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1 University of Jena, Institute of Microbiology, Department of Microbiology and Molecular Biology, Jena, Germany, 2 Leibniz Institute for Natural Product Research and
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Abstract

Lichtheimia species are the second most important cause of mucormycosis in Europe. To provide broader insights into the
molecular basis of the pathogenicity-associated traits of the basal Mucorales, we report the full genome sequence of L.
corymbifera and compared it to the genome of Rhizopus oryzae, the most common cause of mucormycosis worldwide. The
genome assembly encompasses 33.6 MB and 12,379 protein-coding genes. This study reveals four major differences of the
L. corymbifera genome to R. oryzae: (i) the presence of an highly elevated number of gene duplications which are unlike R.
oryzae not due to whole genome duplication (WGD), (ii) despite the relatively high incidence of introns, alternative splicing
(AS) is not frequently observed for the generation of paralogs and in response to stress, (iii) the content of repetitive
elements is strikingly low (,5%), (iv) L. corymbifera is typically haploid. Novel virulence factors were identified which may be
involved in the regulation of the adaptation to iron-limitation, e.g. LCor01340.1 encoding a putative siderophore transporter
and LCor00410.1 involved in the siderophore metabolism. Genes encoding the transcription factors LCor08192.1 and
LCor01236.1, which are similar to GATA type regulators and to calcineurin regulated CRZ1, respectively, indicating an
involvement of the calcineurin pathway in the adaption to iron limitation. Genes encoding MADS-box transcription factors
are elevated up to 11 copies compared to the 1–4 copies usually found in other fungi. More findings are: (i) lower content of
tRNAs, but unique codons in L. corymbifera, (ii) Over 25% of the proteins are apparently specific for L. corymbifera. (iii) L.
corymbifera contains only 2/3 of the proteases (known to be essential virulence factors) in comparision to R. oryzae. On the
other hand, the number of secreted proteases, however, is roughly twice as high as in R. oryzae.
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Introduction

The basal lineages of terrestrial fungi, formerly Zygomycota,

were recently shown to be polyphyletic and were therefore

separated into four separate subphyla [1]. Especially the order

Mucorales of the Mucoromycotina encompasses several human

pathogenic species. Although infections with mucoralean fungi

(mucormycosis) are less common as compared to aspergilloses or

candidioses, these fungi are increasingly recognized as the source

of infection in immunocompromised patients [2]. Mucormycoses
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are associated with rapid blood vessel invasion and massive

destruction of tissue (necrosis) [3,4]. Mortality rates are high

(,50%) and treatment mainly includes a combination of

antifungals and extensive surgery [2,5–7]. In addition, mucoralean

pathogens are resistant to a variety of antifungals including

voriconazole which makes treatment even more complicated [8].

The order Mucorales comprises 240 described species, of which

at least 20 have been found to be involved in mucormycosis.

Genome sequences have been published for only two important

pathogenic species within the Mucorales, namely Rhizopus oryzae
( = R. arrhizus) and Mucor circinelloides. These species are closely

related and represent derived lineages within the group. However,

a large proportion of pathogenic Mucorales (10 species) belong to

more basal groups including the genera Lichtheimia, Rhizomucor,

Apophysomyces, Saksenaea and Syncephalastrum. Recently, the

first report of the involvement of Thamnostylum lucknowense, an

ancient mucoralean fungus, in human infections has been

published [9]. To date, almost nothing is known about the

genomic structure and pathogenicity mechanisms of these basal

groups.

Lichtheimia species are ubiquitous saprophytic molds and

represent the second and third most common cause of mucormy-

cosis in Europe and worldwide, respectively [2,7,10,11]. The

genus Lichtheimia was formerly included in the genus Absidia
based on morphological similarities [12]. However, based on the

higher growth optimum as well as morphological and molecular

data Lichtheimia species were separated from the mesophilic

Absidia species [13]. Today the genus encompasses five thermo-

tolerant species, of which three are known to be clinically relevant,

namely L. corymbifera, L. ramosa and L. ornata [14]. In addition

to the distinct phylogenetic position at the base of mucoralean

fungi, Lichtheimia species exhibit differences in physiology

compared to the sequenced pathogens M. circinelloides and R.
oryzae, including a higher maximum growth temperature (48–

52uC vs 37uC and ,45uC) and differences in susceptibility to

certain antifungals [8,15]. Moreover, filamentously growing

Mucor and Rhizopus species have been shown to be able to form

yeast cells which were also found in patient material and thus

might be of relevance during infection [16–18]. In contrast, no

yeast-like growth forms of Lichtheimia species have been observed

to date. In addition, pulmonary Lichtheimia infections following

solid organ transplantation seem to be associated with a higher risk

to develop disseminated disease [19]. Besides its role in human

infections, L. corymbifera is also believed to be associated with

Farmer’s lung disease (FLD), a hypersensitivity disorder resulting

from frequent contact of mouldy material in agriculture [20].

Nothing comparable has been described for other mucoralean

species. In addition to their pathogenicity towards humans, several

Lichtheimia species are known as contaminants of several food

products (e.g. cocoa, peanuts, olive products) [21–23]. However,

despite the known role of Lichtheimia species in infection and

diseases, several Lichtheimia species play an important role in the

fermentation of soy products in Asian cuisine [24].The large

evolutionary distance and notable differences in infection strategies

between Lichtheimia and the two sequenced mucoralean patho-

gens indicate that they independently evolved their ability to infect

humans by developing specific pathogenesis mechanisms. To gain

insight into the genomic differences between these groups of

pathogens, here we report the genome sequence of the type-strain

of L. corymbifera (FSU 9682, CBS 429.75, ATCC 46771) which

has been shown to be a typical strain in terms of virulence and

physiology for this species [25] and compare it to published

genomes of mucoralean fungi and other fungal phyla.

Results/Discussion

Genome assembly and structure
The genome of the type-strain of L. corymbifera (FSU 9682,

CBS 429.75, ATCC 46771) was sequenced by a combination of

454 sequencing of a shotgun and 8 kb paired-end library in

combination with Illumina sequencing of a paired-end read library

(Materials and methods, Table S1). The final assembly comprises

209 scaffolds with a N50 scaffold size of 367,562 nt and a total

length of 33.6 Mb (Table 1), which is comparable to the genome

size of other zygomycetous fungi [26]. Mucoralean genomes are

generally believed to contain large amounts of repetitive elements

representing around 35% of the genome [27]. However, analysis

of the L. corymbifera genome shows a much smaller content of

repetitive elements, with only 4.7% of the assembly representing

repetitive elements including DNA transposons, LTR and non-

LTR retrotransposons (Table S2). This finding is consistent with

the results of the k-mer analyses on the Illumina reads where only

low amounts of potential repetitive regions were found. Of note,

all previous estimates of repetitive elements in mucoraleans

correspond to species with large genomes such as R. oryzae
(46 Mb; 20% repetitive elements), Absidia glauca (52 Mb; 35%)

and P. blakesleeanus (54 Mb; 35% repetitive elements) [27,28].

Interestingly, a Lichtheimia-specific gene expansion in the

heterokaryon incompatibility genes was discovered (see section

gene expansion) which are involved in the recognition of non-self

DNA and may contribute to the low amount of repetitive

elements. Another mechanism of protection against transposons

and viruses is RNA interference resulting in sequence specific

RNA degradation [29]. Several predicted proteins with functional

domains associated with this mechanism were found including a

dicer-like protein, one argonaute-2 protein and a translation

initiation factor 2C homolog. However, the exact effects of these

mechanisms on the amount of repetitive elements remain to be

determined.

Heterozygosity was shown for several fungi including the basal

lineage fungus Batrachochytrium dendrobatidis [30]. In order to

Author Summary

Lichtheimia species are ubiquitous saprophytic fungi,
which cause life-threating infections in humans. In contrast
to the mucoralean pathogen R. oryzae, Lichtheimia species
belong to the ancient mucoralean lineages. We deter-
mined the genome of L. corymbifera (formerly Mycocladus
corymbifer ex Absidia corymbifera) and found high dissim-
ilarities between L. corymbifera and other sequenced
mucoralean fungi in terms of gene families and syntenies.
A highly elevated number of gene duplications and
expansions was observed, which comprises virulence-
associated genes like proteases, transporters and iron
uptake genes but also transcription factors and genes
involved in signal transduction. In contrast to R. oryzae, we
did not find evidence for a recent whole genome
duplication in Lichtheimia. However, gene duplications
create functionally diverse paralogs in L. corymbifera,
which are differentially expressed in virulence-related
compared to standard conditions. In addition, new
potential virulence factors could be identified which may
play a role in the regulation of the adaptation to iron-
limitation. The L. corymbifera genome and the phylome
will advance further research and better understanding of
virulence mechanisms of these medically important
pathogens at the level of genome architecture and
evolution.

Lichtheimia Corymbifera Genome
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test for potential heterozygous regions and estimate the genome

size of L. corymbifera, k-mer analyses based on the Illumina reads

were performed using an algorithm described previously [31]

(Material and Methods). Analysis resulted in a relatively clear

single peak with a slightly trailing left flank for all k-values (Figure

S1). The distribution could be dissected into three components,

each showing a normal distribution with similar variance, but

different means and different proportions. The main component

represents the potential homozygous part of the genome (94%),

whereas two small components represent the potential heterozy-

gous part of the genome (4%), and most likely some repeat regions

that occur at relatively low frequency (2%). It has to be noted that

the potential heterozygous part is rather small and could as well be

explained e.g. by regions that are difficult to sequence and

therefore have lower k-mer coverage. The lack of heterozygocity is

in accordance with the general assumption that mucoralean fungi

are haploid during vegetative growth. Based on the k-mer analysis

for different k-mer lengths (41, 59, 69, and 79 nt) a total genome

size of around 35 Mb was predicted which is close to our total

scaffold length of 33.6 Mb (96% of k-mer predicted size).

Non-coding RNA prediction and annotation
We annotated 174 tRNAs in L. corymbifera. Although R. oryzae

(239) comprises many more tRNAs, we found unique anticodons

among the basal fungi in Lichtheimia: CCC (Gly), AAA (Phe) and

GAT (Ile). In contrast, only L. corymbifera misses the anticodons

CAC (Val), CCT (Arg) and TAT (Ile). Three GTA (Tyr) tRNAs

were predicted with introns in L. corymbifera, while the number

was higher in other mucoralean fungi (up to 10). No selenocysteine

and possible suppressor tRNAs were predicted. We found the

downstream half of 28S rRNA only, but no 18S rRNA in the

current assembly. We expect at least two operons (18S – 5.8S –

28S rRNA) as found in R. oryzae. In addition to 5S rRNAs located

close to the operons, we were able to identify several independent

5S rRNA copies (Table S3). Another housekeeping ncRNA,

present in all kingdoms of life, is the ribozyme RNase P, which

processes tRNAs by cleaving off nucleotides on the 39 end of

tRNAs [32]. We detected this gene as expected in a single copy per

genome, but two identical copies are apparently present in the

genome of R. oryzae, which may result from whole genome

duplication in R. oryzae [28]. The pseudoknot in the centre of the

molecule is accredited with the catalytic function and highly

conserved in evolution [33]. However, the L. corymbifera
candidate varies exceptionally in sequence, while the secondary

structure is maintained. Whether the function of the molecule is

affected has to be analyzed. The evolutionary related RNase MRP

was invented at the origin of eukaryots with dual function: (a)

initiation of mitochondrial replication and (b) separation of 18S

rRNA from 5.8S rRNA [34]. One copy per basal fungal genome

was detected. The signal recognition particle containing a ncRNA

part (SRP RNA) guides proteins to the endoplasmatic reticulum

[35]. One copy was detected in Lichtheimia, whereas two copies

were identified in the genome of R. oryzae. Surprisingly, the

covariance model of mucoralean fungi, in agreement with

Rhizopus, Batrachochytrium and Monosiga (RF00017) is much

closer related to metazoans than to other known fungi SRP RNAs.

We detected the RNA components of the major spliceosome and

collected indications for a functional minor spliceosome. Except

for U4 snRNA all five RNAs involved in U2-splicing were

detected in Lichtheimia. U4 snRNA was not part of the assembly;

however an U4-candidate was identified in the originally

sequenced read data. Additionally, four of five RNAs involved in

AT-AC-splicing were found. However, several special secondary

structures were discovered, which may alter the functionality of

the minor spliceosome: (i) The third stem of U12 snRNA is

atrophied and the last stem is shorter than expected for all basal

fungi. (ii) U4atac is not detected in Lichtheimia. The other basal

fungi show one inconspicuous copy, which is assumed to to be an

assembly mistake. However, no similar homologous gene was

detected in reads either. (iii) The second half of U6atac is highly

divergent (Figure S2 and supplemental material: http://www.rna.

uni-jena.de/supplements/lichtheimia/index.html). Eleven CD-

box snoRNAs and 3 H/ACA snoRNAs were identified, which

are mainly conserved in sequence and structure among basal

fungi. For further details we refer to the supplemental material

(www.rna.uni-jena.de/supplements/lichtheimia/index.html). Ad-

ditionally, several ncRNA candidates could be proposed, which

have to be functionally characterized in future experiments. A

riboswitch, binding to thiamine pyrophosphate (TPP) was found in

all basal fungi. For Lichtheimia a potential telomerase RNA is

suggested, which is surprisingly closely related to the shortest

known telomerase RNAs in ciliates (150 nt Tetrahymena para-
vorax). This is unexpected, since the longest telomerase is known

from the fungus Saccharomyces cerevisiae (1,220 nt). Although the

alignment of the usually extremely divergent telomerase RNA is

very convincing in sequence and secondary structure (see

supplemental material), no homologs in another basal fungus

and no interacting ciliate protein homolog were found in our

current assembly. U7 snRNA is known to interact with the

downstream region of histone mRNA for inhibition of degrada-

tion. Four similar candidates for this short ncRNA were identified.

In eukaryotes, polymerase III transcripts (e.g. U6 snRNA, RNase

P, RNase MRP, SRP RNA, U6atac snRNA) usually display a

typical promoter region: 210 nt TATA box, PSE element, Oct

region [36]. Therefore, a search for conserved motifs was

conducted in Lichtheimia promoter regions. However, we were

not able to identify even one of these motifs. This highlights a

possible modified polymerase III activity for basal fungi and has to

be investigated in detail in further work. A phylogeny among basal

fungi and Schizosaccharomyces pombe as outgroup based on

ncRNAs (except 18S and 28S rRNA) was reconstructed, see

Figure S2 (B and C). In accordance with protein and traditional

Table 1. Statistics of the L. corymbifera genome.

Assembly statistics

Total scaffold length (Mb) 33.6

Scaffolds 209

N50 contig length (nt) 66,718

N50 scaffold length (nt) 367,562

G+C content 43.4%

Predicted protein-coding genes

Predicted genes 12,379

Average coding sequence size (nt) 1,287

Average G+C content in coding sequence 46.2%

Total introns 48,663

Introns per gene (median) 4.8

Average intron length (nt) 258

Predicted non-coding RNA genes

Predicted genes 213

Average G+C content in non-coding RNAs 49.2%

Total introns 3

doi:10.1371/journal.pgen.1004496.t001

Lichtheimia Corymbifera Genome

PLOS Genetics | www.plosgenetics.org 3 August 2014 | Volume 10 | Issue 8 | e1004496

http://www.rna.uni-jena.de/supplements/lichtheimia/index.html
http://www.rna.uni-jena.de/supplements/lichtheimia/index.html
www.rna.uni-jena.de/supplements/lichtheimia/index.html


rRNA phylogeny Lichtheimia groups basal to P. blakesleeanus and

the other two investigated fungi.

Protein-coding gene prediction and annotation
To aid prediction of protein-coding genes, RNA-seq analyses

were performed for three different growth conditions in three

biological replicates (see Material and Methods). The use of

different conditions should ensure a higher number of expressed

genes, thereby allowing evidence-based gene predictions for many

gene models. On average, each replicate has a 70-fold genome

coverage, which sums up to a 630-fold genome coverage (Table

S4). Prediction of protein-coding genes was performed using

AUGUSTUS [37], resulting in 12,379 predicted genes. Genes

were functionally annotated by comparing to GenBank sequences

using BLASTp (E-value#10225), and by scanning for the presence

of conserved domains using the InterProScan function of

BLAST2GO [38]. BLAST hits were obtained for 7,917 genes,

InterProScan results were found in 10,066 genes and at least one

Gene Ontology (GO) term was assigned to 7,435 genes based on

the union of BLAST and InterProScan results. The raw reads of

the DNA- and RNA-seq experiments, the final genome assembly,

the structural and functional gene prediction are available at

http://www.ebi.ac.uk/ena/data/view/PRJEB3978). The genome

data are also accessible via HKI Genome Resource (http://www.

genome-resource.de/).

Comparison of protein-coding genes between L.
corymbifera and other completely sequenced genomes

An exhaustive comparison of L. corymbifera genome with

other 24 completely sequenced genomes including the major

fungal groups (Chytridiomycota, Mucoromycotina, Asco- and

Basidiomycota) was performed. This comparison included the

reconstruction of L. corymbifera phylome, which encompasses

the complete set of evolutionary histories of L. corymbifera genes

(Material and Methods). It was carried out using the previously

described PhylomeDB pipeline [39]. In brief, for each L.
corymbifera protein-coding gene we searched for homologs,

and multiple sequence alignments were built, and Maximum

Likelihood analyses were performed to reconstruct a phyloge-

netic tree. The phylome is available through phylomeDB

(http://phylomedb.org), with the phylome ID 245. The phylome

was used to establish phylogeny-based orthology and paralogy

relationships among genes in the species considered [40], and to

detect gene expansions (see below). In addition, we used two

complementary approaches, gene concatenation and super-tree

[41], to reconstruct the species tree that represents the evolution

of the 25 species considered. In the first approach, 58 genes were

selected that were present in 21 out of 25 in single copy. Their

corresponding alignments were then concatenated and a

maximum-likelihood species tree was reconstructed (Material

and Methods). In the second approach, 9,478 trees present in the

phylome were used to build a super-tree using a gene tree

parsimony approach, a method which finds the topology that

minimizes the total number of duplications in the phylome [42].

Both resulting trees presented a similar topology, which placed

L. corymbifera at the base of the other Mucorales species

(Figure 1). The only difference found between the trees by the

complementary approaches was the position of Schizosacchar-
omyces pombe, which appeared at the base of Ascomycota in the

super-tree tree while in the concatenated tree it grouped with S.
cerevisiae. To assess the level of overlap in genetic content

between the different species an all-against-all comparison of the

25 genomes was performed. The results indicate between 50%

and 75% of the proteins encoded in the other three Mucorales

species had homologs in L. corymbifera (Figure 1). Surprisingly,

this percentage of shared gene content with L. corymbifera was

similar to that of Schizosaccharomyces pombe (60.6%), which is

higher than that found in the more closely related chytrid B
dendrobatidis (an average of 41.1%). Figure 1 also shows how

these homologs are distributed in differently defined groups.

Most interestingly, the fraction of species-specific proteins (grey

bars in the figure) is particularly high in large genomes (e.g., over

half of the largest genomes Laccaria bicolor and Puccinia
graminis). Over 25% of the proteins apparently are specific for

L. corymbifera.

Conserved gene regions in L. corymbifera and other
mucoralean genomes

Since the Lichtheimia lineage separated early in mucoralean

evolution we can expect that severe genomic re-arrangements

have taken place during evolution, causing substantial differences

between the genome structures of L. corymbifera and other

Mucorales. Only 57.7% of the gene families present in

Lichtheimia are also present in at least one of the other

mucoralean genomes while only 36.7% were found in all four

genomes representing 70.4% and 53.7% of the total L.
corymbifera genes, respectively (Figure 2 A). Conserved regions,

in terms of gene order, between mucoralean genomes were

examined and evaluated with respect to the amount of conserved

genes of these regions. A total of 230 regions with a minimum of

3 conserved genes of L. corymbifera were found that were present

in at least one of the other genomes. These regions were

interspersed over 41.1% of the scaffolds but covered only 7.6% of

the L. corymbifera genome reflecting the high dissimilarity

between the mucoralean genomes (Figure 2 B). Only 6 regions

were shared with all species. The total number of shared clusters

was found to be consistent with the phylogenetic distance

between the species (Figure 2 B+C). Genes in the conserved

regions are members of different gene families and contain a

variety of functional domains.

Gene duplications in L. corymbifera
In accordance with former results [28] a higher number of gene

families with two members were detected for R. oryzae but also for

L. corymbifera as compared to other fungi (6.99%60.58%)

(Figure 3 A). Whole genome duplication has been previously

described for R. oryzae based on the presence of gene duplications

and duplication of large genomic regions (segmental duplications)

[28]. To investigate whether segmental duplications and thus a

potential WGD also occur in L. corymbifera, the genomes were

scanned for the presence of duplicated regions using GECKO2

[43,44]. Consistent with the former findings, our analysis showed a

high number of segmental duplications in R. oryzae covering more

than 10% of the genome [28] while fewer duplicated regions were

found in L. corymbifera covering less than 4% of its genome

(Figure 3 B). Thus, the gene duplications seem not to result from

recent WGD as in R. oryzae but may result from an ancient

genome duplication in mucoralean fungi as suggested by Marcet-

Houben et al. [45] which is no longer detectable in the duplicated

gene clusters. The possibility of ancient WGD in mucoralean

genomes is currently investigated in more detail (Corrochano et

al., pers. comm.). The genome of L. corymbifera also shows

increased numbers of gene families with a higher number of genes

indicating that gene duplication and the preservation of the gene

copies seem to be a common process in mucoralean genomes and

may be independent from WGD. This will be further addressed in

the next section.
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Gene expansions in the L. corymbifera genome
In addition to gene duplications shared by all mucoralean fungi

a high amount of species-specific duplications was detected.

Therefore, the phylome was scanned in search of expansions of

protein families that occurred specifically in L. corymbifera. For

each tree, ETE [46] was used to find nodes that contained at least

five L. corymbifera sequences and no other fungal sequence

(Figure 4 A and B). Overlapping expansions were fused when they

shared more than half of their members. We found 75 expansions

that fulfilled those requirements. Five expansions contained more

than 30 members, with the largest containing 331 paralogous

genes. In contrast, the large genome of R. oryzae contains

approximately twice the number of expansions, with the largest

encompassing 1,888 members. As some of those expansions are

likely the result of the presence of transposons, we scanned them

for the presence of transposon-linked domains using the Pfam

Figure 2. Conserved regions of the L. corymbifera genome with other mucoralean genomes. (A) Venn diagram of shared gene families
between L. corymbifera and other mucoralean fungi based on GhostFam gene families. Numbers indicate percentage of L. corymbifera gene families.
(B) Number and size of conserved clusters of L. corymbifera with other mucoralean genomes. (C) Proportions of conserved clusters of L. corymbifera
shared with different mucoralean genomes. Occurrences in more than one of the genomes are indicated by a slash between the species.
doi:10.1371/journal.pgen.1004496.g002

Figure 1. Species tree including the 25 species used during phylome reconstruction. For each species the thin red bar represents the
proportion of proteins that have a homolog in L. corymbifera (upper axis). The coloured bars represent the number of proteins found in different
ranges of species (lower axis): black: wide-spread proteins found in at least 23 of the 25 species, light blue: proteins found exclusively in all four
Mucorales species, darker blue: proteins found only in Mucorales species, red: proteins found in early diverging fungi, yellow: proteins found in fungi,
purple: proteins found in fungi and at least one of the outgroups, grey: species-specific proteins without orthologs in other species but with paralogs
within the genome, white: proteins with no homologs. All nodes in the tree have a bootstrap support of 100.
doi:10.1371/journal.pgen.1004496.g001
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database and HMMER3 [47,48]. If the expansions that contain

transposons were excluded, 66 groups of paralogous proteins will

be left in L. corymbifera comprising a total of 820 genes (Figure 4

B).

The most abundant expanded groups (with 331 and 242

members) are rather heterogeneous in terms of functional

domains, thus there is no particular function that could be

assigned to them. The largest group with a dominating domain

contains in total 56 members, of which 52 possess a heterokaryon

incompatibility protein (HET) domain (PF06985) (Figure 4 C).

Interestingly, this domain was so far attributed nearly exclusively

to ascomycetes (with only one exception for the basidiomycete

Moniliophthora perniciosa), where the HET proteins control

somatic allorecognition (non-self-recognition) during the formation

of heterokaryons [49]. However, Mucorales, opposite to ascomy-

cetes, do not form heterokaryons by fusion of somatic cells but only

during sexual reproduction and zygospore-formation. Since HET

domain proteins are absent in all other sequenced zygomycetous

genomes it is unlikely that they play a general role in the sexual

reproduction but seem to be specific for Lichtheimia. Interestingly,

these HET genes were differentially regulated under stress

conditions. Several copies of the HET domain proteins were

down-regulated under iron-depletion and hypoxia. Since these

genes are absent in all other mucoralean fungi it is unclear which

functions they serve in L. corymbifera. In addition it is unclear

where these genes originate since they do not occur in other basal

fungi and show only very weak similarity with the HET proteins of

dikaryan fungi.

Several expansions contain transporters: major facilitator

superfamily (MFS, PF07690, PF12832, PF05977, PF13347),

ABC transporters (PF00005, PF00501, PF01061, PF00664,

PF06422), sugar (and other) transporters (PF00083). In addition,

some interesting expansions are connected to the transcription

regulation function, which is discussed in more detail in a separate

section and signal transduction pathways (see supplemental

Material, Table S5 and S6). Four expanded groups are

characterized by the cytochrome P450 (PF00067) domain

(Figure 4 C). Interestingly, mucoralean pathogens like L. cor-
ymbifera have been shown to be resistant to several antifungals

including voriconazole [8,50] which could be explained by high

copy numbers and isoforms of the target genes. Thus, gene

duplication and expansion might be important for the success of L.
corymbifera in human infections.

Strikingly, these domains (MFS transporters, HET and cyto-

chrome P450) were also the dominant domains in genes which

were localized in tandem duplications (Figure S3). Tandem

duplicated genes were found to be present in 42 of the 66 gene

expansion groups covering 38% of all genes in the expanded

Figure 3. Gene duplication and duplication of genomic regions within mucoralean genomes in comparison to the genome of A.
fumigatus, which (i) inhabits the same natural habitats and (ii) causes similar symptomatology in human like L. corymbifera and (iii)
serves as model organism for causative agents of invasive mycoses [56,75]. The genome of A. fumigatus serves as measure for low
incidences of singular and segmental gene duplications [115,116]. (A) Comparison of gene families between L. corymbifera, R. oryzae and non-
mucoralean fungi. Gene families are based on GhostFam homology families. Values for L. corymbifera and R. oryzae are excluded from the ‘‘mean
fungi’’ value. (B) Regions with a minimum of 3 genes were tested for multiple occurrences within the genomes by GECKO2.
doi:10.1371/journal.pgen.1004496.g003
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groups (Figure 4 D). However, additional smaller tandems were

found which did not fit the criteria of gene expansions. A total of

701 genes are organized in such tandem repeats (Figure S3). In

addition, duplicated genes were frequently found to be located on

the same scaffold which may result from older tandem duplica-

tions.

Thus, tandem duplications and a high amount of gene

retentions may give an additional explanation for the high

amounts of duplicated genes in L. corymbifera comparable to

the observations in plant genomes where segmental duplications

(resulting from WGD) and tandem duplications play different roles

in the enrichment of genes of several gene families [51,52].

Tandem duplication and the retention of duplicated genes would

be an explanation for the severe differences in the size of gene

families between mucoralean fungi with only 53% of gene families

with the same size in L. corymbifera and R. oryzae (see Figure S3

C).

To investigate if the different gene copies may have different

functions and thus may contribute to rapid adaptations to different

environmental conditions we analysed the expression of tandem

duplicated genes under infection-associated stress conditions (iron

depletion and hypoxia; see Table S7). Differential expression of at

least one gene of the tandem clusters under at least one of the

conditions was found for 71 tandems. Strikingly, only 7 tandems

were co-regulated while in 64 cases expression of the copies was

different including six cases were copies were antithetically

regulated (Figure S4). These results are consistent with the

hypothesis that the high prevalence and maintenance of duplicated

genes leads to diversification of gene functions.

Alternative splicing
Duplicated genes can lead to the diversification of gene

functions of the two copies which has been discussed in the

section above. In addition, alternative splicing (AS) can increase

the functional diversity. Gene prediction resulted in 841 alterna-

tive splicing events in a total of 683 genes (5.5% of total genes)

comparable to the situation in S. cerevisiae [53]. Based on the

analysis of the RNAseq data alternative splicing could be verified

for 273 genes (2.2% of total genes) (Figure S5 A and Table S8).

Alternative donor and acceptor are the dominant groups of

alternative splicing events (.75% of the total events) which is

similar to the situation in several higher eukaryotes [54] (Figure S5

Figure 4. Gene expansions and tandem duplications found in L. corymbifera. (A) Tree representing an expansion of HET proteins in L.
corymbifera. Branches enclosed in the grey shaded area represent paralogs of L. corymbifera. The black square represents the point where the
expansion started. (B) Number and size of gene expansions in the L. corymbifera genome. (C) Main functional domains of gene expansions based on
PFAM annotation. The numbers of genes with the different functional domains were combined if a domain was present in more than one expansion.
(D) Proportion of genes within gene expansions which are arranged in tandem duplications. Each bar represents an expansion with the red part as
the percentage of tandem duplicated genes (left). Clustering of tandem duplicated genes of cytochrome P450 genes in L. corymbifera (based on
reconstruction with RaxML [130]). Red branches represent tandem duplicated genes. Numbers at the branch tips indicate different tandems.
doi:10.1371/journal.pgen.1004496.g004
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A). Comparison of alternatively spliced genes with genes in

tandem duplications and gene expansions showed that only 12

(4.4% of genes with AS) in these groups are also alternatively

spliced. If AS occurs in tandem duplicated genes, it occurs in only

one of the copies except in one case. This is in accordance with

recent results in S. cerevisiae which show that duplicated genes can

replace one alternatively spliced gene and that alternative splicing

is often lost after gene duplication [55]. To test if AS plays a role in

the stress adaptation of L. corymbifera we analysed the potential

alteration in alternative splicing pattern during stress adaptation.

Significant changes were only detected for 16 and 23 genes under

iron depletion and hypoxia (,0.2% of the total genes), respectively

(Figure S5 B). Based on the high incidence of gene duplication and

the differential expression of the copies as well as the comparably

low number of alternatively spliced genes, maintenance of

duplicated genes seems to play a more important role for the

generation of functionally distinct paralogs than alternative

splicing.

Identification and expression of potential virulence
factors under infection-related conditions

a) Iron uptake genes. Iron is an essential trace element for

all organisms and plays a crucial role in fungal pathogenicity [56–

58]. Elevated host iron levels are an important prerequisite for

mucormycosis and the iron permease FTR1 has been shown to be

crucial for virulence in R. oryzae [59–62]. The genome of L.
corymbifera contains four copies of FTR1, of which three are

located next to a multicopper oxidase and may share the same

promoter. Both FTR1 and multicopper oxidase are important

players of the reductive pathway and have been shown to form

functional complexes in C. albicans [63]. Thus, co-expression of

both genes and maintenance of their proximity may contribute to

effective iron uptake and, hence, to the virulence of L. corymbifera.

The higher copy number of FTR1 in L. corymbifera compared to

R. oryzae (one copy) suggests more efficient employment of this

pathway and, probably, optimisation of the different copies to

different environmental conditions in L. corymbifera. To investi-

gate the expression of iron-uptake genes under iron limited

conditions we added the iron chelator bathophenanthrolinedisul-

fonic acid (BPS) to overnight cultures of L. corymbifera (200 mM

final concentration) and analysed gene expression via RNA

sequencing (see Material and Methods for details). Consistent

with this hypothesis only one of the copies of FTR1 (LCor01036.1)

was up-regulated under iron limitation in the gene expression

experiments while another copy (LCor06326.1) was moderately

down-regulated (Figure 5 A). In addition, all multicopper oxidases

which are co-localized with FTR1 were regulated in the same

manner as the corresponding FTR1 gene and expressed at

comparable levels (Figure 5 A). The two remaining copies

(LCor00518.1, LCor04103.1) were expressed constitutively at

low levels and may be either specific for other conditions or

generally silenced. In addition to FTR1 and multicopper oxidases,

ferric reductases are key elements in the reductive pathway of iron

acquisition. Two of the three ferric reductases were up-regulated

under iron limitation (LCor07115.1, LCor11373.1), whereas the

third one was constitutively expressed (Figure 5 B).

Besides the role of the reductive pathway little is known about

the iron uptake systems in mucoralean pathogens. Our analysis

uncovered the presence of additional genes involved in iron uptake

including zinc/iron permeases, heme oxygenases and siderophore

transporters (Table 2). Heme utilization may contribute to growth

within the host, since mucoralean pathogens rapidly invade blood

vessels [3] and may use hemoglobin as iron source [60].

Accordingly, one of the heme oxygenases (LCor09772.1) was

strongly up-regulated under iron limitation (Figure 5 B). All

available mucoralean genomes, including L. corymbifera, lack non-

ribosomal peptide synthetases (NRPSs) and are therefore unable to

produce hydroxamate siderophores. Instead they produce poly-

carboxylate siderophores (rhizoferrin), which have a much weaker

binding activity compared to hydroxamate siderophores and are

produced by direct fermentation [64,65]. In addition, mucoralean

fungi are also able to utilize deferoxamine, a bacterial siderophore

which is used as an iron-chelator in human therapy [66,67].

Interestingly, zygomycetous species have been shown to live in

close relationship with bacteria, including cases containing

bacterial endosymbionts indicating that xenosiderophores might

play a role in the development of siderophore uptake systems

[68,69]. However, L. corymbifera has also been shown to be a

potent producer of siderophores itself [70]. Under iron-limitation

the putative siderophore transporter of L. corymbifera
(LCor01340.1) was up-regulated (Figure 5 B) supporting the role

of siderophores in the iron acquisition of mucoralean fungi.

Interestingly, based on the expression data we found an additional

gene (LCor00410.1) that may be involved in the siderophore

metabolism of L. corymbifera, containing functional domains

which are typical for genes involved in regulation and synthesis of

siderophores in bacteria (lucA/lucC PF04183 and FhuF PF06276).

Thus, the gene may encode a novel candidate for a regulator of

siderophore biosynthesis in mucoralean fungi.

Although fungi generally lack ferritin as intracellular iron

storage, ferritin has been found in several mucoralean species

[62,71]. Based on orthology searches, ferritin genes could be

identified in all mucoralean genomes. In addition, domain search

in Spizellomyces punctatus and Allomyces macrogynus (Origins of

Multicellularity, BROAD) revealed also the presence of potential

ferritin genes. Since these two groups represent the most basal

fungal lineages, apart from the highly derived microsporidians

[72], ferritin seems to have been lost in some microsporidians and

the higher fungi. Interestingly, in higher fungi, the loss of ferritin

coincides with the appearance of sidA, an important gene in

hydroxamate siderophore production (Figure S6). Siderophores

are known to serve as intracellular iron storages in several Asco-

and Basdiomycota species [73,74]. Thus, a plausible hypothesis is

that maintenance of ferritin was not necessary in derived fungi due

to the gain of importance of siderophores. The expression of the

two ferritin genes (LCor08103.1, LCor11038.1) was slightly

decreased under iron-limitation (,1.66, Fig. 5B). Nothing is

known about the dynamics and functions of fungal ferritins. The

slight decrease may be sufficient to stabilize free iron concentra-

tions in the cytoplasm.

Only three transcription factors were up-regulated under iron

depleted conditions (Figure S7). Interestingly, one of these genes

(LCor08192.1) shows similarities to GATA type regulators which

are known to be involved in the adaptation to iron limitation in

higher fungal pathogens (e.g. A. fumigatus and Histoplasma
capsulatum) [75,76]. Thus, this transcription factor may represent

a key regulator in iron acquisition, and therefore an important

virulence factor of L. corymbifera. A second transcription factor

(LCor01236.1) resembles CRZ1, which is a calcineurin regulated

TF and indicates a possible involvement of the calcineurin

pathway in the adaption to iron limitation.

b) Secreted proteases. Besides the iron uptake systems,

hydrolytic enzymes like proteases are known as important

virulence factors in fungal pathogens, e. g., R. microsporus and

C. albicans [77–79]. In addition, gene expansion of secreted

proteases was observed in the R. oryzae genome [28]. The genome

of L. corymbifera contains a total of 413 predicted proteases

representing 3.3% of all genes comparable to the situation in R.
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oryzae which contains 630 proteases (3.6% of all genes). However,

the number of secreted proteases differs between the two species,

moreover, in L. corymbifera the relative amount of secreted

proteases is nearly twice as high as in R. oryzae: in L. corymbifera
13% (53) of the proteases are predicted to be secreted while in R.
oryzae this number reaches only 7% (44). The most important

classes of secreted proteases are serine and aspartate proteases

representing 55% and 36% of total secreted proteases, respectively

(Table 3). Comparison of secreted aspartic proteases (SAP) of R.
oryzae revealed an enrichment of SAPs compared to other fungal

genomes [28]. However, the number of SAPs is comparable in L.
corymbifera (24) and R. oryzae (28) indicating that the presence of a

higher number of these enzymes is a general feature of mucoralean

pathogens. Several secreted proteases were activated under

infection-related stress conditions (iron depletion, hypoxia). While

iron depletion affected mainly the expression of aspartic and serine

proteases, hypoxic conditions induced the expression of serine-,

metallo- and some aspartic proteases.

c) Transcription factors. The Lichtheimia genome encodes

768 putative transcription factors (TFs) representing 6.2% of total

genes. This amount is comparable to the situation in R. oryzae

(6.4% of total genes) but higher than the average content of TFs in

other fungi (4.5%) [80]. Basic BLASTp analyses showed that 37 of

the TFs (4.8% of total TFs) are specific for L. corymbifera.

The TFs were assigned to 53 families of DNA-binding domains

(based on the InterProScan predictions). The great majority of

these families have been described previously in fungal species

[81]. However, 4 families have not been found in true fungal

species before (putative representatives of 2 families, PF01167

(Tubby) and PF02319 (TDP), were predicted in microsporidia; the

other 2 were described in plants and bacteria). Of these ‘‘new’’

TFs one (PF03106, DNA-binding WRKY domain), represented in

7 Lichtheimia proteins, has been previously described only in

plants. Interestingly, in plants these TFs are numerous and have

diverse functions, including pathogen defense [82]. In L.
corymbifera we found three of the seven members differentially

regulated under hypoxic conditions (down: LCor09690.1; up:

LCor02851.1, LCor08197.1) indicating a function in the stress

response of this species (Figure S7).

Of 6 fungal-specific TF families [81], 2 families are not

predicted in L. corymbifera genome, namely PF04769 (mating-

type protein MAT a1) and PF02292 (APSES domain). The lack of

Figure 5. Expression of iron uptake genes under iron limited conditions. (A) Expression levels of FTR1 domain genes and their
corresponding multicopper oxidases under standard conditions and iron limitation. (B) Heat map showing the regulation of iron uptake genes under
iron-limited conditions.
doi:10.1371/journal.pgen.1004496.g005

Table 2. Iron uptake genes in the L. corymbifera genome.

Pathway Iron uptake gene Number of genes

Reductive pathway FTR1 4

multicopper oxidase 8

ferric reductase 3

Low affinity iron uptake zinc/iron permease 6

Siderophore uptake siderophore transporter 1

Heme utilization heme oxygenase 2

Iron storage ferritin 2

doi:10.1371/journal.pgen.1004496.t002

Lichtheimia Corymbifera Genome

PLOS Genetics | www.plosgenetics.org 9 August 2014 | Volume 10 | Issue 8 | e1004496



MAT gene is expected because mating in Mucorales is regulated

via sex plus and sex minus HMG transcription factors [83]. The

absence of APSES domain may be compensated by the APSES-

type DNA binding domain PF04383.

It is also noteworthy that the traditional proportion of the Zn

fingers Zn(2)Cys(6) (Zn cluster) and Cys(2)His(2) is inverted in

Lichtheimia. In all fungi observed so far, the Zn clusters are more

abundant than C2H2 TFs, in fact they are normally the most

numerous in the fungal genomes. In Lichtheimia, on the contrary,

the number of C2H2 Zn fingers is nearly 1.5 times larger than the

number of Zn clusters.

Comparative phylome-based analysis reveals several expanded

TF families in L. corymbifera including MADS box TFs with 11

representatives instead of the usual 1–4 members. MADS box

genes are known to play a role in a variety of functions (e.g, cell

cycle, stress response, development [84]). Presumably, the

expansion of the MADS box genes in Lichtheimia was accompa-

nied by the delegation of some functions from other TFs or even

neofunctionalization. The functional basis for such expansion as

well as the potential roles of these TFs cannot be elucidated from

their primary structure, because MADS box genes are not

conserved except for the MADS domains. But at the epxressional

level, we could find significant up-regulation of two of the 11

MADS box TFs (LCor03918.1, LCor08105.1). Thus, the copies

do not seem to have completely overlapping functions.

Analysis of the phylomes allowed us to detect another exciting

expansion, which is evidently characteristic for all Mucorales: the

duplication of TBP, TATA binding protein (PF00352). As it has

been recently shown for higher eukaryotes, core promoter

recognition factors can be involved in modulating gene- and

cell-type-specific programs of transcription, such as tissue differ-

entiation, development, etc. [85]. These new functions are

associated with a gene duplication of the TBP, resulting in

TRF2 (and other) factors, which are highly similar to TBP but do

not bind the TATA box. In fungi, the event of TBP duplication is

exceptionally rare. A survey of all so far sequenced genomes

revealed only 4 examples of such duplication: 3 in Ascomycetes/

Sordariomycetes (Chaetomium globosum, Grosmannia clavigera
and Podospora anserina) and 1 in the basidiomycete Laccaria
bicolor. In contrast, in Mucorales all 4 considered species possess 2

copies of the TBP gene. It can be supposed that the duplicated

TBP-like factors may play an additional role in condition-specific

responses and thus may be of interest as potential virulence factors.

Temperature tolerance is an essential prerequisite for the

infection of warm-blooded animals and was shown to be

connected to the virulence of Lichtheimia species [25,86]. The

genome was surveyed for the presence of heat shock transcription

factors (HSF). The total number of these TFs in L. corymbifera

genome is 24, which is the highest number among all so far

investigated fungi. This is in accordance with the known tolerance

of L. corymbifera to high temperatures [13,14]. However, it seems

that this family expansion is not a specific trait of Lichtheimia but is

characteristic for all Mucorales. Interestingly, HSF genes were also

up-regulated under hypoxic conditions indicating additional

functions of the different members of the HSF family in the

response to different stresses and growth conditions.

It is curious that additionally to the abundant heat shock factors

also a cold shock TF (PF00313) was found, which was not

previously described in fungi. This can explain why Lichtheimia,

although it does not grow at low temperatures, can tolerate cold as

it was shown to survive periods of more than 5,000 years in ice

[87].

The importance of the L. corymbifera genome for
studying the infection biology of mucoralean pathogens:
Concluding remarks

The genome of L. corymbifera represents the first insight into

the genome structure of basal mucoralean pathogens. Despite the

growing recognition of Mucorales as life-threatening clinically

important human pathogens, little is known about the virulence

traits of these fungi. The high dissimilarity between L. corymbifera
and the other sequenced mucoralean pathogens R. oryzae and M.
circinelloides in both evolutionary and functional sense underlines

the importance of additional genome projects.

This study revealed a high proportion of duplicated and

expanded genes in the L. corymbifera genome comparable to the

situation in R. oryzae. However, clear evidence for a WGD can be

detected only for R. oryzae, but not for L. corymbifera indicating

that additional mechanisms contribute to the higher incidence of

duplicated genes in mucoralean fungi. Tandem repeats seem to be

an important source for gene duplication in L. corymbifera and

may explain the rapid development of lineage-specific gene

duplication and expansion in mucoralean fungi. Several species-

specific gene duplications point at potential virulence traits

including iron uptake genes, hydrolytic enzymes and genes which

may contribute to resistance against antifungal agents like azoles

(cytochrome P450 gene expansion). In contrast, alternative

splicing does not seem to play an important role in the generation

of orthologs and the adaption to stress conditions.

Based on these results, we postulate a relationship between

genome fluidity by the generation and retention of additional gene

copies and dynamics of adaptation to new environments. Higher

genome flexibility results in a higher likelihood for a saprobic

zygomycete to become a pathogen.

In addition we were able to shed light on the genes involved in

iron uptake, which is a crucial step for virulence and thus for the

Table 3. Protease families in the L. corymbifera genome.

Proteases (% of total proteases) Secreted (% of secreted proteases)

Aspartate 60 (14.5) 19 (35.8)

Cysteine 68 (16.5) 2 (3.8)

Metallo 146 (35.4) 3 (5.6)

Serine 124 (30) 29 (54.7)

Threonine 14 (3.4) 0

Unknown 1 (0.2) 0

Total 413 53

doi:10.1371/journal.pgen.1004496.t003
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development of an infection. We could identify additional genes

which might be involved in iron-uptake besides the known

virulence factor FTR1 L. corymbifera including transcription

factors, siderophore transporters and a potential regulator

involved in siderophore biosynthesis that has not been described

in mucoralean fungi.

Our data represent a valuable resource for future research and

the understanding of infection-associated mechanisms of mucor-

alean pathogens.

Materials and Methods

Genome sequencing and assembly
A combination of Illumina and 454 sequencing was used for the

L. corymbifera genome. A shotgun library and an 8 kb paired-end

library were created and sequenced on a half plate on a Roche GS

FLX Titanium each resulting in 1,168,226 shotgun reads

(505,023,982 nt) and 519,989 paired-end reads (76,603,029 nt).

In addition, a standard paired-end read library was prepared and

sequenced in one channel Illumina HiSeq2000 (100 bp paired-end

reads) resulting in 264,907,616 raw reads (26,490,761,600 nt) and

12,614,650 filtered and downsampled reads (1,261,465,000 nt).

The 454 reads were separately assembled using Newbler (454 Life

Sciences) and Mira [88] and both assemblies were unified using

minimus2 [89]. The Illumina reads were used to solve homopol-

ymeric regions using Nesoni (http://bioinformatics.net.au/

software). This approach resulted in a total of 1,214 contigs ($

500 nt) with a total of 41,405,106 nt and a N50 of 66.718 nt.

Finally, the contigs were mapped on Newbler predicted scaffolds

using MUMmer [90] resulting in 209 scaffolds with a total length

of 33.6 Mb (for statistics refer to Table 1). The raw DNA-seq

reads and the resulting genome assembly is available at EMBL

under the study accession number PRJEB3978 (http://www.ebi.

ac.uk/ena/data/view/PRJEB3978).

Detection of transposable elements
Scaffolds of L. corymbifera were searched for repeats by

Repbase and the server version of Censor [91,92] (http://www.

girinst.org/censor/index.php) using the eukaryotic repeat data-

base.

K-mer analysis
The analysis was performed on the Ilumina reads with an

algorithm described in the potato genome paper [31]. The

algorithm was used to write a custom perl program. Based on the

fastq data of the Illumina reads k-mers of 41, 59, 69, and 79 nt

were detected and analyzed. Component estimation was done

manually in R.

Non-coding RNA prediction, synteny and phylogeny
A local version of tRNAscan-SE v.1.23 [93] with parameters –

omlfrF was used for the detection of tRNAs. Ouput files are

supported in the supplemental material (http://www.rna.uni-jena.

de/supplements/lichtheimia/index.html). With RNammer -S euk

-m lsu,ssu,tsu -gff (v.2.1) [94] rRNAs were detected. The 1973

ncRNA classes currently available at RFAM (v.10.1) [95] were

downloaded for homologous search. These classes were predicted

with (I) BLAST (v.2.2.25) [96] with an E-value,1024 (II) with

infernal [97] using covariance models from RFAM and (III) by

hand as indicated in main text. Genes discovered in the reads only

were found with rnabob [98] in combination with various

programs of the RNAViennaPackage v.2.0.2 (http://www.tbi.

univie.ac.at/,ivo/RNA/). All ncRNA genes are available at the

supplemental material in gff and fasta format (http://www.rna.

uni-jena.de/supplements/lichtheimia/index.html). Additionally,

sequence-structure-alignments for each RFAM-ncRNA class in

stockholm format are provided. Motif search in promoter regions

of polymerase III transcripts was performed with MEME (v.4.8.1)

[99], rnabob and by hand. Synteny analysis: for all of our

identified ncRNA positions in L. corymbifera and R. oryzae, five

direct upstream and downstream located genes and their function

were extracted, according to protein-annotation files. Pairwise

alignments of syntenic proteins with a) -p blastn and b) -p tblastn

and a minimum E-value of E,1024 were performed. For ncRNA-

phylogeny reconstruction the best scored ncRNA per ncRNA

family was joined, which was identified in all species, except 18S

and 28S rRNA, and S. pombe used as outgroup. A multiple

alignment was created by Mafft with the L-INS-i method, 1000

iterations as module in the EPoS framework for phylogenetic

analysis [100]. Out of this alignment we constructed a Neighbour

Joining Tree (Kimura correction model, 1000 bootstrap replicates)

and Mr. Bayes (v.3.1.2; two runs with each four chains and

5,000,000 generations).

Prediction of protein-coding genes and functional
annotation

Evidence-driven gene prediction was performed using AUGUS-

TUS v2.7 [37] using the gene models from Rhizopus oryzae
prediction was supported by the incorporate pooled Illumina RNA-

seq data from three biological replicates of three different

physiological conditions (control, hypoxia, iron depletion) se-

quenced on Illumina HiSeq 2000. After the raw RNA-Seq data

were quality trimmed- using btrim [101], the data were pooled and

mapped using the splice-junction mapper tophat2 [102]. From this

mapping data the AUGUSTUS protocol (http://bioinf.uni-

greifswald.de/bioinf/wiki/pmwiki.php?n = IncorporatingRNAseq.

Tophat) was followed to create hints for gene structures in an

iterative manner. Finally, the hints were incorporated during the

AUGUSTUS predcition based on the Lichtheimia genome using

the metaparameters of R. oryzae. For functional annotation

predicted protein-coding genes were analyzed by BLASTp in

BLAST2GO [38] with a minimum E-value of E#10225 and a HSP

length cut-off of 33 amino acids. Conserved domains were identified

using the InterProScan function of BLAST2GO and GO mapping

was performed based on the BLAST and InterProScan results.

Genome annotations are available at the ENA under the study

accession number PRJEB3978 (http://www.ebi.ac.uk/ena/data/

view/PRJEB3978).

Detection of differentially expressed genes under
infection-related conditions

Paired-end RNA-seq data for three biological replicates of two

infection-associated conditions (i.e., iron-depletion and hypoxia)

and a control treatment was obtained.

L. corymbifera was grown on SUP agar [103] plates for 7 days at

37uC. Spores were washed off with sterile PBS, washed with PBS and

counted using a Thoma chamber. Erlenmeyer flasks (500 ml)

containing 100 ml of chemical defined medium (1.7 g/l YNB w/o

amino acids and ammonium sulphate, 20 g/l Glucose, 5 g/l

ammonium sulphate, 50 mg/l arginine, 80 mg/l aspartic acid,

20 mg/l histidine, 50 mg/l isoleucine, 100 mg/l leucine, 50 mg/l

lysine, 20 mg/l methionine, 50 mg/l phenylalanine, 100 mg/l

threonine, 50 mg/l tryptophane, 50 mg/l tyrosine, 20 mg/l valine)

[60] were inoculated with 107 spores and grown for 16 h at 37uC
under shaking. Afterwards (i) cultures were grown for additional 2 h

under these conditions, (ii) the iron chelator bathophenanthroline-

disulfonic acid (BPS, Sigma) was added to a final concentration of
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200 mm and cultures were incubated for additional 2 h under

previous conditions or (iii) cultures were subjected to hypoxic

conditions (1% oxygen, 5% CO2) and incubated for 2 h at 37uC
under shaking. The mycelium was separated from the medium using

a miracloth filter (Millipore) and immediately frozen in liquid

nitrogen. For RNA isolation the mycelium was grounded using

mortar and pestle under liquid nitrogen and total RNA was isolated

using the RNAeasy Plant kit (Quiagen) according to the manufac-

turer’s instructions.

Sequencing was performed using Illumina HiSeq 2000. Raw

reads were quality-filtered using btrim [101] and mapped to the

genome using tophat2 [102] (parameters: –no-discordant –no-

mixed –b2-very-sensitive –max-intron-length 5000). Differentially

expressed genes were identified with EdgeR [104] which also

adjusted obtained p-Values for multiple testing. Transcripts with

an absolute fold-change$2 and an adjusted p-Value#0.01 were

considered differentially expressed. Results are available in Table

S7.

Phylome reconstruction
The phylome, meaning the complete collection of phylogenetic

trees for each gene in a genome, was reconstructed for the genome

of L. corymbifera. 24 other fungal species were included in the

reconstruction. A rough draft of the proteome of Mortierella
alpina ([26]; PUBMED ID:22174787) was predicted using

AUGUSTUS [32] due to the lack of a publicly available

proteome. The phylome was reconstructed using an automated

pipeline previously described in [39]. Briefly, for each protein in

the L. corymbifera genome a Smith-Waterman search was

performed against the fungal proteome database. Results were

filtered using an e-value cut-off E,1e25 and a continuous

overlapping region of 0.5. At most 150 homologous sequences

for each protein were accepted. Homologous sequences were then

aligned using three different programs: MUSCLE v3.8 [105],

MAFFT v6.712b [106], and kalign (http://www.biomedcentral.

com/1471-2105/6/298/)]. Alignments were performed in for-

ward and reverse direction (i.e. using the Head or Tail approach

[107]), and the 6 resulting alignments were combined with M-

COFFEE [108]. This combined alignment was trimmed with

trimAl v1.3 [109] (consistency-score cut-off 0.1667, gap-score cut-

off 0.9). Trees were reconstructed using the best-fitting evolution-

ary model. The selection of the model best fitting each alignment

was performed as follows: a Neighbour Joining (NJ) tree was

reconstructed as implemented in BioNJ [110]; the likelihood of

this topology was computed, allowing branch-length optimization,

using 7 different models (JTT, LG, WAG, Blosum62, MtREV, VT

and Dayhoff), as implemented in PhyML v3.0 [111]; the model

best fitting the data, as determined by the AIC criterion [112], was

used to derive ML trees. Four rate categories were used and

invariant positions were inferred from the data. Branch support

was computed using an aLRT (approximate likelihood ratio test)

based on a chi-square distribution. Resulting trees and alignments

are stored in phylomeDB [39] (http://phylomedb.org), with the

phylomeID 245. Trees were scanned using ETE v2 [46].

Orthology prediction
Orthologs between L. corymbifera and the other species

included in the phylome were based on phylogenies obtained

during phylome reconstruction. A species-overlap algorithm, as

implemented in ETE v2 [46], was used to infer orthology and

paralogy relationships. Briefly the algorithm decides whether a

node in a tree is a speciation of a duplication node depending on

the overlap of the species branching from the node. Overlap

between those species will indicate a duplication node. Otherwise

a speciation node will be considered.

Species tree reconstruction
The species tree was build using a concatenation method. 58

single-copy proteins that appeared in at least 21 of the 25 genomes

were selected. After concatenation, the alignment was trimmed

using trimAl [109]. Columns with more than 50% of gaps were

removed. A conservation score of 50% of the alignment was used.

The final alignment contained 46,793 positions. The tree was

reconstructed using phyML [111]. LG model [113] was selected

and a 4-categories GAMMA distribution was used. Bootstrap was

obtained by creating 100 random sequences using SeqBoot from

the phylip package. A tree was then reconstructed for each

sequence and the consensus tree was inferred using phylip. All the

nodes in the species tree had a bootstrap of 100. Additionally a

species tree based on the super-tree reconstruction program

DupTree [42] was reconstructed. The input contained the 9,478

trees obtained during phylome reconstruction. Both species trees

showed a similar topology. The only difference pertained to the

position of S. pombe. In the concatenated tree it appeared grouped

with S. cerevisiae while in the super-tree it appeared in its correct

position at the base of Ascomycota. This difference was collapsed

into a multifurcation for the tree in figure 1.

Detection of conserved regions
For the detection of conserved regions, all genomes were

modeled as strings of integers. BLAST analyses [96] were

performed for all proteins in the four mucoralean genomes all-

against-all, with an E-value threshold of 0.1. Homology families

IDs were assigned to the protein-coding genes using GhostFam

[114] with default parameters. Genomes were transformed into

strings of gene IDs, which were then used as input for the

reference gene cluster implementation in Gecko2 [43,44]. The two

parameters for the algorithm were the minimum size of the

reference cluster/hypothetical conserved region ‘‘s’’ and the

maximal distance ‘‘d’’ (insertion or deletion of a gene). For every

hypothetical gene cluster larger than s on the reference genome, all

other genomes were tested for approximate occurrences of this

reference gene cluster. The L. corymbifera genome was used as a

reference genome and searched for gene clusters with parameters

s = 3 (minimum size of the reference gene cluster) and d= 0

(number of insertions and deletions), s = 4/d= 1, s = 5/d= 2,

s = 6/d= 3 and s = 7/d= 4. Results of the different filter settings

were combined and overlapping clusters were eliminated. Local

rearrangements and duplications within the cluster occurrences

were not punished. All regions that had approximate occurrences

in at least one other genome were reported. If multiple

occurrences did intersect, only the best scoring one was reported.

Detection of duplicated regions (segmental duplications)
To detect duplicated regions in the mucoralean species, each

genome was analysed individually by using the single contigs as

reference. As for the detection of conserved regions, the same

homology assignment and parameters of s = 5 and d= 2 were used.

All regions with approximate occurrences in at least one other

contig or the reference contig were reported, unless they

intersected.

Detection of tandem duplications
Tandem duplications were defined by at least two genes

assigned to the same GhostFam gene family and a maximum of

three genes between the copies.
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Prediction of alternative splicing
Predicted transcripts of the genomes were separated in

alternative splicing events by Astalavista [24]. Events of predicted

transcripts that contain splice-junctions have been confirmed by

the number of split-mappings that confirm each of the exon-exon

junctions (Table S8). For a read to support a splice-junction, the

left part of the read was required to be included in one exon, and

the right part had to be included in the other exon of a splice

junction, with the first/last position before/after the split matching

exactly the position of the predicted intron.

Genome resources
Genome data of Aspergillus fumigatus [115], Aspergillus

nidulans [116], Batrachochydrium dendrobatidis, Cryptococcus
neoformans, Encephalitozoon cuniculi [117], Rhizopus oryzae
[28], Paracoccidioides brasiliensis, Schizosaccharomyces pombe
[118], Nosema ceranae [119], Nematocida parisii [120], Puccinia
graminis [121], Ustilago maydis and Coprinus cinerea [122] are

genome sequencing projects of the Broad Institute of Harvard and

MIT (http://www.broadinstitute.org/) (see Table S9 for detailed

citations). Phycomyces blakesleeanus, Phanerochaete chrysosporium
[123], Laccaria bicolor [124], Mucor circinelloides, Nematostella
vectensis [125], Monosiga brevicollis [126] and Serpula lacrymans
[127] genomic data were obtained from Joint Genome Institute

(JGI). These sequence data were produced by the US Department

of Energy Joint Genome Institute http://www.jgi.doe.gov/ in

collaboration with the user community. The genomes of

Homoloaphlyctis polyrhiza [128] and Mortierella alpina [26] were

obtained from Genbank (Hp: PRJNA68115; Ma: PRJNA41211).

The Neurospora crassa genome [129] was obtained from UniProt

reference genomes. The Saccharomyces cerevisiae genome was

obtained from Saccharomyces Genome database (SGD) (see Table

S9) [53].

Supporting Information

Figure S1 K-mer frequency distribution for Lichtheimia cor-
ymbifera. The k-mer frequency distribution (black line) was

calculated for all k-mers of length of 59, i.e. for all possible 59-

mers derived from the original Illumina/Solexa reads. The

number of k-mers (y-axis) is plotted against the frequency at

which they occur (x-axis). The distribution shows a main peak

(shaded in light gray) and a steep rise to the left (shaded in dark

gray). This left-most rise of k-mers at lower frequencies represents

mostly k-mers with randomly occuring sequencing errors. The

main peak represents k-mers derived from (putatively) correct

sequencing reads. This main peak can be dissected into three

normal distributions (red, blue and orange lines) the sum of which

(green line) matches the observed distribution (black line). The

three component distributions represent the ‘homozygous’ part of

the genome (blue line, major component), the ‘heterozygous’ part

of the genome (red line), and most likely some repeat regions that

make up a minor proportion of the observed k-mers (orange line).

Component estimation was done manually in R. The component

distributions have the same variance (21), but different means (blue

116, red 65, orange 165) and proportions (blue 94%, red 4%,

orange 2%).

(TIFF)

Figure S2 Structure of spliceosomal RNAs and ncRNA based

phylogeny. (A) The last stem (IV) of Lichtheimia U11 snRNA is

extended in comparison to other U11 snRNAs and to U1 snRNA.

U2 snRNA folds into an expected secondary structure. In contrast,

U12 snRNA shows an extended stem II, and misses the third stem

(III). Stem IV/V is much shorter as in other known U12 snRNAs.

U5 snRNA is used by both spliceosomes, with the general

eukaryotic secondary structure. 2D structures were computed

using RNAfold (RNA Vienna Package). Boxes indicate sm binding

sites. Phylogeny of L. corymbifera, M. circinelloides, P. blakesleea-
nus, R. oryzae and S. pombe (outgroup) based on ncRNAs (except

18S and 28S rRNA). Alignment computed via Mafft L-INS-i with

1000 generations; Tree construction via (B) Neighbour Joining:

Kimura: 1000 bootstrap replicates and (C) Mr. Bayes: two runs

with each four chains and 5,000,000 generations.

(TIFF)

Figure S3 Tandem duplications in L. corymbifera. (A) Number

and size of tandem duplication in the L. corymbifera genome. (B)

Functional classes of genes in tandem duplications based on

PFAM annotation. Asterisk indicates classes which are enriched in

tandem duplications (Fisher test, P,0.05). (C) Gene family size

comparison of L. corymbifera and R. oryzae. Gene families are

indicated as larger in Lichtheimia (L.R), smaller in Lichtheimia
(L,R) or as large as in Rhizopus (L = R).

(TIFF)

Figure S4 Expression of tandem duplicated genes. Tandem

duplicated genes were analysed based on the RNA-seq data.

Tandems were regarded as (i) not regulated if no copy in the

cluster was up/down-regulated under the tested conditions, (ii) co-

regulated if all copies in the clusters were up/down-regulated

under at least one of the conditions, (iii) not co-regulated if one of

the copies was differently regulated than the other(s), (iv)

antithetically regulated if one copy was up- and the other down-

regulated. Genes were regarded as differentially regulated if there

was a two-fold change of expression and P,0.01 (edgeR).

(TIFF)

Figure S5 Alternative splicing in L. corymbifera. (A) Number

and proportion of different classes of alternative splicing events

based in evidence driven gene prediction (outer ring) and

confirmed events (inner ring). (B) Proportion of AS genes where

AS patterns were changed under stress conditions compared to

control.

(TIFF)

Figure S6 Distribution of genes involved in iron uptake within

the fungal kingdom. Orthologs of iron uptake genes were

identified using the phylome of L. corymbifera (indicated in blue).

If no ortholog was found BLASTp analysis was performed using

the L. corymbifera protein sequence and an E-value E#10210

(indicated in pink). Intracellular iron storages besides ferritin are

indicated as ‘s’ (siderophores) or ‘v’ (vacuolar) according to

previous results (1 Silva et al., 2 Haas et al.). The presence of a

sidA ortholog is indicated as ‘‘+’’, the absence as ‘‘2’’ according to

previous results (1 Silva et al., 2 Haas et al.).

(TIFF)

Figure S7 Differential expression of transcription factors under

iron depletion and hypoxia. Bar charts on top represent TFs

grouped according to their functional domains (domain combina-

tions). Up- and down-regulated genes are indicated in red and

green respectively. The bar chart on the bottom shows the total

amount of TFs regulated under the conditions.

(TIFF)

Table S1 Sequencing statistic of the L. corymbifera genome and

transcriptome.

(PDF)

Table S2 Transposable and repetitive elements in the L.
corymbifera genome.

(PDF)
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Table S3 Overview of ncRNAs found in basal fungi. op –

Close/Part to Operon; pg – Pseudogene; Ror – R. oryzae; Lco – L.
corymbifera; ? – candidate.

(PDF)

Table S4 Sequencing and mapping statistics of RNA sequenc-

ing.

(XLS)

Table S5 Signalling pathway components included in the study

and orthologues identified in L. corymbifera.

(PDF)

Table S6 Classification and gene IDs of putative protein

phosphatases in the L. corymbifera genome.

(PDF)

Table S7 RNA-Seq mapping and differentially expressed genes.

(XLS)

Table S8 Potential alternatively spliced genes in L. corymbifera
and confirmation of alternative transcripts by RNA-Seq data.

(XLSX)

Table S9 Genomes used in this study.

(PDF)
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12. Tieghem, Van P (1876) Troisiéme mémoire sur les Mucorinées. Ann des Sci

Nat Bot 4: 312–399.

13. Hoffmann K, Discher S, Voigt K (2007) Revision of the genus Absidia
(Mucorales, Zygomycetes) based on physiological, phylogenetic, and morpho-

logical characters; thermotolerant Absidia spp. form a coherent group,

Mycocladiaceae fam. nov. Mycol Res 111: 1169–1183. doi:10.1016/

j.mycres.2007.07.002.

14. Alastruey-Izquierdo A, Hoffmann K, de Hoog GS, Rodriguez-Tudela JL,

Voigt K, et al. (2010) Species recognition and clinical relevance of the

zygomycetous genus Lichtheimia (syn. Absidia pro parte, Mycocladus). J Clin

Microbiol 48: 2154–2170. doi:10.1128/JCM.01744-09.

15. De Hoog, GS, Guarro, J, Gene, J, Figueras M (2000) Atlas of Clinical Fungi.

2nd ed. Centraalbureau voor Schimmelcultures. p. 58–114.

16. Haidle CW, Storck R (1966) Control of dimorphism in Mucor rouxii.
J Bacteriol 92: 1236–1244.

17. Cooper BH (1987) A case of pseudoparacoccidioidomycosis: Detection of the

yeast phase of Mucor circinelloides in a clinical specimen Abstract.

Mycopathologia 97: 189–193.

18. Hesseltine CW, Featherston C (1985) Anaerobic growth of molds isolated from

fermentation starters used for foods in Asian countries. Mycologia 77: 390–400.

19. Sun H-Y, Aguado JM, Bonatti H, Forrest G, Gupta KL, et al. (2009)

Pulmonary zygomycosis in solid organ transplant recipients in the current era.

Am J Transplant 9: 2166–2171. doi:10.1111/j.1600-6143.2009.02754.x.

20. Bellanger A-P, Reboux G, Botterel F, Candido C, Roussel S, et al. (2010) New

evidence of the involvement of Lichtheimia corymbifera in farmer’s lung disease.

Med Mycol 48: 981–987. doi:10.3109/13693781003713711.

21. Copetti MV, Iamanaka BT, Frisvad JC, Pereira JL, Taniwaki MH (2011)

Mycobiota of cocoa: from farm to chocolate. Food Microbiol 28: 1499–1504.

doi:10.1016/j.fm.2011.08.005.

22. Mphande FA, Siame BA, Taylor JE (2004) Fungi, aflatoxins, and cyclopiazonic

acid associated with peanut retailing in Botswana. J Food Prot 67: 96–102.

23. Baffi MA, Romo-Sánchez S, Ubeda-Iranzo J, Briones-Pérez AI (2012) Fungi
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(2013) Alternative splicing and subfunctionalization generates functional
diversity in fungal proteomes. PLoS Genet 9: e1003376. doi:10.1371/

journal.pgen.1003376.

56. Schrettl M, Bignell E, Kragl C, Joechl C, Rogers T, et al. (2004) Siderophore
biosynthesis but not reductive iron assimilation is essential for Aspergillus
fumigatus virulence. J Exp Med 200: 1213–1219. doi:10.1084/jem.20041242.

57. Ramanan N (2000) A High-Affinity iron permease essential for Candida
albicans virulence. Science (80-) 288: 1062–1064. doi:10.1126/science.
288.5468.1062.

58. Howard DH (1999) Acquisition, transport, and storage of iron by pathogenic

fungi. Clin Microbiol Rev 12: 394–404.

59. Fu Y, Lee H, Collins M, Tsai H-F, Spellberg B, et al. (2004) Cloning and
functional characterization of the Rhizopus oryzae high affinity iron permease

(rFTR1) gene. FEMS Microbiol Lett 235: 169–176. doi:10.1016/
j.femsle.2004.04.031.

60. Ibrahim AS, Gebremariam T, Lin L, Luo G, Husseiny MI, et al. (2010) The

high affinity iron permease is a key virulence factor required for Rhizopus
oryzae pathogenesis. Mol Microbiol 77: 587–604. doi:10.1111/j.1365-

2958.2010.07234.x.

61. Symeonidis a S (2009) The role of iron and iron chelators in zygomycosis. Clin
Microbiol Infect 15 Suppl 5: 26–32. doi:10.1111/j.1469-0691.2009.02976.x.

62. Ibrahim AS, Spellberg B, Walsh TJ, Kontoyiannis DP (2012) Pathogenesis of

Mucormycosis. Clin Infect Dis 54: 1–7. doi:10.1093/cid/cir865.

63. Ziegler L, Terzulli A, Gaur R, McCarthy R, Kosman DJ (2011) Functional
characterization of the ferroxidase, permease high-affinity iron transport

complex from Candida albicans. Mol Microbiol 81: 473–485. doi:10.1111/

j.1365-2958.2011.07704.x.

64. Thieken a, Winkelmann G (1992) Rhizoferrin: a complexone type siderophore
of the Mucorales and entomophthorales (Zygomycetes). FEMS Microbiol Lett

73: 37–41.

65. Drechsel H, Tschierske M, Thieken A, Jung G (1995) The carboxylate type
siderophore rhizoferrin and its analogs produced by directed fermentation.

J Ind Microbiol Microbiol 14: 105–112.

66. Boelaert JR, de Locht M, Van Cutsem J, Kerrels V, Cantinieaux B, et al.
(1993) Mucormycosis during deferoxamine therapy is a siderophore-mediated

infection: In vitro and in vivo animal studies. J Clin Invest 91: 1979–1986.
doi:10.1172/JCI116419.

67. Ibrahim AS, Gebermariam T, Fu Y, Lin L, Husseiny MI, et al. (2007) The iron

chelator deferasirox protects mice from mucormycosis through iron starvation.
J Clin Invest 117: 2649–2657. doi:10.1172/JCI32338.

68. Schmitt I, Partida-Martinez LP, Winkler R, Voigt K, Einax E, et al. (2008)

Evolution of host resistance in a toxin-producing bacterial-fungal alliance.
ISME J 2: 632–641. doi:10.1038/ismej.2008.19.

69. Partida-Martinez LP, de Looss CF, Ishida K, Ishida M, Roth M, et al. (2007)

Rhizonin, the first mycotoxin isolated from the zygomycota, is not a fungal
metabolite but is produced by bacterial endosymbionts. Appl Environ

Microbiol 73: 793–797. doi:10.1128/AEM.01784-06.

70. Larcher G, Dias M, Razafimandimby B, Bomal D, Bouchara J-P (2013)
Siderophore production by pathogenic Mucorales and uptake of deferoxamine

B. Mycopathologia. doi:10.1007/s11046-013-9693-5.
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100. Griebel T, Brinkmeyer M, Böcker S (2008) EPoS: a modular software

framework for phylogenetic analysis. Bioinformatics 24: 2399–2400.
doi:10.1093/bioinformatics/btn364.

101. Kong Y (2011) Btrim: a fast, lightweight adapter and quality trimming program

for next-generation sequencing technologies. Genomics 98: 152–153.
doi:10.1016/j.ygeno.2011.05.009.

102. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, et al. (2013) TopHat2:
accurate alignment of transcriptomes in the presence of insertions, deletions

and gene fusions. Genome Biol 14: R36. doi:10.1186/gb-2013-14-4-r36.
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