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Abstract 13 

In this paper, we investigate the prospects of using geographically weighted choice models for 14 

modelling of spatially clustered preferences. We argue that this is a useful way of generating highly-15 

detailed spatial maps of willingness to pay for environmental conservation, given the costs of 16 

collecting data. The data used in this study comes from a discrete choice experiment survey 17 

regarding public preferences for the implementation of a new country-wide forest management 18 

and protection program in Poland. We combine it with high-resolution spatial data related to local 19 

forest characteristics. Using locally estimated discrete choice models we obtain location-specific 20 

estimates of willingness to pay (WTP). Variation in these estimates is explained by characteristics 21 

of the forests in their place of residence. The results are compared with those obtained from a 22 

more typical, two stage procedure which uses Bayesian posterior means of the mixed logit model 23 

random parameters to calculate location-specific estimates of WTP. We find that there are indeed 24 

strong spatial patterns to the benefits of changes in management to national forests. People living 25 

in areas with more species-rich forests and those living nearer to higher areas of mixed forests 26 

have significantly different WTP values than those living in other locations. This kind of information 27 

enables a better distributional analysis of the gains and losses from changes to natural resource 28 

management, and better targeting of investments in forest quality. 29 
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Introduction 1 

Preferences for environmental goods are likely to display spatial patterns such as clustering. One 2 

reason for this is that since there are differences in the spatial configuration of these goods. 3 

Peoples’ preferences can be expected to adapt to their local environments (Nielsen, Olsen and 4 

Lundhede, 2007) and to the availability of substitutes (Munro and Hanley, 1999). So, for instance, 5 

living in an area with high levels of forest cover may induce people to value the conservation of 6 

forests more highly than those who live in less-forested landscapes.  Another line of reasoning 7 

concerns residential sorting: people’s preferences for environmental goods partly determine 8 

where they choose to live, so that measures of preferences tend to be correlated with measures 9 

of environmental quality or with distance to environmental amenities (Timmins and Murdock, 10 

2007; Timmins and Schlenker, 2009; Baerenklau et al., 2010). These two views on the reasons why 11 

spatial patterns are present in values and preferences for the environment can be thought of as 12 

different perspectives in the directional drivers which link values with environmental features.  13 

From the policy and management perspective, enhancing our ability to produce detailed spatial 14 

maps of willingness to pay is important. For instance, national forest planners might want to target 15 

forest regeneration or investments in forest recreational resources in areas where the benefits of 16 

such actions would be highest. National water quality managers might, similarly, be interested in 17 

targeting costly actions to reduce pollution in a way which reflects the variation in values across a 18 

population. The application of benefit-cost thinking to spatial planning indeed requires such highly 19 

disaggregated benefits information. However, given the costs of undertaking a large number of 20 

original Willingness to Pay surveys at multiple sites, there is an interest in new methods which 21 

allows spatial maps of values to be generated in a data-efficient manner as a form of benefits 22 

transfer. 23 

Accounting for spatial dependencies is insightful for various reasons, including in the aggregation 24 

of benefits, as illustrated by Bateman et al. (2006) in terms of identifying what “relevant 25 

population” of beneficiaries from a resource quality change should be considered. One of the most 26 

commonly encountered examples is the distance decay relationship (e.g., Jørgensen et al., 2013). 27 

However, distance is not the only spatial factor which should be considered. For example, 28 
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availability of site substitutes can vary across space, and it is likely to influence willingness to pay 1 

considerably. However, because in most applied cases researchers are not able to account for all 2 

possible spatial factors, there is a need for a method, which would allow to take into account 3 

different spatial dimensions of preferences, with possible nonlinear relationships and clusters.  4 

Recent developments in Geographical Information Science (GIScience) allow the researcher to 5 

obtain rich datasets containing detailed information about the spatial configuration of 6 

environmental goods and indeed in the socio-economic characteristics of households, and then 7 

use these to investigate spatial patterns in stated and revealed preferences for such environmental 8 

goods. In this paper, we employ a method which, while widely used in other areas of social science, 9 

remains relatively unknown in agricultural and resource economics: Geographically Weighted 10 

Regression (GWR) as proposed by Fotheringham, Charlton and Brunsdon (1998). Specifically, we 11 

apply geographical weighting to choice models to investigate the spatial relationship of willingness 12 

to pay for landscape characteristics, using the example of national forest management in Poland. 13 

The rationale of this statistical approach is that, if spatial clusters of preferences do exist, a locally-14 

weighted maximum likelihood method can be used to derive location-specific estimates. 15 

Estimation of such models can provide us with insight regarding multiple possible spatial patterns 16 

of preferences and welfare measures. This is a semi-parametric approach in that no a priori 17 

assumptions about the spatial distribution of preferences are made. 18 

Economists have used a number of ways for spatial value interpolation and mapping (Johnston and 19 

Ramachandran, 2014). This includes the use of micro-simulation methods such as combinatorial 20 

optimization, as used by Hynes, Hanley and O’Donoghue (2010) for spatial aggregation on 21 

contingent valuation survey data and a “two stage” analysis, which involves estimating a Mixed 22 

Logit (MXL) model to derive location-specific WTP values, and using these WTP estimates as 23 

dependent variables in a GIS-based spatial regression (see for example Campbell, Hutchinson and 24 

Scarpa (2009) and Czajkowski et al. (forthcoming-a)). The relevant question is thus whether the 25 

geographical weighting approach offers advantages relative to existing methods. We therefore 26 

compare the results obtained using geographically weighted multinomial logit (GWMNL) model 27 

with the latter, “two stage” approach. This comparison reveals that although there are similarities 28 
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in the spatial distributions of preferences identified using the two methods, the results differ in 1 

several important ways. 2 

 3 

Geographically weighted models in the literature 4 

Geographically weighted models belong to the general class of “locally estimated” models. These 5 

recognize that the relationships between analyzed variables may be highly nonlinear which are 6 

therefore difficult to represent parametrically. Early examples of such models consist of use of 7 

spline functions (Wahba, 1990), LOWESS regression (Cleveland, 1979) and kernel regressions (Fan 8 

and Gijbels, 1996). The geographically weighted approach differs, because it recognizes nonlinear 9 

relationships with respect to spatial dimensions.  10 

Early applications of geographically weighted models were based solely on linear local models. 11 

They were used for analysis of morbidity (Fotheringham, Charlton and Brunsdon, 1998), house 12 

price data (Brunsdon, Fotheringham and Charlton, 1999), economic growth (LeSage, 1999), school 13 

performance (Fotheringham, Charlton and Brunsdon, 2001) and urban temperatures (Páez, Uchida 14 

and Miyamoto, 2002). In the context of non-market valuation, this approach has been used with 15 

hedonic price models of house prices in Cho, Poudyal and Roberts (2008) or Saphores and Li (2012).  16 

Local likelihood models were introduced by Fan, Heckman and Wand (1995) and Fan, Farmen and 17 

Gijbels (1998). These use weighted maximum likelihood estimators for inference. Applications of 18 

these techniques in discrete choice models are very limited, and were undertaken mostly in 19 

context of transportation. Locally estimated models are used either to recover WTP distribution 20 

non parametrically such as in Fosgerau (2007), Börjesson, Fosgerau and Algers (2012) and Koster 21 

and Koster (2015) or to analyze behavioral tendencies such as the implications of prospect theory 22 

(Hjorth and Fosgerau, 2012) and preference dynamics (Dekker, Koster and Brouwer, 2014). 23 

However, none of these approaches used local discrete choice models to analyze spatial 24 

heterogeneity – the issue considered in the present paper. Geographically weighted models for 25 

discrete response variables have been employed in the past, but in rather different contexts, not 26 
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connected with valuation of public goods, such as modelling urban growth (Luo and Kanala , 2008) 1 

or predicting land use changes (Wang, Kockelman and Wang, 2011).  2 

Methodology 3 

We begin this section with a description of the geographically weighted multinomial logit. We 4 

follow this with an explanation of the two-stage approach using location-specific WTP estimates 5 

retrieved from the MXL model.  6 

 7 

The Geographically weighted multinomial logit model 8 

GWMNL model is defined as follows. A respondent n’s utility from choosing alternative i in the j-th 9 

choice task is given by: 10 

 
ijn ijn ijn l ijn ijnU V     β X ,  (1) 11 

where the error term ijn  is assumed to be i.i.d with a Gumbel distribution. lβ  is a set of parameters 12 

for location l. The assumption which allows for the estimation of such a model is that individuals 13 

located close to each other are assumed to have more similar preference parameters than 14 

individuals located far away from each other, which is consistent with either of the directional 15 

drivers in the introduction. As a result, the parameters become spatially correlated. For 16 

convenience and ease of comparison between this approach and the approach used in Campbell, 17 

Hutchinson and Scarpa (2009) and Czajkowski et al. (forthcoming-a) (described in detail below) we 18 

estimated the GWMNL in WTP-space (Train and Weeks, 2005). This means that equation (1) was 19 

reformulated as: 20 
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Estimation of the GWMNL model is conducted by estimating L ‘local’ models, where L is a number 1 

of distinct locations. In the case of our study, there were 253 distinct locations of respondents 2 

(unique postal codes) and therefore this is the number of the local models. Each local model is 3 

estimated via the weighted maximum likelihood method. The likelihood of individual n making a 4 

choice in a j-th choice task in the l-th local model is given by a standard multinomial logit formula: 5 
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The weighted log-likelihood for l-th model is defined as follows:  7 
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 ,  (4) 8 

where  , , ,n nLat Long b l  is a geographical weight (kernel), which depends on latitude and 9 

longitude of individual n’s location, b  which is called the ‘bandwidth parameter’ and the location l 10 

for which the local model is estimated. In order to take the panel nature of the data into account, 11 

we have calculated robust standard errors that are clustered at the individual level. Note that 12 

geographically weighted models normally use projected data, with the location given as metric 13 

coordinates X and Y (easting and northing), to avoid having to use the complex and computationally 14 

time-consuming 3D calculation of geographic distance with the two angular coordinates (latitude 15 

and longitude) and indeed this was the same in our case. However, for clarity and to avoid potential 16 

confusion with independent variables ijnX  we refer to the two projected coordinates (X and Y) 17 

here as longitude and latitude respectively. There are a few functional forms of     proposed in 18 

the literature. In what follows, we use the Gaussian kernel defined as: 19 
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  (5) 20 

This is simply an exponential function of minus half of squared Euclidean distance of individual n’s 21 

location from location l divided by the square of the bandwidth parameter. If a respondent lives 22 
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exactly in location l – this weight is equal to 1.1 The use of this weight implies the clustering of 1 

similar values because observations near to location l  have a larger bearing on the local model’s 2 

log-likelihood compared to observations that are further away. The bandwidth parameter 3 

therefore determines what “further away” means. If the bandwidth is low, then practically only 4 

the observations in very close proximity of given location influence the local model. Specifically, 5 

when 0b  each local model is estimated using observations only from the given location. 6 

Analogously, when bandwidth is high, all local models will have similar parameter estimates, with 7 

b  leading to a simple MNL model for the whole sample.  8 

It is worth noting, that the choice of bandwidth may have a greater impact on the results than the 9 

choice of a specific weighting scheme (Fosgerau, 2007). There are several methods for choosing 10 

the bandwidth parameter available in the literature, with no apparent dominant approach. We 11 

tested three approaches, namely: using the corrected Akaike Information Criterion (AIC, Dekker, 12 

Koster and Brouwer, 2014), taking the lowest bandwidth for which all local models converge 13 

(Dekker, Koster and Brouwer, 2014), and using leave-one-individual-out cross-validation criterion 14 

(Fotheringham, Brunsdon and Charlton, 2003). To evaluate these, we used simulated data which 15 

utilized the designs utilized in our study. The results indicated that the available methods led to 16 

either under or over-smoothing and were unsatisfactory – a conclusion also voiced by Koster and 17 

Koster (2015). We therefore decided to use the ‘eye-balling’ approach they propose. In this 18 

approach, a researcher chooses the lowest bandwidth for which the model estimates satisfy a set 19 

of a priori specified conditions (e.g., achieving identification of all the models or avoiding extreme 20 

estimates). Pagan and Ullah (1999) recommend using this approach when the number of 21 

bandwidth parameters is not greater than 2, which is the case in our analysis. We decided that all 22 

                                                      

1 For robustness check, we also tried different weighting functions, such as the spatially varying kernel (Fotheringham, 

Brunsdon and Charlton, 2003):   ,
, , , exp

n l

n n

R
Lat Long b l

b


 
  

 
, where ,n lR  is the rank of the n-th location 

from l-th location in terms of the distance n is from l. The results were not much different from the Gaussian kernel. 
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WTP estimates should lie in interval [-100, 100] EUR, for results to be reliable. Bandwidths that 1 

result in WTP estimates outside of this range can be considered as inappropriate.   2 

 3 

Sample size 4 

There is a concern regarding the size of sample needed to calculate a local model with reliable 5 

parameter estimates. Generally, the literature provides little guidance in this regard. Sample sizes 6 

and the number of local models vary greatly depending on the application. In the cases where 7 

secondary survey data are used, such as in the case of house prices (Cho, Poudyal and Roberts, 8 

2008; Saphores and Li, 2012), school performance (Fotheringham, Charlton and Brunsdon, 2001) 9 

or land use (Wang, Kockelman and Wang (2011), the number of observations is typically high, 10 

ranging from around 3,700 to 50,000. Although, sometimes, for each observation there is 11 

estimated a separate local model. Applications using stated preference methods usually make use 12 

of much smaller datasets. For example, Fosgerau (2007) used data from 2000 respondents with 8 13 

choice tasks per person and estimate 441 local models. Börjesson, Fosgerau and Algers (2012) 14 

estimated the local models using responses from 1317 individuals. Koster and Koster (2015) used 15 

a dataset of 487 individuals, and reported a local model for each. In this respect, our sample does 16 

not seem to be “too small”, especially when considering the number of individuals per location. 17 

Nevertheless, as noted by one of our reviewers, for the GWMNL model the distribution of the 18 

individuals across the space maybe a bigger issue than the sample size. When there are locations 19 

with a low number of individuals, which are far away from any other individuals, the bandwidth 20 

needs to increase to provide any meaningful estimates (the bias-variance trade-off). Also, the 21 

locations with very high number of individuals may influence estimates of other local models 22 

unproportionally. Unfortunately, for now, the effect of the sampling on spatial distribution of WTP 23 

is not well researched, and it is not clear how it may affect the results. 24 

 25 

The Location specific mixed logit model 26 

The baseline for the comparison of the performance of GWMNL approach is provided by the 27 

location-specific conditional distributions retrieved from the mixed logit model (Czajkowski et al., 28 



 

10 
 

forthcoming) which can be estimated in WTP-space. In this model, respondent n’s utility from 1 

choosing alternative i in the j-th choice task is given by: 2 

  cost non-cost cost

ijn l l ijn ijn ijnU X   α X  . (6) 3 

We assume that each location l has a separate, independent set of parameters and therefore, we 4 

assume that all individuals within given location have homogeneous preferences. We prefer this 5 

specification over usual, aspatial individual-specific one, because it is more comparable with the 6 

GWMNL approach.  The usual, individual-specific MXL takes into account different sources of 7 

heterogeneity, while the GWMNL accounts for the spatial heterogeneity only.   8 

Location-specific parameters are not directly observed, but it is possible to estimate their values 9 

implied by each respondents’ choices conditional on the population-level estimates of parameter 10 

distributions (Bayesian posterior means) using the Bayes theorem:   11 
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y X α α
α y X α α

y X
,  (7) 12 

where  cost| , , ,l l l lp  y X α  is the likelihood of all individuals from location l making the observed 13 

choices conditional on the values of random parameters,  | ,l lp y X  is the same likelihood but 14 

unconditional (so it is likelihood function for MXL) and  cost, |l lf  α  is the assumed pdf function 15 

of random parameters (normal distribution for all attributes except for the cost, which was 16 

assumed to be log-normally distributed). For more details about this approach see Czajkowski et 17 

al. (forthcoming).  18 

Note, that contrary to the MXL model, in the GWMNL there is no need to specify a distribution 19 

from which the parameters are drawn. It is also important to note that in this specification the MXL 20 

model parameters associated with different locations are independent. Spatial dependence is, 21 

therefore, accommodated indirectly as it arises from the calculation of conditional expected values 22 

of random parameters.  23 

 24 
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Data  1 

The original survey was conducted in 2010 on a representative sample2 of 1001 Polish adults. The 2 

main objective of the survey was estimate public preferences over management options for the 3 

national forest area (rather than specific local forests). The attributes used to describe these 4 

management options were (1) passive protection of the most ecologically valuable forests,3 (2) 5 

reducing the amount of litter (garbage, rubbish) in forests through tougher law enforcement and 6 

by increasing forest cleaning services and (3) increasing the level of recreational infrastructure, 7 

such as improved signposting of forest trails.  The dataset used in this study was also exploited in 8 

in Czajkowski et al. (2014) and Czajkowski, Giergiczny and Greene (2014), where the attributes, 9 

experimental design and sampling strategy are described in detail. 10 

Information on forest characteristics used in this study was obtained from two different sources. 11 

Firstly, the CORINE Land Cover (CLC) dataset was used. This project is coordinated by the European 12 

Environment Agency with the objective of collecting high resolution data for the whole continent.4 13 

CLC databases contain area data for objects with a minimum area of 5 ha and a width of more than 14 

100 meters. The second source of information used was the Polish Information System of State 15 

Forests. This contains very precise data about the characteristics of forests in Poland. The data 16 

from these sources was aggregated to 10x10 km squares.5 In total, 3,307 such squares cover the 17 

                                                      

2 We hired a professional polling agency that collected the questionnaires using high-quality, face-to-face computer-

assisted surveying techniques. A multi-stage sampling strategy was employed, in which communities were randomly 

selected to represent different community types, and then within each of the selected communities. A starting point 

address was randomly selected and then a set of addresses was chosen using the random route method. Finally, a 

random selection of an adult household member was employed. 

3 By passive (as opposed to active) protection of the forest, we mean leaving the forest ecosystem without any human 

intervention, even if this results in (natural) changes in ecosystems. It was highlighted that passive protection does not 

preclude recreational use. 

4 See http://www.eea.europa.eu/publications/COR0-landcover for further information on the CORINE program.  

5 We also tested aggregating the 50x50 km resolution which provided equivalent results, although model fits were 

http://www.eea.europa.eu/publications/COR0-landcover


 

12 
 

area of Poland. Figure 2 presents a map with a distribution of DCE study respondents. The GIS data 1 

were associated with particular respondents using their ZIP-codes identifying their place of 2 

residence. For every respondent, the explanatory variables were calculated as weighted averages 3 

of forest characteristics in the 10x10 km area common with respondents’ ZIP area code. The GIS 4 

variables used in this study are described in Table 1.  5 

 6 

Figure 2. Respondents and forest area spatial distribution (red dots denote respondents’ place of 7 

living)6 8 

 9 

 10 

  11 

                                                      

inferior.  

6 As some respondents reported the same ZIP-codes we jittered all of them with uniform random variable on [-5,5] x 

[-5,5] km square. This also allow us to compute spatial weights matrix.  
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Table 1. GIS variables used to characterize the locations in which respondents’ lived 1 

Variable name Description Source Mean St. Dev. 

Area of coniferous 
forests  

Sum of areas of all coniferous forests [km2] Corine Land Cover 11.3202 13.3060 

Area of deciduous 
forests  

Sum of areas of all deciduous forests [km2] Corine Land Cover 4.2290 3.9805 

Area of mixed 
forests  

Sum of areas of all mixed forests [km2] Corine Land Cover 6.5767 6.1084 

Average Euclidean 
distance to forest  

It is average distance from any point in 
10x10 km square to the nearest forest 

Corine Land Cover 1.3075 0.8921 

Area of forests 
with age > 120 

Sum of areas of all forests older than 120 
years [km2] 

Information System 
of State Forests 

0.9586 1.3336 

Area of forests 
with the number of 
species > 6 

Sum of areas of all forests with the number 
of tree species greater than 6 [km2] 

Information System 
of State Forests 

5.9285 7.1911 

Built-up area Built-up area [km2] Corine Land Cover 19.5532 19.3520 

 2 

The input for our geographically weighted models was the spatial data set of the respondents, 3 

where the location was given as coordinates of ZIP-codes, and the locations were linked to 4 

responses and environmental variables. Prior to running the GWMNL model, the original WGS1984 5 

coordinates were projected using the ETRS_1989_Poland_CS92 coordinate system and the 6 

projected coordinates were normalized.  7 

The sample used in our study, 1001 individuals with 26 choice tasks per respondent, is sufficient 8 

for estimation of 253 local models. Note that number of individuals vary between locations, with 9 

some locations having only one individual, and some having more than 10 individuals. This result 10 

in unbalanced panel, which may make estimates for locations with small number of individuals 11 

imprecise. Specifically, in the case of MXL, when number of individuals in the given location is small, 12 

the Bayesian posterior will be dominated by the chosen mixing distribution.  In the case of GWMNL, 13 

the estimation of local models involves a tradeoff of bias and variance of estimates (Fotheringham, 14 

Brunsdon and Charlton, 2003). Nevertheless, if parameters values change continuously 15 

throughout space the properly chosen bandwidth should provide reliable estimates for local 16 

models.   17 
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Results 1 

Following the approach outlined earlier, we estimated the GWMNL models for each of the 253 2 

distinct locations in which our 1,001 respondents were located.7 Table 2 presents the summary 3 

statistics of the estimated parameters for this model, which are compared with results from the 4 

MNL and the location-specific MXL models.8 For the GWMNL model, we present means and 5 

standard deviations of parameter estimates across 253 local models, which allows for 6 

straightforward comparison with parameters from MXL model.  7 

 8 

Table 2. Results of the MNL, location specific MXL and GWMNL models (standard errors in brackets, 9 

coefficients in WTP-space, in EUR per year9). 10 

Variable 

MNL model Location specific MXL model GWMNL 

  Mean Std. Dev. Mean Std. Dev. 

coef. coef. coef. coef. coef. 

(st. err.) (st. err.) (st. err.) (st. err.) (st. err.) 

NAT1 14.8307*** 11.7961*** 7.6114*** 15.7107*** 6.8786*** 

(passive protection of most valuable 
forests – partial improvement) 

(0.5673) (0.4288) (0.4559) (0.1258) (0.1701) 

NAT2 21.8207*** 16.8630*** 12.1756*** 23.0767*** 10.0173*** 

(passive protection of most valuable 
forests – substantial improvement) 

(0.7248) (0.6129) (0.6531) (0.1826) (0.2575) 

TRA1 26.6697*** 17.4477*** 8.3347*** 28.3018*** 11.0293*** 

(the amount of litter in forests – partial 
improvement) 

(0.8298) (0.6066) (0.4433) (0.2001) (0.2316) 

TRA2 35.6782*** 25.2329*** 14.1371*** 37.8590*** 14.7594*** 

(the amount of litter in forests – 
substantial improvement) 

(1.0664) (0.9080) (0.7508) (0.2721) (0.3624) 

                                                      

7 In the estimation, we used the bandwidth parameter of 0.475 which was the lowest value to satisfy our a priori (albeit 

arbitrarily) specified condition that all models converge and in no location the estimated WTP is larger than 100 EUR. 

See section 3.1 for discussion and Appendix A for the robustness analysis of this assumption. 

8 Standard errors for the GWMNL model estimates were Monte-Carlo simulated using 10,000 repetitions, in which 

parameters of every locally estimated model were assumed to follow multivariate normal distribution. 

9 At 1 PLN  0.23 EUR  0.25 USD. 
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INF1 12.1400*** 8.2641*** 4.5826*** 12.7121*** 5.1219*** 

(tourist infrastructure – partial 
improvement) 

(0.5269) (0.3997) (0.3251) (0.0915) (0.1003) 

INF2 19.5598*** 12.1145*** 6.5138*** 20.6085*** 8.2931*** 

(tourist infrastructure – substantial 
improvement) 

(0.6553) (0.5044) (0.3723) (0.1388) (0.1543) 

SQ 37.2443*** -3.2461*** 43.2764*** 39.3765*** 26.2943*** 

(alternative specific constant for the 
no-choice alternative) 

(1.4032) (0.7457) (2.1355) (0.3866) (0.4566) 

COST 0.0538*** -2.2472*** 0.7066*** 0.0575*** 0.0240*** 

(annual cost – tax increase) (0.0014) (0.0400) (0.0245) (0.0004) (0.0005) 

Model characteristics        
 

Log-likelihood (constant only) -36,045.3765 -36,045.3765 -36,045.3765 

Log-likelihood -29,708.2771 -22,632.3017 -28,555.966310 

Ben-Akiva Lerman’s pseudo-R2 0.3282 0.4626 0.355014 

McFadden’s pseudo-R2 0.3308 0.3721  
 

AIC/n 2.2836 1.7426 2.195014 

n (observations) 26,026 26,026 26,026 

k (parameters) 8 44     
*** p-value < 1%, ** p-value in [1%,5%), * p-value in [5%, 10%) 1 

 2 

As our model was estimated in WTP-space, parameters for all attributes can be interpreted directly 3 

as willingness to pay. Qualitative results mimic those found in Czajkowski et al. (forthcoming), 4 

namely that on average the individuals are willing to pay the most for reducing of amount of litter 5 

and the least for improvements in infrastructure.  6 

The comparison of WTP characteristics between the models reveals that means of the GWMNL 7 

estimates are very close to MNL estimates. In contrast, for the location-specific MXL the mean WTP 8 

values are significantly lower. The biggest difference is observed for the mean estimates of 9 

alternative specific constant parameter (SQ) which has a reversed sign. Finally, we note that the 10 

standard deviations are of similar magnitude in both approaches (except for SQ which has a higher 11 

standard deviation in the location-specific MXL model).  12 

                                                      

10 For GWMNL these are mean values across 253 local models 
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There are, at least, three possible reasons for why we observe significant changes in the mean WTP 1 

values. Firstly, one can expect that not allowing for spatial correlation in the specification of the 2 

MXL model may lead to biased estimates. Secondly, the assumption of the MNL model form of 3 

local models in GWMNL may not be justified, because the error terms could in reality be correlated 4 

across alternatives. Lastly, and crucially, it may be driven by the distributional assumptions of the 5 

MXL model. While the MXL model assumes that the cost*scale parameter is log-normally 6 

distributed and that the marginal WTP distributions are all normally distributed, the GWMNL 7 

model is a semi-parametric approach and thus makes no such assumptions.  8 

In order to compare the relative fit to the data provided by each of the three models (GWMNL, 9 

MNL and location -specific MXL models) we propose to use the Ben-Akiva-Lerman’s pseudo-R2 10 

(Ben-Akiva and Lerman, 1985). This is a measure of predicted probabilities of choosing the 11 

alternatives which were actually chosen by respondents – an intuitive way of illustrating how well 12 

a model predicts the observed choices. We adapt this measure to the panel character of our data 13 

– because each respondent or each location was associated with n choice tasks, the joint 14 

probability of the observed series of n choices is normalized by taking its n-th root.  Mean 15 

probabilities are presented in Table 2 (Ben-Akiva-Lerman’s pseudo-R2), while their spatial 16 

distribution is illustrated in Figure 3. The pattern that emerges is clear – although the GWMNL 17 

approach provides a better fit than the MNL model, it is worse than the location-specific MXL 18 

model. Apparently the ability to generically account for the unobserved preference heterogeneity 19 

offers more of an improvement in fit than explicitly accounting for spatial correlations in the MNL 20 

model. However, we note that the predicted probabilities are highly correlated – the regions in 21 

which respondents’ choices are relatively better or worse predicted are unchanged across the four 22 

models. This observation is further illustrated with the results provided in Table 3 – the correlation 23 

coefficients between location specific choice probabilities predicted by different models. Indeed, 24 

the predictions from GWMNL are more correlated with MNL, than with MXL.  25 

Figure 3. Model-specific predicted probabilities of the observed choices (Ben-Akiva-Lerman’s 26 

pseudo-R2) 27 
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 1 

Table 3. Correlation coefficients of model-specific predicted probabilities of the observed choices 2 

(Ben-Akiva-Lerman’s pseudo-R2) 3 

  GWMNL (b=0.475) MNL 
Location specific 

MXL model 

GWMNL (b=0.475) 1.0000 0.7782 0.4110 

MNL 0.7782 1.0000 0.2313 

Location specific 
MXL model 

0.4110 0.2313 1.0000 

 4 

In order to analyze the discrepancies between the geographically weighted and the traditional two-5 

step approach further we can compare the differences between WTP estimates for every location 6 

presented on map of Poland. This is done in the 7 panels of Figure 4. In these panels positive values 7 
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depict locations where GWMNL (b=0.475) estimates are higher (red) and negative values depict 1 

locations where conditional expected values from location-specific MXL are higher (green). 2 

Distributions of these differences are not symmetric with respect to 0 (as every interval consists of 3 

10% of the sample). For all attributes, more than 80% of observations have positive values (higher 4 

values of WTP from GWMNL).  5 

Graphical analysis reveals several spatial patterns of between-estimate differences which are 6 

consistent across all attributes. First of all, the largest differences can be observed in the central-7 

south part of Poland near Cracow and Katowice cities, where GWMNL approach leads to much 8 

higher estimates of WTP. Secondly, in the west and north-east parts of Poland the differences seem 9 

to be much lower, sometimes negative. In the other parts of the country there is no clear spatial 10 

pattern, although it seems that also in the central part the differences are rather low (but positive). 11 

The fact, that some spatial patterns can be observed is an indication that these the two approaches 12 

recover different spatial dependencies of preferences. As GWMNL is designed to recover such 13 

spatial dependencies we can expect it to work better in this regard. 14 

In order to investigate any systematic dependencies in these differences we estimated simple 15 

linear regressions in which their absolute values are explained by GIS variables and the number of 16 

observations per location. The full results are available in Appendix B. In short, we found that for 17 

locations with higher number of observations differences in WTP are significantly lower. This may 18 

indicate, that with more homogeneous sampling (with multiple observations per location) the two 19 

methods become more similar.  What is more, we found that the differences are lower in areas 20 

with high coverage of very old forests, but are higher in built-up areas and areas with high coverage 21 

of forests with more than 6 tree species.  22 

 23 

Figure 4. Spatial distribution of differences between WTP estimates from GWMNL and conditional 24 

expected values from location-specific MXL. 25 
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 1 

Lastly, it is possible to perform a decomposition of the estimated WTP using GIS variables, similar 2 

to Czajkowski et al. (forthcoming). To this end, seven regressions were estimated in which WTP 3 

were explained by the same GIS variables as in Czajkowski et al. (forthcoming). The results from 4 

linear regression model on the GWMNL (b=0.475) results are given in Table 4, whereas the spatial 5 

lag models based on the conditional expected values of random parameters from location-specific 6 

MXL are presented in Table 5.11 In all cases we decided to use only GIS variables and omit socio-7 

demographic variables, since these were insignificant in most cases for the GWMNL and location-8 

specific MXL approaches. Testing their joint significance we found that at 5% significance level 9 

socio-demographic variables are significant only in NAT1 and NAT2 equations, and not significant in 10 

any equation at 1% significance level. We think that these results may be caused partly by the fact 11 

that we needed to average socio-demographic variables over individuals in the same location, as 12 

in Czajkowski et al. (forthcoming), where this relationship was analyzed on the individual level, 13 

socio-demographic variables were more significant.  14 

                                                      

11 Note that in current analysis we used Ordinary Least Square instead of spatial lag model. It was not possible to 

estimate spatial lag model on WTP estimated from GWMNL as from definition these are highly spatially 

autocorrelated and therefore coefficient   (which is coefficient for spatial lag term) was almost equal to 1 and no 

other variable would then occur significant.  
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Looking firstly at the results based on the GWMNL results, we find that most of GIS variables are 1 

highly significant. We can compare these estimates with results in Table 5 in order to investigate 2 

structural differences in spatial heterogeneity in WTP estimates between the GWMNL and 3 

Bayesian posterior means from location-specific MXL. Greyed out cells of Table 4 indicate 4 

coefficients which have a different sign than equivalent coefficients in Table 5. This issue is the 5 

most prominent in regression for the SQ, where 3 variables have different signs, although they are 6 

all insignificant in this case. This problem also occurs, for almost every attribute, with “Area of 7 

forests with age > 120” variable. In case of location-specific MXL, this variable has a positive 8 

(although insignificant) coefficient for most attributes. What is also interesting is that in the current 9 

analysis variables “Built-up area” and “Area of forests with no. of species > 6” were significant in 10 

almost all cases. This differs to what we discovered when using the conditional expected values of 11 

random parameters from the MXL model where these variables were insignificant in all cases.  12 

 13 

Table 4.  Results of regressions in which WTP estimates from GWMNL are explained by GIS 14 

variables 15 

 SQ NAT1 NAT2 TRA1 TRA2 INF1 INF2 

 

(alternative 
specific 

constant for 
the no-choice 

alternative) 

(passive 
protection of 
most valuable 

forests – 
partial 

improvement) 

(passive 
protection of 
most valuable 

forests – 
substantial 

improvement) 

(the amount 
of litter in 
forests – 

partial 
improvement) 

(the amount 
of litter in 
forests – 

substantial 
improvement) 

(tourist 
infrastructure 

– partial 
improvement) 

(tourist 
infrastructure 
– substantial 

improvement) 

Constant 
34.7688*** 17.6132*** 27.0083*** 30.8844*** 44.8497*** 11.8696*** 22.0946*** 

(5.7861) (1.5842) (2.4027) (2.4394) (3.4203) (1.0303) (1.8038) 
Area of 
coniferous 
forests 

-0.1544 -0.0727* -0.1088* -0.0732 -0.1519* 0.0239 -0.0449 

(0.1362) (0.0373) (0.0566) (0.0574) (0.0805) (0.0243) (0.0425) 

Area of 
deciduous 
forests 

1.0730** -0.1207 -0.3464* -0.0479 -0.3411 0.2376*** 0.2164 

(0.4567) (0.1251) (0.1897) (0.1926) (0.2700) (0.0813) (0.1424) 

Area of mixed 
forests 

-0.1680 -0.2419*** -0.3022** -0.2930** -0.4331** -0.0364 -0.2270** 
(0.3356) (0.0919) (0.1393) (0.1415) (0.1984) (0.0598) (0.1046) 

Area of forests 
with age >120 

-7.0385*** -0.4937 -0.5343 -1.3759** -1.0958 -1.4039*** -2.0912*** 
(1.4597) (0.3996) (0.6061) (0.6154) (0.8628) (0.2599) (0.4550) 

Average 
Euclidean 
distance to a 
forest 

-1.7794 -1.1623* -1.7118* -2.3111** -3.8154*** 0.0347 -1.1040 

(2.3522) (0.6440) (0.9768) (0.9917) (1.3904) (0.4189) (0.7333) 

Built-up area 
0.2859*** 0.0813*** 0.1123*** 0.1454*** 0.1703*** 0.0129 0.0405 
(0.0793) (0.0217) (0.0329) (0.0334) (0.0469) (0.0141) (0.0247) 

Area of forests 
with no. of 
species > 6 

1.0447*** 0.2774*** 0.3147** 0.3567** 0.4133** 0.1161* 0.3829*** 
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 (0.3331) (0.0912) (0.1383) (0.1405) (0.1969) (0.0593) (0.1039) 

Model characteristics 

R2 0.2195 0.1215 0.0980 0.1293 0.0925 0.1556 0.1648 
n (observations) 253 253 253 253 253 253 253 
k (parameters) 8 8 8 8 8 8 8 

*** p-value < 1%, ** p-value in [1%,5%), * p-value in [5%, 10%) 1 

 2 

 3 

Table 5.  Results of spatial lag models in which Bayesian posterior means from MXL model are 4 

explained by GIS variables.  5 

*** p-value < 1%, ** p-value in [1%,5%), * p-value in [5%, 10%) 6 

 7 

Overall, the results indicate that there are significant discrepancies with regard to spatial patterns 8 

recovered with the two methods. Differences in the signs and significance of coefficients for GIS 9 

variables demonstrate that the WTP distributions differ in structure between these two 10 

approaches.  As the GWMNL model explicitly deals with spatial heterogeneity (rather than trying 11 

to recover it indirectly post estimation) it could be considered more reliable. It is also important to 12 

  SQ NAT1 NAT2 TRA1 TRA2 INF1 INF2 

  

(alternative 
specific constant 
for the no-choice 

alternative) 

(passive 
protection of 
most valuable 

forests – 
partial 

improvement) 

(passive 
protection of 
most valuable 

forests – 
substantial 

improvement) 

(the amount 
of litter in 
forests – 
partial 

improvement) 

(the amount 
of litter in 
forests – 

substantial 
improvement) 

(tourist 
infrastructure 

– partial 
improvement) 

(tourist 
infrastructure 
– substantial 

improvement) 

Location-specific MXL 

Constant 
-35.0845*** 15.2120*** 23.2420*** 16.2849*** 26.6299*** 5.9459*** 8.9798*** 

[9.0012] [1.9167] [2.9933] [2.1964] [3.5287] [1.0342] [1.4828] 
Area of coniferous 
forests  

0.4807**  -0.0828**  -0.1442**  -0.0674*   -0.1537**  0.0054    -0.0129    
[0.2108] [0.0371] [0.0595] [0.0402] [0.0668] [0.0202] [0.0284] 

Area of deciduous 
forests  

2.5479*** -0.3785*** -0.6469*** -0.1931    -0.5320*** 0.0471    0.0096    
[0.6502] [0.1139] [0.1829] [0.1226] [0.2043] [0.0616] [0.0867] 

Area of mixed 
forests 

0.7688*   -0.1880**  -0.3133**  -0.2060**  -0.3404**  -0.0634    -0.1022*   
[0.4489] [0.0791] [0.1270] [0.0859] [0.1425] [0.0430] [0.0607] 

Area of forests 
with age >120 

-0.6381    0.6013    0.9906    0.4653    0.9354    -0.0776    0.0971    
[2.2125] [0.3907] [0.6268] [0.4225] [0.7025] [0.2117] [0.2983] 

Average Euclidean 
distance to a 
forest 

10.8442*** -1.6825*** -2.8926*** -1.6013**  -3.2686*** -0.2967    -0.6871    

[3.3104] [0.5811] [0.9328] [0.6309] [1.0499] [0.3153] [0.4454] 

   0.2555*** 0.1810**  0.1824**  0.3397*** 0.3325*** 0.3700*** 0.4090*** 

[0.0723] [0.0760] [0.0758] [0.0681] [0.0682] [0.0664] [0.0637] 

Model characteristics 

Log Likelihood -1255.8570 -814.7967 -934.2825 -838.5166 -966.3454 -665.4564 -753.4436 
AIC/n 10.0246 6.5194 7.4643 6.7622 7.7718 5.4062 6.1279 
n (observations) 253 253 253 253 253 253 253 
k (parameters) 8 8 8 8 8 8 8 
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note that in all models using the GWMNL estimates the R2 in all models is very low, which suggest 1 

that the GIS variables we used explain only a small fraction of the observed variance. Therefore, 2 

assuming that the estimated values obtained from the GWMNL models are the true values, most 3 

of the heterogeneity in WTP is caused by some other factors, which we do not account for. This 4 

may partly be due to the spatial distribution of forest characteristics in Poland.  5 

 6 
In some cases the differences between forests which lie next to each other are large, and therefore 7 

significant variance in their values may occur even on a local level. Because of that, our model may 8 

not be able to recover relationship between these factors and preference heterogeneity correctly, 9 

as we do not have sufficiently detailed data to model this local variation. It is possible that the 10 

GWMNL approach would perform better in the case of preferences for environmental goods which 11 

change more gradually.  12 

 13 

Discussion and conclusions 14 

In this paper we investigate two alternative methods for addressing spatial patterns in willingness 15 

to pay for changes to an environmental good. We argued that knowledge of how willingness to pay 16 

for a specific environmental change varies across space is useful from a policy and management 17 

perspective. Knowing the spatial pattern of values can help resource managers target investments 18 

in site quality, or in new forests, as investments can be directed at locations where they are most 19 

valued. It also enables a higher-resolution identification of the gainers and losers from changes in 20 

resource management, since now the location of individuals who gain by a given amount from a 21 

policy can be mapped. An example of how important this might be is provided by Hynes et al (2010) 22 

using contingent valuation survey data for Ireland. They found that allowing for spatial differences 23 

in the characteristics of individuals (in their case, farmers) via a micro-simulation approach resulted 24 

in significantly different estimates of willingness to pay for biodiversity conservation at the regional 25 

level, and thus significantly different measures of aggregate benefits, compared to an aggregation 26 

method which did not take into account spatial variation in the characteristics of beneficiaries.  27 
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Given the costs of original survey work, the ability to produce such maps cost-effectively is highly 1 

desirable so long as results are sufficiently robust. The case study used to generate the data with 2 

which the two alternative methods are tested concerns the management of forests in Poland. We 3 

introduced a novel method of geographically weighted discrete choice models to account for 4 

spatial heterogeneity of model parameters, and compared this to a standard “two-step” approach 5 

using the MXL model and posterior Bayesian means of random parameters (Czajkowski et al., 6 

forthcoming). The comparison focused on the consequences for estimates of willingness to pay, as 7 

this is typically the focus in environmental economics. Our analysis revealed significant differences 8 

in the estimates of WTP between the two methods. Specifically, for all forest attributes, mean WTP 9 

was much higher when obtained using GWMNL. We also found some important structural 10 

differences – several land cover variables appeared to have a reversed effect on WTP when the 11 

models are compared.  12 

We note that both methods have shortcomings. MXL assumes that random parameters are drawn 13 

from spatially independent distributions and relies heavily on distributional assumptions. Any 14 

spatial correlations that are observed are obtained from posterior Bayesian means, and they are, 15 

obviously, conditional on these assumptions. On the other hand, GWMNL ignores other (non-16 

spatial) sources of preference heterogeneity, such as variations in income, which other research 17 

has shown to matter. This shortcoming of the GWMNL model could be addressed by using a more 18 

complicated weighting function which accounts for socio-demographic characteristics. However, 19 

this may require the use of multiple bandwidth parameters. We tried to incorporate heterogeneity 20 

with respect to socio-demographic characteristics by using a second bandwidth parameter, but the 21 

results were not satisfactory, particularly when using the eye-balling technique to determine the 22 

optimal bandwidth value. First of all, in such a setting there was no unique ‘lower’ bandwidth for 23 

which our criterion was fulfilled, e.g. in case of having criterion of all WTP being below 100 EUR, 24 

there could exist several pairs of bandwidths for which all WTP values are below this chosen level, 25 

such that an increase in any of bandwidths would lead to exceeding this level. Researchers would 26 

therefore need some additional criterion to choose the preferred model. Second, the number of 27 

models that one needs to estimate increases very quickly with the number of bandwidth 28 

parameters, e.g. if for a single bandwidth researcher wants to evaluate 20 different models, then 29 
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for two bandwidth parameters about 20x20=400 models need to be evaluated. Another possibility 1 

is to include unobserved heterogeneity in local models via estimation of latent class models instead 2 

of simple multinomial logits. Such approach was used by Koster and Koster (2015) (although not in 3 

the spatial context) and may be a preferable approach to GWMNL. This also introduces additional 4 

computational burdens, however.  5 

In light of the above, it is difficult to conclude that either of the two methods presented here for 6 

the spatial modelling of willingness to pay is superior. Additional analysis of the reliability of 7 

Bayesian posterior means and their vulnerability to MXL assumptions is needed. To some extent, 8 

Hess (2010) approach this issue, but with no focus on welfare measures. Moreover, methods for 9 

choosing an appropriate bandwidth parameter in geographically weighted discrete choice models 10 

are currently under-developed. Many of the methods proposed are unsatisfactory and lead to poor 11 

results. This is especially important for more advanced kernels and with multiple bandwidth 12 

parameters, which would allow for spatial sources of heterogeneity. Lastly, more research on 13 

sampling design for such spatial models is needed, in terms of the implications for estimates of 14 

spatial relationships. We could expect that more homogenous geographic sampling would provide 15 

better results, although then the sample will no longer be representative.  16 

  17 
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Appendix A 1 

In this section we check robustness of our results by analyzing differences in estimates for 3 2 

different values of bandwidth parameter: 0.275, 0.475 and 0.6.  0.475 is a value used throughout 3 

the paper, 0.275 is the lowest bandwidth value for which all WTP except SQ are below 100 EUR 4 

and 0.6 is the highest value we considered (as it is generally recommended to use lowest 5 

bandwidth value which fulfill chosen criteria). In Table A1. we provide characteristics of WTP for 6 

these values of bandwidth analogously as it was done in Table 2. We note that mean WTP are quite 7 

robust with respect to choice of a bandwidth. Although mean estimates for bandwidth values of 8 

0.275 and 0.6 lie more than two standard errors from estimates for bandwidth = 0.475, they are 9 

fairly close to each other. Dispersion of WTP change significantly between different bandwidth 10 

values. To investigate how change in dispersion influence our results we conducted a graphical 11 

analysis presented in Figure A1. In every panel we plotted parameters estimates for chosen 12 

bandwidth values: 0.275 (blue lines), 0.475 (red lines) and 0.6 (yellow lines) with their 95% 13 

confidence intervals (dotted lines) against longitude. We see that, indeed increased dispersion for 14 

bandwidth of 0.275 leads to several ‘peaks’, with very wide confidence intervals, for every 15 

parameter. Because of that for lower bandwidth value many WTP estimates in local models 16 

occurred insignificant. Estimates for 0.6 bandwidth usually lies within confidence interval for 17 

estimates for bandwidth of 0.475. We therefore conclude that choosing bandwidth of 0.475 is 18 

justified as it allows to avoid implausible ‘peaks’ in WTP (especially for SQ) and insignificant 19 

estimates. We also do not see any reason to choose bandwidth above 0.475 as the plots does not 20 

reveal any particular under-smoothing when comparing lines for bandwidth of 0.475 with lines for 21 

bandwidth of 0.6.  22 

  23 
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Table A1. Characteristics of distributions of estimated WTP from GWMNL model for different 1 

bandwidth values (stanrard errors in [] brackets, coefficients in WTP-space, in EUR per year) 2 

  Bandwidth = 0.275 Bandwidth = 0.475 Bandwidth = 0.6 

  Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

NAT1 16.4541*** 10.9360*** 15.7107*** 6.8786*** 15.5389*** 5.7223*** 

(passive protection of most valuable 
forests – substantial improvement) 

[0.2225] [0.5033] [0.1258] [0.1701] [0.0968] [0.1138] 

NAT2 24.0868*** 15.4706*** 23.0767*** 10.0173*** 22.7602*** 8.1253*** 

(passive protection of most valuable 
forests – partial improvement) 

[0.3136] [0.5758] [0.1826] [0.2575] [0.1390] [0.1682] 

TRA1 29.6563*** 16.7661*** 28.3018*** 11.0293*** 27.8463*** 9.0786*** 

(the amount of litter in forests – 
partial improvement) 

[0.3318] [0.4383] [0.2001] [0.2316] [0.1530] [0.1704] 

TRA2 39.8062*** 22.7725*** 37.8590*** 14.7594*** 37.1348*** 11.8575*** 

(the amount of litter in forests – 
substantial improvement) 

[0.4591] [0.6970] [0.2721] [0.3624] [0.2041] [0.2446] 

INF1 12.9375*** 7.5310*** 12.7121*** 5.1219*** 12.6410*** 4.3811*** 

(tourist infrastructure – partial 
improvement) 

[0.1469] [0.1862] [0.0915] [0.1003] [0.0736] [0.0793] 

INF2 21.1835*** 11.5530*** 20.6085*** 8.2931*** 20.4056*** 7.1172*** 

(tourist infrastructure – substantial 
improvement) 

[0.2223] [0.2611] [0.1388] [0.1543] [0.1064] [0.1127] 

SQ 38.7161*** 37.5901*** 39.3765*** 26.2943*** 39.5860*** 23.3231*** 

(alternative specific constant for the 
no-choice alternative) 

[0.6308] [1.1447] [0.3866] [0.4566] [0.3046] [0.3690] 

COST  0.0626*** 0.0403*** 0.0575*** 0.0240*** 0.0561*** 0.0182*** 

(annual cost – tax increase) [0.0005] [0.0008] [0.0004] [0.0005] [0.0003] [0.0003] 
*** p-value < 1%, ** p-value in [1%,5%), * p-value in [5%, 10%) 3 
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Figure A1. Parameters values with different bandwidths values plotted against longitude 
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Appendix B. Results of regressions where the dependent variables are the absolute values of 

differences between WTP from GWMNL and location-specific MXL.  

  SQ NAT1 NAT2 TRA1 TRA2 INF1 INF2 

  

(alternative 
specific 

constant for 
the no-choice 
alternative) 

(passive 
protection of 
most valuable 

forests – 
partial 

improvement) 

(passive 
protection of 
most valuable 

forests – 
substantial 

improvement) 

(the amount 
of litter in 
forests – 

partial 
improvement) 

(the amount 
of litter in 
forests – 

substantial 
improvement) 

(tourist 
infrastructure 

– partial 
improvement) 

(tourist 
infrastructure 
– substantial 

improvement) 

Constant 
82.0358*** 5.7755*** 9.6175*** 9.8597*** 12.7036*** 4.1844*** 8.8477*** 

(9.2459) (1.5418) (2.4648) (2.6067) (3.6717) (1.0185) (1.8850) 

Area of 
coniferous 
forests  

-0.4873**  0.0137    0.0114    0.0813    0.1330*    0.0176    0.0009    

(0.1989) (0.0332) (0.0530) (0.0561) (0.0790) (0.0219) (0.0405) 

Area of 
deciduous forests  

-1.2194*    0.3164*** 0.4116**  0.2939    0.3938    0.1304*    0.2372*    

(0.6669) (0.1112) (0.1778) (0.1880) (0.2648) (0.0735) (0.1360) 

Area of mixed 
forests 

-0.6284    -0.0237    -0.0621    -0.0474    -0.0675    0.0244    -0.0575    

(0.4917) (0.0820) (0.1311) (0.1386) (0.1952) (0.0542) (0.1002) 

Area of forests 
with age >120 

-4.2394**  -0.9866*** -1.3444**  -2.4452*** -3.1542*** -1.1758*** -2.1505*** 

(2.1335) (0.3558) (0.5688) (0.6015) (0.8473) (0.2350) (0.4350) 

Average 
Euclidean 
distance to a 
forest 

-11.0065*** 0.4652    1.0371    -0.1832    0.3181    0.1845    -0.1190    

(3.4348) (0.5728) (0.9157) (0.9684) (1.3640) (0.3784) (0.7003) 

Built-up area 
0.3118*** 0.0367*    0.0435    0.1361*** 0.1378*** 0.0221*    0.0455*    

(0.1208) (0.0202) (0.0322) (0.0341) (0.0480) (0.0133) (0.0246) 

Area of forests 
with no. of 
species > 6 

0.1275    0.1858**  0.2741**  0.4277*** 0.6317*** 0.1482*** 0.3786*** 

(0.4912) (0.0819) (0.1310) (0.1385) (0.1951) (0.0541) (0.1002) 

No. of 
observations per 
location 

-2.9135*** -0.4663*** -0.8032*** -0.5535*** -0.8810*** -0.1038    -0.3383**  

(0.7404) (0.1235) (0.1974) (0.2088) (0.2940) (0.0816) (0.1510) 

Model characteristics 

R2 18.19% 18.04% 16.58% 20.07% 17.08% 14.49% 18.11% 

n (observations) 253 253 253 253 253 253 253 

k (parameters) 9 9 9 9 9 9 9 

*** p-value < 1%, ** p-value in [1%,5%), * p-value in [5%, 10%) 

 


