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Abstract 22 

Understanding the relative contributions of wild and managed pollinators, and the functional 23 

contributions made by a diverse pollinator community, is essential to the maintenance of yields in 24 

the 75% of our crops that benefit from insect pollination. We describe a field study and pollinator 25 

exclusion experiments conducted on two soft-fruit crops in a system with both wild and managed 26 

pollinators. We test whether fruit quality and quantity is limited by pollination, and whether 27 

different pollinating insects respond differently to varying weather conditions. Both strawberries and 28 

raspberries produced fewer marketable fruits when insects were excluded, demonstrating 29 

dependence on insect pollinators. Raspberries had a short flowering season which coincided with 30 

peak abundance of bees, and attracted many bees per flower. In contrast, strawberries had a much 31 

longer flowering season and appeared to be much less attractive to pollinators, so that ensuring 32 

adequate pollination is likely to be more challenging. The proportion of high-quality strawberries 33 

was positively related to pollinator abundance, suggesting that yield was limited by inadequate 34 

pollination on some farms. The relative abundance of different pollinator taxa visiting strawberries 35 

changed markedly through the season, demonstrating seasonal complementarity. Insect visitors 36 

responded differently to changing weather conditions suggesting that diversity can reduce the risk of 37 

pollination service shortfalls.  For example, flies visited the crop flowers in poor weather and at the 38 

end of the flowering season when other pollinators were scarce, and so may provide a unique 39 

functional contribution.  Understanding how differences between pollinator groups can enhance 40 

pollination services to crops strengthens the case for multiple species management.  We provide 41 

evidence for the link between increased diversity and function in real crop systems, highlighting the 42 

risks of replacing all pollinators with managed alternatives. 43 
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Introduction 48 

Insect-mediated pollination increases yield in around 75% of world food crops, which provide ~35% 49 

of our food (Klein et al. 2007).  The role of wild pollinators in delivering this service is likely to be 50 

greater than was previously assumed: a meta-analysis of pollination data from 41 crop systems 51 

suggests that honeybees supplement wild pollinator numbers, rather than the other way around 52 

(Garibaldi et al. 2013) and wild pollinators play a significant role in varied crop systems (e.g. Winfree 53 

et al. 2008; Breeze et al. 2011; Rader et al. 2012). Wild species are also important for their 54 

contribution to pollinator diversity, which has been shown to positively influence crop yield (Klein, 55 

Steffan-Dewenter & Tscharntke 2003).  Diversity increases ecosystem service provision when species 56 

contribute slightly different functions (Cadotte et al. 2011).  Particularly, functional diversity is 57 

increased when species (or species groups) are complementary in the services they provide.  For 58 

example, pollinator species may be complementary in the heights at which they forage; honeybees 59 

and wild bees are complementary in their use of space on almond trees, so having both groups 60 

present increases yield overall (Brittain et al. 2013).  Likewise seed set in pumpkins grown at 61 

different heights was increased when more pollinator groups with different preferred pollinating 62 

heights were available (Hoehn et al. 2008).  For crops with long flowering seasons, one species or 63 

group of species may not be active for the entire season, and so complementarity in abundance or 64 

activity across time (seasonal complementarity) could be important (Blüthgen & Klein 2011).   65 

Species or species groups that overlap in functional contribution may respond slightly differently to 66 

changing environmental conditions, thus buffering the overall service over multiple years (Winfree & 67 

Kremen 2009; Brittain, Kremen & Klein 2013). Maintaining both complementarity functions and 68 

response diversity will ensure that future pollination needs are met under a range of circumstances 69 

(Elmqvist et al. 2003).  70 

The soft fruit industry in Scotland produces 216,000 tonnes of strawberries (5% of the global total) 71 

and 3,000 tonnes of raspberries per year (FAOSTAT).  Both crops are highly reliant on insect 72 

pollination for marketable fruit.  The pollinator requirements of raspberries and strawberries differ: 73 



raspberries are highly attractive to bees and have a short flowering period that coincides with the 74 

seasonal peak in bee numbers.  Strawberries, on the other hand, have a long flowering season which 75 

may require multiple pollinator groups to ensure pollination across the season.  This study examines 76 

the importance of diversity in soft-fruit pollination by asking the following questions:  77 

1. Are there differences in the response of different pollinator groups to weather and habitat 78 

variables which could be important for the continued pollination of these crops?  79 

2. Is there complementarity between different pollinator groups enabling strawberry 80 

pollination across the season? 81 

3. Does insect visitation to crop flowers limit the quality and quantity of fruits produced?  82 

 83 

 84 

Materials and methods 85 

Sites and survey 86 

The main domesticated pollinators on soft-fruit farms are commercially-reared bumblebees.  Seven 87 

species of wild bumblebees are common in the study area as well as other pollinators including 88 

solitary bees, flies and hoverflies (Lye et al. 2011).  Contact was made with soft-fruit farms in 89 

Autumn 2010 and 29 farms were visited in early 2011.  Farm managers were asked about 90 

commercial pollinator management; how many bumblebee colonies were used and whether, to 91 

their knowledge, honeybees were kept within 2 km of the farm.  They were also asked about wild 92 

pollinator management e.g. whether wild flower strips were grown.  Twenty-five farms spread 93 

through the regions of Angus, Perthshire and Fife (Fig. 1) were then chosen for inclusion in the field 94 

study.  Of these nine grew only strawberries, four only raspberries and twelve grew both.  Most soft-95 

fruits were grown undercover in polythene tunnels (polytunnels), all of which were open-ended, 96 



some were open-sided while others had closed sides. Farmers grew a range of different crop 97 

cultivars which could not be standardised.  98 

Pollinator Activity Transects 99 

For each transect (one per farm), a tunnel was picked at random from those with flowering crops 100 

and walked at a slow pace, recording all pollinator visits to flowers.  Transects on each farm ran for a 101 

total of 300m and included between two and four adjacent tunnels.  Bombus species were classified 102 

to species level where possible; workers of domesticated Bombus terrestris (L.), wild B. terrestris and 103 

wild B. lucorum (L.) cannot be reliably distinguished by eye.  To split the counts of these species into 104 

wild and domesticated classifications, we used the average number of B. terrestris/B. lucorum 105 

observed at farms not using commercial bees divided by the average number of B. terrestris/B. 106 

lucorum seen at farms using commercial bees to estimate the proportion of B. terrestris/B. lucorum 107 

observed, that could be attributed to wild sources.  These proportions (for each fruit and time 108 

period) were then applied to the overall counts on farms using commercial bees, to obtain an 109 

estimate of the number of B. terrestris/B. lucorum from wild populations versus B. terrestris from 110 

commercial sources. These calculations assume that the presence of commercial bees does not 111 

reduce visitation by wild bees.   112 

Other pollinators were assigned to broad grouping, i.e. bees other than honeybees and bumblebees 113 

were all grouped together, as were flies (including hoverflies).  Three replicate flowers counts were 114 

taken in 1 m2 areas within each tunnel to estimate floral resources provided by the crop.  Cloud 115 

cover was estimated as a percentage.  Wind speed was estimated on a three point scale (0 = still, 1 = 116 

light breeze, 2 = strong breeze), as was rain (0 = no rain, 1 = light rain, 2 = heavy rain).  Days with 117 

heavy rain were avoided where possible, but if rain began during a visit the transect was completed.  118 

Weather stations closest to each farm were used for daily temperature and humidity data.  119 

Transects were all walked between 10 am and 5 pm.  Farms were visited six times throughout the 120 

season, with approximately three weeks between each visit.   121 



Habitat data   122 

Landscape data were obtained from the OS MasterMap Topography Layer (EDINA Digimap 123 

Ordinance Survey Service) and ArcGIS 9.2 was used to create circles 1 km around each study site. 124 

This corresponds to the approximate foraging range of B. terrestris, and is probably greater than the 125 

foraging range of most other bumblebee species (Knight et al. 2005; Osborne et al. 2008).  The 126 

feature classes from the topography layers were reclassified into five categories; (i) urban areas 127 

(buildings and structures), (ii) farmland, (iii) water (inland and tidal), (iv) linear man-made structures 128 

(roads, tracks and paths); and (v) semi natural habitat (rough grassland, scrub and woodland).  The 129 

proportions of land cover for each of the five categories within each 1 km buffer were calculated and 130 

used in subsequent analysis.  131 

Exclusion experiment 132 

The effect of pollinator visits on fruit quality and weight was evaluated at a subset of the farms (10 133 

raspberry-growing farms and 12 strawberry-growing farms).  Pollinators were kept away from 134 

flowers using polythene mesh netting (holes 1.35 mm2, Harrod Horticultural Ltd, Lowestoft, UK).  For 135 

raspberries, 6 plants were used in each of 3 different polytunnels per farm; on each plant a bunch of 136 

approximately 9 unopened flowers were covered with the netting which was secured to the branch 137 

with covered wire.  The bunches were marked with coloured tape along with a control bunch from 138 

the same plant.  Strawberry plants were entirely covered with the exclusion mesh which was 139 

supported by arches of flexible garden wire.  The plants were covered in groups of four (two groups 140 

of four were covered in each of two polytunnels).  Each group was matched with a group of control 141 

plants.  Excluded and control fruits were picked when ripe.  The picked berries were categorised into 142 

class I and class II fruit based on European marketing criteria and weighed (European Commission 143 

2011).   144 

Statistical Analyses 145 



Statistical analyses were conducted using the statistical software R version 2.15.1 using packages 146 

lme4 and MASS (R Development Core Team, 2010). 147 

Pollinator activity 148 

Counts of each pollinator group were summed along transects for each time period.  With 149 

abundance of each pollinator group as the response, GLMM models with Poisson errors were fitted 150 

to the data with farm identity as a random factor.  Data were overdispersed and so observation-level 151 

random effects were included in addition to the farm level random effects (Maindonald & Braun 152 

2010).  Potential explanatory variables were split into three sets; observation variables (those 153 

variables available for each observation including weather variables, date etc.), management 154 

variables and habitat level variables (Table 1).  The analysis therefore took a hierarchical approach, 155 

with observation level variables and farm level variables (habitat and management variables) 156 

(Gelman & Hill 2007).  A full observation level model was fitted to each pollinator group on each 157 

soft-fruit.  This model was reduced by removing non-significant terms (p>0.10) and comparing the 158 

Akaike Information Criterion (AIC) between models until the model with the lowest AIC was 159 

achieved.  The management variables and habitat variables were then fitted separately to the most 160 

informative observational level model and the two-level models were reduced as before. 161 

Complementarity 162 

Seasonal complementarity can be tested for using a variance ratio test (1) (Schluter 1984; Stevens & 163 

Carson 2001; Winfree & Kremen 2009), which is based on the relationship between total variance of 164 

M elements and the covariances between them (2).  In this case the elements (X) are the 165 

abundances of the four pollinator groups through time. 166 

   C =  
 𝑉𝑎𝑟(∑ 〖𝑆𝑖)𝑀

𝑖 〗

∑ 𝑉𝑎𝑟(𝑋𝑖)𝑀
𝑖

                  (1)  167 



𝑉𝑎𝑟(𝑇) = ∑ 𝑉𝑎𝑟(𝑋𝑖)𝑀
𝑖 + 2 ∑ 𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑙)𝑀

𝑖<𝑙       (2)  168 

If the species groups do not tend to covary positively or negatively, the total variance will be equal to 169 

the sum of the variance of each element, and hence the test statistic (C) will be close to 1.  Test 170 

statistics less than 1 imply negative covariance and thus that the pollinator groups have different 171 

peaks throughout the season.  A test statistic (C) across all the farms was calculated from the raw 172 

data.  We generated farm level complementarity figures by simulating pollinator abundances by 173 

group for six time periods throughout the season.  To control for effects of weather we took the 174 

average weather variables for each of six time periods and used these to generate 1000 random 175 

weather scenarios.  These scenarios were used as inputs to the best fitting GLMM model for the 176 

abundance of each pollinator group.  The complementary figures for each simulated set of pollinator 177 

abundances were then calculated.  Sensu Winfree and Kremen (2009) we then compared the 178 

complementarity results for the simulated data using the full model, versus the results from the 179 

same models but with the day and day squared terms eliminated (the null model) using Wilcoxon 180 

signed rank tests.   181 

Exclusion experiment 182 

Models were fitted to the strawberry and raspberry data sets with fruit quality (with binomial errors) 183 

or fruit weight (with Gaussian errors) as response variables and farm identity fitted as a random 184 

factor within a generalised linear mixed model (GLMM).  For the raspberry data the residual 185 

deviance after fitting a GLM was approximately equal to the remaining degrees of freedom; there 186 

was little remaining variation to explain through random effects and so a GLMM was not used 187 

(Crawley 2002).  For all models, treatment (insects excluded vs. not excluded) was included as a 188 

factor and the average number of pollinators in the transects walked in the previous 5 weeks 189 

included as a covariate, following Lye et al. (2011) .  To take into account the differences in ability to 190 

transfer pollen and the speed at which pollinators work, the abundance counts were multiplied by 191 

approximate efficiency factors to provide efficiency-adjusted counts (Isaacs & Kirk 2010); honeybee 192 



numbers were reduced by a factor of 0.5 relative to bumblebees (Willmer, Bataw & Hughes 1994) 193 

and fly numbers were reduced by a factor of 0.2 to approximately reflect the reduced efficiency of 194 

pollination that they provide (Albano et al. 2009; Jauker et al. 2012)    195 

Impact of complementarity on yield 196 

To assess the importance of different pollinator groups to fruit yield across the season, the GLMM 197 

models for wild bumblebees, honeybees and flies were used to simulate pollinator numbers across 198 

the season under average conditions.  The abundances were summed and adjusted for pollinator 199 

efficiency and the total adjusted pollinator numbers at each time point were then used as an input 200 

for the fruit quality GLMM.  On the basis of discussions with farmers, the threshold for profitability 201 

was taken to be an average of 80% first class fruit.  Pollinator groups were then deleted one by one 202 

from the total set, and fruit quality across the season re-evaluated. 203 

Results 204 

Pollinator Activity Transects 205 

From 15 April to 19 August 2011, we observed 2,478 pollinators visiting strawberries in 129 transects 206 

at 21 farms and 4,464 pollinators visiting raspberries in 80 transects at 16 farms.  Transects took on 207 

average 43 minutes to walk.  Pollinators were observed on raspberry transects from mid-May to late 208 

July, and on strawberries from mid-April to mid-August.  On average four (three to five) repeat 209 

raspberry transects were walked on each farm with raspberries, and six (four to six) repeat 210 

strawberry transects were walked on each farm with strawberries.  Strawberry plants were 211 

considerably less attractive to pollinators than raspberry plants, with an average density of 6.4 212 

pollinators per 100 m2 (mean ± s.d. = 3,556 ± 24 flowers), compared to an average of 18.6 pollinators 213 

per 100 m2 (mean ± s.d. = 1,934 ± 23 flowers) on raspberries.  These figures are the equivalent of 214 

0.91 pollinators per 500 flowers for strawberries, and 4.89 per 500 flowers for raspberries.  Of 21 215 

farms growing strawberries, 18 (86%) used commercial bumblebees on this fruit. While the majority 216 



purchased bumblebees for pollination early in the season (late April to June), 3 out of 18 farms 217 

restocked with additional colonies mid-way through the season.  In contrast, nine of the 16 farms 218 

(56%) growing raspberries used commercial bumblebees on raspberries and these farms only bought 219 

bees once at the beginning of the season. 220 

Bombus terrestris/B. lucorum, including commercial bumblebees, provided around half the 221 

pollinator visits for both crops averaged across all farms (57% of visits to raspberries and 46% of 222 

visits to strawberries, see Table S1 in Supporting Information).  We estimated that around 16% of 223 

visits to raspberries and 29% of visits to strawberries were by commercial B. terrestris, with visits by 224 

wild B. terrestris/lucorum comprising 41% of visits to raspberries and 18% of visits to strawberries. 225 

Honeybees contributed approximately a quarter of visits to both crops (Table S1).  Other bumblebee 226 

species together comprised 20% of pollinator visits for raspberries and 10% for strawberries; these 227 

included B. lapidarius (L.), B. pascuorum (Scopoli) and B. pratorum (L.).  Bombus hortorum (L.) was 228 

seen on raspberries but not strawberries.  Hoverflies and other flies made up around 1% of visits to 229 

raspberries and 23% of visits to strawberries.  Other pollinators were too few to analyse. The 230 

pollinator counts were subsequently grouped into wild bumblebees (including our estimate of the 231 

number of B. terrestris/B. lucorum attributable to wild pollinators), commercial bumblebees (the 232 

remainder of B. terrestris/B. lucorum visits), honeybees and flies (including hoverflies). 233 

A total of 17 of the 25 farms had wild flower strips on the farm with 11 leaving field margins 234 

unmowed to assist pollinators.  Neither of these variables predicted the number of wild bumblebees 235 

on either raspberries or strawberries (Tables 2 and 3).  Farmer management of commercial 236 

pollinators did, however, have an effect; estimated bumblebee numbers significantly increased with 237 

the number of colonies used on strawberries.  Where farmers indicated that there were honeybees 238 

within flying distance of the farm, higher numbers of honeybees were seen on both raspberries and 239 

strawberries.  Honeybees were less likely to be found in polytunnels with closed sides than open 240 



sides.  Commercial bumblebees, on the other hand, were more abundant in closed sided tunnels, as 241 

we might expect.      242 

The factors influencing the abundance of pollinators differed between pollinator groups (Tables 2 243 

and 3).  Wild bumblebees, commercial bumblebees and honeybees had similar responses to weather 244 

variables, reducing in number with increasing cloud, wind and rain, and increasing with temperature.  245 

Flies, on the other hand, seemed to respond in the opposite way, increasing in number with 246 

increasing wind, rain and decreasing temperature.  Numbers of flies visiting strawberries increased 247 

with the proportion of urban area within 1 km of the farm.  The probability of presence of 248 

honeybees on a farm declined with an increased proportion of natural habitat within 1 km of the 249 

farm. 250 

Seasonal complementarity 251 

There were marked differences in the seasonal abundance of the different pollinator groups (Fig. 2, 252 

Table S3). As we would expect, commercial bumblebees were estimated to be far more abundant 253 

early in the season (April-May), for this coincides with when most commercial nests are deployed. 254 

Wild bumblebee numbers and numbers of honeybees peak in mid-season, according with their 255 

known biology. Interestingly, numbers of flies were generally low but gradually increased through 256 

the year, with a marked spike in numbers at the end of the season (August) when other pollinators 257 

were scarce. At the final time point flies comprised 77.4% of all insects visiting strawberries.  258 

The variance of the abundance over time for all species at all farms (Var (T)) was 45.3 whereas the 259 

sum of the individual variances (∑ 𝑉𝑎𝑟(𝑋𝑖)) was 80.3, giving a variance ratio of 0.56 (see Table S3).  260 

A test statistic of below 1 supports the hypothesis that pollinator groups peak at different times 261 

across the season.  The same conclusion was reached when the simulated values of total pollinator 262 

abundance for each farm were analysed: comparing the simulated values with and without 263 

individual time components, the simulated values from the full model were 0.77 on average for the 264 



closed-sided tunnels (compared to 0.96 for the null model; W= 232183, p<0.001) and 0.76 on 265 

average for the open sided tunnels (compared to 0.93 for the null model; W = 282753, p<0.001).  266 

The results were consistent whether the abundance figures were adjusted for efficiency or not (see 267 

Table S4).   268 

Exclusion experiment 269 

When pollinators were able to access flowers, a higher proportion of raspberries were first class 270 

(Table S2: mean = 91% first class, s.d. = 0.09), than when pollinators were excluded (Table S2: 28% 271 

first class, s.d. = 0.09) (Fig. 3A, Z = 10.28, p < 0.001). Raspberries were also heavier when pollinators 272 

were allowed to forage (Table S2: mean of 3.39g ± 0.68 v 4.70g ± 1.13) (Fig. 3C, t = 2.11, p=0.051).  273 

There was no relationship between raspberry quality and the number of pollinators recorded (Fig. 3E 274 

(i), Z = -1.21, p>0.05).  275 

Excluding pollinators from strawberries caused a decline in fruit quality by approximately 50% (0.4 vs 276 

0.8 fruits reaching 1st class) (Fig. 3B, Z = 10.43, p < 0.001).  There was no significant difference in the 277 

weight of the strawberries grown with or without pollinators (Table S2: mean = 11.2g ± 1.70 v 10.2g 278 

± 1.57) (Fig. 3D, Z = -0.29, p>0.05).  Total efficiency adjusted pollinator number was a significant 279 

predictor of the proportion of first class fruit when pollinators were allowed to forage (Fig. 3F, Z  = 280 

2.55, p = 0.011), suggesting that pollination was limiting strawberry yield at some sites.    281 

Impact of complementarity on strawberry yields 282 

In both closed-sided and open-sided tunnels there were insufficient pollinators for a high proportion 283 

of first class fruit early in the season, which coincides with commercial bumblebee use (Fig. 4).  The 284 

proportion of first class fruit in the mid-season is predicted to be low in closed sided tunnels if wild 285 

bumblebees are not present as honeybees (the other pollinator group present in abundance in mid-286 

summer) are not abundant in this type of tunnel.   287 



In open-sided tunnels, both honeybees and wild bumblebees pollinate during the middle of the 288 

season.  Correspondingly the proportion of first class fruit does not drop as severely if wild 289 

pollinators are not present.   290 

Flies were predicted to be important for pollination at the end of the season for both tunnel types, 291 

and predicted aggregate yield fell on the removal of this pollinator group.  In neither tunnel type are 292 

pollination visits sufficient for 80% pollination across the whole season, but with all pollinator groups 293 

present this target was more likely to be hit.  Simulations were not run for raspberries as the quality 294 

and weight of raspberries was consistently high at all farms sampled, suggesting that pollination 295 

services are not limiting raspberry production. 296 

Discussion 297 

The pollination of strawberries throughout the year is facilitated by seasonal complementarity 298 

among both wild and commercial pollinators.  Honeybees and wild bumblebees can provide 299 

pollination through the peak of the season, June and July, after which flies provide the bulk of insect 300 

visits and are likely to be the main pollinators.  Seasonal changes in pollinator abundance have been 301 

described before (e.g. Pisanty et al. 2014), but to our knowledge this is the first evidence for 302 

seasonal complementarity impacting positively upon yield.  Our data support the suggestion that 303 

species diversity can improve ecosystem services by increasing the functional range of the service 304 

provided.   305 

Wild bee numbers were sufficient to provide adequate pollination for raspberries.  Raspberries are 306 

much more attractive to pollinators than strawberries and they have a shorter flowering season, 307 

which coincides with the peak of wild bee activity.  Despite this, commercially-reared bumblebees 308 

were used on half of the sites which grew raspberries.  While commercially-reared bumblebees may 309 

not be necessary every year, there can be high variation in pollinator services between years; Lye et 310 

al. (2011) found that raspberry pollination was limited by lack of wild pollinators in an experiment in 311 



the same area in 2009.  The relative abundance of different species can change dramatically 312 

between years as observed on watermelon and oil-seed rape (Kremen, Williams & Thorp 2002).  313 

Smoothing out interannual variability in pollination services might be a justification for using 314 

domesticated bumblebees for raspberry pollination on the farms studied.     315 

There were differences in the responses of the pollinator groups to weather experienced during the 316 

study.  Information on response diversity could be critical to managing pollination services over 317 

time; if a species of pollinator were to decline in abundance or reduce activity due to poor weather 318 

conditions, pollination may fall below the threshold required for a profitable harvest.  In our system, 319 

this is particularly important for strawberries; even during May and June, the threshold for a 320 

profitable strawberry harvest was only just met by wild pollinators on the average farm.  If different 321 

pollinator groups respond differently to weather conditions, the risk of pollination falling too low 322 

could be reduced by ensuring the presence of a diversity of species (Elmqvist et al. 2003).  However, 323 

the bees in our study responded in the same way to weather variables; both bumblebee and 324 

honeybee activity was reduced with higher wind, rain and cloud cover.  Conversely, flies seemed to 325 

respond in the opposite way to both Bombus and Apis bees, and were more likely to be seen on 326 

transects in wet weather and higher winds.  This may be because flies seek shelter within the tunnels 327 

in poor weather, since unlike the social bees they have no nest to retreat to.     328 

Different pollinator groups also responded differently to habitat surrounding the farms. Similar to 329 

Steffan-Dewenter and Tscharntke (1999), we found that honeybees were less likely to be observed 330 

on a transect with increasing natural habitat in the 1 km surrounding the farm, perhaps because 331 

natural habitat provides floral resources that are more attractive to honeybees.  No habitat variable 332 

tested influenced the numbers of bumblebees in our study. In contrast, fly abundance was positively 333 

related to the proportion of urban areas in the surrounding environment.  Some fly species are 334 

strongly associated with human activity, breeding in organic waste in refuse and compost heaps 335 

which may explain this relationship (Goulson et al. 2005).  Gardens within urban areas may also 336 



provide floral resources that support pollinators (Goulson et al. 2010), though it was notable that 337 

only flies showed a relationship with urban areas in this study.    338 

While farmers could increase the number of commercial pollinators, the wild pollinator 339 

management prescriptions (wild flower strips and unmowed field margins) did not increase the 340 

visitation rate of any of the pollinator groups.  Increasing floral resources has been seen to boost 341 

queen numbers in some bumblebees (Lye et al. 2009), and is well known to attract large numbers of 342 

worker bumblebees (Kells, Holland & Goulson 2001; Carvell et al. 2007), but the link to increased 343 

pollination of nearby crops is less clear (Klein et al. 2012). Feltham et al. (2015) found that adjacent 344 

wildflower strips boosted visitation of bumblebees to strawberry crops by about 25%, but they did 345 

not quantify yield.  Many of our farms that had wild flower strips were part of supermarket schemes 346 

to boost pollinators, but the area of flowers was generally very small (~0.2 ha) and unlike the 347 

situation in Feltham et al. (2015) the flower patches were often far away from the crop, with farmers 348 

also reporting poor germination of some seed mixes. While such actions, if successful, may 349 

contribute to the abundance of pollinators on the farm (Haaland & Bersier 2011), they are unlikely 350 

to significantly boost the number of bees on a crop unless they encompass a sizeable area, establish 351 

to provide a flower-rich sward, and are near to the crop plant requiring pollination.   352 

Our data suggest that flies may be important pollinators of strawberries in late season since they 353 

comprise the large majority of visitors to flowers, although it would be valuable to quantify how 354 

effective they are at transferring pollen. Methods to increase fly populations or those of other non-355 

bee pollinators have rarely been studied (although see Hickman & Wratten 1996), though they have 356 

been reared for glasshouse pollination (Ssymank et al. 2008).  Provision of breeding habitat for flies 357 

(which might include dung heaps for many flies or butts of stagnant water for hoverflies such as 358 

Eristalis sp.) would require little space and minimal maintenance.    359 

Our data suggest that pollination of strawberries is delivered by a suit of wild and managed insects, 360 

and that this diversity helps to ensure that there are sufficient insect visitors through the long 361 



flowering season and during periods of adverse weather.  We argue that more attention should be 362 

paid to evaluating the contribution of less-studied pollinators such as flies, which may play a 363 

complementary role in ensuring reliable pollination for crops in an uncertain future.  364 
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Table 1. List of variables used in GLMMs to explain pollinator visitation to strawberries and 474 

raspberries   475 

 476 

 477 

 478 

 479 

 480 

 481 

 482 

 483 

 484 

 485 

 486 

 487 

 488 

 489 

 490 

 491 

 492 

 493 

Observation level Farm Level  Farm Level 

  Management variables Habitat variables 

Day (from 15 April = 1) Honeybees within 1 km of farm (Yes or No) % Woodland and scrub within 1 km 

Day squared Number of bumblebee colonies used on crop per year % Urban area within 1 km 

Time of day Wild flower strips planted (Yes or No) % Roads within 1 km 

Polytunnel type Field margins left unmowed (Yes or No)  
Wind speed (0, 1, 2)   
Cloud cover (%)   
Humidity (%)   
Temperature (⁰C)   



Table 2.  Coefficients and standard errors for variables in the most informative observational model (lowest AIC) explaining number of visits by pollinator 

groups to strawberry flowers  

 

 

 

 

 

 

 

 

† Number of colonies bought. ‡ Honeybees known to be deployed nearby (yes or no). ¶ Proportion of urban area within 1 km. § Proportion of natural 

habitat within 1 km. 

 

Strawberries Observation level variables in best fit model             

Pollinator group Day Day squared Polytunnel Flowers Cloud cover (%) Wind (0,1,2) Rain (0,1,2) Temp (⁰C) Humidity (%) 

Wild bumblebees 0.42±0.17* -1.31 ± 0.15*** -0.20 ± 0.21 0.27 ± 0.11** -0.22 ± 0.10* -0.42 ± 0.13** -0.84 ± 0.35* 0.20 ± 0.12 ns 

Commercial bumblebees -0.98±0.15*** ns 0.11 ± 0.23 ns ns -0.28 ± 0.13* -1.34 ± 0.41** 0.46 ± 0.12*** 0.22 ± 0.12 

Flies and hoverflies 1.69±0.17*** ns 0.39 ± 0.30 ns ns 0.61 ± 0.17*** 0.41 ± 0.26 -0.34 ± 0.14* -0.40 ± 0.14** 

Honeybees (presence)  ns -1.34 ± 0.36*** 1.28 ± 0.61* ns -0.69 ± 0.28* ns ns ns ns 

Honeybees (when 
present) 0.61±0.18*** ns 1.10 ± 0.47* ns -0.41 ± 0.14** ns ns ns ns 

Strawberries Farm level variables in best fit model 

Pollinator group Management Habitat 

Wild bumblebees ns ns 

Commercial bumblebees 0.0018 ± 0.000826*† ns 

Flies and hoverflies ns 0.60 ± 0.21**¶ 

Honeybees (presence) ns  -0.16 ± 0.06**§ 

Honeybees (when present) 1.20 ± 0.56*‡ ns 
 
   



 

Table 3. Coefficients and standard errors for variables in the most informative observational model (lowest AIC) explaining number of visits by pollinator 

groups to raspberry flowers. 

 

   

 

 

. 

 

 

† Honeybees known to be deployed nearby (yes or no), § Proportion of natural habitat within 1 

km. 

 

Raspberries Observation level variables in best fit model             

Pollinator group Day Day squared Polytunnel Flowers Cloud cover (%) Wind (0,1,2) Rain (0,1,2) Temp  (⁰C) Humidity (%) 

Wild bumblebees 1.48 ± 0.22***  -1.88 ± 0.32*** -0.02 ± 0.20 0.75 ± 0.11***  -0.36 ± 0.11*** ns ns ns ns 

Commercial bumblebees ns ns -4.52 ± 1.26*** 1.29 ± 0.59* ns ns ns ns ns 

Honeybees (presence) ns ns 1.54 ± 0.71* 0.69 ± 0.44 ns ns ns ns ns 

Honeybees (when present) 1.55 ± 0.54*** ns 0.19  ± 0.42 1.06 ± 0.26*** -0.52 ± 0.26*   1.15 ± 0.30*** ns 0.76 ± 0.26** ns 

Raspberries 
Farm level variables in best fit 
model 

Pollinator group Management Habitat 

Wild bumblebees ns ns 

Commercial bumblebees ns ns 

Honeybees (presence) ns  -0.19 ± 0.08*§ 

Honeybees (when present) 1.18 ± 0.58*†  ns 
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Fig. 1.  Location of study sites within East and South-East Scotland. 1 

 2 

Fig. 2. Mean numbers of insects per strawberry transect (numbers stacked to show overall visitation, 3 

top line), for simplicity averaged across all farm types.  C = Commercial, W = Wild. 4 

 5 

Fig. 3. Effect of pollinator exposure and numbers of pollinators (adjusted for efficiency) on fruit 6 

quality and weight.  Proportion of class I fruit was higher when insects could visit flowers of (A) 7 

raspberries and (B) strawberries, weight of fruit was marginally significantly higher when insects 8 

could visit (C) raspberries, but insects did not increase weight of (D) strawberries.  Fruit quality 9 

increased with the number of pollinators adjusted for efficiency in (F) strawberries but not (E) 10 

raspberries where no relationship was observed. 11 

 12 

Fig. 4.  Simulated proportions of class I strawberries across the flowering season with pollinator 13 

groups excluded (Exc.).  (A) closed-sided tunnels (i) Honeybees kept in the vicinity and (ii) honeybees 14 

are not kept within the vicinity.  (B) Open-sided tunnels (i) honeybees kept in the vicinity (ii) 15 

honeybees not kept in the vicinity.  All = all pollinators included.   16 
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Fig. 1.   37 
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Fig. 2.  42 
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Fig. 3.  67 
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(i) (ii) 

(iii) (iv) 

Raspberries                                Strawberries 

(b) 

(A) 

(D) (C) 

(E) (F) 

(B) 
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Fig. 4.  72 
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