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Abstract

Parental investment in Arapaima gigas includes nest building and guarding, followed by a

care provision when a cephalic fluid is released from the parents’ head to the offspring. This

fluid has presumably important functions for the offspring but so far its composition has not

been characterised. In this study the proteome and peptidome of the cephalic secretion was

studied in parental and non-parental fish using capillary electrophoresis coupled to mass

spectrometry (CE-MS) and GeLC-MS/MS analyses. Multiple comparisons revealed 28

peptides were significantly different between males and parental males (PC-males), 126

between females and parental females (PC-females), 51 between males and females and 9

between PC-males and PC-females. Identification revealed peptides were produced in the

inner ear (pcdh15b), eyes (tetraspanin and ppp2r3a), central nervous system (otud4, ribeye

a, tjp1b and syn1) among others. A total of 422 proteins were also identified and gene ontol-

ogy analysis revealed 28 secreted extracellular proteins. From these, 2 hormones (prolactin

and stanniocalcin) and 12 proteins associated to immunological processes (serotransferrin,

α-1-antitrypsin homolog, apolipoprotein A-I, and others) were identified. This study provides

novel biochemical data on the lateral line fluid which will enable future hypotheses-driven

experiments to better understand the physiological roles of the lateral line in chemical

communication.

Introduction

Freshwater oviparous teleosts lay eggs in rivers and lakes where food resources are not always

abundant and predators or pathogens can significantly impact numbers of descendants. Along
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the evolution of teleosts, several mechanisms have arisen comprising parental investment,

which include parental actions to increase offspring survival [1]. Parental care behaviour in tel-

eosts involves building nests with appropriate substrates, defending and guarding the eggs,

embryos and larvae against predators, and in some species parents provide protection for

extended periods during juvenile development [2]. An important component of parental care

strategies is the provision of nutrients to the offspring either through egg yolk or more rarely

at post-hatch stages (e.g. mucus feeding) [3]. In some species, passive immunity or stimulated

growth can occur via parental biochemical interaction with the offspring [4]. The provision of

nutrients, growth and immunity factors at early developmental stages is particularly important

to reduce the time offspring spend under more vulnerable conditions, therefore increasing

likelihood of survival.

Arapaima gigas (Schinz, 1822) is a large fish characterised by late sexual maturity, small

clutches and high parental investment per offspring [5]. Despite being an emblematic species

of the Neotropical ichthyofauna (adults can reach up to 3 m in length) [6], the species is threat-

ened due to overexploitation of natural stocks combined with the lack of knowledge on its

basic biology [7]. Reproduction of A. gigas in natural environments begins with the rainy sea-

son generally from December to May [8]. With the start of the flooding, adults build nests for

mating in temporary lagoons [8]. Prior to reproduction, chasings and fights indicate marked

territorialism in the species, and spawning is followed by external fertilization on the nest [9].

After spawning, the male and female initiate nest guarding behaviour: while one parent is at

the surface breathing, the other is always protecting the brood on the nest. The occurrence of

mouth incubation or egg transportation has been suggested [10], but no systematic observa-

tion supporting oral incubation in A. gigas has been reported. Nine days after spawning, the

eggs hatch and larvae start air-breathing. The male provides an intensive parental care which

can last up to 3 months, guiding the offspring above its darkened head into zooplankton-rich

areas for feeding [11]. Fry shoaling at this stage is remarkably organized, for instance the male

darkening is believed to provide camouflage for the offspring against predators [12]. Female

participation in parental care at this stage seems less relevant due to female unchanged body

colour [13]. However, the female swims round the male and offspring at longer distances

(>2m) for some period after the nest guarding phase [10]. This behaviour is still poorly under-

stood, but could involve territorial inspection aiming at predator avoidance or location of

food-rich areas [13]. The female normally leaves the male and offspring after a period not well

documented (cc. 1 month), and can reproduce again with other males during the same repro-

ductive season [8].

The mechanisms by which parental investment occur in A. gigas are not fully understood,

and a particularity has called attention of many ichthyologists. On the head surface of adult

males and females, the cephalic canals of the lateral line system are well developed forming a

series of cavities covered by a pore-bearing integument, from which a whitish fluid is released

into the water [14]. The indigenous refer to this fluid as “arapaima milk” since after fertiliza-

tion on the nest, eggs, developing larvae and the growing offspring are in constant interaction

with the male and female’s head, being in close contact with this secretion. Several roles for

this fluid have been suggested since its production is intensified during reproduction and

parental care. However, whether the cephalic secretion contributes to fingerling nutrition [15–

18] or enhances the fry immunological system increasing survival rates [19] are hypotheses

never truly investigated given the lack of basic information on the biochemical nature of the

cephalic secretion. Lack of biochemical information hinders also our understanding on fish

chemical communication, which involves release of pheromones and signature mixtures, that

convey varied messages into conspecifics including the offspring [20].
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In this context, the un-targeted study of the proteome and peptidome is an ideal “search

space” for molecules which can help us to understand the functions behind biological fluids,

with examples found in proteomic studies of cerebrospinal fluids (CSF), fish mucus, plasma,

tear fluid, urine and others [21–23]. With the analytical—omics advances of recent years, pro-

teomes and peptidomes have been studied in different species, generating protein databases

that are available for protein identification, phylogenetic comparisons and gene ontology anal-

yses based on homology-driven approaches [24]. Consequently, proteomic methods are being

used in a wide range of disciplines such as behavioural ecology, aquaculture and food sciences

[25, 26]. In most cases, the initial mapping of proteins and peptides is necessary to allow later

mechanistic driven hypotheses. Such examples are illustrated in studies with other parental

fish species, such as the mapping of the mucus proteome in the discus fish (Symphysodon
aequifasciata) [27], which later allowed better understanding on the roles of prolactin (PRL) in

the parental care of that species [28]. Similarly, after an initial mapping of the mucus proteome

of the Atlantic cod (Gadus morhua), important proteins related to fish immune response were

elucidated [29].

In this study, peptides and proteins present in the cephalic fluid of arapaima comprising the

anterior lateral line were analysed using different analytical platforms. Peptides were profiled

using capillary electrophoresis coupled to mass spectrometry (CE-MS) and identifications

were performed using liquid chromatography coupled to tandem mass spectrometry

(LC-MS/MS) [30]. On the other hand, proteins present in the cephalic fluid were analysed

using one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by

liquid chromatography-tandem mass spectrometry (GeLC-Ms/MS) [31]. The combination of

CE-MS and LC-MS/MS for the analysis of peptides in complex samples has been shown to be

a reproducible and very sensitive platform [30] while GeLC-MS/MS is a robust technique com-

monly used to identify proteins in complex samples [31]. Having access to few of these valu-

able cephalic fluid samples during parental care of A. gigas enabled this study to characterise

the proteome and peptidome comparing parental and non-parental males and females, thus

generating novel data to increase our understanding of parental care processes in this species

and possible roles of the cephalic secretion in teleosts.

Materials and methods

Animal sampling

This study was carried out in the Rodolpho von Ihering research station- DNOCS (3˚48’09.54”S,

39˚15’56.73”W) at Pentecoste (Brazil). Adult broodstock of A. gigas known to be over 6 years of

age received a passive integrated transponder (PIT; AnimallTAG, São Carlos, Brazil) in the dor-

sal muscle to allow individual identification. Fish gender was identified with a vitellogenin

enzyme immune assay (EIA) kit (Acobiom, Montpellier, France) developed specifically for

A. gigas [32] and females were paired with males in 300m2 breeding earthponds (1–2 m depth).

Along the study, fish were fed once a day ad libitum with 160 g floating balls made with a

commercial ration (38% crude protein, Aquamix, Brazil) mixed with 10% tilapia flesh (Oreo-
chromis niloticus). Welfare of this studied broodstock and rearing system have been previously

described [33].The sampled males measured 162.8 ± 25.9 cm in total length (TL) and weighed

39.9 ± 16.8 kg, whilst females measured 180.5 ± 14.5 cm in TL and weighed 52.3 ± 12.3 kg.

Before sampling, fish were fasted for 24 hours, netted from earthponds and kept contained on a

soft wet mat for between 5–10 minutes. Anaesthetics were not applied during sampling as

anaesthesia has been shown to compromise welfare and result in mortalities in A. gigas due to

its obligate air-breathing behaviour [34]. Fish breathing behaviour was closely monitored dur-

ing sampling (breathing at regular intervals of 4–6 minutes). Tags were read and 1–2 ml of
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cephalic fluid was sampled from the dorsalmost lateralis sensorial cavity of the preopercle using

a sterile needle inserted inside the integument pocket (BD Precisionglide 22G, New Jersey,

USA). The collected fluid did not include visible blood contamination. Samples were immedi-

ately frozen in liquid nitrogen and then stored at -80˚C. After sampling, fish were returned to

the ponds and monitored until return to normal breathing behaviour, and no mortality was

recorded following this sampling procedure.

Non-parental and parental fish were sampled at different time points. A total of 11 non-

parental males (males) and 12 non-parental females (females) were sampled in March 24th

2014. Additionally, two couples spawned twice from March to June 2014, and from them a

total of 10 samples were taken along the parental care phase. Since it was not possible to

observe spawning of A. gigas due to water turbidity in breeding ponds, the fertilization time in

A. gigas is calculated by subtracting 9 days from the day when offspring are first observed

breathing [13]. Therefore, samples from parental males (PC-males) and females (PC-females)

correspond to approximately 13, 25, 35 and 62 days post-spawning (dps). All samples were

individually analysed in the capillary electrophoresis (CE-MS) after peptide extraction. For the

protein analysis (GeLC-MS/MS), equal protein amounts of each sample were pooled after pro-

tein quantification. These protein pools corresponded to: males (n = 6 males at 1-time point),

females (n = 6 females at 1-time point), PC-males (n = 5 samples, 1 male at 2-time points and

1 male at 3-time points) and PC-females (n = 5 samples, 1 female at 2-time points and 1 female

at 3-time points).

This research complied with the “Brazilian guidelines for the care and use of animals for

scientific and educational purposes”–DBCA, and this research was approved by the Ethics

Committee for the Use of Animals—CEUA of the National Research Center on Fisheries,

Aquaculture and Agricultural Systems—CNPASA (specific protocol n˚09). Samples were

shipped in dry ice for protein and peptide extraction at the University of Stirling (Stirling,

Scotland) (Permit IBAMA/CITES n˚ 14BR015850/DF). Extracted peptides were analysed at

the University of Glasgow and proteins at the University of the Highlands and Islands.

Analysis of peptides

Extraction. All buffers and solutions used were freshly prepared, following the method

from Albalat, Franke [35]. Cephalic fluid samples were thawed on ice and 800 μl used for pep-

tide extraction. An initial centrifugation at 2,000 g (5 min; 4˚C) was used to settle debris and

impurities down. The supernatant was removed and centrifuged at 16,000 g (10 min 4˚C) for

delipidation. Following, 750 μL of the supernatant was removed and mixed with 750 μL of

urea buffer (2 M urea, 100 mM NaCl, 10 mM NH4OH containing 0.01% SDS). This mixture

was filtered in a 20 kD Centrisart tube (Sartorius Stedim, Geottingen, Germany), and centri-

fuged at 2,000 g to obtain 1.1 mL of filtrate. This filtrate was applied into a NAP -5 Saphadex

desalting column (GE Healthcare Life Sciences, Buckinghamshire, UK) previously equilibrated

with 25 ml of NH4 buffer (0.01% NH4OH in HPLC-grade H2O, pH 10.5–11.5), and eluted

with 2 ml of NH4 buffer, collected in clean 5 mL polypropylene tubes, lyophilized and kept at

4˚C until CE-MS analysis was performed.

Capillary electrophoresis (CE-MS). Peptides were analysed with a P/ACE MDQ capillary

electrophoresis system (Beckman Coulter, Brea, CA, USA) equipped with a capillary PicoTip

Emitter TaperTip of 90 cm, 360 μm OD and 50 μm ID (New Objective, Woburn, USA) online

coupled to a MS micro-TOF (Bruker Daltonics, Leipzig, Germany). Prior to analysis, the capil-

lary was conditioned for 10 minutes at 50 psi with 1 M NaOH, and later for 20 minutes with

running buffer (20% acetonitrile (ACN), 0.94% formic acid and 79.05% HPLC graded H2O).

The MS was calibrated with a tuning solution containing lysozyme (14,303 Da), ribonuclease
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(13,681 Da), aprotinin (6,513 Da) and the following synthetic peptides: ELMTGELPYSHINNR

DQIIFMVGR (2,832 Da), TGSLPYSHIGSRDQIIFMVGR (2,333 Da), GIVLYELMTGELPYS

HIN (2,048 Da) and REVQSKIGYGRQIIS (1,733 Da) and analysis was made in reverse mode.

Lyophilised peptide samples were reconstituted in 9 μl of HPLC grade water (Roth, Karlsruhe,

Germany) and centrifuged at 12,000 g for 10 min at 4˚C. Samples were injected at a pressure

of 2 psi for 99s loading a volume of 290 nL. The capillary temperature was set at 25˚C with sep-

aration made at 25 kV for 30 minutes. Sheath flow liquid (30% 2-propanol, 0.4% formic acid

and 69.6% deionized water) was applied at the capillary end with a running speed of 0.02 ml/h.

The ESI sprayer (Agilent Technologies, Palo Alto, CA, USA) was grounded (0 V), so the ion

spray interface potential was set in -4.5 kV. The MS spectra were accumulated every three sec-

onds, over a range of m/z of 50 to 3000 along 60 minutes. This method has been comprehen-

sively described in [36] and [37]. Repeatability and reproducibility of CE-MS for peptide

analysis has been reported in Mischak, Vlahou [38]. Validation of identified peptides was

achieved by correlation between peptide change at the working pH of 2 and CE-migration

time as shown in Zürbig, Renfrow [39].

LC-MS/MS analysis. The extracted peptides were also analysed with a Dionex Ultimate

3000 RSLS nano-flow system (Dionex, Camberly UK). The samples (5 μL) were loaded onto a

Dionex 100 μm × 2 cm 5 μm C18 nano-trap column at a flowrate of 5 μL/min by an Ultimate

3000 RS autosampler (Dionex, Camberley UK). The composition of the loading solution was

0.1% formic acid and ACN (98:2). Once loaded onto the trap column the sample was washed

off into an Acclaim PepMap C18 nano-column 75 μm × 15 cm, 2 μm 100 Å at a flowrate of

0.3 μL/min. The trap and nano-flow column were kept at 35˚C in a column oven in the Ulti-

mate 3000 RSLC. The samples were eluted with a gradient of solvent A: 0.1% formic acid and

ACN (98:2) versus solvent B: 0.1% formic acid and ACN (20:80) starting at 5% B rising to 50%

B over 100 min. The column was washed using 90% B before being equilibrated prior to the

next sample being loaded.

The eluant from the column was directed to a Proxeon nano-spray ESI source (Thermo

Fisher Hemel UK) operating in positive ion mode then into an Orbitrap Velos FTMS. The

ionisation voltage was 2.5 kV and the capillary temperature was 200˚C. The mass spectrometer

was operated in MS—MS mode scanning from 380 to 2000 amu. The top 20 multiply charged

ions were selected from each full scan for MS—MS analysis, the fragmentation method was

HCD at 35% collision energy. The ions were selected for MS2 using a data dependent method

with a repeat count of 1 and repeat and exclusion time of 15 s. Precursor ions with a charge

state of 1 were rejected. The resolution of ions in MS 1 was 60,000 and 7500 for HCDMS2.

Data processing, peptide identification and statistical analysis. CE-MS raw data were

processed for peak peaking, deconvolution and deisotoping using MosaiquesVisu software v.

2.1.0 (Mosaiques Diagnostics GmbH, Hannover, Germany). The threshold of signal to noise

(SNR) was set at 4, and only signals present in 3 consecutive spectra were accepted. A matched

filtering algorithm assigned charge based on the isotopic distribution. It generated a list con-

taining all the interpretable signals with their m/z, migration time, charge, and signal intensity

(ion counts). Signals representing the same compound with different charge states were then

combined, generating a final list with compound identities defined by mass, migration time

and relative abundance (ion count). To allow comparisons among different samples, CE

migration time and ion signal intensity were normalized, resulting in a list with molecular

mass (Da) and normalized CE migration time (min) for each feature. The normalized signal

intensity was used to measure and compare the relative abundance among samples.

LC-MS/MS data were processed initially uploading the raw spectra data into Thermo Prote-

ome Discoverer 1.2 Thermo Scientific (Hemel Hempstead, UK). Peak picking was performed

under default settings for FTMS analysis such that only peptides with signal to noise ratio
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higher than 1.5 and belonging to precursor peptides between 700–8,000 Da were considered.

Peptide and protein identification was performed with SEQUEST algorithm. An in house

compiled database containing proteins from the latest version of the UniProt SwissProt data-

base was compiled to include only Danio rerio entries. No enzyme cleavage was selected and

oxidation of methionine and proline was chosen as variable modifications. Precursor tolerance

was set at 20 ppm and 0.1 Da for MS/MS fragment ions. Resulting peptides and protein hits

were further screened by excluding peptides with an error tolerance higher than 10 ppm

and by accepting only those hits listed as high confidence by Proteome Discoverer software.

Theoretical migration times in CE—MS for any resulting peptides were calculated so that

sequences obtained with LC-MS/MS could be subsequently assigned to a position in the CE—

MS analysis.

Aiming to discriminate peptide peaks and compare different groups, a non-parametric

Wilcoxon signed rank test was conducted in R version 2.15.3 [40], and corrected for false-dis-

covery rate with Benjamini and Hochberg (BH) procedure [41]. Based on Wilcoxon test, sig-

nificantly different (p<0.05) peptides among groups were identified using LC-MS/MS dataset

(S1 Table) following Zürbig, Renfrow [39]. In this process, peptides data obtained with the

CE-MS had their theoretical migration times, MW and number of basic amino acids (aa)

matched with LC-MS/MS peptide list, enabling identification using a threshold of 80 ppm on

MW. This procedure has been successfully used in several studies linking specific CE-MS-

identified peptides to sequences obtained with LC-MS/MS [39].

Using the complete catalogue of peptides detected through the LC-MS/MS, Gene Ontology

(GO) analyses were performed using STRAP v 1.5. software [42]. Also, aiming to identify

secreted (extracellular) peptides, a GO analysis was also made for those peptides significantly

different among groups after unadjusted Wilcoxon testing.

Analysis of proteins by GeLC-MS/MS

Extraction and quantification. Initially, the remaining cephalic secretion was centrifuged

at 2,000 g for 5 minutes at 4˚C to remove any debris. Given low protein levels in samples, a

protein precipitation was made at 1:3 v/v secretion/acetone (HPLC grade, Fisher Scientific).

The mixture was cooled down to -20˚C for 2 hours, then centrifuged at 5,000 g for 40 minutes

at 4˚C. The supernatant was discarded, the protein pellet dried under a N2 stream and recon-

stituted in non-reducing buffer (13.1 mM Tris—pH 6.8, 2.63% v/v Glycerol, 0.42% v/v SDS).

An aliquot was taken for protein quantification whilst the extracts were kept at -80˚C until

inGeLC-MS/MS analysis.

The total protein content was quantified using a bicinchoninic acid assay kit (BCA)

(Uptima UP40840B, Interchim, France). Reactions were prepared in 96 well plates using 2 μl

of extracted sample in 40 μl of working solution (1:20 reaction) following the kit protocol. The

plate was incubated for 30 minutes at 37˚C, cooled at room temperature and read at 562 nm

using a ND-1000 NanoDrop Spectrophotometer (Thermo Fisher Scientific, DE, USA). A serial

dilution of bovine serum albumin (10–2,000 μg/ml) was used to prepare a standard curve

against which the sample readings were interpolated.

In-gel digestion. Aiming to substantially expand protein identifications following Paulo

[43], each pool of samples (males, females, PC-males and PC-females) was analysed with three

technical replicates. Samples (10 μg of total protein per pool) were mixed in reducing buffer

(13.1 mM Tris—pH 6.8, 2.63% v/v Glycerol, 0.42% v/v SDS, 0.243% v/v bromophenol blue

and 163.5 mM DTT), heated up to 95˚C for 5 minutes on a heating block and centrifuged at

2,000 g for 30 seconds. Reduced lysates were loaded into a 1D SDS polyacrylamide gel (4–20%,

Mini-PROTEAN TGX, BIO-RAD) with a protein ladder reference (5 μl, BenchMark, 10-
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220kDa, ThermoFisher Scientific). Gels were run in a BIO-RAD Mini-PROTEAN Vertical

Electrophoresis apparatus immersed in tris-glycine running buffer (24.7 mM Tris-Base, 191.8

mM glycine, 3.46 mM SDS, ultra-pure water, pH adjusted to 8.3) at 200V (400 mA) for 25

minutes until the frontline reached 2.5 cm (incomplete run). A compete run of these pools was

made with the purpose of band visualization (graphical abstract). The run gels were fixed in

200 ml of fixation solution (7% v/v acetic acid, 40% v/v methanol) for 1 hour at room tempera-

ture. Following, fixation solution was discarded and gel washed 3 times (5 minutes each) with

distilled water (200 ml). Gels were stained with 25 ml of Comassie G-250 (SimplyBlue Safe

Stain, Thermo Fisher Scientific) for 45 minutes at room temperature. After discarding the

stain, gels were washed and rinsed in ultra-pure water for 1 hour. Under a laminar flow cabi-

net, each gel lane was sliced in 10–12 cuts (plugs) of approximately 2.0–2.5 mm each, then pro-

cessed independently in 1.5 ml reaction polypropylene tubes. For destaining, plugs were

incubated twice (10 minutes each) in 100 μl of destaining solution (50 mM ammonium bicar-

bonate and ACN 50% v/v) at 37˚C. Samples were then incubated in 50 μl of reducing solution

(10 mM dithiothreitol-DTT and 100 mM ammonium bicarbonate) at 37˚C for 30 minutes.

Following, plugs were incubated in the dark with 50μl of alkylation solution (55.1 mM iodoa-

cetamide, 100 mM ammonium bicarbonate) at 37˚C for 30 minutes, and then dehydrated in

100 μl of ACN at 37˚C for 15 minutes. After complete ACN evaporation on a heat block

(37˚C), plugs were digested with 50 μl of trypsin (Promega, Madison, USA) prepared in a solu-

tion of 5 mM acetic acid and 45 mM ammonium bicarbonate. Initially, samples were incu-

bated at 37˚C for 1 hour. Then, 20 μl of 100 mM ammonium bicarbonate was added and

reaction allowed for 14 hours at 37˚C. Finally, the digests were transferred into sterile 1.5 mL

polypropylene tubes containing 2 μl of 10% formic acid, and frozen at -20˚C until analysis.

LC-MS/MS analysis. Tryptic digests were analysed with a LTQ-Orbitrap XL LC−MSn

mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) equipped with a nanospray

source and coupled to an Ultra High Pressure Liquid Chromatographer (UPLC) system

(Waters nanoAcquity, Manchester, U.K.). Initially, 5 μL of sample were loaded, desalted and

concentrated in a BEH C18 trapping column (Waters, Manchester, U.K.) with the instrument

operated in positive ion mode. The peptides were then separated on a BEH C18 nanocolumn

(1.7 μm, 75 μm × 250 mm, Waters) at a flow rate of 300 nL/min using an ACN/water gradient;

1% ACN for 1 min, followed by 0−62.5% ACN over 21 min, 62.5− 85% ACN for 1.5 min, 85%

ACN for 2 min and 1% ACN for 15 min.

MS spectra were collected using data-dependent acquisition in the range m/z 400−2,000

using a precursor ion resolution of 30,000, following which individual precursor ions (top 5)

were automatically fragmented using collision induced dissociation (CID) with a relative colli-

sion energy of 35%. Dynamic exclusion was enabled with a repeat count of 2, repeat duration

of 30 s and exclusion duration of 180 s.

Protein identification. The ion spectra readings were converted into peak list text files for

database search using Proteome Discoverer Software and analysed with two search algorithms:

MaxQuant v1.1.1.3624 Andromeda and MASCOT (http://www.matrixscience.com), against

the Actinopterygii SwissProt database 57.15. The use of multiple search engines has been

shown to expand the number of identified proteins (union) and validates protein identifica-

tions (intersection) [43]. The initial search parameters allowed for a single trypsin missed

cleavage, carbamidomethyl modification of cysteine residues, oxidation of methionine, acety-

lation of N-terminal peptides, a precursor mass tolerance of 10 ppm, a fragment mass toler-

ance of ±0.5 Da, and a FDR of 0.01. After MASCOT search, only protein hits with score

above� 18 were accepted. The Exponentially Modified Protein Abundance Index (emPAI)

[44] was also calculated and used for relative quantification among groups.
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Bioinformatics and gene ontology (GO) analysis. Initially, lists obtained for each group

and from the different search engines were combined and redundancies were manually

curated. The mean emPAI values, frequency of each protein hit were calculated, and a table

containing MW (kDa), highest MASCOT score, matches, highest MaxQuant score was pro-

duced (S2 Table). This list was analysed for gene ontology (GO) in STRAP v 1.5. [42], using

UniProtKB and EBI GOA databases, after which secreted (extracellular) proteins were

revealed. Venny 2.1. [45] was used to generate a Venn diagram depicting all detected proteins

and secreted (extracellular) proteins between different groups.

Results

Peptide analysis on the cephalic secretion of Arapaima gigas

Based on CE migration time and molecular weight (MW) from individual samples, a compila-

tion of peptide patterns was generated for each studied group (Fig 1). The number of detected

peptides (mean ± SD) ranged from 187 to 3005 (1374.1 ± 1017.8; n = 9) in males, from 402 to

1397 (682.8 ± 446.2; n = 5) in PC-males, from 170 to 2243 (755.3 ± 639.9; n = 11) in females

and from 202 to 2560 (1008.0 ± 935.2; n = 5) in PC-females. From these peptides, 28 peptides

were significantly different between males and PC-males (Wilcoxon P<0.05; BH>0.05) (17

identified). Comparing females and PC-females, 126 peptides were found significantly differ-

ent (Wilcoxon P<0.05; BH>0.05) (76 identified); 51 peptides were significantly different

between males and females (Wilcoxon P<0.05; BH>0.05) (41 identified) and finally, 9 pep-

tides were found significantly different between PC-males and PC-females (8 identified).

S1 Table depicts all identified peptides, MW, primary gene name, sequences and group

differences.

A list with 7009 unique peptide sequences was obtained compiling LC-MS/MS data from

all the studied groups. Regarding their GO biological processes, most were related to regula-

tion (1462; 27.8%), cellular process (1461; 27.8%), developmental process (698; 13.3%), locali-

zation (345; 6.6%), interaction with cell and organisms (298; 5.7%) and others (625; 11.9%)

(Fig 2A). Considering their molecular functions, main GO categories were binding (2364;

47.4%), catalytic activity (1485; 29.8%), molecular transducer activity (292; 5.8%), structural

molecule activity (127; 2.5%), antioxidant activity (7; 0.1%) and others (709; 14.2%) (Fig 2B).

Considering their GO cellular components, most belonged to the nucleus (767; 17.6%), plasma

membrane (438, 10%), cytoplasm (421; 9.6%), cytoskeleton (228, 5.2%), macromolecular com-

plex (219, 5%), extracellular (207, 4.7%), and others (Fig 2C).

Protein analysis on the cephalic secretion of Arapaima gigas

The total protein content was not significantly different among males, females, PC-males and

PC-females (one-way ANOVA; P>0.05). Total protein ranged from 0.25 to 4.29 μg/μL

(1.80 ± 1.35 μg/μL; n = 6) in females, from 0.60 to 16.26 μg/μL (6.23 ± 6.29 μg/μL; n = 5) in

PC-females, from 0.39 to 6.88 μg/μL (1.71 ± 2.55 μg/μL; n = 6) in males and from 1.82 to

7.89 μg/μL (4.08 ± 2.59 μg/μL; n = 5) in PC-males. In total, 422 proteins were identified com-

bining all studied groups. A complete list that includes protein names, family, species, molecu-

lar weight (MW), scores, matches, mean emPAI values, frequency is catalogued in S2 Table.

Aiming to compare the number of proteins unique and shared between groups, a Venn dia-

gram was generated (Fig 3A). PC-males had 35 exclusive proteins whereas PC-females had 45

with both groups sharing other 35 proteins at a parental care condition. Males had 21 exclusive

proteins and females 23 with both groups sharing 18 proteins. A total of 111 proteins were

common to all groups.
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GO analyses were conducted to classify the complete catalogue with 422 proteins, resulting

in very similar pattern compared to the peptidome GO analysis (Fig 2). Based on annotations

obtained for biological processes, most of the identified proteins are associated with cellular

processes (194; 30.5%), regulation (147; 23.1%), developmental process (97; 15.3%), localization

Fig 1. Compiled CE-MS peptide fingerprints from the cephalic secretion of Arapaima gigas. A. Non-parental males (males; n = 9).

Parental males (PC-males; n = 5). C. Non-parental females (females; n = 11). D. Parental females (PC-females; n = 5). Migration time of

capillary electrophoresis (CE) is shown in X axis whereas Y is the logarithmic scale of molecular mass (kDa) and Z is the mean signal intensity.

https://doi.org/10.1371/journal.pone.0186692.g001
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(46; 7.2%), interaction with cell and organisms (24; 3.8%) and others (92; 14.5%) (Fig 2D). Con-

sidering molecular functions, proteins were mainly associated with binding (245; 51.8%), cata-

lytic activity (116; 24.5%), structural molecule activity (22; 4.7%), molecular transducer (12;

2.5%), antioxidant activity (2; 0.4%) and others (76; 16.1%) (Fig 2E). Considering cellular com-

ponent GO analysis, most of the proteins belonged to the nucleus (133; 22.9%), cytoplasm (96;

16.5%), macromolecular complex (46, 7.9%), plasma membrane (36, 6.2%), mitochondria (24,

4.1%), extracellular (28, 4.8%) and others (86; 14.8%) (Fig 2F).

Secreted (extracellular) proteins in the cephalic fluid of Arapaima gigas

GO analysis revealed 28 secreted (extracellular) proteins in the different groups (Fig 3B),

which are catalogued in Table 1. Their putative functions in the biology of A. gigas were

Fig 2. Gene ontology (GO) comparison of peptidome (7009 peptides) and proteome (422 proteins) identified in the cephalic

secretion of Arapaima gigas. A, B and C. Peptidome GO for biological process, molecular function ad cellular component, respectively. D,

E and F. Proteome GO for biological process, molecular function ad cellular component, respectively. Analyses were conducted in STRAP

v. 1.5 [42].

https://doi.org/10.1371/journal.pone.0186692.g002
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retrieved from available literature on teleost species and emPAI values used as a measure of rel-

ative quantification between studied groups. Two hormones were detected in PF: prolactin

(PRL) and stanniocalcin (STC). In all studied groups, proteins related to immunological sys-

tem processes were identified (Table 1). Among them, proteins with known antibacterial roles

and other defence proteins are listed. Serotransferrin (TF) was found up-regulated in PC-

males (3.8-fold in relation to males group), α -1-antitrypsin homolog was detected in all

groups, apolipoprotein A-I (apoA-I) was present in females, PC-males and PC-females, com-

plement C3 (C3) and complement component C8 beta chain (C8B) were both present in all

groups. The remaining secreted proteins are putatively involved in growth (fibroblast growth

factor 3 found in PC-females and growth/differentiation factor 6-A in PC-males) brain regula-

tion and development (different Wnt proteins), embryonic development in parental and non-

parental fish (chordin, olfactomedin-like protein 3B, laminin subunit gamma-1) and others.

Discussion

The lateral line of A. gigas is an open system like in most teleosts [73, 74]. On the head surface

of arapaima, many pore bearing sculptures can be easily recognized, which are the external

openings of the interconnected cephalic canals composing the anterior lateral line system.

Being an open system, water inflow and fluid outflow occur within these canals (see Coombs,

Bleckmann [75] for review). In A. gigas, this fluid is secreted from the head into the water and

its release is intensified during parental care [14], when the secretion remains within range of

developing eggs, larvae and offspring. Previous authors have suggested that offspring of

A. gigas would feed from this secreted fluid [14, 18, 76], similarly to fry from several cichlid

species feeding their parent’s mucus, which provides nutrients, hormones and passive immu-

nity [4, 77, 78]. In contrast with discus fish (S. aequifasciata), where the mucus is a source of

proteins to the fry [27], in arapaima the relatively low concentration of proteins determined in

the cephalic fluid would suggest a minor role as a protein source to offspring. This was also

supported by the similar levels of protein found in parental and non-parental care fish. For

this reason, this study focused on the differential protein and peptide composition between

parental and non-parental care males and females.

Fig 3. Number of unique and shared proteins in the cephalic fluid of Arapaima gigas comparing parental (PC-males) and non-

parental males (males), and parental (PC-females) and non-parental females (females). A. Total of 422 proteins catalogued after

GeLC-MS/MS and the 28 secreted (extracellular) proteins (B) revealed after GO analysis. Venn diagrams were produced in Venny [45].

https://doi.org/10.1371/journal.pone.0186692.g003
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Table 1. List of 28 secreted proteins (extracellular) present in the proteome of Arapaima gigas. Putative functions, detected groups and relative mea-

sure of concentration (emPAI) are given for pools of males (M), females (F), parental care males (PM) and parental care females (PF).

UniProt

n˚

Name Hormones Detected

group

emPAI Reference

O93337 Prolactin Several roles in parental fish including mucous production and

growth

PF 0.16 [28, 46,

47]

Q08264 Stanniocalcin Prevention of hypercalcemia PF 0.13 [48, 49]

Immune system

P84122 Thrombin Functions in blood homeostasis, inflammation and wound

healing

M 1.22 [50]

P79819 Serotransferrin Role in stimulating cell proliferation. Known to inhibit bacterial

colonization in fish

M, F, PM, PF 0.14, 0.15,

0.53, 0.09

[51, 52]

P80426 Serotransferrin-1 Role in stimulating cell proliferation. Known to inhibit bacterial

colonization in fish

M, F, PM 0.25, 0.29,

0.18

[51, 52]

P80429 Serotransferrin-2 Role in stimulating cell proliferation. Known to inhibit bacterial

colonization in fish

PM, PF 0.21, 0.21 [51, 52]

P32759 α -1-antitrypsin homolog Identified in carp perimeningeal fluid M, F, PM, PF 0.14, 0.09,

0.19, 0.09

[53, 54]

Q8JFG3 Tumor necrosis factor Important mediator in resistance against parasitic, bacterial

and viral infections

M, F, PM, PF 0.13, 0.13,

0.13, 0.14

[55]

O42363 Apolipoprotein A-I Participates in the reverse transport of cholesterol from

tissues to the liver

F, PM, PF 0.13, 0.13,

0.13

[56]

Q92079 Serotransferrin Role in stimulating cell proliferation. Known to inhibit bacterial

colonization in fish

M, F, PM, PF 0.11, 0.13,

0.11, 0.07

[51, 52]

P98093 Complement C3 Central role in the activation of the complement system M, F, PM, PF 0.05, 0.07,

0.07, 0.07

[57]

Q9PVW7 Complement component C8

beta chain

Play a key role in the innate and adaptive immune response M, F, PM, PF 0.06, 0.06,

0.06, 0.06

[58]

Q3B7P7 Ubiquitin-60S ribosomal

protein L40

Ubiquitin A-52 residue ribosomal protein M, F, PM, PF – –

Q9W686 Semaphorin-3ab Influence pathway choice of extending motor axons along

development

M, F, PM, PF 0.04, 0.04,

0.04, 0.04

[59]

Growth

P48802 Fibroblast growth factor 3 Regulation of cell proliferation, differentiation and embryonic

development

PF 0.13 [60]

P85857 Growth/differentiation factor

6-A

Growth factor that controls proliferation and cellular

differentiation in the retina

PM 0.08 [61]

Brain regulation/development

P24257 Protein Wnt-1 Involved in neurogenesis F 0.09 [62]

P47793 Protein Wnt-4a Probable brain developmental protein M, PF, F 0.09, 0.09,

0.09

[63]’

P43446 Protein Wnt-10a Signalling molecule important in CNS development M, PF 0.07, 0.07 [64]

Q0P3W2 Olfactomedin-like protein 3B Secreted scaffold protein with essential role in dorsoventral

patterning in early development

PF 0.08 [65]

O57472 Chordin Developmental protein, dorsalizing factor, somitogenesis M, F, PM, PF 0.03, 0.03,

0.03, 0.04

[66]

Q1LVF0 Laminin subunit gamma-1 Mediate attachment, migration and organization of cells into

tissues in embryonic development

M, PF, PM 0.02, 0.02,

0.03

[67]

Others

Q6NWB6 Unique cartilage matrix-

associated protein

Control of osteogenic differentiation M 0.24 [68]

B9TQX1 Unique cartilage matrix-

associated protein

Control of osteogenic differentiation PF 0.23 [69]

B0JZP3 Protein THEM6 Thioesterase superfamily member 6 M, F, PM, PF 0.16, 0.16,

0.22, 0.16

[70]

(Continued )
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Investigation of the parental care condition in A. gigas is challenging. Collection of samples

in the wild is prohibitive since the species is endangered [7] and captive reproduction is still

the main bottleneck for aquaculture development hindering further investigations on the pos-

sible roles of the cephalic fluid in parental care [8]. In this study, two couples reproduced in

the research station allowing the collection of valuable samples from parental fish for the first

time in the species. The cephalic fluid of A. gigas involves a fluid interaction with the endo-

lymph from the inner-ear, which in this study was supported by the presence of the peptide

pcdh15b, and with the CSF, supported herein by the presence of peptides related to synapse

assembly and neurotransmitter secretion (i.e. otud4, ribeye a protein, tjp1b and syn1). Also,

the canals are composed by the integument, skull bones and cartilage, which has been shown

to be highly vascularized and innervated in A. gigas and also containing integumentary glands

potentially secreting peptides and proteins into the cephalic fluid [14, 18], and also the circula-

tory system, revealed by the previous detection of sex steroids in the cephalic fluid [79]. Given

this multiple tissue interactions and the open nature of the cephalic canal system, studies on

the cephalic fluid of A. gigas are also technically difficult. Furthermore, it is also difficult to

obtain precise information on fish age, maturity and reproductive condition [80], and these

taken together explain the large variability in peptide number and total protein content

observed in the cephalic secretions in the present study. Regarding peptide variability, PC-

males was the less variable group as denoted by lower SD, reflecting a more consistent physio-

logical condition along parental care.

After CE-MS analysis, significant differences in peptide abundance among the studied

groups were detected, and surprisingly, a higher number of peptides were found in PC-females

compared to females. This suggests a marked physiological change in PC-females reflected at

the peptide level in the secretion, especially given that females are regarded to play a minimal

role in parental care after the nest guarding phase [13]. In contrast, when comparing males

and PC-males, fewer peptides were identified and most of the identified had reduced abun-

dance in PC-males. As males are known to play a central role in parental care, such findings

were surprising. These could indicate the peptide level of the secretion would be of reduced

importance along male parental care, though the lack of functional characterisations for the

identified peptides also limits such conclusion. In this study, several candidate peptides and

proteins were catalogued that will support future comparative studies involving chemical com-

munication and behaviour in parental A. gigas and other teleosts.

Overall, GO analysis comparing parental and non-parental conditions showed similar

results, therefore we report GO analysis combining groups aiming to better characterise the

cephalic secretion. When comparing the GO analysis obtained for the proteome and pepti-

dome, also comparable results were seen, with most proteins and peptides being related to bio-

logical regulation, cellular and developmental processes. In comparison, very similar results

are seen in the murine cochlear sensory epithelia [81], indicating a strict link of the cephalic

fluid of A. gigas with the inner-ear endolymph and/or sensory epithelia comprising the

Table 1. (Continued)

UniProt

n˚

Name Hormones Detected

group

emPAI Reference

Q7T297 Protein FAM172A F 0.08

O93484 Collagen alpha-2(I) chain Type I collagen is a member of group I collagen (fibrillar

forming collagen)

F, M 0.05, 0.03 [71]

Q90X49 Coiled-coil domain-containing

protein 80

Promotes cell adhesion and matrix assembly F, PM 0.04, 0.04 [72]

https://doi.org/10.1371/journal.pone.0186692.t001
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anterior lateral line canals. Comparing the studied groups, parental fish had a higher number

of exclusive proteins than non-parental groups, with PC-females again displaying a high num-

ber of exclusive proteins suggesting key physiological changes associated with parental care. In

total, 422 proteins were identified from the cephalic secretion of parental and non-parental

A. gigas. Given our interest in secreted proteins which could be potentially functional in paren-

tal care processes, GO analysis was used and depicted 28 extracellular proteins found present

in the cephalic secretion.

The pituitary hormone prolactin (PRL) was detected exclusively in PC-females. PRL is con-

sidered a key hormone that has been detected previously in mucus of several teleost females

exhibiting parental care behaviour [4, 28]. It also agrees with the increased mucin abundance

seen in PC-females. The detection of PRL only in PC-females agrees with a pattern observed in

teleosts displaying parental care. In the Midas cichlid (Cichlasoma citrinellum), PRL can be

actively transferred into the youngs through the mucus feeding, increasing fry growth [4]. In

the Amazon discus fish (Symphysodon aequifasciata), PRL is also present and upregulated in

the mucus of parental females [28]. Other studies with teleosts showed the association of PRL

with female reproductive behaviour such as nest building, mouth brooding and the parental

care [46]. Given PRL is produced by the pituitary, the likely routes into the cephalic secretion

is through the CSF or alternatively, PRL, as mucous component, could be derived from the cir-

culatory system as suggested in other teleosts.

Stanniocalcin (STC) is a potent hypocalcemic or antihypercalcemic from bony fishes which

in this study was detected in PC-females. STC is synthesized and secreted from the kidney

corpuscles of Stannius [49], so its route into the cephalic fluid is very likely through the circula-

tory system. After spawning in A. gigas, females undergo a period of rapid ovarian growth

leading to repeat spawning during a same reproductive period, since the inter-spawning

period appears to be approximately one month (pers. observation). Presence of STC in PC-

females may reflect its proposed role in processes involved in gonadal development [82]. In

other fish species, calcium levels (both plasma ionic and total calcium) have been shown to

increase in response to oestradiol-17beta (E2), which triggers vitellogenesis [83], while in other

studies only increases in total plasma levels of calcium (solely due to binding to vitellogenin)

have been shown [84]. In any case, during gonadal development and vitellogenesis calcium

influxes are increased [83], and consequently the demand on calcium control mechanisms is

higher. Within this context and as suggested by other authors [82] STC may act as hypocalce-

mic factor acting as a regulator of calcium levels. Whether these changes would impact larvae

and fry development remains to be investigated.

Being an open system, the cephalic canals of A. gigas are a vulnerable door for pathogens

and parasites, which could significantly impact adult health. Parasitism and infections in the

inner ear and lateral line are indeed serious disease for many teleosts [85]. Therefore, the

presence of immune competent proteins to defence against bacteria, viruses and parasites

would be expected in the cephalic secretion, and their presence along parental care could be

enhanced. Out of the 28 secreted proteins detected, 12 have immunological functions

described in teleosts, some of which has been related to parental care. From these, four sero-

transferrin (TF) species were identified with two present in all studied groups and one with

higher abundance (emPAI-based) in PC-males. TF is known to supress iron and therefore

inhibits bacterial colonization, playing also an important role in macrophage activation [86].

The importance of TF in immunological defence has been reported in the mucus of gilthead

seabream (Sparus aurata) [22, 87], sea bass (Dicentrarchus labrax) [88], and also within the

internal pouch where male seahorse (Hippocampus spp.) incubate their fry during early preg-

nancy [78]. Therefore, presence of TF in the cephalic secretion indicates protective functions

similar to mucus role in teleosts, and the observed increase observed in PC-males suggests
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potential roles into developing offspring of A. gigas, with mechanisms already studied in other

parental teleosts.

Another immune active protein detected in the cephalic fluid of all studied groups was the

glycoprotein α-1-antitrypsin homolog (A1AT). A1AT belongs to the serpin family of glycopro-

teins, involved in the control of blood coagulation, fibrinolysis, complement activation, and

inflammation processes [53]. This protein has a marked protective function in carp (Cyprinus
carpio) perimeningeal fluid [53], and for being upregulated in the mouth mucus where eggs

are incubated in parental tilapia females (Oreochromis spp.) [54]. A similar protective role for

developing fry and offspring of A. gigas could be at work, although further studies are required

to test this hypothesis. Similarly, apolipoprotein A-I (apoA-I) was also detected in the cephalic

fluid of PC-males and PC-females. ApoA-I has antibacterial properties previously demon-

strated in vitro in the striped bass (Morone saxatilis) [89] and its activity against pathogens sug-

gested in the mucus of gilthead seabream [87, 90], sea bass [88] and cod (Gadus morhua) [29].

Two other proteins involved in complement activation were also detected in all groups: com-

plement C3 (C3) and complement component C8 (C8B). Complement activation system

results in the formation of the membrane attack complex (MAC), which kills bacteria by dis-

rupting their membranes [58]. C3 has a central role in phagocytic and immunoregulatory pro-

cesses [57]. Presence of C3 in the mucus of sea bass has been shown [88] and C3 is upregulated

in seabream after probiotic intake [90]. The importance of such a varied number of immune

proteins in defence response in adults A. gigas seems consistent as these were detected in all

studied groups.

This study detected two secreted proteins in parental fish related to growth regulation:

fibroblast growth factor 3 (FGF-3) in PC-females and growth/differentiation factor 6-A

(GDF6) in PC-males. FGF-3 is a protein required for inner-ear induction, patterning and

maintenance as demonstrated in early larval stages [60], whilst GDF6 plays a role in later eye

development in D. rerio [91]. Therefore, presence of these proteins in PC-males and PC-

females likely reflect inner-ear and eye metabolisms, and absence in males and females groups

suggests metabolism changes during parental care which could have association with offspring

development in A. gigas. However, several of these detected proteins have known functions in

developing embryos. The presence of these proteins in parental care groups remains therefore

to be understood. Future studies of the CSF in teleosts should provide a better understanding

for their origin and possible roles within the cephalic secretion. This is the case also for several

proteins previously reported to be expressed exclusively in developing embryos. These include

reported roles in somitogenesis (i.e. chordin), mesoderm segmentation (i.e. wnt inhibitory

factor 1) and embryonic brain development (Protein Wnt-10b). If these proteins cannot be

produced and secreted from the brain of adult parents, as literature suggests, an alternative

parsimonious explanation would involve the embryonic production followed by a later inflow

into the open cephalic canals of the adults during parental care. This is plausible since during

nest guarding, parents remain with their head constantly inside the nest for egg mass fanning

and guarding [13] during which inflow of surrounding embryo proteins could be absorbed by

the open cephalic canals, although further behavioural studies are needed. Alternatively, the

existence of mouthbrooding in A. gigas could explain the presence of embryonic proteins in

the cephalic fluids. Mouth incubation and transport of eggs and larvae has been reported in

A. gigas [10], although not systematically. Therefore, if not mouthbrooding, this study suggests

a very close interaction among parent’s head with brood along parental care, and this is in

strong agreement with behavioural observations available for the species.

Since the collection of cephalic fluid samples is a relatively non-invasive method, and the

fluid has biochemical components from the lateral line system, inner ear endolymph, blood

plasma, CSF and skin mucus, application of CE-MS would potentially be a suitable method for
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health diagnosis as already applied in humans and other mammals if sample collection could

be standardised [92, 93]. Other applications could include the search for gender and sexual

maturity biomarkers which are considered as critical problems for the captive reproduction of

A. gigas [8], or markers for behavioural investigations.

Conclusions

For the first-time an investigation shows application of proteome and peptidome techniques

to survey cephalic fluids from the anterior lateral line of a teleost species. Analyses in A. gigas
showed sample variability, and a proteomic composition influenced by components from the

cephalic canals, inner-ear endolymph, CSF and circulatory system. This study enhances infor-

mation on the biochemistry of the lateral line system, opening research possibilities in fish

physiology and chemical communication. Data from this study highlight the complex role that

the cephalic secretion of A. gigas may play not only on the adults but also on the development

of the fingerlings. Previous work suggested fingerlings raised under parental care condition

would have higher survival rates and enhanced growth performance compared to in-door

reared ones [19]. Although the present study does not confirm such observations it does indi-

cate the importance of parental care strategies not only on survival per se but also on fingerling

condition which could be positively improved by being in contact with the cephalic secretion.
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GeLC-MS/MS based proteomics. Proteome Science. 2013; 11(17):1–8.

32. Dugue R, Chu Koo F, Alcantara F, Duponchelle F, Renno JF, Nunez J. Purification and assay of Ara-

paima gigas vitellogenin: potential use for sex determination. Cybium. 2008; 32(2):111-.

33. Rebouças PM, Maciel RL, Costa BGB, Galvão JAS, Barbosa Filho JAD. Analysis of the welfare of

broodstock Arapaima gigas (Schinz, 1822) by length-weight relationship, condition factor and fry pro-

duction. Bioscience Journal. 2014; 30(2):873–81.

34. Farrel AP, Randall DJ. Air-breathing mechanics in two Amazonian teleosts, Arapaima gigas and Hopler-

ythrinus unitaeniatus. Can J Zool. 1978; 56(4):939–45.

35. Albalat A, Franke J, Gonzalez J, Mischak H, Zürbig P. Urinary proteomics based on Capillary Electro-

phoresis coupled to Mass Spectrometry in kidney disease. In: Phillips TM, Kalish H, editors. Clinical

Applications of Capillary Electrophoresis: Methods in Molecular Biology. 919: Humana Press; 2013.

p. 203–13.

36. Zürbig P, Schiffer E, Mischak H. Capillary electrophoresis coupled to mass spectrometry for proteomic

profiling of human urine and biomarker discovery. In: Reinders J, Sickmann A, editors. Proteomics:

Methods and Protocols. 564. Totowa, NJ: Humana Press; 2009. p. 105–21.

37. Good DM, Zurbig P, Argiles A, Bauer HW, Behrens G, Coon JJ, et al. Naturally occurring human urinary

peptides for use in diagnosis of chronic kidney disease. Mol Cell Proteomics. 2010; 9(11):2424–37.

https://doi.org/10.1074/mcp.M110.001917 PMID: 20616184

38. Mischak H, Vlahou A, Ioannidis JPA. Technical aspects and inter-laboratory variability in native peptide

profiling: The CE-MS experience. Clin Biochem. 2013; 46(6):432–43. https://doi.org/10.1016/j.

clinbiochem.2012.09.025 PMID: 23041249

39. Zürbig P, Renfrow MB, Schiffer E, Novak J, Walden M, Wittke S, et al. Biomarker discovery by CE-MS

enables sequence analysis via MS/MS with platform independent separation. Electrophoresis. 2006;

27:2111–25. https://doi.org/10.1002/elps.200500827 PMID: 16645980

40. R-Core-Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation

for Statistical Computing; 2014.

41. Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to mul-

tiple testing. J R Stat Soc B. 1995; 57:125–33.

42. Bhatia VN, Perlman DH, Costello CE, McComb ME. Software tool for researching annotations of pro-

teins (STRAP): open-source protein annotation software with data visualization. Anal Chem. 2009; 81

(23):9819–23. https://doi.org/10.1021/ac901335x PMID: 19839595

43. Paulo JA. Practical and Efficient Searching in Proteomics: A Cross Engine Comparison. Webmedcen-

tral. 2014; 4(10):1–15.

44. Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J, et al. Exponentially modified protein

abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of

sequenced peptides per protein. Mol Cell Proteomics. 2005; 4:1265–72. https://doi.org/10.1074/mcp.

M500061-MCP200 PMID: 15958392

45. Oliveros JC. Venny. An interactive tool for comparing lists with Venn’s diagrams 2007. http://bioinfogp.

cnb.csic.es/tools/venny/index.html.

46. Whittington CM, Wilson AB. The role of prolactin in fish reproduction. Gen Comp Endocrinol. 2013; 191

123–36. https://doi.org/10.1016/j.ygcen.2013.05.027 PMID: 23791758

47. Ogawa M. Effects of prolactin on the epidermal mucous cells of the goldfish, Carassius auratus L. Can J

Zool. 1970; 48:501–3. PMID: 5448823

48. Bonga SEW, Pang PKT. Control of Calcium Regulating Hormones in the Vertebrates: Parathyroid Hor-

mone, Calcitonin, Prolactin, and Stanniocalcin. Int Rev Cytol. 1991; 128:139–213. PMID: 1917377

49. Wagner GF, Dimattia GE, Davie JR, Copp DH, Friesen HG. Molecular cloning and cDNA sequence

analysis of coho salmon stanniocalcin. Mol Cell Endocrinol. 1992; 90:1–15.

Cephalic secretion proteome and peptidome of Arapaima gigas during and outside parental care

PLOS ONE | https://doi.org/10.1371/journal.pone.0186692 October 24, 2017 18 / 20

https://doi.org/10.1016/j.fsi.2011.05.006
http://www.ncbi.nlm.nih.gov/pubmed/21609766
https://doi.org/10.1074/mcp.M110.001917
http://www.ncbi.nlm.nih.gov/pubmed/20616184
https://doi.org/10.1016/j.clinbiochem.2012.09.025
https://doi.org/10.1016/j.clinbiochem.2012.09.025
http://www.ncbi.nlm.nih.gov/pubmed/23041249
https://doi.org/10.1002/elps.200500827
http://www.ncbi.nlm.nih.gov/pubmed/16645980
https://doi.org/10.1021/ac901335x
http://www.ncbi.nlm.nih.gov/pubmed/19839595
https://doi.org/10.1074/mcp.M500061-MCP200
https://doi.org/10.1074/mcp.M500061-MCP200
http://www.ncbi.nlm.nih.gov/pubmed/15958392
http://bioinfogp.cnb.csic.es/tools/venny/index.html
http://bioinfogp.cnb.csic.es/tools/venny/index.html
https://doi.org/10.1016/j.ygcen.2013.05.027
http://www.ncbi.nlm.nih.gov/pubmed/23791758
http://www.ncbi.nlm.nih.gov/pubmed/5448823
http://www.ncbi.nlm.nih.gov/pubmed/1917377
https://doi.org/10.1371/journal.pone.0186692


50. Manseth E, Skjervold PO, Flengsrud R. Sample displacement chromatography of Atlantic Salmon

(Salmo salar) thrombin. J Biochem Biophys Methods. 2004; 60:39–47. https://doi.org/10.1016/j.jbbm.

2004.04.016 PMID: 15236909

51. Røed KH, Dehli AK, Flengsrud R, Midthjell L, Rørvik KA. Immunoassay and partial characterisation of

serum transferrin from Atlantic salmon (Salmo salar L.). Fish Shellfish Immunol. 1995;(5):71–80.

52. Denovan-Wright EM, Ramsey NB, McCormick CJ, Lazier CB, Wright JM. Nucleotide sequence of trans-

ferrin cDNAs and tissue-specific expression of the transferrin gene in Atlantic cod (Gadus morhua).

Comp Biochem Physiol B. 1996; 113(2):269–73. PMID: 8653583

53. Huang CJ, Lee MS, Huang FL, Chang GD. A protease inhibitor of the serpin family is a major protein in

carp perimeningeal fluid: II. cDNA cloning, sequence analysis, and Escherichia coli expression. J Neu-

rochem. 1995; 64:1721–7. PMID: 7891100

54. Iq KC, Shu-Chien AC. Proteomics of Buccal Cavity Mucus in Female Tilapia Fish (Oreochromis spp.): A

Comparison between Parental and Non-Parental Fish. PLoS One. 2011; 6(4):e18555. https://doi.org/

10.1371/journal.pone.0018555 PMID: 21533134

55. Garcı́a-Castillo J, Pelegrı́n P, Mulero V, Meseguer J. Molecular cloning and expression analysis of

tumor necrosis factor α from a marine fish reveal its constitutive expression and ubiquitous nature.

Immunogenetics. 2002; 54:200–7. https://doi.org/10.1007/s00251-002-0451-y PMID: 12073149

56. Babin PJ, Thisse C, Durliat M, Andre M, Akimenko MA, Thisse B. Both apolipoprotein E and A-I genes

are present in a nonmammalian vertebrate and are highly expressed during embryonic development.

Proc Natl Acad Sci USA. 1997; 94:8622–7. PMID: 9238027

57. Lambris JD, Lao Z, Pang J, Alsenz J. Third Component of Trout Complement. cDNA Cloning and Con-

servation of Functional Sites. J Immunol. 1993; 151:6123–34. PMID: 8245455

58. Katagiri T, Hirono I, Aoki T. Molecular analysis of complement component C8beta and C9 cDNAs of

Japanese flounder, Paralichthys olivaceus. Immunogenetics. 1999; 50:43–8. PMID: 10541805

59. Torres-Vázquez J, Fraser SD, Pham VN, Childs S, Gitler AD, Berk JD, et al. Semaphorin-plexin signal-

ing guides patterning of the developing vasculature. Dev Cell. 2004; 7:117–23. https://doi.org/10.1016/j.

devcel.2004.06.008 PMID: 15239959
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