node speci�ed by the second NodeID parameter. This is determined by therouting mechanism. When a message is recieved by a TransLinkNode then one of four things occurs:� i) The message is a service request which can be serviced by the receiving (control) node. As aresult, the AccDB is updated appropriately and the message is removed from the network. Thismodels the internal arrived transaction.� ii) The message is an enquiry which can be serviced by the receiving (control) node. As a result,the AccDB is accessed to obtain the appropriate reply to the enquiry, the original message isremoved from the network and a new message (carrying the reply) is added to the network tobe routed back to the node which originated the enquiry.� iii) The message is a reply which has arrived back at the node which originated the enquiry.The information is given to the receiving node and the message is removed from the network.This models the returned transaction.� iv) The message cannot be serviced by the receiving node so it is forwarded for routing toanother node.The internal timeout transformation is de�ned to remove the speci�ed message from withinwhicheverTransLinkNode it is stored.7.3.6.2 Designing A Routing MechanismThe design needs to be extended to provide each TransNode with a routing mechanism. [55] exam-ines a number of di�erent network routing mechanisms: their speci�cation in LOTOS and resulting



CHAPTER 7. FORMAL OBJECT ORIENTED DEVELOPMENT: A CASE STUDY 244implementation in C++. In the BankingNetwork case study, one of the simplest routing mechanismswas chosen for implementation, namely the Hot Potato mechanism, see [102].The Hot Potato routing algorithm is developed on the philosophy that it is always best to get ridof an incoming message (that needs routing) as quickly as possible. To model this, we de�ne everyTransLinkNode to have an additional component, namely a set of transition queues (one queue foreach outgoing link in the node). Consequently, the TransLinkNodeSet of TransLinkNode componentsis replaced by a RoutingNodeSet of RoutingNode components. The movement of messages betweennodes is simply achieved by popping a transaction o� the queue, identi�ed by a LinkID.The speci�cation of Hot Potato routing behaviour (and a number of extensions and re�nements)is given in [55]. This behaviour is incorporated in the BankingNetwork in a straightforward manner(many of the classes are directly re-used). The �nal design of the BankingNetwork is illustrated in�gure 7.13. It is this design which is put forward for implementation in Ei�el.
and TransLinkQ is a fixed structure:
elements: TransLinkQ ->

ATransLinkQ<LinkID, Transactions>

recursive structure of TransLinkQ
and Class TransLinkQSet is a

TransLinkQSet>
ARoutingNode<NodeID,NodeType,

structure:
Class RoutingNode has a fixed
where

RoutingNode ->

PBankingNetwork6

PAccDB1

NodeIDGen LinkIDGen

PRoutingNetwork1

PRoutingNodeSet1

Figure 7.13: BankingNetwork Design Diagram: Stage 67.3.7 A Review of the Design Process7.3.7.1 Limitations of the RPC-model of communicationDesigning towards a non-concurrent implementation is much simpler than designing towards a con-current implementation. With an RPC-model of communication, the design decisions are primarilyconcerned with:� Composition and decomposition of data structure.� Removing nondeterminism.Unfortunately, the CPTs which address concurrency and distribution design decisions are not relevantin a non-concurrent model. It is these issues which the make the transformation to full LOTOS fromOO ACT ONE a vital part of FOOD. This is not fully illustrated by the case study.



CHAPTER 7. FORMAL OBJECT ORIENTED DEVELOPMENT: A CASE STUDY 2457.3.7.2 Towards A Concurrent ImplementationThe case study addresses a problem which is inherently concurrent: the BankingNetwork is modellinga system of distributed Node processes. This concurrency is designed out of the system by introducinginternal transformations for modelling the routing of messages between nodes. Given a concurrenttarget implementation language, the FOOD approach can target the design using CPTs, de�ned inchapter 5, which were not utilised in the case study. An area of future work is the investigation ofthe e�ectiveness of these other CPTs. A concurrent implementation of the BankingNetwork providesa suitable problem for such an investigation.7.3.7.3 The Need For Tool SupportThis thesis is principally concerned with mathematical models, i.e. conceptual tools. The CPT-driven design is particularly rich in this respect. Conceptual tools must be supported by developmentenvironments. The LOTOS tools (both the SEDOS tools and LITE tools were used) provided alimited support during the design stages of FOOD. Unfortunately, these tools do not support objectoriented design: they support the development of LOTOS speci�cations. It is clear that the designstages of FOOD need more suitable tool support.7.3.7.4 The Need For More CPTsThe case study illustrates the importance of CPTs in design. It is vital that a comprehensive setof object oriented design CPTs are developed. This will improve the quality of design and theproductivity of designers. In short, CPTs allow designers to decide what should be done, rather thanhow it can be done.This thesis introduces only a small number of CPTs. These are used to show that a CPT-drivenapproach to object oriented design is possible. However, the case study shows that many more CPTsare needed: for example, the merging of two recursive structures needs to be treated formally. It ishoped that CPTs become as widely re-used as classes of behaviour.7.4 The Ei�el ImplementationIt is not e�ective to examine the Ei�el code for the BankingNetwork (this code is available on request).Rather, an overview is given of the implementation process.7.4.1 The Role of the Final Object Oriented LOTOS DesignAfter the development of the requirements model, and its manipulation in the design, the Ei�el imple-mentation went as outlined in section 6.4. The �nal design had a direct inuence on implementationsince there was a correspondence between:� Classes in the design and classes in the implementation.� Class hierarchies in the design and class hierarchies in the implementation.



CHAPTER 7. FORMAL OBJECT ORIENTED DEVELOPMENT: A CASE STUDY 246� Composition structure in the design and composition structure in the implementation.7.4.2 Re-Use in the ImplementationThe extensive library of Ei�el classes meant that many of the design classes were already implemented:� The Sum class (in the account database) was implemented as a real number in Ei�el.� The TransLinkQ class (in the network) was implemented as an instance of the generic queueclass in Ei�el.� The di�erent identi�er classes were all implemented as Ei�el integers.� The recursive structures were implemented as Ei�el linked lists.7.4.3 Implementing ExceptionsThe exceptions in the requirements model were not designed out. Ei�el, as the target implementationlanguage, provides an exception handling construct. Consequently, design did not have to addressthis behaviour. The handling of exceptions was straightforward: warning messages were returned tothe user interface and the state of the system before the exception was returned to.7.4.4 Implementing A User InterfacePerhaps surprisingly, the coding of the user-interface required more time than the coding of the func-tionality being provided at the interface. Initially, a graphical user interface to the BankingNetworkwas developed in Ei�el. However, after struggling with many of the problems in the Ei�el class library,a simple textual interface was coded instead.7.5 A Review of the Case Study7.5.1 Development StatisticsAn important aspect of the case study is the way in which the development e�ort was distributedbetween the three main stages of FOOD: requirements capture, design and implementation. Althoughit is di�cult to be precise about development costs, the following statistics may be useful:� Requirements CaptureAnalysis and requirements capture required approximately one man month of work. It resultedin 1200 lines of OO ACT ONE code, which was translated into 6500 lines of ACT ONE. Therequirements model contained 25 classes of behaviour, with an average of 6 external attributesper class. Over one half of the classes had a �xed structure.� DesignDesign required approximately three man weeks of work. It resulted in 1400 lines of LOTOSprocess algebra together with 7400 lines of ACT ONE. Design introduced 8 new classes ofbehaviour.



CHAPTER 7. FORMAL OBJECT ORIENTED DEVELOPMENT: A CASE STUDY 247� ImplementationImplementation required approximately one man month of work (of which more than half wasspent developing a user-interface). The Ei�el code (ignoring the user interface) was approxi-mately 800 lines. The reduction in code was a consequence of three things:� The OO LOTOS design had to explicitly de�ne the communication model, whilst this isexplicit in the Ei�el semantics.� The reference semantics of Ei�el reduced the amount of code needed to de�ne the routingof messages between nodes.� The extensive use of pre-coded components.The above statistics strengthen our claim that FOOD places much more emphasis on the earlierstages of development. This claim can be properly veri�ed only if FOOD is used in a wide range ofsoftware engineering projects.7.5.2 The E�ectiveness of FOODThe case study shows the e�ectiveness of FOOD arising out of the combination of formal and objectoriented methods:� FormalityA formal approach improved understanding, removed potential errors earlier in the developmentand made design decisions explicit.� Object OrientednessAn object oriented approach provided a conceptual integrity, facilitated re-use at all stages ofdevelopment and supported opportunistic development.7.5.3 Extensions to the BehaviourTo illustrate the way in which FOOD supports extensions to systems that have already been devel-oped, two extensions were considered: changing the routing mechanisms and providing more bankingservices.7.5.3.1 Changing Routing MechanismsThe BankingNetwork incorporated a very simple routing mechanism: the hot potato algorithm. Twoother, more complex routing mechanisms replaced the hot potato method. These new mechanismswere integrated into the system by �rst making changes to the design and then updating the Ei�elcode:� A Flooding MechanismIn this model, incoming messages are sent on all outgoing links and a constraint was introducedso that messages were moved only a limited number of times. This required approximately oneman week of work.



CHAPTER 7. FORMAL OBJECT ORIENTED DEVELOPMENT: A CASE STUDY 248� A Backward Learning MechanismEach node was extended to incorporate a store of the shortest paths to other nodes. This storeis updated when an incoming message has come by a route which was shorter than that stored.Consequently, every message must carry additonal routing information. This change requiredapproximately three man weeks of work. The additional routing behaviour was very complexand so, as a preliminary to design, OO ACT ONE was used to construct a routing requirementsmodel. This improved our understanding of the behaviour required and the design involvedmaking decisions as to how this behaviour was to be implemented.7.5.3.2 Providing Additional Banking FunctionalityThe facilities provided for each bank account were extended to include a mechanism for transferringmoney from one account to another. This extension was carried through by �rst making changes tothe requirements model and then proceeding with design and implementation. The updated bankaccounts were de�ned as subclass (extensions) of the original classes and the design structure neededminimal changes. This whole process took less than one man day.7.5.3.3 Lessons Learned From ExtensionsFour important lessons were learned from the case study:� Re-use through composition is much more common than re-use through inheritance.� When building a system it is important to keep potential extensions in mind.� Meaningful generalisation should be applied when possible: the extra development time isrewarded with bene�ts in later projects.� Components that can be extended within one application area are not necessarily re-usable inother application areas: for example, it is unlikely that the routing mechanisms can be usefullyre-used in other problem domains.7.5.4 The Importance of Structure Throughout DevelopmentThe case study places emphasis on structure at all stages of development. The advantages of main-taining structure from speci�cation to implementation are as follows:� Traceability, in the sense of a design audit, is improved. Testing the implementation can bedone in a constructive fashion� Extending or changing a system can be achieved in a controlled fashion. With an object orientedapproach, modi�cations are often localised (resulting in changes to only a few classes in thesystem).� Structure provides the framework upon which mutual understanding, between di�erent membersof the software development team, is based.



Chapter 8ConclusionsThis chapter reviews the objectives of the thesis, shows how the work presented in this thesis meetsthese objectives and makes suggestions for future work.8.1 Review of Thesis ObjectivesThe main objective of the thesis is to show that combining object oriented and formal methods is apractical and e�ective way of improving the software development process. To meet this objectivethe thesis addresses �ve separate goals:� To record an understanding of software devlopment and, using this understanding, to formulatean ideal software development environment.� To show that a formal object oriented development method is a step towards achieving such anideal.� To remove the ambiguity and informal nature of object oriented terminology by developing anobject oriented semantics.� To construct a formal object oriented development (FOOD) framework based on these objectoriented semantics.� To illustrate the e�ectiveness of FOOD by applying it in the development of a non-trivialsoftware system.8.2 Meeting Objectives: The Contributions of the ThesisChapter one establishes the complementary nature of object oriented and formal methods within thedomain of software engineering. The thesis is developed on the premise that correctness is the mostimportant property of software, and argues that software engineeringmust be based on mathematicalmodels. Object oriented methods are presented as providing a practical solution to the synthesisand analysis of mathematical models of computer systems, in general, and software in particular.LOTOS is proposed as a good language for implementing object oriented semantics at all stages of249



CHAPTER 8. CONCLUSIONS 250software development. The ADT part of LOTOS is shown to be suitable for implementing abstractrequirements models, whilst full LOTOS is put forward as an ideal language for incorporating theseabstract requirements in a more concrete design model.The integration of a process algebra and ADT, within LOTOS, is the main reason for its usewithin this thesis. It provides a smooth transition from requirements to design by facilitating theimplementation of a class at various levels of abstraction within the same semantic framework: as anabstract data type in the requirements models to a process in the design models. This novel approachto using LOTOS is a major contribution of this thesis.Chapter two introduces object oriented methods by �rst considering object oriented analysisand its relation to other analysis methods. It motivates the development of a formal approach toanalysis and requirements capture. The chapter provides a rationale for the success of object orienteddevelopment methods and, based on this rationale, proposes a set of object oriented models whichcan be used throughout software development. A contribution of the thesis is a recognition of theimportance of the way in which these models are co-ordinated. Further, the thesis identi�es theimportance of establishing a semantics for object oriented terminology which is consistent throughoutthe development process. As a system moves from the abstract to the concrete it is fundamental tosuccessful development that leaps between di�erent semantic frameworks are curtailed. The thesisproposes a mechanism for constructing design models in which the requirements are still present. Inchapter 2, abstract data types are shown to provide a level of abstraction suitable for the speci�cationof object oriented requirements. However, as types are more general than classes, we argue that it isnecessary to develop a more abstract view of objects and classes.Chapter three includes one of the major contributions of the thesis: an abstract object orientedsemantics based on the modelling of state transitions. We argue that the state transition view is idealfor communicating object oriented requirements. An object-labelled state transition system (O-LSTS)semantics is developed, and the object oriented notions of classi�cation, subclassing, composition,con�guration and interaction are formally de�ned. The O-LSTS semantics are then used in thede�nition of an object oriented analysis language (OO ACT ONE), which, as its name suggests, issyntactically similar to ACT ONE (but with a distinct object oriented `sugaring'). An importantcontribution of this thesis is the formulation of two di�erent types of subclassing, namely extensionand specialisation, and the provision of language mechanisms for de�ning class hierarchies based onthese relationships. The thesis argues that these two mechanisms are su�cient, during analysis, forthe de�nition of all subclassing relationships. In conclusion, chapter three identi�es the need for therequirements models to be executed: customer validation is argued to be dependent on the ability tostep through a dynamic execution of the requirements models. A translation to ACT ONE providesa means of stepping through the dynamic behaviour of an OO ACT ONE speci�cation.Chapter 4 considers how the formal object oriented models can be successfully used in the initialstages of software development. In particular, customer-analyst communication is identi�ed as themost important aspect of requirements capture. This chapter examines how the analyst, using theformal object oriented models, can achieve a mutual understanding of the problem domain with thecustomer. The di�cult question of how the analyst can and should alter the way in which a cus-



CHAPTER 8. CONCLUSIONS 251tomer conceptualises their needs is considered. The chapter concludes by re-iterating the importanceof constructive speci�cation in an object oriented development strategy. The thesis argues that thestructure of the problem domain should be recorded in the requirements model: it improves under-standing and acts as a framework upon which design can begin. Designers must be given the optionof reproducing the problem domain structure in their designs. Without this option, object orienteddesign can be very di�cult.Chapter �ve considers the role of design within software engineering. The thesis shows thatconstructive design, based on the application of correctness preserving transformations, is the mostpractical solution to the problem of ensuring that design meets requirements. The way in whichthe ACT ONE executable model of requirements is incorporated in the full LOTOS designs is anoriginal and e�ective means of going from analysis to design. We argue that a process algebra is auseful conceptual tool for the speci�cation of communication models, which is fundamental to objectoriented design. Chapter �ve shows that there are a potentially very large number ways of usingLOTOS to model objects and classes. These provide di�erent object oriented semantics with respectto the way in which models communicate and interact. The thesis argues that it is the role of designersto choose a model which is best suited to their target implementation environment. A number ofdi�erent, though equally valid, object oriented communication models are put forward. A majorcontribution of the thesis is the formulation of a means of generating di�erent designs from the samerequirements, all of which maintain correctness.Chapter �ve also contributes a small number of CPTs for the manipulation of composition struc-ture within object oriented designs. The ability to restructure the composition of classes is shown tobe fundamental in object oriented design: targetting design towards classes which have already beenimplemented is dependent on the ability of designers to restructure their designs whilst maintain-ing correctness. The transfer of structure in the ADT part of a LOTOS design to structure in theprocess algebra part is shown to be an important step in the movement from abstract to concrete.Chapter �ve emphasises the importance of designers understanding the facilities provided by theirtarget implementation environment. The role of designers is de�ned as restructuring the requirementsfrom being customer oriented to being implementation oriented. As with requirements capture, weemphasise that the design models provide only a framework for the development of a design method.Chapter six considers the implementation of OO LOTOS designs. A major contribution of thisthesis is the formulation of general strategies for implementing the formal object oriented designs.The importance of having a fundamental understanding of implementation language semantics isemphasised. The thesis shows, in some detail, how appropriately targetted OO LOTOS designs canbe implemented in Ei�el. The thesis also illustrates how FOOD is well suited to the development ofconcurrent software.Chapters two to six provide a framework of models and techniques for using these models in thedevelopment of software. Chapter seven argues that a software development method must evolve fromthe use of models rather than being an immediate consequence of their formulation. It also arguesthat practical use of models and methods is the only true means of evaluating their e�ectiveness.Consequently, as part of this thesis, chapter seven reports on a case study in which FOOD was used



CHAPTER 8. CONCLUSIONS 252to develop a non-trivial software system. This contributes to the thesis by placing the theory in amore practical domain.As a whole, the thesis identi�es the problems inherent in software development, shows how aformal object oriented method can overcome many of these problems and provides a framework uponwhich such a method can evolve. In short, FOOD shows that, although much more work needs tobe done, it has the potential to result in an e�cient means of producing software which ful�ls itsrequirements.8.3 Future WorkFOOD is a framework of models and methods which provides the basis upon which an ideal softwaredevelopment environment can be constructed. To get closer to this ideal much more work needs tobe done:� Analysis and requirements captureA natural step forward is to provide a direct implementation of OO ACT ONE speci�cations,rather than translating them to ACT ONE. Such an implementation could be incorporatedin a comprehensive set of analysis and synthesis tools. As the customer is central to analysisand requirements capture, it is important to further investigate the process of customer-analystinteraction within a formal object oriented framework. The diagramatic representations of theobject oriented requirements must be made an integral part of the development environment. Itis important that a means of letting the customer directly interact with the requirements modelsis developed. This interaction can be used in the construction and validation of requirementsmodels.� DesignIn the thesis, LOTOS is used to provide our object oriented design semantics. This is �ne in aprototype development environment, but it is important that a cleaner object oriented designlanguage is developed. This should be a superset of OO ACTONE which incorporates semanticsfor processes, inter-process communication, nondeterminism and concurrency. Then the CPTsmust be translated for designing in this new language. It is vital that the set of CPTs is widelyexpanded. This can only be done if the process of object oriented design is more thoroughlyanalysed: the most common design decisions must be identi�ed and CPTs de�ned to modelthese decisions. Further, a means for designers to develop, record and re-use CPTs needs to beformulated. This should be incorporated as part of a set of tools for the analysis, synthesis andmanipulation of designs.� ImplementationThe implementation stage of FOOD is perhaps the weak point in the whole development strat-egy. Targetting designs to an informal semantics is not a suitable �nal step in a formal develop-ment method. A natural means of getting around this problem is to build an implementationlanguage on top of the FOOD semantics. Then, the �nal implementation step can be given a



CHAPTER 8. CONCLUSIONS 253formal basis. It is important, for future development, that such a language has a concurrentsemantics.There are other areas of work, applicable to all stages of development, which arise out of thethesis:� Re-useFOOD promotes re-use at all stages of development. The consequences of developing for re-use and with re-use need to be addressed. In particular, the heuristics for costing softwaredevelopment using FOOD need to be examined. Further, there needs to be some method forcontrolling the storing of, and access to, classes of re-usable behaviour at di�erent levels ofabstraction.� Evolving MethodOnly through widespread application can FOOD become a software development method. Con-sequently, it is necessary that FOOD is used in a wide range of case studies, each of which learnsfrom previous development. In this respect, FOOD needs to be extended to incorporate manyof the management aspects which are common in the most popular software development tech-niques. Future work must atempt to derive a rational for software development method whichcan be incorporated in FOOD.In conclusion, we believe that the development of a practical and e�ective industrial strengthsoftware development method, based on FOOD, is feasible in the future.



Bibliography[1] P. America. Object oriented programming: a theoretician's introduction. Technical report, Philip'sResearch Laboratories, Eindhoven, 1988.[2] Lee Atkinson and Mark Atkinson. Using C/C++ Special Edition. QUE Corporation, 1992.[3] R.L. Baber. The Spine of Software | Designing Provably Correct Software: Theory and Practice, or: AMathematical Introduction To The Semantics Of Computer Programs. John Wiley and Sons, 1987.[4] Emery Berger. Fp + oop = haskell. Technical report, Department of Computer Science, University ofTexas at Austin, 1992.[5] D. Bjoener and C. B. Jones. Formal Speci�cation and Software Development. Prentice-Hall International,1982.[6] S. Black. Objects and LOTOS. Technical report, Hewlett-Packard Laboratories, Stoke Gi�ord, Bristol,1989.[7] D.G. Bobrow, K. Kahn, G. Kiczales, L. Masinter, Ste�k M., and Zdybel F. Commonloops: Merging Lispand object-oriented programming. In ACM SIGPLAN Notices, pages 17{29, November 1986.[8] P. Boehm et al. Towards practical veri�cation of LOTOS speci�cations. Esprit/sedos/n.121, Universityof Twente, October 1987.[9] T. Bolognesi. Fundamental results in the veri�cation of observational equivalence: a survey. In H. Rudinand West C.H., editors, Protocol Speci�cation, Testing and Veri�cation VII. North-Holland, 1988.[10] T. Bolognesi and M. Caneve. SQUIGGLES: A tool for the analysis of LOTOS speci�cations. In K.J.T.Turner, editor, The 2nd International Conference on Formal Description Techniques (FORTE 89), 1989.[11] T. Bolognesi and F. Lucidi. LOTOS-like process algebras with urgent or timed interactions. In K. Parkerand G. Rose, editors, Formal Description Techniques IV, pages 249{264. North-Holland, 1992.[12] G. Booch. Object Oriented Development. IEE Software Engineering, February 1986.[13] G. Booch. Object oriented design with applications. Benjamin Cummings, 1991.[14] R. Breu. Algebraic Speci�cation Techniques in Object Oriented Programming Environments. Springer-Verlag, 1991. Lecture Notes in Computing Science, number 562.[15] E. Brinksma and Scollo G. Formal notions of implementation and conformance in lotos. Mem: INT-86-13,University of Twente, NL, December 1986.[16] Ed. Brinksma, Giuseppe Scollo, and Chris Steenbergen. LOTOS speci�cations, their implementationand their tests. In Sixth International Symposium on Protocol Testing, Speci�cation and Veri�cation,Montreal, June 1986. 254



BIBLIOGRAPHY 255[17] D. Budgen. Introduction to software design. Curriculum module SEI-CM-2.2.1, Carnegie-Mellon Uni-versity, January 1989.[18] D. Budgen. Software Development with Modula-2. Addison-Wesley, 1989.[19] S. Budkowski and P. Dembinkski. An introduction to ESTELLE: A speci�cation language for distributedsystems. Computer Networks and ISDN Systems, 14(1):3{23, 1987.[20] R. Bulzer and N. Goldman. Principles of good software speci�cation and their implications for speci�ca-tion languages. In Proc. of Reliable Software, pages 58{67. Cambridge, Mass., 1979.[21] H. I. Cannon. Flavours. Technical report, MIT International Laboratories, Cambridge (Mass), 1980.[22] L. Cardelli and P. Wegner. On understanding types, data abstraction, and polymorphism. ACM Com-puting Surveys, 17(4):471{523, December 1985.[23] R. G. G. Cattell and T. R. Rogers. Combining object-oriented and relational models of data. In Inter-national Workshop on Object-Oriented Database Systems, Paci�c Grove, California, September 1986.[24] Robert Clark. Using LOTOS in the object based development of embedded systems. In The Uni�edComputation Laboratory. The Institute of Mathematics and its Applications (OUP), 1991.[25] P. Coad and E. Yourdon. Object oriented analysis. Prentice-Hall (Yourdon Press), 1990.[26] P. Coad and E. Yourdon. Object oriented design. Prentice-Hall (Yourdon Press), 1990.[27] L. Constantine. Beyond the madness of methods: System structure methods and converging design. InSoftware Development 1989. Miller-Freeman, 1989.[28] W. Cook, W. Hill, and P. Canning. Inheritance is not subtyping. In Proceeedings of 19th ACM Symposiumon Principles of Programming Systems and Languages, pages 125{135, 1989.[29] W. Cook and J. Palsberg. A denotational semantics of inheritance and its correctness. In Object OrientedProgramming Languages Systems and Applications (OOPSLA 89), 1989.[30] W. R. Cook. Proposal for making Ei�el typesafe. Computer Journal, 32(4), 1989.[31] Brad Cox. Object oriented programming: an evolutionary approach. Addison-Wesley, 1986.[32] Dan Craigen, Susan Gerhart, and Ted Ralston. An international survey of industrial applications offormal methods. Nistgcr 93/626, U.S. Department of Commerce, Technology Administration, NationalInstitute of Standards and Technology, Computer Systems Lab., Gaithersburg, MD 20899, 1993.[33] E. Cusack. Formal object oriented speci�cation of distributed systems. In Speci�cation and Veri�cationof Concurrent Systems, University of Stirling, 1988.[34] E. Cusack. Re�nement, conformance and inheritance. In Open University workshop on the theory andpractice of re�nement, 1989.[35] E. Cusack, S. Rudkin, and C. Smith. An object oriented interpretation of LOTOS. In K.J.T. Turner,editor, The 2nd International Conference on Formal Description Techniques (FORTE 89), 1989.[36] Geo� Cutts. Structured system analysis and design method. Blackwell Scienti�c Publishers, 1991.[37] O. Dahl. Object-oriented speci�cation. In P. Wegner and B. Shriver, editors, Research Directions inObject Oriented Programming. MIT Press, 1987.



BIBLIOGRAPHY 256[38] S. Danforth and C. Tomlinson. Type theories and object-oriented programming. ACM ComputingSurveys, 20(1):29{72, March 1988.[39] D. L. Davies and Barber D. L. A. Computer Networks and their Protocols. John Wiley, 1979. Section 3.[40] J.W. de Bakker. Mathematical Theory of Programming Correctness. Prentice-Hall, 1980.[41] T. DeMarco. Structured analysis and system speci�cation. Prentice-Hall, 1979.[42] L. G. DeMichiel and R. P. Gabriel. The Common Lisp Object System: an overview. In J. Bezivin,J. Hullot, P. Cointe, and H. Lieberman, editors, Proceeedings of the 1987 European Conference on ObjectOriented Programming (ECOOP 87), pages 151{170. Springer-Verlag, June 1987.[43] R. DeNicola. Extensional equivalence for transition systems. Acta Informatica, 24:211{237, 1987.[44] Frank DeRemer and Hans H. Kron. Programming-in-the-large versus programming-in-the-small. IEESoftware Engineering, SE-2:80{86, June 1976.[45] E.W. Dijkstra. A discipline of programming. Prentice-Hall International, 1976.[46] A. Diller. An Introduction To Formal Methods. John Wiley and Sons, 1990.[47] T. B. Dinesh. Object-Oriented Programming: Inheritance to Adoption. PhD thesis, University of Iowa,1992.[48] H. Ehrig and Mahr B. Fundamentals of Algebraic Speci�cation I. Springer-Verlag, Berlin, 1985. EATCSMonographs on Theoretical Computer Science (6).[49] R. Fairley. Software Engineering Concepts. McGraw Hill, New York, 1985.[50] D. Freestone, M. Norris, and K. Odam. Towards better system speci�cation. British Telecom TechnologyJournal, 3, July 1986.[51] C. Gane and T. Sarson. Structured Systems Analysis: Tools and techniques. Prentice-Hall, 1979.[52] R. J. Gautier and P. J. L. Wallis, editors. Software Re-use with Ada. Peter Peregrinus (on behalf of IEE),1990.[53] J. Paul Gibson. Object oriented analysis and design principles: A proposal for their incorporation intosplice. Internal SPLICE document jpg2, 1992.[54] J. Paul Gibson. Structured analysis and design methods and models: Investigating their relevance tosplice. Internal SPLICE document jpg3, 1992.[55] J.Paul Gibson and D. Freer. Applying LOTOS in an object oriented development strategy. Internal BTTechnical Report, Formal Methods Group (RT6222), February 1991.[56] J.Paul Gibson and Lynch J.A. Applying formal object oriented design principles to Smalltalk-80. BritishTelecom Technology Journal, 3, July 1989.[57] Adele Goldberg. Smalltalk-80: The Interactive Programming Environment. Addison-Wesley, 1984.[58] Adele Goldberg and David Robson. Smalltalk-80: The language and its implementation. Addison-Wesley,1983.[59] Joseph Gougen. Reusing and interconnecting software components. Computer, 20, February 1986.[60] Joseph Gougen and David Wolfram. On types and FOOPS. Programming Research Group, OxfordUniversity, Draft Report, 1990.



BIBLIOGRAPHY 257[61] R. Guillemot, M. Haj-Hussein, and L. Logroppo. Executing large LOTOS speci�cations. In Proceedingsof Prototyping, Speci�cation, Testing and Veri�cation VIII. North-Holland, 1991.[62] Raymonde Guindon. Knowledge exploited by experts during software system design. InternationalJournal of Man-Machine Studies, 33(3):279{304, 1990.[63] H. Hansson and B. Jonsson. A framework for reasoning about time and reliability. In Proceeedings of the10th IEEE Real Time System Symposium, pages 102{111. Computer Society Press, 1989.[64] I.J. Hayes and C.B. Jones. Speci�cations are not necessarily executable. Technical report, Departmentof Computing Science, University of Queensland, Australia, December 1989.[65] C.A.R Hoare. Communicating Sequential Processes. Prentice-Hall International, 1985.[66] Sommerville I. Software Engineering. Addison-Wesley, 3rd edition, 1989.[67] IEE. Special Collection On Requirements Analysis. IEE Transactions on Software Engineering, 1977.[68] ISO. LOTOS | a formal description technique based on the temporal ordering of observed behaviour.Technical report, International Organisation for Standardisation IS 8807, 1988.[69] M.A. Jackson. System Development. Prentice-Hall, 1983.[70] R. E. Johnstone and B. Foote. Designing re-usable classes. Journal of Object Oriented ProgrammingJOOP, pages 22{35, June 1988.[71] C. B. Jones. Software Development: A Rigorous Approach. Prentice-Hall International, 1980.[72] C. B. Jones. Sytematic Software Development Using VDM. Prentice-Hall International, 1986.[73] S. E. Keene. Object-oriented programming in Common Lisp: a programmer's guide to CLOS. Addison-Wesley, 1989.[74] W. Kim and F. Lochovsky. Object Oriented Concepts, Databases, and Applications. ACM Press, NewYork, 1988.[75] M. Lai and E. Cusack. Object oriented speci�cation in LOTOS and Z or, my cat really is object oriented.In de Bakker, J. W. et al., editors, Proc. Foundations of Object Oriented Languages, pages 179{202.Springer Verlag, 1991. Lecture Notes in Computer Science, Number 489.[76] Jintae Lee and Kum-Yew Lai. What's in design rationale? Human-Computer Interaction, 6(3&4):251{280, 1991.[77] K. Lee, S. Rudkin, and K. Chon. Speci�cation of a sieve object in objective LOTOS. Technical report,British Telecom Research Laboratories (Formal Methods Group), St. Vincent House, Ipswich, 1990.[78] B. Liskov and J. Guttag. Abstraction and Speci�cation in Program Development. MIT Press, 1986.[79] A. Malhotra, J. C. Thomas, J. M. Carroll, and L. A. Miller. Cognitive processes in design. InternationalJournal of Man-Machine Studies, 12(2):119{140, 1980.[80] D.A. Marca and C. L. McGowan. SADT: Structured Analysis and Design Technique. McGraw-Hill, 1988.[81] T. Mayr. Speci�cation of object oriented systems in LOTOS. In The 1st International Conference onFormal Description Techniques (FORTE 88), 1988.[82] B. Meyer. Genericity versus inheritance. In Object Oriented Programming Languages Systems andApplications (OOPSLA 86) As ACM SIGPLAN 21, November 1986.



BIBLIOGRAPHY 258[83] B. Meyer. Re-usability: the case for object oriented design. IEE Software Engineering, March 1987.[84] B. Meyer. Object Oriented Software Construction. Prentice Hall, 1988.[85] B. Meyer. You can write, but can you type? Journal of Object Oriented Programming JOOP, March1989.[86] B. Meyer. Ei�el: The Language. Prentice Hall International Ltd., 1992.[87] R. Milner. A Calculus of Communicating Systems. Springer-Verlag, 1980.[88] D. A. Moon. Object-oriented programming with Flavours. In ACM SIGPLAN Notices, pages 1{8,November 1986.[89] Ana Moreira and Robert Clark. Object oriented analysis and its relation to object oriented design.Technical report, Stirling University Computing Science and Mathematics Department, 1992.[90] G. J. Myers. Composite Structure Design. Van Nostrand Reinhold (NY), 1978.[91] Kristen Nygaard and Ole-Johan Dahl. Simula 67. In Richard W. Wenenlblat, editor, History of Pro-gramming Languages. Wenelblat, 1981.[92] K. Ohmaki, K. Futatsugi, and K. Takahashi. A basic LOTOS simulator in OBJ. Computer LanguageSection, Computer Science Division, Electrotechnical Laboratory, 1-1-4 Umezono, Japan, Draft Report,1990.[93] K. Orr. Structured Systems Development. Yourdon Press, 1977.[94] M. Page-Jones. The Practical Guide to Structured System Design. Yourdon Press, 1988.[95] M. Papathomas. Language Design Rationale and Semantic Framework for Concurrent Object-OrientedProgramming. PhD thesis, University of Geneva, 1992.[96] Helmut A. Partsch. Speci�cation and Transformation of Programs: A Formal Approach To SoftwareDevelopment. Springer-Verlag, 1990.[97] K. Raymond, P. Stocks, and D. Carrington. Specifying ODP systems in z. Technical report, Universityof Queensland, March 1990.[98] D.W. Reynolds. Software reusability and its implications. Research and technology report rt32/033/89,British Telecom, 1989.[99] D. T. Ross. Structured analysis (SA): A language for communicating ideas. In IEE Transactions onSoftware Engineering. IEE, 1977.[100] S. Rudkin. Inheritance in LOTOS. In K. Parker and G. Rose, editors, Formal Description TechniquesIV. North-Holland, 1991.[101] James Rumbaugh et al. Object oriented Modeling and Design. Prentice-Hall, 1991.[102] M. Schwartz and T. E. Stern. Routing techniques used in communicating computer networks. IEETransactions on Communications, 28(4), April 1987.[103] A. Snyder. Common objects: an overview. ACM SigPlan Notices, October 1986.[104] L. A. Stein. Delegation is inheritance. In Object Oriented Programming Languages Systems and Appli-cations (OOPSLA 87), 1987.



BIBLIOGRAPHY 259[105] R. G. Stone and D. J. Cooke. Program Construction. Cambridge Computing Science Texts 22. CambridgeUniversity Press, 1987.[106] Bjarne Stroustrup. The C++ Programming Language. Addison Wesley, 1986.[107] WilliamSwartout and Robert Balzer. On the inevitable intertwining of speci�cation and implementation.Comm. ACM, 25(7), July 1982.[108] D. Taenzer, M. Grant, and S. Poder. Problems in object-oriented software re-use. In S. Cook, editor,Proceeedings of the 1989 European Conference on Object Oriented Programming (ECOOP 89), pages25{39. Cambridge University Press (on behalf of British Computer Society), 1989.[109] A. S. Tanenbaum. Computer Networks. Prentice Hall, 1981.[110] D. Thomas. In search of an object oriented development process. Journal of Object Oriented ProgrammingJOOP, May 1989.[111] D. A. Turner. Miranda: a non-strict functional language with polymorphic types. In Functional Pro-gramming Languages and Computer Architecture, pages 1{16. Springer-Verlag, September 1985.[112] Kenneth J. Turner. A LOTOS-based development strategy. Technical report, Department of ComputingScience, University of Stirling, 1989.[113] Kenneth J. Turner. The formal speci�cation language LOTOS: A course for users. Technical report,Department of Computing Science, University of Stirling, 1990.[114] K.J. Turner. SPLICE I: Speci�cation using LOTOS for an interactive customer environment | phase 1.University of Stirling SPLICE Internal Technical Document, 1992.[115] K.J.T. Turner. Using FDTS: An Introduction To ESTELLE, LOTOS and SDL. John Wiley and Sons,1993.[116] Turski and Malibaum. The Speci�cation of Computer Programs. Addison Wesley, 1987.[117] van Eijk, Vissers, and Diaz. The Formal Description Technique LOTOS. North-Holland, Amsterdam,1989.[118] W.H.P. van Hulzen. Object oriented speci�cation style in LOTOS. Lo/wp1/t1.1/rnl/n00002, LOTO-SPHERE, 1989.[119] W. Visser. More or less following a plan during design: opportunistic deviations in speci�cation. Inter-national Journal of Man-Machine Studies, 33(3):247{278, 1990.[120] C. Vissers et al. On the use of speci�cation styles in the design of distributed systems. Technical report,University of Twente, Fac. Informatics, 7500 AE Enschede, NL, 1989.[121] R. Waddell, Gordon. An analysis of object oriented development using ei�el. Technical report, StirlingUniversity, Department of Computing and Mathematics, Honours Project, 1992.[122] P. Wadler and S. Blott. How to make ad hoc polymorphism less ad hoc. In Proceeedings of 16th ACMSymposium on Principles of Programming Systems and Languages, pages 60{76, 1989.[123] D. Walker. � calculus semantics of object-oriented programming languages. Technical Report ECS-LFCS-90-122, Computer Science Department, Edinburgh University, Laboratory for Foundations of ComputerScience, October 1990.



BIBLIOGRAPHY 260[124] P. Wegner. Dimensions of object-based language design. In Special Issue of SIGPLAN notices, pages168{183, October 1987.[125] Clazien Wezeman. The co-op method, a method for compositional derivation of canonical testers. M.Sc.Thesis, University of Twente, NL, August 1988.[126] AdamWinstanley. The elucidation of process-oriented speci�cations. PhD thesis, The Queen's Universityof Belfast, 1992.[127] N. Wirth. Program development by step-wise re�nement. Comm. ACM, 14:221{227, 1971.[128] N. Wirth. Programming in Modula-2. Springer-Verlag, 1982.[129] Mario Wolczko. Semantics of Object-Oriented Languages. PhD thesis, University of Manchester, 1988.[130] P. Yelland. First steps towards fully abstract semantics for object oriented languages. In S. Cook, editor,Proceeedings of the 1989 European Conference on Object Oriented Programming (ECOOP 89), pages347{367. Cambridge University Press (on behalf of British Computer Society), 1989.[131] Pamela Zave. The operational versus the conventional approach to software development. Comm. ACM,27:104{118, 1984.



Appendix APreconditioned Equations: TheO-LSTS ModelIn this appendix, we de�ne the semantics of preconditions in OO ACT ONE by mapping them to the O-LSTSmodel. Preconditions are de�ned for STRUCTURE equations, CLASS equations and a syntactic sugar de�nes totalequations.Preconditioned Structure EquationsPreconditioned structure equations are de�ned for transformer, accessor and dual operation as follows.� I) Transformer preconditions, written as:pre1(P1; : : : ; Pn)) sc(P1; : : : ; Pj�1):tr(Pj; : : : ; Pn) = newstate1 OTHERWISE : : :prem�1(P1; : : : ; Pn)) newstatem�1 OTHERWISEnewstatem, for some m;n; j 2 f1; 2; : : :g;m � 2correspond to the parameterised set of unvalued state-to-state transitions:� < tr(pj ; : : : ; pn); newstate1 >2 Fromsc(p1;:::;pj�1); 8p1; : : : ; pn such thatpre1(p1; : : : ; pn))� 8k 2 f2; : : : ; m� 2g:< tr(pj ; : : : ; pn); newstatek >2 Fromsc(p1;:::;pj�1); 8p1; : : : ; pn such thatnot(pre1(p1; : : : ; pn)) and : : :and not(prek�1(p1; : : : ; pn)) and (prek(p1; : : : ; pn))� < tr(pj ; : : : ; pn); newstatem >2 Fromsc(p1;:::;pj�1); 8p1; : : : ; pn such thatnot(prei(p1; : : : ; pn)); 8i 2 f1; : : : ; m� 1g� II) Accessor preconditions, written as:pre1(P1; : : : ; Pn)) sc(P1; : : : ; Pj�1)::acc(Pj; : : : ; Pn) = result1 OTHERWISE : : :prem�1(P1; : : : ; Pn)) resultm�1 OTHERWISEresultm for some m;n; j 2 f1; 2; : : :g; m � 2correspond to the parameterised set of valued state-to-state transitions:261



APPENDIX A. PRECONDITIONED EQUATIONS: THE O-LSTS MODEL 262� < tr(pj ; : : : ; pn); result1; sc(p1; : : : ; pj�1) >2 V alFromsc(p1;:::;pj�1); 8p1; : : : ; pn such thatpre1(p1; : : : ; pn))� 8k 2 f2; : : : ; m� 2g:< tr(pj ; : : : ; pn); resultk; sc(p1; : : : ; pj�1) >2 V alFromsc(p1;:::;pj�1); 8p1; : : : ; pn such thatnot(pre1(p1; : : : ; pn)) and : : :and not(prek�1(p1; : : : ; pn)) and (prek(p1; : : : ; pn))� < tr(pj ; : : : ; pn); resultm; sc(p1; : : : ; pj�1) >2 V alFromsc(p1;:::;pj�1); 8p1; : : : ; pn such thatnot(prei(p1; : : : ; pn)); 8i 2 f1; : : : ; m� 1g� III) Dual preconditions, written as:pre1(P1; : : : ; Pn)) sc(P1; : : : ; Pj�1):dual(Pj; : : : ; Pn) = newstate1 AND result1 OTHERWISE : : :prem�1(P1; : : : ; Pn) ) newstatem�1 AND resultm�1 OTHERWISE newstatem AND resultm, forsome m;n; j 2 f1; 2; : : :g; m � 2correspond to the parameterised set of valued state-to-state transitions:� < tr(pj ; : : : ; pn); result1; newstate1 >2 V alFromsc(p1;:::;pj�1); 8p1; : : : ; pn such thatpre1(p1; : : : ; pn))� 8k 2 f2; : : : ; m� 2g:< tr(pj ; : : : ; pn); resultk; newstatek >2 V alFromsc(p1;:::;pj�1); 8p1; : : : ; pn such thatnot(pre1(p1; : : : ; pn)) and : : :and not(prek�1(p1; : : : ; pn)) and (prek(p1; : : : ; pn))� < tr(pj ; : : : ; pn); resultm; newstatek >2 V alFromsc(p1;:::;pj�1); 8p1; : : : ; pn such thatnot(prei(p1; : : : ; pn)); 8i 2 f1; : : : ; m� 1gPreconditioned Class EquationsPreconditioned class equations are similar to preconditioned structure equations. The only di�erence is thata set of structure variable parameters are replaced by one parameter which represents all class values. Forexample, consider transformer preconditions, written generally as:pre1(P1; : : : ; Pn)) Class1:tr(Pj; : : : ; Pn) = newstate1OTHERWISE : : :OTHERWISE newstatemThese preconditioned equations correspond to the parameterised set of unvalued state-to-statetransitions:� 8Class1 2 US(Class); k 2 f1; : : : ; m� 2g:< tr(pj ; : : : ; pn); newstatek >2 FromClass1; 8p1; : : : ; pn such thatnot(pre1(p1; : : : ; pn)) and : : :and not(prek�1(p1; : : : ; pn)) and (prek(p1; : : : ; pn))� 8Class1 2 US(Class); < tr(pj ; : : : ; pn); newstatem >2 FromClass1; 8p1; : : : ; pn such thatnot(prei(p1; : : : ; pn)); 8i 2 f1; : : : ; m� 1gAccessor and dual preconditions are de�ned similarly.



APPENDIX A. PRECONDITIONED EQUATIONS: THE O-LSTS MODEL 263Total EquationsThe behaviour of all the elements of a class in response to an external attribute request can be de�nedto be equivalent using a preconditioned class equation in which the �rst precondition is true. Forexample, [true] => Class1.tr = sle OTHERWISE : : : speci�es that 8c 2 US(Class); < tr; sle >2Fromc. OO ACT ONE provides a more concise way of specifying this behaviour: Class1.tr = sle.This is called a total equation.



Appendix BStatic Analysis of OO ACT ONEB.1 Preprocessing: Removing Syntactic SugarThe �rst step in the static analysis of an OO ACT ONE speci�cation, after the syntax has beenchecked, is the removal of syntactic sugar. The following syntactic mechanisms have to be removed:� Modules� Renaming� Class InvariantsThe diagram in �gure B.1 shows the way in which this is achieved.
Class Invariants

Remove

Renamings
Inclusions and
Remove

Modules

Remove 

for translation into ACT ONE

wrt  ACT ONE execution model
list of literal invariants which need checking 

unsugared OO ACT ONE

no errors

no errors

errors

errorssugared OO ACT ONE
Report Errors

Figure B.1: Preprocessing of OO ACT ONE Syntactic SugarRemoving ModulesRemoving modules is done in three steps:� I) Check that all modules are uniquely identi�ed. Return an error otherwise.� II) For every instance of `MODULE Module-name' in a class de�nition, `MODULE Module-name' is replaced by the list of classes grouped together by the module de�nition. If Module-name is not de�ned in the speci�cation then an error is reported.264



APPENDIX B. STATIC ANALYSIS OF OO ACT ONE 265� III) After changing all module references to references to lists of classes, the module de�nitionsare removed.Removing Inclusions and RenamingsAfter removing generic class de�nitions and module de�nitions, the OO ACT ONE speci�cation ismade up of a list of class de�nitions. These class de�nitions may be mutually dependent, since oneclass can be de�ned to: include the operations and equations of another, or to rename the operationsand equations of another. It is not possible, in general, to remove these interdependencies by one singlepass through the speci�cation. In a speci�cation with n classes it may take up to n passes through thespeci�cation to remove all the interdependencies. Consequently, we de�ne this preprocessing stage asa loop of passes through the speci�cation. The �rst pass marks all classes which rename or includepart of another class. When one class is marked to depend on another class which isn't marked thenthis class can be rede�ned (by a simple syntactic relabelling of the appropriate operation labels) andthen unmarked. At the end of every pass through the speci�cation the number of classes marked ischecked to see if it has decreased. If not, an error is reported. Once all classes are unmarked, allinclusion and renaming mechanisms have been removed.Removing Class InvariantsTranslating class invariants into sets of structure invariants is done in two stages.� First check that all class invariants are true for all literal values in the classes in which the invari-ants are de�ned. This check requires a means of evaluating boolean state label expressions.The OO ACT ONE execution model (which formalises the meaning of such an evaluation) isde�ned by a mapping to ACT ONE. Consequently, this pre-processing stage is de�ned to gen-erate a list of boolean expressions which must evaluate to true (in the ACT ONE frameworkof evaluation). When such a list is non-empty, a warning is given to say that class invariantsfor literal values will be checked at a later stage in the analysis (after the preprocessing is com-plete). Later, if an executable model has been successfully generated in ACT ONE, the literalrequirements (expressed as boolean state label expressions) are evaluated and an error isreturned if any of the expressions are false.� Secondly, convert class invariants into sets of structure invariants. For every class de�nitioncontaining a class invariant, represented as:CLASS cname USING : : :STRUCTURES: st1,: : : ,stn : : :INVARIANTS: cname1..sle: : :EQNS : : : ENDCLASS,the class is transformed by the preprocessor into:CLASS : : : : : : INVARIANTS: st1 REQUIRES st1..sle,: : : , stn REQUIRES stn..sleEQNS : : : ENDCLASS



APPENDIX B. STATIC ANALYSIS OF OO ACT ONE 266B.2 Static Semantic Checks of Unsugared OO ACT ONEStatic semantic checks of O-LSTS behaviour de�ned in an OO ACT ONE speci�cation fall into twocategories:� Those which are concerned with `type checking' equation de�nitions, and verifying the visibilityof classes used in operation de�nitions. These checks are performed by a static analysis of theACT ONE produced from the OO ACT ONE speci�cation.� Other checks are peculiar to the O-LSTS model and cannot be checked across the mapping toACT ONE.The remainder of this appendix examines each of these other requirements in turn and gives anoverview of the mechanisms which make these checks.� Contravariance, Covariance and SubclassingWhen a subclass is de�ned to exhibit contravariance and covariance properties with respect toits superclass (or vice versa), additional classi�cation requirements have to be checked:� Structure parameters in the subclass must be explicitly de�ned (in the environment ofthe new class de�nition) as subclasses of the corresponding structure parameters in thesuperclass.� Result parameters in the subclass must be explicitly de�ned (in the environment of thenew class de�nition) as subclasses of the corresponding result parameters inthe superclass.� Attribute parameters in the subclass must be explicitly de�ned (in the environment ofthe new class de�nition) as superclasses of the corresponding attribute parameters in thesuperclass.To make these checks, it is �rst necessary to create the explicit class hierarchy for each class.Then, the existence of the required subclassing relationships between subclass and superclassparameters is easily veri�ed. An error is returned if the required relationships are not ful�lled.Note that it may not be possible to generate a class hierarchy if the OO ACT ONE is not wellde�ned. For example, one class may be de�ned in terms of another class which is de�ned interms of the original class. This type of circular dependency is checked for when removing therenaming and inclusion syntactic sugar. It is also tested for during the generation of the classhierarchy (in a similar way). An error is returned if the list of classes being analysed do nothave a well de�ned hierarchical structure with respect to the explicit class relationships speci�edbetween them.� Checking the use of hidden operationsAs ACT ONE does not facilitate the de�nition of local operations, it is necessary to check anOO ACT ONE speci�cation to ensure that hidden operations are used only in the class in whichthey are de�ned. For every class in an OO ACT ONE speci�cation, the state label expressions



APPENDIX B. STATIC ANALYSIS OF OO ACT ONE 267in the equations are analysed to check that operations on classes, other than the one beingde�ned, are not de�ned as hidden. This analysis is achieved by �rst producing a list of thehidden operations in each class. An error is returned if a hidden operation of one class is usedin the de�nition of another class.� Additional Syntactic ConstraintsSection 3.2.1.1 de�nes some additional syntactic constraints for O-LSTS speci�cations. Theconstraints specify the way in which string identi�ers for state constructors and transition namescan be de�ned. Correspondingly, in OO ACT ONE there are syntactic constraints placed onthe naming of operations:All operations must be uniquely categorised (as literal, structure, accessor, trans-former or dual) and appear once only in the operation de�nition.Another syntactic constraint placed on the O-LSTS model is that the result of a service requestand the newtstate of an object after servicing a service request must be de�ned using statelabel expressions. Correspondingly, in OO ACT ONE, we require that:The right hand side of equation de�nitions must be expressed as state label expres-sions.This check is carried out as part of the completeness analysis (see below). An error is returnedif either of these conditions are not met.� The De�nition of the Behaviour of a Class is not Distributed Between Other ClassesWe require that the equations in one class do not specify behaviour for members of another class.Consequently, the left hand side of all equations must be state label expressions which havethe server equal to a member of the class in which the equation is found. This requirement iseasily checked by enforcing that all equations have one of the following forms (where literaland structure are literals or structures respectively of the class in which the equations arede�ned):literal..att = : : : or literal.att = : : : or structure(: : :)..att = : : : or structure(: : :).att= : : :This requirement is veri�ed during the completeness analysis (see below).� Completeness AnalysisThe O-LSTS model requires that all states in a class have one, and only one, state transitionde�ned from that state for every attribute of the class. This is called the completenesscondition. It is more formally de�ned in section 3.2. Such a requirement cannot be guaranteedthrough static analysis of the ACT ONE code which is generated from the OO ACT ONEspeci�cation.The completeness analysis of OO ACT ONE speci�cations depends on the de�nition of twonew concepts: the Completeness Set of a class and the parameterisation of an operation.These are de�ned below.



APPENDIX B. STATIC ANALYSIS OF OO ACT ONE 268De�nition. Parameterisation:The parameterisation of an operation, op say, written Par(op):Par(op) = op, op is unparameterised.Given a parameterised operation, written op < C1; : : : ; Cn >, Par(op) =op(C1x1; : : : ; Cnxn), wherexi 2 f1; 2; : : :g for i 2 f1; : : : ; ng, and xi = 1 + xj if j < i and Cj = Ci and6 9k 2 fj + 1; : : : ; i� 1g such that Ck = Ci. Otherwise, xi = 1.De�nition. Completeness Set:The completeness set of a class C, written CS(C), is de�ned as:flit:Par(trdl) j trdl is a transformer or dual of C and lit is a literal operation of Cg[flit::Par(accdl) j accdl is an accessor or dual of C and lit is a literal operation of Cg[fPar(str):Par(trdl) j trdl is a transformer or dual of C and str is a structure opera-tion of Cg [fPar(str)::Par(accdl) j accdl is an accessor or dual of C and str is a structure oper-ation of CgWe �rst consider the completeness analysis of classes which arenot de�ned explicitly as subclasses or superclasses of already existing classes. In a class C whichis not de�ned using the explicit class relationships we require that:� Given trans, a transformer operation of C, either:� a) trans is de�ned by a preconditioned class equation� b) trans is partly de�ned by preconditioned structure equations on a set of structureoperations, PS say, and 8lit 2 the set of literal operations of C, lit:Par(trans) 2CS(C) and 8st 62 PS, where st is a structure of C, Par(str):Par(trans) 2 CS(C).� Given acc, an accessor operation of C, either:� a) acc is de�ned by a preconditioned class equation� b) acc is partly de�ned by preconditioned structure equations on a set of structureoperations, PS say, and 8lit 2 the set of literal operations of C, lit::Par(acc) 2 CS(C)and 8st 62 PS, where st is a structure of C, Par(str)::Par(acc) 2 CS(C).� Given dl, a dual operation of C, either:� a) dl is de�ned by a preconditioned class equation� b) dl is partly de�ned by preconditioned structure equations on a set of structure oper-ations, PS say, and 8lit 2 the set of literal operations of C, lit:Par(dl) 2 CS(C) andlit::Par(dl) 2 CS(C) and 8st 62 PS, where st is a structure of C, Par(str):Par(dl) 2CS(C) and Par(str)::Par(dl) 2 CS(C).� The expressions on the left hand sides of equation de�nitions in C do not have any repeatedentries. In other words, each equation must be uniquely de�ned.



APPENDIX B. STATIC ANALYSIS OF OO ACT ONE 269Completeness analysis for classes de�ned using the explicit classi�cation mechanisms is basedon the analysis above. In an object based speci�cation, the explicit classi�cation mechanismsde�ne only syntactic sugarings of the inclusion mechanisms. Completeness checks are not con-cerned with subclassing properties in the OO ACT ONE speci�cation. Consequently, to checkthe completeness of a class de�ned using an explicit classi�cation mechanism we generate anintermediate class which exhibits the object based behaviour of the original class but does notinclude the explicit subclassing mechanism. (The means of generating such a class is similar tothe mechanism for removing inclusion syntactic sugar.) This intermediate class is then testedfor completeness1 (as above). It plays no further role after completeness checks terminate.

1We accept that more e�cient completeness checks can be formulated for classes de�ned explicitly to exhibit a classrelationship with a class which has already been tested for completeness.



Appendix CMapping OO ACT ONE to ACT ONEC.1 Object Based RequirementsI: Classes and SortsEvery class in an ACT ONE speci�cation is translated into an ACT ONE sort. Each ACT ONE sortis de�ned inside a type bearing its name. In other words, in the generated ACT ONE code, types areused only as containers for single sorts. Dependencies between classes are mapped into dependenciesbetween the types containing the corresponding sorts. For example,Class USES Class1, : : :, Classnis translated intoTYPE Class IS Class1, : : :Classn SORTS Class OPNS : : : .The types in the ACT ONE speci�cation are necessary for the modelling of object based dependenciesbetween classes, since in ACT ONE it is not possible to explicitly de�ne dependencies between sorts.II: OperationsThere is a direct correspondence between the operations of an OO ACT ONE class and the operationsin the generated ACT ONE code.� All OO ACT ONE LITERALS map to ACT ONE literal values. For example, if lit is de�nedas a literal of class C then, in the de�nition of TYPE C, there is an operation de�ned as lit:-> C.� STRUCTURES in an OO ACT ONE class C, written st<c1,: : :,cn>, map to ACT ONE operationsst: c1,: : :,cn -> C.� TRANSFORMERS in class C map to ACT ONE operations in two di�erent ways:� An unparameterised transformer of C, tr say, maps to an operation tr:C -> C.� A parameterised transformer of C, tr<C1,: : :,Cn> say, maps to the operation tr:C,C1,: : :,Cn -> C.� ACCESSORS in class C also maps to ACT ONE operations in two di�erent ways:270



APPENDIX C. MAPPING OO ACT ONE TO ACT ONE 271� An unparameterised accessor of C, acc -> C' say, maps to an operationacc: C -> C (* dual accessor C' *).� A parameterised accessor of C, acc<C1,: : :,Cn> -> C' say, maps to the operationacc: C, C1,: : :,Cn -> C (* dual accessor C' *).� DUALS in class C map to ACT ONE operations as follows:� An unparameterised dual of C, dl -> C' say, maps to an operation dl: C -> C (*dual C' *).� A parameterised accessor of C, dl<C1,: : :,Cn> -> C' say, maps to the operationdl: C, C1,: : :,Cn -> C (* dual C' *).III: Hidden OperationsInternal (hidden) operations are mapped as above except that the hidden operations are commentedas such in the ACT ONE code. The static analysis of the OO ACT ONE from which the ACTONE was developed guarantees that hidden operations are used only in the speci�cation of internalbehaviour.IV: EquationsConsider the mapping of total equations, literal equations, unpreconditioned structure equations,preconditioned structure equations and preconditined class equations.� 1) Total EquationsThe translation of a total equation from a class de�nition (C say) to a sort de�nition of the samename (with a result type D where appropriate), is given below:� C1.tr = sle ! tr(C1) = sle;� C1.tr(p1,: : :,pn) = sle ! tr(C1,p1,: : :,pn) = sle;� C1..acc = sle ! tr(C1) = dualCD(C1,sle);� C1..acc(p1,: : :,pn) = sle ! tr(C1,p1, : : :, pn) = dualCD(C1,sle);� C1.dl = sle1 AND sle2 ! dl(C1) = dualCD(sle1, sle2);� C1.dl(p1,: : :,pn) = sle1 AND sle2 !dl(C1,p1,: : :,pn) = dualCD(sle1, sle2);Note that the equations generated from the translation are de�ned in terms of variable pa-rameters. It is a simple, though vital, part of the translation of this and all other equationtypes to de�ne these variables in the forall clause at the beginning of the ACT ONE equationde�nitions for each sort. We have shown the mappings for all six forms of total equations. Themappings are very similar and so, for conciseness, we consider only a subset of the equationforms in each of the remaining equation type translations.� 2) Literal EquationsThe translation of a parameterised dual equation, dl, de�ned on a literal, lit, in a class, C withresult type D is de�ned below:lit.dl(p1,: : :,pn) = sle1 AND sle2 !tr(lit,p1,: : :,pn) = dualCD(sle1, sle2);The other forms are similarly de�ned.



APPENDIX C. MAPPING OO ACT ONE TO ACT ONE 272� 3) Unpreconditioned Structure EquationsThe translation of an unpreconditioned unparameterised accessor equation acc de�ned onstr(p1,: : :,pn) a structure of class C is as follows:str(p1,: : :,pn)..acc = sle ! acc(str(p1,: : :,pn)) = sle;The other forms are similarly de�ned in an appropriate manner.� 4) Preconditioned Structure EquationsConsider the generic representation of a preconditioned structure equation:pre1 ) sc(P1; : : : ; Pj�1):dl(Pj; : : : ; Pn) = newstate1 AND result1OTHERWISE : : :OTHERWISEprem�1 ) newstatem�1 AND resultm�1 OTHERWISEnewstatem AND resultm, for some m;n; j 2 f1; 2; : : :g; m � 2This translates into the following set of ACT ONE preconditioned equations:fMAP (pre1)) dl(sc(P1; : : : ; Pj�1); Pj; : : : ; Pn) = dualCD(newstate1; result1g [fMAP (not(pre1) and : : :and not(prek�1) and (prek)))dl(sc(P1; : : : ; Pj�1); Pj; : : : ; Pn) = dualCD(newstatek; resultk) j k 2 f2; : : : ; m�2gg[fMAP (not(pre1) and : : :and not(prem�1))dl(sc(P1; : : : ; Pj�1); Pj; : : : ; Pn) = dualCD(newstatem; resultm)gThe meta-operation MAP de�ned on the boolean preconditions represents the mapping of theOO ACT ONE state label expressions of type Bool to ACT ONE expressions of sort Bool.� 5) Preconditioned Class EquationsConsider the following unparameterised transformer equation de�ned in class C (expressed ingeneric form):pre1 ) C1:tr = newstate1 AND result1 OTHERWISE : : :OTHERWISEprem�1 ) newstatem�1 AND resultm�1 OTHERWISE newstatem AND resultm, forsome m 2 f2; : : :gThis translates into the following set of ACT ONE preconditioned equations:fMAP (pre1)) tr(C1) = newstate1g [fMAP (not(pre1) and : : :and not(prek�1) and (prek)) ) tr(C1) = newstatek j k 2f2; : : : ; m� 2gg [fMAP (not(pre1) and : : :and not(prem�1)) tr(C1) = newstatemgV: Structure Invariants Structure invariants generate ACT ONE preconditions which precedeevery equation de�ning the behaviour corresponding to the appropriate structure. Consequently,operations on structured objects are de�ned only when the components of the objects ful�l theprecondition property speci�ed by the invariant which generated it.Additional work is required to map invariant properties in combination with preconditioned equa-tion de�nitions. Structured preconditions from OO ACT ONE must be coded in ACT ONE as the



APPENDIX C. MAPPING OO ACT ONE TO ACT ONE 273boolean conjunction of the corresponding ACT ONE preconditions and the preconditions generatedby any invariant properties. Class preconditions pose an even bigger problem than structured pre-conditions. Static analysis of the ACT ONE code ags every case in which these two mechanisms`overlap'. The generation of ACT ONE must then include an internal operation which tests an objectto see if it is represented as a particular structure expression. All class preconditions are then sepa-rated into sets of precondition equations (one for each structure invariant, and one for the remainingobjects). Appendix C2, following, illustrates the mapping of preconditions in the Queue class.



APPENDIX C. MAPPING OO ACT ONE TO ACT ONE 274C.2 Example Queue BehaviourTYPE Queue IS Nat, BooleanSORTS Queue OPNSempty: -> Queue (* Literal *)Q: Queue, Nat-> Queue (* Structure *)add: Queue, Nat -> Queue (* Transformer *)is-empty: Queue -> Queue (* Dual accessor Bool HIDDEN *)rem: Queue -> Queue (* Dual Nat *)unspecQueue: -> Queue.: Queue -> QueueNatResult: Queue -> NatBoolResult: Queue -> BooldualQueueNat: Queue, Nat -> QueuedualQueueBool: Queue, Bool -> QueueQueueRep: Queue -> BoolEQNS FORALL Queue1: Queue, Nat1, Nat2: Nat, Bool1: BoolOFSORT Queueadd(Queue1, Nat1) = Q(Queue1, Nat1);add(unspecQueue, Nat1) = unspecQueue;add(dualQueueNat(Queue1,Nat1), Nat2) = add(Queue1, Nat2);add(dualQueueBool(Queue1,Nat1), Bool1) = add(Queue1, Nat2);is-empty(empty) = dualQueueBool(empty, true);is-empty(Q(Queue1, Nat1)) = dualQueueBool(Q(Queue1, Nat1), false);rem(empty)= dualQueueNat(empty, unspecNat);BoolResult(is-empty(Queue1)) =>rem(Q(Queue1,Nat1))= dualQueueNat(empty, Nat1);not(BoolResult(is-empty(Queue1))) =>rem(Q(Queue1,Nat1))= dualQueueNat(Q(.(rem(Queue1)),Nat1),BoolResult(rem(Queue1)));QueueRep(Queue1) => .(Queue1) = Queue1;.(dualQueueNat(Queue1, Nat1)) = Queue1;OFSORT BoolQueueRep(empty) = true; QueueRep(Q(Queue1, Nat1)) = true;QueueRep(unspecQueue) = true; QueueRep(dualQueueNat(Queue1,Nat1)) = falseBoolResult(dualQueueBool(Queue1, Bool1)) = Bool1;OFSORT NatNatResult(dualQueueNat(Queue1, Nat1)) = Nat1;ENDTYPE (* Queue *)



APPENDIX C. MAPPING OO ACT ONE TO ACT ONE 275C.3 Translating Object Oriented Requirements: An ExampleThe mapping of object oriented properties to ACT ONE is best illustrated by the following example.The diagram in �gure C.1 shows the hierarchy of behaviour which we wish to model in ACT ONE.
Move12s

eq<Move15s>: Bool

M12ext

eq<Move15s>: Booleq<Move15s>: Bool

flip

flip

curr:Move15s

curr:M125s

eq<Move12s>:Bool

Move15s

M125s

staydownup

up down stay

downup

up down

KEY:

Rooted Equation
Definition

Part Rooted Equation
DefinitionFigure C.1: An Example O-LSTSDThis class hierarchy illustrates two interesting features of object oriented speci�cations:� M125s has got two direct superclasses (parents). It inherits the flip behaviour from M12ext,the curr behaviour from Move15s and the eq behaviour partly from Move12s (through eitherof its two parents).� M125s illustrates the rules of contravariance and covariance between subclasses and superclasses.It is de�ned to return an M125s result in response to a curr request whilst its superclass Move15sis de�ned to return a superclass of that result class, namely Move15s. Furthermore, M125s canaccept parameter values which are superclasses of the parameter values its superclasses canaccept. For example, M125s can respond to the request eq(stay) but this service is not o�eredby Move15s.



APPENDIX C. MAPPING OO ACT ONE TO ACT ONE 276ACT ONE Requirements Model of Class Move12sRootSPECIFICATION Move12sRoot:noexitLIBRARYBooleanENDLIBTYPE Move12sRoot is BooleanSORTS Move12s (* using Bool *), Move15s (* superclass Move12s*),M12ext (* superclass Move12s *),M125s (* superclass M12ext, Move15s *)OPNS(* M125s -------------------------------------------------------- *)up,down: -> M125s (* literals *)flip: M125s -> M125s (* transformer from M12ext *)eq: M125s, Move12s -> M125s (* dual Bool part from M12ext *)eq: M125s, Move15s -> M125s (* parameter subclass *)eq: M125s, M12ext -> M125s (* parameter subclass *)eq: M125s, M125s -> M125s (* parameter subclass *)M125seq: M125s, Move12s -> M125s (* eq root definition part *)curr: M125s -> M125s (* dual M125s from Move15s *)unspecM125s: -> M125s (* Unspecified Machinery *)(* Dual Machinery *).: M125s -> M125sM125sResult: M125s -> M125sBoolResult: M125s -> BooldualM125sM125s: M125s, M125s -> M125sdualM125sBool: M125s, Bool -> M125s(* Subclass machinery *)M125stoM12ext: M125s -> M12extM12exttoM125s: M12ext -> M125sM125stoMove15s: M125s -> Move15sMove15stoM125s: Move15s -> M125sM125stoMove12s: M125s -> Move12sMove12stoM125s: Move12s -> M125s(* Internal Test *)M125sRep: M125s -> Bool(* Move15s -------------------------------------------------------- *)up,down: -> Move15s (* literals *)eq: Move15s, Move15s -> Move15s (* dual Bool from Move12s *)



APPENDIX C. MAPPING OO ACT ONE TO ACT ONE 277eq: Move15s, M125s -> Move15s (* parameter subclass *)curr: Move15s -> Move15s (* dual Move15s *)Move15scurr: Move15s -> Move15s (* curr root definition *)unspecMove15s: -> Move15s (* Unspecified Machinery *)(* Dual Machinery *).: Move15s -> Move15sBoolResult: Move15s -> BoolMove15sResult: Move15s -> Move15sdualMove15sBool: Move15s, Bool -> Move15sdualMove15sMove15s: Move15s, Move15s-> Move15s(* Subclass Machinery *)Move15stoMove12s: Move15s -> Move12sMove12stoMove15s: Move12s -> Move15s(* Internal Test *)Move15sRep: Move15s -> Bool(* M12ext -------------------------------------------------------- *)up, down, stay: -> M12ext (* literals *)flip: M12ext -> M12ext (* transformer *)eq: M12ext, Move15s -> M12ext (* dual accessor Bool from Move12s *)eq: M12ext, M125s -> M12ext (* parameter subclass *)unspecM12ext: -> M12ext (* Unspecified Machinery *)(* Dual Machinery *).: M12ext -> M12extBoolResult: M12ext -> BooldualM12extBool: M12ext, Bool -> M12ext(* Subclass Machinery *)M12exttoMove12s: M12ext -> Move12sMove12stoM12ext: Move12s -> M12ext(* Internal Test *)M12extRep: M12ext -> Bool(* Move12s -------------------------------------------------------- *)up, down, stay: -> Move12s (* literals *)eq: Move12s, Move15s -> Move12s (* dual accessor Bool *)eq: Move12s, M125s -> Move12s (* parameter subclass *)Move12seq: Move12s, Move15s -> Move12s (* eq definition root *)unspecMove12s: -> Move12s (* Unspecified Machinery *)(* Dual Machinery *).: Move12s -> Move12sBoolResult: Move12s -> BooldualMove12sBool: Move12s, Bool -> Move12s



APPENDIX C. MAPPING OO ACT ONE TO ACT ONE 278(* Internal Test *)Move12sRep: Move12s -> Bool(* Additional O-LSTS Machinery for Booleans *)unspecBool: -> BoolEQNS FORALL Move15s1, Move15s2: Move15s, Move12s1: Move12s,M12ext1: M12ext, M125s1, M125s2, M125s3: M125s, Bool1: Bool(* M125s -------------------------------------------------------- *)(* Inherited from M12ext *)OFSORT M125sM125sRep(M125s1) =>flip(M125s1) = M12exttoM125s(flip(M125stoM12ext(M125s1)));flip(dualM125sBool(M125s1, Bool1)) = flip(M125s1);flip(dualM125sM125s(M125s1, M125s2)) = flip(M125s1);(* Part inherited from M12ext --- contravariance on parameter 1 *)M125sRep(M125s1) =>eq(M125s1, Move12s1) = M125seq(M125s1, Move12s1);M125seq(dualM125sM125s(M125s1,M125s2), Move12s1)= M125seq(M125s1, Move12s1);M125seq(dualM125sBool(M125s1,Bool1), Move12s1)= M125seq(M125s1, Move12s1);M125seq(up, stay) = dualM125sBool(up,false);M125seq(down, stay) = dualM125sBool(down,false);M125seq(unspecM125s, stay) = unspecM125s;Move15sRep(Move12stoMove15s(Move12s1)) =>M125seq(M125s1, Move12s1) =eq(M125s1, Move12stoMove15s(Move12s1));M125sRep(M125s1) =>eq(M125s1, Move15s1) =dualM125sBool(M12exttoM125s(.(eq(M125stoM12ext(M125s1), Move15s1))),BoolResult(eq(M125stoM12ext(M125s1), Move15s1)) );eq(M125s1, Move15s1) = eq(M125s1, Move15stoMove12s(Move15s1));eq(M125s1, M12ext1) = eq(M125s1, M12exttoMove12s(M12ext1));eq(M125s1, M125s2) = eq(M125s1, M125stoMove12s(M125s2));(* Inherited from Move15s *)OFSORT M125sM125sRep(M125s1) =>curr(M125s1) =dualM125sM125s(Move15stoM125s(.(curr(M125stoMove15s(M125s1)))),



APPENDIX C. MAPPING OO ACT ONE TO ACT ONE 279Move15stoM125s(Move15sResult(curr(M125stoMove15s(M125s1)))) );curr(dualM125sBool(M125s1,Bool1))= curr(M125s1);curr(dualM125sM125s(M125s1,M125s2))= curr(M125s1);(* Dual machinery *)OFSORT M125sM125sRep(M125s1) =>.(M125s1) = M125s1;.(dualM125sBool(M125s1, Bool1)) = M125s1;.(dualM125sM125s(M125s1, M125s2)) = M125s1;M125sRep(M125s1) =>M125sResult(M125s1) = unspecM125s;M125sResult(dualM125sBool(M125s1, Bool1)) = unspecM125s;M125sResult(dualM125sM125s(M125s1, M125s2)) = M125s2;OFSORT BoolM125sRep(M125s1) =>BoolResult(M125s1) = unspecBool;BoolResult(dualM125sBool(M125s1, Bool1)) = Bool1;BoolResult(dualM125sM125s(M125s1, M125s2)) = unspecBool;(* Subclass machinery *)OFSORT M125sMove12stoM125s(up) = up; Move12stoM125s(down) = down;Move12stoM125s(unspecMove12s) = unspecM125s;M12exttoM125s(up) = up; M12exttoM125s(down) = down;M12exttoM125s(unspecM12ext) = unspecM125s;Move15stoM125s(up) = up; Move15stoM125s(down) = down;Move15stoM125s(unspecMove15s) = unspecM125s;OFSORT Move15sM125stoMove15s(up) = up; M125stoMove15s(down) = down;M125stoMove15s(unspecM125s) = unspecMove15s;OFSORT M12extM125stoM12ext(up) = up; M125stoM12ext(down) = down;M125stoM12ext(unspecM125s) = unspecM12ext;OFSORT Move12sM125stoMove12s(up) = up; M125stoMove12s(down) = down;M125stoMove12s(unspecM125s) = unspecMove12s;(* Internal Test *)OFSORT BoolM125sRep(up) = true; M125sRep(down) = true;M125sRep(unspecM125s) = true;M125sRep(dualM125sBool(M125s1, Bool1)) = false;



APPENDIX C. MAPPING OO ACT ONE TO ACT ONE 280M125sRep(dualM125sM125s(M125s1, M125s2)) = false;(* Move 15s -------------------------------------------------------- *)(* Root definitions *)OFSORT Move15scurr(Move15s1) = Move15sCurr(Move15s1);Move15sCurr(up) = dualMove15sMove15s(up,up);Move15sCurr(down) = dualMove15sMove15s(down,down);Move15sCurr(unspecMove15s) = unspecMove15s;Move15sCurr(dualMove15sBool(Move15s1,Bool1)) = Move15sCurr(Move15s1);Move15sCurr(dualMove15sMove15s(Move15s1,Move15s2)) =Move15sCurr(Move15s1);(* Inherited from Move12s *)OFSORT Move15sMove15sRep(Move15s1) =>eq(Move15s1, Move15s2) =dualMove15sBool(Move12stoMove15s(.(eq(Move15stoMove12s(Move15s1), Move15s2))),BoolResult(eq(Move15stoMove12s(Move15s1), Move15s2)) );eq(dualMove15sBool(Move15s1, Bool1), Move15s2) =eq(Move15s1, Move15s2);eq(dualMove15sMove15s(Move15s1, Move15s2), Move15s2) =eq(Move15s1, Move15s2);eq(Move15s1, M125s1) = eq(Move15s1, M125stoMove15s(M125s1));(* Dual machinery *)OFSORT Move15sMove15sRep(Move15s1) =>.(Move15s1) = Move15s1;.(dualMove15sBool(Move15s1, Bool1)) = Move15s1;.(dualMove15sMove15s(Move15s1, Move15s2)) = Move15s1;Move15sRep(Move15s1) =>Move15sResult(Move15s1) = unspecMove15s;Move15sResult(dualMove15sMove15s(Move15s1, Move15s2)) = Move15s2;Move15sResult(dualMove15sBool(Move15s1, Bool1)) = unspecMove15s;OFSORT BoolMove15sRep(Move15s1) =>BoolResult(Move15s1) = unspecBool;BoolResult(dualMove15sMove15s(Move15s1, Move15s2)) = unspecBool;BoolResult(dualMove15sBool(Move15s1, Bool1)) = Bool1;(* Subclass machinery *)OFSORT Move15s



APPENDIX C. MAPPING OO ACT ONE TO ACT ONE 281Move12stoMove15s(up) = up; Move12stoMove15s(down) = down;Move12stoMove15s(unspecMove12s) = unspecMove15s;OFSORT Move12sMove15stoMove12s(up) = up; Move15stoMove12s(down) = down;Move15stoMove12s(unspecMove15s) = unspecMove12s;(* Internal Test *)OFSORT BoolMove15sRep(up) = true; Move15sRep(down) = true;Move15sRep(unspecMove15s) = true;Move15sRep(dualMove15sBool(Move15s1, Bool1)) = false;(* M12ext -------------------------------------------------------- *)(* Root definition *)OFSORT M12extflip(unspecM12ext) = unspecM12ext;flip(dualM12extBool(M12ext1, Bool1)) = flip(M12ext1);flip(up) = down; flip(down) = up; flip(stay) = stay;(* Inherited from Move12s *)OFSORT M12extM12extRep(M12ext1)=>eq(M12ext1, Move15s1) =dualM12extBool(Move12stoM12ext(.(eq(M12exttoMove12s(M12ext1), Move15s1))),BoolResult(eq(M12exttoMove12s(M12ext1), Move15s1)) );eq(dualM12extBool(M12ext1, Bool1), Move15s1) =eq(M12ext1, Move15s1);eq(M12ext1, M125s1) = eq(M12ext1, M125stoMove15s(M125s1));(* Dual machinery *)OFSORT M12extM12extRep(M12ext1)=>.(M12ext1) = M12ext1;.(dualM12extBool(M12ext1, Bool1)) = M12ext1;OFSORT BoolM12extRep(M12ext1)=>BoolResult(M12ext1) = unspecBool;BoolResult(dualM12extBool(M12ext1, Bool1)) = Bool1;(* Subclass machinery *)OFSORT M12extMove12stoM12ext(up) = up; Move12stoM12ext(down) = down;Move12stoM12ext(stay) = stay;Move12stoM12ext(unspecMove12s) = unspecM12ext;



APPENDIX C. MAPPING OO ACT ONE TO ACT ONE 282OFSORT Move12sM12exttoMove12s(up) = up; M12exttoMove12s(down) = down;M12exttoMove12s(stay) = stay;M12exttoMove12s(unspecM12ext) = unspecMove12s;(* Internal Test *)OFSORT BoolM12extRep(up) = true; M12extRep(down) = true; m12extrep(stay) = true;M12extRep(unspecM12ext) = true;M12extRep(dualM12extBool(M12ext1, Bool1)) = false;(* Move12s -------------------------------------------------------- *)(* Root definitions *)OFSORT Move12seq(Move12s1, Move15s1) = Move12seq(Move12s1, Move15s1);eq(Move12s1, M125s1) = eq(Move12s1, M125stoMove15s(M125s1));Move12seq(up, up) = dualMove12sBool(up, true);Move12seq(up, down) = dualMove12sBool(up, false);Move12seq(down, up) = dualMove12sBool(down, false);Move12seq(down, down) = dualMove12sBool(down, true);Move12seq(stay, up) = dualMove12sBool(stay, false);Move12seq(stay, down) = dualMove12sBool(stay, false);Move12seq(unspecMove12s, Move15s1) = unspecMove12s;Move12seq(Move12s1, unspecMove15s) = unspecMove12s;Move12seq(dualMove12sBool(Move12s1, Bool1), Move15s1) =Move12seq(Move12s1, Move15s1);(* Dual machinery *)OFSORT Move12sMove12sRep(Move12s1) =>.(Move12s1) = Move12s1;.(dualMove12sBool(Move12s1, Bool1)) = Move12s1;OFSORT BoolMove12sRep(Move12s1) =>BoolResult(Move12s1) = unspecBool;BoolResult(dualMove12sBool(Move12s1, Bool1)) = Bool1;(* Internal Test *)OFSORT BoolMove12sRep(up) = true; Move12sRep(down) = true; Move12sRep(stay) = true;Move12sRep(unspecMove12s) = true;Move12sRep(dualMove12sBool(Move12s1, Bool1)) = false;ENDTYPE (* MovesRoot *)(* EXAMPLE State-label expression evaluations*)



APPENDIX C. MAPPING OO ACT ONE TO ACT ONE 283(*a = eq( up of Move12s,up of Move15s);b = eq( a, down of Move15s);c = eq(down of Move12s, down of M125s);d = eq(c, up of M125s);e = flip(stay);f = eq(e, down of Move15s);g = eq(up of M12ext, up of M125s);h = flip(g);i = eq(up of Move15s, up of Move15s);j = eq(i, .(i));k = curr(j);l = eq(j, up of M125s);m = flip(up of M125s);n = eq(m, .(m));o = eq(flip(m), .(m));p = curr(n);p = curr(n);q= curr(o);-----------------------------------a = dualMove12sBool(up, true);c = dualMove12sBool(down, true);e = stay;g = dualM12extBool(up, true);i = dualMove15sBool(up, true);m = down;b = dualMove12sBool(up, false);d = dualMove12sBool(down, false);f = dualM12extBool(stay, false);h = down;j = dualMove15sBool(up, true);n = dualM125sBool(down, true);o = dualM125sBool(up, false);k = dualMove15sMove15s(up, up);l = dualMove15sBool(up, true);p = dualM125sM125s(down, down);q = dualM125sM125s(up, up)*)



Appendix DAn OO ACT ONE Interpretation ofInteractionD.1 InteractionObjects which are con�gured are able to interact (in some as yet unspeci�ed way) for their separatebehaviours to be combined in the ful�lment of a service request in their containing object. There aretwo di�erent types of interaction:� Master-Slave Relationships.These are modelled, in OO ACT ONE, when a containing object requests its component objectsto ful�l services. It is this interaction which is given a formal de�nition in the O-LSTS semanticsin terms of state label expression evaluations.� Peer-Peer Relationships.When two components of the same containing object interact such that each can request servicesof the other they are called peer objects. An OO ACT ONE speci�cation can be implementedto exhibit this type of relationship at the code level, but this is not speci�ed in the requirementsmodel.A master-slave relationship implies a control ow from master to slave in all interactions. Peer-to-peer interactions imply that control ow can occur in either direction. Control ow is a dynamicproperty of an object oriented system which is an important aspect of design and implementation butdoes not have a fundamental role in analysis. The same can be said of data ow. Both these termsare widespread in structured methods but are not central to object oriented analysis.
284



APPENDIX D. AN OO ACT ONE INTERPRETATION OF INTERACTION 285D.2 Data and Control FlowData and control ow, which on the surface seem quite di�erent, are very di�cult to distinguishwithout a formal semantics. One of the main di�culties in applying structured analysis techniquesis in distinguishing the two concepts, even though they are modelled in di�erent ways. Data owdiagrams and control ow models are proli�c in structured analysis methods but are not explicit in ourobject oriented model. To understand the reason for this it is necessary to consider some examples.Data and Control Flow Example: A Two Stack SystemConsider the OO ACT ONE System speci�cation given below.CLASS System USING Stack, Nat OPNSSTRUCTURES: Sys<Stack, Stack>DUALS: pop -> NatTRANSFORMERS: push<Nat>, moveEQNSSys(Stack1, Stack2).pop = Sys(Stack1, Stack2.pop) AND Stack2..pop;Sys(Stack1, Stack2).push(Nat1) = Sys(Stack1.push(Nat1), Stack2);Sys(Stack1, Stack2).move = Sys(Stack1.pop, Stack2.push(Stack1..pop))ENDCLASS (* System *)Speci�cations with static structure (like System) are amenable to three structural interpretations:� 1) Con�gurationThis speci�cation can be interpreted as saying that the two Stack components are con�gured bythe move attribute. Chapter 4, section 3, formally de�nes con�guration in terms of dependecyand so it is not necessary to consider it in any more detail as part of this example.� 2) Data FlowAn accessor operation on a component object, comp say, written comp..acc : : : , on the righthand side of an equation de�nition can be interpreted as modelling data ow from comp to thecontaining object. In other words, the ACCESSOR (or DUAL) service requests model data ow fromclient to server (in the form of the result returned by the service). A parameterised attributeon a component object comp can be interpreted as modelling data ow into comp, i.e. an inputparameter. Now, if the data ow into one component matches the data ow out of another thiscan be interpreted as saying that data ows between the two peer components. More formally,a state label expression of the formobj1.att1(: : :, obj2.att2(: : :), : : :) or obj1..att1(: : :, obj2.att2(: : :), : : :)can be interpreted as data owing internally from obj2 to obj1.In the System speci�cation a high level interpretation can lead to the statement that that dataows from Stack1 to Stack2 in response to a move request. Note that we do not say how theinformation is transferred.



APPENDIX D. AN OO ACT ONE INTERPRETATION OF INTERACTION 286� 3) Control FlowThe simplest interpretation of control ow is from client to server (and back again) when theclient requests some service from the server. In the O-LSTS model we do not formulate aninterpretation of control ow between peer components. In a System class we may implementthe �rst Stack to be subordinate to the second Stack: `the move request is passed on to thesecond component which requests a pop from the �rst Stack'. Contrastingly, the �rst Stackcan be implemented to request a push operation of the second component. A third option is tohave some additional controlling process (object) which mediates between the two Stacks. Suchdecisions are not the realm of analysis and as such OO ACT ONE does not provide an explicitmechanism for de�ning such properties. Designers and implementers are free to choose which`less-abstract' interpretation of control ow they take from an OO ACT ONE speci�cation.



Appendix EDesign IssuesE.1 The ParXStack Process De�nitionThe Par Speci�cation of the extended Stack behaviour (XStack) is de�ned as follows.process ParXStack[push,pop,size](SStack: Stack): noexit:=hide request, response inStackIn[push, pop, size, request] (0) j [request] jStackBody [request, response](SStack) j [response] jStackOut [pop, size, response](0)whereprocess StackIn[push, pop, size, request] (ID: Nat): noexit :=Reqs[push,pop,size,request](ID) j [request] j ReqController[request](ID) whereprocess Reqs[push,pop,size,request](IDsStackIn:Nat): noexit:=(push? Nat1:Nat;( Reqs[push, pop, size, request] (.(inc(IDsStackIn)))jjj(request!push!Nat1!IDsStackIn; exit)))[](pop;(Reqs[push,pop, size, request]( .(inc(IDsStackIn)))jjj(request!pop!IDsStackIn; exit)))(size;(Reqs[push,pop, size, request]( .(inc(IDsStackIn)))jjj(request!size!IDsStackIn; exit)))endproc (*Reqs*)process ReqController[request](ServeID:Nat):noexit:=(request!push?Nat1:Nat!ServeID; ReqController[request](.(inc(ServeID))))287



APPENDIX E. DESIGN ISSUES 288[](request!pop!ServeID; ReqController[request](.(inc(ServeID))))[](request!size!ServeID; ReqController[request](.(inc(ServeID))))endproc (* ReqController *)endproc (*StackIn*)process StackBody[request, response](SStack: Stack): noexit:=( request!push? Nat1: Nat?ID:Nat;(StackBody[request, response](.(push(SStack, Nat1)))jjj(response!push!ID; exit)))[]( request!pop?ID:Nat;(StackBody[request,response](.(pop(SStack)))jjj(response!pop!NatResult(pop(SStack))!ID; exit)))( request!size?ID:Nat;(StackBody[request,response](.(pop(SStack)))jjj(response!size!NatResult(size(SStack))!ID; exit)))endproc (*StackBody*)process StackOut[pop, size, response](CountStackOut: Nat): noexit:=(response!pop?NatStackOut:Nat!CountStackOut;pop!NatStackOut; StackOut[pop, response](.(inc(CountStackOut))))[](response!size?NatStackOut:Nat!CountStackOut;size!NatStackOut; StackOut[pop, response](.(inc(CountStackOut))))[](response!push!CountStackOut;StackOut[pop, response](.(inc(CountStackOut))))endproc (* StackOut *)endproc (* ParStack *)



APPENDIX E. DESIGN ISSUES 289E.2 Two Mappings from OO ACT ONE to an Initial Full LOTOSDesignGiven an OO ACT ONE class, CName say, with operation de�nitions:LITERALS: lit1; : : : ; litlUnhidden external TRANSFORMERS:tr1 < : : : >; : : : ; trn < Ptrn1 ; : : : ; P trnm >Unhidden internal TRANSFORMERS:itr1 < : : : >; : : : ; itro < Pito1 ; : : : ; P itop >Unhidden ACCESSORS:acc1 < : : : > � > AResult1; : : : ; accp < Pacp1 ; : : : ; Pacpq >! AResultpUnhidden DUALS:dl1 < : : : >! DResult1; : : : ; dlr < Pdlr1 ; : : : ; Pdlrs >! DResultrwe can de�ne the result of applying MakeRPC and MakePar to CName (in E.2.1 and E.2.2, below).First, some notation is useful:� ReqCName?p1 : P1?: : :?pn : Pn represents a parameterised event, where Req is an unhiddenattribute of the class CName, and P1; : : : ; Pn are the input parameter types of Req.� ReqCName!p1!: : :!pn represents an event, where Req is an unhidden attribute of the class CNameand (p1; : : : ; pn are values of the appropriate sorts.� []ReqCName represents a parameterised choice of behaviours over the Req atributes of CName.� []ADCName represents a parameterised choice over the accessor and dual AD attributes of CName.� []TrCName represents a parameterised choice over the transformer Tr attributes of CName.� ResultADCName is the ACT ONE sort corresponding to the result class of the AD accessor ordual attribute of CName.E.2.1 The MakePar MappingMakePar(CName) =process ParCName[tr1; : : : ; trn; acc1; : : : ; accp; dl1; : : : ; dlr](SCName): noexit: =hide request, response, itr1; : : : ; itro inCNameIn[tr1; : : : ; trn; acc1; : : : ; accp; dl1; : : : ; dlr; request; itr1; : : : ; itro](0) j [request] jCNameBody[request, response] (SCName) j [ response] jCNameOut[acc1; : : : ; accp; dl1; : : : ; dlr, response](0)where : : :Process CNameIn is de�ned as follows:



APPENDIX E. DESIGN ISSUES 290process CNameIN[tr1; : : : ; trn; acc1; : : : ; accp; dl1; : : : ; dlr; itr1; : : : ; itro,request](ID:Nat):noexit:=Reqs[tr1; : : : ; trn; acc1; : : : ; accp; dl1; : : : ; dlr; itr1; : : : ; itro,request](ID)j [request] jReqControl[request](ID)whereprocess Reqs[: : :](ID):noexit:=[]ReqCName(Req?p1 : P1,?,: : : ,?pn : Pn; ( Reqs[: : :](.(inc(ID))) jjj request!Req!p1!: : : !Pn!ID)endproc (* Reqs *)process ReqControl[request](ID):noexit :=[]ReqCName(request!Req?p1 : P1;?; : : : ;?pn : Pn !ID; ReqControl[: : :](.(inc(ID))) )endproc (* ReqControl *)Process CNameOut is de�ned as follows:process CNameOut[acc1; : : : ; accp; dl1; : : : ; dlr, response] (ID: Nat): noexit:=[]TrCName(response!TrCName!ID; CNameOut[: : :](.(inc(ID)))))[]ADCName(response!ADCName?Result:ResultADCName!ID;ADCName! Result; CNameOut[: : :](.(inc(ID))))endproc (* CNameOut *)Process CNameBody is de�ned as follows:process CNameBody [ request, response ](SCName: CName): noexit:=[]TrCName(request!TrCName?p1 : P1; : : : ; pn : Pn?ID:Nat;(CNameBody[: : :](.(TrCName(SCName,p1; : : : ; pn)))jjj (response!TrCName!ID; exit ))[]ADCName(request!ADCName?p1 : P1; : : : ; pn : Pn?ID:Nat;(CNameBody[: : :](.(ADCName(SCName,p1; : : : ; pn)))jjj (response!ADCName!ResultADCNameResult( ADCName(SCName,p1; : : : ; pn)!ID; exit)endproc (* CNameBody *)E.2.2 The MakeRPC MappingMakeRPC(CName) =process RPCCName[tr1; : : : ; trn; acc1; : : : ; accp; dl1; : : : ; dlr](SCName): noexit: =[]TrCName



APPENDIX E. DESIGN ISSUES 291(TrCName?p1 : P1; : : : ; pn : Pn?ID:Nat;(RPCCName[: : :](.(TrCName(SCName,p1; : : : ; pn)))))[]ADCName(ADCName?p1 : P1; : : : ; pn : Pn?ID:Nat;(RPCCNameBody[: : :](.(ADCName(SCName,p1; : : : ; pn)));ADCName!ResultADCNameResult( ADCName(SCName,p1; : : : ; pn)!ID);(RPCCName[: : :](.(TrCName(SCName,p1; : : : ; pn)))endproc (* RPCCName *)


