Publisher policy allows this work to be made available in this repository; The final publication is available at Springer via https://doi.org/10.1007/s11258-017-0716-z Please cite as: Tiwari A, Fan Z, Jump A & Zhou Z (2017) Warming induced growth decline of Himalayan birch at its lower range edge in a semi-arid region of Trans-Himalaya, central Nepal, *Plant Ecology*, 218 (5), pp. 621-633. - 1 Warming induced growth decline of Himalayan birch at its lower range edge in a semi-arid region of Trans- - 2 Himalaya, central Nepal. - 3 Achyut Tiwari^{1,2,3}, Ze-Xin Fan¹, Alistair S. Jump^{5,6} & Zhe-Kun Zhou^{1,4*} - ⁴ Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, - 5 Yunnan 666303, China - 6 ² University of Chinese Academy of Sciences, Beijing 100049, China - ³ Tri-Chandra Campus, Tribhuvan University, Ghantaghar, Kathmandu, Nepal - 8 ⁴Key Laboratory of Biogeography and Biodiversity, Kunming Institute of Botany, Chinese Academy of Sciences, - 9 Kunming 650204, China - ⁵Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK - 11 ⁶CREAF (Centre de Recerca Ecològica i Aplicacions Forestals, Campus de Bellaterra (UAB), Edifici C. 08193, - 12 Cerdanyola del Vallès, Spain. - ^{*} Corresponding author: Zhe-Kun Zhou, tel: +86-691-8713226, fax, +86-691-8715070, - e-mail: zhouzk@xtbg.ac.cn. - 15 Mailing Address: Menglun Town, Mengla County, Yunnan Province 666303, P.R. China /88 Xuefu Rd, Kunming, - 16 Yunnan 650223, PR China # 18 Abstract 17 19 20 21 22 23 24 25 26 27 Changes in the position of altitudinal treelines and timberlines are considered useful indicators of climatic changes on tree growth and forest dynamics. We sought to determine if recent warming is driving contrasting growth responses of Himalayan birch, at moist treeline (Lete Lekh) and semi-arid timberline (Chimang Lekh) sites in the Trans-Himalayan zone of central Nepal. We used dendrochronological techniques to measure tree ring width (TRW) and basal area increment (BAI) of birch trees from climatically contrasting but nearby sites. The TRW series were correlated with climate records from nearby meteorological stations, and BAI was compared between populations to explore growth trends over recent decades. We found contrasting precipitation trends between nearby sites such that the wet site (Lete) is getting warmer and wetter, and the dry site (Chimang) is getting warmer and drier in recent decades. The radial growth of birch in both moist and semi arid sites are positively correlated to spring (March-May) rainfall, and negatively correlated to mean and maximum temperature for the same period. The growth climate analysis indicated that moisture availability in early growing season is crucial for birch growth at these locations. The BAI of birch is declining more rapidly at the dry timberline than at the moist treelines in the recent decades, indicating that climatic warming might negatively impact birch radial growth where warming interacts with increasing spring drought in the region. Our work highlights contrasting growth response of birch to climate change at moist and semi-arid forests indicating that local climatic variation must be accounted for when assessing and forecasting regional patterns of tree growth in topographically complex regions like Trans-Himalaya, in order to make accurate predictions of vegetation responses to climate change. **Keywords:** Betula utilis; treeline; timberline; ring-width; basal area increment; growth trends #### Introduction Mountains provide habitats for a large portion of the world's biodiversity (Beniston 2003). High mountain species are potentially most threatened under ongoing climate change because of their narrow distribution range, geographical isolation and unique ecological adaptations (Grabherr et al. 1994; La Sorte and Jetz 2010). Besides being susceptible to the impacts of a rapidly changing climate (Xu et al. 2009; Sharma and Tsering 2009; Aryal et al. 2012), mountains also provide valuable locations for the early detection of climatic change and its impacts on ecological and hydrological systems (Beniston 2003; Nogués-Bravo et al. 2007). Temperature is usually the main limiting factor for tree growth in poleward and high altitude treelines (Körner 2003; Holtmeier & Broll 2007; Harsch et al. 2009). Air and soil temperatures as well as topographic sheltering are important determinants of spatial patterns of tree seedling establishment at high altitude (Greenwood et al. 2014). Trees are, therefore, expected to increase growth and shift poleward and upward with warming temperatures and increased atmospheric CO₂ concentration (Körner 2000; Borgaonkar et al. 2011; Gaire et al. 2014, 2016). However, this expectation only holds true if there are no other factors limiting growth at species distributional limits in these regions. Tree growth in high mountains could also be impaired by increases in temperature, mostly due to warming-induced water deficit (Cook et al. 2003; Sano et al. 2005; Lv and Zhang 2012; Yang et al. 2013; Dawadi et al. 2013; Liang et al. 2014; Qi et al. 2015; Tiwari et al. 2016; Gaire et al. 2016). Furthermore, in topographically complex regions such as the Trans-Himalayan zone of Nepal, rain shadow effects can lead to strong gradients of precipitation and drought stress over short distances, resulting in contrasting local limitations of tree growth and complicating prediction of regional changes (Schickhoff 2005; Schickhoff et al. 2015). Tree ring-width indices have proved to be useful proxies for growth climate interpretation, however, detrended ring-width series retains less ecological and historical information such as forest disturbance, acute growth stress and other low frequency signals (Esper et al. 2002). Hence unstandardized basal area increment (BAI) is often used as a more informative measure of tree growth trends in terms of total biomass production, than ring width measurements alone (Phipps & Whiton 1988; Peñuelas et al. 2011). Climatic warming, increased concentration of atmospheric CO₂ and associated changes to water-use efficiency, are predicted to enhance tree growth across many species and regions (Morison, 1993; Morgan et al. 2004; Norby et al. 2005). However such anticipated positive growth trends have not been observed in many parts of the world (Peñuelas et al. 2011). Rather, tree growth has locally declined, with the potential for increasing levels of mortality due to warming induced drought (Jump et al. 2006; Peñuelas et al. 2007; Allen et al. 2010). Hence, quantifying interannual responses of tree growth to local variation in climate is an important approach to understand tree growth patterns and forest productivity (Bunn et al. 2005; Yang et al. 2010) in climate sensitive high elevation forests. Himalayan birch (*Betula utilis*) typically forms the treeline in many parts of Himalaya (Miehe et al. 2015), but its growth across the various climatic zones and complex topography of central Nepal is poorly explored. The treeline is generally considered as the highest elevation at which a single upright tree with height greater than 2 m is found over the landscape (Hofgaard, 1997; Körner, 2003), and alpine timberlines represent the upper limit of closed mountain forest with tree density (trees >5 m tall) of at least 30% coverage (Wardle, 1974; Holtmeier, 2003). Trees typically show contrasting growth responses to warming temperatures at their upper and lower range edges (Peñuelas et al. 2008; Cavin et al. 2016). However, differences in water availability might strongly modify expected responses to temperature. Consequently, we sought to determine the response of birch growth at its upper and lower range edge in high mountain forests which are subject to a contrasting moisture regime. Consequently, we set out to test expectations that the birch treeline should advance in areas with greater water availability (Schickhoff et al. 2015), and retreat in dry sites (Liang et al. 2014) despite general predictions of upward elevational shifts of mountain forest distributions (Harsch et al. 2009). Improving our understanding of local climate variability and its impact on tree growth and forest productivity is of high importance for our ability to predict spatial patterns of forest change and their consequences. Consequently, here we hypothesized that elevated temperatures would have a greater negative impact on tree growth in dry versus wet high altitude sites for *B. utilis*. We used tree ring records of *B. utilis* from contrasting climatic zones in the Trans-Himalayan region to (1) determine the limiting climatic factors for growth of *B. utilis* in moist and dry sites and (2) assess the growth trends of *B. utilis* at its upper and lower range edge with response to ongoing climate change. ### Methods # Study area This work was conducted at Lete Lekh (28.6° N, 83.58° E, 3650-3900 m asl) and Chimang Lekh (28.75° N, 83.7° E, 3000-3300 m asl) of Mustang district in the Trans-Himalayan zone of central Nepal. Lete Lekh is relatively moist area with alpine birch treeline in the north east facing slope, whereas Chimang Lekh is a semi-arid zone with birch timberline in the south–west facing slope. Lete treeline is the upper treeline and the Chimang timberline is the lower range edge of *B. utilis* in the southern part of Mustang District, however, at Chimang, the birch treeline reaches as high as 4000 m asl only in the sheltered north-facing slopes (personal observation). The sites are characterized by a contrasting precipitation regime within a short distance, and lie within the Annapurna Conservation Area (ACA). The Trans-Himalayan zone of central Nepal lies in the rain shadow formed by surrounding high mountains; where runoff water from snow cover is the main source of water (Aryal et al. 2012). The
northern part of the Mustang lies in the Trans-Himalayan semi-arid dry zone, further north, the Tibetan type highland forms the driest zone of Nepal (Lomanthang: 200 mm annual rainfall) (Stainton 1972; Schickhoff 2005). The forested areas are thus confined to the southern part of the district covering only about 3.24% of land area (Government of Nepal 2010). ### **Species** Himalayan birch (*Betula utilis* D. Don) is a moderate-sized (<20 m tall) broadleaved pioneer tree species dominating an extensive area of subalpine forests up to 4500 m elevation, quite close to glaciers on northern slopes of the inner Himalayas (Stainton 1972; Zobel and Singh 1997; TISC 2002; Schickhoff 2005; Miehe et al. 2015). This species shows high variation in its local distribution possibly due to the influence of local-scale climate variability and topographic sheltering. # Field sampling Field sampling was conducted during September-October of 2014 along transects on a topographically uniform area of the treeline at Lete and timberline at Chimang. Tree cores were collected from trees occurring in two treeline transects MT1 and MT2; each of which was 20 m \times 120 m (hereafter MT for indicating moist treelines), and the third transect from a single timberline transect of 30 m \times 50 m at Chimang (hereafter DT). The treeline sites included the treeline ecotone of *B. utilis* spanning the treeline and timberline. We employed dendrochronological techniques for radial growth measurement and developing ring width chronology of trees. Single, two or three cores were extracted from a tree using a 5.5 mm increment borer. All treeline trees were cored at the base of the tree (< 30 cm), whereas DT trees were cored at breast height level. Tree cores were air dried, mounted on sample holders and sanded using progressively finer sandpaper according to standard methods (Fritts 1976). Ring widths were measured at a resolution of 0.01 mm with a LINTAB II measuring system (Rinntech Germany). Statistical analyses were performed using the software R (R Core Team 2015). ### Meteorological data Each study site has a meteorological station nearby (< 4 km), however the wet (Lete) site (28.63° N, 83.6° E, 2384 m asl) does not have temperature data for more than 15 years. The fifteen years mean temperature of Lete was compared with temperature of Thakmarpha station (28.75° N, 83.7° E, 2566 m asl) for the same period and showed high correlation (r = 0.69, n = 15); hence we used the Thakmarpha (1970-2013 AD) temperature records, and rainfall records of Lete and Chimang separately for growth climate analysis. The meteorological data showed mean annual rainfall of 1340 mm at Lete and 393 mm at Thakmarpha with mean annual temperature of 11.17 °C (Fig. 1). **Fig. 1** Climate summary of Lete (2384 m asl) and Thakmarpha (2566 m asl) climate station (1970-2013 AD), the white and black bars represent the rainfall at Lete and Thakmarpha respectively. ### **Growth climate response** Tree ring width (TRW) indices were employed to explore growth response to climate. We adopted visual inspection for cross-dating tree cores (Stokes and Smiley 1968), with statistical tests (sign-test and *t*-test) using the software package TSAP-Win (Rinn 2003). Ring-width measurements were detrended with a negative exponential using ARSTAN software (Cook 1985). We produced a standard tree ring-width chronology of 107 years using 56 tree cores from 52 trees at MT1, 186 years using 27 tree cores from 23 trees at MT2, and of 122 years using 49 tree cores from 24 trees at DT (Table 1). To maintain a reasonable sample depth, we limit the tree ring width chronology to the period representing a minimum of ten cores for each site (Fig. 4a, b, c). Growth-climate relationships were determined by correlating site standard chronology with monthly climatic variables (total rainfall, mean air temperature) from June of the previous growth year until October of the current growth year (Fritts 1976). Given the previously identified importance of spring season (March-May) moisture sensitivity of birch for high elevation birch populations in the central Himalaya (Dawadi et al. 2013; Liang et al. 2014; Gaire et al. 2016), we also correlated the site chronology with mean climate for the March-May period. ## Basal area index (BAI) chronology BAI is commonly used to assessing tree and stand growth since it allows accurate quantification of tree productivity (Rubino and McCarthy 2000; Peñuelas et al. 2011). The BAI sigmoidal growth model is an appropriate means for detecting changes in tree growth avoiding detrending and standardizing employed in calculation of RWI (Phipps & Whiton 1988; Esper et al. 2002; Salzer et al. 2009). Here we used individual tree BAI to produce mean unstandardized BAI series across all trees at each site for each year. Ring width was converted into tree BAI according to the following standard formula: 149 $$BAI = \pi (R_n^2 - R_{n-1}^2),$$ where 'R' is the radius of the tree and 'n' is the year of tree ring formation. The BAI chronology was produced using the bai.out function in the dplR package in R as some tree cores had missed pith and almost every core had intact bark (R Core Team 2015). We produced BAI series from each site from the period which has at least 10 trees to represent the site population, and to avoid idiosyncrasies at the individual tree level. We analyzed the trend of BAI series at each site for the time period of 1990-2014 AD, that represented the growth trend after the growth release phase, thereby avoiding periods of juvenile growth that are likely to be substantially determined by competitive interactions rather than climate (Jump et al. 2006). # Results Table 1 # Climatic trends Mustang (Lete and Thakmarpha) showed significant warming with a consistent increase of mean and maximum annual temperature during recent decades but without any trend in minimum temperatures (Fig. 2). The moist site (Lete) showed a significant increase in annual rainfall and a stable trend of spring season (March-May) rainfall, whereas the dry site (Thakmarpha) showed no rainfall trend. Hence, considering the overall balance of temperature trends and total rainfall, the moist site (MT) is getting wetter and warmer whereas the dry site (DT) is getting drier and warmer in the recent decades (Fig. 2, 3a, b). The amount and duration of snow cover is an important determinant of soil moisture in high mountains in Himalayas (Müller et al. 2016). While we do not have direct measurements of snow cover at each study site, local people report substantial decrease in snow fall around Chimang (Tiwari, 2015 personal communication). **Fig. 2** Annual temperature trend of Thakmarpha (Mustang); maximum temperature (T*max*), mean temperature (T*mean*) and minimum temperature (T*min*). Fig. 3 Rainfall trend; total annual rainfall and total spring season (March-May) rainfall; (a) MT, (b) DT ## Ring-width chronology and growth climate response We produced three well-replicated tree ring with chronologies of *Betula utilis*, from the moist treeline sites, and semiarid timberline site. The location of sampling sites and chronology statistics are summarised in Table 1. 174 Tree-ring chronology summary statistics. | Sampled location | Elevation
range (m
asl) | Chronology
(years) | Mean
series
Length | No of
cores
(trees) | Mean
sensitivity | EPS | All series
Rbar | 1 st order
AC | |----------------------------|-------------------------------|-----------------------|--------------------------|---------------------------|---------------------|-------|--------------------|-----------------------------| | Moist
Treeline
(MT1) | 3650-3900 | 186 | 73 | 27 (23) | 0.382 | 0.907 | 0.226 | 0.062 | | Moist
Treeline
(MT2) | 3700-3900 | 107 | 65 | 56 (52) | 0.324 | 0.954 | 0.415 | 0.026 | | Timberline
Dry (DT) | 3000-3300 | 122 | 79 | 49 (24) | 0.360 | 0.968 | 0. 315 | 0.001 | Fig. 4 Tree ring-width standard chronology of B. utilis; (a) MT1, (b) MT2, (c) DT. The growth climate analysis of *B. utilis* revealed a significant positive relationship (p < 0.05) between the ring width series and monthly rainfall during spring season (March-May) both at moist treeline (MT1, MT2) and dry timberline (DT) (Fig. 5d,e,f). At least one month during spring season, showed significant positive correlation (p < 0.05) of total rainfall with ring width indices in each site. Previous year's summer rainfall was found to have a stronger positive impact on tree radial growth at DT, while this effect was observed more weakly at MT1 and MT2. A significant negative relationship (p < 0.05) between radial growth and mean temperature (Tmean) for the spring season was observed at both treeline sites (MT1 and MT2), although this relationship was weaker at DT. Tmean of October also showed a significant negative relationship with radial growth (p < 0.05) at MT1 and DT (Fig. 5a,c). Further, the minimum temperature (Tmin) showed stronger negative correlation in early growing season (Feb-May) at MT2, which was weaker at MT1 and DT. However, the maximum temperature (Tmax) showed stronger negative correlation to ringwidth indices at DT in comparison to MT1 and MT2. Overall, while similarities in response are clear, we also found a contrasting response of radial growth to monthly climate among sites. **Fig. 5** Correlation coefficients of tree ring width indices, with total monthly maximum (T*max*), mean (T*mean*) and minimum temperature (T*min*); MT1(a), MT2(b), DT(c), and total monthly rainfall; MT1(d), MT2(e), DT(f); of June in the previous year to October of the current year, spring season and annual climate, dashed horizontal lines indicate significant correlation at 95% confidence limit for a two-tailed test. #### Temporal pattern of radial growth BAI chronology at MT1 (1933-2014) and MT2 (1935-2014 AD) indicated a rapid increase followed by relatively stable (MT1) and weakly declining (MT2) trend in
recent years, whereas at DT, BAI (1912-2014 AD) increased steadily at the beginning and declined abruptly in recent decades. BAI at DT showed a statistically significant declining trend, while that of MT1 and MT2 was without statistically significant trend for the same period (1990-2014 AD) as indicated by linear regression (Fig. 6,7). Fig. 6 Basal area increment (BAI) chronology of B. utilis at moist treeline; MT1(a), MT2(b), dry timberline DT(c), **Fig. 7** BAI trend during 1990-2014 AD at MT1(a), MT2(b) and DT(c), solid lines are the regression line and the shaded lines represent the 95% confidence interval. ### Discussion 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 #### Climatic trends Climate data for the study regions at Mustang showed a consistent warming both at MT and DT, and high spatial variability in rainfall, as reported in Eastern Himalayas (Sharma et al. 2000; Shrestha et al. 2012). The moist region of Lete is getting wetter and warmer with increasing rainfall, whereas the semi-arid region of Thakmarpha is getting drier and warmer with very low and stable rainfall over recent decades. Such diverging trends of temperature and precipitation might have significant impacts on plant growth and forest productivity, given that the rapidly increasing maximum temperature enhances evapotranspiration and will negatively impact soil moisture availability in the drier spring season (Schickhoff et al. 2015). The increasing rainfall at Lete and almost stable rainfall at Thakmarpha is contrary to the enhanced frequency of winter and pre-monsoon drought reported from western Nepal (Wang et al. 2013). While the climatic trend of the Trans- Himalayan region (Mustang) showed the typical regional pattern of a rapid increase in maximum temperature and almost stable trend in minimum temperature, local precipitation trends show more variability. A consistent trend of increasing average rainfall was reported in the central Himalayas except the Northern Triangle temperate forest ecoregion (Shrestha et al. 2012), irrespective of decreasing precipitation trends in Western Himalayas (Kumar and Jain 2009). This contrast limits broad generalizations of climate trends and vegetation responses in the region (Schickhoff 2005; Miehe et al. 2015; Tiwari et al. 2016). We emphasize that the climate of the interior of the topographically complex Trans-Himalayan region is highly spatially variable and regionally complex so that extrapolation of future precipitation trends and forest responses for the region could be misleading. ### Ring-width chronology and growth climate response Our results demonstrated that the radial growth of *B. utilis* was mainly limited by temperature induced moisture stress during the spring season both at treeline (MT) and timberline (DT), irrespective of substantial differences in total rainfall between sites. The spring season rainfall and maximum temperature were relatively more important than mean temperature in the dry timberline site (DT). Our findings are in agreement with the moisture sensitivity of birch reported from the upper timberline in central Himalaya (Dawadi et al. 2013; Liang et al. 2014; Gaire et al. 2016), and for *Abies* spectabilis from the semi-arid treeline in the Trans-Himalayan zone (Tiwari et al. 2016). However, tree growth at high altitudes and latitudes was also reported to have been favored by high summer temperature (Barber et al. 2004; Chen et al. 2011). In our results, the temperature sensitivity of birch at MT was seen in the negative correlation with mean temperature (Tmean) of early spring (Feb-March), which was less strong at DT. Our results revealed that spring season precipitation was more important for radial growth at DT in comparison with MT, this could be because of higher temperature and increased competition between trees at DT and also due to precipitation deficit in that area, in comparison to sparse trees and higher precipitation at MT, as has been reported in various studies in Himalaya and Tibet (Lv and Zhang 2012; Qi et al. 2015; Tiwari et al. 2016). Spring season climate is critical for *B. utilis* in the Himalayan highlands as shoot, leaf and floral buds begin to sprout during April (Bisht et al. 2014), and warmer springs can contribute to elevated frost damage and reduced water availability, with consequent negative impacts on tree growth (Körner 2003). The early growing season (Feb-May) mean temperature (Tmean) sensitivity in the treeline sites could be associated with snow pack accumulation, as most of the precipitation during this time falls in the form of snow. The timing and duration of snow accumulation are important factors in the treeline where early warming (increase of Tmean) of growing season (Feb-March) could facilitate budding and shoot formation (Bisht et al. 2014) and radial growth by snow melt (Vaganov et al. 1999; Bekker 2005). However, there is a chance of heat induced water deficit during the spring season and any such drought exposure could affect growth and seedling establishment at treelines, and may even cause retreating of treeline (Liang et al. 2014). Here, we reported more or less similar climate growth response at MT1, MT2 and DT, although the strength of the correlation differed. Tree radial growth showed a stronger negative response to maximum temperature (Tmax) at DT (Fig. 5), implying that projected warming will negatively impact future growth as drought stress intensifies at DT, given consistent warming and low precipitation in the region (Fig. 1,2,3). In the Himalayan region, moisture stress during spring season (March-May) was found to limit the radial growth of *B. utilis* even at the treeline (Gaire et al. 2016). Some studies in the Himalaya also reported radial growth of *A. spectabilis* to be temperature sensitive (Bräuning 2004; Borgaonkar et al. 2011; Gaire et al. 2014) and they explained a negative relationship between spring climate and radial growth as threshold effects of moisture or temperature. Further, they emphasized heat induced water deficit associated with high velocity of wind and increased evapotranspiration, to have negative influence on tree growth (Cook et al. 2003; Gaire et al. 2014). We infer that the precipitation seasonality is highly important for systems with a short growing season in higher altitude, with a shorter time for plants to compensate for a dry period, and especially so when the season is also characterized by high temperature (Spence et al. 2015). However we also emphasize here that, although the rainfall is increasing in the moist region like Lete Lekh, and it is stable in the semi-arid region like Chimang, if precipitation is increasingly falling as rainfall rather than snow, soil water recharge from snow could further decline. Hence even where overall precipitation is increased, the site might even be drier in the summer since water from rain flows away quickly while the water from snowmelt seeps gradually into the soil over a longer period (Müller et al. 2016). Consequently, accurate characterisation of snow fall is desirable to help understand if weaker spring precipitation and continuous warming will drive further decline of birch radial growth and vitality in the semi-arid region of Mustang. ## Temporal pattern of radial growth 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 In mature forest stands, age-related trends of BAI are generally positive. BAI may continue to increase in healthy stands (LeBlanc 1992; Duchesne et al. 2003), or stabilize (LeBlanc et al. 1992), but it does not show a decreasing trend until trees begin to senesce or unless trees are subject to significant growth stress (LeBlanc 1992; Weiner & Thomas 2001; Duchesne et al. 2003, Jump et al. 2006). Our results showed that the BAI of birch at MT1 and MT2 typically followed a sigmoidal pattern as it increased rapidly from young to middle age and remained almost stable during period of middle and older age as described by Spiecker et al. (1996) and Weiner and Thomas (2001). We report abruptly decreasing BAI of birch trees in the semi arid timberline (DT) over recent decades in comparison to that of relatively moist treeline (MT). The negative influence of warm-day conditions (Tmax) to radial growth also indicated that the semi-arid high mountain biota is experiencing temperature induced drought stress (Fig. 5c,f). This finding emphasises that tree growth and productivity in the semi-arid high mountains might further decline under the projected warming scenario (IPCC 2013). The contrasting growth trend of birch at moist treeline and semi-arid timberline sites showed the strong influence of precipitation associated with increasing warm-day conditions. The decrease of BAI at DT should be interpreted with some caution, however, because of lower canopy exposure at DT than MT, and potentially higher competition between trees in this semi-arid zone. In contrast, MT is characterized by comparatively less competition and a more open canopy (Spiecker et al. 1996), which might contribute to increasing/stable BAI at MT. Furthermore, nutrient availability, soil quality, and topographic exposure also play important roles in modifying local growth patterns of birch forests in the region (Müller et al. 2016). Nonetheless, given the growth-climate relationships identified, we believe that structural differences and potential localized site quality variation between the treelines do not adequately explain BAI decline at DT, since this site would be expected to show lower BAI with lower individual tree resource availability but not declining BAI over time. Consequently, we interpret our results as demonstrating that declining BAI at the semi-arid site is an early signal of growth decline at DT over the recent decades, due to increasing drought stress. Although growth climate analysis revealed DT to be more
sensitive to precipitation than temperature, we emphasize that the increasing temperature in the future (IPCC, 2013) would further intensify any temperature induced drought stress in the region. *B. utilis* is an important early successional species in the Himalayan treelines (Shrestha et al. 2007) and therefore a highly significant species in terms of forest ecosystems in the Himalayan highlands, declining growth in this species might alter competitive relationships and hence future forest composition at the lower range edge in the semi-arid forest of Chimang Lekh. ### Conclusion The spatial variability of climate in the interior of high mountain regions like the Himalayas is high due to interactions of complex topography and rain shadow effects. Although climate warming is generally expected to have an ameliorating influence on plant growth at high elevation, leading to upward elevational shifts of tree species, the positive influence of increasing temperature is not always universal in such regions. Strong gradients of precipitation over a short distances result in high altitude forests showing varying sensitivity to temperature and moisture. We find that spring precipitation and temperature is critical for radial growth of Himalayan birch, yet precipitation is more important than temperature at drier sites. Birch radial growth declined significantly at the dry site investigated here, where the rainfall trend is almost stable despite increasing temperatures over the recent decades. No such growth decline is seen in the wet site, where moisture availability remains adequate. Decreasing birch radial growth at its lower range edge demonstrates the negative influence of increasing temperatures in contrast with the moist upper treeline. Our results highlight the strongly spatially variable response of Himalayan birch to elevated temperatures and changing precipitation patterns in the region and can refine our understanding of likely responses of mountain forests to climate change. ### Acknowledgements This research was supported by National Natural Science Foundation of China (NSFC) (U1502231). We thank two anonymous reviewers for their constructive comments. The authors are grateful to KP Sharma, Mr. Raju Bista, Binod Tulachan, Chandra and Sagar for their contribution to field management and sample collection. We would also like to thank Bharat Babu Shrestha, Uttam Babu Shrestha, Su Tao, Li Shu Feng, Shalik Ram Sigdel, Julie Lebreton Anberree, Deepak Kharal, and Shankar Panthi for their guidance and support. Finally, we acknowledge Department of National Parks and Wildlife Reserve Government of Nepal and the Annapurna Conservation Area Project (ACAP, Nepal) for providing permission to carry out the field work. #### References 306 307 308 309 310 311 331 312 Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears 313 DD, Hogg EH (Ted), Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, 314 Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259:660-684. doi: 315 316 10.1016/j.foreco.2009.09.001 317 Aryal A, Hipkins JJW, Raubeinhimer D, Brunton D (2012) Distribution and diet of brown bear in Annapurna 318 Conservation Area, Nepal. Ursus 23:231–236. 319 Barber VA, Juday GP, Finney BP, Wilmking M (2004) Reconstruction of summer temperatures in interior Alaska from 320 tree-ring proxies: evidence for changing synoptic climate regimes. Climatic Change 63: 91-120. 321 Bekker MF (2005) Positive feedback between tree establishment and patterns of subalpine forest advancement, Glacier 322 National Park, Montana, U.S.A. Arctic Antarctic and Alpine Research. 37(1): 97-107. doi:10.1657/1523-323 0430(2005)037[0097:PFBTEA] 2.0.CO;2. 324 Beniston M (2003) Climatic changes in mountain regions: a review of possible impacts. Climatic change 59: 5-31. 325 Bhattacharyya A, Shah SK, Chaudhary V (2006) Would tree ring data of Betula utilis be potential for the analysis of 326 Himalayan glacial fluctuations? Current Science 9, 754e761. 327 Bhattarai S, Chaudhary RP, Quave SL, Taylor RSL (2010) The use of medicinal plants in the Trans-Himalayan arid zone 328 of Mustang district, Nepal. Journal of Ethnobiology and Ethnomedicine 6:14. doi:10.1186/1746-4269-6-14. 329 Bisht VK, Kuniyal CP, Bhandari AK, Nautiyal BP, Prasad P (2014) Phenology of plants in relation to ambient 330 environment in a subalpine forest of Uttarakhand, western Himalaya. Physiology and molecular biology of plants: an international journal of functional plant biology 20:399-403. doi: 10.1007/s12298-014-0238-2 | 332 | Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science | |-----|--| | 333 | 320:1444–1449 | | 334 | Borgaonkar HP, Sikder AB, Ram S (2011) High altitude forest sensitivity to the recent warming: A tree-ring analysis of | | 335 | conifers from Western Himalaya, India. Quaternary International 236:158-166. doi: 10.1016/j.quaint.2010.01.016 | | 336 | Bräuning A (2004) Tree-ring studies in the Dolpo-Himalya (western Nepal). Proceedings of the | | 337 | DENDROSYMPOSIUM 2003 2:8–12. | | 338 | Briffa KR, Schweingruber FH, Jones PD, Osborn TJ, Harris IC, Shiyatov SG, Vaganov EA, Grudd H, Cowie J (1998) | | 339 | Trees tell of past climates: But are they speaking less clearly today? [and Discussion]. Philosophical Transactions: | | 340 | Biological Sciences 353: 65-73. | | 341 | Bunn AG, Graumlich LJ, Urban DL (2005) Trends in twentieth-century tree growth at high elevations in the Sierra | | 342 | Nevada and White Mountains, USA. Holocene 15: 481–488. | | 343 | Cavin L, Jump AS (2016) Highest drought sensitivity and lowest resistance to growth suppression are found in the range | | 344 | core of the tree Fagus sylvatica L. not the equatorial range edge. Global Change Biology. doi: 10.1111/gcb.13366 | | 345 | Chen L, Wu S, Pan T (2011) Variability of climate-growth relationships along an elevation gradient in the Changbai | | 346 | Mountain, northeastern China. Trees 25: 1133–1139. | | 347 | Cherubini P, Dobbertin M, Innes JL (1998) Potential sampling bias in long-term forest growth trends reconstructed from | | 348 | tree-rings: A case study from the Italian Alps. Forest Ecology and Management 109: 103-118. | | 349 | Cook ER (1985) A time-series analysis approach to tree-ring standardization. Ph.D Dissertation. The University of | | 350 | Arizona Press, Tucson. | | 351 | Cook ER, Krusic PJ, Jones PD (2003) Dendroclimatic signals in long tree-ring chronologies from the Himalayas of | | 352 | Nepal. International Journal of Climatology 23, 707e732. | | 353 | Cox PM, Pearson D, Booth BB, Friedlingstein P, Huntingford C, Jones CD, Luke CM (2013) Sensitivity of tropical | | 354 | carbon to climate change constrained by carbon dioxide variability. Nature 494:341-345 | | 355 | Dai A (2011) Drought under global warming: A review. Wiley Interdisciplinary Reviews: Climate Change 2:45–65. doi: | | 356 | 10.1002/wcc.81 | | 357 | Dai AG (2013) Increasing drought under global warming in observations and models. Nature Climate Change 3:52–58. | | 358 | doi: 10.1038/nclimate1633 | | 359 | Dawadi B, Liang E, Tian L, Devkota LP, Yao T (2013) Pre-monsoon precipitation signal in tree rings of timberline | | 360 | Betula utilis in the central Himalayas. Quaternary International 283:72-77. doi: 10.1016/j.quaint.2012.05.039 | |-----|---| | 361 | Duchesne L, Ouimet R, Morneau C (2003) Assessment of sugar maple health based on basal area growth pattern. | | 362 | Canadian Journal of Forest Research 33, 2074–2080. | | 363 | Esper J, Cook E, Schweingruber F (2002) Low-frequency signals in long tree-ring chronologies for reconstructing past | | 364 | temperature variability. Science, 295, 2250–2253. | | 365 | Fritts HC (1976) (Reprint, 2001) Tree rings and climate, Caldwell, New Jersey: The Blackburn Press. | | 366 | Gaire NP, Koirala M, Bhuju DR, Borgaonkar HP (2014) Treeline dynamics with climate change at the central Nepal | | 367 | Himalaya. Climate of the Past 10:1277-1290. doi: 10.5194/cp-10-1277-2014 | | 368 | Gaire NP, Koirala M, Bhuju DR, Carrer M (2016) Site- and species-specific treeline responses to climatic variability in | | 369 | eastern Nepal Himalaya. Dendrochronologia 1–13. doi: 10.1016/j.dendro.2016.03.001 | | 370 | Government of Nepal (2010) Mustang District profile. District Statistical Office, Government of Nepal, Mustang District | | 371 | Nepal, p 87. | | 372 | Grabherr G, Gottfried M, Pauli H (1994) Climate effects on mountain plants. Nature 369: 448. | | 373 | Greenwood S, Chen JC, Chen CT, Jump AS (2014) Strong topographic sheltering effects lead to spatially complex | | 374 | treeline advance and increased forest density in a subtropical mountain region. Global Change Biology 20:3756- | | 375 | 3766. doi: 10.1111/gcb.12710 | | 376 | Harsch M a., Hulme PE, McGlone MS, Duncan RP (2009) Are treelines advancing? A global meta-analysis of treeline | | 377 | response to climate warming. Ecology Letters 12:1040–1049. doi: 10.1111/j.1461-0248.2009.01355.x | | 378 | Hofgaard A (1997) Inter-relationships between treeline position, species diversity, land use and climate change in the | | 379 | central scandes mountains of Norway. Global Ecology and Biogeography Letters 6, 419-429. | | 380 | doi:10.2307/2997351 | | 381 | Holtmeier FK (2003) Mountain timberlines: ecology, patchiness and dynamics. Dordrecht, Germany: Kluwer Academic | | 382 | Publishers. | | 383 | Holtmeier FK, Broll G (2007) Treeline advance - driving processes and adverse factors. Landscape Online 1:1–33. doi: | | 384 |
10.3097/LO.200701 | | 385 | IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels | | 386 | A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The physical science basis. Contribution of Working | | 387 | Group I to the Fifth Assessment Report of the Intergovernmental Panel on climate change. Cambridge University | |-----|--| | 388 | Press, Cambridge, pp 3–32. | | 389 | Jump AS, Hunt JM, Peñuelas J (2006) Rapid climate change-related growth decline at the southern range edge of Fagus | | 390 | sylvatica. Global Change Biology 12:2163–2174. doi: 10.1111/j.1365-2486.2006.01250.x | | 391 | Körner C (2000) Biosphere response to CO2 enrichment. Ecological Applications 10: 1590-1619. | | 392 | Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems. Berlin, Germany: Springer. | | 393 | Kumar V, Jain SK (2009) Trends in seasonal and annual rainfall and rainy days in Kashmir valley in the last century. | | 394 | Quaternary International 211: 64–69. | | 395 | La Sorte FA, Jetz W (2010) Projected range contractions of montane biodiversity under global warming. Proceedings of | | 396 | the Royal Society B: Biological Sciences 277: 3401-3410. | | 397 | LeBlanc DC, Nicholas NS, Zedaker SM (1992) Prevalence of individual-tree growth decline in red spruce populations of | | 398 | the southern Appalachian Mountains. Canadian Journal of Forest Research, 22, 905–914. | | 399 | Liang E, Dawadi B, Pederson N, Eckstein D (2014) Is the growth of birch at the upper timberline in the Himalayas | | 400 | limited by moisture or by temperature? Ecology 95:140307191613003. doi: 10.1890/13-1904.1 | | 401 | Lv LX, Zhang Q Bin (2012) Asynchronous recruitment history of Abies spectabilis along an altitudinal gradient in the | | 402 | Mt. Everest region. Journal of Plant Ecology 5:147–156. doi: 10.1093/jpe/rtr016 | | 403 | Mäenpää E, Skre O, Malila E, Partanen R, Wielgolaski FE, Laine K (2001) Carbon economy in birch-dominated | | 404 | ecosystem species in northern Fennoscandia. In: Wielgolaski FE (ed) Nordic Mountain Birch Ecosystems. MAB | | 405 | Series vol 27. The Parthenon Publishing Group, N. Y. – London, pp 93-114 | | 406 | McCabe GJ, Wolock DM (2015) Increasing Northern Hemisphere water deficit. Climatic Change 132:237–249. doi: | | 407 | 10.1007/s10584-015-1419-x | | 408 | Miehe S, Miehe S, Miehe S, Böhner J, Bäumler R, Ghimire SK, Bhattarai K, Chaudhary RP, Subedi M (2015) 16. | | 409 | Vegetation Ecology. In book: Nepal: an introduction to the natural history, ecology and human environment in the | | 410 | Himalayas – A companion to the Flora of Nepal, Edition: 1st, Chapter: 16, Publisher: The Royal Botanical Garden | | 411 | Edinburgh, Editors: G. Miehe & C.A. Pendry, pp.385-472 | | 412 | Monserud RA, Sterba H (1996) A basal area increment model for individual trees growing in even-and uneven-aged | | 413 | forest stands in Austria, Forest Ecology and Management 80: 57–80 | 414 Morgan JA, Pataki DE, Körner C, Clark H, Del Grosso SJ, Grünzweig JM, Knapp AK, Mosier AR, Newton PCD, 415 Niklaus PA, Nippert JB, Nowak RS, Parton WJ, Polley HW, Shaw MR (2004) Water relations in grassland and 416 desert ecosystems exposed to elevated atmospheric CO2. Oecologia, 140, 11–25. 417 Morison JIL (1993) Response of plants to CO2 under water limited conditions. Vegetatio, 104, 193-209. 418 Müller M, Schwab N, Schickhoff U, Böhner J, Scholten T (2016) Soil temperature and soil moisture patterns in a 419 Himalayan alpine treeline ecotone. 48:501-521. doi: 10.1657/AAAR0016-004 420 Nogués-Bravo D, Araújo MB, Errea MP, Martínez-Rica JP (2007) Exposure of global mountain systems to climate 421 warming during the 21st century. Global Environmental Change 17: 420-42. 422 Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJP, 423 Ceulemans R, De Angelis P, Finzi AC, Karnosky DF, Kubiske ME, Lukac M, Pregitzer KS, Scarascia-Mugnozza 424 GE, Schlesinger WH, Oren O (2005) Forest response to elevated CO2 is conserved across a broad range of 425 productivity. Proceedings of the National Academy of Sciences USA, 102, 18052–18056. 426 Peñuelas J, Ogaya R, Boada M, Jump AS (2007) Migration, invasion and decline: changes in recruitment and forest 427 structure in a warming-linked biome shift in Catalonia (NE Spain). Ecography, 30, 830-838. 428 Peñuelas J, Hunt JM, Ogaya R, Jump AS (2008) Twentieth Century changes of tree-ring δ13C at the southern range-edge 429 of Fagus sylvatica: Increasing water-use efficiency does not avoid the growth decline induced by warming at low 430 altitudes. Global Change Biology 14:1076–1088. doi: 10.1111/j.1365-2486.2008.01563.x 431 Peñuelas J, Canadell JG, Ogaya R (2011) Increased water-use efficiency during the 20th Century did not translate into 432 enhanced tree growth. Global Ecology and Biogeography 20:597-608. doi: 10.1111/j.1466-8238.2010.00608.x 433 Phipps RL, Whiton JC (1988) Decline in long-term growth trends of white oak. Canadian Journal of Forestry Research, 434 18, 24–32. 435 Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA & Solomon AM (1992) A global biome model based on 436 plant physiology and dominance, soil properties and climate. Journal of Biogeography 19: 117–134. 437 Oi Z, Liu H, Wu X, Hao O (2015) Climate-driven speedup of alpine treeline forest growth in the Tianshan Mountains, 438 Northwestern China. Global Change Biology 21:816–826. doi: 10.1111/gcb.12703 439 R Core Team (2015). R: A language and environment for statistical computing. R Foundation for 440 Statistical Computing, Vienna, Austria. URL http://www.R-project.org/. 441 Rinn F (2003) TSAP-Win: Time Series Analysis and Presentation for Dendrochronology and Related Applications. 442 Version 0.55 User reference. Heidelberg, Germany (http://www.rimatech.com). 443 Rubino DL, McMarthy BC (2000) Dendroclimatological analysis of white oak (*Quercus alba L.*, Fagaceae) from an old-444 growth forest of southeastern Ohio, USA. Journal of the Torrey Botanical Society 127: 240-250. 445 Sala OE, Parton WJ, Joyce LA & Lauenroth WK (1988) Primary production of the central grassland region of the 446 United-States. Ecology 69: 40-45. 447 Sano M, Furuta F, Kobayashi O, Sweda T (2005) Temperature variations since the mid-18th century for western Nepal, 448 as reconstructed from tree-ring width and density of Abies spectabilis. Dendrochronologia 23, 83e92. 449 Salzer MW, Hughes MK., Bunnb AG, Kipfmueller KF (2009) Recent unprecedented tree-ring growth in bristlecone pine 450 at the highest elevations and possible causes. Proceedings of the National Academy of Sciences of the United 451 States of America 106, 20348-20353. 452 Schickhoff U (2005) The upper timberline in the Himalayas, Hindu Kush and Karakorum: a review of geographical and 453 ecological aspects, in: Mountain ecosystems: studies in treeline ecology, edited by: Broll, G. and Keplin, B., 454 Springer, Berlin, Germany, 275–354. 455 Schickhoff U, Bobrowski M, Böhner J, Bürzle B, Chaudhary RP, Gerlitz L, Heyken H, Lange J, Müller M, Scholten T, 456 Schwab N, Wedegärtner R (2015) Do Himalayan treelines respond to recent climate change? An evaluation of 457 sensitivity indicators. Earth System Dynamics 6:245-265. doi: 10.5194/esd-6-245-2015 458 Sharma E, Tsering K (2009) Climate change in the Himalayas: The vulnerability of biodiversity. Sustainable Mountain 459 Development 55: 10-12. 460 Sharma K, Moore B, Vorosmarty C (2000) Anthropogenic, climatic, and hydrologic trends in the Koshi basin, Himalaya. 461 Climatic Change 47: 141-165. 462 Shrestha AB, Wake CP, Mayewski PA, Dibb JE (1999) Maximum temperature trends in the Himalaya and its vicinity: 463 An analysis based on temperature records from Nepal for the period 1971-94. Journal of Climatology 12: 2775-464 2786. 465 Shrestha AB, Wake CP, Dibb JE, Mayewski PA (2000) Precipitation fluctuations in the Nepal Himalaya and its vicinity 466 and relationship with some large scale climatological parameters. International Journal of Climatology 20: 317– 467 327. Shrestha BB, Ghimire B, Lekhak HD, Jha PK (2007) Regeneration of Treeline Birch (Betula utilis D. Don) Forest in a 468 | 469 | Trans-Himalayan Dry Valley in Central Nepal. Mountain Research and Development 27:259–267. doi: | |-----|---| | 470 | 10.1659/mrdd.0784 | | 471 | Shrestha UB, Gautam S, Bawa KS (2012) Widespread climate change in the Himalayas and associated changes in local | | 472 | ecosystems. PloS one 7:1–10. doi: 10.1371/journal.pone.0036741 | | 473 | Spence LA, Liancourt P, Boldgiv B, Petraitis PS, Casper BB (2015) Short-term manipulation of precipitation in | | 474 | Mongolian steppe shows vegetation influenced more by timing than amount of rainfall. Journal of Vegetation | | 475 | Science 1–10. doi: 10.1111/jvs.12349 | | 476 | Spiecker H, Mielikaeinen K, Kohl M, Skovsgaard P (eds) (1996) Growth trends in European forests: Studies from 12 | | 477 | countries. Research Report, European Forest Institute No. 5. Springer. Berlin, Germany. | | 478 | Stainton JDA (1972) Forests of Nepal. New York | | 479 | Stokes MA, Smiley TL (1968) An Introduction to Tree-Ring Dating. The University of Chicago Press, Chicago. 63 p. | | 480 | TISC (Tree Improvement and Silviculture Component) (2002) Forest and Vegetation Types of Nepal. TISC Document | | 481 | Series 105. Kathmandu, Nepal: Department of Forest. | | 482 | Tiwari A, Fan Z-X, Jump AS, Li S-F, Zhou Z-K (2016) Gradual expansion of moisture sensitive Abies spectabilis forest | | 483 | in the Trans-Himalayan zone of central Nepal associated with climate change. Dendrochronologia 1–10. doi: | | 484 | 10.1016/j.dendro.2016.01.006 | | 485 | Tsering K (2003) Constructing
future climate scenarios of Bhutan. In Project report on climate change vulnerability and | | 486 | adaptation study for rice production in Bhutan; Climate change studies in Bhutan, Ministry of Agriculture, | | 487 | Bhutan. | | 488 | Vaganov EA, Hughes MK, Kirdyanov AV, Schweingruber FH and Silkin PP (1999) Influence of snowfall and melt | | 489 | timing on tree growth in subarctic Eurasia. Nature 400(6740): 149–151. doi:10.1038/22087. | | 490 | Voelker SL, Muzika R, Guyette RP, Stambaugh MC (2006) Historical CO2 growth enhancement declines with age in | | 491 | Quercus and Pinus. Ecological Monographs 76: 549-564. | | 492 | Wang SY, Yoon JH, Gillies RR, Cho C (2013) What caused the winter drought in western nepal during recent years? | | 493 | Journal of Climate 26:8241–8256. doi: 10.1175/JCLI-D-12-00800.1 | | 494 | Wardle P (1974) Alpine timberlines. In: lives JD, Barry RG (eds) Arctic alp environments. Methuen, London, pp 371- | | 495 | 402. | | 496 | Weiner J, Thomas SC (2001) The nature of tree growth and the age-related decline in forest productivity. Oikos 94: 374- | |-----|---| | 497 | 376. | | 498 | Xu J, Grumbine RE, Shrestha A, Eriksson M, Yang X, Wang Y, Wilkes A (2009) The melting Himalayas: Cascading | | 499 | effects of climate change on water, biodiversity, and livelihoods. Conservation Biology 23:520-530. doi: | | 500 | 10.1111/j.1523-1739.2009.01237.x | | 501 | Yang B, Kang XC, Liu JJ, Brauning A, Qin C (2010) Annual temperature history in Southwest Tibet during the last 400 | | 502 | years recorded by tree rings. International Journal of Climatology 30: 962-971. | | 503 | Yang B, He M, Melvin TM, Zhao Y, Briffa KR (2013) Climate control on tree growth at the upper and lower treelines: a | | 504 | case study in the Qilian Mountains, Tibetan Plateau. PLoS ONE 8(7):e69065 | | 505 | Zhang Q, Zhang Y, Peng S, Yirdaw E, Wu N (2009) Spatial structure of alpine trees in mountain baima xueshan on the | | 506 | southeast tibetan plateau. Silva Fennica 43:197–208. | | 507 | Zobel DB, Singh SP (1997) Himalayan forests and ecological generalizations. BioScience 47:735–745. | | 508 | |