Accepted refereed manuscript of:

Capaverde J & Rowlinson P (2017) Eigenvalue multiplicity in quartic graphs, *Linear Algebra and Its Applications*, 535, pp. 160-170.

DOI: 10.1016/j.laa.2017.08.023

© 2017, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International <u>http://creativecommons.org/licenses/by-nc-nd/4.0/</u>

EIGENVALUE MULTIPLICITY IN QUARTIC GRAPHS

Juliane Capaverde¹ Departamento de Matemática Pura e Aplicada Instituto de Matemática Universidade Federal do Rio Grande do Sul 90.000 Porto Alegre RS Brazil

Peter Rowlinson² Mathematics and Statistics Group Institute of Computing Science and Mathematics University of Stirling Scotland FK9 4LA United Kingdom

Abstract

Let G be a connected quartic graph of order n with μ as an eigenvalue of multiplicity k. We show that if $\mu \notin \{-1,0\}$ then $k \leq (2n-5)/3$ when $n \leq 22$, and $k \leq (3n-1)/5$ when $n \geq 23$. If $\mu \in \{-1,0\}$ then $k \leq (2n+2)/3$, with equality if and only if $G = K_5$ (with $\mu = -1$) or $G = K_{4,4}$ (with $\mu = 0$).

AMS Classification: 05C50

Keywords: eigenvalue, quartic graph, star complement.

¹Tel.:+55 51 33086196; email: juliane.capaverde@ufrgs.br

²Tel.:+44 1786 467468; email: p.rowlinson@stirling.ac.uk (corresponding author)

1 Introduction

Let G be a regular graph of order n with μ as an eigenvalue of multiplicity k, and let t = n - k. Thus the corresponding eigenspace $\mathcal{E}(\mu)$ of a (0, 1)-adjacency matrix A of G has dimension k and codimension t. From [1, Theorem 3.1], we know that if $\mu \notin \{-1, 0\}$ then $k \leq n - \frac{1}{2}(-1 + \sqrt{8n+9})$, equivalently $k \leq \frac{1}{2}(t+1)(t-2)$. For connected quartic graphs, a bound which is linear in t follows easily from the equation $\operatorname{tr}(A) = 0$. To see this, we suppose that $k \geq \frac{1}{2}n$, i.e. $k \geq t$. Then G is non-bipartite; also μ is an integer, for otherwise it has an algebraic conjugate which is a second eigenvalue of multiplicity k. It follows that if G is a connected quartic graph then $\mu \in \{-3, -2, 1, 2, 3\}$ (see [5, Sections 1.3 and 3.2]). Let d be the mean of the eigenvalues other than 4 and μ , so that $4 + k\mu + (n - k - 1)d = 0$. We have -4 < d < 4, and so:

(a) if $\mu = -3$ then $k < \frac{4}{7}n$, i.e. $k < \frac{4}{3}t$; (b) if $\mu = -2$ then $k < \frac{2}{3}n$, i.e. k < 2t; (c) if $\mu = 1$ then $k < \frac{4}{5}n - \frac{8}{5}$, i.e. k < 4t - 8; (d) if $\mu = 2$ then $k < \frac{2}{3}n - \frac{4}{3}$, i.e. k < 2t - 4; (e) if $\mu = 3$ then $k < \frac{4}{7}n - \frac{8}{7}$, i.e. $k < \frac{4}{3}t - \frac{8}{3}$.

We show first that $k \leq 2t - 5$ whenever $\mu \notin \{-1, 0\}$. Then k is at most $\lfloor (2n-5)/3 \rfloor$, a bound which is sharp for n = 6, 9, 12. The arguments are somewhat different from those in the paper [8], where a corresponding bound for cubic graphs was established. Section 2 contains the required results on star complements, while Section 3 provides details of the proof. It is quickly established that the bound holds when t > 9 or n > 23, and subsequently we are able to improve the bound to (3n-1)/5 when $n \ge 23$. The large number of quartic graphs of order ≤ 23 justifies our case-by-case analysis when $t \le 9$: the cases n > 17 are relatively easy to deal with, but there are already 86221634 connected quartic graphs of order 17 [7, Sequence A006820]. In Section 4 we show that when $\mu \in \{-1,0\}$ we have $k \le (2n+2)/3$, with equality if and only if $G = K_5$ (with $\mu = -1$) or $G = K_{4,4}$ (with $\mu = 0$).

2 Preliminaries

Let G be a graph of order n with μ as an eigenvalue of multiplicity k. A star set for μ in G is a subset X of the vertex-set V(G) such that |X| = kand the induced subgraph G - X does not have μ as an eigenvalue. In this situation, G - X is called a star complement for μ in G. The fundamental properties of star sets and star complements are established in [5, Chapter 5]. We shall require the following results, where we write $u \sim v$ to mean that vertices u and v are adjacent. For any $U \subseteq V(G)$, we write G_U for the subgraph of G induced by U, and $\Delta_U(v)$ for the set $\{u \in U : u \sim v\}$. For the subgraph H of G it is convenient to write $\Delta_H(v)$ for $\Delta_{V(H)}(v)$.

Theorem 2.1. (See [5, Theorem 5.1.7].) Let X be a set of k vertices in G and suppose that G has adjacency matrix $\begin{pmatrix} A_X & B^\top \\ B & C \end{pmatrix}$, where A_X is the adjacency matrix of G_X .

(i) Then X is a star set for μ in G if and only if μ is not an eigenvalue of C and

$$\mu I - A_X = B^{\top} (\mu I - C)^{-1} B.$$
(1)

(ii) If X is a star set for μ then $\mathcal{E}(\mu)$ consists of the vectors $\begin{pmatrix} \mathbf{x} \\ (\mu I - C)^{-1}B\mathbf{x} \end{pmatrix}$ $(\mathbf{x} \in I\!\!R^k).$

Let H = G - X, where X is a star set for μ . In the notation of Theorem 2.1, C is the adjacency matrix of H, while the columns \mathbf{b}_u $(u \in X)$ of B are the characteristic vectors of the H-neighbourhoods $\Delta_H(u)$ $(u \in X)$. We write $\langle \mathbf{x}, \mathbf{y} \rangle$ for $\mathbf{x}^{\top}(\mu I - C)^{-1}\mathbf{y}$ $(\mathbf{x}, \mathbf{y} \in \mathbb{R}^t)$, where t = n - k. Eq. (1) shows that

$$\langle \mathbf{b}_u, \mathbf{b}_v \rangle = \begin{cases} \mu \text{ if } u = v \\ -1 \text{ if } u \sim v \\ 0 \text{ otherwise,} \end{cases}$$

and we deduce from Theorem 2.1:

Lemma 2.2. If X is a star set for μ , and $\mu \notin \{-1, 0\}$, then the neighbourhoods $\Delta_H(u)$ ($u \in X$) are non-empty and distinct.

We write **j** for an all-1 vector, its length determined by context. Recall that μ is a *main* eigenvalue of G if $\mathcal{E}(\mu)$ is not orthogonal to **j**, and that in an r-regular graph, every eigenvalue other than r is non-main. The next observation follows from Theorem 2.1(ii).

Lemma 2.3. (See [5, Proposition 5.2.4].) If X is a star set for the nonmain eigenvalue μ then $\langle \mathbf{b}_u, \mathbf{j} \rangle = -1$ for all $u \in X$.

Lemma 2.4. If X is a star set for μ in G and if U is a proper subset of X then $X \setminus U$ is a star set for μ in G - U. Moreover, if μ is a non-main eigenvalue of G then it is also a non-main eigenvalue of G - U.

Proof. We repeat the following argument as necessary. If $u \in X$ and |X| = k then μ has multiplicity k - 1 in G - u, and the first assertion follows. When μ is non-main we take u = 1 and observe that if $\begin{pmatrix} 0 \\ \mathbf{y} \end{pmatrix} \in \mathcal{E}(\mu)$ then \mathbf{y} is a μ -eigenvector of G - u. It follows that the vectors \mathbf{y} are orthogonal to \mathbf{j} and constitute the (k-1)-dimensional eigenspace of μ in G - u.

Lemma 2.5. (See [5, Theorem 5.1.6].) Let μ be an eigenvalue of the graph G. If G is connected then G has a connected star complement for μ .

For subsets U, V of V(G) we write E(U, V) for the set of edges between U and V. When H = G - X it is convenient to write \overline{X} for V(H). The authors of [2] have determined all the graphs with a star set X for which $E(X, \overline{X})$ is a perfect matching, equivalently all the graphs for which B = I in Eq.(1). Their result is the following.

Theorem 2.6. Let G be a graph with X as a star set for the eigenvalue μ . If $E(X, \overline{X})$ is a perfect matching then one of the following holds:

(a) $G = K_2$ and $\mu = \pm 1$, (b) $G = C_4$ and $\mu = 0$, (c) G is the Petersen graph and $\mu = 1$.

The spectra of all the connected graphs of order 6 or 7 are listed in [4] and [3] respectively. We say that a graph G is of type N or M-N according as G is numbered N in [4] or labelled M-N in [3].

3 The case $\mu \notin \{-1, 0\}$

For the remainder of the paper, G denotes a connected quartic graph of order n with an eigenvalue μ of multiplicity $k = n - t \ge t$. Then μ is an integer, and in this Section $\mu \notin \{-1, 0\}$. By Lemma 2.5 we may take H (= G - X) to be a connected star complement for μ . Let $Q = \{i \in X : |\Delta_H(i)| = 1\}$ and $R = X \setminus Q$. Let Q' be the set of vertices in \overline{X} with a neighbour in Q, and let $R' = \overline{X} \setminus Q'$. By Lemma 2.2, E(Q, Q') is a perfect matching when $Q \neq \emptyset$. Moreover, if $i \in R$ then $|\Delta_H(i)| = 1 + g_i$, where $g_i \ge 1$. Let q = |Q| (= |Q'|) and $g = \sum_{i \in R} g_i$. We shall make use of the following four observations.

Lemma 3.1. If $j \in R$ then \mathbf{b}_j is not a linear combination of the vectors \mathbf{b}_i $(i \in Q)$.

Proof. Suppose by way of contradiction that $\mathbf{b}_j = \sum_{i \in Q} a_i \mathbf{b}_i \ (j \in R)$. (Here $Q \neq \emptyset$ because $\mathbf{b}_j \neq \mathbf{0}$ by Lemma 2.2.) Now $\sum_{i \in Q} a_i \geq 2$, and by Lemma 2.3 we have $-1 = \langle \mathbf{b}_j, \mathbf{j} \rangle = \sum_{i \in Q} a_i \langle \mathbf{b}_i \cdot \mathbf{j} \rangle = -\sum_{i \in Q} a_i \leq -2$, a contradiction.

Lemma 3.2. We have $q \le t - 1$, and if q = t - 1 then the vertex of H not adjacent to a vertex in Q is adjacent to every vertex in R.

Proof Clearly, $q \leq t$ because the singleton neighbourhoods $\Delta(i)$ $(i \in Q)$ are distinct. If q = t then G - R has a perfect matching between H and the star set Q. By Lemma 2.4 and Theorem 2.6, G - R is the Petersen graph, $\mu = 1$ and H is a 5-cycle. No graph of order > 10 has a 5-cycle as a star complement for the eigenvalue 1 [5, Example 5.2.3], and so $R = \emptyset$, a contradiction.

The assertion in the case q = t - 1 follows from Lemma 3.1. \Box .

We write $\{\mathbf{f}_1, \ldots, \mathbf{f}_t\}$ for the standard orthonormal basis of \mathbb{R}^t . We take $X = \{1, \ldots, k\}, \overline{X} = \{1', \ldots, t'\}$ with $Q' = \{1', \ldots, q'\}$ and $i \sim i'$ $(i = 1, \ldots, q)$. Without loss of generality $\mathbf{b}_i = \mathbf{f}_i$ for each $i \in Q$.

Lemma 3.3. Suppose that S is a proper subset of \overline{X} such that (i) $\langle \mathbf{f}_i, \mathbf{j} \rangle = -1$ when $i' \in S$, $\langle \mathbf{f}_i, \mathbf{j} \rangle = 0$ when $i' \notin S$, and (ii) each vertex in S has a neighbour in X. Then $\mu = 1$ and G_S is 2-regular.

Proof. With suitable labelling we have $(\mu I - C)^{-1}\mathbf{j} = (-1, \ldots, -1, 0 \ldots 0)^{\top}$. Thus if $C = (c_{ij})$ then for $i \in S$ we have $1 + \mu = \sum_{j \in S} c_{ij}$. It follows that G_S is regular of degree $1 + \mu$, where necessarily $\mu \in \{1, 2\}$. Finally, condition (ii) ensures that $\mu \neq 2$ because H is connected. \Box

By Lemma 2.3 the set S above necessarily contains Q'. We shall make repeated use of the following application of Lemma 3.3 in the case that S = Q'.

Lemma 3.4. Suppose that for each $v' \in R'$ there exist vertices $u' \in Q'$ and $w \in R$ such that $\Delta_H(w) = \{u', v'\}$. Then $\mu = 1$ and Q' induces a 2-regular subgraph.

Proof. By Lemma 2.3, we have $\langle \mathbf{b}_w, \mathbf{j} \rangle = -1 = \langle \mathbf{f}_u, \mathbf{j} \rangle$. We have a matching between R' and a subset of R, and so we may take $\mathbf{b}_w = \mathbf{f}_u + \mathbf{f}_v$. Then $\langle \mathbf{f}_v, \mathbf{j} \rangle = 0$. It follows that

$$\langle \mathbf{f}_i, \mathbf{j} \rangle = \begin{cases} -1 & \text{if } i = 1, \dots, q, \\ 0 & \text{if } i = q+1, \dots, t, \end{cases}$$

and the result follows from Lemma 3.3.

Our objective is to show that if G is a quartic connected graph of order n with $\mu \ (\neq -1, 0)$ as an eigenvalue of multiplicity k then $k \leq \lfloor (2n-5)/3 \rfloor$. One can check directly that this inequality holds when $n \leq 7$, since the quartic graphs of order < 8 are K_5 , $\overline{3K_2}$, $\overline{C_7}$ and $\overline{C_3 \cup C_4}$. Accordingly we suppose that $n \geq 8$. Since $k \leq \frac{1}{2}(t+1)(t-2)$, we have $t \geq 4$.

Suppose that $k \ge 2t - a$, where $0 \le a \le t$. For $j \in \overline{X}$, let $d_j = |\Delta_H(j)|$, $e_j = |\Delta_X(j)|$. Then

$$2t - a + g \le k + g = |E(X, \overline{X})| = \sum_{j \in \overline{X}} e_j = 4t - \sum_{j \in \overline{X}} d_j = 4t - 2|E(H)|.$$

Since $|E(H)| \ge t - 1$ we deduce that $|E(X, \overline{X})| \le 2t + 2$. Note also that $|E(X, \overline{X})|$ is even. Since $g \le a + 2$, we have $q \ge k - g \ge k - a - 2$. Also, $q \le t - 1$ by Lemma 3.2 and so

$$2t - a \le k \le t + a + 1, \quad t \le 2a + 1.$$
 (2)

Note that k < 2t - 1 for otherwise $t \leq 3$. Accordingly we suppose by way of contradiction that k = 2t - a where $a \in \{2, 3, 4\}$. Note that $t \leq 9$, equivalently $n \leq 23$.

The case k = 2t - 2. Taking a = 2, we have $t \le 5$. If t = 5 then k = 8 and $8 + g = |E(X, \overline{X})| \le 12$. Now $q \le 4$ and $g \ge k - q \ge 4$. Hence g = 4, q = 4 and the vertex v of H not adjacent to a vertex of Q is adjacent to each of the four vertices in R. Thus v is isolated in H, a contradiction.

If t = 4 then k = 6 and so n = 10. But $n \le 9$ by [1, Theorem 3.1], a contradiction.

The case k = 2t - 3. Taking a = 3, we have $t \le 7$ and $k + g = |E(X, \overline{X})| \le 18$. If t = 7 then $q \le 6$, k = 11 and $11 + g = |E(X, \overline{X})| \le 16$. Now $g \ge k - q \ge 5$ and so g = 5, q = 6; then the vertex v of H not adjacent to a vertex of Q is adjacent to each of the five vertices in R, contradicting 4-regularity.

If t = 6 then k = 9 and $9 + g = |E(X, \overline{X})| \le 14$. Now $g \ge k - q \ge 4$ and so g = 5. Then $q \in \{4, 5\}$; and if q = 5 then H has an isolated vertex. Hence q = 4, H is a tree and each vertex in R is adjacent to exactly two vertices of H. By Lemma 3.1, each vertex of R is adjacent to 5' or 6' (or both). On the other hand, at most one vertex of R is adjacent to both 5' and 6', while each of 5', 6' is adjacent to at most 3 vertices of R. It follows that there exist vertices $i \in R, j' \in Q'$ such that $\Delta_H(i) = \{j', 5'\}$. We have $\mathbf{b}_h = \mathbf{f}_h$ (h = 1, 2, 3, 4) and (without loss of generality) $\mathbf{b}_i = \mathbf{b}_i + \mathbf{f}_5$. Since $\langle \mathbf{b}_i, \mathbf{j} \rangle = -1 = \langle \mathbf{b}_j, \mathbf{j} \rangle$, we have $\langle \mathbf{f}_5, \mathbf{j} \rangle = 0$. Again there exist vertices $u \in R$, $v' \in Q'$ such that $\Delta_H(u) = \{v', 6'\}$, and we deduce similarly that $\langle \mathbf{f}_6, \mathbf{j} \rangle = 0$. It follows that no vertex of R is adjacent to both 5' and 6'. Hence there are just two possibilities for the degree sequence of the tree H, namely (a) 112222 and (b) 111223. In case (a), $H \cong P_6$ and there exists $w \in Q$ such that $H + v \cong P_7$. But P_7 has no integer eigenvalues. In case (b) there exists $w \in Q$ such that H + w has degree sequence 1111233. Now among the trees of order 7 only those of type 6-4, 6-5 and 6-8 have an integer eigenvalue $\neq -1, 0$. It follows that H + w is of type 6-5 and H is of type 111. Then there exists $z \in Q$ such that H + z is of type 6-3, a contradiction. The possibility t = 6 is therefore eliminated.

If t = 5 then k = 7 and we find that $g \in \{3, 5\}$. If g = 3 then by Lemma 3.2, q = 4 and H has degree sequence 12223. In this case, there are two possibilities for the unicyclic graph H, but always there exists $w \in R$ such that H + w is a bicyclic graph of type 89 or 93; but these graphs have no integer eigenvalues $\neq -1, 0$. If g = 5 then $q \ge 2$, and we consider the three possibilities for the tree H. If H is $K_{1,4}$ or P_5 then there exists $w \in Q$ such that H + w is a graph of type 108, 111or 112; but none of these has an integer eigenvalue $\neq -1, 0$. Hence H is the tree with degree sequence 11123. If $w \in Q$ then H + w is a tree of type 108, 109, 110 or 111. The first and last of these have no integer eigenvalue $\neq -1, 0$. Since $q \ge 2$ it follows that w may be chosen so that H + w is the tree of type 110. Then $\mu = 1$ and we obtain a contradiction as follows. Let $\mu_1, \mu_2, \mu_3, \mu_4$ (with mean d) be the eigenvalues of G different from 4, 1. Then d = -11/4 and $\sum_{i=1}^{4} \mu_i^2 = 4n - 16 - 7 = 25$. Hence $\sum_{i=1}^{4} (\mu_i - d)^2 = \sum_{i=1}^{4} \mu_i^2 - 4d^2 < 0$, which is impossible.

If t = 4 then $k = 5 = \frac{1}{2}(t+1)(t-2)$. By [1, Theorem 3.1], G is strongly regular; but there is no strongly regular graph with eigenvalue multiplicities 1,3,5.

The case k = 2t - 4. Taking a = 4 in Eq.(2) we see that $t \leq 9$, while $k - q \leq g \leq 6$ and $q \geq 2t - 10$. The cases t = 9, (t,q) = (8,7) are ruled out by Lemma 3.2. Thus if t = 8 then k = 12, q = 6 and g = 6. Necessarily $g_i = 1$ for all $i \in R$. Since H is connected Lemma 3.1 ensures that $\Delta_R(7')$ and $\Delta_R(8')$ are disjoint 3-sets in R; moreover, $7' \not\sim 8'$. Now Lemma 3.4 applies and we deduce that Q' induces a 2-regular graph. This is a contradiction because H is a tree.

If t = 7 then k = 10 and $q \in \{4, 5, 6\}$. If q = 6 then by Lemma 3.2 the vertex 7' is adjacent to all four vertices in R, hence is isolated in H, a contradiction. If q = 5 then g = 6 (since $g \ge 5$ and g is even). The neighbourhoods $\Delta_R(6'), \Delta_R(7')$ are either (a) a 3-set and a disjoint 2-set or (b) 3-sets with just one common vertex. Now the summands g_i $(i \in R)$ are 1,1,1,1,2. It follows that in either case there exist vertices $i, j \in R$ such that $\Delta_H(i) = \{6', u\}$ for some $u \in Q'$ and $\Delta_H(j) = \{7', v\}$ for some $v \in Q'$. By Lemma 3.4, Q' induces a 5-cycle, a contradiction because H is a tree. Now suppose that q = 4. Then g = 6 and so $g_i = 1$ for all $i \in R$; moreover H is a tree. If each vertex in R' is adjacent to a vertex in R then examination of the possibilities for $E(R, \overline{X})$ shows that $\langle \mathbf{f}_i, \mathbf{j} \rangle = -1$ or 0 for each $i' \in R'$. By Lemma 3.3, H contains a cycle, a contradiction. Taking 7' to be nonadjacent to R, we see that the neighbourhoods $\Delta_R(5'), \Delta_R(6')$ are disjoint 3-sets. By Lemma 2.2 the tree H has degree sequence 4311111 or 4221111. There are three possible trees, but in all cases we can choose $v \in Q$ such that H + v is one of the trees shown in Fig.1. Then H + v has no integer eigenvalue μ such that $\mu \neq -1, 0$ and μ is not an eigenvalue of H. This disposes of the case t = 7.

Figure 1: A choice of graphs H + v ($v \in Q$).

It is convenient to introduce one further lemma before proceeding with the case t = 6.

Lemma 3.5. If $q \ge 2$ and H is a tree of order 6 then $\mu = 1$, H is the graph with degree sequence 421111, and there are just three possibilities for the neighbour in Q' of a vertex in Q.

Proof. If $v \in Q$ then H + v is a tree with an integer eigenvalue $\mu \neq -1, 0$, hence one of the trees of type 6-4, 6-5 or 6-8. Since μ is not an eigenvalue of H, H is determined uniquely up to isomorphism in each case: H is of type 110, 111 or 108, with $\mu = \pm 2, \pm 2, 1$ respectively.

Since $q \ge 2$ there exists $w \in Q$ with $w' \ne v'$. The graph H + w has μ as an eigenvalue, and it follows that the only possibility is that H + v, H + ware both of type 6-8. (When H is of type 110, H + w is of type 6-3, 6-6 or 6-8; when H is of type 111, H + w is of type 6-2, 6-3, 6-6 or 6-7; and when H is of type 108, H + w is of type 6-7, 6-8 or 6-9.) Then H is the graph of type 110 (described in the lemma) and the only vertices of H at which we may attach a pendant edge are the three endvertices adjacent to the vertex of degree 4.

If t = 6 then $k = 8, q \in \{2, 3, 4, 5\}$ and $g \in \{4, 6\}$. If (q, g) = (5, 4) then we may take $g_6 = g_7 = 1$, $g_8 = 2$. It follows that $\langle \mathbf{f}_6, \mathbf{j} \rangle = 0$ and hence that $\langle \mathbf{b}_8, \mathbf{j} \rangle = -2$, a contradiction. Next suppose that (q, g) = (5, 6). Without loss of generality, either $g_6 = 1$, $g_7 = 2$, $g_8 = 3$ or $g_6 = g_7 = g_8 = 2$. In the first case, $\langle \mathbf{f}_6, \mathbf{j} \rangle = 0$ and we obtain the contradiction $\langle \mathbf{b}_7, \mathbf{j} \rangle = -2$. In the second case we adapt the argument of Lemma 3.3 as follows. We may take $\mathbf{b}_6 = \mathbf{f}_1 + \mathbf{f}_2 + \mathbf{f}_6$. Then $\langle \mathbf{f}_6, \mathbf{j} \rangle = 1$ and $\mathbf{j} = (\mu I - C)(-1, -1, -1, -1, -1, 1)^+$, whence $1 = \mu + \sum_{i=1}^{5} c_{6i}$. Now the vertex 6' is adjacent to all three vertices in R, hence to just one vertex in Q', and so $\mu = 0$, contrary to assumption. If (q, q) = (4, 4) then $q_i = 1$ for each $i \in R$. If a vertex $i \in R$ is adjacent to both vertices in R' then by Lemma 2.2, there exist vertices $u, v \in R$ such that $\Delta_{R'}(u) = \{5'\}$ and $\Delta_{R'}(v) = \{6'\}$ (for otherwise *H* has an isolated vertex). Then $\langle \mathbf{f}_5, \mathbf{j} \rangle = \langle \mathbf{f}_6, \mathbf{j} \rangle = 0$, contradicting $\langle \mathbf{b}_i, \mathbf{j} \rangle = -1$. Hence $|\Delta_{R'}(i)| = 1$ for all $i \in R$, and by Lemma 3.4, Q' induces a 4-cycle. Since H is unicyclic, we deduce that $|E(R, R')| \ge 5$, a contradiction. The case (q, g) = (4, 6)is eliminated by Lemma 3.5. Hence $q \leq 3$ and H is the tree described in Lemma 3.5. If q = 3 then the vertices 1', 2', 3' are the endvertices of H adjacent to the vertex of degree 4 in H (say 4'). Without loss of generality, $|\Delta_X(5')| = 2$ and $|\Delta_X(6')| = 3$. Since the numbers $g_i \ (i \in R)$ are 1,1,1,1,2, each of 5', 6' is adjacent to a vertex in R with just one neighbour in Q'. It follows that $\langle \mathbf{f}_5, \mathbf{j} \rangle = \langle \mathbf{f}_6, \mathbf{j} \rangle = 0$. Hence if $g_i = 2$ then $\langle \mathbf{b}_i, \mathbf{j} \rangle = -2$, a contradiction.

Hence q = 2, g = 6 and H is a tree. By Lemma 3.5 we have $\mu = 1$ and we may take $\Delta_H(3') = \{1', 2', 4', 5'\}, \Delta_H(5') = \{3', 6'\}$. Some vertex

 $w \in \Delta_X(4')$ is adjacent to a vertex in Q' and then H + w is the unicyclic graph of type 7-22, but this graph does not have 1 as an eigenvalue, a contradiction.

If t = 5 then k = 6, n = 11 and $q \le 5$. We note first that $\mu \ne 1$ for otherwise G has spectrum $4, 1^{(6)}, \mu_1, \mu_2, \mu_3, \mu_4$, with $\sum_{i=1}^4 (\mu_i - d)^2 < 0$. If q = 0 then $g_i = 1$ $(i = 1, \ldots, 6)$ and H is a tree. For each $v \in X$, H + v is a unicyclic graph with μ as a non-main integer eigenvalue $\ne -1, 0, 1$. Hence H + v is a 6-cycle and $\mu = -2$. Then H is a path and the neighbours of vin H are the endvertices of H. Now Lemma 2.2 affords a contradiction. If q > 0 then each tree H + v ($v \in Q$) is of type 109, and $\mu = -2$. Then His the tree with degree sequence 32111, and it has only one vertex at which we can add a pendant edge to obtain a graph with eigenvalue -2. Hence q = 1, g = 6 and the summands g_i are 1,1,1,1,2. In particular, R contains a vertex w such that the graph H + w is unicyclic with -2 as an eigenvalue. The H + w is a 6-cycle, a contradiction.

If t = 4 then \overline{G} is a cubic graph of order 8 with an eigenvalue $-1 - \mu \notin \{-1, 0\}$ of multiplicity 4. But there is no such graph, by [8, Theorem 1.1].

We have shown that $k \leq 2t - 5$, equivalently $3k \leq 2n - 5$, when $\mu \notin \{-1,0\}$. Since k is an integer, we have $k \leq \lfloor (2n-5)/3 \rfloor$. This bound is attained in $\overline{3K_2}$ (with $\mu = -2$), in the Paley graph of order 9 (with $\mu = 1$ and $\mu = -2$), and in the graph of order 12 labelled $I_{12,1}$ in [6] (with $\mu = 1$). In these examples, k is at most $\frac{1}{2}n$, and it remains to be seen whether there exists a constant $c \geq 0$ such that $k \leq t + c$. Meanwhile we go on to show that always $k \leq (3n - 1)/5$ when $\mu \notin \{-1,0\}$: this bound is superior to (2n - 5)/3 precisely when $n \geq 23$.

Lemma 3.6. Let G be a connected quartic graph of order n with μ as an eigenvalue of multiplicity k. If $\mu \notin \{-1,0\}$ then $k \leq (3n-1)/5$.

Proof. In view of the remarks above, we may assume that $n \ge 23$. We have $k = |E(X, \overline{X})| - g \le 2t + 2 - g$ and $t - 1 \ge q \ge k - g$, whence $k \le 2t + 2 + (t - 1 - k)$ and $2k \le 3t + 1$. If 2k = 3t + 1 then q = t - 1, and in this case the vertex in R' is adjacent to all vertices in R by Lemma 3.2. It follows that $k \le t + 2$ and hence that $n \le 8$, contrary to assumption. If 2k = 3t then $\frac{3}{2}t = k \le 2t + 2 - g \le 2t + 2 - k + q \le \frac{3}{2}t + 1$, and so $q \in \{t - 1, t - 2\}$. If q = t - 1 then $k \le t + 2$ as before, and we have the contradiction $n \le 10$. If q = t - 2 then $|R| \le 6$ because each vertex in R' is adjacent to at most 3 vertices in R; then $k \le t + 4$ and we have the contradiction $n \le 20$. It follows that $2k \le 3t - 1$, equivalently $5k \le 3n - 1$.

We combine the results of this Section as follows:

Theorem 3.7. Let G be a connected quartic graph of order n with μ as an eigenvalue of multiplicity k. If $\mu \notin \{-1,0\}$ then $k \leq (2n-5)/3$ when $n \leq 22$, and $k \leq (3n-1)/5$ when $n \geq 23$.

4 The case $\mu \in \{-1, 0\}$

Here again G denotes a connected quartic graph of order n with μ as an eigenvalue of multiplicity k. As before we let t = n - k and we take H

(= G - X) to be a star complement for μ . In the case that $\mu \in \{-1, 0\}$ we shall require the following observation.

Lemma 4.1. (See [8, Lemma 4.1].) Let G be graph with X as a star set for the eigenvalue μ , and let H = G - X. Suppose that u, v are distinct vertices in X such that $\Delta_H(u) = \Delta_H(v)$.

(i) If $\mu = -1$ then $\Delta_X(u) \cup \{u\} = \Delta_X(v) \cup \{v\}$ (and so u, v are co-duplicate vertices).

(ii) If $\mu = 0$ then $\Delta_X(u) = \Delta_X(v)$ (and so u, v are duplicate vertices).

When $\mu \in \{-1, 0\}$ the neighbourhoods $\Delta_H(u)$ $(u \in X)$ are non-empty [8, Lemma 2.4], but not necessarily distinct. In particular, $k \leq |E(X, \overline{X})| = 4t - 2|E(H)| \leq 2t + 2$. In this section we determine the graphs for which $\mu \in \{-1, 0\}$ and k = 2t + 2 (equivalently 3k = 2n + 2). Note that in this situation, $|\Delta_H(u)| = 1$ for all $u \in X$, and H is a tree; moreover, if t = 1then $G = K_5$ and $\mu = -1$.

Now suppose that t > 1 and $\mu = -1$. Since H is connected there exists a vertex $v' \in \overline{X}$ with exactly 3 neighbours in X, say v' = 1' and $\Delta_X(1') =$ $\{1, 2, 3\}$. By Lemma 4.1 the vertices 1, 2, 3 are co-duplicate, and so the vertices 1, 2, 3 are pairwise adjacent. The fourth neighbour of 1 lies in X and so we take $\Delta_G(1) = \{1', 2, 3, 4\}$; then $\Delta_G(i) \dot{\cup} \{i\} = \{1, 2, 3, 4\}$ (i = 1, 2, 3). The fourth neighbour of 4 lies in $X \setminus \{1'\}$ and so we take $\Delta_G(4) = \{1, 2, 2', 3\}$. Note that $\Delta_H(2') = \{4\}$ by Lemma 4.1. By Theorem 2.1(ii), $\mathcal{E}(-1)$ contains a vector $\mathbf{x} = (x(u) : u \in V(G))$ such that x(1) = 1 and x(i) = 0(i = 2, ..., k). We calculate the remaining entries of **x** by means of the relation $-x(u) = \sum_{v \sim u} x(v)$. We find x(1') = x(2') = -1; moreover x(i') = 0whenever i > 2 and i' is adjacent to X. If j' is a vertex of degree 4 in H then consider the components T_1, T_2, T_3, T_4 of H - j'. Without loss of generality, we may take $V(T_1) \subseteq \overline{X} \setminus \{1', 2'\}$. Note that $\Delta_X(i') \subseteq X \setminus \{1, 2, 3, 4\}$ for all $i' \in V(T_1)$. Now x(i') = 0 for all $i' \in V(T_1)$ by induction on the distance of i' from an endvertex of H in T₁. It follows that x(j') = 0, and so the only non-zero entries of x are 1, -1, -1. This is a contradiction because -1 is a non-main eigenvalue. Our conclusion is the following.

Proposition 4.2. Let G be a connected quartic graph of order n with -1 as an eigenvalue of multiplicity k. Then $k \leq \frac{2}{3}(n+1)$, with equality if and only if $G = K_5$.

Now suppose that $\mu = 0$ and k = 2t + 2. Necessarily $t > 1 |\Delta_H(u)| = 1$ for all $u \in X$, and H is a tree. Again \overline{X} has a vertex 1' adjacent to exactly 3 vertices in X, say 1,2,3. By Lemma 4.1, these vertices are duplicate vertices and so there exist vertices 4,5,6 in X such that 1,2,3 and 4,5,6 induce a complete bipartite graph $K_{3,3}$. If i' is a vertex of \overline{X} adjacent to $\{4,5,6\}$ then $\Delta_X(i') \subseteq \{4,5,6\}$ by Lemma 4.1. By Theorem 2.1(ii), G has a 0-eigenvector $\mathbf{x} = (x(u) : u \in V(G))$ such that x(1) = 1 and x(i) = 0 $(i = 2, \ldots, k)$. Then x(1') = 0 and x(i') = -1 whenever $i' \sim \{4,5,6\}$. Arguing as in the case $\mu = -1$, we find that x(i') = 0 for all remaining $i' \in \overline{X}$. Since \mathbf{x} is orthogonal to the all-1 vector, necessarily 4,5,6 have a common neighbour in \overline{X} , say 2'. Necessarily $1' \sim 2'$, and so we have:

Proposition 4.3. Let G be a connected quartic graph of order n with 0 as an eigenvalue of multiplicity k. Then $k \leq \frac{2}{3}(n+1)$, with equality if and only if $G = K_{4,4}$.

References

- F. K. Bell, P. Rowlinson, On the multiplicities of graph eigenvalues, Bull. London Math. Soc. 35 (2003), 401-408.
- [2] N. E. Clarke, W. D. Garraway, C. A. Hickman, R. J. Nowakowski, Graphs where star sets are matched to their complements, J. Combin. Math. Combin. Comput. 37 (2001), 177-185.
- [3] D. Cvetković, M. Doob, I. Gutman, A. Torgasev, Recent Results in the Theory of Graph Spectra, North-Holland, 1988.
- [4] D. Cvetković, M. Petrić, A table of connected graphs on six vertices, Discrete Math. 50 (1984), 37-49.
- [5] D. Cvetković, P. Rowlinson, S. K. Simić, An Introduction to the Theory of Graph Spectra, Cambridge University Press (Cambridge), 2010.
- [6] D. Cvetković, S. Simić, D. Stevanović, 4-regular integral graphs, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 9 (1998), 109-123.
- [7] The On-Line Encyclopedia of Integer Sequences, oeis.org.
- [8] P. Rowlinson, Eigenvalue multiplicity in cubic graphs, Linear Algebra Appl. 444 (2014), 211-218.