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Abstract 28 

The impacts of pesticides, and in particular of neonicotinoids, on bee health remain much 29 

debated. Many studies describing negative effects have been criticised as the experimental 30 

protocol did not perfectly simulate real-life field scenarios. Here, we placed free-flying 31 

bumblebee colonies next to raspberry crops that were either untreated or treated with the 32 

neonicotinoid thiacloprid as part of normal farming practice. Colonies were exposed to the 33 

raspberry crops for a two week period before being relocated to either a flower-rich or 34 

flower-poor site.  Overall, exposed colonies were more likely to die prematurely, and those 35 

that survived reached a lower final weight and produced 46% fewer reproductives than 36 

colonies placed at control farms.  The impact was more marked at the flower-rich site (all 37 

colonies performed poorly at the flower poor site).  Analysis of nectar and pollen stores from 38 

bumblebee colonies placed at the same raspberry farms revealed thiacloprid residues of up to 39 

771ppb in pollen and up to 561ppb in nectar. The image of thiacloprid as a relatively benign 40 

neonicotinoid should now be questioned.    41 



Introduction 42 

Concerns have been growing about declines in bumblebee diversity and range in both Europe 43 

and North America, and the potential consequences for natural ecosystems and for food 44 

security1,2.  While the causes of declines are likely to be multifactorial, recent studies 45 

describing the negative impacts of a group of systemic pesticides, the neonicotinoids, on 46 

foraging in honeybees and bumblebees, and on fecundity and colony success in bumblebees, 47 

have garnered widespread interest (e.g.3-9). These studies informed the European Union 48 

decision in 2013 to suspend use of the three most widely used neonicotinoids (imidacloprid, 49 

thiamethoxam and clothianidin) on flowering crops attractive to bees for 2 years, a 50 

suspension which has since been extended.    51 

The studies that led to these restrictions have attracted criticism in some quarters 52 

because they were partly conducted in a laboratory setting, because bees were forced to 53 

consume treated food, and/or because bees were exposed to unrealistic concentrations of 54 

neonicotinoids10.  Here, we describe a field study of the impacts of a neonicotinoid on 55 

bumblebee colonies in which bees were free-flying throughout, so that they were free to 56 

choose where to forage, and in which the pesticide applications followed normal farming 57 

practice. After exposure to the treated or untreated crop for two weeks, colonies were moved 58 

to either a flower-poor or flower-rich site, to examine how proximity to good forage mediated 59 

any impacts of pesticide exposure. The experiment is intended to be realistic of the scenario 60 

in which a wild bumblebee nest is situated near to a treated crop.   61 

We focus here on the impacts of a less-studied neonicotinoid, thiacloprid, which has 62 

considerably lower toxicity to honeybees than the neonicotinoids that are the subject of the 63 

EU moratorium11.  It is often described as “bee-safe” and hence suitable for use on flowering 64 

crops, in horticulture, and for garden use12. However, it has been found to cause elevated 65 



mortality in honeybees, especially when combined with other stressors such as pathogens13-14, 66 

and also to impair navigation15-16. There have been no previous attempts to evaluate the 67 

impact of this chemical on whole colonies of bees under field-realistic exposure.  68 

  69 

Methods 70 

Colony placement and monitoring 71 

Fifty-four commercially reared colonies of Bombus terrestris audax (Biobest N.V., Belgium) 72 

were obtained on 15 June 2012 and randomly assigned to treatments in a full factorial design 73 

(controls or exposed to the neonicotinoid thiacloprid, flower-poor or flower-rich habitats). 74 

There was no difference in weight between the colonies at the beginning of the experiment 75 

(T-test, t(33)=1.16, p=0.255). Colonies were initially kept in the grounds of the University of 76 

Stirling campus in an area comprising woodland, amenity grasslands, improved pasture, and 77 

ornamental gardens (for 0-21 days, see below).  78 

A network of nine raspberry farmers in Perthshire and Angus (central Scotland) took part in 79 

the study. All raspberries were grown in polythene tunnels (polytunnels), all of which were open-80 

ended, some were open-sided while others had closed sides.  Pollination of raspberries in this region 81 

is delivered by a mixture of wild bumblebees of a range of species, honeybees and flies, supplemented 82 

on some farms with commercial colonies of Bombus terrestris (Lye et al. 2011; Ellis et al. in press).   83 

Farmers informed us when they were about to spray a flowering raspberry crop with 84 

thiacloprid. No other insecticides were used on the farms in the year of our study. At each 85 

farm using thiacloprid, six colonies were placed at the ends of the rows of raspberries, within 86 

1m of the flowering crop, as soon as possible after spraying (between 0 and 4 days, table S1).  87 

On the same day another six colonies were placed within 1 m of flowering raspberries on a 88 



control farm that was not spraying within the next two weeks and had not previously applied 89 

an insecticide in 2012.  Control farms were matched by size of soft fruit operation and where 90 

possible, geographical area (table S1).  However, it is important to note that treatments were 91 

not randomized; we could not randomly allocate farms to treatments and dictate whether and 92 

when thiacloprid would be sprayed. Between 15th June and 5th July, five batches each of six 93 

colonies were deployed on five treated farms (30 colonies in total), and four batches of six 94 

colonies simultaneously placed adjacent to unsprayed raspberries on four control farms (24 95 

colonies in total).  The numbers of control and treatment are uneven as equal numbers of 96 

suitable control farms could not always be found to match the same time periods as treated 97 

farms, within the required geographical area, and of a similar farm size and management 98 

style.  All farmers applied thiacloprid at the recommended manufacturer spray rate (up to 99 

250mL/ha of Calypso 480 g/l thiacloprid).  Bees in colonies were allowed to forage at the 100 

farms for two weeks.  After the two week exposure period, colonies were removed from 101 

farms and randomly assigned to either the University campus or a site on flowering heather 102 

moorland approximately 5 km from the University. Colonies from different farms were 103 

placed at least 30m apart to minimise drifting between the colonies17.  The University campus 104 

is probably reasonably typical of lowland UK, having relatively few floral resources in July 105 

and August, while the moorland site provided extensive dense patches of flowering Calluna 106 

vulgaris and Erica spp..   107 

Colonies were all weighed at the beginning of the experiment, and weekly throughout 108 

the experiment, apart from during the exposure period at the farms when they were not 109 

disturbed for two weeks. Weighing was conducted at night to ease handling, minimise 110 

disturbance and to ensure that most bees were present in the colony. The colonies were also 111 

checked for signs of poor health; 19 colonies died before the end of the experiment and hence 112 



were not available for analysis of nest performance. Thirteen of these deaths were due to 113 

heavy infestation with wax moths (Aphomia sociella).  114 

Dissections 115 

At termination of the experiment, the surviving colonies were dissected and the following 116 

recorded: numbers of adult bees of each caste; numbers of pupae identifiable as future 117 

queens, males or workers; other pupae; empty pupal cells; numbers of dead bees.  Bees that 118 

were dead before freezing are readily distinguished as they have matted fur, are often partly 119 

decayed, and are invariably located away from the comb around the periphery of the nest 120 

box, whereas live bees cluster together in the centre of the nest as the temperature drops.  121 

Reproductive output was calculated as the sum of queens and queen pupae plus 0.5 times the 122 

number of males and male pupae (since males are haploid).  123 

Quantifying exposure to thiacloprid 124 

We did not have funds or facilities for testing pesticide residues in 2012, and thus we did not 125 

collect samples. In 2013 we acquired access to suitable analytical facilities, and so we placed 126 

bumblebee nests on six of the nine farms used for the 2012 experiment, selecting only farms 127 

that were intending to spray thiacloprid. As before, nests were placed at the ends of the rows 128 

of raspberries, within 1m of the flowering crop, on 7 May 2013. Spraying with thiacloprid 129 

followed normal farming practice and commenced in mid June (approximately 6 weeks after 130 

the nests were placed in the field). When sufficient food stores were present in the nest, 131 

>100mg samples of nectar and pollen were collected 4, 8 and 10 weeks after nests were 132 

placed in the field. These were analysed for thiacloprid using methods slightly modified from 133 

Botias et al.18 (see Supplementary Appendix 2). It should be noted that in our 2012 134 

experiment colonies were placed on farms immediately after spraying, whereas in 2013 135 



colonies were in place before spraying (a more field-realistic scenario). We might thus expect 136 

residues to be higher in 2013 than those that were experienced by experimental nests in 2012. 137 

Statistical analysis 138 

All statistics analyses were conducted in IBM SPSS 21.  To assess the impact of treatment on 139 

measures of colony success, generalised linear mixed models (GLMMs) were fitted to the 140 

data with farm as a random factor. Explanatory factors within the model were final colony 141 

weight, treatment, location during the post-exposure period (“flower-rich” versus “flower-142 

poor”) and the interaction between these. Response variables were number of workers 143 

remaining in the colony, number of males produced (adults plus pupae), number of queens 144 

produced (adults plus pupae), and reproductive success (as described above). The model for 145 

colony weight was fitted using normal errors, while the remainder of analyses used gamma 146 

errors and a log link, with error structure chosen to minimise Akaike values. We also 147 

conducted a more conservative GLM analysis, identical to that described above but instead of 148 

treating nests as replicated and including farm as a random factor, we used the average value 149 

for each response variable across all nests placed at a particular farm / subsequent location 150 

(flower rich/ flower poor) combination.  151 

Differences in colony failure rates between exposed and control colonies were 152 

examined using a χ2 test of association. 153 

Results  154 

We found a number of significant interactions between the effects of pesticide exposure and 155 

the subsequent location of colonies (flower-rich or flower-poor sites) on colony performance. 156 

Broadly, colonies that were not exposed to thiacloprid and were then placed at the flower-rich 157 

site performed better than those in any other treatment combination (Figure 1, Table 1). 158 



Colonies placed at the flower-poor site performed poorly regardless of pesticide treatment. 159 

For example, there was a significant treatment x site interaction on final colony weight; at the 160 

flower rich site the control colonies were 10% heavier than the exposed colonies (mean ± se 161 

of 780g ± 27.0 versus 709g ± 14.7), whereas at the flower poor site colony weights were low 162 

in both exposed and control colonies (overall mean of 701 g ± 16.6; Figure 1a). Similarly, 163 

there was a significant treatment x site interaction for the reproductive output of the colonies 164 

(measured as the number of new adult queens and queen pupae plus half the number of males 165 

and male pupae; Table 1, Figure 1b). Overall, reproductive output was 46% lower in treated 166 

colonies compared to controls (mean ± s.e. 23.9 ± 4.6 versus 13.0 ± 3.3, respectively), but the 167 

difference was more marked at the flower-rich site (Figure 1b). When analysed separately, 168 

the same pattern was observed for male production (Figure 1c), but not for queens; queen 169 

production was very low in all treatments (overall mean ± s.e.; new queens = 1.66 ± 0.47, 170 

queen pupae = 3.48 ± 0.59, Figure 1d). There were no treatment or site effects on the 171 

numbers of workers remaining in the colonies at the end of the experiment (Table 1). When 172 

response variables were subjected to a more conservative analysis in which farm (rather than 173 

nest) was treated as the unit of replication, patterns were broadly similar; there was a 174 

significant negative effect of treatment on reproductive output of colonies, and a strong 175 

interaction between treatment and subsequent nest location (flower rich or poor) (Table S2). 176 

However, using this approach the negative effect of treatment on colony growth was not 177 

significant (Table S2).      178 

Marginally more of the colonies exposed to thiacloprid failed (14/30) before the end 179 

of the experiment compared to controls (5/24) (χ2
1 = 3.89, p<0.05). 180 

 Of the nine nests placed out in 2013, we were able to obtain sufficient samples of 181 

food stores for chemical analysis of one pollen and six nectar samples at four weeks, three 182 

nectar and five pollen samples at eight weeks, and five pollen samples at 10 weeks. No 183 



thiacloprid was detected in nectar and very little in pollen at 4 weeks (4/6/13), which is as we 184 

would expect because this is before thiacloprid spraying commences. At eight and ten weeks 185 

(approximately 2 and 4 weeks after spraying with thiacloprid) residues of thiacloprid were 186 

detected in most pollen and nectar samples (up to 771 ppb in pollen and up to 561 ppb in 187 

nectar, Table 2).  188 

Discussion 189 

We found that bumblebee colonies exposed to thiacloprid are more likely to fail, and that 190 

those which survive reach a lower final weight and produced fewer reproductives than 191 

control colonies. These difference were more marked when colonies were placed in a flower-192 

rich site in which control colonies thrived. Few previous experiments have studied the 193 

impacts of neonicotinoids on bee colony performance where the bees were exposed to 194 

pesticides while foraging on real crop-fields (rather than experimental plots), were free-flying 195 

throughout the experiment, and the pesticide application followed normal farming practice at 196 

working farms. Cutler and Scott-Dupree20 conducted a similar experiment with colonies of 197 

the bumblebee B. impatiens placed next to clothianidin or thiamethoxam-treated or untreated 198 

corn and found few negative effects, although there were fewer workers in exposed colonies. 199 

However, bumblebees rarely forage on corn so none of the nests are likely to have received 200 

significant exposure. Rundlöf et al.9 found that growth of bumblebee colonies and their 201 

reproductive output was significantly impaired when placed next to fields of oilseed rape 202 

treated with clothianidin; similar findings to ours. They also found strong negative impacts on 203 

solitary bees, but no significant impact on honeybee colonies. No similar experiment has 204 

previously been performed with thiacloprid. Like oilseed rape, bumblebees are highly 205 

attracted to raspberry flowers21. Our study replicates the common scenario of exposure when 206 

a wild bumblebee colony is situated close to a commercial raspberry crop, or when 207 

commercial colonies are placed next to such crops. The colonies were moved two weeks after 208 



first exposure; normally, for wild and managed bumblebees residing in the farm landscape, 209 

colonies would be exposed to the treated crop for longer than two weeks, and might be 210 

subject to further pesticide applications. They would also be present when the crops were 211 

actually sprayed, rather than being placed next to crops after spraying. As our sites were 212 

working farms, we could not always anticipate when a farm would use thiacloprid and so 213 

colonies were first exposed between 0 and 4 days after the spray day (table S1), which again 214 

would reduce the expected exposure relative to naturally occurring colonies. In these respects 215 

our study likely underestimates exposure of bumblebee colonies to thiacloprid on working 216 

farms. However, it should also be noted that we were unable to randomly allocate farms to 217 

treatments. It is thus possible that farms using thiacloprid may have differed in other farming 218 

practices from control farms (although we attempted to match control farms as closely as 219 

possible), and if so this could conceivably confound results. In addition, wild bumblebee 220 

nests are unlikely to be as close to the crop as ours were, and in this respect our study might 221 

represent a worst-case scenario.  222 

It is notable that all colonies produced few queens. A similar study using the same 223 

“flower-poor” site in 2011 recorded a mean of ~14 queens per control colony6, but the 224 

weather in the summer of 2012 was the wettest in the UK for 100 years (Met Office, 2012), 225 

which may account for this difference. Our colonies were also subject to the dual disturbance 226 

of movement to and from the raspberry farms, which might have impaired their performance 227 

compared to those in Whitehorn et al.6.   228 

  We did not investigate the mechanisms by which thiacloprid reduced colony 229 

performance in our study, but previous studies on other neonicotinoids may shed light on this. 230 

Exposure to thiamethoxam was found to impair navigation in honeybees4 and reduce pollen 231 

collection in bumblebees22 while exposure to imidacloprid has been found to reduce pollen 232 

collection3,23,24 and reduce egg laying in bumblebees5.  Honeybees fed thiacloprid at sublethal 233 



doses were found to fly more slowly15, and foraging behaviour, navigation performance and 234 

social communication were all impaired16.  A study monitoring foraging honeybees exposed 235 

to thiacloprid in polythene tunnels found a drop in foraging activity after thiacloprid was 236 

sprayed, but this did not lead to hive level effects25. It has, however, been noted that the 237 

power to detect differences in this study was low due to a small number of replicates26. In 238 

addition, honeybee hives may be expected to be more resilient to short-term perturbations 239 

than bumblebee colonies, as honeybees colonies typically hold over 30,000 workers, 240 

compared to perhaps 50 to 200 in bumblebee colonies.   241 

We found marked differences in colony performance between the ‘flower-poor’ and 242 

‘flower-rich’ sites. These differences may have been due to any number of differences 243 

between sites (e.g. microclimate, local pathogen community), and we could only be sure that 244 

they were due to floral availability if we had many replicates of each habitat type. However, 245 

the direct effect of differences in food availability between sites would seem to be the most 246 

likely explanation. Despite very poor weather, control colonies at the ‘flower-rich’ site were 247 

presumably able to gather sufficient food and hence performed relatively well, while the 248 

treated colonies performed poorly perhaps because they were unable to efficiently harvest 249 

these resources.  All colonies performed poorly in our flower-poor area, presumably because 250 

there was simply not enough food.       251 

Our study builds on evidence of the impacts of neonicotinoids on bumblebees gained 252 

in laboratory and semi-field settings.  By monitoring bees which were free to forage either on 253 

the crop or elsewhere, we can better infer the impacts of neonicotinoids on colonies in natural 254 

settings.  It would have been valuable to quantify the exposure of nests in each treatment, for 255 

example by sampling and analysing food stores from the nests, but at the time the experiment 256 

was performed we did not have funding or facilities for such analysis, which is expensive. 257 

We cannot be sure that control colonies were not also exposed to additional neonicotinoids by 258 



foragers travelling to nearby farms; although the average foraging distance of bees is modest 259 

in rewarding landscapes (~750m; 27), foragers can travel considerable distances28-30.  Soft-260 

fruit farms can be considered “rewarding” landscapes particularly as raspberries are 261 

extremely attractive to bees, with high densities of wild bumblebees recorded on raspberries 262 

plants within the study region21.  Therefore it is unlikely that bees would have had to travel 263 

far for forage.  However, recent reviews have confirmed that neonicotinoids and other 264 

pesticides, particularly fungicides, are prevalent throughout farmed landscapes, so we cannot 265 

rule out the possibility that our bees were exposed to additional pesticides18,31,32. However, 266 

this would presumably have affected both treatment groups equally. Regardless of any such 267 

additional exposure, our experimental scenario accurately mimics the situation in which a 268 

bumblebee nest is situated close to a raspberry crop. The only difference between pesticide 269 

treatments groups was in whether the crop was sprayed with thiacloprid or not, and hence the 270 

marked difference in colony performance between treatment groups strongly indicates that 271 

applications of thiacloprid can have a negative impact on bumblebee colony performance 272 

under realistic field conditions. 273 

By placing nests on nine farms using thiacloprid in 2013 and analysing their food 274 

stores we were able to confirm that bees in this environment are indeed exposed to pesticide 275 

residues; concentrations were variable, but sometimes were very high (up to 771 ppb in 276 

pollen). This is in the region of two orders of magnitude higher than concentrations of 277 

neonicotinoids in nectar and pollen of seed-treated crops18.  Thiacloprid has considerably 278 

lower toxicity to honeybees than some other neonicotinoids; for example the LD50 by topical 279 

application is 14,600 ng/bee for thiacloprid compared to 18 ng/bee for imidacloprid11.  As a 280 

result it has been described as “bee-safe” and hence suitable for use on flowering crops; it is 281 

widely used in horticulture and is also the predominant insecticide sold for garden use in 282 

Europe12.  It is not covered by the EU moratorium, so some countries are moving towards 283 



increasing the use of thiacloprid in response to the restrictions on other neonicotinoids. 284 

However spray application rates are much higher than those used in seed dressings and are 285 

less uniform33, and our results demonstrate clearly that bee nests near a treated crop can be 286 

exposed to high concentrations of thiacloprid.  High concentrations of thiacloprid have also 287 

been found in pollen in honeybee hives in Germany (up to 199 ppb)34, and a mean 288 

concentration of 89.1 ppb of thiacloprid was found in apple pollen within honeybee hives in 289 

Poland35.  Enhanced worker mortality has been found in laboratory studies when bumblebees 290 

were fed thiacloprid at the much lower concentration of 12 ppb36, suggesting that foliar 291 

sprays of this chemical should be treated with the same caution as other neonicotinoids.  292 

There is also evidence that thiacloprid is particularly potent when combined with 293 

other stressors such as fungicides, parasites and nutrient stress11,37,38.  A laboratory study that 294 

exposed honeybees to thiacloprid and the commonly-used plant fungicide triflumizole found 295 

that this compound increased the potency of thiacloprid by 1,141 fold, decreasing the LD50 to 296 

12.8 ng/bee11. Honeybees exposed to doses of thiacloprid of 1/100th of the LD50 died more 297 

quickly when infected with the protozoan parasite Nosema ceranae than those with the 298 

parasite alone38.  Honeybees fed thiacloprid when starved were more likely to die relative to 299 

controls, suggesting that nutrient deficiency could enhance lethal effects37. An environment 300 

with fungicides, parasites and occasional nutrient stress are likely to be the norm for free-301 

flying bees; 97.3% of samples from wax, pollen, and bee bread from North American 302 

honeybees contained two or more pesticides39, so the effective LD50 for thiacloprid in the 303 

field may be lower than expected.   304 

 The current study is the first study to find effects of thiacloprid on freely foraging bee 305 

colonies.  It shows that types of neonicotinoids regarded as “bee safe” because of their 306 

relatively low toxicity are legally used at concentration that can harm bumblebee colonies. 307 



The long-term impact of such use on wild bee populations and the pollination services they 308 

provide in fruit-growing areas should be given due consideration.   309 
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Table 1. Results of GLMMs to test whether response variables were influenced by pesticide 

treatment or subsequent location. Full outputs including parameter estimates are in 

Supplementary Appendix 1.  

  439 
Response variable Treatment Locationa Treatment x 

Locationb 

Errors 

Colony weight (final) 
F1,30 = 1.23,  

ns 
F1,30 = 10.6,  

p = 0.003 

F1,30 = 6.62,  

p = 0.015 
Normal 

Number of workers 
F1,31 = 0.0,  

ns 
F1,31 = 1.13,  

ns 
F1,31 = 0.67,  

ns 

Gamma 

with log 

link 

Reproductive output (inc 

pupae) 

F1,31 = 0.94,  

Ns 
F1,31 = 5.37,  

p = 0.027 
F1,31 = 5.61,  

p =  0.024 

Gamma 

with log 

link 

Number of males (inc 

pupae) 

F1,31 = 3.36,  

ns  
F1,31 = 2.16, 

ns 
F1,31 = 4.28,  

p = 0.047 

Gamma 

with log 

link 

Number of queens (inc 

pupae) 

F1,18 = 0.44 

ns 
F1,18 = 4.35, 

ns 
F1,18 = 0.06, 

ns 

Gamma 

with log 

link 

ns = not significant.  

 



 

Table 2. Thiacloprid residues detected in food stores collected by bumblebee nests placed on 440 

raspberry farms in 2013. Values are in parts per billion. <MDL = less than the detection limit; 441 

<MQL = less than the quantification limit.  442 

 - = no sample could be collected 443 

 444 

Nest number Matrix Week 4 Week 8 Week 10 

1 Pollen - 0.34 <MDL 

1 Nectar <MDL - - 

2 Pollen - - 0.33 

2 Nectar - - - 

3 Pollen - - 771 

3 Nectar <MDL 12 - 

4 Pollen - 656 320 

4 Nectar <MDL - - 

5 Pollen 0.56 135 70 

5 Nectar <MDL 561 - 

6 Pollen - - - 

6 Nectar - - - 

7 Pollen - 0.96 - 

7 Nectar <MDL - - 

8 Pollen - <MDL - 

8 Nectar <MDL - - 

9 Pollen - - - 

9 Nectar - <MDL - 

  445 



Figure Legends 446 

Figure 1. Effects of exposure to thiacloprid on measures of bumblebee colony performance 447 

(median and interquartile range). After exposure for two weeks to treated or control crops, 448 

nests were split equally between flower-rich or flower-poor habitats. a) Final weight of 449 

colonies; b) Reproductive output, measured as the number of queens plus half the number of 450 

males; c) The number of workers remaining in colonies at the end of the experiment; d) The 451 

proportion of dead bees within nests at the end of the experiment.   452 



453 



SUPPLEMENTARY MATERIALS 454 
Table S1: Location of farm sites, flower-rich and flower-poor sites, and site details 455 

Latitude Longitude 

Area soft-

fruit (ha) 

Treatment Spray Date Placement 

Date 

Map code 

(Fig S1) 

56.615509 

-

3.2462661 80 Thiacloprid 11th June 15th June A.1 

56.5914 

-

3.3329856 85 Thiacloprid 11th June 15th June A.2 

56.601626 -3.289783 85 Thiacloprid 13th June 15th June A.3 

56.564543 

-

3.4141517 40 

 

Control 

 

15th June A.4 

56.608748 

-

3.1902087 80 

 

Control 

 

15th June A.5 

56.739685 

-

2.4548419 7 

 

Control 

 

3rd July B.1 

56.32925 

-

3.6076717 9 Thiacloprid 2nd July 3rd July B.2 

56.521725 

-

2.6811709 65 Thiacloprid 6th July 6th July C.1 

56.899158 

-

2.3951671 65 

 

Control 

 

6th July C.2 

56.1499 

-

3.9095986 Flower-poor site 

 

X 

56.185824 

-

3.8974535 Flower-rich site 

 

Y 

 456 

  457 



Table S2. Results of a more conservative analysis of the effects of treatment and subsequent 

location (flower rich/flower poor) using GLMs and averaging values for all nests at each 

farm/location combination.   

  458 
Response variable Treatment Location Treatment x 

Location 

Errors 

Colony weight (final) 
F1,11 = 0.45 

ns 

F1,11 = 0.12 

ns 

F1,11 =  1.53 

ns 
Normal 

Number of workers 
χ1 < 0.00, 

ns 
χ1 = 0.05 

ns 
χ1 = 0.04 

ns 

Gamma 

with log 

link 

Reproductive output (inc 

pupae) 
χ1 = 4.47 

p = 0.035 
χ1 = 0.72 

ns 
χ1 = 6.63 

p = 0.010 

Gamma 

with log 

link 

Number of males (inc 

pupae) 

χ1 = 3.17 

ns 
χ1 = 2.41 

ns 
χ1 = 5.35 

p = 0.021 

Gamma 

with log 

link 

Number of queens (inc 

pupae) 

χ1 = 0.11 

ns 
χ1 = 5.71 

p = 0.017 
χ1 = 0.07 

ns 

Gamma 

with log 

link 

 



Figure S1:  Map of farm sites. Letters refer to placement dates, see table S1.  Letters A to C 459 

are farm sites, with letters corresponding to the dates of placement (A = 15 June, B = 3 July, 460 

C = 6 July). Sites A4, A5, B1 and C2 are controls, A1, A2, A3, B2 and C1 received 461 

thiacloprid. X and Y are the flower-poor and flower-rich post exposure locations, 462 

respectively.   463 

 464 

 465 
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Supplementary Appendix 1. Output from Generalized Linear Mixed Models conducted in 467 

SPSS 21. Treatment (pesticide / no pesticide) and location (flower rich / flower poor were 468 
included as fixed factor, plus the interaction between them. Farm was included as a random 469 
factor 470 
 471 

Response variable: Final nest weight. Error structure: linear 472 
 473 

Fixed Effectsa 

Source F df1 df2 Sig. 

Corrected Model 6.047 3 30 .002 

Treat 1.227 1 30 .277 

Loc 10.597 1 30 .003 

Treat * Loc 6.623 1 30 .015 

Probability distribution: Normal 

Link function: Identity 

a. Target: Final nest weight 

 474 

Fixed Coefficientsa 

Model Term Coefficient Std. Error t Sig. 95% Confidence Interval 

Lower Upper 

Intercept 713.401 30.7403 23.207 .000 650.621 776.181 

Treat=Co 90.662 45.6197 1.987 .056 -2.506 183.830 

Treat=Tr 0b . . . . . 

Loc=FP -12.040 25.2585 -.477 .637 -63.625 39.545 

Loc=FR 0b . . . . . 

[Treat=Co]*[Loc=FP] -90.887 35.3175 -2.573 .015 -163.015 -18.759 

[Treat=Co]*[Loc=FR] 0b . . . . . 

[Treat=Tr]*[Loc=FP] 0b . . . . . 

[Treat=Tr]*[Loc=FR] 0b . . . . . 

Probability distribution: Normal 

Link function: Identity 

a. Target: Final nest weight 

b. This coefficient is set to zero because it is redundant. 

 475 

Response Variable: Number of workers. Error: Gamma with log link. 476 
 477 

Fixed Effectsa 

Source F df1 df2 Sig. 

Corrected Model .578 3 31 .634 

Treat .000 1 31 .983 

Loc 1.130 1 31 .296 

Treat * Loc .673 1 31 .418 



Probability distribution: Gamma 

Link function: Log 

a. Target: No. workers 

 478 

Fixed Coefficientsa 

Model Term Coefficient Std. Error t Sig. 95% Confidence Interval 

Lower Upper 

Intercept 3.454 .2672 12.926 .000 2.909 3.999 

Treat=Co .189 .3951 .478 .636 -.617 .995 

Treat=Tr 0b . . . . . 

Loc=FP .418 .3205 1.304 .202 -.236 1.072 

Loc=FR 0b . . . . . 

[Treat=Co]*[Loc=FP] -.364 .4438 -.821 .418 -1.269 .541 

[Treat=Co]*[Loc=FR] 0b . . . . . 

[Treat=Tr]*[Loc=FP] 0b . . . . . 

[Treat=Tr]*[Loc=FR] 0b . . . . . 

Probability distribution: Gamma 

Link function: Log 

a. Target: No. workers 

b. This coefficient is set to zero because it is redundant. 

 479 

Response Variable: Reproductive Output. Error: Gamma with log link. 480 
 481 

Fixed Effectsa 

Source F df1 df2 Sig. 

Corrected Model 3.880 3 31 .018 

Treat .942 1 31 .339 

Loc 5.365 1 31 .027 

Treat * Loc 5.612 1 31 .024 

Probability distribution: Gamma 

Link function: Log 

a. Target: Reproductive output 

 482 

Fixed Coefficientsa 

Model Term Coefficient Std. Error t Sig. 95% Confidence Interval 

Lower Upper 

Intercept 2.031 .3388 5.996 .000 1.340 2.722 

Treat=Co 1.086 .4985 2.178 .037 .069 2.102 

Treat=Tr 0b . . . . . 

Loc=FP .017 .4553 .036 .971 -.912 .945 

Loc=FR 0b . . . . . 

[Treat=Co]*[Loc=FP] -1.492 .6298 -2.369 .024 -2.776 -.207 



[Treat=Co]*[Loc=FR] 0b . . . . . 

[Treat=Tr]*[Loc=FP] 0b . . . . . 

[Treat=Tr]*[Loc=FR] 0b . . . . . 

Probability distribution: Gamma 

Link function: Log 

a. Target: Reproductive output 

b. This coefficient is set to zero because it is redundant. 

 483 

Response Variable: Number of males (including pupae). Error: Gamma with log link. 484 
 485 

Fixed Effectsa 

Source F df1 df2 Sig. 

Corrected Model 2.900 3 31 .051 

Treat 3.364 1 31 .076 

Loc 2.161 1 31 .152 

Treat * Loc 4.281 1 31 .047 

Probability distribution: Gamma 

Link function: Log 

a. Target: Number of males 

 486 

Fixed Coefficientsa 

Model Term Coefficient Std. Error t Sig. 95% Confidence Interval 

Lower Upper 

Intercept 2.869 .3792 7.567 .000 2.096 3.643 

Treat=Co 1.444 .5551 2.602 .014 .312 2.576 

Treat=Tr 0b . . . . . 

Loc=FP .222 .5363 .413 .682 -.872 1.315 

Loc=FR 0b . . . . . 

[Treat=Co]*[Loc=FP] -1.531 .7401 -2.069 .047 -3.041 -.022 

[Treat=Co]*[Loc=FR] 0b . . . . . 

[Treat=Tr]*[Loc=FP] 0b . . . . . 

[Treat=Tr]*[Loc=FR] 0b . . . . . 

Probability distribution: Gamma 

Link function: Log 

a. Target: Number of males 

b. This coefficient is set to zero because it is redundant. 

 487 

Response Variable: Number of queens (including pupae). Error: Gamma with log link. 488 
 489 

Fixed Effectsa 

Source F df1 df2 Sig. 

Corrected Model 1.559 3 18 .234 



Treat .436 1 18 .517 

Loc 4.349 1 18 .052 

Treat * Loc .056 1 18 .815 

Probability distribution: Gamma 

Link function: Log 

a. Target: queenspup 

 490 

Fixed Coefficientsa 

Model Term Coefficient Std. Error t Sig. 95% Confidence Interval 

Lower Upper 

Intercept 1.037 .4844 2.141 .046 .020 2.055 

Treat=Control -.290 .7293 -.398 .695 -1.822 1.242 

Treat=Exposed 0b . . . . . 

Loc=Flower-poor .808 .4808 1.680 .110 -.202 1.818 

Loc=Flower-rich 0b . . . . . 

[Treat=Control]*[Loc=Flower

-poor] 

-.165 .6956 -.238 .815 -1.627 1.296 

[Treat=Control]*[Loc=Flower

-rich] 

0b . . . . . 

[Treat=Exposed]*[Loc=Flow

er-poor] 

0b . . . . . 

[Treat=Exposed]*[Loc=Flow

er-rich] 

0b . . . . . 

Probability distribution: Gamma 

Link function: Log 

a. Target: queenspup 

b. This coefficient is set to zero because it is redundant. 
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Supplementary Appendix 2: information on chemical analyses 492 

Chemicals and reagents 493 

Certified standards of thiacloprid (> 99% compound purity) and imidacloprid-d4 (> 97% 494 

isotopic purity), and formic acid, ammonium formate, magnesium sulphate, sodium acetate and 495 

SupelTMQuE PSA/C18/ENVI-Carb were obtained from Sigma Aldrich UK. HPLC grade 496 

acetonitrile and water were obtained from Rathburns UK. Individual standard pesticide (native 497 

and deuterated) stock solutions (1 mg/ml) were prepared in acetonitrile (ACN). Calibration 498 

points in H20:ACN (90:10) were prepared weekly from the stock solutions. All stocks were 499 

stored at -20oC in the dark.  500 

 501 

Sample preparation for neonicotinoid analyses 502 

Pollen 503 

Pollen samples were extracted as described in Botias et al. (2015). Briefly, one hundred 504 

milligrams of pollen sample was weighed into an Eppendorf tube, 400 pg of deuterated 505 

pesticide in ACN were added and the samples were extracted using the QuEChERS method. 506 

First, 400 µl of water was added to form an emulsion and samples were then extracted by 507 

adding 500 µl of ACN and mixing on a multi axis rotator for 10 minutes. Then, 125 mg of 508 

magnesium sulphate: sodium acetate mix (4:1) was added to each tube and after centrifugation; 509 

the supernatant was removed into a clean Eppendorf tube containing 125 mg of 510 

PSA/C18/ENVI-Carb. After the first extraction, the aqueous phase and resuspended pellet were 511 

extracted again with 400 µl of ACN and the supernatants combined. Extracts were mixed with 512 

PSA/C18/ENVI-Carb (10 min) and centrifuged (10 min). The supernatant was evaporated to 513 

dryness under vacuum, reconstituted with 120 µl ACN:H2O (10:90) and spin filtered (0.22 514 

µm). 515 



 516 

Nectar 517 

Nectar samples were centrifuged at 13,000 relative centrifugal force (RCF) for 10 min to 518 

remove pollen and plant debris and the supernatant transferred into a clean eppendorf tube. 519 

Nectar samples were very viscous and were therefore weighted for more accuracy (175 ± 50 520 

mg depending on availability). Four hundred pg of deuterated pesticide standard mixture was 521 

added to the nectar and the samples were extracted using the same QuEChERS method than 522 

described previously for pollen.  523 

 524 

UHPLC-MS/MS analyses 525 

The Ultra high-performance liquid chromatography tandem mass spectrometry (UHPLC-526 

MS/MS) method described in Botias et al. (2015) was used for the analysis of samples. 527 

UHPLC-MS/MS analyses were carried out using a Waters Acquity UHPLC system coupled to 528 

a Quattro Premier triple quadrupole mass spectrometer from Micromass (Waters, Manchester, 529 

UK). Samples were separated using a reverse phase Acquity UHPLC BEH C18 column (1.7 530 

μm, 2.1 mm × 100 mm, Waters, Manchester, UK) fitted with a ACQUITY UHPLC BEH C18 531 

VanGuard pre-column (130Å, 1.7 µm, 2.1 mm X 5 mm, Waters, Manchester, UK). Injection 532 

volume was 20 µl and mobile phase solvents were 95% water, 5% ACN, 5 mM ammonium 533 

formate, 0.1% formic acid (A) and 95% ACN, 5% water, 5 mM ammonium formate, 0.1% 534 

formic acid (B). Initial ratio (A:B) was 90:10 and separation was achieved using a flow rate of 535 

0.2 ml/min with the following gradient: 90:10 to 70:30 in 10 min; then from 70:30 to 0:100 in 536 

two minutes and held for 7 min, and return to initial condition and equilibration for 7 min.  537 

MS/MS was performed in Multiple Reaction Mode (MRM) using ESI in the positive mode and 538 

two characteristic fragmentations of the protonated molecular ion [M+H]+ were monitored. 539 



Retention times, ionisation and fragmentation settings are reported in Table S3. Data were 540 

acquired using MassLynx 4.1 and the quantification was carried out by calculating the response 541 

factor of thiacloprid compounds to imidacloprid-d4. Concentrations were determined using a 542 

least-square linear regression analysis of the peak area ratio versus the concentration ratio 543 

(native to deuterated). At least five point calibration curves (R2> 0.99) were used to cover the 544 

range of concentrations observed in the different matrices for all compounds, within the linear 545 

range of the instrument. The very high THC concentrations (i.e. >100 ppb) were calculated 546 

using an external calibration. Method detection and quantification limits (MDL and MQL, 547 

respectively) as well as recoveries were determined as described in Botias et al. (2015) and are 548 

given respectively in Table S4 and S5. 549 

 550 

Quality control 551 

One blank workup sample (i.e. solvent without matrix) per batch of twelve samples was 552 

included and injected on the UHPLC-MS/MS to ensure that no contamination occurred during 553 

the sample preparation. Solvent samples were also injected between sample batches to ensure 554 

that there was no carryover in the UHPLC system that might affect adjacent results in analytical 555 

runs. Samples were analysed in a random order and QC samples (i.e. standards) were injected 556 

during runs every 10 samples to check the sensitivity of the machine. Identities of thiacloprid 557 

was confirmed by comparing ratio of MRM transitions in samples and pure standards.  558 

 559 

  560 



Table S3. Multiple reaction monitoring conditions used for UHPLC–MS/MS analysis of 561 

thiacloprid (ESI, positive mode) and its retention time. IMC-d4 = imidacloprid-d4, and THC = 562 

thiacloprid. 563 

Pesticide 

Transition mass 

(m/z)a 

Dwell-

time 

CV (V) CE (eV) 

Rt 

(min) 

IMC-d4 260.1>213.1 0.3 20 13 6.32 

 253.0>132.0 0.3 22 14  

THC  253.0>126.0 0.3 30 18 9.46 

  253.0>186.0 0.3 22 22   

 564 

 565 

Table S4. Method detection limits (MDLs) and method quantification (MQLs) limits of 566 

thiacoprid for nectar and pollen samples extracted using the QuEChERS method and analysed 567 

by UHPLC-MS/MS. THC = thiacloprid. 568 

  Nectar    Pollen 

 

MDL  MQL 

 

MDL MQL 

  ng/g ww   ng/g ww 

THC 0.03 0.08   0.04 0.12 

 569 
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Table S5. Absolute recoveries (%) of four neonicotinoids from spiked nectar and pollen 571 

extracted with the QuEChERS method. THC = thiacloprid. 572 

  Nectar (n=4)   Pollen (n=4) 

  1 ppb dw 

 

 1.2 ppb ww 

  Av  SD   Av  SD 

THC 80 11    93  8 

 573 

 


