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Introduction 

West Nile virus (WNV) is a mosquito-borne virus belonging to the Japanese encephalitis 

complex of the Flaviviridae family including Usutu virus (USUV), Japanese encephalitis virus 

(JEV), Saint Louis encephalitis virus (SLEV) and Murray Valley Fever virus (MVFV) (Gubler et 

al., 2007). WNV was first isolated and identified in the West Nile region of Uganda in 1937 from 

a febrile female adult patient (Smithburn et al., 1940). WNV is transmitted by the bite of infected 

mosquitoes, particularly Culex spp mosquitoes. Birds are considered as a main reservoir host and 

migratory birds and can play an important role in long distance viral spread (Hubalek and 

Halouzka, 1999; Hayes et al., 2005, Ergunay et al., 2015). West Nile fever outbreaks concern 

essentially humans, and horses as dead-end hosts (Hubalek and Halouzka, 1999; Hayes et al., 

2005; Kulasekera et al., 2001; Murray et al., 2010). Clinical symptoms range from asymptomatic 

or mild influenza-like illness to severe neurological disease, which can be characterized by acute 

flaccid paralysis, encephalitis and meningoencephalitis (Hayes et al., 2005; De Filette et al., 

2012). Since the mid-1990s, WNV outbreaks have emerged in Europe and America and WNV is 

now recognized as one of the most widespread flaviviruses worldwide (Vilibic-Cavlek et al., 

2014; Hernández-Triana et al., 2014; DeGroote et al., 2014; Cox et al., 2015) and not restricted 

to tropical regions.  

WNV exhibits a great genetic diversity with at least eight different lineages circulating in the 

world, without known specific biological properties (Mackensie & Williams, 2009; Fall et al., 

2014). Among them, 4 (i.e. 1, 2, Koutango and a putative new lineage) are present in Africa, 

particularly in Senegal. Lineage 1 is the only one found worldwide, and associated with all major 

human outbreaks (Murray et al., 2010; Hernández-Triana et al., 2014; Anukumar et al., 2014).  
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Lineage 2 was exclusively present in Africa but since 2004, this lineage has been reported 

circulating in Europe, with severe cases in humans and birds (Hernández-Triana et al., 2014; 

Bakonyi et al., 2006). Viruses with high and low neuro-invasiveness phenotype exist in both 

lineages 1 and 2. Koutango and the putative new lineage are local African lineages, never 

isolated in humans, birds or horses (Fall et al., 2014;	

http://www.pasteur.fr/recherche/banques/CRORA/). Recently, the putative new lineage was 

experimentally shown to be transmitted by Culex neavei, which suggests a possible transmission 

particularly to birds, and horses (Fall et al., 2014). The Koutango lineage was reported more 

neurovirulent in mice than WNV NY99, a known virulent lineage 1 strain (Prow et al., 2014). 

These findings provided new insights into transmission and pathogenesis of these African local 

WNV lineages.  

The report of lineage 2 in Europe, which was a local African lineage, suggests ongoing 

exchanges between Africa and Europe, and migratory birds that overwintered in Africa may have 

introduced lineage 2 into Europe (Bakonyi et al., 2006; Hernández-Triana et al., 2014). A similar 

migration event has been also observed for Usutu virus (Nikolay et al., 2013). 

Interestingly, Senegal is an important stopover point for bird migration between Africa and 

Europe in the area of the ornithological park Djoudj on the Senegal river. All these observations 

suggest the potential of the African local lineages (Koutango and the putative new lineage) to 

spread beyond their expected geographical areas into Europe.  

These different WNV lineages are not readily differentiated	 by	 serology; therefore, rapid 

molecular methods are required for detection and genotyping of WNV in suspect cases and 

potential vectors. This may have important applications in surveillance and epidemiology of 

African WNV lineages in Africa but also for surveillance of their emergence in Europe and other 
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continents. Molecular tools are available for WNV detection (Linke et al., 2007; Zaayman et al., 

2009; Faggioni et al., 2014) but the genetic diversity of all African WNV variants has never been 

taken into account. Here we developed rapid molecular tools for a consensus detection of all 

WNV lineages (WNV consensus assay) and genotyping of the different WNV lineages reported 

in Africa (lineage-specific assays).  

Materials and methods 

Virus  

Fifteen WNV and 7 other flavivirus isolates were used in this study and are described in table 1. 

The virus stocks were prepared by inoculating Aedes pseudoscutellaris (AP61) continuous cell 

lines for 4 days and Immuno-Fluorescence Assay (IFA) as previously described (Digoutte et al., 

1992) was performed to assess the cell infection with WNV. Virus stocks were titrated as 

previously described, using PS cells (Porcine stable kidney cell line, American Type Culture 

Collection, Manassas, USA) (De Madrid AT and Porterfield JS, 1969). The cell culture media 

were used as viral stocks for RNA extraction and RT-PCR.  

Primers and probes design for WNV consensus assay 

In order to develop a LNA (Locked Nucleic Acid)-probe based real time RT-PCR, target regions 

described previously, envelope gene (E-gene) (Lanciotti et al.,1999) and 3’UTR (Clavero et al., 

2006) were considered. The Envelope gene target was dismissed as it had been chosen for 

detection of American WNV type 1 sequences only. Using 78 sequences available from Genbank 

at the time of design, an amplicon was designed for the 3’UTR target region. Because of too high 

divergence the sequences “Rabensburg“ (AY765264) and “LEIV-Krnd88-190“ (AY277251) 

were not included in the alignments. These primers were synthesized (TIB Mol-Biol, Berlin, 
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Germany) and tested to identify a pair, which would not amplify any of the other Flaviviruses 

tested (table 2).  

Primers and probes design for WNV lineage-specific assays  

In order to develop lineages specific-real time RT-PCR assays, the E-gene sequences of strains 

belonging to each lineages (1, 2, Koutango and the putative new lineage) were considered. The 

different primers and probes designed (table 2) were synthesised (TIB Mol-Biol, Berlin, 

Germany) and tested.  

RNA standard  

For the consensus assay, a 1047 nucleotide fragment of the 3’UTR region was amplified using 

WNVUTR UP 5’-TGCTTCTGTACTTCCACAGAAGAG-3 and WNVUTR DP 5’-

AGATCCTGTGTTCTCGCACC-3. For the lineage-specific assays, 727bp fragments of the E-

gene were amplified with the primers WNV E-F (5´-CAACTGCCTAGGAATGAGYAACAG-

3´) and WNV E-R (5´-GGCATGAGGTTCTTCAAACTC CA-3´). The obtained PCR products 

were ligated into pCRII (3’UTR) and pCR2.1 (E-gene) (Life Technologies, GmbH, Darmstadt) 

and used for in vitro transcription of an RNA standard with T7 RNA-polymerase (Roche, 

Mannheim, Germany) as described previously (Nikolay et al., 2014).  

Determination of specificity 

The specificity of the different assays was determined by testing 10 WNV strains belonging to 

the 4 lineages circulating in Africa (i.e 3 lineage-1, 4 lineage-2, 2 Koutango, and the unique strain 

of the putative new lineage) in comparison to other flaviviruses isolates of Dengue virus, Usutu 

virus, Yellow fever virus, Zika virus and Bagaza. Prior to WNV RT-PCR assays, all these 

isolates were tested using Pan-Flavi assay (Patel et al., 2013) and existing specific assays for 
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DENV (Wagner et al., 2004), YFV (Weidmann et al., 2010), and Zika (Faye et al., 2013) as 

described previously for amplification control.  

Determination of sensitivity 

Ten-fold dilutions of each in vitro RNA standard with known initial copy number were quantified 

in triplicate using the different assays.  Regression curves were obtained representing the RNA 

copy number/reaction vs the threshold cycle value (Ct). The lowest RNA copy number with RT-

PCR detection was considered as the analytical detection limit. 

The sensitivity of viral RNA detection was also evaluated by serial 10-fold dilutions of viral 

stocks with known titer of each WNV type in L-15 medium (Gibco BRL, GrandIsland, NY, 

USA) and in human serum (Sigma Aldrich, Saint-Louis, MO, USA).  To verify for the number of 

genome copies per plaques forming units (pfu) all supernatants were quantified using the 

respective WNV real time RT-PCR assays. The WNV reference strain Eg101 was used for 

lineage 1-specific and consensus RT-PCR assays. The WNV reference strains B956, ArD96655, 

and ArD94343 were used respectively for lineage 2, Koutango, and new lineage-specific assays. 

The assays were performed in triplicate. For the 10-fold dilutions, regression curves were 

obtained representing the pfu/reaction vs the threshold cycle value (Ct). The lowest titer with RT-

PCR detection was considered as the analytical detection limit.  

Processing of field samples and experimentally infected mosquitoes  

Field mosquito pools and rodents, and experimentally infected mosquitoes (Fall et al., 2014) 

were used to test the performance of the assays. Experimentally infected mosquitoes were 

homogenized as previously described (Fall et al., 2014) and mosquito pools collected in the field 

were homogenized in 3 ml of L-15 supplemented with 20% of foetal bovine serum	FBS. Rodent 
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tissues were homogenized in 3 to 4 ml of L-15 containing 5 % FBS. Viral RNA was extracted 

from the homogenates and analyzed by real time RT-PCR assays (see below).  

RNA extraction and RT-PCR 

RNA was extracted from 100 µl of each viral stock, mosquito or rodent homogenates and 10-fold 

dilution of WNV lineage stocks in L-15 medium or human serum using the QiaAmp Viral RNA 

extraction kit (Qiagen, Heiden, Germany) according to the manufacturer’s instructions.  

The real-time RT-PCR assay was performed using an ABI 7500 cycler (Applied Biosystems, 

Foster City, US) and the Quantitect Probe RT-PCR kit (Qiagen, Heiden, Germany). Reactions 

were performed in 25 µl reaction volume containing 1 µl diluted RNA, 0.5 µM foward and 

reverse primer, 0.2  µM of probe, 12.5 µl of 2× QuantiTect Probe RT-PCR Master Mix, and 0.25 

µl of Quantitect RT Mix. The RT-PCR conditions were as follows: 15 min 50°C, 10 min 95°C 

and 40 cycles of 15 s 95°C and 1 min 60°C. 

Determination of intra, inter-assay reproducibility and efficiency 

Samples were extracted and amplified 10 times in the same run to evaluate intra-assay variability 

and in 10 different runs to evaluate inter-assay variability. The amplification efficiency of the 

primers was calculated from the slope of the standard regression lines (E=101/slope −1). 

Results 

Analytical specificity and analytical sensitivity 

RNAs from the 10 WNV and other flaviviruses isolates were tested using Pan-Flavi, WNV 

consensus, and WNV lineage-specific real time RT-PCR assays developed herein. The Pan-Flavi 

assay detected all the isolates tested. The WNV consensus assay detected all the 10 WNV strains 

but initially also detected RNAs from Usutu virus strains (data not shown). Using the ARMS 

(amplification refractory mutation system) principle (Newton et al., 1989; Weidmann et al., 
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2003) the reverse primer was adapted to an insertion in the USUV sequences matching the 2nd 

position of a newly designed WNV reverse primer (figure 1).  The new WNV consensus assay 

(table 2) now did not show any more cross detection of RNAs from Usutu virus strains. 

To boost differentiation and therefore specificity of the individual WNV lineage-specific assays,  

primers were also designed using the ARMS principle with specific matches at the 2-3 position of 

the 3’-end of the primers mismatching to as many of the other strains as possible (figure 2). 

These lineage-specific assays detected and correctly genotyped the respective WNV strains tested 

in each lineage and did not detect other flaviviruses tested nor cross-react within other WNV 

lineages tested (table 3).  

The performance of the assays was tested by using 10-fold dilutions of in vitro RNA standards. 

Five independent runs were done using the RNA standards of the consensus and each of the 

lineage-specific assays (figure 3). The analytical detection limit was 10 copies/reaction for all the 

RT-PCR assays (figure 3). The linear regression showed that the different curves were linear with 

correlation coefficients ≥ 0.998 in all cases. Efficiencies ranged from 99% to 141% with lower 

efficiencies for Koutango (103%) and putative new lineage (99%) assays, and higher efficiency 

for the consensus assay (141%). The lineages 1 and 2 assays were intermediate with 129% and 

121% respectively (table 4). 

Viral RNA quantification  

The determined titers of Eg101, B956, ArD96655 and ArD94343 (corresponding respectively to 

lineages 1, 2, Koutango and new lineage viral stocks) are presented table 4. The RT-PCR 

analyses on these viral stocks were done using lineage-specific assays and the copy number and 

ratio copy number/pfu are presented table 4. 
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Ten-fold dilutions of Eg101, B956, ArD96655, and ArD94343 prepared in L-15 medium and 

human serum were analyzed by RT-PCR with the lineage-specific assays. The consensus assay 

was tested only on strain Eg101 (lineage 1) and yielded a detection limit of 0.13 pfu/reaction 

(Figure 4A). The lineage specific reactions yielded a detection limit of 1.3 pfu/reaction, 5 

pfu/reaction, 4.49 pfu/reaction and 9.16 pfu/reaction respectively for the detection of lineage 1, 

lineage 2, Koutango and the putative new lineage (figures 4B-E).  

The curves obtained were comparable between L-15 and human serum and linear with correlation 

coefficients ≥ 0.998. Efficiencies ranged from 74% to 158% for dilutions in L15, and 82% to 

138% for dilutions in human serum, with higher efficiencies for the consensus assay, and lower 

efficiencies for lineage 2-specific assay in both L15 and human serum. 

Processing of field samples and experimentally infected mosquitoes  

To assess the performance of our assays, a panel of samples from experimentally infected 

mosquitoes, wild caught mosquito pools, and rodent tissues were used. For each experimental 

sample, the corresponding virus used to infect the mosquitoes was correctly detected and 

genotyped (table 5). The field samples naturally infected with WNV lineage 1 or Koutango, as 

previously assessed by classical RT-PCR and sequencing (data not shown), were correctly 

detected and genotyped with the lineage-specific assays in the mosquito pools or rodent tissues 

including brain homogenates (table 5).  

Variability intra and inter-assay 

The intra-assay coefficients variation (CV) ranged from 1.31 to 1.75% and the inter-assay CV 

ranged from 2.66 to 4.62% for all assays.  
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Discussion 

Molecular techniques are faster, more accurate and sensitive for virus detection compared to 

culture methods. Here, we established molecular tools for a consensus detection of all WNV 

lineages and genotyping of the lineages reported in Africa. The good sensitivity of the assays 

allows the detection and genotyping of all WNV isolates in culture medium, human serum, as 

well as in field and experimental samples. After the development of the lineage specific assays 

new WNV lineage 2 sequences described in Europe became available (Barzon et al., 2013). Since 

they introduce a mismatch at position 3 from the 3’end of the lineage 2 specific forward primer, 

we suggest to use the lineage 1-specific upstream primer which is also used for Koutango for 

highly sensitive detection of these strains (Figure 2). However, we were not able to test these 

strains in the frame of this study.  

Our assays allowed the quantification of WNV RNA by using quantitative RNA standards, 

yielding viral loads in mosquito and vertebrate samples.  

Using the RNA standard, the different assays were very sensitive and able to detect 10 RNA 

molecules. Our RT-PCR assays exhibit therefore analytical sensitivity similar to others using 

WNV lineages 1 and 2 (Clavero et al., 2006; Barros et al., 2013; Del Amo et al., 2013).  

Using viral RNA, the consensus and lineage 1- specific assay were more sensitive and were able 

to detect less than 2 pfu of virus. Using the same strain for the consensus and lineage 1-specific 

assays showed that the consensus assay is more sensitive for detection of low viral loads. This is 

reflected by the different ratios copy number/pfu obtained for Eg101 (56.08 with the consensus 

assay and 34.34 with the lineage 1-specific assay) and can be correlated with the higher 

efficiencies of the consensus RT-PCR assay.  
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Our results showed also that the different WNV lineages can be detected in human serum with 

slightly higher efficiencies compared to culture medium, and in vertebrate tissues, enabling the 

early and efficient diagnosis of these different WNV lineages from clinical samples. Finally our 

study revealed finally new insight on the replication of these particular WNV strains in AP61 

mosquito cells. The ratios genome copy number / infectious virion (pfu) showed that new lineage 

strain and Koutango replication were very efficient with few genomes per pfu indicating 

apparently a high rate of infectious particles produced, while lineage 2 appeared to overproduce 

genomes indicating less efficient packaging and possibly more defective particles during its 

replication (Weidmann et al., 2011).   

Conclusions 

To our knowledge, the RT-PCR assays described in this paper are the first ones that allow the 

detection and genotyping of all reported African WNV variants.  

Surveillance programs now can target all WNV variants, and our tools can be used to monitor the 

prevalence of WNV virus lineages in mosquito vectors and vertebrates and may be applied in 

diagnosis as well as in epidemiology and surveillance programs. This is particularly relevant for 

the surveillance of WNV lineages emerging in geographic regions where they have not 

previously been identified. The consensus assay is the most sensitive in all tested materials and 

does not cross detect any of the tested Flaviviruses and therefore is an ideal diagnostic assay 

covering the breadth of WNV strains worldwide. 

Therefore, our tools are efficient for rapid detection of African WNV lineages, however they 

cannot replace conventional techniques (serology, virus isolation or molecular sequencing), 

which are still needed for in-depth characterization of the virus. 
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Figure legends 

Figure 1: Sequence alignment of 3’UTR sequences of WNV and USUV as indicated by 

accession numbers with WNV consensus assay primers and LNA-probe. Nucleotide positions 

refer to the sequence of reference strain Eg101 from Egypt (AF260968). AF196835 represents 

sequences from the USA. AY277252 represents sequences from Russia.	

Figure 2: Sequence alignment of WNV E gene sequences from Africa, Senegal, Egypt, Uganda, 

Europe and America as indicated by strain designations with WNV lineage specific primers and 

probes. The forward primer WNV FP is common to lineages 1, Koutango and the European 

WNV2 isolates. Nucleotide positions refer to the sequence of reference strain Eg101 from Egypt 

(AF260968). Probe mismatches are highlighted in bold in reference to probe WNV1 P for the 

detection of WNV lineage 1. Mismatches introduced to the 3’ ends of the primers according to 

the ARMS principle to enhance differentiation are highlighted in red. 

Figure 3: Serial 10-fold dilutions of in vitro RNA standard have been tested in the corresponding 

real-time RT-PCR assay. Tested dilutions ranged from 1 × 108 to 0.1 copies/reaction for the RNA 

standard of lineages 1, 2, Koutango and new lineage-specific assays and consensus assay.  

Figure 4: Serial 10-fold dilutions of virus in L-15 medium and human serum have been tested  

for consensus (panel A), lineage 1 (panel B), lineage 2 (panel C), Koutango (panel D) and new 

lineage (panel E) in the corresponding real-time RT-PCR assay.  
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