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Abstract 31 

To investigate the feasibility of total replacement of dietary fish oil with vegetable oils 32 

(VO) and the optimal dietary polyunsaturated fatty acid (PUFA) level in the marine 33 

herbivorous teleost Siganus canaliculatus, six isonitrogenous (32 %) and isolipidic 34 

(8 %) diets were formulated. Control diet (FO) used fish oil as lipid source, whereas 35 

diets VO1-VO5 contained various blends of palm, soybean, rapeseed and linseed oils, 36 

in which the dietary PUFA levels were 42.0 %, 38.2 %, 33.8 %, 29.9 % and 27.1 %, 37 

respectively. After S. canaliculatus juveniles were fed with the diets for 9 weeks, their 38 

growth performance exhibited no significant difference among the dietary groups. The 39 

tissue fatty acid profiles in liver and fillet generally reflected the dietary fatty acid 40 

compositions, and showed no significant difference among the VO dietary groups. 41 

The results suggested that dietary fish oil can be replaced completely by VO without 42 

affecting their growth performance. Concerning the effects of the dietary FA profile 43 

on the survival rate, HSI and VSI, and PUFA composition in fillets, diets VO1 and 44 

VO2 were more favorable compared with diets VO3–VO5. Considering the 45 

availability and cost of the VOs, diet VO2 was recommended for practical use in S. 46 

canaliculatus. 47 

48 

Keywords: Siganus canaliculatus; dietary PUFA level; lipid selectivity; growth49 

performance; fatty acid composition. 50 

51 
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Introduction 52 

With the increasing demand for seafood products, world aquaculture production is 53 

estimated to reach approximately 85 million tons in 2022, although annual production 54 

growth is projected to average 2.5 % in 2013–2022 compared to 6.1 % in 2003–2012 55 

(FAO 2014). The FAO has estimated that the high cost of fishmeal, fish oil (FO), and 56 

other feed ingredients is one of the main causes of this slower growth. As global 57 

demand is higher than the supply, the cost of fishmeal is expected to increase by 6 % 58 

and that of FO by 23 % in 2022 compared with that in 2013 (FAO 2014). This 59 

situation has led researchers in fish nutrition and feeds to develop alternative lipid 60 

sources to dietary FO in recent years.  61 

Due to their ready availability and relatively stable cost (Turchini et al. 2003, Francis 62 

et al. 2006), vegetable oils (VOs) have been evaluated as FO substitutes either alone 63 

or as blends formulated to replicate the fatty acid composition present in FO in terms 64 

of the proportion of total saturated fatty acids (SFA), monounsaturated fatty acids 65 

(MUFA), and polyunsaturated fatty acid (PUFA) (Torstensen et al. 2005, Francis et al. 66 

2007a). Furthermore, available data have indicated that, provided the requirement for 67 

essential fatty acids is met, a significant portion of dietary FO can be replaced by 68 

alternative lipid sources without significantly affecting growth performance, feed 69 

efficiency, and feed intake in most finfish species studied (Turchini et al. 2009). For 70 

instance, the replacement of FO by corn oil did not affect the growth performance of 71 

brown trout (Salmo trutta) (Arzel et al. 1994). Similarly, the partial substitution of FO 72 

by different VO or animal fats had no significant effect on the growth performance of 73 

brown trout (Turchini et al. 2003). In two populations of Arctic charr (Salvelinus 74 

alpinus), the replacement of FO by echium oil had no effect on the growth, feed 75 

efficiency, and muscle and liver lipid contents (Tocher et al. 2006). In addition, the 76 

replacement of FO by different linseed and coconut oil blends in the diets of Arctic 77 

charr did not affect their growth performance or negatively affect the oxidative status 78 

of the flesh or plasma (Olsen and Henderson 1997). In Atlantic salmon (Salmo salar), 79 

changing the dietary fatty acid composition by replacing FO with a VO blend during 80 

both freshwater and seawater stages did not markedly alter body lipid stores (Nanton 81 

et al. 2007). Therefore, existing data indicated the feasibility of the substitution of 82 

dietary FO by appropriate VOs in feeds for farmed fish. 83 

The terrestrial VO alternatives to FO do not contain the required and essential 84 
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long-chain PUFA (LC-PUFA) such as eicosapentaenoic acid (EPA, 20:5n-3), 85 

docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (ARA, 20:4n-6). 86 

Therefore, although alternative VOs can be used without any apparent detrimental 87 

effects on fish performance, the n-3 LC-PUFA concentration in final fish fillets is 88 

reduced (Sargent et al. 2002). In recent years, increasing research has been conducted 89 

to mitigate this effect of dietary VO in modifying fatty acid compositions of farmed 90 

fish. In addition, this research has contributed greatly to the advancement of our 91 

knowledge of fish lipid metabolism; however, a complete solution remains to be 92 

found (Turchini et al. 2009). If fish have all the necessary enzymes such as Δ6 fatty 93 

acid desaturase (fad), Δ5 fad, Elovl5 elongase, and/or Δ4 fad, they can biosynthesize 94 

LC-PUFA through a pathway involving a series of desaturation and elongation of 95 

a-linolenic acid (ALA, 18:3n-3) and linoleic acid (LA, 18:2n-6). However, most 96 

marine fishes are unable to produce LC-PUFA because of apparent deficiencies in one 97 

or more steps (enzymes) of the biosynthetic pathway. Moreover, almost all FO 98 

substitution studies in marine fishes have been conducted in carnivorous species but 99 

rarely in herbivorous or omnivorous species. 100 

The rabbitfish Siganus canaliculatus is an herbivorous marine teleost, feeding on 101 

algae and seagrass. S. canaliculatus is a commercially valuable species widespread 102 

along the Indo-West Pacific coast and has become one of the most harvested species 103 

in southeastern Asia, including along the coast of southeast China. It is also the 104 

subject of aquaculture activity with the development of a suitable formulated diet a 105 

necessity for the emerging culture industry. However, information regarding optimal 106 

lipid sources and PUFA requirements of rabbitfish is scant. In our recent studies, we 107 

reported that S. canaliculatus may have the ability to convert LA and ALA into 108 

LC-PUFA in both brackish water (10 ppt) and seawater (32 ppt) (Li et al. 2008) and 109 

that it exhibits activities for elongation and Δ6, Δ5, and Δ4 fatty acid desaturation (Li 110 

et al. 2010, Monroig et al. 2012). Our preliminary research results revealed that 111 

soybean oil (SO) can replace up to 67% or 45% of total dietary FO for S. 112 

canaliculatus without negatively compromising the growth performance or nutritional 113 

quality of fish (Xu et al. 2012). The expression of key genes involved LC-PUFA 114 

biosynthesis was also affected by the dietary LA:ALA ratio, with ratios of 0.52 or 115 

2.13 showing better growth performance and LC-PUFA biosynthesis in rabbitfish(Liu, 116 

2011). These findings suggested that FO can be partially or completely replaced by 117 

VO in feeds for rabbitfish. 118 
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The present study aimed to determine the optimal lipid sources and dietary PUFA 119 

contents for S. canaliculatus by using a combination of palm, soybean, rapeseed, and 120 

linseed oils as replacements for FO. The results of this study provide a scientific basis 121 

for developing highly effective and low-cost formulated feeds for rabbitfish by using 122 

different VO sources, and increase our knowledge regarding FO replacement in 123 

marine herbivorous fishes. 124 

125 
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Materials and methods 126 

Experimental diets 127 

Using fishmeal and soybean meal as protein sources and FO, palm, soybean, 128 

rapeseed and linseed oils as lipid sources, six formulated diets were prepared with 129 

approximately equal contents of total protein (32 %), lipid (8 %), but with varying 130 

lipid sources and PUFA concentrations. In the control diet, FO was used as the lipid 131 

source, and the proportion of PUFA in the FO diet was 35.8% of total fatty acids. 132 

Diets VO1–VO5 contained a blend of palm, soybean, rapeseed and linseed oils as 133 

lipid sources with ratios of ALA:LA of 0.39, 0.39, 0.37, 0.40 and 0.37, respectively, 134 

and PUFA levels of 42.0 %, 38.2 %, 33.8 %, 29.9 %, and 27.1 % of total fatty acids, 135 

respectively. The feed ingredients and diet proximate compositions are listed in 136 

Table 1. The ingredients were thoroughly mixed and moist pellets (Φ 4 mm) were 137 

manufactured using an extruder. After air drying at room temperature, the feeds 138 

were stored at −20 °C prior to feeding.  139 

Experimental fish and feeding conditions 140 

S. canaliculatus juveniles (approximately 12 g wet weight and sex visually 141 

indistinguishable) were captured from the coast near Nan Ao Marine Biology Station 142 

(NAMBS) of Shantou University, South China. Prior to the experiment, the fish were 143 

acclimated to laboratory conditions and fed an equal mixture of the six experimental 144 

diets for 2 weeks. 145 

A 9-week growth experiment using the experimental diets was conducted from 146 

October to December in an aquarium system at NAMBS. Each dietary group had 147 

three replicates and thus a total of twenty-one cylindrical tanks (220 L) were used.  148 

Fish of approximately equal size were pooled in a plastic bucket and 18 fish 149 

individually weighed and randomly allocated to each tank after anesthetizing with 150 

0.01 % 2-phenoxyethanol (Sigma-Aldrich, USA) (Table 2). During the experimental 151 

period, half of the aquarium water was changed twice a day (morning and evening). 152 

Oxygen saturation was maintained through aeration, and temperature was maintained 153 

at 20 ± 3 °C. Photoperiod was set at 12 h light and 12 h dark. The fish were fed to 154 

satiation three times a day (around 8:00, 12:00, and 16:00), and the diet weight fed 155 

was recorded daily for each tank. Fecal matter was removed using an auto-discharge 156 

device in the culture system every day.  157 
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Evaluation of growth performance and sample collection  158 

The fish were weighed at the beginning and end of the experiment. At the end of the 159 

experiment, six fish from each dietary group were sampled after anesthetizing in 0.01 % 160 

2-phenoxyethanol to measure body weight, length, and liver and viscera weights. 161 

Growth performance was evaluated by measuring weight gain (WG), specific growth 162 

rate (SGR), feed conversion ratio (FCR), and protein efficiency ratio (PER). These 163 

parameters as well as condition factor (CF), hepatosomatic index (HSI), and 164 

viscerosomatic index (VSI) were calculated using the following formulae: 165 

WG (%) = 100 × (Wf – Wi)/Wi 166 

SGR (%) = 100 × (lnWf – lnWi)/d 167 

FCR = Fd/WG 168 

PER = WG/Fp 169 

CF = 100 × [(body weight, g) × (body length, cm)−3] 170 

HSI (%) = 100 × liver weight × (body weight)−1 171 

VSI (%) = 100 × viscera weight × (body weight)−1 172 

In these formulae, Wf and Wi were the final and initial body weight, respectively; 173 

d was experimental days; and Fd and Fp were the amount of diet and protein 174 

consumed by fish, respectively.  175 

 The livers and fillets were sampled from six fish at the beginning of the 176 

experiment and from nine fishes in each dietary group at the end of the experiment 177 

after anesthetizing in 0.01 % 2-phenoxyethanol. All samples were immediately frozen 178 

in liquid nitrogen and stored at −80 °C prior to fatty acid analysis. Six fish from each 179 

dietary group were collected for determining the biochemical composition of the 180 

whole fish.  181 

Chemical analysis 182 

Biochemical composition 183 

The methods for determination of biochemical composition were similar to those 184 

described previously (Li et al. 2008). Briefly, the protein content of the diets and 185 

whole fish samples was calculated by determining the total nitrogen content through 186 
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the Kjeldahl method. The crude lipid content was measured using the Soxhlet 187 

extraction method. The ash content was measured by combusting the samples in a 188 

muffle furnace at 550 °C for 6 h. The dry matter was determined by exposing the 189 

dietary samples to 105 °C in a dry oven overnight. Triplicate analyses were conducted 190 

for each sample.  191 

Lipid extraction and fatty acid analysis 192 

Lipid extraction and fatty acid analysis were performed as described previously (Li et 193 

al. 2005, 2008). In brief, total lipid of liver and muscle tissues was extracted using 194 

chloroform and methanol in a 2:1 ratio, and fatty acid methyl esters were prepared by 195 

transesterifying the total lipid samples with boron trifluoride etherate (ca. 48 %, Acros 196 

Organics, NJ, USA). Fatty acid methyl esters were separated using a gas 197 

chromatograph (GC; GC–17A; Shimadzu, Kyoto, Japan) equipped with an auto 198 

sampler and a hydrogen-flame ionization detector. Individual fatty acids were 199 

identified by comparison with known commercial standards (Sigma, USA) and 200 

quantified using the CLASS-GC10 GC workstation (Shimadzu, Kyoto, Japan). 201 

Statistical analysis 202 

Data were expressed as mean ± S.E.M (n=3). Differences among the dietary groups 203 

were analyzed using one-way ANOVA followed by Tukey’s multiple comparison. 204 

The significance level was set at P < 0.05. Statistical analyses were performed using 205 

the software package Origin®, Version 7.0 (USA). 206 

 207 

Results 208 

Growth performance of different dietary groups 209 

The growth performance of S. canaliculatus fed diets having different PUFA profiles 210 

for 9 weeks is shown in Table 2. The total replacement of dietary FO by a 211 

combination of palm, soybean, rapeseed and linseed oils showed no negative effect on 212 

growth performance. Thus, WG, SGR, FCR, and PER did not differ significantly 213 

between the FO and VO diet groups. However, the survival rate exhibited a 214 

decreasing trend with reducing proportion of dietary PUFA. In particular, the survival 215 

rate in fish fed the VO5 diet (PUFA, 27.2 %) was significantly lower than that in fish 216 

fed the VO1 diet (PUFA, 41.6 %) or the FO diet (P < 0.05). HSI and VSI were 217 
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negatively correlated with dietary PUFA contents, and these indexes were 218 

significantly higher in fish fed the VO4 diet than in fish fed the FO and VO1 diets. 219 

The biochemical composition of the whole fish body including moisture, ash, protein, 220 

and total lipid concentrations did not differ significantly among the dietary groups 221 

(Table 3). 222 

Fatty acid compositions of liver and fillet 223 

The fatty acid profiles of tissues were markedly influenced by dietary oil sources and 224 

PUFA content (Tables 4 and 5), reflecting the fatty acid compositions of the 225 

respective diets. The contents of ALA, LA and 18:1n-9 were markedly higher in the 226 

fillets of fish fed the diets containing the VO blends than in those of fish fed the FO 227 

diet. In contrast, proportions of EPA and DHA were lower in the fillets of fish fed 228 

diets containing the VO blend than in those of fish fed the FO diet. The contents of 229 

14:0, 16:0, 18:0, and total SFA in the livers of fish fed the VO diets did not differ 230 

significantly compared with those in the livers of fish fed the FO diet. In both the liver 231 

and fillet, the contents of LA and 18:1n-9 were higher in fish fed the VO diets than in 232 

fish fed the FO diet (P < 0.05). However, the proportion of ALA was only higher in 233 

the fillets, and not liver, of fish fed the VO diets than in fish fed the FO diet (P < 0.05). 234 

Furthermore, the percentage of ALA was lower in the liver (0.01 % – 0.39 %) but 235 

higher in the fillets (0.74 % – 4.34 %). The content of ARA was significantly higher 236 

in the liver of fish fed the FO diet than in liver of fish fed the VO diets; however, 237 

ARA in the fillet did not significantly differ among the dietary groups. The contents 238 

of EPA, 22:5n-3, and DHA were higher in the fillet and those of DHA higher in the 239 

liver of fish fed the FO diet than in fish fed the VO diets (P < 0.05). The proportion of 240 

total PUFA in the liver did not differ significantly among the dietary groups. However, 241 

the total PUFA content was highest in the fillet of fish fed the VO1 and VO2 diets (P 242 

< 0.05). 243 

 244 

Discussion 245 

The present study indicated that FO in a practical diet with 8% lipid for S. 246 

canaliculatus can be completely replaced by a combination of VOs (palm, soybean, 247 

rapeseed and linseed oils) without marked adverse effects on growth performance in 248 

terms of WG, SGR, feed utilization, and PER. These results are in agreement with 249 
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those of previous studies, which reported that the partial or total replacement of 250 

dietary FO by VO did not affect growth performance (Bell et al. 2001, Huang et al. 251 

2007, Peng et al. 2008, Xu et al. 2012, Mozanzadeh et al. 2016). However, the 252 

survival rate exhibited a positive trend with dietary PUFA content with the survival 253 

rate in fish fed the VO5 diet (PUFA, 27.2 %) being significantly lower than that in 254 

fish fed the VO1 diet (PUFA, 41.6 %). This suggested that lower dietary PUFA 255 

contents may adversely affect the survival rate of S. canaliculatus. However, dietary 256 

18:1n-9 content may also influence survival as diets with higher contents of 18:1n-9, 257 

such as in VO3, VO4 and VO5, showed lower survival rates. Although, Ferreira et al. 258 

(2015) also reported a correlation between high dietary 18:1n-9 and low survival in 259 

tilapia, Oreochromis niloticus, there has been extensive research on the use of 260 

18:1n-9-rich vegetable oils in fish feeds without any reports of major effects on 261 

survival(Turchini and Mailer, 2011). HSI and VSI were highest in fish fed the VO4 262 

diet, and significantly higher than in fish fed the FO and VO1 diets. This is of 263 

potential significance as both VSI and HSI directly affect the yield in fish production 264 

(Wang et al. 2005). One possible explanation for the effects on these indices could be 265 

that the digestibility of PUFA is higher than that of MUFA and SFA (Francis et al. 266 

2007b), and the proportion of PUFA was lower and those of SFA and MUFA higher 267 

in the VO4 diet than in the FO diet. Thus, the lipid content was more easily 268 

maintained in the liver and viscera of fish fed the VO4 diet. In the present study, the 269 

dietary content of PUFA and the replacement of FO by VO did not affect the 270 

proximate composition of whole fish. This was in agreement with previous studies in 271 

other marine fish species, which reported that the replacement of dietary FO with 272 

different concentrations of soybean oil concentrations did not affect the whole body 273 

biochemical composition of red seabream, turbot, and Platichthys stellatus Pallas 274 

(Huang et al. 2007, Regost et al. 2003, Lee et al. 2003). 275 

The proportion of dietary PUFA and the replacement of FO by a combination of 276 

palm, soybean, rapeseed and linseed oils markedly affected tissue fatty acid 277 

compositions in S. canaliculatus. The fatty acid profiles in both liver and fillet 278 

reflected the dietary fatty acid compositions, which was consistent with the findings 279 

of many other studies (Caballero et al. 2002, Tocher et al. 2003, Torstensen et al. 280 

2004a,b, 2005, Nanton et al. 2007, Stubhaug et al. 2007). For example, the 281 

proportions of EPA, DHA, and total n-3 PUFA, but not of ARA, were higher in the 282 



 

 11 

fillet of fish fed the FO diet than in fillets of fish fed the VO diets. However, 283 

compared with the levels of LC-PUFA, 18:1n-9, LA and ALA exhibited the reverse 284 

trend. Therefore, the replacement of FO with VO reduced the proportions of EPA, 285 

DHA, and total n-3 PUFA in fish and increased the percentages of 18:1n-9, LA and 286 

ALA. Similar results have been reported in other marine fish species where studies 287 

have reported that replacing dietary FO with VO increased the concentrations of 288 

dietary 18:1n-9, LA and ALA and reduced the concentrations of dietary marine n-3 289 

fatty acids, EPA, and DHA (Bahurmiz and Ng 2007, Mørkøre et al. 2007, 290 

Yildirim-Aksoy et al. 2007, Du et al. 2008, Glencross et al. 2016) resulting in the 291 

fatty acid compositions of dietary VO being reflected in the fatty acid compositions of 292 

whole fish, organs, and flesh (Tocher et al. 2015). 293 

In both the liver and fillet, ALA and LA were well retained. The mean 294 

percentage of LA in the liver and fillet was 1.8 % – 4.9 % and 3.7 %–14.0 %, 295 

respectively. By contrast, the percentage of ALA in the liver was very low (0.15 %–296 

0.39 %). These data suggested that LA was more directly deposited in both the liver 297 

and fillet, whereas ALA gets metabolized to a greater extent. A similar result was 298 

observed in Murray Cod where ALA appeared to be more catabolized or bioconverted 299 

(Francis et al. 2009) and LA tended to be directly deposited in fish tissues (Francis et 300 

al. 2009, Trushenski et al. 2008). However, a different result was obtained in marine 301 

carnivorous fishes such as large yellow croaker, black sea bream, and gilthead sea 302 

bream where ALA but not LA contributed to an increase in growth (Zuo et al. 2014, 303 

Peng et al. 2008, Montero et al. 2008). This may be because of a difference in 304 

endogenous metabolism, that is, the limited dietary ALA content could satisfy the 305 

growing demand of herbivorous rabbitfish compared to other marine species. All 306 

dietary groups appeared to convert EPA into DHA as the EPA level in tissues was 307 

markedly lower than that in the diets and the body lipid content of 22:5n-3 also 308 

increased. In addition, Tan et al. (2009) reported that significant elongation and 309 

desaturation of EPA into DHA was observed in yellow catfish. 310 

Although the proportion of total n-3 and n-6 PUFA in the liver differed 311 

significantly between fish fed the FO diet and fish fed the VO diet, the proportion of 312 

total PUFA in the liver did not differ significantly among dietary groups. One possible 313 

explanation may be that the progressive reduction in the concentration of n-3 PUFA in 314 

the VO diets was offset by an increase in the concentration of n-6 PUFA (Grant et al. 315 

2008). The proportions of total PUFA in the fillets of fish fed the VO diets showed a 316 



 

 12 

positive relationship with the corresponding dietary PUFA concentrations, which was 317 

highest in fish fed the VO1 diet and differed significantly among fish fed the VO3 – 318 

VO5 diets, except for fish fed the VO2 diet. This indicated that fish fed a diet having a 319 

low PUFA concentration may result in a decreased PUFA concentration in the fillet. 320 

Notably, ARA content did not significantly differ between the fillet of fish fed the FO 321 

and VO diets, which was consistent with our previous study and suggested that the 322 

biosynthesis of LC-PUFA in rabbitfish can compensate for the reduced dietary ARA 323 

(Li et al. 2008). Therefore, this indicated that rabbitfish can efficiently utilize and 324 

store n-6 PUFA. 325 

In conclusion, the results of the present study revealed that the complete 326 

replacement of dietary FO with a combination of VOs had no negative effects on the 327 

growth performance of S. canaliculatus. Concerning the effects of the dietary FA 328 

profile on the survival rate, HSI and VSI, and total PUFA content in fillets, diets VO1 329 

and VO2 were more favorable compared with diets VO3–VO5. Moreover, compared 330 

with rapeseed oil, palm oil is more available and has a lower cost. Therefore, the VO2 331 

diet is recommended for practical use in S. canaliculatus culture. 332 
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Table 1  
Ingredients and composition of experimental diets for Siganus canaliculatus 

 Diets 
FO VO1 VO2 VO3 VO4 VO5 

Ingredients (g/100 g diet)       
Fish meal  33 33 33 33 33 33 
Soybean meal  22 22 22 22 22 22 
α-Starch 5 5 5 5 5 5 
Starch 20.9 20.9 20.9 20.9 20.9 20.9 
Cellulose 9 9 9 9 9 9 
Mineral Mixture a 2 2 2 2 2 2 
Vitamin Mixture b 1 1 1 1 1 1 
Dicalcium phosphate 0.5 0.5 0.5 0.5 0.5 0.5 
L-Methionine 0.5 0.5 0.5 0.5 0.5 0.5 
Choline 0.08 0.08 0.08 0.08 0.08 0.08 
Vitamin C  0.02 0.02 0.02 0.02 0.02 0.02 
Fish oil  6      
Palm oil   1 2 1.5 3 4 
Rapeseed oil   2 1 3 2 1 
Soybean oil   2 2 1 0.5 0.5 
Linseed oil  1 1 0.5 0.5 0.5 

Proximate composition (%, dry matter basis) 
Dry matter 89.65 90.13 90.04 91.65 91.23 89.32 
Crude protein 33.01 32.84 31.98 32.04 31.94 32.55 
Crude lipid 8.33 8.16 8.13 8.32 8.45 8.39 
Ash content 9.97 9.46 10.05 10.66 10.73 9.89 

Main fatty acids (% area) 
14:0 5.60 1.54 1.74 1.68 1.86 1.79 
16:0 22.80 16.30 20.10 17.54 22.66 26.66 
16:1 5.76 1.86 1.86 1.83 1.88 1.94 
18:0 4.84 4.60 4.67 4.45 4.47 4.60 
18:1n-9 21.38 30.78 29.31 37.82 36.74 35.00 
18:2n-6 7.60 23.24 20.89 17.52 14.83 13.64 
18:3n-3 1.73 9.07 8.06 6.51 5.95 5.06 
20:1 0.31 0.97 0.91 0.35 0.07 0.94 
20:3n-3 0.01 0.06 0.33 0.37 0.37 0.19 
20:4n-6 1.15 0.98 0.81 0.88 0.91 0.80 
22:1n-9 0.75 0.01 0.01 0.29 0.20 0.23 
20:5n-3 10.23 3.69 3.36 3.54 3.28 3.12 
22:5n-3 1.59 0.59 0.71 0.61 0.80 0.62 
22:6n-3 15.06 4.97 5.06 5.38 4.97 4.50   
∑saturates 33.23 22.44 26.51 23.67 28.99 33.05 
∑monoenes 28.20 33.62 32.09 40.30 38.89 38.11 
∑n-3 PUFA 28.62 18.38 17.52 16.41 15.37 13.49 
∑n-6 PUFA 8.75 24.22 21.7 18.4 15.74 14.44 
n-3/n-6 3.27 0.76 0.81 0.89 0.98 0.93 
∑PUFA 35.77 41.95 38.18 33.83 29.94 27.12 

a The amounts of following ingredients per kg of premix were as follows: iron, 10 g; zinc, 3.2 g; 
manganese, 3 g; cobalt, 52 mg; iodine, 65 mg; and selenium, 15 mg. 

b The amounts of following vitamins per kg of premix were as follows: A, 1 × 106 IU; D3, 3 × 105 

IU; E, 5,000 IU; K3, 1,040 mg; B1, 1,500 mg; B2, 2,400 mg; B6, 1,200 mg; B12, 5 mg; nicotinic 
acid, 8,000 mg; D-calcium pantothenate, 3,200 mg; folic acid, 400 mg; biotin, 10 mg; inositol, 
12,000 mg; and C-monophopholipid, 16,000mg. 
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