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SUMMARY ABSTRACT 

Bumblebees are ecologically and economically important as pollinators, but some 

species are suffering severe declines and range contractions. In this thesis, three cryptic 

bumblebee species are studied to elucidate differences in their distribution, ecology and 

population genetics. 

As a result of their high morphological similarity, very little is known about the 

lucorum complex species: B. lucorum, B, cryptarum and B. magnus.  In this study, their 

distributions across Great Britain were assessed using molecular methods, revealing that B. 

lucorum was the most abundant and most generalist of the three species, whereas B. magnus 

was the rarest and most specialised, occurring almost exclusively on heathland. Additionally, 

both B. magnus and B. cryptarum were more likely to be present at sites with cooler summer 

temperatures. 

Cryptic species represent interesting models to investigate the levels of niche 

differentiation required to avoid competitive exclusion. Characterising the niches of these 

species at a single site across the flight season revealed differences along three niche 

dimensions: temporal activity, weather sensitivity and forage-resource use. These species 

exhibited asymmetric niche overlap; a combination of ecological divergence and spatio-

temporal heterogeneity may contribute to maintaining them in sympatry. 

Population genetic studies can be highly informative for understanding species 

ecology and for conservation management. The differences in habitat specialisation exhibited 

by these bumblebee species provide the opportunity to test conflicting hypotheses about links 

between dispersal and ecological specialisation: are habitat specialists selected to have low or 

high dispersal ability?   Based on microsatellite analysis, the generalist B. lucorum had high 

levels of genetic diversity and little population structure across large spatial scales. The 



ii 
 

habitat specialist B. magnus had the lowest genetic diversity but similar levels of population 

differentiation to the moderate generalist, B. cryptarum. However, unlike B. cryptarum, B. 

magnus population differentiation was not affected by geographic distance, suggesting that 

this specialist species may maintain effective dispersal across large scales despite being 

restricted to a fragmented habitat. 

 Bergmann’s rule is a well-known ecogeographic rule describing geographical patterns 

of body size variation, whereby larger endothermic species are found more commonly at 

higher latitudes. Ectotherms, including insects, have been suggested to follow converse 

Bergmann’s gradients, but the facultatively endothermic nature of bumblebees makes it 

unclear which pattern they should adhere to. This thesis reports caste-specific differences in 

body size between the three lucorum complex species in agreement with Bergmann’s rule: 

queens and males of B. cryptarum and B. magnus, which were found more commonly at 

higher latitudes and at sites with cooler temperatures, were larger than those of B. lucorum.  

Population genetic studies of invertebrates generally require the destruction of large 

numbers of individuals, which is often undesirable. Testing a variety of faecal collection and 

DNA extraction methods demonstrated that it is possible to obtain DNA of sufficient quality 

for genotyping from bumblebee faeces, without harming the individuals. This method would 

be valuable for studies of rare or declining bee species, for queens in reintroduction projects, 

and may be applicable to other arthropods. 

Overall this thesis contributes substantially to our knowledge of the ecology and 

population genetics of three important pollinator species. It provides data to inform species 

conservation, as well as understanding of ecosystem functioning and population dynamics. 

Furthermore, it successfully uses these cryptic species as a model to test several fundamental 

ecological theories. 
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1.1 Species and speciation 

1.1.1 Species diversity 

It is very difficult to quantify the extent of biodiversity on earth; even the number of 

recognised species is difficult to calculate. Groombridge and Jenkins (2002) estimate that 

1.75 million species have been described so far, whereas Mora et al. (2011) calculate it to be 

1,438,769 species. Predictions for the number of species yet to be discovered are even more 

variable and highly speculative: estimates include approximately 8,961,000 (Mora et al. 

2011) and 12,240,000 eukaryotes (Groombridge & Jenkins 2002), suggesting that despite 250 

years of taxonomic study, only a small proportion of the terrestrial species (~14%; Mora et 

al. 2011) and oceanic species (~9%; Mora et al. 2011) have been classified. This means that 

we lack a reference point against which to measure past and future biodiversity losses.  

Human interference in natural ecosystems is one of the major drivers of biodiversity 

loss, with anthropogenic habitat destruction and degradation representing one of the most 

important causes of species declines and extinctions (Tilman et al. 1994). Biodiversity 

provides vital resources and ecosystem services, which include food, timber, nutrient cycling, 

water purification and pollination (Daily 1997; Cardinale et al. 2012). As a result, 

maintaining biodiversity in the face of serious declines is of vital importance; furthermore, 

understanding the mechanisms driving biodiversity declines and the factors that can interfere 

with its persistence are major challenges for biologists.  

 

1.1.2 Species concepts 

Despite the immense importance of species determination in biology, the delimitation 

of species is not simple. There are many different concepts for species delimitation, 

advocated by different biologists, many of which are at least partially incompatible, creating 

disagreement about the theoretical concept of the species and difficulties in defining the 
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boundaries and numbers of species (de Quiroz 2007). Three of the best known species 

concepts are the “biological species concept”, which is based on interbreeding and defines 

species as collections of interbreeding natural populations that are reproductively isolated 

from other such collections (Mayr 1942, 1995; Coyne & Orr 2004); the “ecological species 

concept”, which is based on the operational criteria of the same niche or adaptive zone (Van 

Valen 1976; de Quiroz 2007) and “typological” concepts or those based on morphological 

differences (Coyne & Orr 2004), although these latter concepts are generally no longer 

applied in isolation. A large range of other more minor concepts also exist (reviewed in 

Coyne & Orr 2004). 

These alternative concepts are based on different important biological properties, 

depending on the focus of the biologists studying them. The problems occur because the 

properties used by these concepts to define species, arise at different times, and in a different 

order, during the process of speciation. Definitions based on a single one of these different 

properties can therefore come to different conclusions concerning which lineages deserve to 

be recognised as species (de Quiroz 2007).  

 

1.1.3 Speciation 

Speciation is a major feature of evolution, yet understanding it remains difficult. This 

is because the evolution of reproductive isolation can result from a variety of different 

mechanisms, which can be very difficult to identify (Schluter 2001). Speciation can be 

classified based on the mechanisms that drive the evolution of reproductive isolation, i.e. 

ecological speciation, speciation by divergence under uniform selection, speciation by genetic 

drift and polyploid speciation, or more traditionally by the geographical arrangement of 

populations undergoing speciation (allopatric, sympatric or parapatric) (Schluter 2001). 
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 Ecological speciation occurs as a result of divergent selection on traits between 

populations in contrasting environments, which leads directly or indirectly to the evolution of 

barriers to gene flow or reproductive isolation (Mayr 1942; Dobzhansky 1951; Schluter 

2001). Ecologically-based selection can arise as a consequence of the interaction of 

individuals with their environment and other species, including biotic or abiotic elements of 

habitat, such as climate, resources, resource competition, predation, etc. (Schluter 2001; 

Rundle & Nosil 2005).  A classic scenario of ecological speciation involves reproductive 

isolation between two populations developing initially in allopatry, as they adapt to their 

unique environments. This is followed by the secondary establishment of sympatry, after 

which premating isolation evolves to completion via reinforcement (Schluter 2001). 

However, the timing of secondary contact is flexible, and the initial allopatric phase is not 

essential, making it possible for ecological speciation to occur in both sympatry and allopatry 

(Schluter 2001).  

Non-ecological speciation includes models that also involve selection, but where it is 

either non-ecological and/or not divergent between environments, such as some examples of 

speciation by sexual selection (Chapman et al. 2003a) and the fixation of incompatible alleles 

in allopatric populations occupying similar environments (Schluter 2001). Likewise, 

speciation by polyploidy and genetic drift, in which chance events feature strongly, also 

represent non-ecological mechanisms of speciation (Rundle & Nosil 2005; Schluter 2001; 

reviewed in Coyne & Orr 2004). 

Determining the evolutionary forces and genetic changes at the source of speciation is 

difficult (Schluter 2001; Coyne & Orr 2004); the biogeographic mode of speciation has the 

potential to be more easily resolved (Coyne & Orr 2004). The biogeographic mode of 

speciation can be determined by establishing whether the proportion of breeding individuals 

that are immigrants within a population, is initially reduced via barriers that are external to 
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the organisms or by biological features of the organisms themselves. Allopatric speciation 

occurs when there are no breeding immigrants from the outset (Futuyma & Mayer 1980; 

Coyne & Orr 2004), whereas for sympatric speciation the initial restriction of gene flow is 

caused by the organism’s biological characteristics (Futuyma & Mayer 1980) and therefore 

reproductive isolation evolves within the organism’s average dispersal distance (Mayr 1963).  

 

1.2 Cryptic species 

Cryptic species further complicate the issue of species recognition and identification. 

Cryptic species are those that are recognised as a species based on an accepted concept but 

are at least superficially indistinguishable based on their morphology; this means that they 

have often been previously classified as a single nominal species (Bickford et al. 2007; 

Williams et al. 2012b). The development of molecular tools has led to the detection of 

numerous cryptic species in most types of organisms and habitat (Pfenninger & Schwenk 

2007), including arctic flora (Grundt et al. 2006), insects (Maingon et al. 2003; McBride et 

al. 2009; Williams et al. 2012b; Adler et al. 2014; Kenyon et al. 2015; Vodă et al. 2015a), 

fish (Feulner et al. 2006; García-Dávila et al. 2013; Puckridge et al. 2013) and mammals 

(Ravaoarimanana et al. 2004; Racey et al. 2007; Esselstyn et al. 2013).  

The presence of cryptic species adds considerable difficulties to estimating 

biodiversity, particularly in some taxonomic groups. They also pose problems for our 

understanding of ecology and for conservation management. For example, incorrectly 

identifying species, by overlooking cryptic species, can lead to erroneous interpretations of 

the ecological characteristics of large groups of species (Bickford et al. 2007). The discovery 

of complexes of cryptic species within previously recognised species can alter hypotheses 

about levels of specialism and generalism: the detection of many cryptic species within 

species of parasitoid fly, changed their categorisation from relative generalist to groups of 
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host-specific specialists (Smith et al. 2006, 2007, 2008). Similarly, a study of the butterfly 

Astraptes fulgerator in Costa Rica found that this supposed widespread, generalist species 

actually represents a complex of  food plant specialists  with differing ecological 

characteristics (Hebert et al. 2004). Likewise, the nominal species Mordellistena convicta, a 

tumbling flower beetle, and Cotesia melitaeartum, a parasitoid of lepidopteran larvae, have 

been found to comprise complexes of cryptic species with greater host-specificity than 

previously thought (Blair et al. 2005; Kankare et al. 2005). On the other hand, the presence of 

cryptic species within species forming mutualistic interactions leads to less ecological 

specialisation than previously assumed (Bickford et al. 2007). For example, figs and their 

pollinating fig wasps have historically been considered to exhibit one-to-one host-symbiont 

relationships, but the detection of cryptic species among fig wasps has led to the conclusion 

that these interactions can involve more pollinator species per host fig species (Molbo et al. 

2003; Darwell et al. 2014).  A similar result was found for the mutualism between the 

Australian butterfly, Jalmenus evagoras, and its attendant ants, which were significantly 

more diverse than formerly supposed (Eastwood et al. 2006).  

Inaccurately identifying species also hampers our ability to conserve them. Measuring 

and mapping biodiversity is one of the first steps for conservation prioritisation: without 

recognising cryptic diversity we cannot determine levels of vulnerability.  Moreover, 

candidates for cryptic species are often concealed within widespread species (Angulo & 

Icochea 2010), which are actually complexes of morphologically similar but geographically 

restricted species. In an area of Southeast Asia with the highest relative rate of deforestation 

in any tropical region, studies of forest dwelling frogs have revealed at least 14 species within 

two nominal species. These were both thought to be geographically widespread, but instead 

represent multiple species with smaller geographic ranges, and therefore greater vulnerability 

to extinction (Stuart et al. 2006). Also in this region, in the central highlands of Vietnam and 
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north-eastern Cambodia, Rowley et al. (2015) estimate that two thirds of diversity in a group 

of small, micro-endemic frogs, within the genus Leptolax, still remains hidden.  These frogs 

are evergreen forest specialists, but the forests on which they rely, are being destroyed at such 

a rate that some species may become extinct before they are described (Rowley et al. 2015).   

Cryptic species complexes in already endangered nominal species consequently pose 

more problems for conservation, as species that are already considered endangered may 

consist of multiple species with smaller distributions. Such cryptic species will be even rarer 

than the nominal species and may require different conservation strategies (Bickford et al. 

2007). These findings illustrate the importance of accurate assessments of diversity and 

distributions to enable appropriate management and thereby reduce the risk of extinctions of 

evolutionary lineages. 

 

1.3 Generalists and specialists 

Species vary in their niche breadth; some “specialist” species have very narrow 

environmental tolerances, which restrict them to particular habitats, whereas other 

“generalist” species exhibit broader tolerances, allowing them to exploit a larger diversity of 

habitat types. Quantitatively measuring the breadth of a species’ niche can be difficult, hence 

specialists and generalists are often defined based on nonquantitative contrasts between them 

(Futuyma & Moreno 1988).  

The evolution of either specialism or generalism can depend on the environment. For 

example, habitat heterogeneity, in both space and time, generates diversifying selection and 

thus tends to favour the evolution of ecological generalists, whereas specialists are favoured 

in more homogeneous and stable environments (Futuyma & Moreno 1988; Kassen 2002; 

Richmond et al. 2005). In spatially heterogeneous but temporally stable habitats, selection 

may increase fidelity of habitat selection or decrease dispersal propensity, which can result in 
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a correlation between dispersal and niche breadth (Futuyma & Moreno 1988). It has also 

been suggested that the narrow tolerances of specialised species result in them having more 

fragmented distributions, thus making them more susceptible to allopatric speciation than 

generalist species.  

Natural selection creates an evolutionary trade-off between generalising to perform 

many tasks reasonably well and specialising to perform a few tasks very well (Levins 1968). 

Thus it is assumed that specialists perform better than generalists in their optimal habitat at 

the expense of their performance in other habitats (Levins 1968; Futuyma & Moreno 1988; 

Pianka 1994). The coexistence and relative success of specialist and generalist species within 

communities is linked to levels of dispersal, environmental disturbance and inter-specific 

competition (Richmond et al. 2005; Devictor et al. 2008; Büchi & Vuilleumier 2014).  

 

 

1.4 Molecular tools for identifying cryptic species 

Since phenotypic characteristics have historically been the basis for most taxonomic 

studies (Wilson 1995; Bickford et al. 2007), it has been the development of molecular tools 

that has led to the discovery of large numbers of cryptic species. Genomic approaches were 

established for  identifying organisms through diversity among DNA sequences (Wilson 

1995). In 2003, Hebert et al. proposed DNA “barcoding” as a method of species 

identification; this involves species discrimination based on the analysis of a small segment 

of the genome. The mitochondrial cytochrome c oxidase I gene (COI) was proposed as a 

single gene barcode locus to identify species across the whole animal kingdom (Hebert et al. 

2003a; b). Mitochondrial DNA (mtDNA) was selected because it can be easily amplified 

from a wide range of taxa, it has a haploid mode of inheritance so the sequence can be 

obtained without cloning, unlike nuclear DNA it does not contain introns, and exhibits low 
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recombination (Hebert et al. 2003a; Hurst & Jiggins 2005). Within the mitochondrial 

genome, the COI gene was suggested as the best candidate due to the availability of robust 

universal primers, its relatively high rate of molecular evolution and lack of insertions or 

deletions relative to ribosomal genes (Hebert et al. 2003a).  

DNA barcoding can be used for two purposes: distinguishing between species and 

also for identifying new species (DeSalle et al. 2005). However, since its proposal DNA 

barcoding has come under considerable criticism, particularly for this second purpose (Will 

& Rubinoff 2004; DeSalle et al. 2005; Taylor & Harris 2012; Krishna Krishnamurthy & 

Francis 2012).  Much of the controversy appears to have stemmed from confusion about what 

DNA barcoding is and its taxonomic objectives. DeSalle et al. (2005), Will & Rubinoff 

(2004) and Krishnamurthy & Francis (2012) all review the problems associated with DNA 

barcoding as proposed by Hebert et al. (2003a). Some of their main issues include a lack of a 

common distance threshold for species delimitation, as levels of variation vary between 

groups of taxa, and concern about whether the COI gene is an appropriate tool to use. 

Furthermore, it is difficult to argue that a barcode alone justifies recognising species that do 

not exhibit any ecological or morphological differences (Rubinoff & Sperling 2004). 

Ultimately, caution is urged in the use of a single standardised region for delimitating new 

species; barcodes should be used as part of an integrative approach to taxonomy that 

incorporates phenotypic and ecological information, as well as other sources of genetic data 

(DeSalle et al. 2005; Krishna Krishnamurthy & Francis 2012).  

 Nonetheless, DNA barcoding has been used successfully. As previously discussed, 

the traditional use of phenotypic traits for species identification has various limitations: 

phenotypic plasticity or cryptic taxa can lead to misidentification and morphological keys 

may only be suitable for particular life stages or genders (Valentini et al. 2009; Krishna 

Krishnamurthy & Francis 2012). In cases such as these DNA barcoding has made significant 
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contributions, for example in classifying butterflies and aphids that have different life stages, 

e.g. adult, larval, winged or wingless (Hebert et al. 2004; Footit 2009). They also 

complement morphological studies where taxa are easily misidentified due to cryptic species 

(Rubinoff 2006; Carolan et al. 2012; García-Dávila et al. 2013). Other areas of research 

where DNA barcoding can be particularly useful are when whole organisms are not available 

for morphological examination and identification (Valentini et al. 2009). In this respect, 

DNA barcoding is especially valuable when using hair, faeces or urine to monitor rare or 

elusive species, such as following the wolf expansion in France (Valière et al. 2003), 

studying European wildcats (Velli et al. 2015) and distinguishing sympatric large cat species 

in the Russian Far East (Sugimoto et al. 2006).  

 

 

1.5 Non-lethal genetic sampling 

1.5.1 Non-invasive genetic sampling  

When used appropriately DNA barcoding can be a very valuable tool for biologists 

and ecologists. However, there are many other molecular tools that are similarly useful for 

ecology and conservation and can be applied to investigate a whole plethora of questions 

concerning genetic issues in conservation biology. Some have already been discussed, such 

as resolving taxonomic uncertainties, but others include identifying populations at risk of 

extinction, determining population genetic structure, choosing populations and sites for 

reintroduction purposes, as well as understanding species biology (Beebee & Rowe 2004; 

Frankham 2005). Whatever the objective, genetic studies require DNA; in the past, this 

required relatively large amounts of fresh tissue, which often involved killing the animal. The 

development of the polymerase chain reaction (PCR) meant that DNA could be amplified 

from tiny quantities of tissue (Mullis & Faloona 1987; Saiki et al. 1988), which allowed 
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samples to be obtained non-destructively and noninvasively and was a huge break-through 

for conservation biology (Morin & Woodruff 1996; Taberlet & Luikart 1999; Taberlet et al. 

1999). The animals being studied no longer had to be killed, captured, disturbed or even 

observed, which is essential in behavioural studies or when working with rare or endangered 

species. Non-invasive genetic sampling using a wide variety of DNA sources is now applied 

to a whole range of questions, including: rare species detection; population size estimation; 

understanding social structure, genetic diversity and gene flow; and determining diet (Waits 

& Paetkau 2005; Beja-Pereira et al. 2009). These studies use both mitochondrial DNA 

(mtDNA) and nuclear DNA (nDNA) for different purposes: mtDNA is often used for species 

identification e.g. Lefort et al. 2012, whereas nDNA is preferred for identifying individuals 

and gender e.g. McCarthy et al. 2015 and Norman & Spong 2015 (Waits & Paetkau 2005).  

 

1.5.2 Non-destructive genetic sampling of insects 

These non-invasive genetic techniques are now commonly used for studies of many 

vertebrate species (Beja-Pereira et al. 2009). Nonetheless, recent work has shown that 

optimal sampling methods still depend both on the study species and study site, making it 

difficult to generalise across systems (Mumma et al. 2015). The focus of non-invasive 

sampling on vertebrates represents a bias in conservation efforts towards these species and 

the challenges present in applying these methods to invertebrates (Monroe et al. 2010).  Most 

genetic studies of insects, have consequently been based on destructive methods that involve 

sacrificing the individuals (Donald et al. 2012). Population genetic studies often require the 

sampling of large numbers of individuals, which if performed lethally, may reduce 

subsequent populations sizes or alter the population structure (Starks & Peters 2002). This is 

particularly undesirable when studying rare or endangered species and small or declining 

populations; it also makes behavioural studies very difficult (Starks & Peters 2002). In social 
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insect species with large colonies, workers may be sampled with little impact on colonies; but 

for species such as bumblebees with small colony sizes, the removal of workers may reduce 

colony performance (Schmid-Hempel et al. 1993; Chaline et al. 2004), particularly if large 

numbers of workers are removed from the same colony. Furthermore, lethal sampling is 

undesirable for genotyping queens of eusocial insect species that are destined to found 

colonies (Chaline et al. 2004).  

Some non-lethal methods of DNA sampling have been established for insects, such as 

wing (Vila et al. 2009; Hamm et al. 2010) and leg clipping (Fincke & Hadrys 2001; Starks & 

Peters 2002; Holehouse et al. 2003) but it is not entirely clear what impact these techniques 

have on the fitness of the individuals (Vila et al. 2009; Marschalek et al. 2013). In the wild, 

butterflies experience wing wear resembling the removal of tissue that occurs from wing 

clipping, and insects also naturally lose legs with little impact on their fitness (Fincke & 

Hadrys 2001). This has led researchers to assume that these non-lethal methods are unlikely 

to harm the fitness of the insects (Fincke & Hadrys 2001; Koscinski et al. 2011). Indeed, 

Marschalek et al. (2003) found that removing a prothoracic leg for DNA extraction from 

males of the butterfly Lycaena hermes did not affect their behaviour, longevity or survival. 

Similarly, in two other butterfly species, Pieris rapae and Coenonympha tullia, neither wing 

clipping nor hind leg removal affected post-release flight behaviour or survival (Koscinski et 

al. 2011). On the other hand, Starks & Peters (2002) successfully amplified a high percentage 

of microsatellites using tibial samples from eusocial wasps, but the procedure reduced the 

survival of the individuals, although it did not appear to prevent them from carrying out tasks 

within the colony (Starks & Peters 2002). In addition, Vila et al. (2009) used wing clippings 

from the moth Graellsia isabelae to amplify both mtDNA and nuclear DNA; this had no 

effect on mating success of males, nor on survival of either sex, but decreased mating success 

of females. Butterflies have very large wing areas relative to their body mass (Dudley 1991), 
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which may allow them to suffer considerable loss to wing tissue with little negative effects on 

flight performance (Koscinski et al. 2011), thus explaining why some studies find little effect 

of wing clipping. However, when wing sizes are smaller, the area clipped represents a larger 

proportion of the total area, which could lead to greater wing loading. Flight then involves 

higher energetic requirements and may be slowed, which could negatively impact activities 

such as predator avoidance or territorial defence (Marschalek et al. 2013). This may be 

particularly relevant for insects with much smaller wings for their body size, such as bees. 

However, wing clipping has been used as a method of non-lethal DNA sampling in the 

honeybee, Apis mellifera (Chaline et al. 2004). 

Worker bumblebees with experimentally reduced wing area have been shown to 

experience reduced survival compared to controls, and natural wing wear also correlated with 

increased mortality (Cartar 1992). A study investigating the mechanism behind these results 

did not find that reducing wing size resulted in increased metabolic costs, suggesting that 

higher mortality is not due to flight being more energetically expensive in bees with reduced 

wing area (Hedenström et al. 2001). Instead, Hedenström et al. (2001) suggest that it may be 

due to reduced maneouvrability affecting an individual’s capacity to escape predation. 

Despite this, Châline et al. (2004) recommend wing clipping rather than removal of legs 

when sampling honeybees because legs and tarsi are vital for performing many tasks within 

the colony. Honeybee queens do lose legs naturally but they may have a reduced capacity to 

move around the colony and they lay eggs more slowly (Chaline et al. 2004). In contrast, 

Holehouse et al. (2003) recommend using tarsal samples for non-lethally obtaining DNA 

from bumblebees; no effect of tarsal sampling was found on survivorship, body mass, 

frequency or duration of foraging trips or mass of pollen or nectar collected. However, they 

only investigated the effects on workers and they had low power for their analyses. It is 
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probable that tarsal clipping may have a greater impact on bumblebee queens, since, unlike 

honeybee queens, they have to raise the first brood of workers alone (see Section 1.6.3).  

Shed exuvaie from the larvae of butterflies (Frye & Robbins 2015), damselflies 

(Watts et al. 2005) and diving beetles (Inoda et al. 2015) have also been shown to be suitable 

as a non-invasive source of DNA. This could therefore be a method applied for the study of 

bumblebees, but obtaining it on a large enough scale for population studies would be 

difficult, as it would require finding bumblebee nests, which is notoriously difficult 

(O’Connor et al. 2012).  

Faeces are also a valuable source of DNA used in genetic studies of many vertebrates 

(Taberlet et al. 1997; Goossens et al. 2000; Jones et al. 2008; Caballero et al. 2015; 

Skevington et al. 2015), but few methods exist for using this approach with invertebrates. 

The low number of examples of studies using methods such as these may be a result of 

difficulties obtaining enough DNA of sufficient quality for genetic analyses. For example 

Monroe et al. (2010) found that DNA obtained from feacal pellets and shed exuvaie from 

larvae of the endangered dragonfly, was not of high enough quality to permit reliable 

microsatellite analysis. However, Fumanal et al. (2005) successfully used direct PCR of fecal 

secretions to amplify a 288bp fragment of the COI gene permitting identification of 

morphocryptic entities within the phyotphagous weevil, Ceutorhynchus assimilis. Lefort et 

al. (2012) and Feinstein et al. (2004) extracted DNA from the frass of two species of scarab 

beetle larvae and two species of butterfly larvae respectively. Faecal material therefore 

represents an untested non-lethal source of bumblebee DNA that could be extremely valuable 

for the study of bumblebee ecology and population genetics. 
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1.6 Bumblebee ecology and evolution 

1.6.1 Ecosystem services and bumblebees as keystone pollinators  

Ecosystem services can be defined as benefits to people provided by ecosystems 

(Daily 1997), and one of the most important of these is pollination by wild animals (Klein et 

al. 2007).  Pollination is necessary for seed set in the majority of plants and can occur via a 

variety of mechanisms, including via animal vectors. Insects are particularly well suited to 

this role, with the vast majority of the world’s pollinators consisting of wasps, bees, flies, 

beetles, butterflies and moths (Vanbergen 2013). Of these, bees are particularly important to 

the pollination of many agricultural crops (Klein et al. 2007).  

Honeybees, Apis mellifera, are the most widely managed pollinators of crops and 

have a long history of domestication, with the result that they have been introduced to almost 

every country in the world (Goulson 2003). Nevertheless, they are not necessarily the most 

effective, and wild bees are also very important ecosystem service providers (Willmer et al. 

1994; Garibaldi et al. 2013).  In Europe and North America some of the most important 

pollinators of crops are bumblebees (Corbet et al. 1991). Bumblebees are often considered 

‘keystone’ species in plant-pollinator systems for a variety of reasons. They are hardy 

pollinators that are able to forage in much poorer weather conditions than honeybees (Corbet 

et al. 1991; Willmer et al. 1994). They are also efficient, carrying more pollen on their bodies 

and visiting more flowers per minute than honeybees (Willmer et al. 1994). Furthermore, 

bumblebees can exploit many different flowers due to variation in body size and tongue 

lengths (Sladen 1912; Peat et al. 2005; Goulson et al. 2005, 2008b). They are able to buzz 

pollinate (by rapidly vibrating their flight muscles to shake the anthers of a plant to release 

pollen), a characteristic that makes them essential for many crops such as tomatoes, 

cranberries, blueberries and kiwi fruit, which they can pollinate more efficiently than 

honeybees (reviewed in Goulson 2010). In much of their range they are also the most 
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abundant native pollinators of both crops and wild flowers (Goulson 2010). Bumblebees are 

therefore economically important as pollinators: they are used worldwide for the pollination 

of high value crops (Velthuis & Doorn 2006). More than one million nests are commercially 

reared and distributed for use in more than 60 different countries (Goulson 2010). 

Furthermore, by pollinating both rare and abundant plant species, they maintain diversity in 

plant communities (Stubbs & Drummond 2001; Kremen et al. 2002; Memmott et al. 2004; 

Goulson et al. 2008a).  

 

1.6.2 Bumblebee evolution and diversification 

Approximately 250 species of bumblebee exist worldwide, distributed across the 

temperate, alpine and arctic regions of the northern hemisphere and also South America. 

Recent bumblebee classifications place all known living species in a single genus, Bombus, 

which includes the ‘cuckoo’ bumblebees that were previously classified as a separate genus, 

Psithyrus (Williams 1994; Cameron et al. 2007). Early classification depended heavily on 

colour patterns, but the variation in coat colour within and between populations, along with 

the apparent convergent evolution of colour patterns driven by Müllerian mimicry, means 

that bumblebee taxonomy has always been difficult (Plowright & Owen 1980; Williams 

1994, 2007). Since phylogenetic relationships may correspond to ecological characteristics 

(Blomberg & Garland  Jr. 2002; reviewed in Losos 2008), establishing an accurate phylogeny 

is important not only for taxonomists but also for ecologists and conservationists. Using a 

recent comprehensive phylogeny including 218 of the ~250 described species of bumblebee, 

based on five genes (Cameron et al. 2007), Hines (2008) provides a detailed assessment of 

the historical biogeography, divergence times and diversification patterns of Bombus species, 

and estimates the early divergence of extant bumblebee lineages to have occurred from 25-40 

million years ago (Ma).  
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Bombus species richness peaks in the mountains of central China and is high 

throughout montane regions and cool temperate latitudes of the Orient and Palearctic (~175 

species). North America is home to a smaller number of species (~60 species) and the 

smallest number are found in South America (~22 species) (Williams 1994, 1998; Hines 

2008). Both Hines (2008) and Williams (1985) find that the initial Bombus diversification 

was likely to have occurred in the mountains of Asia. Dispersal into North America is 

inferred to have occurred in the late Miocene, between 10 and 20 Ma, via the Bering 

continental connection (Fig. 1.1, Williams 1985; Hines 2008). In the past five million years, 

most intercontinental movements have involved widespread, cold-adapted Old World sister 

taxa. Around 3.5 Ma the Bering Strait separated the two landmasses, resulting in vicariance 

events splitting species with a boreal distribution (Hines 2008). Evidence suggests 

bumblebees spread into South America, first in the late Miocene (6-8 Ma) with more 

additional taxa arriving around 3.5 Ma following the formation of the Panamanian isthmus 

(Hines 2008). 

Large-scale environmental changes, such as the Plio-Pleistocene glaciations, have 

therefore strongly influenced bumblebee diversification (Hines 2008). For 20 million years, 

Bombus diversification remained relatively constant, but with the climatic cooling in the late 

Miocene, the rate of speciation decreased (Condamine & Hines 2015). This is likely due to 

the creation of mid-latitude cool temperate habitat favourable to the cool-temperate bees, 

which allowed increased gene flow in this expanding niche (Condamine & Hines 2015). In 

the late Pliocene, speciation increased again; the climatic instability of this period potentially 

split continuous populations into new species (Condamine & Hines 2015). During glacial 

periods populations may have become isolated in refugia, resulting in allopatric 

differentiation, followed by recolonisations during the post-glacial periods (Condamine & 

Hines 2015).  
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Figure 1.1. A summary of the historical dispersal events inferred across bumble bee lineages with 

approximate timings. The thickness of arrows is scaled relative to the number of dispersing lineages. 

(Taken from Hines 2008). 

 

1.6.3 Bumblebee life-cycle 

Most bumblebees are primitively eusocial; the female sex is differentiated into two castes, 

queens and smaller, usually non-reproductive workers. Each queen single-handedly founds a 

colony, where she raises her daughters, the workers, then later new queens and males. The 

exceptions are the cuckoo bees (subgenus Psithyrus), which are social parasites of other 

bumblebee species. Psithyrus do not have a worker caste: queens invade their hosts nest, 

attempt to usurp the resident queen and use the resident bumblebee workers to rear her own 

offspring, all of which are males or future breeding females. Excluding Psithyrus, most other 

bumblebee species generally have an annual life-cycle, which is characterised by colony 

founding, colony growth, production of new queens and males, and colony expiration (Figure 

1.21.2).  

Mated queens emerge from hibernation in late winter or spring, forage and search for 

suitable nest sites, which vary between species. Bombus lucorum and B. terrestris use pre-

existing holes underground, such as the disused burrows of rodents; whereas bumblebees 
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belonging to the subgenus Thoracobombus nest within tussocks of grass or dense vegetation, 

on or just above the surface of the ground (Alford 1975; Goulson 2010). Disused nests of 

small mammals are commonly used because they provide a supply of insulating material, 

which the queens use to form their nest. The queen provisions her nest with pollen and nectar 

and lays the first batch of eggs (Alford 1975). The first batch of offspring are workers and the 

queen ceases to forage soon after they emerge. During colony development, the number of 

workers increases rapidly, although potential nest size is highly variable between species and 

the failure rate can be high (Goulson 2010). At some point the nest switches to rearing males 

and queens rather than workers. Queens can only be produced if there is sufficient food 

available and sufficient workers to provide it, as they require more food and take a longer 

time to develop than worker larvae.  Therefore only the largest nests produce both queens and 

males, with smaller nests producing only males and some small nests failing to produce either 

(Schmid-Hempel & Schmid-Hempel 1998). The new queens feed and build up large fat 

reserves, necessary for surviving hibernation. Males leave the nest to search for mates and do 

not return. Once they have mated, young queens begin to search for suitable hibernation sites, 

where they may spend potentially six to nine months, depending on species and spring 

temperatures (Alford 1975). As some queens enter this phase well-before the start of winter, 

“diapause” is potentially a more accurate term for this period of inactivity. However, as it has 

evolved to allow survival throughout the winter, the term “hibernation” is retained to describe 

the whole length of diapause (Alford 1975). During this time, the queens rely on the fat 

reserves stored in their abdomen to survive; small queens that have insufficient reserves are 

less likely to survive diapause (Beekman et al. 1998). With the departure of the young queens 

and males, the nest rapidly degenerates.   
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Figure 1.2. Bumblebee colony life-cycle (taken from Prys-Jones & Corbet 1991) 

 

1.6.4 Thermoregulation 

Unlike many smaller insects, bumblebees, as well as some other large flying insects, 

such as dragonflies and sphingid moths, are able to elevate their thoracic temperatures well 

above the ambient temperature by generating considerable amounts of metabolic heat 

(Heinrich 1974, 1979). This is essential for bumblebee flight because in order to generate 

enough power to fly, bumblebees require a thoracic temperature above 30°C (Heinrich 1974, 

1979; Goulson 2010), while ambient temperatures in the temperate regions where most 

bumblebee species live, are usually in the range of 5-25 °C. Indeed, large queens can 
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maintain a thoracic temperature of 36 °C, and therefore fly, with ambient temperature as low 

as 0-3°C (Heinrich 1974, 1979). Small individuals cannot fly at such low temperatures, as 

their smaller size and greater surface area to volume ratio means they cannot generate or 

retain sufficient heat; conversely, this means that small bees can fly at higher ambient 

temperatures than large bees (Heinrich 1979).  

Flight activity itself generates heat, but bumblebees are also able to warm themselves 

up before initiating flight. This is achieved by activating the flight muscles whilst stationary: 

they “shiver”, contracting the flight muscles, which are decoupled from the wings. The 

metabolic rate of this muscular activity during heat production in stationary bees, can be 

almost equivalent to that of flight (Heinrich 1974, 1979). Substrate cycling may also 

contribute to the production of heat in the resting flight muscles of bumblebees (Newsholme 

et al. 1972; Clark et al. 1973) but this theory has been challenged (e.g. Staples et al. 2004).  

Bumblebees are covered in thick insulating hair, which in combination with high 

metabolism and relatively large body size, causes a build-up of body heat that could result in 

overheating; bumblebees therefore also exhibit cooling mechanisms. These involve regulated 

‘countercurrent exchange’ of heat between the thorax and abdomen, which is usually 10-15 

°C cooler than the thorax in flying individuals (Heinrich 1979) 

For bumblebee colonies, the production of a large number of queens and males at the 

end of the season requires large numbers of workers. In order to produce many workers 

rapidly, energy input needs to be high and continuous. Nectar and pollen are very 

concentrated food resources, but they are only available for a limited period of time, which 

means that the colony cycle is under time constraints. The evolution of thermoregulation 

means that bumblebees can fly, forage and care for their brood even when weather conditions 

are harsh and where all other bees are excluded. Both in and out of the nest, elevation of adult 

body temperature accelerates larval growth rates and the speed of resource harvesting 
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(Heinrich 1979). Indeed, established bumblebee colonies maintain a stable nest temperature 

of approximately 30 °C, despite large changes in air temperatures (Heinrich 1979; Goulson 

2010). The temperature generated in large colonies can get too high, causing individuals to 

start fanning the nest to circulate the air (Heinrich 1979; Vogt 1983). Queens also incubate 

their eggs; once she has founded her nest and laid the first batch of eggs, whenever she is not 

foraging, the queen spends her time incubating her eggs. She builds the brood clump in such 

a way as to ensure close contact between the brood and the ventral surface of her abdomen, 

which is almost hairless, allowing more efficient heat transfer (Heinrich 1979; Goulson 

2010). This is energetically costly, but if the queen runs low on food and stops incubating, 

egg, larval and pupal development stops or slows greatly (Heinrich 1979).  

Bumblebees are found from the subarctic to the tropics (Williams 1998), therefore the 

different species inhabiting these different environments will have different thermoregulation 

requirements. Similarly bumblebees vary in size between species, within species (between 

castes) and within castes (Alford 1975; Peat et al. 2005; Goulson 2010), which should 

influence their thermoregulatory capacity; although the precise details of how these 

capabilities vary with species body size, geography, environment and climate are not fully 

understood. 

 

 

1.7 Bumblebee declines, conservation and population genetics 

1.7.1 Bumblebee declines 

Bumblebees have recently experienced severe declines across much of their range, 

particularly in developed regions such as Western Europe and North America (Williams 

1982; Fitzpatrick et al. 2007a; Goulson et al. 2008a; Williams & Osborne 2009; Cameron et 

al. 2011). In the UK, three of the 25 native species have become extinct since the 1960s and 
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an additional eight species have undergone major range declines (Goulson 2010). The pattern 

is similar in Europe: between 1950 and 2000, 13 species went extinct in at least one European 

country and four species went extinct in 11 of the central and western European countries 

(Kosior et al. 2007). Alarming declines have also been observed in North America; in the 

past 20 years, the relative abundances of four species have declined by up to 96% and they 

have contracted their range by 23-87% (Cameron et al. 2011). 

In western Europe, the primary cause of these declines is the intensification of 

farming practices that has led to the loss and fragmentation of suitable habitat  and necessary 

floral resources (Goulson et al. 2006, 2008a; Goulson 2010). Flowering crops such as oilseed 

rape seem to contribute to supporting bumblebee populations in arable landscapes (Westphal 

et al. 2003; Herrmann et al. 2007), but they are unlikely to provide the continuous succession 

of floral resources throughout the spring and summer that bumblebee colonies require. Other 

factors contributing to declines include loss of suitable nesting sites (Goulson et al. 2008a; 

Goulson 2010), pesticides (Gill et al. 2012; Whitehorn et al. 2012) and impacts of non-native 

bees (Meeus et al. 2011; Schmid-Hempel et al. 2013).  

 

1.7.2 Conservation genetics of bumblebees 

Habitat loss can result in populations of species becoming smaller and more isolated 

from each other. Small populations suffer more from environmental and demographic 

stochasticity, which can make them more vulnerable to extinction (Frankham et al. 2002). If 

populations are part of a functioning metapopulation, then local extinctions can be balanced 

by re-colonisation, and dispersal will maintain genetic cohesion. However, if populations 

become isolated, their extinction risk is augmented by inbreeding, and suitable patches may 

not be recolonised. Furthermore, without gene flow resulting from immigration, small 

populations may lose genetic variation via genetic drift, which can reduce long-term viability 
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of populations through inbreeding depression and a reduced ability to adapt in response to 

environmental change (Frankham et al. 2002, 2014; Keller & Waller 2002; Reed & 

Frankham 2003).  

Neutral genetic diversity should be positively correlated with effective population size 

(Ne), which is distinct from the census population size (Nc). Ne relates to the number of 

successful breeding individuals in each generation, is a more important measure of 

population viability, and is also often lower than Nc (Beebee & Rowe 2004). Bumblebees 

may be particularly badly affected by fragmentation, as they are predisposed to low levels of 

heterozygosity and to inbreeding. Their social structure means that the majority of the 

population is made up of workers, who rarely reproduce successfully, greatly reducing the 

effective population size (Chapman & Bourke 2001). Moreover, unlike many other 

hymenopterans, bumblebee queens of most species are also monoandrous, which further 

increases their susceptibility to inbreeding (Estoup et al. 1995; Schmid-Hempel & Schmid-

Hempel 2000).  

Bumblebees are also haplodiploids, meaning there are only 75% as many gene copies 

in any one generation compared to diploid organisms, further reducing the effective 

population size. As a result the effective population size is approximately 1.5 times the 

number of successful colonies, which is potentially orders of magnitude lower than the 

observed number of workers (Goulson 2010). Small effective population size may render 

bumblebees susceptible to inbreeding. However, haplodiploidy may present a mechanism by 

which recessive deleterious mutations can be purged from populations through haploid males, 

and thus reduce the impacts of inbreeding on population fitness (Werren 1993). Conversely, 

the single-locus complementary sex determination (sl-CSD) system found in haplodiploid 

Hymenoptera may contribute additional genetic costs of inbreeding. In this system, 

individuals that are heterozygous at the polyallelic sex determining locus develop into 
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females, whereas hemizygotes develop into haploid males. However, in small populations, 

genetic drift results in a reduction in allelic richness at the CSD locus (Cook & Crozier 1995). 

This increases the likelihood of a queen mating with a male with a matching allele. When this 

occurs, diploid individuals are produced that are homozygous at this locus and these develop 

into diploid males. These males generally have low viability, and are usually sterile or have 

low reproductive success (reviewed in Cowan & Stahlhut 2004) and therefore represent a 

significant fitness cost. In a few species, diploid males can mate successfully and produce 

triploid offspring, which are themselves unable to reproduce and therefore the cost is simply 

delayed (Darvill et al. 2012). In social Hymenoptera, such as bumblebees, additional costs 

result from diploid males being produced instead of workers, which decreases the size of the 

workforce, colony growth and the potential success of the colony (Whitehorn et al. 2009).  

Molecular studies of Bombus species have shown that rare and declining species often 

tend to have reduced genetic variation (Ellis et al. 2006b; Charman et al. 2010; Darvill et al. 

2010; Cameron et al. 2011; Lozier et al. 2011): two very rare species in the UK are B. 

distinguendus and B. muscuorum, which exhibit low expected heterozygosity (HE) of 0.39 

(Charman et al. 2010) and 0.43-0.51 (Darvill et al. 2006, 2010) respectively. More common 

species generally show higher levels of diversity (Darvill et al. 2010; Lozier et al. 2011; 

Moreira et al. 2015). For example, Dreier et al. (2014) found some of the highest levels of HE 

in two very common UK species, B. hortorum (HE = 0.84) and B. terrestris (HE = 0.84) in 

southern England.  

 

1.7.3 Bumblebee dispersal 

Another factor that influences the long term viability of metapopulations is dispersal 

ability. Low dispersal ability can make organisms more prone to inbreeding and local 

extinction, less capable of colonising and recolonising suitable unoccupied habitat patches, 
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and can increase population structuring as a result of reduced gene flow (Slatkin 1985; 

Frankham et al. 2002; Ronce 2007; Clobert et al. 2012). In bumblebees, dispersal is mediated 

by queens and males when they first disperse to mate, and by mated queens before and after 

over-wintering (Alford 1975; Goulson et al. 2008a). Young mated queens have occasionally 

been observed to travel long distances following hibernation (see Goulson 2010), but it is 

very difficult to determine dispersal distances based on random observations. The spread of 

species that have been introduced to new areas where they are not native can also be 

informative about dispersal ability. Bombus terrestris was introduced to Tasmania in 1992, 

where it was estimated to spread initially at approximately 10 km per year (Stout & Goulson 

2000), however, within 12 years this species had reached the northern coast (~200 km) 

(Hingston 2006). In South America, B. terrestris has been shown to spread even more 

rapidly: in the order of 200 km per year (Schmid-Hempel et al. 2013).  

An alternative method of measuring gene flow between populations and thus inferring 

whether movement of individuals occurs frequently uses neutral genetic markers. 

Microsatellites have frequently been used for this purpose and have proven very informative. 

Such studies focussed first on two abundant and widespread European species, B. terrestris 

and B. pascuorum. In mainland Europe, Bombus terrestris appears to exhibit very little 

population structuring, however island populations are more strongly differentiated, 

suggesting that stretches of sea represent barriers to movement and gene flow (Estoup et al. 

1996; Widmer et al. 1998; Moreira et al. 2015). Bombus pascuorum was shown to exhibit 

higher levels of population differentiation, with the Alps representing a partial barrier to gene 

flow (Widmer & Schmid-Hempel 1999). More recent studies in the UK, showed no genetic 

structuring between populations of B. pascuorum spanning the whole of the UK (Ellis et al. 

2006b). Similarly in America several species, including B. vosnesenskii, showed very low 

population differentiation over large spatial scales (>1500 km; Lozier et al. 2011). These 
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studies suggest that for some species dispersal must be common and potentially occur over 

relatively long distances in order to maintain genetic cohesion over such large scales. 

Much stronger population structuring has been detected in fragmented populations of 

rare species in the UK, such as B. sylvarum (Ellis et al. 2006b), B. muscorum (Darvill et al. 

2006) and to a lesser extent, B. distinguendus (Charman et al. 2010). Nevertheless, not all 

abundant species seem to have strong dispersal abilities: B. hortorum is a very widespread 

species in the UK that shows very strong genetic differentiation between islands in the north-

west of Scotland and thus appears to be extremely sedentary (Goulson et al. 2011).  

It has been suggested that there are links between a species’ level of specialisation and 

it’s dispersal ability or propensity: specialists have been proposed to have evolved lower rates 

of dispersal than generalists (Colas et al. 1997; Mathias et al. 2001; Bonte et al. 2012; 

Dahirel et al. 2014). Very tight dietary or habitat specialisations are unusual in European 

bumblebees; most species are found in a broad range of biotopes (Goulson et al. 2006). Two 

species that show associations with heathland to varying extents are B. jonellus and B. 

monticola. Bombus jonellus is a heathland species in the north of the UK (Goulson et al. 

2006; Darvill et al. 2010) and B. monticola is described as associated with upland heaths and 

moors (Edwards & Jenner 2005; Benton 2006). In a study of gene flow on islands in the 

Hebrides (Scotland), Darvill et al. (2010) found that B. jonellus had a higher propensity to 

disperse than B. muscorum, a more generalist species, and speculated that this was due to the 

association of B. jonellus with a fragmented habitat. Similarly, B. monticola has recently 

colonised Ireland (Fitzpatrick et al. 2007a), an unusual event, as colonisations are rare among 

bumblebees in the UK, which suggests that B. monticola can also disperse over long 

distances. Determining patterns of population connectivity and gene flow can therefore give 

us insights into the ecology and dispersal capacity of bumblebee species and is very useful 

when trying to assess the risks facing bumblebee populations and species. 
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1.8 Cryptic bumblebee species: the lucorum complex 

Bumblebees exhibit a variety of distinctive colour patterns that are often used to 

identify species (for example Edwards & Jenner 2005); however, these patterns can be very 

similar between species and also highly variable within species (Williams 2007). As a result, 

the taxonomy of species has been quite uncertain and several examples of cryptic species 

occur amongst bumblebees (Hines et al. 2006; Ellis et al. 2006a; Wolf et al. 2010; Williams 

et al. 2012b). The European species of the subgenus Bombus sensu stricto pose particular 

difficulties, which is problematic as they are of economic interest due to their commercial 

exploitation (Velthuis & Doorn 2006; Goulson 2010). There has been much disagreement on 

the taxonomy of this group in the past decades, which now consists of five species in Europe: 

Bombus terrestris (L., 1758), B. lucorum (L., 1761), B. cryptarum (Fabricius, 1775), B. 

magnus (Vogt, 1911) and B. sporadicus (Nylander, 1848). Until the mid-twentieth century 

only two species, B. lucorum and B. terrestris, were widely accepted and these are still 

difficult to distinguish (Wolf et al. 2010). Indeed, over 100 infrasubspecific names have been 

reported for B. lucorum alone (Williams 1998).  

Bombus lucorum was described by Linneaus in 1761, B. magnus was described 

almost a century later and most subsequent studies will have been confused by the fact that 

their samples comprised the unknown species B. cryptarum (Bossert 2015), although two 

forms of B. lucorum (‘dark’ and ‘blonde’) were recognised (Løken 1973). A potential third 

species was first recognised by Rasmont (1981), but biochemical methods did not confirm its 

existence for some time, probably due to a mix of species among samples (Pamilo et al. 

1997; Bossert 2015). Differences in male labial gland secretions finally confirmed that 

recognition signals differed between the three taxa, providing evidence for three separate 

species (Bertsch 1997; Bertsch et al. 2005; Bertsch & Schweer 2012). Studies of nucleotide 

sequences of the mitochondrial COI gene then added further support for the distinct 
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taxonomic status of the lucorum complex species in Europe (Bertsch et al. 2005; Murray et 

al. 2008; Williams et al. 2012b; Carolan et al. 2012). Although they vary slightly between 

studies, these results show a significantly greater divergence between the three taxa than 

within, with estimates of inter-specific Tamura-Nei genetic distances of 0.033-0.044 

compared to intra-specific distances of 0.001-0.004 (Carolan et al. 2012) and 0.023-0.036 

compared to 0.002-0.004 (Murray et al. 2008). 

A number of morphological characteristics have been proposed as useful for 

distinguishing these species particularly for identifying colony-founding queens in the spring 

(Fig. 1.3). These characters include the extent that the collar of yellow hairs at the anterior of 

the thorax extends below the tegula (Alford 1975), the level of melanisation in this collar 

(Bertsch et al. 2005), the presence or absence of an S-shaped band of black hairs on the side 

of the collar (Prŷs-Jones & Corbet 1991; Edwards & Jenner 2005; Bertsch et al. 2005). 

 

 

 

Figure 1.3. Morphological characters suggested for the identification of queens of the lucorum 

complex. Bombus cryptarum queens (a) have been proposed to exhibit an ‘S’ shaped line of black 

hairs within the yellow hairs of the thoracic collar, and the yellow collar of B. cryptarum and B. 

magnus (b) is supposed to extend further below the wing than that of B. lucorum (c) (Alford 1975; 

Prŷs-Jones & Corbet 1991; Edwards & Jenner 2005; Bertsch et al. 2005). Taken from Waters et al. 

2010. 

 

However, there has been some debate about the reliability of these traits. Bertsch et 

al. (2005) described geographical variation in these traits that made it harder to discriminate 

these species (Figs. 1.4 & 1.5). Waters et al. (2010) demonstrated that the extent and breadth 
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of the yellow collar is not suitable for distinguishing workers of B. magnus and B. lucorum. 

Williams (2000) found that the length and breadth of the yellow collar showed a continuum 

of variation between B. magnus and B. lucorum queens in the UK. Similarly, Carolan et al. 

(2012) found that all morphological characters most commonly cited as distinguishing these 

taxa showed overlap among species at both local and European scales. These studies 

therefore indicate that these traits cannot be used to reliably and consistently distinguish 

between the lucorum complex species. 

 

Figure 1.4. S-shaped band of dark hair in the yellow collar of B. cryptarum from (a) Menz, Germany, 

(b) Duncansby Head, Scotland and (c) Dunnet, Scotland. Taken from Bertsch et al. 2005 

 

 

Figure 1.5. The broad bright yellow collar, showing no melanisation in B. magnus from (a) Menz, 

Germany, (b) Duncansby Head, Scotland and (c) Dunnet, Scotland. Taken from Bertsch et al. 2005 
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As a consequence of the difficulties in identifying the lucorum complex species, 

relatively little is known about their ecology and distribution. Descriptions of their ecology 

and distribution, obtained prior to the utilisation of molecular methods for species 

identification, are likely to be problematic (see Rasmont, 1984; Rasmont et al., 1986 and 

Pamilo et al., 1997 for European distributions). In fact, B. cryptarum was only discovered to 

be present in the British Isles in 2005 (Bertsch et al. 2005). 

 The most reliable information available about the worldwide distributions of these 

species comes from a study by Williams et al. (2012) of the subgenus Bombus s. str using 

COI barcode variation. They find B. lucorum to be present from Iceland in the west, across 

Europe to the mountains of Central Asia and in Mongolia. Bombus cryptarum appears to 

have the broadest distribution of all Bombus s. str. species: it was found from Great Britain, 

across Europe and central Asia to western North America. Bombus magnus is present in 

Great Britain, Spain, Denmark, Sweden and near Moscow, Russia. In 2008, Murray et al. 

developed a PCR-RFLP method that allowed a relatively cheap, rapid and accurate, 

discrimination of the lucorum complex and B. terrestris in Europe. This tool has made it 

possible to begin to gain a more detailed understanding of the distributions and habitat use of 

these important pollinators (Murray et al. 2008; Anagnostopoulos 2009; Waters et al. 2010a; 

Stanley et al. 2013b; Vesterlund et al. 2014). Using this method, Murray et al. (2008) found 

all three species of the lucorum complex to be widely distributed in Ireland; B. lucorum was 

found at all sampled locations and was the most abundant (56%), B. magnus was more 

common at rural than urban sites and B. cryptarum was the least abundant of the three 

(18.4%). A more detailed, but spatially restricted, study by Waters et al. (2010) in the 

Western Isles of Scotland found that the abundances of the three species were opposite to 

those in Ireland: B. lucorum was the least abundant of the three species (30%) and B. 

cryptarum was the most abundant (43.8%). Bombus magnus was previously assumed to be 
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associated with cool, wet and upland areas (Alford 1975; Benton 2006), whereas these two 

studies find this species in both upland and lowland sites, but absent from urban areas. 

Waters et al. (2010) also suggest that B. magnus appears to be associated with heathland and 

the food plant Calluna vulgaris.  

The patchy and fragmented coverage of these studies means that further work is 

clearly necessary. Although, the lucorum complex species have been shown to occur 

sympatrically, the species composition varies considerably at a regional level (Murray et al. 

2008; Waters et al. 2010a). So far we still lack knowledge on what drives variation in species 

abundances and distribution; very little is known about the ecology of these three species.  

 

1.9 Aims and objectives 

Bumblebees are vitally important both ecologically and economically as pollinators. 

However, in recent decades many species have suffered severe declines and range 

contractions across much of North America and Europe. In order to assess the risk to each of 

these species and the ecosystem services they provide, a thorough understanding of their 

ecology is required. Effective population sizes of bumblebees also appear to be low compared 

to those of many solitary insects, and potentially compared to other social insects too, due to 

their monogamous nature (Goulson et al. 2008a; Goulson 2010). Given the potentially 

serious consequences of population fragmentation and inbreeding for bumblebees, it is 

essential that we understand the genetic structure of wild populations. However, cryptic 

species are common among bumblebees, making basic ecological studies and conservation 

management difficult. The overall aim of this thesis is to further our knowledge of the 

ecology and population genetics of the three cryptic bumblebee species belonging to the 

lucorum complex, which forms part of the economically exploited subgenus Bombus sensu 

stricto. The lucorum complex, as a whole is very widespread across the Palearctic and 
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Nearctic, but little is known about the individual species. To overcome these problems, 

genetic methods for distinguishing these species were applied in order to: 

(i) determine the geographic distribution and abundance of each of three lucorum 

complex species in Great Britain (Chapter 2) 

(ii) assess niche differentiation across multiple sites by comparing geographic range, 

forage use and sensitivity to summer temperatures (Chapter 2) 

(iii) compare interspecific variation along different niche dimensions across a whole 

flight season at a single location (Chapter 3) 

(iv) estimate niche region and niche overlap for each species (Chapter 3) 

(v) assess genetic diversity and population structuring for each species across Great 

Britain (Chapter 4) 

(vi) identify differences in body size between the three species and compare these to 

their ecological characteristics (Chapter 5) 

 

Focussing this research on cryptic species also permits the exploration of more 

general ecological questions, as they represent an ideal model for comparative studies. This 

thesis therefore additionally considers: 

(a) how cryptic species partition niches to avoid competitive exclusion (Chapters 2 & 3) 

(b) levels of population structure in species that differ in their level of dietary and habitat 

specialism (Chapter 4) 

(c) patterns of body size in facultatively endothermic insects in relation to Bergmann’s 

rule (Chapter 5) 

In addition, a further study develops a novel and valuable genetic tool for non-

destructive DNA sampling and extraction, permitting population genetic studies of 

bumblebees without harming the individuals (Chapter 6). 
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Chapter 2 

 

 Revealing the hidden niches of cryptic 

bumblebees in Great Britain: implications for 

conservation 

 

 

 

A version of this chapter has been published as: 

Scriven, J.J., Woodall, L.C., Tinsley, M.C., Knight, M.E., Williams, P.H., Carolan, 

J.C., Brown, M.J.F., and Goulson, D. (2015) Revealing the hidden niches of cryptic 

bumblebees in Great Britain: Implications for conservation. Biological Conservation, 

182, 126-133. 

 

D. Goulson and M. Tinsley supervised the project, L. Woodall assisted with lab work, M. 

Knight contributed some samples and D. Gouslon, P.Williams, J. Carolan and M. Brown 

collaborated on a grant to fund the first stages of this project. All authors commented on draft 

versions of this manuscript. The published version is presented here. 
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2.1 Abstract 

Bumblebees are ecologically and economically important, and some species have 

suffered dramatic population declines. The absence of morphological diagnostic characters 

for the identification of some species creates difficulties for basic ecological studies, and for 

conservation management. The widespread and commercially exploited bumblebee subgenus 

Bombus sensu stricto contains a cryptic species complex, known as the lucorum complex, 

which in Europe comprises B. lucorum, B. cryptarum and B. magnus. Little is known about 

these species and much of what has been reported is likely to have suffered from incorrect 

identification. Although the lucorum complex as a whole is common in Great Britain, we 

aimed to determine whether the populations of the individual species are vulnerable and 

require conservation action. Using genetic methods to distinguish them, we determined the 

geographic distribution and abundance of the lucorum complex species in Great Britain, and 

assessed the extent of niche differentiation between these species. We detected major 

differences in the geographic range, forage use and sensitivity to summer temperatures of the 

three species. Bombus lucorum was found to have the broadest distribution and diet, being 

present throughout mainland Great Britain, whereas B. cryptarum and B. magnus were absent 

from large areas of central and southern England.  Bombus cryptarum and B. magnus were 

more likely to be found at sites with lower summer temperatures. Bombus magnus, the least 

abundant species, was found to exhibit an unusually tight biotope association with heathland 

habitat. This has conservation implications for B. magnus given the current threats to this 

habitat type.  
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2.2 Introduction 

Bumblebees (Bombus: Hymenoptera, Apidae) are ecologically and economically 

important as pollinators (Velthuis & Doorn 2006; Goulson 2010). Some species have recently 

suffered severe declines and range contractions across much of Western Europe and North 

America (Williams 1982; Fitzpatrick et al. 2007a; Goulson et al. 2008a; Williams & Osborne 

2009; Goulson 2010; Cameron et al. 2011). In the UK, seven out of the 27 species are listed 

as priority species in the UK post-2010 Biodiversity Framework (previously Biodiversity 

Action Plan), a higher proportion than known for any other invertebrate group (Goulson 

2010). Bombus species are also notorious for possessing convergent colour patterns and 

displaying high intraspecific variation, resulting in cryptic species (Williams 2007). The 

inability to correctly identify such species creates difficulties for basic ecological and 

population genetic studies as well as for their conservation management.  

Cryptic species can be defined as two or more distinct species that are similar or 

identical in morphology (Williams et al. 2012a). Speciation is not always accompanied by 

morphological change, and as a result, the true number of biological species is likely to be 

greater than the current total of nominal species, most of which are delineated on a purely 

morphological basis  (Bickford et al. 2007). The development of molecular genetic tools has 

enabled the detection of numerous cryptic species. Large genetic distances within 

traditionally recognised species, usually in combination with morphological, geographical, 

ecological or behavioural differences, have led to the discovery of cryptic species in a diverse 

range of organisms, from tropical butterflies (Hebert et al. 2004), to arctic flora (Grundt et al. 

2006), fish (Feulner et al. 2006; Puckridge et al. 2013) and lemurs (Ravaoarimanana et al. 

2004). 

Theories on the ecological specialisation of species can be seriously challenged by the 

existence of cryptic species complexes. Studies of a range of insects have revealed that 
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presumed dietary generalists are in fact complexes of dietary specialists (Hebert et al. 2004; 

Smith et al. 2007). The occurrence of cryptic species also has important repercussions for 

conservation; in an area of Southeast Asia with the highest relative rate of deforestation in 

any tropical region, studies of forest dwelling frogs have revealed at least 14 species within 

two nominal species. These were both thought to be geographically widespread, but instead 

represent multiple species with smaller geographic ranges, and therefore greater vulnerability 

to extinction (Stuart et al. 2006). Such findings illustrate the importance of accurate 

assessments of diversity and distributions to enable appropriate management and thereby 

reduce the risk of extinctions of evolutionary lineages. Cryptic species complexes in already 

endangered nominal species consequently pose more problems for conservation, as species 

that are already considered endangered may consist of multiple species with smaller 

distributions. Such cryptic species will be even rarer than the nominal species and may 

require different conservation strategies (Bickford et al. 2007).   

The subgenus Bombus sensu stricto is a widespread and commercially exploited taxon 

of bumblebee, which contains five species in Europe, B. (Bombus) cryptarum, (Fabricius), B. 

(B.) lucorum (Linnaeus), B. (B.) magnus (Vogt), B. (B.) sporadicus (Nylander), B. (Bombus) 

terrestris (Linnaeus). The taxonomic status of the last two species is widely accepted but B. 

lucorum, B. magnus and B. cryptarum are morphologically indistinguishable in much of their 

range, triggering considerable debate about their status. Bombus magnus and B. cryptarum 

have been regarded as subspecies of B. lucorum and are often referred to collectively as the 

‘lucorum complex’ or simply synonymized to B. lucorum (Edwards & Jenner 2005; Benton 

2006). Recent studies using CO1 barcode analysis show discrete differences between the 

three species (Murray et al. 2008; Williams et al. 2012b; Carolan et al. 2012), in accordance 

with studies of labial gland secretions (Bertsch et al. 2005). Diagnostic morphological 

characters have also been previously reported for queens, but some of these have now been 
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demonstrated to overlap considerably, and vary along a continuum, thus making them 

unreliable and leading to a high potential for misidentification (Carolan et al. 2012).  

In Ireland, B. lucorum is classified as of Least Concern according to the IUCN Red 

List criteria. Bombus cryptarum and B. magnus cannot be assigned to a threat category 

because they are currently Data Deficient (Fitzpatrick et al. 2006, 2007b). The situation is no 

clearer in Great Britain, where the distribution of the three taxa is only known for the 

Western Isles of Scotland (Waters et al. 2010a). The difficulty in identifying these species 

means that little is known about their ecological attributes; much of what can be found in 

standard texts will actually be referring to data for multiple species and is therefore of limited 

value. Consequently, the only reliable information we have on the ecology of these three 

species comes from Murray et al. (2008) and Stanley et al. (2013) who used molecular 

methods to study the lucorum complex in Ireland and Waters et al. (2010) who studied them 

in the Western Isles of Scotland. Niche-partitioning might be expected between these species 

(Goulson et al. 2008b) and indeed some ecological differences have been suggested. 

Specifically, Waters et al. (2010) found that B. magnus appeared to be strongly associated 

with the heathland forage plant Calluna vulgaris. These studies suggest that the three taxa are 

widespread throughout Ireland and the Western Isles of Scotland but have differing patterns 

of geographic distributions. These studies have suggested some differences in the ecology, 

abundance and distribution of the three taxa, which, given the ongoing concerns over 

bumblebee declines, indicates the need for further work to reveal the biology of these species 

and reassess their conservation status.  

The aim of this study was to assess the distribution and abundance of the lucorum 

complex species in Scotland, England and Wales and establish whether the populations of the 

individual species are vulnerable and require conservation action. Genetic methods were used 

to distinguish the three species. We then tested for niche differentiation between them by 
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assessing how climatic factors and habitat associations correlate with the distributions of the 

three species. Further, we assessed foraging behaviour and quantified the differences in diet 

breadth and forage use between the three species. In particular, we tested the specific 

hypothesis that B. magnus is a heathland specialist, using a paired sampling strategy where 

heathland and non-heathland sites were sampled at each location. 

 

2.3 Materials and methods 

Sampling 

Queens, workers and males were sampled across Great Britain from June-September 

during the summers of 2010 and 2011. In July 2010, 13 locations were sampled along a 

North-South line through the approximate centre of Scotland and England; during June-

August 2011, 14 further locations were sampled focussing on the periphery of the UK. The 

2011 fieldwork tested the hypothesis that B. magnus is a heathland specialist (Murray et al. 

2008; Waters et al. 2010a) using a paired sampling design: 11 of the 14 locations comprised a 

pair of sites representing heathland and non-heathland habitats within 15km of one another. 

All locations sampled in 2010 consisted of non-heathland habitat, although some were close 

to heathland. We aimed to catch at least 100 bees at each location, but occasionally this was 

not possible (mean = 89.4 ± 12.9 SE). For bees caught foraging on a flower (as were most), 

forage plant identity was recorded. Whole bees were stored in absolute ethanol. Thorax width 

of all individuals sampled in 2011 was measured using callipers to examine size differences 

between species. 

 

Species identification 

DNA extraction from the samples collected in 2010 was performed using a Chelex® 

100 protocol (Walsh et al. 1991) and from the 2011 samples using a HotShot protocol (Truett 
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et al. 2000). For species identification we followed a PCR-RFLP method based on 

amplification of the cytochrome oxidase I (COI) gene developed by Murray et al. (2008).  

The pattern of digested fragments for each individual was compared with the characteristic 

patterns associated with each of the cryptic species and B. terrestris (see Fig. 3 in Murray et 

al. 2008), in order to determine their species identity. To confirm RFLP identification; 108 

individuals (46 B. terrestris, 55 B. lucorum, 2 B. magnus, 2 B. cryptarum, 2 B. soroeensis, 1 

B. sylvestris), collected from all but one of the 2010 sample sites, were amplified using the 

PCR-RFLP primers.  Resulting PCR amplicons were purified (ExoSAP; Werle et al. 1994) 

and sent for sequencing (DNA Sequencing and Services, Dundee, U.K.).  Consensus 

sequences were aligned (Geneious v 6.1.7) then checked against the RFLP banding pattern. 

For those samples that did not exhibit a clear RFLP banding pattern after two amplifications 

(174 of 2 415), we used microsatellite data for species assignment (obtained from a separate 

study comparing population structure of the three species, Scriven et al. in prep.; Chapter 4). 

In brief, individuals were genotyped at 13 microsatellite loci (Appendix 2.1 & 2.2). Structure 

v 2.3.4 (Pritchard et al. 2000) was used to cluster the samples according to species. The 

USEPOPINFO model was applied to define “learning samples” that are pre-defined as 

coming from particular clusters (the known species from RFLP analysis) to assist ancestry 

estimation for the remaining individuals of unknown origin. The Admixture and Independent 

Allele Frequency models were also used and the software was run with four clusters (K, for 

the three lucorum complex species and B. terrestris using 50 000 burn-in periods followed by 

100 000 MCMC repetitions).  

 

Analyses  

Differences in habitat use and forage use between the three bumblebee species were 

examined using χ2 tests of association on data pooled across all sites in contingency tables. 
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For habitat use, data from all castes were included; for forage use, only data from queens and 

workers were used. Males often rest upon flowers when not foraging or searching for queens 

(Alford 1975), so they were not included in the analysis of forage use. Diet breadth was 

calculated and compared between bumblebee species using rarefaction: 100 samples were 

randomly drawn from those recorded for each species, without replacement, and the number 

of forage plants represented in this subsample recorded; 100 replicates were performed per 

species to estimate the mean number of plant species each bee species would be expected to 

visit in the specified number of flower visits.  

 Other analyses were carried out using R version 3.0.2 (R Core Team 2014). 

Generalised linear models with a binary error distribution were used to investigate the 

biogeographical and climatic correlates (UK Meteorological Office 2014) of lucorum 

complex species presence at sites. The response variable was the presence or absence of a 

species at a site. Explanatory variables tested were habitat type (heathland or non-heathland), 

mean maximum daily temperature from March to August (the approximate flight period of 

these species), elevation (m) and all two-way interactions. Associations with average rainfall 

and the number of days of ground frost from March to August were also investigated; 

however, they were negatively correlated with mean maximum temperature (r = -0.55 and -

0.57 respectively). These correlations meant we could not adequately distinguish their effects, 

hence rainfall and frost were dropped from analyses because mean temperature has greater 

explanatory power (at least 2 AIC points). These variables were chosen because previous 

studies have shown them to influence bumblebee species distributions (Williams 2007; 

Goulson 2010; Lye et al. 2010). The preference of each species for the ericaceous plants 

Calluna vulgaris or Erica spp. was examined using linear mixed effects models with 

individual bee as the unit of replication, and whether the bee was recorded on a Calluna 

vulgaris or Erica spp. flower or not as the binary response. Linear mixed-effect models were 
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fit with lmer in the lme4 package (ver. 1.0-5; Bates et al. 2015) in R. The fixed effects 

investigated the influence of the species that an individual bee belonged to and the habitat 

type in which it was found, with location as a random effect. The most parsimonious 

combination of fixed effects was determined using maximum likelihood (ML) rather than 

restricted maximum likelihood (REML).  

For all analyses optimal models were selected to minimise AICc after using the 

function dredge in the MuMIn package (ver. 1.9.5; Barton 2013) to run a complete set of 

models with all combinations of fixed effects and their two-way interactions. The models 

presented are the best models with a difference of 2 AICc points. Pairwise differences 

between factor means were investigated using Tukey’s post hoc tests. 

 

2.4 Results 

Species identification  

Of the 2 415 bees sampled, 20.3% of the samples collected were identified as B. 

terrestris. These were inadvertently collected during sampling as B. terrestris workers can be 

confused with B. lucorum workers (Wolf et al. 2010) and represented an average of 19.9 ± 

3.7% SE  (max. 72.5% and min. 0%) of samples taken from each location. All B. terrestris 

samples were excluded from further analyses. We did not include B. terrestris in this study 

because many B. terrestris individuals are easily distinguished using morphological traits, so 

only a proportion of all B. terrestris individuals (those that strongly resemble the lucorum 

complex species) were collected in our sampling. Of the remaining 1 924 bees that belonged 

to the lucorum complex, 65.5% were identified as B. lucorum, 23.7% were B. cryptarum, and 

10.8% were B. magnus (Appendix 2.3). 
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Figure 2.1. The distribution of Bombus lucorum complex species across Great Britain. Sites marked 

with a * were sampled in 2011. The number of specimens identified per site, and habitat types 

sampled, are shown in Appendix 2.3. 
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Table 2.1. The probability of B. cryptarum and B. magnus individuals being found at a site, in relation to multiple independent variables. Summary of the 

results of a generalised linear model that investigated the effects of habitat type (heathland or non-heathland), mean maximum daily temperature from March 

to August and elevation. Significant results are shown in italics. 

 

  B. cryptarum B. magnus 

Parameter  Estimate SE χ2 Prob > χ2 Estimate SE χ2 Prob > χ2 

Elevation (m) -0.015 0.009 3.551 0.060     

Average max. daily temperature (°C) -2.475 0.925 25.204 5.157x10-7 -1.694 0.614 16.324 5.339x10-5 

Habitat: Non-heathland -1.256 1.458 0.755 0.385 -3.398 1.325 10.169 0.001 

 

 

Table 2.2. Forage use and measures of diet breadth for B. lucorum complex queens and workers pooled across sample sites. Diet breadth is measured via 

rarefaction to estimate the number of plant species each bee species would be expected to visit in a total of 100 flower visits. 

 

  B. lucorum B. cryptarum B. magnus All bee species 

Total sample size 689 321 188 1198 

No. of plant taxa visited 43 25 6 47 

Diet breadth (± SD) 22.57 ± 2.24  15.20 ± 1.88 4.76 ± 0.85   
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Geographic distributions and habitat use 

The three species exhibit marked differences in their distributions across the UK. 

Bombus lucorum was found at every location sampled, from the Orkney Islands in the north, 

to Dartmoor in the south west and East Sussex in the south east (Fig. 2.1).  Bombus 

cryptarum was found in almost all locations sampled to the north of ~53oN, hence including 

North Wales, northern England and Scotland; it was the most abundant species present in 

Orkney and on the east coast of Aberdeenshire. Bombus cryptarum was also found in small 

numbers in East Anglia, and was abundant on Dartmoor in the southwest. Bombus magnus 

was the most restricted of the three species, found at 11 of 27 locations. Its distribution is 

similar to that of B. cryptarum, being largely found north of ~53oN. It was the most abundant 

species at four locations, three in the highlands and west of Scotland, and also on Dartmoor in 

the southwest.   

 There was a marked difference in the strength of association of the three species 

with heathland habitats (Fig. 2.2, χ2
2 = 435.94, P < 0.001). Bombus magnus exhibited striking 

habitat specialisation, occurring almost exclusively on heathland (Fig. 2.2). When samples 

were collected from paired heathland and non-heathland habitats, B. magnus was almost 

always found in only the heathland habitat: only at two of 11 locations was B. magnus 

detected in the non-heathland habitat and then either only one or two individuals were found. 

Both B. lucorum and B. cryptarum were found more commonly in non-heathland than 

heathland habitats, but a greater proportion of B. cryptarum (46.4 %) than B. lucorum 

(20.1%) were detected on heathland (Fig. 2.2).  
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 For B. magnus and B. cryptarum, we tested the biological and climatic correlates of 

species presence or absence at each site (B. lucorum was present at all sites, so was excluded 

from this analysis).  For B. cryptarum, increasing average maximum daily temperatures 

significantly decreased the likelihood of presence at a site; the negative effect of elevation 

was not quite significant (see Table 2.1 & Fig. 2.3a). For B. magnus, the likelihood of 

occurrence similarly declined significantly with increasing average maximum daily 

temperature, (see Table 2.1 & Fig. 2.3). The likelihood of occurrence for B. magnus was also 

significantly lower on non-heathland habitat: for a standardised summer maximum 

temperature of 15°C the probability of B. magnus occurring at a non-heathland site is 

approximately 0.1, whereas at a heathland site, it is approximately 0.8 (see Table 2.1 & Fig. 

2.3b). Other fixed effects (Table 2.1) and all two way interactions were not significant. The 

significant effect of average maximum temperature remained when this analysis was 

performed on heathland (parameter estimate = -1.24 ± 0.63, χ2
1 = 6.48, P = 0.011) and non-

heathland sites separately (parameter estimate = -2.68 ± 0.63, χ2
1 = 11.02, P < 0.001).  

 

Forage use 

Bombus lucorum queens and workers had the largest diet breadth (Table 2.2 & 

Appendix 2.4), visiting a wide range of species from 20 different plant families. Bombus 

cryptarum workers and queens were found on a more restricted variety of species than B. 

lucorum workers. The majority (90.5%) of B. magnus workers and queens were found 

foraging on Calluna vulgaris or Erica cinerea and Erica tetralix (Table 2.2 & Appendix 2.4) 

and consequently had the lowest diet breadth of the three species. The number of bees 

feeding on Erica spp. and Calluna vulgaris (heather) compared to all other plant species 

differed significantly across the 3 bumblebee species ( χ2
2= 253, P < 0.001). Bombus magnus 
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individuals foraged most often on heather (90.5%), followed by B. cryptarum (43.9%); B. 

lucorum individuals foraged on these flowers least often (27.3%).  

 

 

  

Figure 2.2. Habitat use by all castes of B. lucorum, B. magnus and B. cryptarum, indicated by the 

percentage of bees caught in each habitat type, pooled for all sample sites.  
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Figure 2.3. (a) Probability of B. cryptarum presence at sites as a function of mean maximum daily 

temperature (°C) from March to August, and (b) of B. magnus presence as a function of mean 

maximum daily temperature (°C) on heathland (filled circles) and non-heathland habitat (non-filled 

circles).  Bold lines represent the relationship between the presence of the species and the mean 

maximum daily temperature estimated from a generalised linear model. Small dashed lines represent 

95% confidence intervals (CI) around this estimated relationship. 

 

 

We tested whether the apparent preference of B. magnus for foraging on Erica spp. or 

Calluna vulgaris was simply a consequence of this bee species occurring predominantly in 

heathland habitats where heather plants are most common. This was done by assessing how 

the probability of foraging on Erica spp. or Calluna vulgaris varied between bee species 

across both habitat types. The likelihood of bees foraging on these flowers was significantly 

influenced by which bumblebee species they belonged to (χ2
2 = 42.1, P < 0.001) and habitat 
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type (χ2
1 = 210, P < 0.001). Furthermore, a significant interaction between species and habitat 

(χ2
2 = 10.6, P < 0.01) demonstrated that the differences between species in the extent of their 

preference for heather varied between the habitats. Whilst B. magnus individuals were 

significantly more likely to forage on heather when on heathland than either B. cryptarum 

(parameter estimate = -4.5 ± 1.18, P <  0.001) or B. lucorum (parameter estimate = -4.36 ± 

1.18, P <  0.001, Fig. 2.4), on non-heathland habitats, all three were equally likely to be found 

foraging on Erica spp. or Calluna vulgaris (Fig. 2.4).There was no significant difference in 

the likelihood of B. cryptarum and B. lucorum foraging on these heather flowers when on 

heathland (parameter estimate = -0.17 ± 0.3, P > 0.1, Fig. 2.4).  

 

 

 
 

 

 

 

Figure 2.4. The probability of individuals (queens and workers) of each taxa foraging on Calluna 

vulgaris, Erica tetralix or Erica cinerea compared to all other plant species, according to habitat type. 

Porbabilities were estimated from a linear mixed effect model. Error bars show 95% confidence 

intervals. Probabilities with different letters are significantly different (P < 0.001). 
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2.5 Discussion 

This study has substantially enhanced our understanding of the distribution of the 

three cryptic members of the lucorum species complex in Britain. Previous authors studying 

more restricted geographic areas in Ireland (Murray et al. 2008) and Western Scotland 

(Waters et al. 2010a) concluded that B. lucorum, B. cryptarum and B. magnus are common, 

widely distributed and sympatric. By undertaking a more wide-ranging study, we 

demonstrate that across the UK B. magnus and B. cryptarum are associated with cooler 

climates than B. lucorum, being found most commonly in northern and western Britain and 

that they are absent from a large portion of the south and east. Our data also demonstrate that 

B. magnus exhibits a tight association with heathland habitats. 

The absence of morphological diagnostic characters leads to a lack of even basic 

knowledge about the ecology and distribution of cryptic species. Without ecological 

knowledge of cryptic species, we have no way of discerning whether populations are stable 

or establishing effective conservation management strategies when necessary.  This is 

particularly true for pollinator groups such as bumblebees, which are important both 

ecologically and economically, and comprise species that are suffering dramatic declines 

resulting from habitat loss and fragmentation (Goulson 2010) and agricultural intensification 

(Williams 1986; Goulson et al. 2006). This study therefore contributes vital information for 

this purpose. 

In the Western Isles of Scotland, B. lucorum was the least common of the lucorum 

complex species (Waters et al. 2010a). In contrast, in this study of mainland Great Britain, 

and also in Ireland (Murray et al. 2008; Stanley et al. 2013b), B. lucorum was the most 

common species (double the proportion found in Waters et al. 2010a). In the current study, B. 

lucorum was found at all sampled sites, making it the most widespread of the species, 
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although a greater proportion of individuals were found in non-heathland than heathland 

habitat. Unlike in the Western Isles, where B. cryptarum workers were shown to have the 

broadest diet (Waters et al. 2010a), in our study B. lucorum workers (and queens) exhibited 

the largest diet breadth, exploiting a greater number of plant species than either B. cryptarum 

or B. magnus. Such a large diet breadth may be a reflection of the broad range of habitats and 

locations that this species inhabits. Overall, B. lucorum appears to be the most generalised of 

the three species, occupying the broadest climatic range, feeding on a wide range of flowers, 

and is the only species of the three to be found in the intensively farmed and urbanized south 

east of England.  

Bombus cryptarum was the second most common species in this current study. 

However, previous studies show that in Ireland it was the least common of the three (Murray 

et al. 2008), whereas in the Western Isles, it was the most common (almost half of the 

individuals, Waters et al. 2010). It was also found to be the most polylectic in the Western 

Isles, visiting a wide range of food plants belonging to many families, including non-native 

garden plants (Waters et al. 2010a). In the rest of Scotland, England and Wales, it also 

appears to be highly polylectic, but less so than B. lucorum, possibly because its narrower 

geographic distribution inevitably means it encounters fewer plant species.  

In the Western Isles of Scotland (Waters et al. 2010a) and Ireland (Murray et al. 

2008), B. magnus was the second most common of the three species, whereas in this study of 

mainland Great Britain, B. magnus was the least abundant of the three species (approximately 

three times lower than in the other two studies). It has previously been described as 

associated with upland, northerly, and westerly areas, and thus the generally cooler, wetter 

regions in the UK (Alford 1975; Benton 2006). Waters et al. (2010a) and Murray et al. 

(2008) found that their data for B. magnus in Ireland and the Western Isles of Scotland did 

not support this. Instead, Murray et al. (2008) found that this species was present in both 
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upland and lowland sites but was absent from urban areas and Stanley et al. (2013) found that 

it was absent from mass flowering crops in Ireland. Our results for Great Britain correspond 

to the findings of Waters et al. (2010a) that B. magnus is strongly associated with heathland, 

but is not restricted to upland areas. Waters et al. (2010a) also found that B. magnus was 

particularly associated with the forage plant Calluna vulgaris; our results indicate an 

association with the three Ericaceae, Calluna vulgaris, Erica cinerea and Erica tetralix. This 

apparent preference for these Ericaceous flowers leads to B. magnus exhibiting the lowest 

diet breadth.  

 Tight dietary specializations or biotope associations are unusual in European 

bumblebees. In a study on the biotope associations of UK bumblebee species, Goulson et al. 

(2006) found that they were all recorded in more than one, most being found in a broad range 

of different biotopes. Even very rare species such as B. sylvarum, which is the second rarest 

extant species in the UK, do not seem to have tight biotope associations. Bombus jonellus, B. 

muscorum and B. soroeensis are also associated with heathland to varying extents, especially 

in the north of the UK, but all three also have significant populations in non-heathland 

habitats (Darvill et al. 2006, 2010; Goulson et al. 2006) and specialisation in habitat and food 

associations may often be related to the position of a site within a species’ global range 

(Williams et al. 2007). In this study, only 9.5% of B. magnus individuals were found in 

habitat other than heathland, or on flowers other than Erica spp. or Calluna vulgaris; all of 

these individuals were found very near to large areas of heathland, suggesting that they were 

probably individuals spilling out from heathland habitat. This apparent tight association 

exhibited by B. magnus could impose a serious disadvantage for a social organism that needs 

to maintain colonies with high energy demands beyond the flowering season of any one (or 

two) plant species (Williams 2005) and seems to be quite unusual amongst bumblebees.  
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 In Great Britain there are two types of heathland habitat, lowland and upland heath. 

The lowland heaths of southern England make up 14% of this habitat type in Europe (Groves 

et al. 2012), yet around 80% has been lost since 1800 due to agriculture, urbanisation and 

changes in land management (Price 2003). Upland heath is a sub-montane habitat 

characterised by common or ling heather Calluna vulgaris, found mostly in the British Isles, 

and along parts of the western seaboard of the northwest European mainland. Calluna 

vulgaris occurs much more widely than this but the massive extent of rotationally burned 

heather is unique to the UK and Ireland (Thompson et al. 1995). In the UK, large proportions 

of upland heath have also been lost to afforestation and over-grazing by sheep (Thompson et 

al. 1995). Consequently, both lowland and upland heathland are listed as UK post-2010 

Biodiversity Framework priority habitats, meaning that they have been identified as being the 

most threatened and requiring conservation action. Habitat degradation can have considerable 

implications for the species that are associated with it. In fact habitat loss is widely agreed to 

be the most important factor driving bee declines (Brown & Paxton 2009). A direct result of 

habitat loss is habitat fragmentation, which impacts surviving populations through genetic 

isolation and subsequent inbreeding (Zayed 2009; Whitehorn et al. 2011) or simply the 

inability of small remaining habitat fragments to support viable bee populations (e.g. Ellis et 

al. 2006). In this case, B. magnus may already have suffered from past losses of heathland 

and further loss of this habitat is likely to lead to population declines. The apparent dietary 

specialisation of B. magnus could make this especially problematic. Only a small number of 

bumblebee species (six in the UK) remain common and ubiquitous and do not appear to have 

exhibited obvious range contractions as a result of changes to the environment in the last 60 

years (Goulson et al. 2005). These species seem to have more generalised foraging 

preferences than some of the rare species, which may mean they have a greater ability to 

adapt to changing forage resources (Goulson et al. 2005). In addition, species with narrow 
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diet breadth have access to fewer resources, so, as biotopes become degraded and floral 

resources decline, these specialists are likely to be the first to disappear (Goulson et al. 2006). 

Presently, we have no way of knowing whether the populations of the species within the 

lucorum complex are currently stable or if they have experienced population changes in the 

past.  

We acknowledge that our diet breadth estimates are likely to be conservative, since 

fieldwork targeted flower patches and times of day where bees were abundant enough to 

collect an adequate sample size to accurately characterise feeding behaviour. This may have 

led us to miss a small number of bees foraging on some rare flower species. However, it is 

unlikely to have strongly affected the results; our estimates will be representative of foraging 

behaviour in the substantial majority of individuals. There was no possibility that this 

introduced bias into our diet breadth comparisons between the different lucorum complex 

species, as species identity was only determined post-hoc by molecular methods. It should be 

noted that our analysis techniques cannot entirely disentangle effects of habitat preference on 

observed diet breadth; localized species, or species with specialized habitat preferences, will 

encounter fewer flower species and thus inevitably tend to have a more restricted diet (see 

Williams 2005). 

Bombus cryptarum and B. magnus occurred more commonly where temperatures 

were lower and were found to be generally more common at northerly latitudes, a preference 

that was not detected for B. lucorum. They were consequently absent from much of the south 

and east of England. Heathland habitats were sampled in this area but B. magnus was not 

found to be present (though Williams et al. 2012 report a specimen from the heathland of 

Dungeness in the South East of England). It may be that these sites are too warm, or that B. 

magnus used to occur there in the past when the heathland area was larger and less 

fragmented. The south-east of England is also highly urbanized. Urban areas can support 
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diverse pollinator assemblages but they can also have negative impacts on pollinator species 

(Bates et al. 2011). One obvious outlier in the distributions of both B. cryptarum and B. 

magnus is the Birch Tor site on Dartmoor in the south-west of England (Fig. 2.1), where B. 

magnus and B. cryptarum were more abundant than B. lucorum. This appears incongruous 

(Fig. 2.1) but due to the high altitude the temperature at this site is actually much lower than 

at other sites with similar latitude, meaning the presence of B. magnus and B. cryptarum at 

Birch Tor is consistent with their preferences. Further sampling in the southwest of England 

and in Wales would help reveal whether these are isolated populations of B. magnus and B. 

cryptarum, or whether they are actually present in suitable areas throughout the western side 

of Great Britain.  

The lack of diagnostic characteristic traits for these species in Scotland and Ireland 

(Carolan et al. 2012), as well as geographical variation in colour pattern across taxa, means 

that the potential for misidentification of these species is very high. As a consequence, 

descriptions of the ecology and distribution of these three species, obtained prior to the 

utilisation of molecular methods for species identification, are likely to be problematic (see 

Rasmont 1984; Rasmont et al. 1986; Pamilo et al. 1997 for European distributions).  

Therefore, the only reliable information available about the worldwide distributions of these 

species comes from a study by Williams et al. (2012) of the subgenus Bombus s. str. They 

find B. lucorum to be present from Iceland in the west, across Europe to the mountains of 

Central Asia and in Mongolia. Bombus cryptarum appears to have the broadest distribution of 

all Bombus s. str. species. It was found from Great Britain, across Europe and central Asia to 

western North America. Bombus magnus is present in Great Britain, Spain, Denmark, 

Sweden and near Moscow, Russia. Further work would evidently be beneficial. 

This study has revealed that while these species have a sympatric distribution across 

much of northern England, Northern Wales and Scotland, they exhibit clearly discernible 
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differences in their ecological characteristics. This demonstrates the importance of correctly 

identifying cryptic species, not just amongst important pollinators such as bumblebees (e.g. 

Ellis et al. 2006a; Williams 2007) but in insects in general, where they are also common (e.g. 

Hebert et al. 2004; Smith et al. 2007). Failure to account for cryptic diversity could result in 

missing the causal link between changes in species distribution and environmental variation, 

incorrect delineation of units for conservation and consequently, serious repercussions for 

their management. 

Further studies of these three species would be required to determine whether the 

observed differences are the result of preference or the outcome of inter-specific competition. 

In addition, it would be interesting to determine what B. magnus feeds on during the periods 

when Erica spp. and Calluna vulgaris are not in flower on heathland habitats. A long term 

study would be able to establish whether the populations of these three species are stable or 

declining, particularly focussing on the response of B. magnus populations to past and present 

heathland loss/ degradation. Our ongoing research is investigating the population genetics of 

this species complex to provide insight into differences in genetic diversity, and reveal 

whether the highly specialised B. magnus is suffering from population fragmentation as a 

result of its tight association with a declining and fragmented habitat type. 
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2.7 Appendix 

 

Appendix 2.1. Multiplex groups for microsatellite analysis 

Multiplex group Locus Source 

1 B11 Estoup et al. 1995 & 1996 

 B118 Estoup et al. 1995 & 1996 

 B121 Estoup et al. 1995 & 1996 

 B10 Estoup et al. 1995 & 1996 

 B124 Estoup et al. 1995 & 1996 

   
2 BT26 Funk et al. 2006 

 BT09 Funk et al. 2006 

 BL11 Funk et al. 2006 

 BT18 Funk et al. 2006 

   
3 BL03 Funk et al. 2006 

 BL06 Funk et al. 2006 

 BT10 Funk et al. 2006 

  BT24 Funk et al. 2006 

 

 

 

 

 

 

 

Appendix 2.2. PCR conditions for the three microsatellite multiplex groups 

  Multiplex group 1   Multiplex groups 2 & 3 

  Time Temp. (°C) Cycles   Time Temp. (°C) Cycles 

Activation 15 min 95   15 min 95  

3-step cycling:   35    40 

Denaturation 30 s 94   30 s 94  
Annealing 90 s 49   90 s 54  
Extension 90 s 72   90 s 72  

Final extension 10 min  72     10 min  72   
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Appendix 2.3. Sample sizes from 27 sites in Great Britain identified to species. The codes for site 

names are used in Figure 2.1.  

 

    Year Latitude Longitude 

B. 

cryptarum 

B. 

lucorum 

B. 

magnus Total 

Orkney OR 2010   5 2  7 

Non-heathland   59.05 -3.09 5 2  7 

Tongue TO 2010   20 61 1 82 

Non-heathland   58.49 -4.43 20 61 1 82 

Helmsdale HE 2010   25 49  74 

Non-heathland   58.05 -3.83 25 49  74 

Inverness IN 2010   9 52  61 

Non-heathland   57.49 -4.46 9 52  61 

Kyle of 

Lochalsh KY 2011   7 27 42 76 

Heathland   57.23 -5.40 1 7 42 50 

Non-heathland   57.28 -5.52 6 20  26 

Nethy Bridge NE 2011    1 17 18 

Heathland   57.23 -3.68  1 17 18 

Mergie ME 2011   74 28 7 109 

Heathland   57.00 -2.34 52 6 5 63 

Non-heathland   56.99 -2.29 22 22 2 46 

Pitlochry PI 2010   4 56 15 75 

Non-heathland   56.77 -3.93 4 56 15 75 

Glencoe GL 2011   20 31 52 103 

Heathland   56.66 -5.05 2 2 51 55 

Non-heathland   56.68 -5.12 18 29 1 48 

Stirling ST 2011   128 203 1 332 

Heathland   56.19 -3.89 93 56  149 

Non-heathland   56.14 -3.92 35 147 1 183 

Rothbury RO 2011   36 54 6 96 

Heathland   55.34 -2.12 25 15 6 46 

Non-heathland   55.29 -1.85 11 39  50 

Bargrennon BA 2011   14 30 7 51 

Heathland   55.11 -4.49 4 1 7 12 

Non-heathland   55.01 -4.54 10 29  39 

Moffat MO 2010   16 70  86 

Non-heathland   55.06 -3.27 16 70  86 

Penrith PE 2010   9 48  57 

Non-heathland   54.69 -2.80 9 48  57 

Kirkbymoorside KI 2011   12 51 15 78 

Heathland   54.33 -0.94 10 28 15 53 

Non-heathland   54.22 -0.88 2 23  25 

Rochdale RD 2010   11 23  34 

Non-heathland   53.76 -2.34 11 23  34 

Hope HO 2011   30 18 25 73 

Heathland   53.39 -1.69 21 3 25 49 
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Non-heathland   53.35 -1.75 9 15  24 

Conwy CO 2011   18 34 2 54 

Heathland   53.28 -3.88 11 26 2 39 

Non-heathland   53.23 -3.84 7 8  15 

Keele KE 2010    62  62 

Non-heathland   53.02 -2.28  62  62 

Thetford TH 2011   3 71  74 

Heathland   52.42 0.71 3 37  40 

Non-heathland   52.40 0.92  34  34 

Worcester WO 2010    22  22 

Non-heathland   52.33 -2.26  22  22 

London LO 2010    107  107 

Non-heathland   51.40 0.06  107  107 

SalisburyPlain SP 2011    28  28 

Non-heathland   51.27 -1.71  28  28 

Wych cross WY 2011    34  34 

Heathland   51.07 0.05  34  34 

Blackboys BL 2010    35  35 

Non-heathland   50.96 0.18  35  35 

Bramshaw BR 2011    61  61 

Heathland   50.89 -1.69  49  49 

Non-heathland   50.95 -1.78  12  12 

Birch Tor BI 2011   14 3 18 35 

Heathland   50.61 -3.87 14 3 18 35 

Total         455 1261 208 1924 
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Appendix 2.4.  Forage use and measures of diet breadth for B. lucorum complex queens and workers 

pooled across sample sites. Values represent the number of individuals of each bee species and, in 

parenthesis, the percentage of the total number individuals of the corresponding bee species. Diet 

breadth is measured via rarefaction to estimate the number of plant species each bee species would be 

expected to visit in a total of 100 flower visits. 

 

  B. lucorum B. cryptarum B. magnus All bee species 

Anchisa arvensis 1 (0.15)   1 (0.08) 

Anemone spp. 3 (0.4)   3 (0.3) 

Brassica napus 1 (0.15)   1 (0.08) 

Calluna vulgaris 21 (3) 51 (15.9) 101 (53.7) 173 (14.4) 

Centaurea spp. 4 (0.6) 1 (0.3)  5 (0.4) 

Chamerion angustifolium 97 (14.1) 42 (13.1) 15 (8) 154 (12.9) 

Cirsium spp. 31 (4.5) 7 (2.2)  38 (3.2) 

Crataegus spp. 1 (0.15)   1 (0.08) 

Echium vulgare 18 (2.6) 1 (0.3)  19 (1.6) 

Erica spp. 160 (23.2) 89 (27.7) 69 (36.7) 318 (26.5) 

Eryngium giganteum 1  (0.15)   1 (0.08) 

Filipendula ulmaria 56 29 (9) 1 (0.5) 86 (7.2) 

Geranium pratense 1 (0.15)   1 (0.08) 

Geum rivale 1 (0.15) 3 (0.9)  4 (0.3) 

Hypericum perforatum 13 (1.9) 1 (0.3)  14 (1.2) 

Jacobaea vulgaris 5 (0.7)   5 (0.4) 

Knautia arvensis 1 (0.15)   1 (0.08) 

Lathyrus pratensis 1 (0.15)   1 (0.08) 

Lavandula spp. 7 (1)   7 (0.6) 

Ligustrum spp. 9 (1.3)   9 (0.8) 

Linaria vulgaris 10 (1.5)   10 (0.8) 

Lotus corniculatus 2 (0.3)   2 (0.2) 

Lysimachia vulgaris 1 (0.15)   1 (0.08) 

Malva sylvestris 1 (0.15)   1 (0.08) 

Melilotus officinalis 12 (1.7)   12 (1) 

Mentha spicata 5 (0.7)   5 (0.4) 

Onobrychis vicifolia 1 (0.15)   1 (0.08) 

Phacelia spp. 3 (0.4) 2 (0.6)  5 (0.4) 

Plantago spp.  1 (0.3)  1 (0.08) 

Potentilla spp. 1 (0.15)   1 (0.08) 

Prunus avium 1 (0.15)   1 (0.08) 

Rhododendron spp. 25 (3.6) 2 (0.6)  27 (2.3) 

Rosa spp. 18 (2.6) 2 (0.6)  20 (1.7) 

Rubus spp. 34 (4.9) 19 (5.9)  53 (4.4) 

Salix spp. 3 (0.4) 2 (0.6)  5 (0.4) 

Saxifraga tridacylites 2 (0.3) 1 (0.3)  3 (0.3) 

Scabiosa spp.  1 (0.3)  1 (0.08) 

Tanacetum vulgare 2 (0.3) 1 (0.3)  3 (0.3) 

Taraxacum spp. 1 (0.15)   1 (0.08) 

Teucrium scorodonia 9 (1.3) 1 (0.3)  10 (0.8) 
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Thymus spp. 12 (1.7) 2 (0.6) 1 (0.5) 15 (1.3) 

Tilia spp. 6 (0.9)   6 (0.5) 

Trifolium pratense 2 (0.3) 1 (0.3)  3 (0.3) 

Trifolium repens 96 (13.9) 36 (11.2) 1 (0.5) 133 (11.1) 

Ulex spp. 10 (1.5) 20 (6.2)  30 (2.5) 

Vaccinium spp.  1 (0.3)  1 (0.08) 

Vicia cracca  5 (1.6)  5 (0.4) 

Total sample size 689 321 188 1198 

No. of plant taxa visited 43 25 6 47 

Diet breadth (± SD) 22.57 ± 2.24  15.20 ± 1.88 4.76 ± 0.85   
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Chapter 3 

 

Niche partitioning in a sympatric cryptic 

species complex 
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3.1 Abstract 

Competition theory states that multiple species should not be able to occupy the same niche 

indefinitely. Morphologically similar species are expected to be ecologically alike and exhibit 

little niche differentiation, which makes it difficult to explain the co-occurrence of cryptic 

species. Here, we investigated interspecific niche differentiation within a complex of cryptic 

bumblebee species that co-occur extensively in the United Kingdom. We compared the 

interspecific variation along different niche dimensions, to determine how they partition a 

niche to avoid competitive exclusion. We studied the species B. cryptarum, B. lucorum, and 

B. magnus at a single location in the northwest of Scotland throughout the flight season. 

Using mitochondrial DNA for species identification, we investigated differences in 

phenology, response to weather variables and forage use. We also estimated niche region and 

niche overlap between different castes of the three species. Our results show varying levels of 

niche partitioning between the bumblebee species along three niche dimensions. The species 

had contrasting phenologies: The phenology of B. magnus was delayed relative to the other 

two species, while B. cryptarum had a relatively extended phenology, with workers and 

males more common than B. lucorum early and late in the season. We found divergent 

thermal specialisation: In contrast to B. cryptarum and B. magnus, B. lucorum worker activity 

was skewed toward warmer, sunnier conditions, leading to interspecific temporal variation. 

Furthermore, the three species differentially exploited the available forage plants: In 

particular, unlike the other two species, B. magnus fed predominantly on species of heather. 

The results suggest that ecological divergence in different niche dimensions and spatio-

temporal heterogeneity in the environment may contribute to the persistence of cryptic 

species in sympatry. Furthermore, our study suggests that cryptic species provide distinct and 

unique ecosystem services, demonstrating that morphological similarity does not necessarily 

equate to ecological equivalence. 
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3.2 Introduction 

 According to competition theory, ecologically similar co-existing species must 

partition resources (Hardin 1960). Multiple species should not be able to occupy the same 

niche indefinitely, as the best adapted species should eventually exclude inferior species from 

a given location (Gause 1932; Holt et al. 1994). Closely related species are often 

morphologically, physiologically and behaviourally similar. Morphologically similar species 

are expected to be ecologically alike and exhibit little niche differentiation (Cothran et al. 

2013; Violle et al. 2011). This makes it difficult to explain the co-occurrence of cryptic 

species, which are distinct species with similar or identical morphology, often historically 

‘hidden’ under a single species name and thus wrongly classified (Bickford et al. 2007;  

Williams et al. 2012b). Indeed, some studies have found that cryptic species are less likely to 

co-occur than congeneric non-cryptic species (Vodă et al. 2015a, 2015b). Yet, cryptic species 

are common in nature and often do co-occur at local scales (Feulner et al. 2006; Gabaldón et 

al. 2013; Ortells, Gómez, & Serra 2003; Stuart, Inger, & Voris 2006; Van Campenhout et al. 

2014); this makes them important test cases for studying the mechanisms that facilitate 

species coexistence. In this study we investigated interspecific niche differentiation within a 

bumblebee cryptic species complex, comparing the degree to which species vary in different 

niche dimensions.  

Approximately 250 species of bumblebees exist worldwide, distributed across the 

temperate, alpine and arctic regions of the northern hemisphere and also South America. In 

much of this range, it is common for multiple species to occur in sympatry despite high niche 

overlap. Morphologically, most bumblebee species are very similar, with obvious differences 

only in size, tongue length and coloration (Goulson & Darvill 2004; Goulson 2010). Since 

they also all rely exclusively on pollen and nectar for food, theory would predict that 
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bumblebee communities should be shaped by high levels of interspecific competition for 

these resources (Heinrich 1976; Inouye 1978).  

Bombus species are notorious for possessing convergent colour patterns between 

species, but also for displaying high intraspecific variation (Ellis et al. 2006a; Williams 2007; 

Williams et al. 2012a). The subgenus Bombus sensu stricto is a widespread and commercially 

exploited taxon of bumblebee, comprising 17 species worldwide (Williams et al. 2012b), of 

which five are found in Europe: Bombus (Bombus) cryptarum, (Fabricius), B. (B.) lucorum 

(Linnaeus), B. (B.) magnus (Vogt), B. (B.) sporadicus (Nylander) and B. (B.) terrestris 

(Linnaeus). The taxonomic status of the latter two species is well established but B. lucorum, 

B. magnus and B. cryptarum are morphologically indistinguishable in much of their range 

(Fig. 3.1), which has triggered considerable debate about their species-status. Bombus 

magnus and B. cryptarum have previously been regarded by some as subspecies of B. 

lucorum and are often referred to collectively as the ‘lucorum complex’, or simply 

synonymized to B. lucorum (Benton 2006; Edwards & Jenner 2005). However, these three 

species are now recognised as a cryptic species complex: studies on labial gland secretions 

have shown discrete genetic differences between the three species (Bertsch et al. 2005), as 

have studies of the CO1gene (Murray et al. 2008; Williams et al. 2012b; Carolan et al. 2012), 

which suggest that B. magnus  and B. cryptarum are more closely related to each other than 

to B. lucorum (Bertsch et al. 2005; Murray et al. 2008; Williams et al. 2012b). Morphological 

diagnostic characters have been proposed for queens, but some of these vary along a 

continuum, overlapping considerably between species, making them unreliable for 

identification (Carolan et al. 2012).  

With a history of identification difficulties, relatively little is known about the field 

ecology of these cryptic lucorum complex species; in particular, the details of how they 

differentially exploit their general niche remain unclear. The three species are 
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morphologically and ecologically similar; they are all short-tongued species (Stanley et al. 

2013b), meaning they have potential foraging access to the same floral resources. They occur 

sympatrically with broadly overlapping ranges in the UK and Ireland (Murray et al. 2008; 

Waters et al. 2010a; Williams et al. 2012b; Stanley et al. 2013b; Scriven et al. 2015; Chapter 

2). All three species co-occur at many locations in Great Britain and Ireland; additionally, 

Chapter 2 (Scriven et al. 2015), Murray et al. (2007) and Stanley et al. (2013) found B. 

lucorum to be present at every site surveyed, suggesting that it is a relative ecological 

generalist. The only study in which B. lucorum was found to be absent from some locations 

was carried out in the far north west of Great Britain (Waters et al. 2010a). Studies of 

geographic distributions have suggested that the lucorum complex species may be adapted to 

exploit different climatic conditions (Waters et al. 2010a; Scriven et al. 2015; Chapter 2): 

unlike B. lucorum, both B. cryptarum and B. magnus occurred most commonly at sites with 

lower summer temperatures (Scriven et al. 2015; Chapter 2). Furthermore, Chapter 2 

(Scriven et al. 2015) and Waters et al. (2011) found that B. magnus was strongly associated 

with the forage plants Calluna vulgaris and Erica spp. and consequently with heathland 

habitats where these ericaceous plants were present.  

Bumblebees and some other pollinators have recently suffered declines in abundance 

and range contractions across much of Western Europe and North America (Cameron et al. 

2011; Goulson, Lye, & Darvill 2008; Goulson 2010; Williams 2005; Williams 1982). In the 

UK, seven out of the 27 species are listed as priority species in the UK post-2010 

Biodiversity Framework (previously Biodiversity Action Plan), a higher proportion than for 

any other invertebrate group (Goulson 2010). Thus, as well as enabling us to test fundamental 

ecological theories, a thorough understanding of niche use in bumblebees has important 

conservation implications. This is especially critical for B. magnus, which is the rarest of the 
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lucorum complex species and is tightly associated with threatened heathland habitat (Waters 

et al. 2010a; Scriven et al. 2015; Chapter 2) 

 

Figure 3.1. One of the lucorum complex species, which are morphologically indistinguishable in the 

field. This indivivdual was feeding on heather in Glencoe. Photo credit: Jessica Scriven. 

 

  

 In this study we determine how these three cryptic species, B. lucorum, B. cryptarum 

and B. magnus, partition a niche to avoid competitive exclusion. For the first time, we 

characterise the niches of these species at a single site across the duration of their flight 

season. We assess niche differentiation in three different ecological dimensions: patterns of 

temporal activity, weather sensitivity and forage resource use. In doing so, we aim to test 

which of these niche-use phenotypes has most flexibly responded to the selection pressures 



 

68 
 

generated by interspecific competition to facilitate niche differentiation and species co-

occurrence. 

 

3.3 Methods 

Sampling  

The study site was the area in and around Glencoe village in the Highlands of 

Scotland, UK. A previous study found all three lucorum complex species in good numbers at 

this site (Scriven et al. 2015; Chapter 2). Sampling was carried out below 150m altitude 

within a 3km radius of 56.68° N and -5.09° W, which included two villages and the bottom 

of Glencoe valley. The site was visited repeatedly between April 30th and October 2nd 2014, 

on average every 11 days (interval: max. 13 days, min. 9 days). Sampling was carried out 

over approximately two days per visit (max. three days, min. one day). Road verges, paths 

and any other accessible areas were searched continuously on foot throughout the day, from 

early morning until the evening; the exact times changed according to daylight hours 

throughout the season. Routes walked were varied so that all areas were visited at different 

times of day. Bumblebees resembling the lucorum complex species were caught and placed 

in a queen marking cage. For each individual captured we recorded: date, time of day, forage 

plant, temperature (°C) using a TES Dual K-type Thermometer (model 1312A), wind speed 

(m/s) using an Airflow Developments anemometer (model LCA6000), amount of sun (scale 

0-4, Appendix 3.1) and amount of rain (scale 0-5, Appendix 3.2). A single tarsus was 

removed from each individual and stored in absolute ethanol for subsequent DNA extraction, 

after which bees were released. All bees were checked for missing tarsi to prevent sampling 

the same individuals twice. Bees were predominantly captured when foraging on flowers. 

Early in the season queens were observed foraging high in the canopy of Acer 
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pseudoplatanus and Salix sp. trees, it was not possible to catch these individuals; therefore 

they are not included in this study.  

 

Species identification 

DNA was extracted from tarsal samples using Chelex® 100 (Walsh et al. 1991). For 

species identification we used a PCR-RFLP method, digesting an amplified fragment of the 

cytochrome oxidase I (COI) gene following Murray et al. (2008): this yields a diagnostic 

digestion pattern for each of the cryptic lucorum complex species and B. terrestris. Samples 

that did not produce unambiguous results after two attempts were discarded. Of the 519 bees 

sampled, 4.2% were identified as B. terrestris, some workers of which are morphologically 

similar to B. lucorum workers (Wolf et al. 2010). These B. terrestris individuals were 

excluded from further analyses.  

 

Analyses 

All analyses were carried out using R version 3.0.2 (R Core Team 2014). To reduce 

the number of weather-related explanatory variables, we employed  principal component 

analysis (PCA) using the FactoMineR package (ver. 1.28, Lê et al. 2008). All variables were 

scaled to unit variance prior to analysis. PCA scores for axis 1 were associated with the level 

of sunshine and temperature (Appendix 3.4); this PCA variable (PCA 1) was used in some 

subsequent analyses.  

To compare the seasonal and daily activity of the three bumblebee species and 

determine if they were differentially affected by weather variables, we performed pairwise 

analyses between the species. We used generalised linear models with binary error 

distributions to test the association between these variables and the relative probability a 

sampled bumblebee belonged to a particular species within each pair. This analysis was 
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performed separately for each caste (overwintered queens, workers, males); B. magnus was 

excluded from the analysis of males due to low sample size. Optimal models were selected to 

minimise AICc using the function dredge in the MuMIn package (ver. 1.9.5; Barton 2013) to 

run a complete set of models with all combinations of fixed effects and their two-way 

interactions.  

To define the niche of each species we used the nicheROVER package (ver. 1.0; 

Swanson et al. 2015); we calculated the niche region (NR) for each of the three bumblebee 

species and the degree of niche overlap, based on phenology, time of day and sensitivity to 

weather variables. NR is defined as a specific region of parameter space in which a randomly 

chosen individual has the probability α of being found (Swanson et al. 2015). For these 

analyses α = 95%. Niche overlap was calculated as the probability that a sampled individual 

from species A was found in the NR of species B (Swanson et al. 2015). Analyses were 

carried out separately for queens and workers; sample sizes for males were too small. 

We determined diet differences between bumblebee species in three separate 

comparisons, for queens, workers and males. We took the records of the flower species that 

each captured bee was visiting and used rarefaction to account for differences in sample size 

in our calculations of diet breadth (Williams, Araújo, & Rasmont 2007). We noted the 

number of observations for the bee species with the fewest samples, rounded this down to the 

nearest multiple of five, and then drew this number of random samples of foraging 

observations without replacement for each bumblebee species. We drew 100 replicate 

subsamples per bee species to estimate the mean number of plant taxa each bee species would 

be expected to visit during a comparable number of flower visits, then determined the number 

of forage plant species in these subsamples. The preference of each bumblebee species for the 

ericaceous plants Calluna vulgaris or Erica spp. was examined using generalised linear 

models with individual bee as the unit of replication.  The binary response represented 
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whether the bee was recorded foraging on a C. vulgaris /Erica spp. flower (1) or any other 

plant species (0) and bumblebee species was used as the explanatory variable. This analysis 

was performed separately for queens and workers. We also calculated dissimilarity between 

the diets of the three species as Bray-Curtis distance measures (Bray & Curtis 1957) 

employing the Vegan package (ver. 2.3-0, Oksanen et al. 2015) using relative abundances.  

 

3.4 Results 

Species identification  

Of the 497 bees that belonged to the lucorum complex, 51.7% were B. cryptarum, 

40.4% were B. lucorum, and 7.8% were B. magnus. Queens of the three species were 

similarly abundant; however, in comparison to B. lucorum and B. cryptarum, workers and 

males of B. magnus were relatively rare (Table 3.1).   

 

Table 3.1. The total number of queens, workers and males sampled for each species 

 Species Queens Workers Males Total 

B. lucorum 21 153 27 201 

B. cryptarum 26 174 57 257 

B. magnus 23 14 2 39 

Total 70 341 86 497 

 

 

Interspecific differences in phenology and diurnal activity  

We found interspecific phenological differences for each of the separate castes. For 

over-wintered queens, B. magnus was scarcer than the other two species early in the season 

but became relatively more common as the season progressed (Figs 3.2b-d & Appendix 3.3). 
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In contrast, there was no significant difference in the dates when B. cryptarum and B. 

lucorum queens were on the wing (Figs 3.2a, d & Appendix 3.3). 

The relative abundance of foraging workers of the three species also varied 

throughout the season, reflecting distinct phenologies. Relative to either B. lucorum or B. 

cryptarum, B. magnus workers were significantly more common later in the season than they 

were at the beginning (Figs 3.2f-h & Appendix 3.5). This meant that the period during which 

B. magnus workers were active coincided with the flowering of Erica cinerea and C. 

vulgaris. All B. magnus workers (n = 14) were on the wing when heather was flowering, 

whereas a lower percentage of all B. cryptarum (81%, n = 174) and B. lucorum (95%, n = 

153) workers were flying at this time; nevertheless, this interspecific difference in the degree 

of activity-bias towards the heather flowering season was not significant (Fisher Exact test p 

> 0.1). Comparing B. cryptarum and B. lucorum phenology, we found that at the beginning 

and end of the season, B. cryptarum workers were more common than B. lucorum, but in 

between, both species were equally abundant (Fig. 3.2e & Appendix 3.5). The strength of this 

seasonal shift in relative abundance varied according to the weather conditions (see below; 

Appendices 3.5 & 3.6). 

Considering new reproductives, when males were first encountered (21st July), they 

were mostly B. lucorum but this trend reversed significantly later in the season so that B. 

cryptarum males became more common (Fig. 3.3 & Appendix 3.7). Only two B. magnus 

males were found in the entire study, but the first of these was found over a month later (27th 

August) than when the first B. cryptarum and B. lucorum males appeared (Fig. 3.3b). Only 

five new queens were captured (two B. cryptarum, two B. lucorum and one B. magnus), too 

few to draw conclusions about their phenology.  
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Effects of weather on activity of the three species 

We used PCA to reduce the number of weather variables. The first PCA axis, which 

accounted for 40.28% of the total variation, exhibited a positive correlation with temperature 

and amount of sunshine: increasingly positive values represent generally warmer and sunnier 

conditions (Appendix 3.4b). The three species showed variation along this axis: the average 

observations for B. magnus were lower (negative values) than for B. lucorum (positive 

values), observations for B. cryptarum were intermediate (Appendix 3.4a). The second PCA 

axis was negatively associated to the wind speed; however, there was little variation between 

the species in this metric (Appendix 3.4a). We substituted values from the first PCA axis 

(PCA 1) for the explanatory variables ‘temperature’ and ‘level of sunshine’ in subsequent 

analyses for worker and males. For over-wintered queens, we found that using PCA 1, which 

represents a combined measure of warmth and sunniness, instead of the separate sunshine and 

temperature variables did not improve the best model; therefore we retained both weather 

variables. Controlling for phenological variation (by retaining date as a fixed effect 

explanatory variable), B. magnus queens were relatively less active than B. lucorum in sunny 

conditions and relatively more active when it was overcast (Fig. 3.4a & Appendix 3.3). We 

did not detect any significant effect of weather on the relative abundance of B. cryptarum 

queens in comparison to queens of either of the other species (Appendix 3.3).  
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Figure 3.2. Interspecific variation in phenology of queens (a-d) and workers (e-h) of the lucorum 

complex species. Pannels show the changes in the probability of an individuals belonging to: B. 

cryptarum compared to B. lucorum (a & e), B. lucorum compared to B. magnus (b & f) and B. 

cryptarum compared to B. magnus (c & g) as a function of date. The relative abundance of species-

pairs changed significantly through the season for all comparisons except for between B. cryptarum 

and B. lucorum queens (a; see S. 7). Trend lines are model-fits from generalised linear models 

representing quadratic relationships in (e & g) and linear relationships in (b, c & f); 95% confidence 

intervals are shown around these relationships. Pannels d & h show how the cumulative abundance of 

over-wintered queens (d) and workers (h) shifted through the season for each bumblebee species.  
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Figure 3.3. Interspecific variation in phenology of males of B. cryptarum, B. lucorum and B. magnus. 

(a) the probability that a male belonged to either B. cryptarum or B. lucorum changed significantly 

through the season. The trend line shows a quadratic relationship fit from a generalised linear model 

with 95% confidence intervals. The numbers of B. magnus males were too low to perform this 

analysis. (b) Changes in the cumulative number of males of each of the three bumblebee species over 

the season. 

 

Weather differentially affected worker activity for B. cryptarum and B. lucorum. 

Averaging across the whole season, B. cryptarum workers were relatively more common than 

B. lucorum workers when conditions were cooler and cloudier (although this effect was not 

significant: Fig. 3.4b & Appendix 3.5). Nevertheless, there was a significant effect of the 

interaction between the date quadratic term and PCA 1 (χ2
2 = 7.57, p = 0.02, Appendix 3.5). 

This interaction demonstrated that whilst B. lucorum workers were rare early and late in the 

season, becoming relatively more common around midsummer, the midsummer-increase in 
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relative abundance was more pronounced when it was warm and sunny, compared to cooler 

cloudy conditions (Appendix 3.6). Weather did not significantly affect the relative abundance 

of B. magnus workers compared to either of the other species. Considering males, there were 

fewer B. cryptarum males encountered compared to B. lucorum in the coolest, cloudiest 

conditions (Fig. 3.4c & Appendix 3.7). 

Temperature varies throughout the day, so we tested whether the differential 

temperature effects on the probability of activity in B. cryptarum and B. lucorum led to 

temporal separation of foraging across the day.  Model selection using AICc incorporating 

time of day instead of PCA 1, favoured models incorporating time (436.7 vs. 432.8 AICc 

points), but the pattern was the same. The significant interaction between the quadratic terms, 

date and time of day (χ2
4 = 16.1, p < 0.005, Appendix 3.8), showed that the mid-season peak 

in the relative abundance of B. lucorum workers was strongest early in the morning compared 

to later in the day. We did not detect differences in temporal activity in any other interspecific 

comparisons.  

 

Niche overlap between the bumblebee species 

 We defined the niche region (NR) exploited by each bumblebee species based on the 

date, weather conditions and time of day when each individual was out foraging. Amongst 

queens, there was little difference in NR and the probabilities of overlap were quite similar for 

all interspecific comparisons (overlap probability: 0.76-0.88; Fig. 3.5a & Appendix 3.10). 

Amongst workers, B. magnus had the smallest NR (Fig. 3.5b), which is due in large part to a 

narrower range of dates (later in the season) when they were on the wing. Bombus cryptarum 

workers displayed the largest NR, partly driven by the fact they were on the wing for the 

longest period (Fig. 3.5b). 
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Figure 3.4. Differences in the effects of weather variables on the lucorum-complex species. (a) the 

level of sunshine differentially affected the relative proportions of queens of B. lucorum and B. 

magnus: the sun axis represents a scale ranging from 0 (heavy complete cloud cover) to 4 (< 25% 

cloud cover; see Table S 1). In (b & c) PCA 1 represents a scale where low values indicate cool 

cloudy conditions and higher values indicate warmer, sunnier conditions (see Fig. S 4): figures 

display the relative impact of changes in this weather axis on the probablity of workers (b) and males 

(c) of being B. cryptarum compared to B. lucorum.  Trend lines are model fits from a generalised 

linear model with 95% confidence intervals. 
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We therefore found strong asymmetry in the degree of interspecific niche overlap for 

workers. Whilst B. magnus workers were highly likely to exploit the niche of B. cryptarum 

and B. lucorum workers (overlap probability: 0.94 and 0.95 respectively), the probability that 

B. cryptarum and B. lucorum workers were found in the niche of B. magnus workers was 

much lower (overlap probability: 0.47 and 0.50 respectively, Appendix 3.10). 

 

 

Figure 3.5. Comparisons of the niche size for the three lucorum complex species. Panels show ten 

random elliptical projections of niche region (NR) for each bumblebee species defined by pairs of 

variables for (a) queens and (b) workers. Niche regions were estimated based on the modelled 

influence of seasonal, weather and daily activity variables on occurrence. Each plot illustrates the 

projected niche region for a different combination of the three variables. PCA 1 represents a weather 

axis where low values indicate cool cloudy conditions and higher values indicate warmer, sunnier 

conditions (Appendix 3.4). Black lines represent B. cryptarum, red represent B. lucorum and blue 

represent B. magnus. 

 

Forage use 

Queens of all three bumblebee species were found feeding on a similar number of 

plant taxa (range 7-8). However, 52.7% of B. magnus queens (n = 14) were recorded visiting 

Erica spp., whereas only a single individual of both B. cryptarum (n = 13) and B. lucorum 

(n= 10) foraged on heather plants (Appendix 3.11). Previous studies (Waters et al. 2010a; 
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Scriven et al. 2015; Chapter 2), suggest a tight association between B. magnus and heather 

(C. vulgaris and Erica spp). We tested this explicitly and found that queens of the three 

bumblebee species differed significantly in their probability of foraging on heather, compared 

to all other plant species (χ2
2 = 6.79, p < 0.05); parameter estimates show this was due to B. 

magnus queens foraging on this taxon more often than B. cryptarum, but post hoc tests did 

not detect any individually significant differences between pairs of species (p > 0.05).  

Concerning workers, the plants most commonly visited by B. cryptarum were C. 

vulgaris (17.1%) and Erica spp. (15.3%). However, the proportional representation of these 

species in the B. cryptarum diet was markedly lower than for B. magnus, of which 84.6% 

foraged on C. vulgaris (61.5%) or Erica spp. (23.1%, Appendix 3.12). Only 26% of B. 

lucorum workers were foraging on these plant taxa. We found that, like queens, workers of 

the three bumblebee species also differed significantly in their probability of foraging on 

heather compared to all other plant species (χ2
2 = 15.15, p < 0.001): Erica spp. and C. 

vulgaris made a significantly larger contribution to the diet of B. magnus workers than to the 

diets of B. cryptarum or B. lucorum (p < 0.01). This difference remained when the analysis 

was restricted to only the period when Erica spp. and C. vulgaris were in flower (χ2
2 = 16.92, 

p < 0.001): comparisons were individually significant for both B. magnus - B. cryptarum (p < 

0.05) and for B. magnus - B. lucorum (p < 0.005). Moreover, during this heather flowering 

period, the probability of B. cryptarum foraging on Erica spp. and C. vulgaris was 

significantly greater than for B. lucorum (p < 0.05). The forage plant that made the greatest 

contribution to the diet of B. lucorum workers was Rubus sp. (27.6%), a species that 

contributed significantly less (12.9%) to the diet of   B. cryptarum (χ2
1 = 9.97, p = 0.002, 

Appendix 3.12 ). 

 Males of B. cryptarum and B. lucorum had a similar diet breadth; however their diets 

only overlapped on four plant taxa (total taxa = 9 & 7 respectively, Appendix 3.13). The plant 



 

80 
 

most frequently visited by B. cryptarum males (66.1%) was Succisa pratensis, which 

contributed significantly less (29.6%) to the diet of B. lucorum males (χ2
1 = 8.3, p = 0.003). 

The other most often utilised forage plant for B. lucorum males was Chamerion angustifolium 

(29.6%), which was not used at all by B. cryptarum (Fisher’s exact test p < 0.001). Only two 

B. magnus males were found preventing assessment of diet breadth for males of this species. 

We calculated between-species dissimilarity in diet composition using the Bray-Curtis 

coefficient (Bray & Curtis 1957). A Bray-Curtis distance value of zero indicates that the two 

forage assemblages are identical for both species, whereas a value of one means they are 

completely dissimilar. The degree of dietary dissimilarity between B. cryptarum and B. 

lucorum was almost identical for queens and workers (0.30 & 0.31 respectively), whereas for 

males it was greater (0.69, Table 3.2).  Amongst queens, the greatest difference in diet 

composition was between B. cryptarum and B. magnus. For workers, the degree of 

dissimilarity was greatest between B. magnus and the other two species (> 0.6); the diets of 

B. lucorum and B. cryptarum workers were more similar (0.31, Table 3.2). 

 

 

Table 3.2. Differences in the plant species assemblages used as forage resources by the three lucorum 

complex species. Bray-Curtis distance measures showing the dissimilarity between the diets of each 

caste of each of the three bumblebee species. A value of 0 indicates that the two assemblages were 

identical, whereas a value of 1 indicates that they were completely different. Bombus magnus males 

are not included because the sample size was too low: only over-wintered queens are included.  

 

  Caste  B. cryptarum B. lucorum 

B. lucorum Queens 0.30 - 

 Workers 0.31 - 

 Males 0.69 - 

B. magnus Queens 0.51 0.35 

  Workers 0.64 0.72 
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3.5 Discussion 

The sympatric occurrence of cryptic species challenges ecological theory because 

their strong biological similarity should generate intense interspecific competition and 

potential competitive exclusion (Gause 1932; Hardin 1960; Cothran et al. 2013; Van 

Campenhout et al. 2014). Nevertheless, the lucorum complex contains three cryptic 

bumblebee species with near-identical morphology, which co-occur across large parts of the 

UK (Bertsch et al. 2005; Carolan et al. 2012; Scriven et al. 2015; Waters et al. 2010a) and 

elsewhere (Murray et al. 2008; Stanley, Knight & Stout 2013; Williams et al. 2012). In this 

study of B. lucorum, B. cryptarum and B. magnus we demonstrate clearly that although the 

niches of these three cryptic species overlap considerably, they do have distinct ecologies. 

We reveal niche utilisation differences that may be sufficient to prevent competitive 

exclusion by reducing the intensity of interspecific competition. We also provide the first 

reliable evidence for differences in their phenology. 

We focussed on interspecific variation in three fundamental biotic and abiotic niche-

use dimensions at a single site: differences in responses to weather conditions, different 

forage use and different temporal activity patterns. Bombus magnus had the most distinct 

niche. It has a narrow, highly specialised diet, feeding predominantly on species of heather 

plant (Ericacae). The phenology of all three B. magnus castes was delayed relative to the 

other two species; furthermore queens of B. magnus were more active in overcast conditions, 

compared to those of B. lucorum. In contrast, although all castes of B. cryptarum and B. 

lucorum were on the wing for the same period of time, B. lucorum workers showed a strong 

peak in abundance around mid-summer, followed by an earlier peak in the production of 

male reproductives. Bombus lucorum worker activity was skewed towards warmer, sunnier 

conditions compared to B. cryptarum and, the elevated abundance of B. lucorum in mid-

summer was strongest in warm conditions. Bombus cryptarum had a different phenology: 
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worker numbers increased faster, and decreased more slowly as the season progressed, 

compared to B. lucorum. This may in part be because B. cryptarum is better adapted for 

activity in colder conditions: its workers foraged more in cooler cloudier conditions than did 

B. lucorum (though, conversely, we captured fewer B. cryptarum males in cool cloudy 

conditions). There was some subtle diurnal temporal separation of foraging behaviour 

between B. lucorum and B. cryptarum: in mid-summer, when B. lucorum was relatively most 

common, its workers were more numerous early in the morning and least active in the 

afternoon.  

The broad conclusions that B. lucorum is adapted for activity in warmer sunnier 

conditions, whereas B. magnus and B. cryptarum are adapted to forage in cooler cloudier 

conditions, recapitulates previous species distribution analysis. Chapter 2 (Scriven et al. 

2015) showed that across Great Britain, B. magnus and B. cryptarum were more commonly 

found at sites with lower summer temperatures. Our current findings may help explain why 

B. lucorum is ecologically dominant throughout much of lowland southern and eastern 

England where it is warmer and sunnier, whereas B. cryptarum and B. magnus tend to occur 

in upland and northerly locations (Scriven et al. 2015; Chapter 2). Similarly, our 

demonstration that the colony cycle of B. magnus is delayed in the season relative to the other 

two species is supported by previous work at our fieldwork location in August 2013, when 

both workers and males of B. lucorum and B. cryptarum were present, whereas only B. 

magnus workers were detected (Scriven et al. 2015; Chapter 2). Such variation in the timing 

of male production in these three species may reduce the likelihood of hybridisation, thereby 

reinforcing reproductive isolation. 

The observation that B. magnus foraged more often on heather plants supports 

observations that B. magnus is more commonly found on heather moorland (Scriven et al. 

2015; Chapter 2). Previous studies also revealed differences in the diet of these three species; 
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however, these studies have combined data from multiple sites. For example, Chapter 2 

(Scriven et al. 2015) found that across the UK, B. lucorum had the broadest diet and B. 

magnus had the narrowest diet breadth. However, it is not clear whether this resulted from 

different forage preferences, because bee species with restricted geographic ranges may have 

access to a restricted range of forage plants. In the present study, all the bumblebees had the 

same forage plants to choose from; despite this, clear differences in their diets remained.  

Cryptic species provide important case studies to investigate the types of niche-

utilisation traits that diverge most readily after speciation events. The lucorum complex 

species seem to have diverged relatively recently (< 100,000 years ago; based on COI 

divergence and diversity reported by Carolan et al. 2012 and Murray et al. 2008, using the 

approach of Jiggins and Tinsley 2005, and the standard insect molecular clock of Brower 

1994) and previous work suggests that B. magnus  and B. cryptarum are the most closely 

related of the three (Bertsch et al. 2005; Murray et al. 2008; Williams et al. 2012). The 

interspecific niche differentiation we have observed may have underlain this speciation 

process. Evolution in metabolic pathways or morphology may be responsible for the thermal 

specialisation for activity in cooler conditions exhibited by B. cryptarum and B. magnus. 

Bumblebees are facultatively endothermic, requiring pre-flight metabolic warm-up, large 

body size and thoracic insulation for flight. Thermal specialisation is an important 

mechanism that may reduce the strength of interspecific competition; it may also mean that 

the members of a community of bee species can offer complementary pollination services to 

plants (Herrera 1997; Peat et al. 2005; Lye et al. 2010; Frund et al. 2013). However, in our 

dataset, air temperature and time of day covaried (after accounting for seasonal changes), 

therefore it is not possible to definitively rule out divergent circadian rhythms as an 

explanation for interspecific differences in the association between activity and temperature. 

The most dramatic aspect of niche divergence within this cryptic species complex is the 



 

84 
 

strong likelihood of B. magnus to forage on the heathers, C. vulgaris, E. cinerea and E. 

tetralix to the exclusion of other potentially suitable species that were common in the area.  

We have shown significant differences along three niche dimensions of three cryptic 

species that are likely to facilitate their coexistence. However, there is also considerable niche 

overlap, which must lead to competition. Direct interference competition between these 

bumblebee species is unlikely, but there is the potential for exploitative competition for 

resources. An important resource for which both inter and intra-specific competition may 

occur is pollen and nectar. Therefore, since all three lucorum complex species are present at 

this site and draw on similar resources, the differences found in their use of forage plants may 

possibly be driven by competition and reflect differences in their realised niches, rather than 

fundamental niches. In contrast, the other niche dimensions investigated, phenology and 

response to weather, are less likely to be influenced by competition, and may thus represent 

interspecific differences in the fundamental niche. Patterns of bumblebee visitation to the 

same plant species can vary through space and time, potentially as a response to variation in 

pollen abundance and quality (Vaudo et al. 2014) and also to avoid interspecific competition 

(Lye et al. 2010). We found that interspecific niche overlap was higher for queens than it was 

for either workers or males. However, seasonal changes in the abundance of forage plants 

relative to bumblebees means it is hard to determine the impact of this shift in niche overlap 

on the strength of interspecific competition acting on the different castes. In terms of the 

temporal and weather niche, B. magnus workers were most differentiated, with worker 

production delayed compared to the other species, potentially in order to coincide with the 

flowering of their principal forage plants.  Consequently, despite being most differentiated, 

the niche of B. magnus workers was situated mostly within the niche region of the other two 

species. This creates an asymmetry in niche overlap, with B. magnus potentially suffering 

more strongly from competition than either of the species it interacts with. However, more 
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specialised species are presumed to be more efficient in their preferred conditions than 

generalists (Pianka 1994). In the UK, C. vulgaris forms an important, and often dominant, 

component of both upland and lowland heaths (Groves et al. 2012; Thompson et al. 1995). 

As a specialist on heather species, B. magnus may be an optimal forager on this resource, 

exploiting it more efficiently than the other species. Furthermore, by delaying worker 

production until C. vulgaris and Erica spp. flower, B. magnus could be able to profit from 

this extremely abundant resource, limiting the impact of overlap along the other niche 

dimensions, whilst avoiding worker competition with the other two bumblebee species earlier 

in the season when resources are more limited. 

The niche differences that we have observed in this study may assist co-occurrence of 

these cryptic species by causing variation in the responses of each species to spatio-temporal 

heterogeneity in seasonally changing foraging sites. When the resources available for colony 

growth are continuously changing, the competitive relations between colonies of different 

species can be reversed, leading to the maintenance of a larger number of species in a region 

(Westphal, Steffan-Dewenter & Tscharntke 2006). The composition and abundance of bee 

populations have been shown to undergo considerable variation between years (Iserbyt & 

Rasmont 2012; Minckley et al. 1999; Oertli, Müller, & Dorn 2005).  Iserbyt & Rasmont 

(2012) found that in one mountainous region, the dominant bumblebee species one year was 

seldom dominant another year, some species disappeared totally for several years and the 

proportion of permanent species was low. We observed clear abundance differences in the 

bumblebee species: B. cryptarum was the most common species and B. magnus was by far 

the least abundant. Yet previous sampling in 2011 found the most common species to be B. 

magnus (50.5%), whereas B. cryptarum was the least common  (19.4%, Chapter 2; Scriven et 

al. 2015).  Clearly, the relative proportions of B. magnus and B. cryptarum can vary strongly 

between years, suggesting that the two species do not respond to environmental fluctuations 
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in the same way. This could therefore represent a system where ecological divergence,  niche 

partitioning and spatio-temporal heterogeneity in the environment mean that none of the three 

species is able to consistently exclude another to the point of local extinction. This has 

considerable implications for conservation, as small alterations to any of these dimensions 

could modify inter-specific interactions putting one or more species at risk. Bombus magnus 

relies heavily on threatened and declining heathland habitat; further losses could therefore 

shift the balance and seriously affect populations of this species. Studying these species over 

several consecutive years may reveal trends in the population composition linked to annual 

climatic variations and allow us to understand in more detail what climatic factors affect the 

success of these three species. Similarly, broadening the study to include other sites would 

demonstrate whether these patterns are consistent across areas. 

The discovery of co-occurring cryptic species presents problems for several areas of 

ecological theory: the limits of ecological differentiation required for species coexistence, 

phylogenetic limiting similarity and competitive exclusion (Violle et al. 2011; Gabaldón et 

al. 2013; Van Campenhout et al. 2014). We show that a combination of varying levels of 

ecological divergence in different niche dimensions and spatio-temporal heterogeneity in the 

environment may contribute to the persistence of cryptic species in sympatry. Furthermore, 

our study suggests that cryptic species provide distinct and unique ecosystem services, clearly 

demonstrating that morphological similarity between species does not necessarily equate to 

ecological equivalence. 
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3.7 Appendix  

 

Appendix 3.1. Scale used for categorising amount of sun. 

Scale value Description 

0 Heavy complete cloud cover 

1 Light complete cloud cover 

2 Some breaks in cloud, > 75% cloud cover 

3 25-75% cloud cover 

4 < 25% cloud cover 

 

 

 

 

 

 

 

 

Appendix 3.2. Scale used for categorising rainfall. 

Scale value Description 

0 Completely dry, no precipitation 

1 Light mist 

2 Drizzle 

3 Light rain 

4 Rain 

5 Heavy, torrential rain 
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Appendix 3.3. Phenological variation and differences in responses to weather conditions between 

over-wintered queens of each bumblebee species. Results from pairwise analyses between the species, 

using generalised linear models with binary error distributions, testing the effects of date and the 

amount of sun on the relative abundance of over-wintered queens. Significant results are shown in 

italics. Values for the best model are shown in bold, other values are included for comparisons. 

Negative parameter estimates indicate a decrease in the probability of individuals belonging to the 

first species in the comparison whereas a positive estimate indicates an increase in the probability of 

individuals belonging to the first species. 

 

 B. cryptarum - B. lucorum  B. lucorum - B. magnus  B. cryptarum - B. magnus 

Parameter Estimate SE χ2 P  Estimate SE χ2 P  Estimate SE χ2 P 

Date -0.01 0.03 0.10 0.75  
-0.06 0.03 4.16 0.04  

-0.05 0.03 4.17 0.04 

Sun -0.22 0.31 0.52 0.47  
0.81 0.36 6.19 0.01  0.45 0.29 2.66 0.10 
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Appendix 3.4. Results of principal component analysis (PCA) on the variation in weather condition 

metrics (sun, wind speed, rain and air temperature) when each individual bumblebee was encountered. 

Axis 1 (PCA 1) and Axis 2 (PCA 2) describe 40.3% and 26.4% of the total variation respectively. (a) 

Each point represents an individual bee. The square boxes show the average observations for each 

species and the ellipses show the 95% confidence levels around these values. (b) Vector plot showing 

the contribution of different weather variables to PCA 1 and 2. 
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Appendix 3.5. Differences in phenology and responses to weather conditions of workers for each bumblebee species. Results from pairwise analyses between 

the species, using generalised linear models with binary error distributions, testing the effects of date (with linear and quadratic terms) and PCA 1on the 

relative abundance of workers. PCA 1 represents a scale where low values indicate cool cloudy conditions and higher values indicate warmer, sunnier 

conditions (Appendix 3.4). Significant results are shown in italics. Values for the best model are shown in bold, other values are included for comparisons. 

Negative parameter estimates indicate a decrease in the probability of individuals belonging to the first species in the comparison whereas a positive estimate 

indicates an increase in the probability of individuals belonging to the first species. 

 

  B. cryptarum - B. lucorum   B. lucorum - B. magnus   B. cryptarum - B. magnus 

Parameter 

 

Estimate SE χ2 P   Estimate SE χ2 P   Estimate SE χ2 P 

Date  -6.80 2.40    
-0.04 0.01 9.90 0.002  

-29.90 13.47   

Date2 9.56 2.68 14.20 < 0.001   11.89 8.03 3.29 0.07   13.44 8.48 4.14 0.04 

PCA 1 -0.11 0.10 0.63 0.429  -0.86 0.87 0.45 0.50  -0.94 1.27 0.05 0.82 

Date: PCA 1 -3.66 2.26    16.72 11.76    16.48 18.45   

Date2: PCA 1 1.73 1.71 7.57 0.02  -15.43 11.80 2.41 0.30  -10.15 11.08 0.99 0.61 
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Appendix 3.6. The effect of seasonality and changing weather conditions on the abundance of B. 

cryptarum and B. lucorum workers on the wing. Trend lines are model fits from generalised linear 

models with 95% confidence intervals. Black lines represent a low PCA 1 score (1st quartile) hence 

cool, cloudy conditions; blue lines represent a mid value for PCA 1 (median) and red lines indicate a 

high PCA 1 score (3rd quartile) hence warm, sunny conditions (see Appendix 3.4 for details of PCA 

1). 

 

 

 

 

Appendix 3.7. Differences in phenology and responses to weather conditions between males of B. 

cryptarum and B. lucorum. Results from pairwise analyses between the species, using generalised 

linear models with binary error distributions, testing the effects of date (with linear and quadratic 

terms) and PCA 1on the relative abundance of males. PCA 1 represents a scale where low values 

indicate cool cloudy conditions and higher values indicate warmer, sunnier conditions (Appendix 

3.4). Significant results are shown in italics. Negative parameter estimates indicate a decrease in the 

probability of individuals belonging to the first species in the comparison whereas a positive estimate 

indicates an increase in the probability of individuals belonging to the first species. Bombus magnus 

males were not included because the sample size was very low. 

 

  B. cryptarum - B. lucorum 

Parameter 

 

Estimate SE χ2 Prob > χ2 

Date  9.69 2.56   

Date2 -7.83 2.98 4.31 0.04 

PCA 1 0.72 0.40 4.15 0.04 

 

B. cryptarum 

B. lucorum 

30
th

 May 19
th

 July 7
th

 September 
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Appendix 3.8 . Changes in seasonal and daily activity in workers of B. cryptarum and B. lucorum. 

Results from pairwise analyses between the species, using generalised linear models with binary error 

distributions, testing the effects of date and time of day (with linear and quadratic terms) on the 

relative abundance of workers. Significant results are shown in italics. Negative parameter estimates 

indicate a decrease in the probability of individuals belonging to the first species in the comparison 

whereas a positive estimate indicates an increase in the probability of individuals belonging to the first 

species. 

 

  B. cryptarum - B. lucorum 

Parameter  Estimate SE χ2 P 

Intercept 0.26 0.14   

Date  -2.02 2.76   

Date2 13.27 3.58 17.86 <0.001 

Time 3.07 2.69   

Time2 0.75 3.25 2.21 0.33 

Date x Time -24.27 55.37   

Date2 x Time -27.79 67.55   

Date x Time2 -12.53 64.81   

Date2 x Time2 274.19 89.31 16.12 0.003 

 

 

 

 

 

 

Appendix 3.9. The effect of date and time of day on the abundance of B. cryptarum and B. lucorum 

workers on the wing. Trend lines are model fits from generalised linear models with 95% confidence 

intervals. Blue lines represent early in the day (10am); black lines represent the middle of the day 

(1pm) and red lines represent later in the day (4pm). 
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Appendix 3.10. Differences in niche overlap between queens and workers of each of the three 

lucorum complex species. Mean overlap probability between each bumblebee species at the niche 

region size α = 0.95 with 95% credible intervals. α represents the probability of an individual being 

found in the estimated niche region (Swanson et al. 2015). The niche regions were defined based on 

the date, weather and time of day when individuals were active. The overlap probability represents the 

likelihood that an individual from Species A will be found in the niche of Species B. 

 

    Species B  

  Queens  Workers 

Species A Parameter 
B. 

cryptarum 

B. 

lucorum 

B. 

magnus  

B. 

cryptarum 

B. 

lucorum 

B. 

magnus 

B.  Mean - 0.88 0.78  - 0.90 0.47 

cryptarum 2.5% - 0.71 0.56  - 0.84 0.29 

 97.5% - 0.98 0.94  - 0.95 0.67 

B. lucorum Mean 0.82 - 0.76  0.91 - 0.50 

 2.5% 0.62 - 0.54  0.86 - 0.31 

 97.5% 0.96 - 0.94  0.96 - 0.71 

B. magnus Mean 0.76 0.81 -  0.94 0.93 - 

 2.5% 0.56 0.61 -  0.81 0.78 - 

  97.5% 0.93 0.96 -   1.00 0.99 - 

 

 

 

 

 

Appendix 3.11. Forage use and measures of diet breadth for lucorum complex over-wintered queens. 

Values represent the number of individuals of each bee species and, in parentheses, the percentage of 

the total number individuals of the corresponding bee species. Diet breadth is measured via 

rarefaction to estimate the number of plant species each bee species would be expected to visit in a 

total of 5 flower visits. Garden plant 1 was not a native wildflower, found in a garden that was not 

identified.  

 

  B. cryptarum B. lucorum B. magnus Total 

Acer pseudoplatanus 2 (15.4) 3 (30)  5 

Erica spp.   1 (7.7) 1 (10) 6 (42.9) 8 

Cotoneaster horizontalis 2 (15.4) 1 (10) 1 (7.1) 4 

Cytisus scoparius 2 (15.4) 1 (10) 2 (14.3) 5 

Erica cinerea 1 (7.7) 2 (20) 2 (14.3) 5 

Garden plant 1 1 (7.7)   1 

Lotus corniculatus  1 (10) 1 (7.1) 2 

Rhododendron spp.  1 (10) 1 (7.1) 2 

Salix spp. 3 (23.1)   3 

Taraxacum spp. 1 (7.7)   1 

Thymus polytrichus   1 (7.1) 1 

Total sample size 13 10 14 37 

No. of plant taxa visited 8 7 7 11 

Diet breadth (± S.D.) 4.3 ± 0.65 4.2 ± 0.68 3.6  ± 0.83   
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Appendix 3.12. Forage use and measures of diet breadth for B. lucorum complex workers. Values 

represent the number of individuals of each bee species and, in parentheses, the percentage of the total 

number individuals of the corresponding bee species. Diet breadth is measured via rarefaction to 

estimate the number of plant species each bee species would be expected to visit in a total of 10 

flower visits. Garden plants 2-4 were exotic taxa found in gardens and not identified.  

 

  B. cryptarum B. lucorum B. magnus Total 

 Papaveroideae spp. 1 (0.6)   1 

Acer pseudoplatanus 4 (2.4)   4 

Aegopodium podagraria 8 (4.7) 3 (2)  11 

Calluna vulgaris   29 (17.1) 22 (14.5) 8 (61.5) 59 

Centaura nigra 2 (1.2) 6 (3.9)  8 

Chamerion angustifolium 13 (7.6) 19 (12.5)  32 

Cirsium arvense  4 (2.6)  4 

Cotoneaster horizontalis 2 (1.2)   2 

Cytisus scoparius 5 (2.9) 1 (0.7)  6 

Erica cinerea 26 (15.3) 18 (11.8) 3 (23.1) 47 

Erica tetralix 1 (0.6)   1 

Filipendula ulmaria 2 (1.2)   2 

Garden plant 2 1 (0.6)   1 

Garden plant 3  1 (0.7)  1 

Garden plant 4  1 (0.7)  1 

Hydrangea spp. 6 (3.5) 3 (2)  9 

Lavandula spp.  1 (0.7)  1 

Lotus corniculatus 13 (7.6) 4 (2.6)  17 

Lotus pedunculatus 4 (2.4) 6 (3.9)  10 

Lupinus 1 (0.6)   1 

Narthecium ossifragum 1 (0.6)   1 

Potenilla erecta 3 (1.8)   3 

Rhododendron spp.  2 (1.3)  2 

Rubus spp. 22 (12.9) 42 (27.6)  64 

Salix spp. 1 (0.6)   1 

Sanguisorba spp. 1 (0.6)   1 

Succisa pratensis 2 (1.2) 2 (1.3) 1 (7.7) 5 

Thymus polytrichus 4 (2.4)  1 (7.7) 5 

Trifolium repens 17 (10) 17 (11.2)  34 

Ulex europaeus 1 (0.6)   1 

Total sample size 170 152 13 335 

No. of plant taxa visited 25 17 4 30 

Diet breadth (± S.D.) 6.9 ± 1.2 6 ± 1.1 3.5 ± 0.6   
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Appendix 3.13. Forage use and measures of diet breadth for B. lucorum complex males. Values 

represent the number of individuals of each bee species and, in parentheses, the percentage of the total 

number individuals of the corresponding bee species. Diet breadth is measured via rarefaction to 

estimate the number of plant species each bee species would be expected to visit in a total of 25 

flower visits. Diet breadth was not calculated for B. magnus as the sample size was too low. 

 

  B. cryptarum B. lucorum B. magnus Total 

Calluna vulgaris   4 (7.1) 4 (14.8)  8 

Centaura nigra 1 (1.8) 1 (3.7)  2 

Chamerion angustifolium  8 (29.6)  8 

Erica cinerea 3 (5.4)  1 (50) 4 

Hylotelephium telephium 6 (10.7)   6 

Lavandula spp. 2 (3.6)   2 

Lotus pedunculatus 1 (1.8)   1 

Nepeta racemosa 1 (1.8)   1 

Rubus spp.  2 (7.4)  2 

Senecio jacobaea  1 (3.7)  1 

Succisa pratensis 37 (66.1) 8 (29.6)  45 

Symparicarpos albus 1 (1.8) 3 (11.1) 1 (50) 5 

Total sample size 56 27 2 85 

No. of plant taxa visited 9 7 2 12 

Diet breadth (± S.D.) 6.2 ± 1.1 6.8 ± 0.4     
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Chapter 4 

 

Specialist species exhibit low population 

structure across fragmented landscapes: 

evidence for dispersal adaptation from a 

complex of cryptic bumblebee species 

 

 

 

A version of this chapter is being prepared for resubmission to Molecular Ecology as: 

Scriven, J.J., Abdelaziz, M. Whitehorn, P.R., Goulson, D. and Tinsley, M.C. 

Specialist species exhibit low population structure across fragmented landscapes: 

evidence for dispersal adaptation from a complex of cryptic bumblebee species. 

 

P.Whitehorn, D. Goulson and M. Tinsley supervised the project, M. Abdelaziz provided 

advice on analysis methods used, and all authors commented on draft versions of the 

manuscript. 
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4.1 Abstract 

Two conflicting hypotheses predict habitat-specialist species to either have high or 

low dispersal capabilities. Specialists that exploit discontinuous patchy habitats may incur 

high emigration costs if they frequently fail to reach suitable environments, possibly leading 

to selection of decreased dispersal propensity. Alternatively, specialists may be selected for 

enhanced dispersal abilities, enabling them to traverse ecologically unsuitable areas to exploit 

distant habitat patches for which they are well adapted. We investigated these alternatives 

using the ‘lucorum complex’: three cryptic bumblebee species with near-identical 

morphology that vary along a generalist-specialist continuum. For the first time, we assessed 

genetic diversity and population structuring in these species, using individuals from multiple 

sites across Great Britain and 13 microsatellite loci. As expected, the most abundant and 

strongly generalist species, B. lucorum, exhibited the highest genetic variation and very little 

population differentiation across large spatial scales (FST = 0.025), and B. magnus, a tight 

specialist on heathland habitat patches and the least abundant species had the lowest levels of 

genetic diversity. However, the specialist, B. magnus, exhibited similar levels of population 

differentiation as the moderate generalist B. cryptarum (FST = 0.048 and 0.052 respectively), 

and unlike B. cryptarum, did not exhibit strong evidence for isolation by distance. Our data 

demonstrate that specialist species may be strong dispersers and may be well adapted to 

persist within habitat patches in fragmented landscapes. This study also confirms the species 

status of B. cryptarum, B. lucorum and B. magnus using nuclear DNA for the first time.  
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4.2 Introduction 

Species vary in their habitat requirements: specialist species exhibit narrow 

environmental tolerances, constraining them to particular habitats, whereas generalist species 

have much broader environmental tolerances and are able to exploit a wide range of habitats. 

As a consequence, specialist species can be restricted to patches of suitable habitat within a 

matrix of unsuitable habitat. Such discontinuous distributions of suitable habitat can increase 

the cost of emigration for specialists if migrants frequently disperse to habitat patches for 

which they are poorly adapted (Bonte et al. 2012). These high emigration costs are 

hypothesized to have favoured the evolution of decreased dispersal propensity in specialist 

species (Colas et al. 1997; Mathias et al. 2001; Bonte et al. 2012; Dahirel et al. 2014).  

Dispersal is an important strategy for avoiding inbreeding, as well as resource and kin 

competition (Frankham et al. 2002; Clobert et al. 2012). Effective dispersal can lead to gene 

flow, counteracting the population structuring that can be caused by genetic drift (Slatkin 

1985; Ronce 2007) but also potentially hampering local adaptation (Bonte et al. 2012). Given 

that generalist species tend to be widespread with high gene flow, populations of generalists 

often exhibit high genetic diversities ( Li et al. 2014, but see Engler et al. 2014) and low 

genetic differentiation (Packer et al. 2005; Habel et al. 2009, 2010). If populations lack gene 

flow, small isolated populations can suffer from reduced genetic diversity, elevated disease 

and increased risk of extinction (Wright 1943; Frankham et al. 2002; Whitehorn et al. 2011). 

Thus specialist species with patchy spatial distributions may be selected to have strong 

dispersal abilities, enabling them to move across areas of unsuitable habitat; individuals may 

gain enhanced fitness by colonising unoccupied habitat patches or by mating with unrelated 

individuals, thereby reducing genetic isolation of fragmented populations (Zavodna et al. 

2005; Sallé et al. 2007; Exeler et al. 2008, 2010; Centeno-Cuadros et al. 2011; Ginson et al. 

2015). This argument runs counter to the hypothesis that the costs of emigration for 
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specialists should select for reduced dispersal propensity. Whether we should expect 

specialist species to be good or poor dispersers therefore remains an open question. 

Whilst some ecological specialists have tight associations with food plants (or other 

niche elements) that are widespread and therefore have no spatial restrictions, other 

specialists can be associated with food plants that are only found in certain habitats, which 

effectively makes them habitat specialists. Among bees, specialist species that collect pollen 

from just one or a few plant species may have their distribution limited by that of their floral 

host(s). If the distribution of these floral species is patchy, specialist bees may have a 

fragmented spatial distribution, potentially reducing gene flow between populations, making 

them prone to inbreeding and loss of genetic variation (Futuyma & Moreno 1988; Frankham 

et al. 2002; Packer et al. 2005; Zayed & Packer 2007).  

Generalist bee species should be able to maintain gene flow through areas where 

specialist species are absent. Indeed, habitat fragmentation has been found to have a bigger 

impact on specialist bees than generalist species (Biesmeijer et al. 2006; Cane et al. 2006). 

Furthermore, specialists can exhibit high levels of spatial genetic differentiation (Packer et al. 

2005; Zayed et al. 2005), suggesting that populations of these species may be more isolated 

than populations of generalist bee species. However, this may not be the case for all specialist 

species: pioneer species with high dispersal ability can be less susceptible to habitat 

fragmentation, being adapted for survival in changing and fragmented habitats, which 

appears to be the case for Andrena vaga, a pioneer specialist solitary bee (Exeler et al. 2008; 

Černá et al. 2013). Similarly, other factors can also influence population genetic structuring 

in bees, including nesting behaviour (Exeler et al. 2010), natural barriers such as elevation 

gradients and water bodies (Cameron et al. 2011; Lozier et al. 2013), and urbanised or 

agricultural land (Jha & Kremen 2013b; Jha 2015). To help clarify to what extent we might 

expect habitat specialists to evolve strong dispersal capabilities, we investigated levels of 
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genetic structure in populations of three cryptic species of bumblebee that co-occur in the UK 

and differ in their degree of ecological specialism.  

Approximately 250 species of bumblebees exist worldwide, distributed across the 

temperate, alpine and arctic regions of the northern hemisphere and also South America. 

Bumblebees are important and effective pollinators, often considered ‘keystone’ species in 

plant-pollinator systems, as they pollinate both rare and abundant plant species, thus 

maintaining diversity in plant communities (Stubbs & Drummond 2001; Kremen et al. 2002; 

Memmott et al. 2004; Goulson et al. 2008a). Like many other pollinators, a number of 

bumblebee species have suffered major declines in abundance and have undergone range 

contractions across much of Western Europe and North America (Fitzpatrick et al. 2007a; 

Goulson et al. 2008a; Williams & Osborne 2009; Goulson 2010; Cameron et al. 2011). 

Bumblebees exhibit inter-specific variation in dispersal capabilities and population 

differentiation (Goulson 2010; Darvill et al. 2010; Lepais et al. 2010). Combined with their 

ecological and economic importance, this makes them interesting for analysing patterns of 

gene flow and divergence. Here, we study these patterns in three species of bumblebee and 

investigate the extent to which sympatric cryptic species that vary along a specialist-

generalist continuum, differ in their population genetic structure. 

The subgenus Bombus sensu stricto is a widespread and commercially exploited taxon 

of bumblebee, comprising 17 species worldwide (Williams et al. 2012b), with five species 

found in Europe: B. (B.) lucorum (Linnaeus), B. (B.) magnus (Vogt), B. (B.) cryptarum 

(Fabricius), B. (Bombus) terrestris (Linnaeus) and B. (B.) sporadicus (Nylander). The 

taxonomic status of the latter two species is widely accepted but B. lucorum, B. magnus and 

B. cryptarum are morphologically indistinguishable in much of their range, which has 

triggered considerable debate about their species status. Bombus magnus and B. cryptarum 

have previously been regarded as subspecies of B. lucorum and are often referred to 
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collectively as the ‘lucorum complex’, or simply synonymized to B. lucorum (Edwards & 

Jenner 2005; Benton 2006). However, studies of the COI mitochondrial gene  and labial 

gland secretions  have found discrete differences among the three taxa, which are now 

recognized as a cryptic species complex (Bertsch et al. 2005; Murray et al. 2008; Williams et 

al. 2012b; Carolan et al. 2012). 

Due to the difficulties in distinguishing these three species, relatively little is known 

about their ecology and distribution. Some recent work has demonstrated that in the UK and 

Ireland, the lucorum complex species exhibit broadly overlapping distributions (Murray et al. 

2008; Waters et al. 2010a; Williams et al. 2012b; Scriven et al. 2015; Chapter 2), with all 

three species found to co-occur at many locations in Great Britain (Scriven et al. 2015; 

Chapter 2). Significant differences exist in their ecology: B. lucorum is a very generalist 

species with a broad diet that exploits a wide variety of habitats. Indeed, Chapter 2 (Scriven 

et al. 2015), Murray et al. (2007) and Stanley et al. (2013) found B. lucorum at all locations 

surveyed. Bombus cryptarum is also a generalist forager: in the Western Isles and western 

Scotland it had a broader diet than B. lucorum (Waters et al. 2010a; Scriven et al. 2016; 

Chapter 3), but across the whole of Great Britain it was found foraging on 25 different plant 

taxa, which is considerably fewer than the 45 taxa used by B. lucorum (Scriven et al. 2015; 

Chapter 2). Bombus cryptarum also exhibits a more restricted UK distribution than B. 

lucorum (Scriven et al. 2015; Chapter 2). Conversely, B. magnus is a specialist species that 

predominantly forages on Calluna vulgaris and Erica spp. and therefore is found almost 

exclusively on heathland (Waters et al. 2010a; Scriven et al. 2015; Chapter 2). Across Great 

Britain, it consequently has the most restricted distribution and is also the least abundant of 

the three lucorum complex species (Scriven et al. 2015; Chapter 2).  

 In this study we use 13 microsatellite markers to characterise the genetic diversity and 

population structure of the three lucorum complex species for the first time. Using these data, 
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we test whether habitat specialism is associated with high or low levels of population 

structure indicative of differences in dispersal. Basing our study on a cryptic species complex 

assists the comparative approach we use to study the consequences of habitat specialization 

on population structure because many other aspects of the biology of these species are near-

identical.  

 

4.3 Materials and Methods 

Sampling 

The specimens included in this study have been used previously to assess the 

distribution and ecological differences of the lucorum complex species (see Chapter 2; 

Scriven et al. 2015). Workers, queens and males were sampled across Great Britain from 

June to September during the summers of 2010 and 2011 (Fig. 4.1 and Appendix 4.1). Areas 

were searched and all bumblebees resembling the lucorum complex species were caught. The 

mean number of individuals caught per site was 89.4 ± 12.9. As populations of these species 

may be continuous and overlapping, sampling sites do not represent discrete populations and 

there are likely to be unsampled populations between sites. Whole bees were stored in 

absolute ethanol at ambient temperatures. 

 

DNA extraction and amplification 

DNA was extracted from either thorax muscle or single tarsi using a Chelex® 100 

protocol (Walsh et al. 1991) for the samples collected in 2010, and using a HotShot protocol 

(Truett et al. 2000) for the samples from 2011. In Chapter 2 (Scriven et al. 2015) we 

identified the specimens to species using RFLP data from the cytochrome oxidase 1 (CO1) 

gene.  
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Figure 4.1. The sampling sites from which we obtained genotypes for more than one colony across all 

three lucorum complex species (see Table 4.1). Further information about the sites can be found in 

Appendix 4.1. 

 

For the present study, samples were genotyped using 13 microsatellite loci in 3 

multiplex reactions (Appendix 4.2). Multiplex PCRs were performed using QIAGEN 

Multiplex PCR Kits. Each 10µl reaction volume contained 5µl QIAGEN Multiplex Master 

Mix, 1µl  Q-solution, 2 µl dH20, 1µl of undiluted template DNA and 0.2µM of all primers 

except for B10 and B121 for which 0.4µM were used (all with the forward primer 

fluorescently labelled). Reactions containing primers BL03, BL06, BT10, BT24, BT09, 

BT26, BL11, BT18 were initially heated to 95°C for 15 minutes to activate the HotStarTaq 

DNA polymerase, before 40 cycles of 94°C for 30 s, 54°C for 90 s and 72°C for 90 s 

followed by a final extension period of 10 min at 72°C. Reactions with B121, B118, B124, 
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B11 and B10 also included an initial step of heating at 95°C for 15 minutes, followed by 35 

cycles of 94°C for 30 s, 49°C for 90 s and 72°C for 90 s and the same final extension step. 

All PCR reactions were performed using both negative (water) and positive controls (DNA 

extracted from worker wing muscle using HotShot technique). PCR products were analysed 

on a 3730 automated capillary DNA sequencer (Applied Biosystems; The Sequencing 

Service, University of Dundee) with a 1:40 dilution before the run for multiplex group one, 

and a 1:80 for multiplex groups two and three. They were scored with reference to an internal 

size-standard (GeneScan500 ROX; Applied Biosystems Inc.) using GeneMarker software 

version 1.97 (SoftGenetics). Samples for which amplification was not successful were re-run:  

any that failed to amplify or could not be genotyped at more than five loci after repeated 

attempts were excluded from the analysis. 

 

Sibling removal, Hardy-Weinberg and linkage equilibrium 

To ensure the observed pattern of genetic structure was not confounded by family 

structure, COLONY v 2.0.4.4 (Jones & Wang 2010) was used to assign workers to colonies 

and remove all but one representative from each colony for subsequent analyses. This 

program uses maximum likelihood methods to assign sibship or parent-offspring 

relationships, and is the most reliable method for assigning sibship in bumblebees (Lepais et 

al. 2010).  

We performed replicate genotyping of 40 random individuals and calculated an 

average scoring error rate of 0.006 (SD = 0.01) per locus (Pompanon et al. 2005). The 

probability of large allele dropout, scoring errors and null alleles was calculated using 

MICROCHECKER version 2.2.3 (Van Oosterhout et al. 2006) and tests for deviation from 

Hardy-Weinberg equilibrium and linkage disequilibrium were performed in GENEPOP 
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version 4.2.2. (Raymond & Rousset 1995) using a Markov chain approximation to exact tests 

and likelihood-ratio tests, respectively.  

 

Inter-specific genetic differentiation 

The Bayesian clustering method implemented in STRUCTURE 2.3.4 (Pritchard et al. 

2000; Falush et al. 2003) was used to examine population structure by finding the true 

number (K) of clusters in our sample of individuals. Analyses were performed using the 

admixture model and correlated allele frequencies, with 20 000 burn-in iterations and 50 000 

samples, with 10 independent runs for each value of K. Two methods were used for the 

selection of K: plotting (i) the negative log-likelihoods [(ln P(D)] (Pritchard et al. 2000) and 

(ii) ΔK (Evanno et al. 2005) vs. K using Structure Harvester (Earl & VonHoldt 2012). 

Principal component analysis (PCA) was also used to investigate genetic differentiation 

across all three species using the R package adegenet (ver. 3.0.2.: Jombart, 2008). 

 

Intra-specific genetic diversity 

Observed heterozygosity (HO), expected heterozygosity (HE), number of effective 

alleles (AE) and mean private allelic richness (RP) were calculated using GenAIEx 6.5 

(Peakall & Smouse 2012) across all species for each locality. These were calculated with 

various restrictions on the minimum number of samples per site to investigate bias due to 

small sample sizes. HE, RP and AE were compared between species with Kruskal–Wallis rank 

sum tests, followed by post hoc Wilcoxon rank sum tests using R version 3.0.2 (R Core Team 

2014). The relationships of these genetic diversity measures with latitude, longitude and 

mean daily temperature between March and August were examined using Spearman rank 

correlation tests in R. 
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Population structure  

Three estimators of population differentiation were calculated: FST (Weir & 

Cockerham 1984), GST (Nei 1973) and Dest (Jost 2008) using GenAIEx 6.5 (Peakall & Smouse 

2006, 2012). For these measures, only populations containing at least five individuals were 

used. Geographic distances between populations were calculated based on Euclidean 

(straight-line) distances. Significance of the relationship between genetic differentiation (FST) 

and geographic distance (isolation by distance: IBD) was tested using Mantel tests 

implemented in IBDWS (Jensen et al. 2005). The slope of the IBD relationship indicates how 

strongly genetic divergence increases with geographical distance. We tested for interspecific 

variation in the strength of IBD by assessing overlap in the 95% confidence intervals of these 

slopes. 

 

4.4 Results 

Sibling removal, Hardy-Weinberg and linkage equilibrium 

A total of 1,135 individual diploid individuals (queens and workers) were genotyped 

at 13 microsatellite loci. Of these, 13 individuals failed to amplify at more than five loci and 

34 from one location consistently failed to amplify at the same five loci; all of these 

individuals were excluded from further analysis. Following the removal of probable full sibs, 

914 individuals belonging to the three lucorum complex species, from 20 different sites (Fig. 

4.1), were retained, each of which represented a distinct colony. 

Microchecker (Van Oosterhout et al. 2004) results indicated only very low 

frequencies of null alleles (<3% per locus). With one exception, populations exhibited 

deviation from HWE at 1-3 loci (mean = 4.1% loci, SD = 5.8%); for B. lucorum, the 

Bargrennan site (BA) exhibited deviation from HWE at nine of the 13 loci (69%), due to 

significant heterozygote deficiencies. This site was therefore excluded from further intra-
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specific and population structure analyses. Significant linkage disequilibrium was detected 

for multiple pairs of loci but this occurred in less than 10% of the populations and not 

consistently for any loci pairs or populations; therefore all loci were retained for the analyses.  

 

Inter-specific genetic differentiation 

Examining clustering among all the samples revealed hierarchical genetic structuring 

which clearly delineated the three species. Analysis of individuals of all three lucorum 

complex species revealed that K = 2 clusters best fit the sampled individuals (Appendix 4.3): 

one cluster encompassed all individuals previously identified from mitochondrial DNA (see 

Chapter 2; Scriven et al. 2015) as B. lucorum, and the second cluster comprised both B. 

cryptarum and B. magnus individuals (Fig. 4.2a). When only this second cluster was 

analysed, K = 2 was again the most appropriate number of clusters (Appendix 4.4), with each 

cluster representing B. cryptarum and B. magnus individuals separately (Fig. 4.2b). Similarly, 

principal components analysis (PCA) based on individual genotypes, grouped the individuals 

into three distinct clusters according to species along the first two principle coordinates (PC1 

& PC2), explaining 21% of the total variation (Fig. 4.3). 

 

Intra-specific genetic diversity 

Within-population genetic diversity for each of the three bumblebee species was 

quantified using a variety of measures. Across populations of all three species with at least 

five genotyped individuals, the mean number of alleles per locus ranged from 7.7 to 10.4 and 

the effective number of alleles from 5.1 to 6.3. The overall level of genetic diversity for each 

of the three lucorum complex species was relatively high (Table 4.1): mean observed 

heterozygosity (HO) varied from 0.69 to 0.77 and expected heterozygosity (HE) from 0.66 to 

0.77. For almost all genetic diversity estimates the rarer, specialist species, B. magnus, 
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exhibited the lowest values, whereas the most common species, B. lucorum, had the highest. 

The only exception was the number of private alleles, for which the generalist B. lucorum had 

the lowest values and B. magnus displayed the highest.   

Based on the Kruskal-Wallis rank sum test, the three species exhibit significantly 

different HE (χ2
2 = 29.5, P < 0.001), and number of effective alleles (AE) (χ2

2 = 14.9 P = 

0.001) but no significant differences in the mean private allelic richness (χ2
2 = 0.7, P = 0.7). 

Post hoc Wilcoxon rank sum tests showed that HE was significantly higher in B. lucorum than 

B. cryptarum (W = 4.5, P < 0.001) and B. magnus (W = 0, P < 0.001), and B. cryptarum also 

exhibited higher HE than B. magnus (W = 90.5, P = 0.03; Fig. 4.4). A similar pattern was 

revealed for AE (Fig. 4.4) except that there was no significant difference between B. 

cryptarum and B. magnus (W = 61, P = 0.9), which both exhibit significantly lower AE than 

B. lucorum (W = 37, P < 0.001 and W = 19.5, P = 0.002 respectively). Small sample sizes at 

some of the sites could have influenced the patterns observed, however, we found that 

restricting the analyses to sites with larger numbers of individuals did not alter the patterns 

detected (Appendices 4.5-4.7 & 4.12). 

We did not find any significant relationships for any of the genetic diversity measures 

with latitude, longitude or mean summer temperature. For none of the species was there 

significant variation between populations in these genetic diversity indices.  



 

109 
 

 

 
Figure 4.2. Genetic clustering of lucorum complex individuals. (a) Clustering using Structure version 2.3.4, assuming two genetic clusters (K = 2) for 

individuals of all three species of the lucorum complex and (b) only individuals previously identified as B. cryptarum and B. magnus using mtDNA. Each 

vertical bar represents an individual with the colour indicating the probability of membership to each of the two assigned clusters (Q).  
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Table 4.1. Population genetic parameters of workers of the three lucorum complex species at sampling sites with at least five individuals estimated from the 

analysis of 13 microsatellite loci. N, number of genotyped diploid individuals, where each individual represents a unique colony; Na, mean number of 

different alleles; AE, mean effective number of alleles; HO, mean observed heterozygosity; HE, mean expected heterozygosity; RP, mean private allelic 

richness. 

Species Population N  Na ± SE AE ± SE HO ± SE HE ± SE Rp ± SE 

B. cryptarum  230 8.21 ± 0.40 5.1 ± 0.26 0.71 ± 0.02 0.70 ± 0.02 0.2 ± 0.05 

 Tongue (TO) 19 9.54 ± 1.52 5.72 ± 1.00 0.7 ± 0.06 0.72 ± 0.05 0.23 ± 0.12 

 Helmsdale (HE) 16 8.15 ± 1.21 5.18 ± 0.85 0.71 ± 0.06 0.71 ± 0.06 0.23 ± 0.12 

 Kyle of Lochalsh (KY) 6 5.00 ± 0.70 3.86 ± 0.66 0.69 ± 0.08 0.62 ± 0.07 0 

 Mergie (ME) 62 13.38 ± 2.48 6.42 ± 1.36 0.69 ± 0.06 0.72 ± 0.06 0.85 ± 0.25 

 Glencoe (GL) 10 7.15 ± 0.86 4.53 ± 0.70 0.74 ± 0.06 0.70 ± 0.05 0.08 ± 0.08 

 Stirling (ST) 16 8.85 ± 1.34 5.89 ± 1.07 0.74 ± 0.05 0.73 ± 0.05 0 

 Rothbury (RO) 21 9.92 ± 1.57 5.94 ± 1.18 0.71 ± 0.06 0.72 ± 0.06 0.15 ± 0.10 

 Bargrennon (BA) 8 6.46 ± 1.03 4.97 ± 0.96 0.71 ± 0.08 0.65 ± 0.07 0.08 ± 0.08 

 Moffat (MO) 6 5.85 ± 0.15 4.14 ± 0.56 0.83 ± 0.04 0.70 ± 0.04 0.15 ± 0.10 

 Kirkbymoorside (KI) 8 6.00 ± 0.88 4.00 ± 0.68 0.51 ± 0.08 0.60 ± 0.08 0.08 ± 0.08 

 Hope (HO) 25 10.15 ± 1.54 6.29 ± 1.12 0.74 ± 0.05 0.74 ± 0.05 0 

 Conwy (CO) 20 9.85 ± 1.48 6.01 ± 1.12 0.69 ± 0.06 0.72 ± 0.06 0.62 ± 0.40 

 Birch Tor (BI) 13 7.00 ± 1.21 4.43 ± 0.81 0.76 ± 0.06 0.69 ± 0.05 0.08 ± 0.08 

   
 

    
B. lucorum 

 483 10.40 ± 0.39 6.30 ± 0.27 0.77 ± 0.01 0.77 ± 0.01 0.11 ± 0.13 

 Tongue (TO) 45 11.15 ± 1.68 6.3 ± 1.08 0.79 ± 0.04 0.77 ± 0.04 0 

 Helmsdale (HE) 31 11.15 ± 1.86 6.38 ± 1.03 0.77 ± 0.04 0.78 ± 0.03 0.15 ± 0.10 

 Inverness (IN) 27 10.46 ± 1.60 6.14 ± 1.10 0.71 ± 0.04 0.76 ± 0.04 0.08 ± 0.08 

 Kyle of Lochalsh (KY) 20 9.23 ± 1.34 5.65 ± 1.00 0.76 ± 0.05 0.74 ± 0.04 0.08 ± 0.08 

 Mergie (ME) 23 10.85 ± 1.76 6.17 ± 1.05 0.78 ± 0.03 0.77 ± 0.04 0 

 Pitlochry (PI) 44 11.85 ± 2.09 7.08 ± 1.44 0.79 ± 0.04 0.77 ± 0.04 0.15 ± 0.10 

 Glencoe (GL) 8 6.31 ± 0.83 4.61 ± 0.78 0.68 ± 0.05 0.72 ± 0.04 0 
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 Stirling (ST) 44 11.92 ± 1.84 7.11 ± 1.34 0.8 ± 0.03 0.78 ± 0.04 0.23 ± 0.12 

 Rothbury (RO) 19 9.15 ± 1.35 5.96 ± 1.08 0.69 ± 0.04 0.75 ± 0.04 0.08 ± 0.08 

 Moffat (MO) 27 10.15 ± 1.48 5.95 ± 0.93 0.79 ± 0.03 0.77 ± 0.03 0 

 Penrith (PE) 29 10.77 ± 1.54 6.73 ± 1.20 0.79 ± 0.03 0.79 ± 0.03 0.15 ± 0.15 

 Kirkbymoorside (KI) 37 11.62 ± 1.84 6.67 ± 1.15 0.78 ± 0.03 0.78 ± 0.03 0.23 ± 0.17 

 Hope (HO) 17 9.38 ± 1.44 6.27 ± 1.03 0.83 ± 0.05 0.78 ± 0.03 0.23 ± 0.17 

 Conwy (CO) 32 11.00 ± 1.60 6.68 ± 1.16 0.76 ± 0.04 0.79 ± 0.03 0.08 ± 0.08 

 Thetford (TH) 19 10.00 ± 1.43 5.99 ± 1.02 0.77 ± 0.04 0.76 ± 0.04 0.23 ± 0.17 

 Wych Cross (WY) 25 10.54 ± 1.76 6.75 ± 1.32 0.73 ± 0.04 0.77 ± 0.04 0.23 ± 0.12 

 Bramshaw (BR) 36 11.23 ± 1.66 6.58 ± 1.15 0.84 ± 0.03 0.78 ± 0.04 0 

   
 

    
B. magnus 

 168 7.73 ± 0.46 5.09 ± 0.29 0.69 ± 0.03 0.66 ± 0.03 0.29 ± 0.09 

 Kyle of Lochalsh (KY) 37 11.62 ± 1.91 6.16 ± 1.17 0.67 ± 0.09 0.67 ± 0.09 0.85 ± 0.34 

 Mergie (ME) 7 6.00 ± 0.79 4.38 ± 0.63 0.73 ± 0.09 0.66 ± 0.07 0.08 ± 0.08 

 Pitlochry (PI) 16 7.85 ± 1.33 5.51 ± 1.03 0.69 ± 0.09 0.66 ± 0.09 0.23 ± 0.12 

 Glencoe (GL) 46 11.46 ± 1.82 6.27 ± 1.07 0.70 ± 0.08 0.70 ± 0.08 1.08 ± 0.33 

 Rothbury (RO) 6 5.54 ± 0.76 4.49 ± 0.63 0.71 ± 0.09 0.67 ± 0.07 0 

 Bargrennon (BA) 5 4.92 ± 0.80 4.15 ± 0.73 0.71 ± 0.11 0.6 ± 0.09 0 

 Kirkbymoorside (KI) 13 7.31 ± 1.09 5.27 ± 0.86 0.64 ± 0.09 0.68 ± 0.08 0.08 ± 0.08 

 Hope (HO) 23 8.38 ± 1.35 5.12 ± 0.90 0.68 ± 0.09 0.66 ± 0.08 0.15 ± 0.15 

 Birch Tor (BI) 15 6.46 ± 0.86 4.44 ± 0.59 0.69 ± 0.08 0.67 ± 0.07 0.15 ± 0.15 
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Figure 4.3. Principal component analysis (PCA) of the genetic variation between individuals of the 

lucorum complex species. The first two principal components describe 12.8% and 7.9% of the total 

variation respectively. Each species is represented by a different colour. The screeplot of eigenvalues 

is embedded showing the number of principal components retained. 
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Figure 4.4. Differences in genetic diversity between lucorum complex species. The mean expected 

heterozygosity (He) and effective number of alleles (AE) across all loci and populations with at least 

five individuals varied between species. Significant differences are shown by different letters (P < 

0.01).  

 

 

 

Population structure  

 Overall, the three species show significant population structuring using all three 

indices (P < 0.05; Table 4.2). Bombus lucorum had the lowest value of FST and B. cryptarum 

had the highest: global FST was significantly higher in populations of B. cryptarum and B. 

magnus than in populations of B. lucorum (χ2
2 = 23.9, P < 0.001), there was no such pattern 

for the other indices.  We also looked for isolation by Euclidean geographic distance (IBD; 

Appendix 4.11) in each species, using pairwise FST values between all populations 

represented by at least five colonies (Appendices 4.8-4.10). FST values among pairs of 

sampling locations differed significantly among the three species (χ2
2 = 25.1, P < 0.001): for 
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B. lucorum pairwise values averaged 0.005 ± 0.002 (SE), which was significantly lower than 

those for B. cryptarum (0.02 ± 0.003, W = 7322, P < 0.001) and B. magnus (0.01 ± 0.002, W 

= 3218, P = 0.003). Bombus cryptarum exhibited the greatest proportion of pairwise FST 

values that were significantly different from zero (35.9%), and B. magnus exhibited the 

lowest (22.2%); whereas for B. lucorum this figure was 24.3%. We found significant 

evidence for IBD for B. cryptarum (Fig. 4.5a. & Table 4.3), weak, non-significant evidence 

for IBD for B. magnus (Fig. 4.5c & Table 4.3) and no evidence for B. lucorum (Fig. 4.5b & 

Table 4.3). We compared the IBD slopes for B. cryptarum and B. magnus and found that the 

95% confidence intervals did not overlap (Table 4.3), meaning that the slopes for these two 

species are significantly different: B. cryptarum populations exhibited the steepest slope and 

hence the strongest evidence for IBD. 

 

 

4.5 Discussion 

We studied three sympatric cryptic bumblebee species that vary along a gradient from 

habitat specialist to habitat generalist. Our data reveal significant interspecific differences in 

genetic diversity and population genetic structuring associated with interspecific variation in 

abundance and distribution. From the perspective of ecologically specialist species, habitats 

are often more heterogeneous and patchier than they are for generalists. It has been suggested 

that this can result in lower gene flow between populations of specialist species compared to 

generalists, potentially making specialists highly vulnerable to anthropogenic ecosystem 

fragmentation (Kelley et al. 2000; Brouat et al. 2003; Packer et al. 2005; Habel et al. 2009, 

2010).  
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Table 4.2. Population genetics summary statistics for the three lucorum complex species, for all sites with at least five colonies represented. Three measures 

of global population structure (FST, GST & Dest) are shown with 95% confidence intervals and significance values from tests against zero (P). Significant 

values are shown in italics (P < 0.05).  

 

Species Sites FST (95% CI) P GST (95% CI) P Dest (95% CI) P 

B. cryptarum All sites 0.052 (0.044-0.063) 0.002 0.008 (0.001-0.017) 0.003 0.024 (0.004-0.043) 0.004 

B. lucorum All sites 0.025 (0.023-0.027) 0.004 0.003 (0.001-0.006) 0.004 0.013 (0.004-0.027) 0.004 

B. magnus All sites 0.048 (0.044-0.052) 0.035 0.007 (0.002-0.011) 0.023 0.018 (0.005-0.04) 0.015 

 

 

 

 

 

 
Figure 4.5. Isolation by distance (IBD) for (a) B. cryptarum, (b) B. lucorum and (c) B. magnus. Pairwise comparisons of genetic differentiation (FST) as a 

function of geographic distance for individuals from all locations with at least five individuals. 
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Table 4.3. Results of Mantel tests conducted to test for isolation by distance (IBD) for the three 

lucorum complex species between all sites with at least five individuals. Significant results are shown 

in italics (P < 0.05). 

 

Species Sites Mantel r P IBD slope 95% CI 

B. cryptarum All sites 0.541 0.042 0.00015 0.00012 - 0.00018 

B. magnus All sites 0.567 0.053 0.000052 0.00004 - 0.00007 

B. lucorum All sites -0.203 0.953 -0.000032 -0.00004 - -0.00003 

 

 

Our results challenge this notion, demonstrating that the rarer heathland specialist species, B. 

magnus, exhibits less population structure across large spatial scales than the moderate 

generalist species, B. cryptarum.  

Generalist species often tend to have high genetic diversities (Brouat et al. 2004; 

Packer et al. 2005; Louy et al. 2007; Li et al. 2014); we found this to be true for B. lucorum, 

which is a very widespread generalist species in Great Britain (Scriven et al. 2015; Chapter 

2). All populations of B. lucorum had high expected heterozygosity values, comparable to 

levels found in other widespread and common bumblebees, such as B. terrestris in the UK 

(Moreira et al. 2015) and B. bifarius in North America (Lozier et al. 2011). However, we 

found significantly lower allelic richness and expected heterozygosity in B. cryptarum 

compared with B. lucorum. Bombus cryptarum is also a generalist species; in Great Britain, it 

feeds on a wide variety of plant species and is found in many different habitat types, but it 

has a more restricted distribution and a slightly narrower diet than B. lucorum (Waters et al. 

2010a; Stanley et al. 2013b; Scriven et al. 2015; Chapter 2).  

Specialist species could be expected to suffer from low genetic diversity, as they may 

comprise small sub-populations inhabiting discontinuous patchy habitats (Habel et al. 2009). 

Bombus magnus relies almost exclusively on heathland habitat and is the least abundant 

lucorum complex species in Great Britain (Scriven et al. 2015; Chapter 2). Accordingly, we 

found that B. magnus exhibited the lowest levels of genetic variation. Molecular studies of 
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Bombus species have shown that rare and declining species often tend to have reduced 

genetic variation (Ellis et al. 2006b; Charman et al. 2010; Darvill et al. 2010; Cameron et al. 

2011; Lozier et al. 2011). Bombus magnus had higher genetic diversity than some bumblebee 

species that have become very rare in the UK, such as B. distinguendus (HE = 0.39; Charman 

et al. 2010) and B. muscuorum (HE = 0.43-0.51; Darvill et al. 2006, 2010), but lower than 

some other declining species, including B. ruderatus (HE = 0.75; Dreier et al. 2014).  

Habitat specialist species have been suggested to exhibit higher population 

differentiation than generalists due to reduced gene flow, resulting from patchier distribution 

and poorer dispersal ability (Colas et al. 1997; Kelley et al. 2000; Brouat et al. 2003; Packer 

et al. 2005; Louy et al. 2007; Groot et al. 2011). However, our results do not support this 

theory because although the specialist species, B. magnus, exhibited higher population 

genetic differentiation than B. lucorum (the extreme generalist), there was no significant 

difference in population structure between B. magnus and the moderate generalist B. 

cryptarum. In fact, B. cryptarum showed the highest level of differentiation for all three 

measures of population structure used, and B. cryptarum populations had a greater range of 

pairwise differentiation (FST) values than B. magnus. Furthermore, isolation by distance was 

stronger between populations of B. cryptarum than B. magnus, which could indicate that B. 

magnus may have greater dispersal ability than B. cryptarum. These findings indicate that 

specialist species may be capable of maintaining effective genetic exchange across large 

spatial scales and that reliance on fragmented habitat does not necessarily lead to increased 

population structuring.  

Our conclusion could be challenged because the absence of population structure is not 

always indicative of contemporary gene flow. There is a time lag after population 

fragmentation before the population reaches a new equilibrium between migration and drift. 

Therefore, in cases of recent anthropogenic habitat loss, low population structure may 
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actually reflect gene flow that predates recent environmental disturbance (Whitlock & 

McCauley 1999). This might potentially explain the low population structure observed in B. 

magnus because the heathland habitat to which it is tied, previously covered several million 

hectares in Western Europe and has more recently suffered severe losses (Thompson et al. 

1995; Rose et al. 2000; Fagúndez 2013). Nevertheless, despite this anthropogenically driven 

contraction of heathland, this habitat has existed in a fragmented patchwork in Western 

Europe throughout much of the Holocene (reviewed in Fagundez 2013); therefore it seems 

likely that B. magnus has had to contend with dispersal through a highly heterogeneous 

ecological network for much of its post-glacial European history.   

Bumblebee species exhibit differences in both foraging and dispersal distances 

(Knight et al. 2005; Carvell et al. 2012; Jha & Kremen 2013b; Wood et al. 2015; Redhead et 

al. 2016). Some species, including both common and declining species, are relatively 

sedentary (Darvill et al. 2010; Goulson et al. 2011), whilst others show more elevated 

dispersal abilities: B. pascuorum showed no genetic structuring between populations 

spanning the whole of the UK (Ellis et al. 2006b), and in America several species, including 

B. vosnesenskii, showed very low population differentiation over large spatial scales (>1500 

km; Lozier et al. 2011). Like B. magnus, B. jonellus and B. monticola are also associated with 

heathland to varying extents: B. jonellus is a heathland species in the north of the UK 

(Goulson et al. 2006; Darvill et al. 2010) and B. monticola is described as associated with 

upland heaths and moors (Edwards & Jenner 2005; Benton 2006). In a study on islands in the 

Hebrides (Scotland) Darvill et al. (2010) found that B. jonellus had a higher propensity to 

disperse than B. muscorum, a more generalist species, and speculated that this was due to the 

association of B. jonellus with a fragmented habitat. Similarly, B. monticola has recently 

colonised Ireland (Fitzpatrick et al. 2007a), an unusual event, as colonisations are rare among 

bumblebees, which suggests that B. monticola can also disperse over long distances. 
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Therefore, as a heathland specialist, B. magnus may have always existed in a spatially patchy 

metapopulation with colonisation of new patches requiring dispersal over areas of unsuitable 

habitat. This specialisation could have selected for the evolution of relatively high dispersal 

ability in B. magnus. Evidence from other organisms supports this theory: for example, 

another heathland specialist, the solitary bee Andrena fuscipes, showed little geographic 

structure and population differentiation (Exeler et al. 2010). Studies of other organisms, such 

as riverine fish (Ginson et al. 2015), salamanders (Feist et al. 2014), fig wasps (Zavodna et 

al. 2005) and bark beetles (Sallé et al. 2007) also suggest that specialist species can evolve 

dispersal strategies that overcome habitat fragmentation and compensate for the scarcity of 

suitable habitat in the landscape.  

If broad generalist species maintain gene flow by virtue of their high abundance, 

tolerance of a broad range of environments and thus ubiquitous distributions, whilst specialist 

species can be well adapted for dispersal in patchy habitat landscapes, it may be species 

showing intermediate characteristics along the specialist-generalist continuum that suffer the 

greatest threats from habitat fragmentation. Studies on butterflies show that moderate 

generalist species are more endangered than would be predicted based on their degree of 

specialisation (Habel & Schmitt 2012) and perform less well than either extreme generalists 

or true specialists in response to environmental changes (Dapporto & Dennis 2013). 

Similarly, our study of morphologically near-identical bumblebee species showed that despite 

being more common, the distance between populations had a greater impact on population 

differentiation for the moderate generalist than for the habitat-restricted specialist, suggesting 

that B. cryptarum could be more sensitive to loss and fragmentation of habitat than 

anticipated. Moderate generalists may require high habitat connectivity to maintain gene flow 

between populations and prevent inbreeding, making them the most sensitive to 

environmental change (Habel & Schmitt 2012).  
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Previous molecular work on the species status of the lucorum complex species has 

focussed on divergence in mitochondrial DNA sequences (Bertsch et al. 2005; Murray et al. 

2008; Williams et al. 2012b; Carolan et al. 2012). However, the use of mitochondrial DNA 

barcodes for species delimitation and identification has been strongly criticised (Will & 

Rubinoff 2004; DeSalle et al. 2005; Taylor & Harris 2012). Our present study, the first 

investigation of these species using highly variable nuclear markers, confirms that the 

discrete divergence between the three species in mtDNA is mirrored by nuclear DNA 

differentiation. Furthermore, the clustering results we obtained suggest that B. cryptarum and 

B. magnus are more closely related to each other than they are to B. lucorum. Whilst we have 

not explicitly tested for inter-specific hybridisation, our data provide no compelling evidence 

for frequent hybridisation within the lucorum complex.  

Here we characterise the population genetics of the lucorum complex species for the 

first time and provide the first indication of differences in their population structure. This 

study reveals that sympatric cryptic species with near-identical morphology exhibit dramatic 

differences in population structure and genetic variation. Unidentified cryptic species are 

likely to be present within other keystone or endangered taxa. Our data demonstrate the 

importance of identifying ecological and evolutionary patterns in the population structure of 

cryptic species. We detected low levels of population structuring in a specialist species. This 

suggests that, contrary to some theory, habitat specialist species may have evolved to be 

effective dispersers. This could enable habitat specialists to maintain population connectivity, 

potentially making them well adapted to persist in, and to recolonise, habitat patches in 

fragmented landscapes.  
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4.7 Appendix 

Appendix 4.1. Details of all sampling locations for which reliable genotypes were obtained for more 

than one colony. The location abbreviations are used on the map in Figure 1.  

Location Abbreviation 
No. 

species 

No. genotyped 

diploids 

Sampling 

year 
Latitude Longitude 

Tongue TO 3 77 2010 58.49 -4.43 

Helmsdale HE 2 62 2010 58.05 -4.46 

Inverness IN 2 39 2010 57.49 -5.46 

Kyle of Lochalsh KY 3 76 2011 57.26 -3.27 

Nethy Bridge NE 2 2 2011 57.23 -3.68 

Mergie ME 3 98 2011 57 -2.32 

Pitlochry PI 3 65 2010 56.77 -3.91 

Glencoe GL 3 68 2011 56.67 -3.83 

Stirling ST 3 83 2010 56.17 -4.43 

Rothbury RO 3 50 2011 55.32 -1.74 

Bargrennon BA 3 34 2011 55.06 -5.09 

Moffat MO 2 84 2010 55.06 -1.99 

Penrith PE 2 48 2010 54.69 -3.93 

Kirkbymoorside KI 3 72 2011 54.28 -1.72 

Hope HO 3 70 2011 53.37 -2.8 

Conwy CO 3 66 2011 53.26 -0.91 

Thetford TH 2 24 2011 52.41 -4.52 

Wych Cross WY 1 26 2011 51.07 0.82 

Bramshaw BR 1 38 2011 50.92 -3.86 

Birch Tor BI 3 33 2011 50.61 -3.87 
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Appendix 4.2. Multiplex groups for microsatellite analysis 

 

Multiplex group Locus Source 

1 B11 Estoup et al. 1995 & 1996 

 B118 Estoup et al. 1995 & 1996 

 B121 Estoup et al. 1995 & 1996 

 B10 Estoup et al. 1995 & 1996 

 B124 Estoup et al. 1995 & 1996 

   
2 BT26 Funk et al. 2006 

 BT09 Funk et al. 2006 

 BL11 Funk et al. 2006 

 BT18 Funk et al. 2006 

   
3 BL03 Funk et al. 2006 

 BL06 Funk et al. 2006 

 BT10 Funk et al. 2006 

  BT24 Funk et al. 2006 

 

 

 

 

 

 

Appendix 4.3. The number of clusters (K) = 2 best fit the data obtained from samples of B. 

cryptarum, B. lucorum and B. magnus individuals, as shown by the plot of ΔK, an ad hoc statistic 

used by Evanno et al (2003) to determine the number of K groups. 
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Appendix 4.4. Plot of ΔK, an ad hoc statistic used by Evanno et al (2003) to determine the number of 

K groups that best fit the data, obtained from samples of B. cryptarum individuals, shows that K = 2. 
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Appendix 4.5. Population genetic parameters of workers of the three lucorum complex species at sites across Great 

Britain with at least ten individuals, estimated from the analysis of 13 microsatellite loci. N, number of 

genotyped diploid individuals, where each individual represents a unique colony; Na, mean number of 

different alleles; AE, mean effective number of alleles; HO, mean observed heterozygosity; HE, mean 

expected heterozygosity; RP, mean private allelic richness. 

Sampling location N  Na ± SE AE ± SE HO ± SE HE ± SE Rp ± SE 

B. cryptarum 202 9.3 ± 0.51 5.6 ± 0.34 0.72 ± 0.02 0.72 ± 0.02 0.25 ± 0.06 

Tongue (TO) 19 9.54 ± 1.52 5.72 ± 1.00 0.7 ± 0.06 0.72 ± 0.05 0.23 ± 0.12 

Helmsdale (HE) 16 8.15 ± 1.21 5.18 ± 0.85 0.71 ± 0.06 0.71 ± 0.06 0.23 ± 0.12 

Mergie (ME) 62 13.38 ± 2.48 6.42 ± 1.36 0.69 ± 0.06 0.72 ± 0.06 0.85 ± 0.25 

Glencoe (GL) 10 7.15 ± 0.86 4.53 ± 0.70 0.74 ± 0.06 0.70 ± 0.05 0.08 ± 0.08 

Stirling (ST) 16 8.85 ± 1.34 5.89 ± 1.07 0.74 ± 0.05 0.73 ± 0.05 0 

Rothbury (RO) 21 9.92 ± 1.57 5.94 ± 1.18 0.71 ± 0.06 0.72 ± 0.06 0.15 ± 0.10 

Hope (HO) 25 10.15 ± 1.54 6.29 ± 1.12 0.74 ± 0.05 0.74 ± 0.05 0 

Conwy (CO) 20 9.85 ± 1.48 6.01 ± 1.12 0.69 ± 0.06 0.72 ± 0.06 0.62 ± 0.40 

Birch Tor (BI) 13 7.00 ± 1.21 4.43 ± 0.81 0.76 ± 0.06 0.69 ± 0.05 0.08 ± 0.08 

  
 

    

B. lucorum 489 10.49 ± 0.39 6.35 ± 0.26 0.76 ± 0.01 0.77 ± 0.01 0.11 ± 0.03 

Tongue (TO) 45 11.15 ± 1.68 6.3 ± 1.08 0.79 ± 0.04 0.77 ± 0.04 0 

Helmsdale (HE) 31 11.15 ± 1.86 6.38 ± 1.03 0.77 ± 0.04 0.78 ± 0.03 0.15 ± 0.10 

Inverness (IN) 27 10.46 ± 1.60 6.14 ± 1.10 0.71 ± 0.04 0.76 ± 0.04 0.08 ± 0.08 

Kyle of Lochalsh (KY) 20 9.23 ± 1.34 5.65 ± 1.00 0.76 ± 0.05 0.74 ± 0.04 0.08 ± 0.08 

Mergie (ME) 23 10.85 ± 1.76 6.17 ± 1.05 0.78 ± 0.03 0.77 ± 0.04 0 

Pitlochry (PI) 44 11.85 ± 2.09 7.08 ± 1.44 0.79 ± 0.04 0.77 ± 0.04 0.15 ± 0.10 

Stirling (ST) 44 11.92 ± 1.84 7.11 ± 1.34 0.8 ± 0.03 0.78 ± 0.04 0.23 ± 0.12 

Rothbury (RO) 19 9.15 ± 1.35 5.96 ± 1.08 0.69 ± 0.04 0.75 ± 0.04 0.08 ± 0.08 

Bargrennon (BA) 14 7.85 ± 1.06 5.48 ± 0.79 0.58 ± 0.05 0.76 ± 0.04 0 

Moffat (MO) 27 10.15 ± 1.48 5.95 ± 0.93 0.79 ± 0.03 0.77 ± 0.03 0 

Penrith (PE) 29 10.77 ± 1.54 6.73 ± 1.20 0.79 ± 0.03 0.79 ± 0.03 0.15 ± 0.15 

Kirkbymoorside (KI) 37 11.62 ± 1.84 6.67 ± 1.15 0.78 ± 0.03 0.78 ± 0.03 0.23 ± 0.17 

Hope (HO) 17 9.38 ± 1.44 6.27 ± 1.03 0.83 ± 0.05 0.78 ± 0.03 0.23 ± 0.17 

Conwy (CO) 32 11.00 ± 1.60 6.68 ± 1.16 0.76 ± 0.04 0.79 ± 0.03 0.08 ± 0.08 

Thetford (TH) 19 10.00 ± 1.43 5.99 ± 1.02 0.77 ± 0.04 0.76 ± 0.04 0.23 ± 0.17 

Wych Cross (WY) 25 10.54 ± 1.76 6.75 ± 1.32 0.73 ± 0.04 0.77 ± 0.04 0.23 ± 0.12 

Bramshaw (BR) 36 11.23 ± 1.66 6.58 ± 1.15 0.84 ± 0.03 0.78 ± 0.04 0 

  
 

    

B. magnus 150 8.84 ± 0.61 5.47 ± 0.39 0.68 ± 0.03 0.67 ± 0.03 0.42 ± 0.13 

Kyle of Lochalsh (KY) 37 11.62 ± 1.91 6.16 ± 1.17 0.67 ± 0.09 0.67 ± 0.09 0.85 ± 0.34 

Pitlochry (PI) 16 7.85 ± 1.33 5.51 ± 1.03 0.69 ± 0.09 0.66 ± 0.09 0.23 ± 0.12 

Glencoe (GL) 46 11.46 ± 1.82 6.27 ± 1.07 0.70 ± 0.08 0.70 ± 0.08 1.08 ± 0.33 

Kirkbymoorside (KI) 13 7.31 ± 1.09 5.27 ± 0.86 0.64 ± 0.09 0.68 ± 0.08 0.08 ± 0.08 

Hope (HO) 23 8.38 ± 1.35 5.12 ± 0.90 0.68 ± 0.09 0.66 ± 0.08 0.15 ± 0.15 

Birch Tor (BI) 15 6.46 ± 0.86 4.44 ± 0.59 0.69 ± 0.08 0.67 ± 0.07 0.15 ± 0.15 
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Appendix 4.6. Differences in genetic diversity between lucorum complex species. The mean expected heterozygosity 

(He) across all loci and populations with more than ten individuals varied between species. Significant differences are 

shown by different letters (P < 0.01).  

 

 

 

 

Appendix 4.7. Population genetics summary statistics for the three lucorum complex species, including all sites with 

more at least ten colonies represented. Three measures of global population structure (FST, GST & Dest) are shown with 

95% confidence intervals and significance values from tests against zero (P). Significant values are shown in italics (P 

< 0.05). 

 

Species FST (95% CI) P GST (95% CI) P Dest (95% CI) P 

B. cryptarum 0.035 (0.029-0.042) 0.001 0.004 (-0.001-0.009) 0.034 0.012 (-0.003-0.027) 0.031 

B. lucorum 0.023 (0.021-0.025) 0.001 0.004 (0.002-0.006) 0.001 0.014 (0.006-0.024) 0.001 

B. magnus 0.03 (0.026-0.034) 0.001 0.008 (0.004-0.011) 0.001 0.021 (0.008-0.051) 0.001 
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Appendix 4.8. Population genetic structuring in B. cryptarum. Pairwise FST values between all population pairs with at least five individuals. Significant 

differentiation shown in bold (P < 0.05). 

 ME BI BA GL HE KY MO RO CO KI HO ST TO 

Mergie (ME) 0.000             
Birch Tor (BI) 0.072 0.000            
Bargrennon (BA) 0.000 0.069 0.000           
Glencoe (GL) 0.003 0.082 0.000 0.000          
Helmsdale (HE) 0.007 0.057 0.000 0.016 0.000         
Kyle of Lochalsh (KY) 0.000 0.103 0.000 0.002 0.011 0.000        
Moffat (MO) 0.020 0.087 0.015 0.020 0.018 0.040 0.000       
Rothbury (RO) 0.001 0.079 0.002 0.000 0.005 0.003 0.014 0.000      
Conwy (CO) 0.002 0.085 0.000 0.010 0.008 0.000 0.014 0.004 0.000     
Kirkbymoorside (KI) 0.013 0.121 0.003 0.018 0.036 0.004 0.050 0.014 0.012 0.000    
Hope (HO) 0.010 0.035 0.000 0.009 0.007 0.019 0.018 0.014 0.012 0.039 0.000   
Stirling (ST) 0.006 0.065 0.000 0.004 0.008 0.021 0.020 0.002 0.009 0.027 0.003 0.000  
Tongue (TO) 0.000 0.069 0.000 0.002 0.004 0.000 0.008 0.003 0.000 0.012 0.002 0.005 0.000 
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Appendix 4.9. Population genetic structuring in B. lucorum. Pairwise FST values between all population pairs with at least five individuals. Significant differentiation shown 

in bold (P < 0.05). 

Site ME WY TH GL HE IN KY MO RO BR CO KI HO PE PI ST TO 

Mergie (ME) 0.000                 
Wych Cross (WY) 0.007 0.000                
Thetford (TH) 0.007 0.000 0.000               
Glencoe (GL) 0.013 0.000 0.000 0.000              
Helmsdale (HE) 0.010 0.000 0.000 0.000 0.000             
Inverness (IN) 0.013 0.004 0.004 0.000 0.005 0.000            
Kyle of Lochalsh (KY) 0.008 0.004 0.002 0.007 0.006 0.022 0.000           
Moffat (MO) 0.008 0.000 0.000 0.000 0.000 0.002 0.004 0.000          
Rothbury (RO) 0.000 0.000 0.000 0.000 0.001 0.007 0.000 0.000 0.000         
Bramshaw (BR) 0.009 0.003 0.004 0.004 0.004 0.000 0.009 0.000 0.006 0.000        
Conwy (CO) 0.013 0.001 0.000 0.000 0.001 0.000 0.009 0.000 0.005 0.000 0.000       
Kirkbymoorside (KI) 0.007 0.001 0.000 0.000 0.002 0.000 0.010 0.000 0.002 0.000 0.000 0.000      
Hope (HO) 0.004 0.002 0.000 0.009 0.000 0.000 0.013 0.000 0.001 0.000 0.000 0.000 0.000     
Penrith (PE) 0.028 0.015 0.016 0.020 0.016 0.009 0.022 0.015 0.018 0.017 0.013 0.013 0.010 0.000    
Pitlochry (PI) 0.010 0.001 0.004 0.000 0.005 0.001 0.007 0.001 0.001 0.000 0.000 0.000 0.004 0.016 0.000   
Stirling (ST) 0.011 0.002 0.004 0.006 0.004 0.003 0.010 0.000 0.004 0.005 0.003 0.001 0.000 0.003 0.006 0.000  
Tongue (TO) 0.017 0.002 0.002 0.002 0.006 0.001 0.015 0.000 0.002 0.004 0.001 0.003 0.003 0.014 0.002 0.003 0.000 
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Appendix 4.10. Population genetic structuring in B. magnus. Pairwise FST values between all population pairs with at 

least five individuals. Significant differentiation shown in bold (P < 0.05). 

 ME BI BA GL KY RO KI HO PI 

Mergie (ME) 0.000         
Birch Tor (BI) 0.012 0.000        
Bargrennon (BA) 0.021 0.040 0.000       
Glencoe (GL) 0.006 0.026 0.000 0.000      
Kyle of Lochalsh (KY) 0.009 0.032 0.005 0.007 0.000     
Rothbury (RO) 0.001 0.015 0.009 0.000 0.005 0.000    
Kirkbymoorside (KI) 0.000 0.022 0.000 0.008 0.002 0.000 0.000   
Hope (HO) 0.016 0.025 0.001 0.011 0.002 0.015 0.008 0.000  
Pitlochry (PI) 0.004 0.014 0.002 0.007 0.006 0.000 0.006 0.006 0.000 

 

 
 

 

 

 

 

 

 

 

 



 
 
 

129 
 

Appendix 4.11. Pairwise distances (km) between all the populations used to determine population differentiation. 

  ME WY BI TH BA GL HE IN KY MO RO BR CO KI HO PE PI ST TO 

Mergie (ME) 0                   
Wych Cross (WY) 690 0                  
Birch Tor (BI) 717 333 0                 
Thetford (TH) 529 396 205 0                
Bargrennon (BA) 275 593 501 297 0               
Glencoe (GL) 99 693 674 476 195 0              
Helmsdale (HE) 174 847 828 627 335 158 0             
Inverness (IN) 197 821 772 568 271 134 86 0            
Kyle of Lochalsh (KY) 64 737 740 545 269 73 113 134 0           
Moffat (MO) 216 481 511 338 197 213 365 345 257 0          
Rothbury (RO) 190 502 542 371 215 199 347 333 236 32 0         
Bramshaw (BR) 683 328 34 172 468 639 794 738 705 477 509 0        
Conwy (CO) 425 270 357 260 338 423 578 551 469 213 235 329 0       
Kirkbymoorside (KI) 305 395 433 278 233 298 453 427 345 89 116 400 125 0      
Hope (HO) 404 355 316 157 240 373 531 488 433 195 227 282 126 123 0     
Penrith (PE) 275 513 454 256 85 220 375 325 288 131 156 419 254 150 164 0    
Pitlochry (PI) 100 705 685 486 204 12 146 123 66 225 211 650 435 310 385 231 0   
Stirling (ST) 159 663 619 418 130 67 210 160 140 197 193 584 395 271 328 167 75 0  
Tongue (TO) 208 890 877 676 383 206 49 127 153 409 389 843 622 497 578 424 194 259 0 
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Appendix 4.12. Isolation by distance (IBD) for (a) B. cryptarum, (b) B. lucorum and (c) B. magnus. Pairwise comparisons of genetic differentiation (FST) as a 

function of geographic distance for individuals from all locations with at least ten individuals.  
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Chapter 5 

 

Bergmann’s Body Size Rule Operates in 

Facultatively Endothermic Insects: Evidence 

from a Complex of Cryptic Bumblebee 

Species 

 

 

A version of this chapter has been published in PlosOne as: 

Scriven, J.J., Whitehorn, P.R., Goulson, D. and Tinsley, M.C. (2016) Bergmann's 

Body Size Rule Operates in Facultatively Endothermic Insects: Evidence from a 

Complex of Cryptic Bumblebee Species. PLoS ONE 11(10): e0163307. 
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5.1 Abstract 

According to Bergmann’s rule we expect species with larger body size to inhabit 

locations with a cooler climate, where they may be well adapted to conserve heat and resist 

starvation. This rule is generally applied to endotherms. In contrast, body size in ectothermic 

invertebrates has been suggested to follow the reverse ecogeographic trend: these converse 

Bergmann’s patterns may be driven by the ecological constraints of shorter season length and 

lower food availability in cooler high latitude locations. Such patterns are particularly 

common in large insects due to their longer development times. As large and facultatively 

endothermic insects, bumblebees could thus be expected to follow either trend. In this 

investigation, we studied body size of three bumblebee species over a large spatial area and 

explored whether interspecific trends in body size correspond to differences in their 

distribution consistent with either Bergmann’s or a converse Bergmann’s rule. We examined 

the body size of queens, males and workers of the Bombus lucorum-complex of cryptic 

bumblebee species from across the whole of Great Britain. We found interspecific differences 

in body size corresponding to Bergmann’s rule: queens and males of the more northerly 

distributed, cool-adapted, species were largest. In contrast, the mean body size of the worker 

caste did not vary between the three species. These differences in body size may have 

evolved under selection pressures for thermoregulation or starvation resistance. We suggest 

that this case study in facultatively endothermic insects may help clarify the selection 

pressures governing Bergmann rule trends more generally.  
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5.2 Introduction 

The study of large-scale spatial variation in organismal traits has long been of interest 

to biologists, especially those studying ecology and evolution. Animal body size represents 

one of the most important quantitative traits as it strongly affects both physiology and fitness 

(Blanckenhorn & Demont 2004). Several ecogeographic rules describing correlations 

between morphological variation and ecological features have been formulated (Mayr 1956). 

Perhaps the best known is Bergmann’s rule,  which predicts that endothermic vertebrate 

species inhabiting cooler climates will be larger than related species from warmer climates 

(Bergmann 1847). Bergmann originally used this rule to describe interspecific trends but it 

was later redefined to explain intraspecific variation (Bergmann 1847; Mayr 1956, 1963; 

James 1970a). This rule is generally applied to endothermic organisms and has been shown to 

hold for many species of bird and mammal (Blackburn et al. 1999; Ashton et al. 2000; Meiri 

& Dayan 2003). The mechanism first proposed to explain these patterns was that in 

endotherms heat generation capacity increases with body volume, whereas heat loss increases 

with surface area; larger organisms, with relatively lower surface area, are therefore favoured 

in cooler environments (Bergmann 1847; Mayr 1963).  

Bergmann’s rule has also been demonstrated to apply to some groups of ectotherms, 

but not consistently, and where it does occur the mechanisms behind the trend may be 

different (Ashton & Feldman 2003; Blanckenhorn & Demont 2004; Tesche & Hodges 2015). 

Ectotherms rely on heat from their environment to thermoregulate: large bodied organisms 

will absorb heat more slowly than smaller organisms, which could be a disadvantage in 

cooler climates. On the other hand, small animals may overheat more easily in hot 

environments (reviewed in (Aragon & Fitze 2014)). Mousseau (1997) suggested that 

ectotherms follow the converse Bergmann’s rule, whereby body size decreases at higher 

latitudes. This trend was first considered for intraspecific comparisons of body size and 
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reported by Park (1949) in a carabid beetle; it has since been found in many other arthropod 

species (Mousseau 1997; Blanckenhorn & Demont 2004; Makarieva et al. 2005). Such 

patterns appear to be mediated by season length rather than temperature: at high latitudes, 

seasons are shorter, reducing the time available for foraging, growth and development, and 

thus limiting the body size that can be attained (Mousseau 1997; Blanckenhorn & Demont 

2004). More recently, both Blanckenhorn & Demont (2004) and Shelomi (Shelomi 2012) 

found that converse Bergmann clines are more commonly observed in larger bodied 

arthropods, such as Coleoptera and Orthoptera, as these species tend to have longer 

development times.  

Bumblebees are large insects that usually exhibit an annual lifecycle with one 

generation per year. As large-bodied insects, this hypothesis predicts that bumblebees should 

exhibit converse Bergmann rule trends. However, bumblebees are also facultatively 

endothermic, generating considerable quantities of metabolic heat, both during active flight 

and when stationary (Heinrich 1974, 1975, 1979). In order to fly, bumblebees need to warm 

their flight muscles above the ambient temperature of the temperate regions where most 

species are found. This may be achieved by a combination of flight muscle contractions 

(shivering) while they are “uncoupled” from the wings (Heinrich 1974, 1979) and substrate 

cycling in the flight muscles (Newsholme et al. 1972; Clark et al. 1973). There is a limit to 

how much heat a bumblebee can produce and thus a minimum temperature at which they can 

fly (Heinrich 1975; Goulson 2010); larger individuals can produce more heat and also lose it 

more slowly due to their proportionally smaller surface area (Heinrich 1979). As such, the 

thermal explanations for Bergmann’s rule that are normally applied to endothermic 

vertebrates may operate in bumblebees, predicting that bumblebees should exhibit a positive 

association between body size and latitude. Here, we test these opposing hypotheses to better 
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elucidate not only body size evolution in bumblebees, but also the mechanistic generality of 

Bergmann trends.  

The widespread and economically exploited bumblebee subgenus, Bombus sensu 

strictu (Williams et al. 2012b), includes a complex of cryptic species, about which relatively 

little is known. The lucorum complex comprises B. (B.) lucorum (Linnaeus), B. (B.) 

cryptarum (Fabricius) and B. (B.) magnus (Vogt). All three are morphologically 

indistinguishable in much of their range, which makes them extremely difficult to study in 

the field (Waters et al. 2010a; Carolan et al. 2012). In the UK and Ireland, the lucorum 

complex species exhibit broadly overlapping distributions (Murray et al. 2008; Waters et al. 

2010a; Williams et al. 2012b; Scriven et al. 2015; Chapter 2), with all three species found  

co-occurring at many locations (Murray et al. 2008; Waters et al. 2010a; Scriven et al. 2015; 

Chapter 2). However, recent work has found considerable differences in their ecology and 

distribution. Bombus lucorum is a very widespread, generalist species; in one study it was 

found at all locations surveyed across Great Britain (Appendix 5.1; Scriven et al. 2015; 

Chapter 2). In contrast, B. cryptarum and B. magnus exhibit a more restricted UK distribution 

than B. lucorum (Murray et al. 2008; Scriven et al. 2015; Chapter 2); they are absent from 

much of southern and eastern England, and are more commonly found at sites with lower 

summer temperatures (Appendix 5.1; Scriven et al. 2015; Chapter 2).  

A previous investigation of Bergmann’s rule in bumblebees found that although 

foraging workers of species inhabiting temperate regions were smaller than workers of 

species from cold climates, the largest species were found in the tropics (Peat et al. 2005). 

Their study focussed solely on workers, and included species from multiple genera, which 

also influenced body size variation. In this study, we use these three cryptic species, which 

are in most other ways ecologically and morphologically similar, as a more powerful test of 

Bergmann’s rule. 
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Carolan et al. (2012) measured the thorax breadth of molecularly identified queens of 

the lucorum complex collected from four different European locations. While there was 

considerable size overlap among the species, they found that there were some significant 

interspecific differences in mean thorax breadth. However, these differences were 

inconsistent between the countries of collection: queens from Ireland showed significant 

variation in body size, whereas Danish queens did not (Carolan et al. 2012). In this study, we 

perform a large scale investigation into the body size variation of all three castes of the 

lucorum complex species across a broad geographic area to determine whether these 

reportedly highly similar species differ in size. Specifically, we aim to determine (i) whether 

these three species differ in body size (ii) if body size variation is consistent among castes, 

(iii) if geographic location or environmental temperature influences body size and (iv) 

whether trends in body size correspond to differences in their distribution consistent with 

either Bergmann’s or converse Bergmann’s rule. 

 

5.3 Materials and Methods  

The specimens included in this study have been used previously to assess the 

distribution and ecological differences of the lucorum complex species (see Chapter 2; 

Scriven et al. 2015). Sampling protocols were described in Chapter 2 (Scriven et al. 2015), 

but only those individuals collected in 2011 were included here. In brief, workers, queens and 

males were sampled at 15 sites across Great Britain from June to September of 2011 (Fig. 

5.1, Appendix 5.2). The mean number of individuals collected per site was 89.4 ± 12.9. 

Whole bees were stored in absolute ethanol at ambient temperatures and then identified to 

species level using a diagnostic mitochondrial DNA RFLP assay (Murray et al. 2008; Scriven 

et al. 2015; Chapter 2). The thorax width between the tegulae (a standard measure of body 

size: (Carolan et al. 2012)) was measured using electronic callipers.  
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Figure 5.1. Map of collection sites for lucorum complex individuals. 

 

Our statistical analysis investigated the factors influencing body size for all 

individuals combined and for each caste separately, fitting linear mixed effects models with 

normal errors in R (version 3.0.2: (R Core Team 2014)) using lmer from the lme4 package 

(ver. 1.1-8; (Bates et al. 2015)). Individual bee was the unit of replication, with site as a 

random effect. Firstly, we tested whether body size (thorax width) differed between the three 

species in a model including all three castes: the model contained the terms ‘species’ and 

‘caste’ as well as their interaction. We then investigated whether thorax width differed among 

the three species for each caste separately and determined whether three site-level covariates, 

latitude (degrees), elevation (m) and mean daily temperature (°C) (UK Meteorological Office 
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2014) from March to August (the approximate flight period for the three species), influenced 

body size. For this analysis we mean-centred these covariates and tested for non-linear effects 

by fitting second order polynomial functions. All models were checked for constancy of 

variance and normality of errors. We found two queens that were sampled at each extreme of 

the temperature range to be highly influential in the models, so we removed these two 

individuals from further analyses. The data set for queens was unsuitable for effectively 

investigating the effect of latitude, elevation and temperature, due to smaller sample sizes and 

an uneven distribution across sites; therefore we did not include these variables in models of 

queen size variation. 

We investigated whether the pattern of interspecific body size differences varied 

among sites by testing for a site by species random effect interaction. The significance of 

fixed effects and their interactions was tested using likelihood ratio tests to compare models 

with and without the term of interest. For random effect terms we assessed model fit using 

AICc values. Pairwise differences between factor means were investigated using Tukey’s 

post hoc tests. 

 

5.4 Results 

Thorax width was recorded for 1,095 bees belonging to the lucorum complex species, 

which comprised 575 B. lucorum, 330 B. cryptarum and 190 B. magnus individuals 

(Appendix 5.2). These three cryptic species showed caste-specific differences in their mean 

body size (Fig 5.2): a significant interaction between species and caste (Table 5.1) 

demonstrated that the interspecific differences in thorax width were not consistent across the 

three castes. Whilst the three species exhibited significantly different thorax widths for both 

queens and males (Table 5.2; Fig. 5.2a & b), for workers there was no significant 

interspecific variation (Table 5.2; Fig. 5.2c). Posthoc tests revealed that both B. cryptarum 
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and B. magnus queens were significantly larger than B. lucorum queens (Fig. 5.2a): the mean 

thorax breadths were 3.3% larger in B. cryptarum (t = 3.2, df = 80.8, P = 0.005) and 9.6% 

larger in B. magnus (t = 3.2, df = 21.4, P = 0.01). The mean size of B. magnus males was 

larger than either of the other species (6.1% bigger than B. lucorum and 3.3% bigger than B. 

cryptarum); however pairwise post hoc tests for B. magnus compared to B. lucorum and B. 

cryptarum were not significant (t = 2.3, df = 12.6, P = 0.09 and t= 1.2, df = 13.6, P = 0.48 

respectively; Fig 5.2b). Nevertheless, B. cryptarum males were significantly larger than B. 

lucorum males (t = 3, df = 216, P = 0.008; Fig 5.2b), which represented a 2.7% difference in 

mean thorax width. There were no significant differences between the body size of B. 

cryptarum and B. magnus for any of the castes. 

 

 

Table 5.1. Caste-specific interspecific differences in thorax width across the lucorum complex 

species. The size differences (thorax width in mm) between the three lucorum complex species. 

Summary of the results of linear mixed effects models. Bombus cryptarum was the reference 

(intercept) species, parameter estimates for other species are given as contrasts relative to this.  

Significant results are shown in italics. 

Fixed effects Estimate SE χ2 P 

Intercept (B. cryptarum males) 5.4 0.06   
Caste  (Queens) 2.02 0.08 

1284.2 <0.001 
Caste (Workers) -0.44 0.05 

Species (B. lucorum) -0.15 0.06 
4.9 0.085 

Species (B. magnus) 0.12 0.15 

Caste (Queens) : Species (B. lucorum) -0.04 0.10 

13.4 0.009 
Caste (Workers) : Species (B. lucorum) 0.15 0.07 

Caste (Queens) : Species (B. magnus) -0.05 0.22 

Caste (Workers) : Species (B. magnus) -0.18 0.16 

   
  

Random effect variance   
  

Site 0.01  
  

Residual 0.14       
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Figure 5.2. Differences in body size of the three bumblebee species. 

The thorax widths of (a) queens, (b) males and (c) workers of B. lucorum, B. magnus and B. cryptarum. Box and whisker plots compare medians. Numbers 

give sample sizes. Different letters denote categories for which the means are significantly different (P < 0.01). The plots are based on raw data. 
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Table 5.2. Differential interspecific variation in thorax width among the three bumblebee castes. The size differences (thorax width in mm) between the 

three lucorum complex species for queens, males and workers. Summary of the results of linear mixed effects models. Bombus lucorum was the reference 

(intercept) species, parameter estimates for other species are given as contrasts relative to this.  Significant results (testing for variation between all three 

species) are shown in italics. 

 

  Queens   Males   Workers 

Fixed effects Estimate SE χ2 P   Estimate SE χ2 P   Estimate SE χ2 P 

Intercept (B. lucorum) 6.97 0.11    5.26 0.04    4.97 0.04   

Species: B. cryptarum 0.23 0.07 
20.5 <0.001 

 0.14 0.05 
13.81 0.001 

 0 0.04 
2.08 0.35 

Species: B. magnus 0.67 0.17  0.32 0.13  -0.06 0.05 
               

Random effect variance               

Site 0.02     0.01     0.02    

Residual 0.09         0.09         0.16       
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Our analysis provided no support for an interaction between site and species, meaning 

that the interspecific variation in body size was consistent across sites: including a species by 

site random effect interaction did not improve the model (model with all three castes: AICc = 

1034.3 with interaction, and AICc = 1029.5 without). We did not detect a significant effect of 

mean summer temperature, latitude or altitude on body size; however, the non-significant 

trend that existed for workers suggested that they became larger at higher latitudes (Appendix 

5.3). There was also no evidence of interactions between species and mean summer 

temperature, latitude or altitude; meaning that there was no variation across the three species 

in how these covariates were associated with body size. Lastly, there was no evidence for 

non-linear relationships for any continuous predictors. 

 

5.5 Discussion 

In this study we find caste-specific body size differences between the three member 

species of the lucorum complex of cryptic bumblebees, which have previously been 

described as near-morphologically identical (Williams 2000; Waters et al. 2010a; Carolan et 

al. 2012). Of the three species, B. magnus and B. cryptarum, which predominantly inhabit 

cooler and more northerly locations in the UK, had queens and males that were significantly 

larger than those of B. lucorum.  

Bergmann’s rule was originally posited to explain geographic variation in body size 

of endothermic vertebrates (Bergmann 1847). There has been considerable debate about how 

it should be applied to insects and other invertebrates, some authors suggesting that 

ectothermic insects with large body size should exhibit converse Bergmann clines (Mousseau 

1997; Blanckenhorn & Demont 2004). Our study questioned which pattern bumblebees 

should adhere to, as they are both large and, unusually for insects, facultatively endothermic. 
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In this study of multiple populations of three cryptic bumblebee species, we find evidence for 

interspecific variation in body size that corresponds to Bergmann’s rule.  

In Great Britain, B. cryptarum and B. magnus occur more commonly where 

temperatures are lower, and are more abundant at northerly latitudes, a pattern that is not 

evident for B. lucorum (Appendix 5.1; Scriven et al. 2015; Chapter 2). They are also more 

active than B. lucorum when conditions are cooler and cloudier (Scriven et al. 2016; Chapter 

3). Similarly, in Austria mean annual air temperature was lower for sampling sites where B. 

cryptarum was found, than for sites with B. lucorum; additionally B. cryptarum was relatively 

more common at higher altitudes (Bossert et al. 2016).  This growing body of evidence 

suggests that B. lucorum is adapted for activity in warmer conditions than B. magnus or B. 

cryptarum. Our present results, demonstrating larger mean body size of B. cryptarum and B. 

magnus reproductives (queens and males) compared to B. lucorum, are consistent with the 

theory that there is divergent thermal specialisation between the species of the lucorum 

complex (Scriven et al. 2016; Chapter 3).  

The foremost hypotheses to explain species distribution patterns in agreement with 

Bergmann’s rule are the heat conservation hypothesis and the starvation resistance hypothesis 

(Blackburn et al. 1999). Both could explain why only the reproductive castes display 

Bergmann body size differences in the lucorum complex species. Larger bumblebees 

generate more heat (Heinrich 1975, 1979) and large body size creates a lower surface area to 

volume ratio that reduces heat loss. In the UK, queen and male bumblebees of these species 

are on the wing early (spring) and late (autumn) in the flight season, when conditions are 

likely to be coldest (Alford 1975; Goulson 2010; Scriven et al. 2016; Chapter 3). Thus, it is 

these castes that would benefit most from enhanced heat conservation in species with 

northerly distributions. Regarding starvation resistance, the greater likelihood of bad weather 

at times when these castes are active may often prevent queens and males from foraging. 
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Moreover, mated queens spend the winter in diapause, surviving only on the fat reserves that 

fill their abdominal cavity (Alford 1975; Goulson 2010). Small queens are less likely to 

survive this diapause period (Beekman et al. 1998), which is longer in the north and west of 

the UK (Perry 2006), meaning larger queens are better equipped to resist starvation. Selection 

may thus be strongest on the queens and males, which gain the highest fitness benefits from 

large body size in the more northerly distributed species, B. magnus and B. cryptarum. 

Furthermore, any differences among body size in workers may be masked by the high 

variation in worker body size for all three species. This is a common feature of bumblebees, 

where workers can vary up to ten-fold both within species and even with a single colony 

(Alford 1975; Goulson et al. 2002). 

Despite the propensity for large insects to display converse Bergmann trends 

(Blanckenhorn & Demont 2004), our data suggest that bumblebees do not. One hypothesis to 

explain the existence of converse Bergmann trends is that body size is limited in cooler 

habitats by short growing seasons (Mousseau 1997; Blanckenhorn & Demont 2004). We 

suggest that the combination of facultative endothermy and colonial eusociality in 

bumblebees, which means offspring are reared in a warmed nest environment by numerous 

individuals (Heinrich 1979; Goulson 2010), may ameliorate the short growing season 

constraints on body size that result in converse Bergmann trends in other large invertebrates.  

This study detects interspecific body size differences in accordance with Bergmann’s 

rule but does not find strong evidence for similar intraspecific trends. Bergmann’s 

ecogeographic rule has been modified to describe intraspecific variation in body size (Mayr 

1956, 1963; Blackburn et al. 1999) but it was originally formulated to explain size 

differences between taxa (Bergmann 1847; James 1970b; Blackburn et al. 1999; Ashton et al. 

2000). Since then, both intraspecific (James 1970b; Mousseau 1997; Ashton & Feldman 

2003; Blanckenhorn & Demont 2004; Peat et al. 2005) and interspecific (Cruz et al. 2005; 
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Olalla-Tárraga et al. 2006; Olalla-Tárraga & Rodríguez 2007; Aragon & Fitze 2014) 

Bergmann’s gradients and their converse have been observed. Although not significant in our 

study, model parameter estimates suggested a trend that workers of all three species tend to 

be larger at higher latitudes (corresponding to an approximate 5% size increase across the 

length of the UK); this is consistent with Bergmann’s rule and would be worthy of future 

investigation.  

All three of these bumblebee species have large global distributions (Williams et al. 

2012b), so although this study included a broad geographic area, it still only represents a very 

small fraction of their total range, particularly for B. cryptarum and B. lucorum (see Williams 

et al. 2012b). Expanding the study to encompass a larger area might therefore reveal stronger 

intraspecific body size trends. Currently the best data on the worldwide distribution of these 

three species has been provided by Williams et al. (2012) but samples were limited, 

particularly for B. magnus. Based on the findings here, it might be expected that the 

distributions of B. cryptarum and B. magnus extend further northwards or to higher 

elevations than that of B. lucorum, but additional work would be required to confirm this. 

The extent to which overlooked interspecific morphological variation exists within 

cryptic species complexes has received considerable interest (Wiens & Penkrot 2002; Funk et 

al. 2008; Gabaldón et al. 2013; García-Dávila et al. 2013). Here we show that, despite 

significant body size distribution-overlap among the bumblebee species of the lucorum 

complex, these cryptic species have diverged significantly in the mean body size of their 

reproductive castes. Queens and males of B. cryptarum and B. magnus were larger than those 

of B. lucorum, whereas there were no interspecific body size differences in workers. This 

strongly suggests that divergent caste-specific selection pressures have acted on body size in 

these species.  
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5.6 Conclusion 

Bergmann’s rule is a classic example of adaptive geographic variation (Ridley 1996; 

Futuyma 1998), nevertheless, the extent to which Bergmann’s rule applies is still debated, 

particularly in the case of ectotherms (Blackburn et al. 1999; Ashton et al. 2000; Ashton & 

Feldman 2003; Meiri & Dayan 2003; Blanckenhorn & Demont 2004; Shelomi 2012). In this 

study we find evidence for interspecific body size variation between three closely related 

cryptic bumblebee species consistent with Bergmann’s rule. We propose that these 

interspecific size differences may have been driven by selection pressures on 

thermoregulation and starvation resistance. Furthermore, bumblebees are an exception 

amongst invertebrates because they are facultatively endothermic; this case study may 

therefore help clarify the selection pressures that climate exerts on body size, providing 

indirect confirmation of the underlying explanation for the existence of Bergmann trends in 

other ectotherms. 
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5.8 Appendix 

 

 

 

Appendix 5.1. The distribution of the three lucorum complex species across Great Britain. Sites 

marked with a * were sampled in 2011, those without were sampled in 2010. Taken from Chapter 2 

(Scriven et al. 2015). 
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Appendix 5.2. Sample sizes from each of the sites across Great Britain following species determination. Summary of the data collected for each 

sampling site along with the numbers of each of the three lucorum complex species caught at each site. Temperature was measured as the mean daily 

temperature from March-August, which is the approximate flight period of these species. 

Site Habitat Latitude Longitude Altitude (m) Temp. (°C) B. cryptarum B. lucorum B. magnus Total 

Mergie (ME) Heathland 57.00 -2.34 165 9.3 52 6 5 63 

 Non-heathland 56.99 -2.29 130 9.6 22 22 2 46 

Nethy Bridge (NE) Heathland 57.23 -3.68 260 9.9 0 1 16 17 

Kyle of Lochalsh (KY) Heathland 57.23 -5.40 15 9.0 1 7 42 50 

 Non-heathland 57.28 -5.52 10 11.1 6 20 0 26 

Glencoe (GL) Heathland 56.66 -5.05 85 10.4 2 2 51 55 

 Non-heathland 56.68 -5.12 15 9.9 18 29 1 48 

Stirling (ST) Heathland 56.19 -3.89 318 9.6 87 47 0 134 

 Non-heathland 56.14 -3.92 50 10.3 15 87 0 102 

Rothbury (RO) Heathland 55.34 -2.12 150 9.4 25 15 6 46 

 Non-heathland 55.29 -1.85 105 10.6 11 39 0 50 

Bargrennan (BA) Heathland 55.11 -4.49 270 9.3 4 1 7 12 

 Non-heathland 55.01 -4.54 40 11.0 10 28 0 38 

Kirkbymoorside (KI) Heathland 54.33 -0.94 215 10.6 10 28 15 53 

 Non-heathland 54.22 -0.88 30 11.7 2 23 0 25 

Hope (HO) Heathland 53.39 -1.69 340 10.6 21 3 25 49 

 Non-heathland 53.35 -1.75 170 11.6 9 15 0 24 

Conwy (CO) Heathland 53.28 -3.88 190 12.6 11 26 2 39 

 Non-heathland 54.22 -0.88 25 12.0 7 8 0 15 

Thetford (TH) Heathland 52.42 0.71 45 12.4 3 36 0 39 

 Non-heathland 52.40 0.92 40 12.6 0 34 0 34 

Wych Cross (WY) Heathland 51.07 0.05 140 12.0 0 34 0 34 

Bramshaw (BR) Heathland 50.89 -1.69 100 12.6 0 49 0 49 

 Non-heathland 50.95 -1.78 50 12.7 0 12 0 12 

Birch Tor (BI) Heathland 50.61 -3.87 421 10.5 14 3 18 35 
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Appendix 5.3. The size differences (thorax width in mm) between the three lucorum complex species and three site-level covariates, latitude (°), 

altitude (m) and mean daily temperature (°C), for queens, males and workers. Summary of the results of the full linear mixed effects models before 

model simplification. Bombus lucorum was the reference (intercept) species, parameter estimates are given as contrasts relative to this.  Significant results are 

shown in italics. The data set for queens was unsuitable for effectively investigating the effect of latitude, altitude and temperature (see text); therefore we did 

not include these variables in models of queen size variation. 

 

  Queens   Males   Workers 

Fixed effects Estimate SE χ2 P   Estimate SE χ2 P   Estimate SE χ2 P 

Intercept (B. lucorum) 6.97 0.09    5.27 0.05    4.97 0.05   

Species (B. cryptarum) 0.27 0.08 
20.50 <0.001 

 0.13 0.05 
9.07 0.01 

 0.00 0.04 
1.26 0.53 

Species (B. magnus) 0.65 0.16  0.30 0.16  -0.06 0.05 

Latitude NA NA NA NA  0.001 0.04 0.05 0.83  0.03 0.02 2.54 0.11 

Elevation NA NA NA NA  0.00 0.00 0.05 0.82  0.00 0.00 0.36 0.54 

Mean temperature NA NA NA NA  -0.03 0.07 0.03 0.56  0.04 0.04 1.32 0.25 

               

Random effect variance               

Site 0.02         0.02         0.02       

Residual 0.09     0.09     0.16    
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Chapter 6 

 

Non-destructive DNA sampling from 

bumblebee faeces 

 

 

 

 

A version of this chapter has been published as: 

Scriven, J. J., Woodall, L. C. and Goulson, D. (2013) Nondestructive DNA sampling 

from bumblebee faeces. Molecular Ecology Resources, 13: 225–229. 

 

D. Goulson supervised the project, L. Woodall provided advice and both commented on draft 

versions of this manuscript. The published version is presented here. 
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6.1 Abstract 

Genetic studies provide valuable data to inform conservation strategies for species 

with small or declining populations. In these circumstances obtaining DNA samples without 

harming the study organisms is highly desirable.  Excrements are increasingly being used as a 

source of DNA in such studies, but such approaches have rarely been applied to arthropods. 

Bumblebees are ecologically and economically important as pollinators; however, some 

species have recently suffered severe declines and range contractions across much of Western 

Europe and North America. We investigated whether bumblebee faeces could be used for the 

extraction of DNA suitable for genotyping using microsatellite markers. We found that DNA 

could be extracted using a Chelex method from faecal samples collected either in 

microcapillary tubes or on filter paper, directly from captured individuals. Our results show 

that genotypes scored from faecal samples are identical to those from tissue samples. This 

study describes a reliable, consistent and efficient non-invasive method of obtaining DNA 

from bumblebees for use in population genetic studies. This approach should prove 

particularly useful in breeding and conservation programs for bumblebees and may be 

broadly applicable across insect taxa.  
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6.2 Introduction 

Molecular genetic techniques are now commonly used to address questions in 

conservation, population and behavioural studies.  For insects, these techniques have mostly 

been based on destructive methods that require the insect to be sacrificed. In population 

studies, genetic analysis can require sampling large numbers of individuals, which may 

reduce subsequent population size or alter the population structure (Starks & Peters 2002). 

This is particularly undesirable when studying small or declining populations, yet often these 

are the ones of most interest (Hamm et al. 2010). In social insect species with large colonies, 

workers may be sampled with little impact on colonies, but for species such as bumblebees 

with small colony sizes the removal of workers is likely to reduce colony performance 

(Schmid-Hempel et al. 1993). In addition destructive methods are highly unsuitable for 

genotyping queens that are destined to found colonies (Chaline et al. 2004).  

Bumblebees (Bombus: Hymenoptera, Apidae) are ecologically and economically 

important as pollinators (Velthuis & Doorn 2006; Goulson 2010). Some species have recently 

suffered severe declines and range contractions across much of Western Europe and North 

America (Goulson et al. 2008a; Cameron et al. 2011). In the UK, seven out of the 27 species 

are listed on the Biodiversity Action Plan (BAP), a higher proportion than any other 

invertebrate group (Goulson 2010). Being social insects, bumblebees can have very small 

effective population sizes and suffer from population fragmentation and isolation (e.g. Estoup 

et al. 1996; Ellis et al. 2006; Goulson et al. 2011), which makes the conservation genetics of 

this group of particular interest and concern. Molecular tools have also proved to be useful in 

studying intractable aspects of bumblebee ecology, such as quantifying nest density, nest 

survival, and dispersal distances (Darvill et al. 2004; Knight et al. 2009; Goulson et al. 2010; 

Lepais et al. 2010; Woodard et al. 2015). Non-destructive sampling would therefore be 

valuable in studies of bumblebees, especially of rare species and of queens involved in 
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captive breeding or re-introduction programs. Any such sampling method should not interfere 

with the queen’s ability to mate (Chaline et al. 2004), forage or found a colony. 

A number of techniques have been used to non-lethally sample insect DNA such as 

extracting haemolymph from the defensive secretion of the forked fungus beetle, Bolitotherus 

cornutus (Donald et al. 2012), tibia removal in damselflies (Fincke & Hadrys 2001) and 

eusocial wasps (Starks & Peters 2002), wing clipping in butterflies (Hamm et al. 2010) and 

honeybees (Chaline et al. 2004) and tarsal clipping in bumblebees (Holehouse et al. 2003). 

Holehouse et al. (2003) do not recommend wing clipping as a method of non-lethally 

sampling DNA in bumblebees as reducing wing area most probably has an effect on flight 

ability and overall performance. On the other hand tarsal clipping was recommended as no 

significant effects on workers were detected but they concede that their analyses had 

relatively low power and a more extensive study could reveal significant effects of tarsal 

sampling. It seems likely that tarsal clipping may have more impact on queens. Bumblebee 

queens raise the first brood of workers alone, making this early stage in the life cycle, when 

she must incubate the brood but also forage regularly to provide a sufficient supply of pollen 

and replenish her nectar reserves, one of the most precarious (Goulson 2010). Moreover, 

there are situations when sampling of queen DNA is needed, such as when attempting to 

quantify queen dispersal (Lepais et al. 2010), or during reintroduction programmes.   

Faeces have been shown to have the potential to provide a suitable source of DNA for 

genotyping individuals in mammals (Taberlet et al. 1997; Goossens et al. 2000; Frantz et al. 

2003), birds (Idaghdour et al. 2003; Regnaut et al. 2006) and reptiles (Jones et al. 2008) but 

such non-invasive approaches have rarely been applied to studies of invertebrates. Monroe et 

al. (2010) found faecal pellets and shed exuviae from dragonfly larvae did not provide high 

enough quality DNA for microsatellite analyses but the frass of a phytophagous weevil, 

Ceutorhynchus assimilis (Fumanal et al. 2005), scarab beetles (Lefort et al. 2012) and 
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butterfly caterpillars (Feinstein 2004) have been successfully used to differentiate between 

morphocryptic entities and identify larvae to species. However, these studies used 

mitochondrial DNA and did not study genetic differences between individuals. The purpose 

of this study was therefore to determine whether bumblebee faeces could be used for the 

extraction of DNA suitable for genotyping individuals with microsatellite markers for use in 

population genetic studies.  

 

6.3 Materials and methods 

Sampling 

The common Palearctic bumblebee species Bombus terrestris queens and workers 

collected in and around Stirling were captured and maintained in ventilated, clear plastic 

containers with access to sugar water. These containers had been cleaned with bleach, to 

ensure they could not be contaminated with DNA from other individuals, and were checked 

for faeces several times a day. A single faecal sample, usually all that is required, can be 

obtained rapidly, usually within 30 minutes of capturing an individual. Retaining individuals 

in this study allowed us to collect multiple samples per individual and thus assess the 

repeatability of our results. 

Several sample storage, DNA extraction and amplification methods were used to 

determine which were the most suitable. Two methods of faecal collection were tested (i) 

using microcapillary tubes and (ii) using filter paper. The drops of liquid that form 

bumblebee faeces were drawn up into sterilised capillary tubes by capillary action, or gentle 

sucking if necessary, and then sealed with electrical tape at either end.  These were used in an 

extraction protocol either fresh or stored immediately at -18°C. Otherwise, drops were 

absorbed onto small strips of Whatman Grade 3 filter paper, approximately 2-2.5cm x 0.5-
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1cm.  Each strip was placed into an Eppendorf tube ensuring no contamination. They were 

then either  used in an extraction protocol fresh or allocated to one of three storage methods: 

(1) immediate storage at -18°C, (2) in 0.5 or 1ml of absolute ethanol at room temperature or 

(3) dry (dried overnight) at room temperature. In order to determine whether a single filter 

paper sample could be used for several extractions, some were cut in half or quarters before 

extraction was carried out. 

 

DNA extraction and amplification 

Two methods of DNA extraction were tested (i) using a HotShot protocol (Truett et 

al. 2000) and (ii) a Chelex® 100 protocol (Walsh et al. 1991). For the extractions from 

capillary tube samples, the faeces were gently blown from the microcapillary tubes into an 

eppendorf tube. Extractions from filter paper samples were carried out directly on the strips 

of filter paper. When testing the HotShot extraction protocol, different amounts of the buffers 

were tested according to the nature of the sample: 100 µl or 200 µl of both the alkaline lysis 

reagent and the Tris HCl buffer for the filter paper samples and 35 µl or 75 µl of each buffer 

for the microcapillary tube samples. All samples were incubated in the alkaline lysis reagent 

at 95°C for 30 min before the addition of Tris HCl buffer. In the Chelex extractions of 

capillary tube samples 200 µl of 5% Chelex solution, 7 µl Dithiothreitol and 2µl proteinase K 

were used per sample. These volumes were doubled for the filter paper samples. All samples 

were incubated at 56 °C for 70 min and then centrifuged at 14,000 rpm for 3 min. One 

hundred µl of supernatant was placed into new tubes and incubated for a further 10 min at 95 

°C. DNA from tarsal tips of the queens and workers that produced the faecal samples was 

used to verify that the genotypes obtained from the faecal samples were correct. This was 

extracted using the Chelex method under the same conditions as for the microcapillary tube 

samples. 
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To investigate the effectiveness of the different collection, storage and extraction 

methods we initially amplified a single microsatellite locus (B118; Estoup et al. 1995, 1996) 

for all sampled individuals under the same conditions. PCR was performed in a reaction 

volume of 10µl containing 1 or 2 µl of template DNA, 0.2 µM of the primer, 1x QIAGEN 

Multiplex Master Mix and 0.5x Q-solution. All reactions were initially heated to 95°C for 15 

minutes to activate the HotStarTaq DNA polymerase, before 35 cycles of 94°C for 30 s, 49°C 

for 90s and 72°C for 90 s followed by a final extension period of 10 min at 72°C. 

Amplification success was determined by electrophoresis on 2.5% agarose gels.  

Tarsal tip and faecal DNA from 23 individuals that successfully amplified with B118 

was then genotyped at 4 microsatellite loci: B118, B124, B11 and B10 (Estoup et al. 1995, 

1996). Multiplex PCRs were performed using QIAGEN Multiplex PCR Kits. Each 10µl 

reaction volume contained 1x QIAGEN Multiplex Master Mix, 0.5x Q-solution, 0.2µM of 

primers for the loci B118, B124, B11 and 0.4µM of primers for B10 (all with the forward 

primer fluorescently labelled),  and 2µl of template DNA. The thermocycler conditions were 

the same as for amplification of the single locus B118. All PCR reactions were performed 

using both negative (water) and positive controls (DNA extracted from worker wing muscle 

using HotShot technique). PCR products were analysed on a 3730 automated capillary DNA 

sequencer (Applied Biosystems) and scored with reference to an internal size-standard 

(GeneScan500 ROX; Applied Biosystems Inc.) using GeneMarker software version 1.97 

(SoftGenetics). Amplification and analysis was carried out twice for each faecal sample to 

check for consistency. 
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6.4 Results 

The Chelex 100 extraction method allowed amplification of the B118 locus from 

fresh samples collected on filter paper and using capillary tubes (12/13 fresh samples), 

whereas the amplification of DNA extracted using the HotShot method yielded very poor 

results regardless of the volume of buffers used (2/12). Using 2 µl of template DNA appeared 

to yield more PCR product than just 1 µl. Given that both sample collection methods gave 

positive results when amplifying a single microsatellite locus, it was decided to use the 

simpler method, filter paper, as the collection method for the subsequent samples. 

After storage on filter paper at -18 °C, preliminary testing showed amplification of the 

microsatellite locus B118 to be successful (10/10) as was microsatellite amplification when a 

half or a quarter of a filter paper sample was used for the extraction. Dry storage of the 

samples at room temperature was not successful; none of the eight samples that were tested 

amplified.  

Following microsatellite analysis at four loci, samples collected on filter paper or in 

capillary tubes and extracted immediately gave 100% and 80% successful amplification at all 

loci respectively (Table 6.1) after a single amplification. Storing filter paper samples at -18 

°C was revealed to be the most effective storage method (Table 6.1). Only 45% of samples 

stored in 1 ml of 100% ethanol for two weeks could be genotyped at all four loci after two 

repeats, compared to 100% of samples frozen for two weeks. None of the samples stored in 

0.5 ml of ethanol could be correctly genotyped. Four of five samples stored frozen for two 

months amplified successfully at all four loci with two repeats. Using fragments of each filter 

paper sample did not reduce the genotyping success with 100% accuracy at all loci after a 

single amplification. 
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As several faecal samples from each individual, as well as tarsal tips, were genotyped 

to test the different methods, we were able to verify the reliability of genotypes obtained from 

the faeces samples and show that the quantities of DNA obtained from the fresh and frozen 

samples did not cause allelic dropout during the amplifications as can sometimes occur when 

using very small amounts of DNA (Taberlet & Luikart 1999). All of the positive controls 

amplified successfully and the negative controls were always ‘blank’. Sufficient DNA was 

extracted using the Chelex protocol from both filter paper and capillary tube samples to 

perform at least 50 PCR amplifications. 

 

Table 6.1.  Success rate of amplification of all four microsatellite loci for each preservation technique 

tested after each repeat. The cumulative total is the sum of the success rate for both repeat 

amplifications combined.  

  Number  Genotyping success (%) 

 of  Repeat Repeat Cumulative 

Sample Treatment samples 1 2  Total 

Fresh filter paper samples 7 100 100 100 

Filter paper stored frozen for 2 weeks 17 76 76 100 

Filter paper stored frozen for 2 months 5 60 80 80 

Filter paper stored in 1 ml ethanol for 2 weeks 11 45 45 45 

Filter paper stored in 0.5 ml ethanol for 2 weeks 3 0 0 0 

Half or quarter filter paper fragments stored 8 100 100 100 

frozen for 2 weeks     
Fresh capillary tube samples 5 80 80 80 

Tarsal samples 9 100 100 100 

 

 

6.5 Discussion 

These results show that it is possible to extract DNA from bumblebee faeces using 

standard and simple techniques and that the quality of the DNA is high enough to allow PCR 

amplification of microsatellites permitting reliable genotyping of individuals. We found that 
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DNA could be extracted from faecal samples collected in either microcapillary tubes or on 

filter paper, but the latter was much easier. The microcapillary tubes were more difficult to 

fill and to seal and very easy to break unintentionally, which consequently means that they 

would require careful storage and be more problematic to transport than samples on filter 

paper. The best results were achieved with DNA obtained from samples freshly collected on 

filter paper strips and extracted using the Chelex extraction method. Samples collected on 

filter paper strips can be stored frozen and still yield accurate results but the success rate may 

decrease with the length of storage time, testing with a larger sample size would verify this. 

The filter paper strips can also be divided into fragments (halved or quartered) before 

extraction without any negative impact on amplification success. 

We obtained these positive results using very simple and inexpensive extraction 

methods. Further testing using more advanced extraction approaches, such as column-based 

techniques, could improve the method, potentially permitting consistent DNA extraction from 

ethanol-stored samples or the amplification of other molecular markers with alternative 

applications. 

In this study, individual bumblebees were captured and faecal collection was carried 

out in the laboratory. This is, however, not a requirement; individuals may be captured and 

held in small containers in the field until they defecate, whereupon the faecal samples can be 

collected using the preferred method. If microcapillary tubes are kept sealed or filter paper 

samples prevented from drying out in sealed tubes, they can be kept for several hours in this 

way before freezing. However, this method would probably not be suitable for sampling in 

remote situations where access to a freezer was not available.  

This study describes a reliable, consistent and efficient non-invasive method of 

obtaining DNA from bumblebees. Although excrements are increasingly being used as a 
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source of DNA in molecular and ecological studies (Beja-Pereira et al. 2009), such 

approaches have rarely been applied to arthropods. These results demonstrate that this 

procedure is effective both in terms of amplification success and scoring reliability. This 

method is ideal when no impact on survival or behaviour is required making it a particularly 

useful approach in breeding and conservation programs. Despite Monroe et al. (2010) failing 

to obtain DNA of sufficiently high quality for genotyping from non-invasive samples from 

the dragonfly, Somatochlora hineana, we have shown that it is possible for bumblebees and 

therefore it seems likely that the approach may also be applicable to other insect species. 
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Bumblebees are large and charismatic insects that have been very well-studied (e.g. 

Goulson 2010; Alford 1975); yet large gaps still remain in our knowledge and understanding 

of these familiar and valuable species. The lucorum complex represents an example of one 

such gap: before this PhD thesis research very little was known about this group of cryptic 

species. In fact, one of these three species, B. cryptarum,  was only discovered to inhabit the 

UK in 2005 (Bertsch et al. 2005). This is perhaps even more surprising considering that B. 

lucorum, the name under which this complex has previously been grouped (Williams 1994, 

2000; Benton 2006), is one of the most abundant and widespread bumblebee taxa in the UK.  

Some bumblebee species have been declining throughout their worldwide 

distribution, both in abundance and range (reviewed in Goulson 2010). Meanwhile, other 

species seem to be faring comparatively well (Goulson et al. 2005, 2008a). The reasons why 

some species remain common while others have suffered severe declines remains the subject 

of debate (e.g. Goulson et al. 2005; Williams 2005; Fitzpatrick et al. 2007) but any 

assessment of the vulnerability or risks faced by a particular species requires an 

understanding of their ecology. Prior to the research in this thesis our knowledge of the 

lucorum complex species was very limited and in some cases inconsistent (Williams 2000; 

Bertsch et al. 2005; Murray et al. 2008; Waters et al. 2010a; Williams et al. 2012b; Stanley et 

al. 2013a). The results of the research presented here represent the first detailed investigation 

of the ecology and population genetics of B. lucorum, B. magnus and B. cryptarum, over a 

relatively large geographic area and a range of biological scales. 

 

7.1 The ecology of the lucorum complex species and the implications for bumblebee 

conservation 

This work combines information from species distribution mapping, single site study 

of environmental activity correlates, molecular techniques and measures of morphological 
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variation; it demonstrates that fundamental differences exist in the distribution, ecology and 

population structure among the lucorum complex species in Great Britain.  Among the three 

lucorum complex species, B. magnus is the least abundant, has the most limited distribution 

and appears to occupy the most distinct niche. It has a narrow, highly specialised diet, feeding 

predominantly on species of heather (Ericacae), which results in it being restricted for the 

most part to heathland habitat. Furthermore, the phenology of B. magnus queens, workers and 

males appears to be delayed relative to the other two species. Bombus lucorum and B. 

cryptarum both have broader diets and are not constrained to a single habitat type. However, 

the distribution of B. cryptarum in Great Britain is more restricted than that of B. lucorum, 

with both B. cryptarum and B. magnus being relatively more common in areas with lower 

summer temperatures. Additionally, there are differences among the species in the relative 

activity of queens and workers according to the weather: B. lucorum is relatively more active 

than the other two when it is either warmer or sunnier.  There are also interspecific 

differences in the mean body size of the reproductive castes: among queens, the mean body 

size of B. lucorum is smaller than that of the other two species; similarly, the males of B. 

lucorum are smaller than those of B. cryptarum and B. magnus (although not significantly so 

for B. magnus). Bombus lucorum exhibits the highest genetic diversity and lowest level of 

population genetic structure. Genetic diversity is lowest in B. magnus but population structure 

in B. cryptarum is more strongly affected by distance than it is in B. magnus.  

Bombus cryptarum and B. lucorum appear to exploit a wide range of habitat types 

(Chapter 2; Murray et al. 2008; Waters et al. 2010a; Bossert et al. 2016), which contrasts 

with B. magnus. Chapters 2 and 3 confirm that B. magnus feeds predominantly on Calluna 

vulgaris and Erica spp., meaning that it is very strongly associated with heathland habitat and 

is thus both a habitat and dietary specialist. Such a strong dietary specialisation would appear 

disadvantageous for a social species that needs to maintain colonies with high energy 
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demands beyond the flowering season of any one (or two) plant species (Williams 2005). 

However, because C. vulgaris and Erica spp. flower successively and for a relatively long 

period of time, they may provide a reliable, relatively long term, foraging resource.   

In bumblebees, it has been suggested that a species’ diet breadth may correlate with 

abundance, with  rarer bumblebee species often utilising fewer flower species, implying that 

specialised species may be more vulnerable to population declines (Goulson et al. 2005, 

2008b). Whilst the importance of this hypothesis has been debated (Williams 2005; 

Fitzpatrick et al. 2007a; Williams et al. 2007), across this cryptic species complex the species 

with the narrowest diet is also the rarest. Indeed, few bumblebee species in Great Britain 

exhibit such strong specialisation as B. magnus (Goulson et al. 2006). Bombus jonellus and B. 

monticola are sometimes referred to as heathland specialists (Goulson et al. 2005), but in the 

south of England, B. jonellus is also found in gardens and calcareous grassland, and B. 

monticola exploits a variety of food plants other than heather, particularly Vaccinium spp., 

but also Salix spp. and Lotus corniculatus (Edwards & Jenner 2005; Macdonald & Nisbet 

2006). Bombus monticola is a rare and declining species, particularly in England and Wales, 

whereas B. jonellus occurs widely and does not appear to have declined (Goulson et al. 2005; 

Benton 2006; Macdonald & Nisbet 2006). Some other species appear to be specialists but 

only as a result of severe declines: the very rare B. distinguendus is now mostly found on 

machair and nearby dunes in the far north and west of Scotland, but its past distribution 

demonstrates that it is not a machair specialist (Williams 2005; Goulson et al. 2006). As 

discussed in Chapter 2, specialisation by B. magnus on heathland could be ecologically 

problematic because this habitat has suffered major losses in the UK (Thompson et al. 1995; 

Price 2003). The population genetics results in Chapter 4 indicate that although B. magnus 

has lower genetic diversity than B. cryptarum (which we might expect if it was declining or 

had small effective population sizes), it has higher levels of genetic variation than some other 



 
 

165 
 

rare species in the UK, such as B. distinguendus or B. muscuorum (Ellis et al. 2006b; 

Charman et al. 2010; Darvill et al. 2010). This suggests that B. magnus is not currently 

showing evidence of suffering serious effects of habitat loss or fragmentation, which may be 

because, as explained in Chapter 4, specialists on patchy habitat types could be well-adapted 

to overcome habitat fragmentation (Zavodna et al. 2005; Sallé et al. 2007; Exeler et al. 2010; 

Feist et al. 2014). The results here indicate that although B. magnus has a restricted 

distribution, it is locally common at some sites; further long term studies of abundance would 

be helpful to determine whether this species is suffering from declines too recent to be 

detectable. Indeed, Thompson et al. (1995) found that 40% of the bird species using upland 

heather moorland were declining, therefore this merits further research. 

Heathland is a semi-natural habitat that persists without management in some areas 

but which is usually maintained in Great Britain by rotational burning and grazing. Upland 

heath is a sub-montane habitat characterised by common or ling heather, Calluna vulgaris, 

found mostly in the British Isles, and along parts of the western seaboard of the northwest 

European mainland. Calluna vulgaris occurs much more widely than this, but the massive 

extent of rotationally burned heather is unique to the UK and Ireland (Thompson et al. 1995). 

Little is known about the range of B. magnus worldwide: some of the few reliable data comes 

from the study by Williams et al. (2012) and a large proportion of their B. magnus samples 

originated from the UK. It would therefore be interesting to determine whether this managed 

habitat represents a particularly important resource, and thus a potential stronghold, for this 

species in Europe, or whether it utilises different habitat types in other parts of its range.  

In contrast to the data for B. magnus, the evidence presented in Chapters 2 and 3 

indicates that B. lucorum and B. cryptarum are both relatively generalist pollinators. In their 

field guide for Great Britain and Ireland, Edwards and Jenner (2005) describe B. lucorum as 

“a common and widespread species found in many habitats but more frequent towards the 
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north”. However, it is unclear whether this refers to B. lucorum only or the lucorum complex 

as a whole. Indeed, many studies have not distinguished between the three lucorum complex 

species (e.g. Goulson & Darvill 2004; Goulson et al. 2005, 2006) and those that have, have 

often relied on morphological identification (e.g. Peat et al. 2005; Macdonald & Nisbet 2006; 

Iserbyt & Rasmont 2012), which may not be accurate (Carolan et al. 2012). Using molecular 

techniques for species identification, B. lucorum has been found to be the most abundant of 

the three species in Ireland (Murray et al. 2008; Stanley et al. 2013b) and in Austria (Bossert 

et al. 2016). Similarly,  the results presented in Chapter 2 find that on average across Great 

Britain, B. lucorum is the most common and widespread species: it was found at every 

sampled site. However, in the study in Chapter 3 that focussed on a single site in Scotland, B. 

cryptarum was the most abundant, as it also was in the Western Isles of Scotland (Waters et 

al. 2010a). Similar results were found for the diet breadth of these two species: across all 

British sites, B. lucorum had the broadest diet, whereas in Glencoe (Scotland; Chapter 3) and 

the Western Isles of Scotland (Waters et al. 2010a), B. cryptarum foraged on the widest range 

of plant species. Thus, at higher latitudes, it appears that the abundance and diet breadth of B. 

lucorum may become reduced relative to B. cryptarum when compared to lower latitudes. 

Thus, it is possible that the increase in abundance of B. lucorum in the north of the UK, 

reported by Edwards and Jenner (2005), may be a result of the increased presence of B. 

cryptarum and B. magnus alongside B. lucorum at these latitudes. 

Chapters 2, 3 and 5 all present independent data sets supporting divergent thermal 

specialisation among these three species. Chapter 2 shows that B. cryptarum and B. magnus 

are relatively more abundant at sites with lower summer temperatures, a pattern not observed 

for B. lucorum. Chapter 3 demonstrates that B. magnus queens are more active in cloudy 

conditions than B. lucorum, and B. cryptarum workers are more active in cooler and cloudier 

conditions than B. lucorum workers. Furthermore, B. cryptarum and B. magnus queens are on 
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average larger than B. lucorum queens, as are B. cryptarum males (and B. magnus males, 

although not significantly), which represents a potential adaptation to cooler conditions (see 

Chapter 5; Bergmann 1847; Mayr 1963; Heinrich 1979). A recent study in Austria by Bossert 

et al. (2016), which found that B. cryptarum inhabited cooler localities than B. lucorum, 

supports these findings. As a result, we might expect the distribution of B. cryptarum and B. 

magnus to extend further north or to include higher altitudes than that of B. lucorum. Further 

strategic sampling would be required to determine whether this hypothesis is supported, as 

the current distribution information available is insufficient. As discussed in Chapter 3, rough 

estimates based on COI divergence and diversity, reported by Carolan et al. (2012) and 

Murray et al. (2008), indicate that the lucorum complex species may have diverged relatively 

recently: approximately <100,000 years ago, which falls within the last glacial period. 

Climatic oscillations may isolate populations in refugia, which could result in allopatric 

differentiation during glacial periods, followed by recolonisations during post-glacial periods 

(Hines 2008). Such a situation could plausibly have led to the differences in thermal 

specialisation observed here among the lucorum complex species.  

All three species appear to be fairly widespread in the Palearctic, but B. cryptarum, 

which is found across Europe, Central Asia, north China, the Kuril Islands and north-western 

North America, has the broadest distribution of any species within the Bombus s. str. 

subgenus (Williams et al. 2012b). Indeed, B. cryptarum may still be experiencing ongoing 

differentiation: it includes more geographically structured lineages, than other species in the 

subgenus (Williams et al. 2012b). These comprise two principal subgroups, each exhibiting a 

single diagnostic genetic change, which are widespread and may represent subspecies. One of 

these is more northern and found in Scandinavia, northern Russia, Mongolia, to western 

North America, whereas the other is more southern, including individuals from Ireland, 

Britain, through central Europe to central Asia and both occur in Scotland (Williams et al. 
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2012b). Almost certainly both of these lineages will have been sampled during this study, 

meaning that the conclusions drawn for B. cryptarum represent average characteristics for 

these two lineages. Future studies could therefore investigate the extent of ecological 

differentiation between these two lineages within B. cryptarum. Expanding the genetic study 

in this thesis to use multiple genetic markers and encompass samples from across the 

worldwide ranges of these species would provide insights into their ecology and 

phylogeography that are so far missing, particularly in the case of B. cryptarum. 

Chapter 3 represents the first reliable study of phenology in all three species. Bombus 

cryptarum has been considered an early spring species whose phenology precedes that of the 

other two species (see Bertsch et al. 2005). The data here did not confirm this, but do indicate 

that the phenology of queens, workers and males of B. magnus was delayed relative to B. 

cryptarum and B. lucorum; the production of B. magnus workers therefore coincided with the 

flowering of C. vulgaris and Erica spp. Very few B. magnus males were found in the course 

of this study, which means little could be concluded about their phenology. However, in 

Chapter 3 the first B. magnus male was caught much later than the first male of the other two 

species, and in the samples obtained for Chapter 2, males of B. magnus were only found in 

late September, whereas males of B. cryptarum and B. lucorum were encountered as early as 

mid-June. The timing of peak heather flowering appears to vary across Great Britain (pers. 

obs.), so it would be very interesting to determine whether B. magnus phenology also varies 

in parallel. 

Bumblebee species vary considerably in the annual timing of peak worker abundance 

and queen emergence from hibernation: in the UK, queens of some species emerge as early as 

February, whilst others do not appear until the end of May (Alford 1975; Goulson 2010). 

These differences in phenology have been suggested to act as a mechanism to reduce inter-

specific competition for resources, as a species that emerges earlier may gain a competitive 
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advantage. For example, in North America the bumblebee species, B. flavifrons, emerges 

several weeks ahead of B. rufocinctus; when B. rufocinctus workers appear, B. flavifrons 

workers are already numerous and have learnt where the most rewarding flowers are and how 

to handle them, thus outcompeting the naïve B. rufocinctus workers on their preferred flower 

species (Bowers 1985). In the UK, there are several common short-tonged bumblebee 

species, one of which is B. pratorum; unlike its competitors, this species has a very short 

colony duration with worker abundance peaking much earlier than most other species: in 

May or early June, with reproductives produced from April (Alford 1975).  

Chapters 2 and 3 demonstrate that, in addition to having a delayed phenology, B. 

magnus is the rarest of the lucorum complex species. In the UK a correlation has been 

reported between bumblebee species rarity and emergence time (Goulson et al. 2005; 

Fitzpatrick et al. 2007a); late emerging species may have fewer nest sites remaining available 

to them, often have smaller colonies and may be less able to cope with environmental 

changes (Williams & Osborne 2009; Goulson 2010). Bombus magnus may avoid the 

problems of interspecific competition between workers by specialising on heather, which is a 

super-abundant resource on heathland; but the queens may suffer from competition for 

nesting sites. The delayed phenology of B. magnus could also represent a high risk strategy 

that suffers in years when the season finishes early, or weather/climatic conditions prevent 

workers foraging, or limits the amount of flowering heather available (pers. obs.), which 

could explain some of the variation in B. magnus abundance found between years. 

As discussed, heathland, dominated as it can be by C. vulgaris and Erica spp., would 

not appear an ideal habitat for bumblebees. It should therefore be considered that B. magnus 

could be restricted to, rather than specialised on, heathland. This could have occurred as a 

result of one or multiple factors, including the loss or degradation of other more suitable 

habitat. Since museum specimens can now be used as a source of DNA (Strange et al. 2009; 
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Lozier & Cameron 2009; Maebe et al. 2013) and could therefore be accurately identified to 

species, this hypothesis could be investigated using historical specimens from collections and 

museums to determine whether B. magnus was found in a broader range of habitats in the 

past.  

Another factor that could cause a species to be restricted to a less favourable habitat is 

inter-specific competition with other pollinators. In particular, queens of B. magnus, 

emerging late, could be excluded from more suitable habitat, due to limited nesting sites, and 

naive workers may be outcompeted on the most rewarding forage plants. Whether these 

ecological differences are a result of inter-specific competition rather than preference is more 

difficult to solve, but it would be very interesting to determine whether the patterns found in 

this work remain in the absence of the other lucorum complex species in particular. Indeed, 

the patterns revealed in this thesis could potentially be driven by competition between these 

three species: B. lucorum might be able to outcompete the other two species in the optimum 

conditions found in the south and east of England, but to the north and west when conditions 

are less favourable for B. lucorum, B. cryptarum is able to persist alongside it. In these 

regions, B. magnus may persist on heathland, a habitat exploited less by the other two 

species, where it relies heavily on C. vulgaris and Erica spp. for forage. 

 

 

7.2 Scope for further research 

By focussing on a single site in Chapter 3, we were able to eliminate some of the 

potential sources of bias in the conclusions drawn from previous lucorum complex studies 

(e.g. Waters et al. 2011; Murray et al. 2007; Chapter 2), which have surveyed sites that are 

geographically broadly spaced. Using multiple sites for diet comparisons therefore introduces 

the possibility that the species in question does not have the option to feed on certain plants at 



 
 

171 
 

some sites because those plants are not present. The intensive study at a single site presented 

in Chapter 3, eliminates this problem, as all species have access to the same forage plants, 

providing a fairer test of forage preferences. This approach therefore complements previous 

studies, including that in Chapter 2, which were based on a single sampling time-point in the 

season for each site (which itself imposes some limitations on the conclusions that can be 

drawn). Nevertheless, repeating this study over multiple seasons would provide further 

interesting information, particularly concerning the fluctuation in the relative abundances of 

these species between years. Such further work, would also permit the investigation of the 

effect of a number of climatic variables on the abundance and reproductive success of the 

three species, which appears to vary considerably (see Chapters 2 & 3). 

Observing where and when bumblebees in this species complex were foraging has 

revealed a number of important aspects of their ecology, including differences in their 

phenology, diet breadths, distribution patterns and response to weather and climatic variables. 

Combining this with a population genetics study has led to further important insights into the 

biology of these species.  Population genetic studies are valuable tools for revealing many 

biological characteristics of species that are otherwise difficult to study. Indeed, these tools 

have provided insights into many aspects of bumblebee ecology, behaviour and evolution 

(reviewed by Woodard et al. 2015). Chapter 4 represents the first population genetic study of 

the lucorum complex and thus provides the first indications of genetic diversity and 

population structure for these species. However, there is much scope for further research. For 

example, in social Bombus species, counting the number of foraging workers is not 

necessarily the best representation of population health: colony abundance is more closely 

related to the size of the breeding population (Crozier 1979). Calculating this from 

observation alone is very challenging because bumblebee nests are very difficult to locate, 

even by highly trained dogs (Waters et al. 2010b; O’Connor et al. 2012). However, genetic 
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tools now exist to aid estimates of colony abundance (Goulson et al. 2010; Lepais et al. 2010; 

Jones & Wang 2010; Wood et al. 2015). It would therefore be very useful to determine the 

nest density and effective population size (Ne) of the three species and investigate whether 

this differs between the lucorum complex species or between habitat types.  

Chapter 4 revealed differences in genetic structure among the three species that may 

relate to their degree of habitat specialisation and propensity for dispersal. Other work has 

shown that for some species, such as B. muscuorum, B. hortorum, B. bifarius and B. 

vosnesenskii, natural barriers, including bodies of water (Goulson et al. 2011; Lozier et al. 

2011, 2013; Jha & Kremen 2013b; Jha 2015), elevation gradients (Lozier et al. 2011, 2013) 

and human-modified landscapes (Jha & Kremen 2013b; Jha 2015) appear to limit dispersal. 

Combining the genetic data available here with landscape information for landscape genetic 

analysis would thus help explain observed genetic patterns within the lucorum complex, be 

informative about environmental suitability for each species and reveal pathways of dispersal 

between populations. This information could be particularly important for B. magnus 

because, although this species is not currently in obvious decline, future anthropogenic 

modification of suitable habitat pathways could challenge dispersal and lead to population 

isolation (Wilson et al. 2005; Jha & Kremen 2013a). 

The foraging range of bumblebees determines the area of habitat that an individual or 

a colony can exploit and is therefore a fundamental aspect of their ecology, as well as an 

important consideration for crop pollination (Goulson 2010).  There is considerable variation 

in foraging ranges among bee species: a review of the foraging ranges of 62 bee species by 

Greenleaf et al. (2007) found a positive relationship between foraging distance and body size. 

Among bumblebees, molecular tools have revealed foraging distances that vary from 25m to 

more than 10km (Chapman et al. 2003b; Darvill et al. 2004; Knight et al. 2005; Charman et 

al. 2010; Rao & Strange 2012; Jha & Kremen 2013a; Geib et al. 2015). This thesis did not 
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study foraging distances, but no differences were found in the mean body size of workers, 

which suggests that, according to Greenleaf et al. (2007), they may have similar foraging 

ranges. However, exploiting heather, which is an extremely abundant resource where it is 

available, may mean that B. magnus workers do not need to travel so far to find suitable 

forage. Determining the foraging distances for the lucorum complex species would therefore 

contribute considerably to our understanding of how they use the landscape and forage 

patches within it. 

Reproductive isolation between the lucorum complex species has also not been 

studied in detail. Cross breeding experiments, including those by Bučánková et al.  

(2011) where no interspecific matings were observed, indicate that these species are 

reproductively isolated, but the sample sizes were small and they are not conclusive (see 

Bossert 2015). In bumblebees, male cephalic labial gland secretions are used for scent 

marking and their composition is species specific and stable across large geographic areas 

(Bertsch & Schweer 2012) making them useful for species recognition. The lucorum complex 

species each has a distinct labial gland secretion profile; this observation has been used as 

evidence for their species status and may also represent a cohesion mechanism, but not 

necessarily an isolation mechanism of the species (Bertsch 1997; Bertsch et al. 2005; Bertsch 

& Schweer 2012). There is also evidence suggesting that there may be some differences in 

colouration between males of the three species that may contribute to reproductive isolation, 

particularly regarding the colouration of the face: B. cryptarum males often appear to exhibit 

a much reduced extent of yellow facial hairs compared to B. lucorum (Scriven et al. 

Unpublished data; Rasmont et al. 1986). However, whether this is consistent or forms a basis 

for female choice remains to be confirmed. Here, the data in Chapter 4 provide no evidence 

for substantial levels of hybridisation or admixture between the species but the next step 

would be to test for it explicitly.  



 
 

174 
 

Studies using microsatellite loci have evidently contributed enormously to our 

understanding of bumblebee ecology and evolution (Estoup et al. 1995; Darvill et al. 2004; 

Ellis et al. 2006b; Charman et al. 2010; Goulson et al. 2010; Lozier et al. 2011; Woodard et 

al. 2015), but basing conclusions about genetic diversity on microsatellite data alone may be 

subject to limitations (Payseur et al. 2002; Haasl & Payseur 2011). Discrepancies between 

data sets examining a small number of microsatellite loci compared to genome-wide 

nucleotide diversities can occur. For example, when using microsatellite data, Lozier et al. 

(2011) found that the levels of genetic variation between stable and declining Bombus species 

in North America differed, whereas a later study based on restriction site-associated DNA 

sequencing data showed little difference in genetic diversities between these species (Lozier 

2014). The use of these large genomic datasets can be more informative than data from a 

limited number of loci (Hoffman et al. 2014) and have many potential applications for 

conservation genetics; although further research into these approaches may be required 

(Allendorf et al. 2010).  

The destructive nature of molecular studies of insects is problematic, particularly 

alongside the need for large sample sizes (Starks & Peters 2002; Donald et al. 2012). Despite 

using a non-lethal sampling method for the study in Chapter 3, this thesis still required the 

destruction of more than a thousand lucorum complex individuals. The population genetic 

analysis revealed that the lethal sampling method applied did not result in the destruction of 

large numbers of individuals from the same colony and was therefore unlikely to have had a 

large impact on colony success or survival. However, had any of these species been 

particularly rare, sampling may have had a much larger impact, as more individuals per 

colony would be likely to have been lost (Schmid-Hempel et al. 1993; Chaline et al. 2004). 

Similarly, this work avoided destroying large numbers of overwintered queens as this would 

have also been likely to impact local populations (Chaline et al. 2004). However, if similar 
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work was to be carried out on rare species, destroying any individuals would be undesirable. 

As a result, many of the population genetic studies of bumblebees have focussed on common 

species (e.g. Widmer & Schmid-Hempel 1999; Herrmann et al. 2007; Kraus et al. 2009; 

Lepais et al. 2010; Goulson et al. 2011; Rao & Strange 2012; Jha & Kremen 2013a; b; Lozier 

et al. 2013; O’Connor et al. 2013; Wood et al. 2015; Moreira et al. 2015; Jha 2015), and only 

a few have involved rare or declining species (Darvill et al. 2006, 2010; Ellis et al. 2006b; 

Charman et al. 2010; Whitehorn et al. 2011). The method developed in Chapter 6, which is 

an effective means of obtaining DNA from bumblebees without harming the individuals, 

therefore provides a valuable alternative to destructive sampling for studying those rarer 

species, or species that are being reintroduced, such as B. subterraneus (Gammans 2011; Lye 

et al. 2011; Brown et al. 2016). 

 

7.3 The value of cryptic species complexes as model systems 

Advances in molecular techniques such as PCR and DNA sequencing have led to the, 

often accidental, discovery of many genetically divergent but morphologically cryptic 

lineages. The rate of cryptic species discovery has been increasing exponentially, with such 

lineages distributed evenly among major metazoan taxa and biogeographical regions 

(Pfenninger & Schwenk 2007). Therefore “cryptic species” are commonly referred to in 

biology and are the focus of a considerable amount of research: a simple search for “cryptic 

species” in Web of Science (July 2016) finds over 38,600 publications. Yet, how special are 

they, and why are they so interesting? This thesis has found differences in every 

characteristic that has been investigated, although they are sometimes subtle. This could lead 

to the conclusion that cryptic species are nothing special: they are simply separate species 

which are hard to identify, but which still exhibit differences in many characteristics. It may 

also be assumed that the individuals of these species have little difficulty in distinguishing 
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each other, thus, they are only “cryptic” because humans have found them difficult to 

categorise based on a single feature: their morphology. As a consequence, perhaps cryptic 

species are not especially important on their own, but critically, as described throughout this 

thesis, they do raise many interesting and important questions for ecology and evolution 

(Bickford et al. 2007), especially when they are found in sympatry. As illustrated in Chapters 

4 & 5, cryptic species are valuable as a model for a comparative approach to study ecological 

questions in closely comparable species. However, a limitation to this approach, and 

therefore these Chapters, is that conclusions are drawn from a single comparison. Ideally, 

such studies would involve a larger cryptic species complex to assess the generality of the 

conclusions that the comparative approach has produced; however, this is rarely feasible (e.g. 

Maingon et al. 2003; Racey et al. 2007; García-Dávila et al. 2013; Westram et al. 2013; 

Vodă et al. 2015) 

Strong ecological similarity between two species should lead to strong interspecific 

competition, resulting in either competitive exclusion of one species or ecological 

differentiation (Gause 1932; Holt et al. 1994; Violle et al. 2011; Cothran et al. 2013). Co-

occurring cryptic species therefore offer the opportunity to investigate the degree of 

ecological differentiation needed to facilitate coexistence. This thesis investigates the level of 

differentiation between three cryptic bumblebee species with overlapping distributions. In 

Europe and North America bumblebee communities consist of numerous species with 

apparently very similar niches, which we would thus expect to be shaped by strong 

competition (Goulson et al. 2008b; Goulson 2010). Such a detailed study of sympatric cryptic 

bumblebee species therefore provides an insight into the subtle mechanisms involved in the 

structure of bumblebee communities and the coexistence of species. The work here 

demonstrates how superficially identical species can vary in a wide range of characteristics, 

not initially apparent, and provide unique pollination services. Moreover, they represented an 
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ideal model for examining the association between habitat specialism and levels of 

population genetic structure, as well as patterns of body size differences in relation to 

Bergmann’s rule, whilst eliminating some of the other confounding factors that would arise 

from comparing many other sets of species. 

 

7.4 Conclusion 

This thesis provides the first detailed investigation of the ecology and population 

genetics of three important pollinator species at a range of different biological scales. These 

start from the level of individuals on single flowers, through populations, to the community 

level, whilst including various time and spatial scales. Furthermore, it uses this cryptic 

species complex as a model to explore more general ecological questions. Finally, this work 

demonstrates that overlooking cryptic diversity, or the inability to correctly identify species, 

could have strong implications, not only for species conservation management, but also our 

understanding of ecosystem functioning and population dynamics. 
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