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Abstract

Glaciers and ice sheets are important agents of bedrock erosion, yet the precise processes of bedrock failure
beneath glacier ice are incompletely known. Subglacially formed erosional crescentic markings (crescentic
gouges, lunate fractures) on bedrock surfaces occur locally in glaciated areas and comprise a conchoidal fracture
dipping down-ice and a steep fracture that faces up-ice. Here we report morphologically distinct crescentic scars
that are closely associated with preexisting joints, termed here joint-bounded crescentic scars. These hitherto
unreported features are ca. 50-200 mm deep and involve considerably more rock removal than previously
described crescentic markings. The joint-bounded crescentic scars were found on abraded rhyolite surfaces
recently exposed (<20 years) beneath a retreating glacier in Iceland, as well as on glacially sculpted Precambrian
gneisses in NW Scotland and various Precambrian rocks in Ontario, glaciated during the Late Pleistocene. We
suggest a common formation mechanism for these contemporary and relict features, whereby a boulder
embedded in basal ice produces a continuously migrating clast-bed contact force as it is dragged over the hard
(bedrock) bed. As the ice-embedded boulder approaches a preexisting joint in the bedrock, stress concentrations
build up in the bed that exceed the intact rock strength, resulting in conchoidal fracturing and detachment of a
crescentic wedge-shaped rock fragment. Subsequent removal of the rock fragment probably involves further
fracturing or crushing (comminution) under high contact forces. Formation of joint-bounded crescentic scars is
favoured by large boulders at the base of the ice, high basal melting rates, and the presence of preexisting
subvertical joints in the bedrock bed. We infer that the relative scarcity of crescentic markings in general on
deglaciated surfaces shows that fracturing of intact bedrock below ice is difficult, but that preexisting
weaknesses such as joints greatly facilitate rock failure. This implies that models of glacial erosion need to take

fracture patterns of bedrock into account.
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1. Introduction

The two main mechanisms of subglacial erosion of hard bedrock beneath glaciers and ice sheets are
generally regarded to be abrasion and plucking (quarrying), with an added component of subglacial
meltwater erosion (e.g., Drewry, 1986; Glasser and Bennett, 2004). A major challenge in understanding
plucking has been the need to explain the failure (breaking) of hard bedrock by moving ice (e.g.,
Morland and Boulton, 1975; Iverson, 1991; Hallet, 1996). Ice has a shear strength and a compressive
strength that is much lower than most intact rock types (see Table 1), and envisaging how such a weak
material can fracture a much stronger material is difficult. More recent studies have now established
that most, if not all, plucking occurs along preexisting fractures (joints) so that intact bedrock need not
be fractured directly by ice above it (Rea, 1994; Duhnforth et al., 2010; Krabbendam and Glasser, 2011;
Hooyer et al., 2012; Iverson, 2012). In essence, preexisting weaknesses such as joints (typically formed
by uplift, cooling, or tectonic stresses) are merely exploited by the plucking process to further break
apart the rock. However, the occurrence of crescentic markings — a family of small-scale erosional
bedforms all characterised by conchoidal fracturing — suggests that fracturing of intact bedrock does

occur below glaciers and ice sheets under certain circumstances.
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(A) Lunate fracture (B) Crescentic gouge (C) Crescentic fractures (D) Joint-bounded crescentic
{'crescenic scar') (‘reverse crescentic scar’) scar (this paper)

Fig. 1. Crescentic markings, in plan view (top) and cross-section (bottom); modified after Embleton and King
(1975), with terminology of Prest (1983) in brackets. (A) lunate fracture or crescentic scar; (B) crescentic gouge or
reverse crescentic scar; (C) crescentic fractures, without removal of bedrock; (D) joint-bounded crescentic scar
(this paper). Note different relation between conchoidal fracture and subvertical fracture / joint. The conchoidal
fracture invariably dips in the direction of ice flow.

Crescentic markings include crescentic gouges, lunate fractures, and crescentic fractures
(Chamberlin, 1888; Gilbert, 1906; Lahee, 1912; Harris, 1943; Okko, 1950; Dreimanis, 1953; Slocum,
1978; Wintges, 1985; Glasser and Bennett, 2004). Different names have been used to describe these
(shown in brackets in Fig. 1); we prefer the descriptive term crescentic markings here as a collective
term above the interpretational term friction cracks (cf. Harris, 1943). The term chattermarks is at times
used as a general term (see discussion in Harris, 1943); more strictly they refer to a series of fractures
confined to grooves (Benn and Evans, 1998), but the fractures may not necessarily be crescentic (Harris,
1943). Most crescentic markings have been reported on massive, unfoliated, or poorly foliated bedrock
such as granite, sandstone, or quartzite (Chamberlin, 1888; Harris, 1943; Okko, 1950; Slocum, 1978;
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Wintges, 1985). There is general agreement that crescentic markings are formed by high clast-bed
contact forces, exerted by large cobbles or boulders embedded in basal ice pressing onto the bed
(Gilbert, 1906; Harris, 1943; Hallet, 1979; Ficker et al., 1980; Wintges, 1985; Drewry, 1986; Glasser
and Bennett, 2004). The occurrence of crescentic markings may thus provide information about the
subglacial conditions under which high clast-bed contact forces and bedrock failure can develop.

Fig. 2. Setting of study area of Virkisjékull in SE
Iceland. (A) Vertical air photo (August 2007; NERC
Airborne Research Survey Facility image 20070802-
006622, 2007) of part of ablation zone of
Virkisjokull. Location of studied bedrock high and
approximate ice margin at 1990 are indicated. Much
of the ice in 2011 is covered in debris. LIA is part
of Little Ice Age moraine. (B) View to the NNE of
the study area: the bedrock high on the NW side of
the ablation zone of Virkisjokull. Geological
boundaries same as cross section. (C) Geological
cross section through bedrock high, with 1990 and
2011 ice levels shown.
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During work around the British Geological Survey Virkisjokull Glacial Observatory in southern
Iceland, very well preserved, small- and medium-scale erosional bedforms were noted on a recently
(<20 years) exposed bedrock high (Fig. 2). We noted numerous crescentic scars that are intimately
related with preexisting, preglacial joints in the bedrock; an association that, to our knowledge, has not
been reported before. Here, we define these as joint-bounded crescentic scars. In this paper we present

a detailed analysis of these bedforms identified at Virkisjokull alongside the properties of the bedrock.
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Joint-bounded crescentic scars were also found on Precambrian gneiss in the NW Highlands of Scotland
and on various Precambrian lithologies on the Canadian Shield of Ontario, Canada. These relict
examples developed during Pleistocene glaciation(s). We go on to discuss how high clast-bed contact
forces can be generated below ice; how these can result in stresses that exceed the strength of the bed
adjacent to joints; we propose a formation mechanism for joint-bounded crescentic scars; and finally
discuss how these bedforms can inform us about the circumstances under which bedrock failure of the

glacier bed may occur.

2. Methods
Detailed geological and geomorphological observations were made in the study area in Iceland,
including orientations of glacial striae and bedrock joints, along with depth and angle of joint-bounded
crescentic scars. On a number of level bedrock surfaces, vertical photos were taken with a scale,
carefully oriented to true north. These photos were georeferenced in ArcGIS in an artificial coordinate
system, in essence creating a georeferenced outcrop-scale aerial photo from a height of ca. 2 m (Fig. 3).
Glacial striae and the outline and long axes of crescentic scars were digitised on the georeferenced
images. From these digital lines, the orientation and length were extracted (using ArcTools and a
spreadsheet); these are presented in rose diagrams made using Stereonet V8 software (Cardozo and
Allmendinger, 2013). Joint analysis uses the principle of the circle inventory method (Davis and
Reynolds, 1996, p. 720) to prevent any directional bias, but was speeded up by using the georeferenced
outcrop photos. Circles of known area were drawn in the GIS and all joint traces were digitised within
that particular circle (see also Krabbendam and Bradwell, 2014). Joint orientations can then be easily
extracted from the data set and presented in rose diagrams, using the same method as the striae.
Schmidt Hammer rebound values are a function of rock hardness and show an empirical
exponential relationship with uniaxial compressive strength (Aydin and Basu, 2005) and can thus be
regarded as a proxy for intact rock strength. Schmidt Hammer (type-N) rebound measurements were
taken on outcrops away from edges and joints, as well as on a number of large (>1 m) boulders. Only
smooth surfaces were tested. Ten blows per site were performed in slightly different positions.
Anomalous values, typically on the low side, were rejected; the average of the remainder were taken as

the rebound measurement.



Fig. 3. Outcrop photos, planview, for joint analysis. (A) Planview photo of surface showing columnar jointing.
(B) As previous, georeferenced, with circle and grid superimposed, and digitised traces of joints. (C) Planview of
typical conjugate jointing. (D) As previous, georeferenced, with circle and grid superimposed, and digitised traces
of joints. North to top, black and white marks on ruler have 10-cm spacing, grid on (B) and (D) has 50-cm
spacing. Photos taken ca. 2 m above surface.

3. Glaciology, geology, and geomorphology background, Virkisjokull, Iceland
Virkisjokull is an outlet glacier draining the Oraefajokull Ice Cap in southern Iceland, which largely
covers the Oraefajokull volcano, one of the largest active volcanoes in Iceland. Oraefajékull volcano
consists mainly of basaltic hyaloclastite (volcanic breccias formed by lava-ice and lava-water
interaction), basaltic tuffs, basalt lava flows, and minor rhyolitic intrusions (Prestvik, 1979; Stevenson
et al., 2006). Virkisjokull has experienced jokulhlaups, most recently during an eruption in 1362 CE
(Thorarinsson, 1958). Bradwell et al. (2013) provided a detailed glaciological description of
Virkisjokull and its recent history of rapid retreat (ca. 40 m y™; 1995-2012), which has revealed a

5



bedrock high on the northwest margin of the glacier ablation zone (Figs. 2A, B, 4A). This bedrock
high comprises the main study area; it is elongate (300 m wide, 100 m long) broadly parallel to ice
flow, and varies in height between 20 and 40 m. The top surface of the bedrock high is ca. 100 m
below the maximum level attained by the glacier surface in the Little Ice Age, and the lee side is ca. 1
km from the Little Ice Age terminal moraine reached in about 1890 CE (Thorarinsson, 1943). The
bedrock high is composed of rhyolitic rock, intruded into the volcanic edifice probably as a
subhorizontal, lens-shaped sill, with basalt lava flows, and hyaloclastite and tuff deposits above and
below (Figs. 2B, C). The rhyolite sill is ca. 40 m thick, with a horizontal extent >500 m.

The stoss side on the northern side of the bedrock high was still partially in contact with ice
(in September 2013). Where deglaciated, the stoss side is steep but rounded, smooth bedrock, with
steep striae with variable orientations. On subvertical parts of some stoss sides, small pits, with
surface areas of 10-60 mm?, were observed (Fig. 4C); these were likely formed by crushing or gouging
by large clasts pressed against the stoss side. The southern lee side of the bedrock high shows plucked
bedrock faces in a stepped topography as well as fairly steep (ca. 35-40°) abraded surfaces, but lower
down it is covered by loose morainic debris (Fig. 4A). The lateral ESE face of the bedrock high is a
subvertical cliff (ca. 30 m high), showing columnar jointing (Figs. 4A, B). Horizontal striae are
abundant on this face, and lateral plucking (e.g., Krabbendam and Bradwell, 2011) is also evident. To
the west, the bedrock high is separated from the main valley slope by a straight, 10-20 m deep, 1-3 m
wide slot canyon, interpreted as a subglacial meltwater channel, possibly following a fracture zone or a
fault (Figs. 2, 4A, B).

Loose debris is abundant on the bedrock surface (Fig. 4D); it is poorly sorted and variably
rounded: cobbles and boulders 10-60 cm across are most common, but some are up to ca. 2 m across.
This material represents debris formerly contained in basal ice. Much debris must have entered the
glacier from the steep, unstable valley slopes. One example of this supply is a recent (winter 2010-
2011) rockfall, which deposited ca. 100,000 m° (G. Gudmundsson, Icelandic Met Office, personal
communication) of rock onto the side of the glacier (Fig. 4E). Such events ensure a rich supply of
coarse supraglacial debris onto the glacier that, especially on the lateral side, can work its way to the

ice bed, aided by crevasses.

The bedrock high shows an abundance of smoothed, polished bedrock on level surfaces and
on various whalebacks and roche moutonnées. Two sets of striae occur. The dominant set (main set)
is ubiquitous and comprises pervasive, densely spaced to overlapping, long thin striae (Fig. 4F), with a
uniform orientation toward 227° (Fig. 5A) parallel to the main axis of the glacier. The dominant set of
striae curves around whalebacks and roches moutonnées (similar to that described by Rastas and
Seppala, 1981). A second late set of striae is widely spaced and occurs on some outcrops only. The
late set striae are deep, cut across and through the dominant set, vary greatly in length (ca. 0.3-3 m),
have more variable orientations (230-260°), and most likely developed during glacier retreat, with

more flow toward the side of the glacier (e.g., Chamberlin, 1888). Plucked faces, on the lee side of
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Fig. 4. Features at Virkisjokull. (A) Bedrock high, with narrow meltwater channel to the NW and steep lateral
slope to the SE. Morainic debris on lee-side (toward viewer). (B) Upward view of the SE lateral wall, showing
vertical columnar joints and horizontal striae indicating strong lateral ice flow. Faces marked pf show lateral
plucking. (C) Crushing pits (selection is arrowed in) and short, incipient striae on stoss side of bedrock high.
Overall ice flow at ca. 80° of surface. (D) Abraded bedrock surface with clasts of basalt and rhyolite, 10-70 cm
diameter. (E) Large rock fall, partially onto glacier. Rock fall occurred in winter 2010-2011, photo taken
September 2011. Height of scar ca. 200 m. Outline of rock fall highlighted for clarity. lce appears dark caused by
ash fall from Grimsvatn eruption, May 2011. (F) Level surface on top of bedrock high, showing main set and late
set of striae. Planview; scale bar divisions are 10 cm long . (G) Large pothole, formed by subglacial meltwater
erosion, just NW of deep meltwater channel. (H) Vertical striae in top part of meltwater canyon.



roches moutonnées and rock steps, are associated with preexisting joints and indicate strong
joint control on plucking (Rea, 1994, Krabbendam and Glasser, 2011; Hooyer et al., 2012).

Numerous bedforms indicate locally vigorous meltwater erosion. These include (i) potholes,
0.3-3 m across (Fig. 4G); (ii) scalloped, moulded surfaces without striae on the lee sides of some roche
moutonnées; (iii) steep, subvertical S-forms, including a subvertical half-pipe without striae on the
steep stoss side of a small rock wall; and (iv) the slot canyon to the west, which also shows scalloped
surfaces, generally free of striae. The scalloped surfaces suggest erosion under phreatic conditions. On
the upper parts of the canyon wall, deep vertical striae occur (Fig. 4H), and in one place vertical and
horizontal striae occur. One explanation for these latter features is that during high meltwater
discharge events, ice melted out of the channel creating a tunnel (4-6 m high), whereas when
meltwater flow dropped, the ice flowed back subvertically into the canyon. Measurements in the
present-day proglacial river show highly variable discharge, which can fluctuate by a factor of 240
(2011-2014 measurements; MacDonald et al., 2016).

4. Results

4.1. Virkisjokull — bedrock fractures, joints and hardness

The rhyolite is fine-grained, essentially homogenous; there is no foliation. The top few metres of the
rhyolite sill is vesicular. Two types of joints were found: columnar joints and conjugate joints.
Columnar joints are well exposed on the steep cliff that bounds the bedrock high to the east (Fig. 4B);
on this vertical face the joint spacing varies between 20 and 150 cm. On the level top surface,
columnar jointing appears as polygonal fractures and individual joint traces are <1 m long in map view
(Figs. 3A, B). Using the circle method (see methods section), 757 joints were digitised; of these the
polygonal set (n = 488) shows poor preferred orientation, whereas joints in a conjugate set (n = 270)
shows strong preferred orientation (Figs. 5C, D, E). Conjugate joints typically are several metres long
(Figs. 3C, D) and can thus be separated on the basis of length and continuity of the individual joints.

In some outcrops, the conjugate set was dominant and their orientations show a dominant NNE-SSW
set and a subordinate ENE-WSW set (Fig. 5E). Most conjugate joints are wider (larger aperture) than
the columnar joints, which are typically very tight (Fig. 3). Columnar, polygonal jointing is a common
feature in volcanic rocks and is undoubtedly of non-glacial origin. Conjugate jointing is typically
produced by tectonic stresses and, given the overall extensional tectonic regime in Iceland, these joints
are also regarded as non-glacial in origin.

The Schmidt Hammer rebound values obtained for rhyolite are between R = 51 and 52 (interquartile
ranges quoted in text; see Table 1 for full range and standard deviation). Vesicular rhyolite has a lower
hardness, between R = 46 and 48, consistent with their higher porosity. Basalt clasts were noticeably
harder (R = 53-56), but lower values were obtained in vesicular basalt (R = 50-52). Tuff layers have
very low hardness (R = 22-28). The hyaloclastite breccia comprises hard basalt clasts (R = 54-58) of
varying size (<1-20 cm) set in a matrix of tuff-like material, with much lower rebound values (R = 25-

32). The values for nonvesicular basalt and rhyolite compare well with those of similar rocks (e.g.,
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microgranite) in the literature (Table 1), and other mechanical properties obtained by laboratory
measurements are broadly applicable to the rocks discussed here. Thus, the clasts that lie on the bedrock
surface (Fig. 4D) include basalt clasts that have equal or higher hardness, stiffness, and tensile and

compressive strength than the rhyolite bed.

(B) Scars (long axis), N

(A) Glacial striae
n=40

&

* Late set sriae;
20 n=173;mean = 232°

/ Main set striae;
n =445, mean = 227°

(C) All joints,n =757 (D) Joints in polygonal set, n = 488 (E} Joints in conjugate set,n = 270

Fig. 5. Rose diagrams showing orientations of (A) glacial striae, separated into main set and late set; (B) long
axes of crescentic scars, compared to ice flow; (C) all joints; (D) joints in polygonal set, related to columnar
jointing; (E) joints in conjugate set, related to tectonic stresses. Note coincidence of orientation of long axes of
crescentic scars and the conjugate joint set, as well as obliquity of crescentic scars with respect to ice flow
direction.



Rhyolite Rhyolite, Basalt Basalt, Basalt clasts ~ Hyaloclastite Tuff Ice
vesicular vesicular within matrix

hyaloclastite

Schmidt hammer (R
value) - this study

mean 51.6 47.3 54.5 51.4 55.9 29.1 25.3
standard deviation 13 19 26 24 33 57 52
range 48-53 43-50 48-61 47-57 50-61 22-42 16-30
interquartile range 51-52 46-48 53-56 50-52 54-58 25-32 22-28
n 16 15 33 16 12 18 7
uniaxial compressive
45-200 160-360 5-25
strength (MPa)
tensile strength
5-15 10-30 0.7-3.1
(MPa)
Young's Modulus
10-50 40-80 9.7-11.2
(Gpa)
Source Microgranite: Schultz Drewry
Adebayo et (1995) (1986).
al.(2010) ; Din Petrovic
and Rafiq (2003)
(1997)

Table 1. Schmidt Hammer rebound data (R values), equivalent to rock hardness, collected on various lithologies
(Virkisjokull, SE Iceland; this study). Mechanical properties of basalt and microgranite (used as a proxy for
rhyolite) and ice from various sources.

Length (cm) Width (cm) L/W ratio Area (cm?)
range 2.0-67.8 0.9-18.2 0.7-7.3 2.3-238.3
interquartile range 5.4-17.5 2.1-5.8 1.8-4.3 8.0-47.8
median 9.6 3.4 2.6 255
mean 14 4.6 3.3 64.3
standard deviation 124 34 1.8 129.6

Table 2. Dimensions of crescentic scars, from level surfaces only, n = 59

4.2. Virkisjokull: joint-bounded crescentic scars

At Virkisjokull numerous joint-bounded crescentic scars occur on smoothed, abraded bedrock surfaces
on top of the bedrock high. The crescentic scars have two components: (1) a concave, low-angle,
conchoidal fracture that dips in the direction of ice flow; and (2) a straight subvertical fracture that
faces against the ice flow (Figs. 1D, 6A-D). The two fractures delineate a crescentic wedge-shaped
rock fragment, subsequently removed by ice, leaving a crescentic scar. The subvertical fractures are
invariably contiguous with preexisting joints that are much longer than the length of the scars and
continue through the rock well away from the scar. In most cases, the subvertical fracture is

coincident with a single joint, commonly part of the N-S trending conjugate joint set (Figs. 6A, B, C).
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In these cases, the crescentic scar is elongate with the long axis parallel to the steep preexisting joint
(Fig. 6A), rather than exactly perpendicular to ice flow (Fig. 5B, n = 40). Thus, whilst the crescentic
scars broadly indicate the direction of ice flow because all conchoidal fractures dip down-ice, the exact
orientation is constrained by the orientation of the joints in the substrate, similar to that observed for
joints and plucked faces in roche moutonnées (Hooyer et al., 2012).

ice flow

preexisting

joint—— NS E SN

= — -
' G—

preexisting
joint ~_

rounded N\ -
“stosslip

/.~ conchoidal
E‘- fracture
Fig. 6. Field photos of joint-bounded crescentic scars, Virkisjokull. All striations are part of the main set. Scale and
ice flow directions indicated. cs = crescentic scar; J = joint. (A) Two joint-bounded crescentic scars, each bounded
by single joint, elongate at high angles to ice flow; planview. (B) As previous, oblique view. (C) Planed surface
with multiple crescentic scars, each bounded by single joint; joints are part of NNW-SSE joint set; oblique view.
(D) Crescentic scar bound by two joints, part of columnar jointing set; oblique view. (E) Joint-bounded crescentic
scar. Lip of joint and conchoidal fracture have been smoothed/abraded after scar formation; planview. (F) Roche
moutonnée with set of crescentic scars on convex surface between lateral and top surface. Vertical joints cut entire
bedform. Pale-dark striping is a magmatic flow banding; on the lateral surface this is approximately coincident
with striations.
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A few crescentic scars are bounded by two subvertical, intersecting joints (related to columnar
jointing) and are more equant in planview (Fig. 6D). Most joint-bounded crescentic scars have sharp
edges and show little or no modification by subsequent abrasion. However, the edges of some scars

have been modified by subsequent subglacial abrasion, with faint striae on the modified conchoidal
fracture surface and significant edge rounding on the steep lip (Fig. 6E).

Fig. 7. (A) Joint-bounded crescentic scars on gently dipping stoss-side. All crescentic scars terminate against a
preexisting joint; facing up-ice. These crescentic scars have the highest depth-to-width ratio of all scars observed.
(B) Crescentic scar (cs) on top surface of roche moutonnée, close to lee side, showing potential interaction with
plucking. Block A = interpreted outline of joint-bounded block removed by plucking. Hatched surface represents
joint surface that may have formed the ice-facing bound to the crescentic scar, but the stoss side of block A.

On level surfaces, the scars are 2-10 cm deep, 2-70 cm long, and 1-18 cm wide (details in
Table 2). The surface area of individual fractures varies widely from ca. 2 to 240 cm? (interquartile

range 8-48 cm?). However, in many cases a series of apparently overlapping conchoidal fractures has
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developed along the same joint (Figs. 3C, 6A, C), so that individual fractures are difficult to define.
The angle of failure between the conchoidal fracture and the bedrock surfaces is between 10 and 25°.

One roche moutonnée contains a number of crescentic scars on the curved surface between its
top surface and its lateral wall (Fig. 6F). The associated joints cut the entire roche moutonnée. At
least one crescentic scar is composite and comprises two conchoidal fractures (right of centre on Fig.
6F). The associated joint is a composite, anastomosing set of narrowly spaced joints. These crescentic
scars were the largest observed and have the smallest width/length ratio. The angle between the
fracture and the bedrock was similar, about 20°.

A set of joint-bounded crescentic scars was observed on a gently dipping (ca. 10-20°) stoss
side of a whaleback (Fig. 7A). These scars are deeper (up to 20 cm and larger depth-to-width ratio)
and have a greater angle (ca. 30-40°) between the fracture and the bedrock compared to those on level
surfaces.

Close to the lee-side of a roche moutonnée, joint-bounded crescentic scars may interfere with
lee-side plucking. Near the lee-side of one roche moutonnée, a crescentic scar was found adjacent to a
block removed by plucking (Fig. 7B). If the crescentic scar formed prior to plucking (which we
cannot prove) then the exposed joint surface (hatched on Fig. 7B) would have been a partial stoss-face
of block A, against which ice could have pushed, thus aiding the block removal. Consequently, the
occurrence of crescentic scars may aid subglacial erosion by plucking.

Importantly, crescentic fractures or crescentic gouges not associated with joints were not

observed on the Virkisjokull outcrops.

4..3 Joint-bounded crescentic scars, NW Scotland
Joint-bounded crescentic scars were noted on outcrops of Lewisian gneiss at the Rispond headland,
east of Durness on the north coast of mainland Scotland (Fig. 8A). This area has undergone repeated
ice-sheet glaciation during the Pleistocene, and deglaciated between 15 and 20 ka (e.g., Stoker et al.,
2009). Maximum ice thickness during the Last Glacial Maximum is uncertain in this region (cf.
Ballantyne et al., 1998; Fabel et al., 2012) but was probably around 500 m. The area shows a
‘landscape of areal scour’ or ‘cnoc-and-lochan landscape’ marked by abundant roches moutonnées,
whalebacks, and enclosed basins, which are widely developed on Lewisian gneiss in NW Scotland
(e.g., Rea and Evans, 1996; Bradwell, 2013; Krabbendam and Bradwell, 2014). Striae generally are
poorly preserved on Lewisian gneiss because of post-glacial subaerial weathering, (Lawson, 1996;
Bradwell, 2013). The bedrock on which the features occur is a coarse-grained (1-6 mm) quartzo-
feldspathic gneiss.

Joint-bounded crescentic scars were found on a well-defined symmetrical bedrock whaleback
and on a level bedrock surface. The whaleback shows well-defined crescentic scars (Figs. 8B, C)

alongside other more poorly defined and/or degraded examples.
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crescentic
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0.25m

Fig. 8. (A) Airphoto of location of ice-worn outcrops of Lewisian gneiss, Rispond, NW Scotland. British
National Grid (BNG) square NC 4565. Aerial photography © UKP/Getmapping Licence No. UKP2006/01. (B)
Roche moutonnée with joints and crescentic scars (CS). Palaeo-ice flow indicated. BNG: NC 4515 6570. (C)
Detail of (B). (D) Degraded crescentic scars on flat surface of gneiss. Note deep glacial striae and crescentic
fractures. BNG: NC 4555 6569.

All crescentic scars terminate against well-defined, subvertical joints (0.3-1 m spacing) that
cut the entire outcrop. Weakly preserved striae also occur locally (Fig. 8C). On the level surface (Fig.
8D), glacial striae are remarkably deep and well preserved despite post-glacial weathering and indicate
palaeo-ice flow toward the NNW. The level surface shows more intense jointing; two sets of
subvertical joints occur with angles ca. 40° apart and with a joint spacing of ca. 10-30 cm. One well-
defined crescentic scar terminates against two joints (Fig. 8D, right of centre). Less well-defined (or
degraded) crescentic scars occur nearby (Fig. 8D, to the left). Two large sets of overlapping crescentic
fractures (without scars) occur right of the notebook, another set occurs above it; all are concave
down-ice. The dip of the conchoidal fractures in both outcrops is ca. 35-40°.

4.4, Joint-bounded crescentic scars, Ontario, Canada

By analysing an extensive photo archive of bedrock features on the southern part of the Canadian Shield
in Ontario, a number of joint-bounded crescentic scars were noted. All features were formed under the
broadly southward flow of the last Laurentide Ice Sheet that deglaciated from the area ca. 10-12 ka
before present (Prest, 1983; Dyke, 2004). A set of joint-bounded crescentic scars occur on
metamorphosed turbidite (Huronian Supergroup, Palaeoproterozoic; Brocoum and Dalziel, 1974) near
Sudbury, Ontario, Canada (Fig. 9A). The scars occur on a gently curved, smoothed, abraded, and

pervasively striated surface, part of a larger whaleback or rock drumlin. The crescentic scars are
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invariably bound by subvertical joints that cut the entire outcrop. The long axes of the scars are at an
angle of up to ca. 40° to the striae and thus not always perpendicular to ice flow. Two crescentic scars
occur at the junction of two joints (top-middle part of Fig. 9A) and are more equant than those
developed along single joints. The bedrock is a finely bedded turbiditic sequence of metagreywacke and
pelitic layers. These rocks are generally weaker than crystalline rocks (gneiss, granite) that occur widely

up-ice across the Superior Province. Gneiss erratics occur throughout the area.

Fig. 9. (A) Joint-bounded crescentic scars on metamorphosed turbidite (Huronian Supergroup), near The Big
Nickel, Sudbury, Ontario, Canada, 46°28’N, 81°02’W. Hammer is ca. 40 cm long. (B) Joint-bounded crescentic
scars, on the lateral crest of a groove-ridge pair, on granulite-facies gneiss, Painted Rocks, Georgian Bay, Ontario.
Height of surface above water is ca. 80 cm. Letters explained in text

On the NE shore of Georgian Bay, Lake Huron, an extensive peneplain, cut across massive and
foliated gneisses and granulites of the ca. 1 Ga old Grenville Province (Easton, 1992), has been
subjected to extensive glacial erosion, resulting in the formation of highly elongate rock drumlins and
parallel megagrooves (e.g., Krabbendam et al., 2016), superposed on which are abundant bedforms such
as sinuous grooves formed by subglacial erosion by sediment-laden meltwaters moving through
interlinked ice cavities (Kor et al., 1991). On the lateral crest of a groove-ridge, a number of joint-
bounded crescentic scars occur (Fig. 9B), with different morphologies depending on their relation to the

parent joint. A steep scar (ca. 20 cm deep and 70 cm wide) developed on a single sub-vertical joint (a
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on Fig. 9B). More shallow-dipping scars (b) developed on joints that dip down-ice, whereas scar (c) is a
deep, composite feature developed on a set of closely spaced joints. Very large erratics (up to 4 m

across) of the same rock type occur nearby, and sets of crescentic fractures were also noted.

5. Discussion

The occurrence of joint-bounded crescentic scars raises two main questions: (i) how are conchoidal
fractures on bedrock surfaces generated subglacially, and (ii) what is the exact role of the preexisting
joints. Previous work suggests that subglacial conchoidal fractures are formed by high clast-bed
contact forces (Gilbert, 1906; Harris, 1943; Hallet 1979; Ficker et al., 1980; Wintges, 1985; Drewry,
1986). This is corroborated by work on conchoidal fracturing as a typical failure mode of a range of
brittle materials (glass, ceramics, flint, dental materials) by an applied focused contact force, usually
by some form of indenter (e.g., Smith, 1984; Cotterell et al., 1985; Lawn, 1998; Roberts, 2000; Geng
etal., 2010). Relevant also is the work done on conchoidal fracturing close to an edge, termed edge
flaking or edge-chipping in the engineering literature (e.g., Almond and McCormick, 1986; Chai and
Lawn, 2007a, b; Quinn and Mohan, 2009; Zaayman et al., 2009).

In the following section we discuss five aspects of joint-bounded crescentic scars: (i) the order of
magnitude of the forces required for conchoidal fracturing to occur; (ii) how these forces can be
generated,; (iii) the role of preexisting joints in weakening the rock so that failure occurs; (iv) their

formation mechanism; and (v) implications for bedrock failure on the glacier bed in general.

5.1. Forces required

The tensile strength and shear strength of rhyolite lies in the order of 5-15 and 10-50 MPa respectively
(Table 1; using microgranite as nearest proxy). The surface area of the conchoidal fractures found in
this study ranges between ca. 5 and 50 cm? (Table 2). This implies that clast-bed contact forces in the
order of 2.5-2500 kN were needed to form conchoidal fractures of that size. Clast-bed contact forces
can also be estimated using the surface area of small pits on the stoss side (ca. 10-60 mm?; see section
4.1 and Fig. 4C), which are likely formed by large clasts pressing onto and being crushed against the
bedrock, multiplied by the compressive strength of the bedrock (50-200 MPa; see Table 1). This is
analogous to the clast-bed contact force estimation using the width of striae as proposed by Hallet
(1979). This would suggest clast-bed contact forces in the order of 0.5-18 KN. The resulting values
have a very wide range, and it may be better to suggest an increasing probability of fracturing as clast-

bed contact forces increase from the low to the high end of these ranges (Fig. 10A).

5.2. Generation of clast-bed contact forces

The focussed forces on the bedrock surface are generated by clasts pressing onto the glacier bed. The
generation of these clast-bed contact forces, however, is nontrivial and has been long debated (e.g.,
Boulton, 1974; Hallet, 1979, 1981; Cohen et al., 2005; Byers et al., 2012). It comprises several
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components (Fig. 10), all a function of the radius of the clast, which in this section is assumed to be

spherical.

e Fyisthe buoyant weight of a rock clast embedded in ice (Fig. 10B), and is a function of the density
and volume of the rock clast, and is significant only for large (>0.5-1 m) clasts (e.g., Hallet 1979;
Cohen et al., 2005). The formulation of this component is straightforward (Hallet, 1979):

Fo= (o= pi) 9 4/37 RS 1)
where p,and p; is the density of rock and ice respectively, g is the gravitational constant, and R, is
the radius of the clast. The contribution of the buoyant weight, however, is small and is not likely to
result in fracturing (curve A on Fig. 10A).

e  More debatable is the force F, generated by the effective pressure of ice acting on the clast, which
would imply that the clast-bed contact force is indirectly dependent on the thickness of the
overlying ice. Boulton (1974) regarded this as the dominant force, whereas Hallet (1979) argued
this force was negligible, because if ice surrounds the clast, the pressure would act equally on all
sides (see discussion in Benn and Evans, 1998). However, if a water film occurs between the ice
and the bed so that ice does not completely surround the clast (Fig. 10C), the clast-bed contact force
by effective pressure can be described by (e.g., Cohen et al., 2005):

Fe=n (Pi— Pu) 2hyRc - hy?) )
where P; is the cryostatic pressure, P, is the water pressure, and h,, is the thickness of the water
film. As the water film is generally thought to be thin (<1 mm), the contribution of this force is very
small and can in practice be ignored (curves B on Fig. 10A). However, if a cavity develops behind
a clast, even less ice surrounds the clast (Fig. 10D), and the resultant clast-bed contact force may be
described as (Cohen et al., 2005):

Fe=0.51 (Pi—Py) (R >+ 2h,R.—h,/) 3)

In that case, the clast-bed contact force becomes very high and can reach 40-70 kN with relatively
small clasts (curve C on Fig. 10A). Cavity formation may be encouraged by strongly fluctuating
water pressures (e.g., Bindschadler, 1983). The highly variable meltwater discharge from
Virkisjokull, the proglacial and historic evidence for jokulhlaups, and evidence for vigorous
subglacial meltwater erosion (Section 3) suggest that periodically high water pressures are a
possibility. However, whether cavities behind such clasts actually develop in nature is uncertain.

e  Aviscous drag force Fy is exerted by ice on the clast as ice flows downward toward the base owing
to basal melting (Fig. 10E). It is a function of the viscosity of ice and the vertical velocity of ice V;,
toward the bed. This vertical velocity will in most cases equate to the basal melt rate. Below is a
simple formulation for larger clasts, where the drag force is dominated by viscous flow rather than
regelation (Hallet, 1979; see also Cohen et al., 2005, for a more involved formulation):
Foe=4xVi,n R, 4)

where Vj, is the vertical velocity of ice and # the ice viscosity. The viscous drag force appears to be

the dominant component of the clast-bed contact force, certainly for smaller clasts (Hallet 1979;
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Cohen et al., 2005; Byers et al., 2012). In experiments with an artificial clast (R, = 2.5 cm) pressing
onto a bed under high basal melting rates, Byers et al. (2012) reached clast-bed contact forces
between ca. 1 and 2 kN, some four orders of magnitude higher than the buoyant weight of a clast of
rock of that size (c. 0.12 N), and attributed these forces mainly to viscous drag. If these values are
extrapolated to larger clast sizes, while assuming Fq, < R; (according to Eq. 4), then clast-bed
contact forces >40 kN appear possible with clast radii between 0.5 and 1 m (lines B on Fig. 10A).
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Fig. 10. Clast-bed contact forces. (A) Plot of clast-bed contact force F against clast radius R, for different force
components. Lines A, B, C are curves of Egs. (1), (2), (3), respectively (see text); lines D represent the range of
values extrapolated from experiments by Byers et al. (2012) (small arrows), interpreted as mainly caused by
viscous drag F4,. (B) Force F, buoyant weight. (C) Force caused by effective pressure F,. (D) Force caused by
effective pressure F, , in the presence of a cavity. (E) Force caused by vertical viscous drag Fg,. (F) Force caused

by horizontal viscous drag F, balanced by dynamic friction force F

On a level bedrock glacier bed, all the above forces act vertically on the bed and would not result in
crescentic bedforms with a consistent asymmetry. Such consistent asymmetry requires an oblique force
with a horizontal component. On a level subglacial surface, only viscous drag force can have a
horizontal component (Fg,) caused by subhorizontal ice flow around the clast (Fig. 10F). This occurs
because the clast is subjected to rock-on-rock friction as it slides over the bed so that the clast moves
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slower than the ice around it. The horizontal drag force is then limited by the dynamic friction F,
between the clast and the bedrock (Fig. 10F), with a rock-rock friction coefficient (e.g., Drewry, 1986;
Cohen et al., 2005). The strong asymmetry of joint-bounded crescentic scars in this study (and in
previously reported other crescentic markings), suggests that viscous drag with its crucial horizontal
component Fg, is the most important force component to consider, although the possibility remains that
effective pressure with cavitation plays a role if rapidly fluctuating water pressures occur. Estimates of
subglacial parameters such as the viscosity of ice, the basal melting rate and the thickness of the water
film remain highly uncertain so that exact quantification of the forces is not possible. Nevertheless, it
follows that sufficiently high clast-bed forces are favoured by (i) large, boulder-size (>0.5-1 m) clasts;

(ii) high basal melting rates; and (iii) possibly strongly fluctuating water pressures.

5.3. Limits on clast-bed contact force by the strength of the clast

The magnitude of the clast-bed contact force is limited by the strength of the clast itself (e.g., Hallet,
1979); so that fracturing depends to a degree on the relative strengths of the clast and the bed. Consider
a clast of rock moving under force over a bedrock substrate, with a force balance at the clast-bed
contact; further assume that the contact force is sufficient to cause fracturing of either the bed or the
clast. A clast of weak rock (Fig. 11A) will itself fracture and disintegrate before any crescentic
markings can develop on the bed. In contrast, a clast of a strong rock moving over a weaker substrate
can fracture the bed and cause crescentic markings (Fig. 11B); this is similar to the experiment of Smith
(1984), who rolled a steel ball under force over a glass substrate. Returning to our Schmidt Hammer
observations from Iceland, this would imply that a hard and strong basalt clast moving over a (slightly)
less hard and weaker rhyolite substrate (see section 4.1 and Table 1) would be capable of creating
crescentic markings. The same would be the case for a gneiss clast over a bed of sedimentary rock, as
near Sudbury, Ontario. Conversely, a clast of sandstone moving over a substrate of gneiss is unlikely to

create crescentic markings on the bed.

Fig. 11. Clast versus bed strength, and potential
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Now consider a clast, moving under force over a glacier bed of the same lithology, for example

a rhyolite clast over a rhyolite bed or a gneiss clast over a gneiss bed (Fig. 11C). In that case the area of
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potential fracture of the clast (related to the volume of intact rock) is smaller than that in the bed so that
the stresses in the clasts are higher than in the bed: the clast would fracture and not the bed. In reality,
the strength of bedrock will always show variations, for example owing to small variations in grain size
or composition or incipient, variable weathering of the bedrock. Thus, if a number of clasts move under
force over a bed of the same lithology, it is possible that some clasts are stronger than some patches of
the bed.

The assumptions above all hold only if the bed and the clast have no preexisting joints. Joints in
large clasts are not likely — such a clast would disintegrate into smaller clasts. If, however, the bed
contains joints across which stresses cannot be freely transferred, then a particular clast-bed contact
force may lead to stress concentrations in the bed that exceed those within the clast. One way of
viewing this is by envisaging a virtual sphere of intact rock within the bed, bound by its top surface and
the joint (Fig. 11D): if this virtual sphere of intact rock is smaller than the clast, then the area of
potential fracture in the bed is smaller, and the resultant stresses higher. In that case, the bed rather than
the clast may fracture, leading to the formation of joint-bounded crescentic scars, as further explored

below.

5.4. Role of free edges, joints, and oblique forces in conchoidal fracturing

From the engineering literature, it is known that if a focussed contact force (point load) is applied
perpendicularly onto a flat surface, the resulting stress field in the substrate, known as a Hertzian
contact stress, is symmetrical (e.g., Lawn, 1998). The exact geometry of the stress field and the
principal stress trajectories depends on the force, the area of contact, and the elastic properties
(Poisson’s ratio and Young’s modulus) of the materials involved (e.g., Lawn, 1998; Roberts, 2000).
Directly below the contact point is a region of compressive stress (Fig. 12A) (exerted by a hard
indenter rather than a clast in engineering experiments); whilst close to the surface, the stress is tensile
(Lawn, 1998; Roberts 2000). It is this tensile stress that leads to fracturing if it exceeds the tensile
strength of the material. For a symmetrical stress field, the resulting fracture would be circular on the
surface. To our knowledge, only one such subglacially formed circular scar has been reported to date
(a circular annular scar on granite in the Sierra Nevada, USA, by Gilbert, 1906), suggesting
symmetrical Hertzian contact fracturing is rare in natural subglacial beds. However, if the point load
is oblique (Fig. 12B), the stress field becomes asymmetric (e.g., Ficker et al., 1980; Geng et al., 2010).
These oblique loads produce the previously reported asymmetric crescentic markings (e.g., Gilbert
1906; Ficker et al., 1980).

If a clast-bed contact force is exerted close to an edge (a free face), the stress field in the bed is
further distorted and becomes highly asymmetric (see Fig. 12C). We suggest that a joint in bedrock on
the glacier bed can be regarded as a semifree edge, across which stresses cannot freely be transferred, so
that the stress fields adjacent to a joint in bedrock and those along free edges in engineering tests are
comparable (Fig. 12C). Engineering tests on such edge flaking with different materials (glass, porcelain,

alumina, and zirconia) have shown that:
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higher contact forces and tougher materials create larger flakes (Hangl et al., 1997; Chai and
Lawn, 2007a);
the critical force F required for failure increases with distance d from the edge (Fig. 12C),

d*? (Chai and Lawn, 2007a); in other words, as a contact force migrates toward

according to F «
an edge, the force of failure decreases rapidly;

the stress field is highly asymmetric, with very high stress concentrations building up between the
indenter and the edge (Zaayman et al., 2009);

an oblique rather than a perpendicular contact force close to an edge (as occurs on glacial beds
caused by the horizontal viscous drag force component, see section 5.2) lowers the contact force
required for failure even further: a deviation of c. 15° from the perpendicular halved the critical
load (Chai and Lawn, 2007b); and

flakes are shallower with increasing obliquity of the load (Quinn and Mohan, 2009).
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Fig. 12. Schematic diagram showing stress fields with zones of compressive and tensile stress. (A) Normal load,
no free edge, classic symmetrical Hertzian contact stress (see Roberts, 2000); (B) oblique load, no free edge; (C)

oblique load, close to free edge or joint. Stress concentrations schematically indicated using shading. It is
assumed no stresses are transferred across the joint.
5.5. Formation mechanism
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Previously reported crescentic gouges and lunate fractures do not interact with preexisting joints; the

secondary fracture is the result of a rock fragment breaking off (Fig. 1A, B). In the joint-bounded

crescentic scars reported here, the conchoidal fracture invariably stops against a preexisting joint,

whereby these joints play the role of a semifree edge.
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Fig. 13. Schematic diagram illustrating suggested mode of formation of joint-bounded crescentic scars. (A)
Boulder embedded in basal ice causes stress field in bed, insufficient for fracturing; (B) as boulder approaches
bedrock joint, stresses in bedrock increase and conchoidal fracturing occurs; (C) rock fragment is further
fragmented or crushed; loose fragments are removed from crescentic scar.

We suggest the following formation mechanism for joint-bounded crescentic scars on subglacial rock

surfaces (Fig. 13):

A boulder-size clast entrained in ice at the base of a glacier or ice sheet exerts a clast-bed contact
force as it moves across the underlying bedrock surface. This force is oblique, owing to
horizontal viscous drag and clast-bed friction, which creates an asymmetric stress field within the
bedrock. The stresses within the bedrock may be high, but not necessarily high enough to
produce crescentic markings away from joints (Fig. 13A).

As the clast, and with it the stress field within the bed, migrates and approaches a subvertical
joint, the stresses in the bed cannot transfer across the joint. Stress concentrations build up
between the clast-bed contact point and the joint; if these stresses exceed the intact tensile rock
strength, the rock fails and a new conchoidal fracture forms, delineating a wedge-shaped rock
fragment (Fig. 13B).

The rock fragment, bounded by the preexisting joint and the new conchoidal fracture, is removed
from the bedrock, leaving a crescentic scar. No direct evidence is available regarding the exact
removal mechanism of the loose fragment, but a likely possibility is that as the boulder moves

over the fragment, the fragment is further fractured or even crushed (comminution; Fig. 13C).
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This fracturing, whatever its exact form, will expose smaller fragments to direct ice flow and the

multiple fragments will be evacuated out of the scar.

5.6. Summary of implications and significance

The joint-bounded crescentic scars found and described in this study represent a new glacial erosional
bedform. The crescentic scars may lead to a minor roughening of smooth surfaces and may also aid
glacial erosion by plucking. More crescentic scars will likely be recognised in the future, as we believe
they are relatively common. Nevertheless, the contribution of these features to overall subglacial
erosion is likely to be minor. Instead, the significance of the joint-bounded crescentic scars lies in the
information it provides about the behaviour of bedrock in the subglacial environment and about the size
and strength of the subglacially embedded material.

The joint-bounded crescentic scars described herein imply that it is very difficult (if not
impossible) to fracture intact rock by overriding ice pressure alone; some form of focussed clast-bed
contact force applied by an embedded boulder is required to build up sufficiently high stresses in the
bedrock bed. The formation mechanism is similar to that proposed for other crescentic markings, in that
it involves a migrating contact stress field exerted by a moving boulder across a bedrock surface
(Gilbert, 1906; Smith, 1984). However, the preexisting joints as observed in the rhyolite and gneiss
clearly represent a weakness; in these circumstances much higher stresses can build up in the bed and
conchoidal fracturing can occur at lower contact forces. In SE Iceland, contact forces were clearly never
high enough to produce crescentic markings without preexisting joints, although they do occur locally in
NW Scotland and Ontario. The formation of joint-bounded crescentic scars (and likely other crescentic
markings as well) requires large boulders (>0.5-1 m across) so that the occurrence of crescentic scars
also points to the (former) presence of boulder-size subglacial clasts. High basal melt rates, creating
strong vertical viscous drag toward the base, is a further likely requirement — which may imply
crescentic markings are generally formed during deglaciation or periods of relatively fast ice flow. The
sharp edges of the crescentic scars near to joints suggest little modification by subsequent erosion,
consistent with this explanation.

The findings of this paper can be used to improve design of experimental testing of clast-bed
forces that are seen to be crucial to better constrain subglacial erosion as well as basal sliding (e.g.,
Byers et al., 2012; Zoet et al., 2013). Furthermore, these findings confirm the importance of preexisting
joints as a major constraint on the efficacy of subglacial erosion, previously proposed by others
specifically for plucking (Duhnforth et al., 2010; Krabbendam and Glasser, 2011; Hooyer et al., 2012).
Combined, this suggests that numerical modelling of glacial erosion (as for instance attempted by Hildes
et al., 2004; MacGregor et al., 2009; Iverson, 2012; Melanson et al., 2013) requires realistic

characterisation of bedrock below glaciers, including the preexisting fracture patterns.
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6. Conclusions

Joint-bounded crescentic scars, as defined in this study, occur on glaciated bedrock surfaces, and

comprise a concave conchoidal fracture dipping in the ice-flow direction and a steep fracture

coincident with a preexisting joint. We have identified joint-bounded crescentic scars on a variety of

rock types (fine-grained rhyolite, coarse-grained gneiss, metasedimentary rocks) and in a variety of

settings (e.g., small outlet glacier and ice-sheet bed) and in contemporary (SE Iceland) and Pleistocene

glacial environments (NW Scotland, and SE Canada). We suggest that they are formed by high clast-

bed contact forces applied by boulders embedded in basal ice moving over bedrock. As the

subglacially embedded boulder approaches a subvertical joint, the stress field within the bedrock

changes, and high stress concentrations build up between the clast-bed contact point and the joint. If

these stresses are high enough, conchoidal fracturing results. Subsequent removal of the wedge-

shaped rock fragment probably involves further fracturing or crushing (comminution) under high

contact forces.

Our work in a variety of glacial settings suggests that joint-bounded crescentic scars are significant

small-scale glacial bedforms for three reasons:

In common with other crescentic markings, they are more robust ice-flow indicators than glacial
striae, which are removed by only require a few millimetres of post-glacial weathering.
However, the orientation of joint-bounded crescentic scars may be strongly influenced by
preexisting joint orientation, so that they only indicate approximate ice flow orientation.
Joint-bounded crescentic scars attest to the former presence of large boulders at the base of the
ice mass, giving information about the character of subglacial debris in former glacial regimes
and environments.

Analysis of these bedforms shows that failure of intact bedrock is very difficult, if not
impossible, in hard bedrock and emphasises the importance of preexisting joints in bedrock for
glacial erosion mechanisms. Consequently, numerical modelling of glacial erosion require
some characterisation of bedrock fracture patterns to capture the full range of subglacial erosion
processes.
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