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Abstract Disease outbreaks are often accompanied by a

wealth of data, usually in the form of movements, locations

and tests. This data is a valuable resource in which data

scientists and epidemiologists can reconstruct the trans-

mission pathways and parameters and thus devise control

strategies. However, the spatiotemporal data gathered can

be both vast whilst at the same time incomplete or contain

errors frustrating the effort to accurately model the trans-

mission processes. Fortunately, several techniques exist

that can be used to infer the relevant information to help

explain these processes. The aim of this article is to provide

the reader with a user friendly introduction to the tech-

niques used in dealing with the large datasets that exists in

epidemiological and ecological science and the common

pitfalls that are to be avoided as well as an introduction to

inference techniques for estimating parameter values for

mathematical models from spatiotemporal datasets.

Keywords Epidemiology � Modelling � Bayesian
Inference � Simulation � Networks � Spatio-temporal

1 Introduction

Spatiotemporal data are those that contain both spatial

(location) and temporal (time) properties. In veterinary

epidemiology, this may be the records of tests carried out

at a particular location (e.g. a farm) and time or simply

the movement of animals, the recording of which is often

mandated by governments and provides researchers with a

wealth of data with which to analyse the outbreak and

transmission of diseases (Moustakas and Evans 2016;

Hong and Paik 2012). In many cases the volume of col-

lected data poses a significant statistical and computa-

tional challenge to the understanding of both outbreak

patterns, transmission dynamics and thus control of the

epidemic.

Most often, the transmission processes of a disease are,

at least, partially understood (Lowe et al. 2015; Reiczigel

et al. 2010). For example, diseases such as foot and mouth

disease (FNM) (Kao et al. 2007; Keeling et al. 2001),

avian influenza (AI) (Gumel 2009) and classical swine

fever (CSF) (González-Parraa et al. 2011) are spread by

close contact with infected individuals with little or no

latent stages while diseases such as bovine tuberculosis

(bTB) (Moustakas and Evans 2015; Biek et al. 2012) have

long latent periods and all contain a temporal element in

the form of animal movements. From a phenomenological

perspective we can write simple compartmental models for

these diseases and solve them on the network of farms

(spatially) for a period of time (temporally) incorporating

the movements of (potentially infected) animals in the

model. This presupposes that we know the transmission

parameters which, in reality, are either unknown or

estimated.

Several techniques can be used to extract useful

information from these datasets or to infer disease trans-

mission parameters. In this article we will review some

useful techniques that can be used to obtain pertinent

information from a large spatiotemporal dataset and,

using generated datasets, provide examples of these

techniques.
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2 Network analysis of spatiotemporal data

Purely spatial models are often confounded in modelling dis-

ease spread when there is occasional long-distance infectious

contacts [e.g. livestock trading over long distances, which

played an important role in the 2001 foot-and-mouth outbreak

in Britain (Kiss et al. 2006; Kao et al. 2007). When either a

reasonable model or explicit records are available for these

pairwise contacts, it may be appropriate to model them using a

contact network. Doing so makes available a variety of net-

work analysis methods, which have become very popular (e.g.

Stärk et al. 2006; Dube et al. 2009; Martı́nez-López et al.

2009) and are often referred to as ‘‘social network analysis’’.

Traditionally, it has been common to ignore the dynamic

nature of many contact networks, and instead process

known or modelled contacts into a static network prior to

analysis: common approaches have included aggregation

of contacts over some appropriate time frame into a

‘‘snapshot’’ network, or taking an average network over a

longer time period. More complex adaptations are possible

to preserve more information (Holme 2013).

However, due in part to better data resolution and the

increase in availability of analytic tools, it is becoming more

common to include the dynamic nature of contact networks

in epidemiological analyses. There is evidence that ignoring

temporal information about contacts can give a deceptive

picture. For example, consider two different orderings of

infections contacts: either a contact between A and B fol-

lowed by a contact betweenB andC, or the alternate ordering

of a contact between B and C followed by a contact between

A and B. In the first case, there is potential for pathogen

movement from A to C, but in the second, there is no such

possibility. An static aggregation of either ordering would

result in the same network, and potentially identify pathogen

flow from A to C as a possibility in both cases.

The size of a connected component (a maximal joined-

up set of nodes) is often used as an upper bound on the

maximum outbreak size in a static network (Dube et al.

2009). In a dynamic network, it is more appropriate to use

the idea of an infection chain: the size of a set of nodes that

could potentially be infected by temporally possible routes

from a single starting point of an outbreak (Dube et al.

2009; Nöremark and Widgren 2014).

There are several pieces of software available to compute

such measures on dynamic networks, including EpiCon-

tactTrace in R (Nöremark and Widgren 2014), Gephi (a stan-

dalone graphical interface for network analysis) (Bastian et al.

2009), ORA-LITE as part of theCASOSproject, or the Python

module networkx (Hagberg et al. 2008). For our example

below, we have used networkx,1 but any of the other

available packages would have sufficed: in the subsequent

parameter-estimation example we use a different open-source

package: Broadwick, written in Java (O’Hare et al. 2016).

To aid in showing the importance of temporal information

to understanding a dynamic network’s impact on disease

spread, we have generated a simulated dataset of livestock

trading amongst farms in a fictional island nation, which we

will call Florin. We depict the locations of the fictional farms

on a map of Florin in Fig. 1. We provide fictional locations

and trades, alongwith the python code used in this example as

supplementary material, in the hope it may serve as a basic

tutorial. We will first inspect the network derived from our

cattle trades and calculate some summary statistics. We find

the data for our network in the cattle trades listed in move-

ments.csv (part of S1),where each line contains an ID for a

source farm, an ID for a destination farm, and the day number

when the movement took place (note that while we have used

non-negative integer numbers for the dates, most software is

also capable of dealing with string-formatted dates).

In the code in S2,we first load the geographic locations and

trade network into a networkx directed graph, and then plot

it, giving the directed, spatially-embedded network in Fig. 2.

The entire network is fairly dense, so we also plot the network

composed of only movements on the first day. We then

compute the frequencies of out-degrees by node (Fig. 3),

aggregating all edges together over time. These sorts of degree

distributions are widely used in static networks as an impor-

tant network characteristic (Dube et al. 2009), but adaptations

are increasingly beingmade to the dynamic setting (Nöremark

and Widgren 2014; Holme 2013). One simple adaptation

requires us to define a timewindowsize, and calculate degrees

of nodeswithin that size of timewindow. In the code in S2,we

calculate the mean and maximum in-degree by node over a

variety of time windows, and plot this in Fig. 4.

Our out-degree distribution in Fig. 3 gives us some infor-

mation on our network, and allows us to compare it to other

well-studied networks: a long-tailed distribution is common in

real data-derived networks, and has important implications for

spreadingprocesses on thenetwork (Estrada 2010).Our plots of

changes in out-degree over differing time windows. Figure 4,

show simple linear growth: the expected mean and maximum

out-degree are proportional to the timewindow,with no special

important size of time window. Often in real data there is an

important time-window: for example, degrees in the Scottish

cattle trading network increase dramatically at time windows

that are multiples of seven days, due to the weekly timing of

British cattle trading markets Cattle Tracing System.

2.1 Importance of temporal information

to maximum possible outbreak size

We now turn our attention to the maximum possible out-

break size on our network, furnishing an example of the

1 The code and data used in this paper are available at https://github.

com/EPICScotland/Broadwick/tree/master/examples/NetworkedSir.
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importance of temporal information. We take two

approaches to measure a possible outbreak size, and find

very different answers. In the first approach, we ignore the

timing of the movements, and create one aggregated static

network with holdings as nodes and a directed link from

one to the other if there has been a cattle trade between the

holdings in that direction (as in Fig. 2).

We then calculate the number of holdings that are

‘‘downstream’’ of a holding - that is, could be reached by a

directed path in the network. We find a directed component

of 649 downstream holdings in the network, suggesting

that in the worst case scenario in which every contact

between an infected farm and a susceptible farm transmits

disease, a (fictional) pathogen could spread to up to 649

farms. If this worst-case infection is seeded at random

throughout the aggregated network, the mean outbreak size

is 17 farms.

In contrast, in our second approach, we include the

timing of the cattle trades and use a dynamic network for

our analysis, and we find a maximum infection chain size

of 314, and a mean outbreak size of 5 farms.

Ignoring the timing of movements can also give a

deceptive measure of infectious distance between two

nodes (here farms), where infectious distance is the number

of links in a network that an infectious would have to travel

over to move from one node to the other Fig. 5.

Fig. 1 A map of the fictional island nation Florin, with the locations

of its cattle-trading farms shown as dots

Fig. 2 A spatial embedding of

the entire fictional cattle trade

network (left) and the fictional

cattle trade network of only

movements on the first day

(right) given in

movements.csv in S1, with

edge directions shown by

thicker rectangles at the

destination of the edge

Fig. 3 Frequencies of out-degree by node in the fictional cattle trade

network in Florin
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2.2 Real-data example

We give a real-data example of a similar difference using

Scottish data in Example 1 and Fig. 6.

Example 1: In Fig. 6 a picture of a single holding in Scotland and the

network distance between it and other holdings in the aggregate

network and the fully dynamic network ScotEID—scottish EID

livestock traceability research. We can see that many holdings that

are reachable in the time aggregating network are not reachable in

the network that fully considers time, and that the distances for

holdings that are reachable in both are not preserved. If we ignored

the timing of cattle movements, we might think that all the holdings

shown in blue dots on the lefthand side of the below _gure are close

in the network to the starred holding, and therefore at risk of a

disease in an outbreak involving the starred holdings, but we can see

from the right hand side of the _gure that this isn’t actually the case.

Thus far we have restricted ourself to considering a

known network without any spatial interactions or

stochastic disease processes: our focus has been on

examining the network itself. We now turn our attention to

a realistic example of a disease and the Bayesian methods

that can help us infer parameters required in modelling it.

3 Parameter inference techniques

For disease outbreaks that are accompanied by spatiotem-

poral data such as the case of an outbreak of a disease on a

single farm with known cattle movements as in Example 1

we can construct a relatively simple agent based model

where each agent has a disease state and a location. An

important consideration in developing such models is how

Fig. 4 Node-wise maximum (left) and mean (right) out-degree over a variety of sizes of time windows in the fictional cattle trading network of

Florin

Fig. 5 Holdings that are

reachable from the farm shown

with a red square in networks

that aggregate and ignore time

(on the left), and fully consider

time (on the right). Farms

shown by darker dots are farther

in network distance. The

fictional farm locations and

movements available as S1 were

used to create these figures,

along with python code in S2
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to obtain meaningful or realistic values for the parameters

therein.

In this section we will summarise some techniques for

estimating the transmission parameters for a disease that

has recorded spatiotemporal data. Broadly speaking, these

techniques fall into two categories depending on whether

or not we can write out a likelihood function or if the

calculation of this function is computationally unfeasible.

These methods have the aim of finding those parameters

for a particular model that best describe an observed set of

data, such as test results, by exploring the space of all

parameters through the use of a random walk through this

space. The area of space that provides a best fit for the

model to the data is recorded and the distribution of each

parameter value in this region of space (often referred to as

the posterior distribution) provides an estimate of the

parameters.

We will illustrate one of these techniques using an SIR

model on the same data as was used in Sect. 2.

In the following sections we will adopt the following

notation, consistent with current literature: h is a vector of

unknown parameters that we wish to infer given some set

of observations, D. We will denote gð�Þ as the computa-

tional/mathematical model which will produce a range of

possible outcomes that we will write as X� gðhÞ when run

repeatedly for the same set of inputs.2 Using these

notations we can write the likelihood of the data under the

model given the parameters h as pðDjhÞ.
The Bayesian approach is to find the posterior distri-

bution of h given D as

pðhjDÞ ¼ pðDjhÞpðhÞ
pðDÞ

where pðhÞ as the prior distribution and reflects the

assumptions about the parameters in the model and pðDÞ is
the observed data.

3.1 Likelihood-free methods

Approximate Bayesian computation (ABC) are a collection

of methods for performing Bayesian inference without the

calculation of a likelihood function and are sometimes

referred to as likelihood-free algorithms. Recently, these

methods have become very popular in biological sciences,

most notably genetics (Tanaka et al. 2006; Beaumont et al.

2002) and population biology (Lopes and Beaumont 2010)

due to the fact the likelihood function can be difficult or

impossible to compute for some models. In this section we

will summarise how the method is used in practise, a fuller

description of the technique is given in Csilléry et al.

(2010).

The most basic form of the ABC algorithm is based on a

rejection algorithm and given as:

(0) Calculate a measure that characterises the system for

the observed data D.

(1) Draw h from pðhÞ.
(2) Simulate X� gðhÞ.

Fig. 6 Holdings that are

reachable from the farm shown

with a red star in networks that

aggregate and ignore time (on

the left), and fully consider time

(on the right). Farms shown by

darker dots are farther in

network distance. Scottish cattle

movements in January of 2010

have been used to create these

networks

2 This model may either be stochastic in nature, incorporating

random mutations in some disease transmitting pathogen, random

movements in a network or simply solved using a Gillespie-type

algorithm.
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(3) Calculate the distance measure, qðX;DÞ, and accept

h if qðX;DÞ� d where d is the tolerance (accuracy)

of the estimation method.

(4) Repeat these steps until a sufficient number of

accepted hs are drawn.

The accepted values of h are not drawn from the posterior

distribution but an approximation to it (written as

pðhjqðD;XÞ� dÞ.When d ¼ 0 this algorithm draws from the

posterior distribution pðhjDÞ. The smaller the value of d the

more accurate the approximation to the posterior distribution

but this comes with added computational cost. The distance

measure, qðX;DÞ, is usually taken as the euclidean distance

jjX � Djj. If h is large (i.e. the data are high dimensional) is is

common to use a summary statistic to summarise the model

output and data and thus reduce the dimensionality of the

space. This choice of summary statistic is crucial for the

quality of the approximation (Beaumont et al. 2009). In this

scenario, step 3 above would be written

(3) Accept h if qðSðXÞ; SðDÞÞ � d, where Sð�Þ denotes a
summary statistic.

Of course, a poor choice of summary statistic will add

another layer of approximation to that already added by the

use of a distance measure and tolerance.

For a detailed explanation of the ABC algorithm and its

variants applied to several models see Turner and Van

Zandt (2012). This ABC algorithm has been extended

recently to approximate Markov Chain Monte Carlo algo-

rithms (Marjoram et al. 2003) and to approximate

sequential Monte Carlo algorithms (Sisson et al. 2007).

3.2 Monte Carlo methods

If it is possible to calculate the Likelihood function, i.e.

probability of observingD given a set of parameters, pðDjhÞ
in a computationally tractable manner, the goal is to find

those parameters thatmaximise this function. If there is some

a priori knowledge of the model parameters, these can be

incorporated into the search, a method referred to as Maxi-

mum a Posteriori (MAP) estimation, and is often more

appropriate for the models encountered in ecology and epi-

demiology. MAP is used to estimate a mode of the posterior

distribution (the distribution of h that maximises the likeli-

hood function). This a priori knowledge (prior distribution

or simply priors) can be as simple as a uniform distribution

within some wide limits for priors that are not well known to

specific distributions with low measures of spread for well

known priors. The posterior distribution of the parameters

given the observed data can now be written as

pðhjDÞ ¼ pðDjhÞgðhÞ
R
# pðDj#Þgð#Þd#

ð1Þ

where the integral in the denominator is over the domain of

g, the prior distribution of the parameters h, and is usually

evaluated numerically by sampling the parameters over the

prior space. MAP estimates the model parameters, ĥ for

which the posterior distribution has its’ maximum (i.e. the

mode of the distribution) and is written as

ĥMAX ¼ argmaxhpðhjDÞ ¼ argmaxh
pðDjhÞgðhÞ

R
# pðDj#Þgð#Þd#

ð2Þ

Thus our problem is to find those parameters, h, that

maximise the likelihood pðDjhÞ. For complex models we

need to explore parameter space to find ĥ, which can

achieved by simulating this distribution using the Markov

Chain Monte Carlo. Using this technique gives us a dis-

tribution for the estimates of ĥ rather than the point esti-

mates returned by ML.

Calculating the probability in (1) for most models is

intractable and is often approximated using Monte Carlo

methods which performs the integration by sampling h

from a distribution and ‘saving’ those samples that satisfy a

condition. This (inefficient) Monte Carlo integration is

improved by exploring the parameter space in a manner

that hones in on the area of space that we want (i.e. gives

those parameters that maximise a likelihood function or

minimise a distance function in ABC). In many cases a

Markov Chain is used to perform this exploration.

There have been many papers published on MCMC, for

example Gilks et al. (1996); Brooks (1998); Berthelsen and

Möller (2003); Doucet et al. (2000), which should be

consulted for a more rigorous treatment as we will only

give an algorithmic outline here.

Suppose we are able to calculate the Likelihood function,

pðDjhÞ, the steps to perform the MCMC algorithm are:

(1) Select a starting point in the parameter space, i.e.

draw h from pðhÞ.
(2) Calculate the likelihood for this h. This is usually the

most computationally intensive part of the algorithm.

(3) Take a trial step by selecting a new set of parameters

htrial from qðhtrial j hcurrentÞ. There is no hard and fast

rule about how to select these parameters, taking a

large step means the parameter space is explored

more quickly but not with any great accuracy, steps

that are too small mean that the local area is explored

in great detail but it takes longer to explore the

whole space. In general selecting a trial step from a

normal distribution makes sense where the standard

deviation can be used to ‘tune’ the step size.

(4) Compare the likelihood for this trial step to the

previous step and accept the trial according to a

rejection algorithm, if the trial is accepted the the

parameters are updated h ¼ htrial and a new trial step
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is sampled. The Metropolis–Hastings algorithm is

commonly used to determine whether or not to

accept the trial step. The basic algorithm is to accept

trial according to a probability proportional to the

difference of the likelihoods (Ltrial � L. If Ltrial �L
then the trial step is always accepted (thus always

moving towards the areas of parameter space that

maximise the likelihood), conversely if Ltrial\L the

trial step has a high probability of being accepting if

the trial likelihood is close to that of the previous

step allowing a chance of ‘going downhill’. This

means that the walk does not get stuck in a local

maximum and thus guarantees that the global

maximum will be found (but makes no prediction

as to how long it will take to find).

(5) Several such walks or chains are run, each with a

different initial h until each converge on the same

region of the parameter space. This region defines

the posterior distribution. The goal of any inference

technique is to find this region and draw samples

from it, the distribution of these sampled parameters

make up the posterior distribution of the parameters.

We often refer to burn-in when talking about

MCMC, this is simply the process of removing

those steps in the Markov Chain that are not in the

region of the posterior distribution/maximum

likelihood.

MCMC will generate parameters while exploring parame-

ter space in a manner that spends most time in the

important regions. In the parlance of inference methods,

the samples (parameters) mimic samples drawn from the

target distribution (i.e. those parameters we are trying to

find).

The efficiency of the MCMC is determined by how well

the random walk (Markov Chain) explores the parameter

space (how fast it can find the target area). If there are

correlations between parameters in the model, these must

be taken into account in constructing the trial steps. Failure

to take the correlations between parameters into account

will result in exploring an area of space that will not

contribute to the posterior distribution. A novel method for

constructing trial steps was proposed by Haario et al.

(2001) and described how it can be applied to epidemio-

logical data in O’Hare (2015).

4 Worked example

To demonstrate an application of the MAP technique to a

model describing some spatiotemporal data, we will run a

SIR model starting with a single infected animal using the

locations and movements in the datasets given in S1 and

use the technique outlined above to infer the parameter

values in the model.

We model the epidemic as consisting of three distinct

stages susceptible, infectious and removed. Infected ani-

mals can infect others in the same herd/farm at a rate b per

time-step and infectious animals are removed at a rate r.
The method of removal is not important for this example

but may be, for example, through culling detected infected

animals. We allow for heterogeneity in the size of each

farm by sampling the size from a Normal distribution with

a mean of 60 and a standards deviation of 20, N(60, 20).

When moving animals between farms we allow them to

potentially infect others on both farms in that time step. For

computationally efficiency, we create agents for the

infected animals only, updating their location when moving

between farms. The movement data describes the source

and destination location and the date of the movement, the

number of animals moved is sampled from N(6, 4). The

number of infected animals that is moved is sampled from

a hypergeometric distribution.

We start with a single infected farm on a highly con-

nected farm (farm 2 in the dataset) and solve the model

using the Gillespie algorithm, moving animals between

farms at each time step according to the movements in the

supplementary information. We use parameter values of

0.00 0.04 0.08

β

0.000 0.004 0.008

σ

Fig. 7 Posterior distribution of the parameters b; r in a SIR model

using the fictional cattle trading network of Florin. A single

simulation was run using the Gillespie algorithm, moving animals

around the network according to the movements in Fig. 2. We seeded

the outbreak with a single infected animal on farm 2 using

b ¼ 0:09; r ¼ 0:007
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b ¼ 0:09; r ¼ 0:007 to obtain 65 infectious animals and 35

removed (assuming, of course, that there is some physical

mechanism to detect and record infectious and removed

animals).

We write the likelihood for this model as

L ¼ n!

Pxi!
Ppxii ð3Þ

where n is the size of the infected population (the number of

infectious and removed), xi; pi are the numbers in the infec-

tious and removed classes and the probability of observing

these numbers respectively. Using uniform priors b ¼
½0:001; 0:1�; r ¼ ½0:0001; 0:001� and running 25 separate

Markov Chains each starting at a random point in space each

1000 steps long and calculating the mean number of infec-

tious and removed in 50 simulations at each step we estimate

b ¼ 0:0910 with a 95% credible interval of 0.0768, 0.101

and r ¼ 0:0051 with a credible interval of 0.0, 0012 thus

recovering the parameters h ¼ ðb ¼ 0:09; r ¼ 0:007Þ, the
kernel density estimates are shown in Fig. 7.

In recovering the posterior values for the parameters in

our model we record the time series data of the numbers of

infectious individuals and the number of infected farms

over time as a measure of the likely number of cases we

can expect from a similar outbreak (Fig. 8).

5 Conclusion

The vast amount of animal location, movement and test

data that is collected during modern disease outbreaks is a

valuable resource for mathematical epidemiologists. Ana-

lysing this data is not without difficulty due to the size and

nature of the collected data but modern inference tech-

niques and advances in pattern extraction in spatiotemporal

datasets have aided the control of the spread of diseases.

Ignoring temporal affects leads to both an overestimation

of the predicted outbreak size and poorly designed control

measures. Incorporating the dynamic nature of the network

of animal movements can reveal important time windows

that can be targeted when designing interventions.

In this paper we have outlined two broad techniques for

extracting epidemiological information from mathematical

models using these spatiotemporal data sets, giving a step-

by-step approach to introduce the concepts and terminol-

ogy involved. A realistic model using fictitious data

demonstrated how the transmission parameters could be

recovered (the code is available as one of the examples in

the Broadwick framework). Approachable references to

more advanced texts are given for the interested reader.
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