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Abstract

Let G be a connected quartic graph of order n with µ as an eigenvalue
of multiplicity k. We show that if µ 6∈ {−1, 0} then k ≤ (2n − 5)/3
when n ≤ 22, and k ≤ (3n − 1)/5 when n ≥ 23. If µ ∈ {−1, 0} then
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1 Introduction

Let G be a regular graph of order n with µ as an eigenvalue of multiplicity
k, and let t = n − k. Thus the corresponding eigenspace E(µ) of a (0, 1)-
adjacency matrix A of G has dimension k and codimension t. From [1,
Theorem 3.1], we know that if µ 6∈ {−1, 0} then k ≤ n− 1

2(−1 +
√

8n+ 9),
equivalently k ≤ 1

2(t + 1)(t − 2). For connected quartic graphs, a bound
which is linear in t follows easily from the equation tr(A) = 0. To see this,
we suppose that k ≥ 1

2n, i.e. k ≥ t. Then G is non-bipartite; also µ is
an integer, for otherwise it has an algebraic conjugate which is a second
eigenvalue of multiplicity k. It follows that if G is a connected quartic graph
then µ ∈ {−3,−2, 1, 2, 3} (see [5, Sections 1.3 and 3.2]). Let d be the mean
of the eigenvalues other than 4 and µ, so that 4 + kµ + (n − k − 1)d = 0.
We have −4 < d < 4, and so:

(a) if µ = −3 then k < 4
7n, i.e. k < 4

3 t;
(b) if µ = −2 then k < 2

3n, i.e. k < 2t;
(c) if µ = 1 then k < 4

5n−
8
5 , i.e. k < 4t− 8;

(d) if µ = 2 then k < 2
3n−

4
3 , i.e. k < 2t− 4;

(e) if µ = 3 then k < 4
7n−

8
7 , i.e. k < 4

3 t−
8
3 .

We show first that k ≤ 2t − 5 whenever µ 6∈ {−1, 0}. Then k is at
most b(2n− 5)/3c, a bound which is sharp for n = 6, 9, 12. The arguments
are somewhat different from those in the paper [8], where a corresponding
bound for cubic graphs was established. Section 2 contains the required
results on star complements, while Section 3 provides details of the proof.
It is quickly established that the bound holds when t > 9 or n > 23, and
subsequently we are able to improve the bound to (3n− 1)/5 when n ≥ 23.
The large number of quartic graphs of order ≤ 23 justifies our case-by-case
analysis when t ≤ 9: the cases n > 17 are relatively easy to deal with,
but there are already 86221634 connected quartic graphs of order 17 [7,
Sequence A006820]. In Section 4 we show that when µ ∈ {−1, 0} we have
k ≤ (2n + 2)/3, with equality if and only if G = K5 (with µ = −1) or
G = K4,4 (with µ = 0).

2 Preliminaries

Let G be a graph of order n with µ as an eigenvalue of multiplicity k. A
star set for µ in G is a subset X of the vertex-set V (G) such that |X| = k
and the induced subgraph G−X does not have µ as an eigenvalue. In this
situation, G −X is called a star complement for µ in G. The fundamental
properties of star sets and star complements are established in [5, Chapter
5]. We shall require the following results, where we write u ∼ v to mean
that vertices u and v are adjacent. For any U ⊆ V (G), we write GU for the
subgraph of G induced by U , and ∆U (v) for the set {u ∈ U : u ∼ v}. For
the subgraph H of G it is convenient to write ∆H(v) for ∆V (H)(v).

Theorem 2.1. (See [5, Theorem 5.1.7].) Let X be a set of k vertices in G

and suppose that G has adjacency matrix

(
AX B>

B C

)
, where AX is the

adjacency matrix of GX .
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(i) Then X is a star set for µ in G if and only if µ is not an eigenvalue of
C and

µI −AX = B>(µI − C)−1B. (1)

(ii) If X is a star set for µ then E(µ) consists of the vectors

(
x

(µI − C)−1Bx

)
(x ∈ IRk).

Let H = G−X, where X is a star set for µ. In the notation of Theorem
2.1, C is the adjacency matrix of H, while the columns bu (u ∈ X) of B
are the characteristic vectors of the H-neighbourhoods ∆H(u) (u ∈ X). We
write 〈x,y〉 for x>(µI −C)−1y (x,y ∈ IRt), where t = n− k. Eq. (1) shows
that

〈bu,bv〉 =


µ if u = v
−1 if u ∼ v

0 otherwise,

and we deduce from Theorem 2.1:

Lemma 2.2. If X is a star set for µ, and µ 6∈ {−1, 0}, then the neighbour-
hoods ∆H(u) (u ∈ X) are non-empty and distinct.

We write j for an all-1 vector, its length determined by context. Recall
that µ is a main eigenvalue of G if E(µ) is not orthogonal to j, and that
in an r-regular graph, every eigenvalue other than r is non-main. The next
observation follows from Theorem 2.1(ii).

Lemma 2.3. (See [5, Proposition 5.2.4].) If X is a star set for the non-
main eigenvalue µ then 〈bu, j〉 = −1 for all u ∈ X.

Lemma 2.4. If X is a star set for µ in G and if U is a proper subset of
X then X \ U is a star set for µ in G − U . Moreover, if µ is a non-main
eigenvalue of G then it is also a non-main eigenvalue of G− U .

Proof. We repeat the following argument as necessary. If u ∈ X and
|X| = k then µ has multiplicity k − 1 in G − u, and the first assertion

follows. When µ is non-main we take u = 1 and observe that if

(
0
y

)
∈ E(µ) then y is a µ-eigenvector of G − u. It follows that the vectors y
are orthogonal to j and constitute the (k−1)-dimensional eigenspace of µ in
G− u. 2

Lemma 2.5. (See [5, Theorem 5.1.6].) Let µ be an eigenvalue of the graph
G. If G is connected then G has a connected star complement for µ.

For subsets U, V of V (G) we write E(U, V ) for the set of edges between
U and V . When H = G − X it is convenient to write X for V (H). The
authors of [2] have determined all the graphs with a star set X for which
E(X,X) is a perfect matching, equivalently all the graphs for which B = I
in Eq.(1). Their result is the following.

Theorem 2.6. Let G be a graph with X as a star set for the eigenvalue µ.
If E(X,X) is a perfect matching then one of the following holds:
(a) G = K2 and µ = ±1, (b) G = C4 and µ = 0, (c) G is the Petersen
graph and µ = 1.

The spectra of all the connected graphs of order 6 or 7 are listed in [4]
and [3] respectively. We say that a graph G is of type N or M -N according
as G is numbered N in [4] or labelled M -N in [3].
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3 The case µ 6∈ {−1, 0}
For the remainder of the paper, G denotes a connected quartic graph of order
n with an eigenvalue µ of multiplicity k = n − t ≥ t. Then µ is an integer,
and in this Section µ 6∈ {−1, 0}. By Lemma 2.5 we may take H (= G−X)
to be a connected star complement for µ. Let Q = {i ∈ X : |∆H(i)| = 1}
and R = X \ Q. Let Q′ be the set of vertices in X with a neighbour in
Q, and let R′ = X \ Q′. By Lemma 2.2, E(Q,Q′) is a perfect matching
when Q 6= ∅. Moreover, if i ∈ R then |∆H(i)| = 1 + gi, where gi ≥ 1. Let
q = |Q| (= |Q′|) and g = Σi∈Rgi. We shall make use of the following four
observations.

Lemma 3.1. If j ∈ R then bj is not a linear combination of the vectors
bi (i ∈ Q).

Proof. Suppose by way of contradiction that bj = Σi∈Qaibi (j ∈ R).
(Here Q 6= ∅ because bj 6= 0 by Lemma 2.2.) Now Σi∈Qai ≥ 2, and
by Lemma 2.3 we have −1 = 〈bj , j〉 = Σi∈Qai〈bi.j〉 = −Σi∈Qai ≤ −2, a
contradiction. 2

Lemma 3.2. We have q ≤ t− 1, and if q = t− 1 then the vertex of H not
adjacent to a vertex in Q is adjacent to every vertex in R.

Proof Clearly, q ≤ t because the singleton neighbourhoods ∆(i) (i ∈ Q)
are distinct. If q = t then G − R has a perfect matching between H and
the star set Q. By Lemma 2.4 and Theorem 2.6, G − R is the Petersen
graph, µ = 1 and H is a 5-cycle. No graph of order > 10 has a 5-cycle as
a star complement for the eigenvalue 1 [5, Example 5.2.3], and so R = ∅, a
contradiction.

The assertion in the case q = t− 1 follows from Lemma 3.1. 2.

We write {f1, . . . , ft} for the standard orthonormal basis of IRt. We take
X = {1, . . . , k}, X = {1′, . . . , t′} with Q′ = {1′, . . . , q′} and i ∼ i′ (i =
1, . . . , q). Without loss of generality bi = fi for each i ∈ Q.

Lemma 3.3. Suppose that S is a proper subset of X such that
(i) 〈fi, j〉 = −1 when i′ ∈ S, 〈fi, j〉 = 0 when i′ 6∈ S, and
(ii) each vertex in S has a neighbour in X.
Then µ = 1 and GS is 2-regular.

Proof. With suitable labelling we have (µI−C)−1j = (−1, . . . ,−1, 0 . . . 0)>.
Thus if C = (cij) then for i ∈ S we have 1 +µ = Σj∈Scij . It follows that GS

is regular of degree 1 + µ, where necessarily µ ∈ {1, 2}. Finally, condition
(ii) ensures that µ 6= 2 because H is connected. 2

By Lemma 2.3 the set S above necessarily contains Q′. We shall make
repeated use of the following application of Lemma 3.3 in the case that
S = Q′.

Lemma 3.4. Suppose that for each v′ ∈ R′ there exist vertices u′ ∈ Q′ and
w ∈ R such that ∆H(w) = {u′, v′}. Then µ = 1 and Q′ induces a 2-regular
subgraph.

Proof. By Lemma 2.3, we have 〈bw, j〉 = −1 = 〈fu, j〉. We have a
matching between R′ and a subset of R, and so we may take bw = fu + fv.
Then 〈fv, j〉 = 0. It follows that

〈fi, j〉 =

{
−1 if i = 1, . . . , q,
0 if i = q + 1, . . . , t,

3



and the result follows from Lemma 3.3. 2

Our objective is to show that if G is a quartic connected graph of order
n with µ (6= −1, 0) as an eigenvalue of multiplicity k then k ≤ b(2n− 5)/3c.
One can check directly that this inequality holds when n ≤ 7, since the
quartic graphs of order < 8 are K5, 3K2, C7 and C3∪̇C4. Accordingly we
suppose that n ≥ 8. Since k ≤ 1

2(t+ 1)(t− 2), we have t ≥ 4.
Suppose that k ≥ 2t− a, where 0 ≤ a ≤ t. For j ∈ X, let dj = |∆H(j)|,

ej = |∆X(j)|. Then

2t− a+ g ≤ k + g = |E(X,X)| = Σj∈Xej = 4t− Σj∈Xdj = 4t− 2|E(H)|.

Since |E(H)| ≥ t − 1 we deduce that |E(X,X)| ≤ 2t + 2. Note also that
|E(X,X)| is even. Since g ≤ a + 2, we have q ≥ k − g ≥ k − a − 2. Also,
q ≤ t− 1 by Lemma 3.2 and so

2t− a ≤ k ≤ t+ a+ 1, t ≤ 2a+ 1. (2)

Note that k < 2t − 1 for otherwise t ≤ 3. Accordingly we suppose by way
of contradiction that k = 2t − a where a ∈ {2, 3, 4}. Note that t ≤ 9,
equivalently n ≤ 23.

The case k = 2t− 2. Taking a = 2, we have t ≤ 5. If t = 5 then k = 8 and
8 + g = |E(X,X)| ≤ 12. Now q ≤ 4 and g ≥ k − q ≥ 4. Hence g = 4, q = 4
and the vertex v of H not adjacent to a vertex of Q is adjacent to each of
the four vertices in R. Thus v is isolated in H, a contradiction.

If t = 4 then k = 6 and so n = 10. But n ≤ 9 by [1, Theorem 3.1], a
contradiction.

The case k = 2t− 3. Taking a = 3, we have t ≤ 7 and k + g = |E(X,X)|
≤ 18. If t = 7 then q ≤ 6, k = 11 and 11 + g = |E(X,X)| ≤ 16. Now
g ≥ k − q ≥ 5 and so g = 5, q = 6; then the vertex v of H not adjacent
to a vertex of Q is adjacent to each of the five vertices in R, contradicting
4-regularity.

If t = 6 then k = 9 and 9 + g = |E(X,X)| ≤ 14. Now g ≥ k − q ≥ 4
and so g = 5. Then q ∈ {4, 5}; and if q = 5 then H has an isolated vertex.
Hence q = 4, H is a tree and each vertex in R is adjacent to exactly two
vertices of H. By Lemma 3.1, each vertex of R is adjacent to 5′ or 6′ (or
both). On the other hand, at most one vertex of R is adjacent to both 5′

and 6′, while each of 5′, 6′ is adjacent to at most 3 vertices of R. It follows
that there exist vertices i ∈ R, j′ ∈ Q′ such that ∆H(i) = {j′, 5′}. We have
bh = fh (h = 1, 2, 3, 4) and (without loss of generality) bi = bj + f5. Since
〈bi, j〉 = −1 = 〈bj , j〉, we have 〈f5, j〉 = 0. Again there exist vertices u ∈ R,
v′ ∈ Q′ such that ∆H(u) = {v′, 6′}, and we deduce similarly that 〈f6, j〉 = 0.
It follows that no vertex of R is adjacent to both 5′ and 6′. Hence there
are just two possibilities for the degree sequence of the tree H, namely (a)
112222 and (b) 111223. In case (a), H ∼= P6 and there exists w ∈ Q such
that H+ v ∼= P7. But P7 has no integer eigenvalues. In case (b) there exists
w ∈ Q such that H +w has degree sequence 1111233. Now among the trees
of order 7 only those of type 6-4, 6-5 and 6-8 have an integer eigenvalue
6= −1, 0. It follows that H + w is of type 6-5 and H is of type 111. Then
there exists z ∈ Q such that H + z is of type 6-3, a contradiction. The
possibility t = 6 is therefore eliminated.
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If t = 5 then k = 7 and we find that g ∈ {3, 5}. If g = 3 then by Lemma
3.2, q = 4 and H has degree sequence 12223. In this case, there are two
possibilities for the unicyclic graph H, but always there exists w ∈ R such
that H + w is a bicyclic graph of type 89 or 93; but these graphs have no
integer eigenvalues 6= −1, 0. If g = 5 then q ≥ 2, and we consider the three
possibilities for the tree H. If H is K1,4 or P5 then there exists w ∈ Q
such that H + w is a graph of type 108, 111or 112; but none of these has
an integer eigenvalue 6= −1, 0. Hence H is the tree with degree sequence
11123. If w ∈ Q then H + w is a tree of type 108, 109, 110 or 111. The
first and last of these have no integer eigenvalue 6= −1, 0. Since q ≥ 2 it
follows that w may be chosen so that H + w is the tree of type 110. Then
µ = 1 and we obtain a contradiction as follows. Let µ1, µ2, µ3, µ4 (with
mean d) be the eigenvalues of G different from 4, 1. Then d = −11/4 and
Σ4
i=1µ

2
i = 4n− 16− 7 = 25. Hence Σ4

i=1(µi− d)2 = Σ4
i=1µ

2
i − 4d2 < 0, which

is impossible.

If t = 4 then k = 5 = 1
2(t+ 1)(t− 2). By [1, Theorem 3.1], G is strongly

regular; but there is no strongly regular graph with eigenvalue multiplicities
1,3,5.

The case k = 2t − 4. Taking a = 4 in Eq.(2) we see that t ≤ 9, while
k − q ≤ g ≤ 6 and q ≥ 2t − 10. The cases t = 9, (t, q) = (8, 7) are
ruled out by Lemma 3.2. Thus if t = 8 then k = 12, q = 6 and g = 6.
Necessarily gi = 1 for all i ∈ R. Since H is connected Lemma 3.1 ensures
that ∆R(7′) and ∆R(8′) are disjoint 3-sets in R; moreover, 7′ 6∼ 8′. Now
Lemma 3.4 applies and we deduce that Q′ induces a 2-regular graph. This
is a contradiction because H is a tree.

If t = 7 then k = 10 and q ∈ {4, 5, 6}. If q = 6 then by Lemma 3.2
the vertex 7′ is adjacent to all four vertices in R, hence is isolated in H,
a contradiction. If q = 5 then g = 6 (since g ≥ 5 and g is even). The
neighbourhoods ∆R(6′),∆R(7′) are either (a) a 3-set and a disjoint 2-set or
(b) 3-sets with just one common vertex. Now the summands gi (i ∈ R) are
1,1,1,1,2. It follows that in either case there exist vertices i, j ∈ R such that
∆H(i) = {6′, u} for some u ∈ Q′ and ∆H(j) = {7′, v} for some v ∈ Q′. By
Lemma 3.4, Q′ induces a 5-cycle, a contradiction because H is a tree. Now
suppose that q = 4. Then g = 6 and so gi = 1 for all i ∈ R; moreover H is
a tree. If each vertex in R′ is adjacent to a vertex in R then examination
of the possibilities for E(R,X) shows that 〈fi, j〉 = −1 or 0 for each i′ ∈ R′.
By Lemma 3.3, H contains a cycle, a contradiction. Taking 7′ to be non-
adjacent to R, we see that the neighbourhoods ∆R(5′),∆R(6′) are disjoint
3-sets. By Lemma 2.2 the tree H has degree sequence 4311111 or 4221111.
There are three possible trees, but in all cases we can choose v ∈ Q such
that H + v is one of the trees shown in Fig.1. Then H + v has no integer
eigenvalue µ such that µ 6= −1, 0 and µ is not an eigenvalue of H. This
disposes of the case t = 7.
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Figure 1: A choice of graphs H + v (v ∈ Q).

It is convenient to introduce one further lemma before proceeding with
the case t = 6.

Lemma 3.5. If q ≥ 2 and H is a tree of order 6 then µ = 1, H is the
graph with degree sequence 421111, and there are just three possibilities for
the neighbour in Q′ of a vertex in Q.

Proof. If v ∈ Q then H+ v is a tree with an integer eigenvalue µ 6= −1, 0,
hence one of the trees of type 6-4, 6-5 or 6-8. Since µ is not an eigenvalue of
H, H is determined uniquely up to isomorphism in each case: H is of type
110, 111 or 108, with µ = ±2,±2, 1 respectively.

Since q ≥ 2 there exists w ∈ Q with w′ 6= v′. The graph H +w has µ as
an eigenvalue, and it follows that the only possibility is that H + v, H + w
are both of type 6-8. (When H is of type 110, H + w is of type 6-3, 6-6 or
6-8; when H is of type 111, H + w is of type 6-2, 6-3, 6-6 or 6-7; and when
H is of type 108, H + w is of type 6-7, 6-8 or 6-9.) Then H is the graph
of type 110 (described in the lemma) and the only vertices of H at which
we may attach a pendant edge are are the three endvertices adjacent to the
vertex of degree 4. 2

If t = 6 then k = 8, q ∈ {2, 3, 4, 5} and g ∈ {4, 6}. If (q, g) = (5, 4) then
we may take g6 = g7 = 1, g8 = 2. It follows that 〈f6, j〉 = 0 and hence that
〈b8, j〉 = −2, a contradiction. Next suppose that (q, g) = (5, 6). Without
loss of generality, either g6 = 1, g7 = 2, g8 = 3 or g6 = g7 = g8 = 2. In the
first case, 〈f6, j〉 = 0 and we obtain the contradiction 〈b7, j〉 = −2. In the
second case we adapt the argument of Lemma 3.3 as follows. We may take
b6 = f1 + f2 + f6. Then 〈f6, j〉 = 1 and j = (µI−C)(−1.−1,−1,−1,−1, 1)>,
whence 1 = µ+Σ5

j=1c6j . Now the vertex 6′ is adjacent to all three vertices in
R, hence to just one vertex in Q′, and so µ = 0, contrary to assumption. If
(q, g) = (4, 4) then gi = 1 for each i ∈ R. If a vertex i ∈ R is adjacent to both
vertices in R′ then by Lemma 2.2, there exist vertices u, v ∈ R such that
∆R′(u) = {5′} and ∆R′(v) = {6′} (for otherwise H has an isolated vertex).
Then 〈f5, j〉 = 〈f6, j〉 = 0, contradicting 〈bi, j〉 = −1. Hence |∆R′(i)| = 1 for
all i ∈ R, and by Lemma 3.4, Q′ induces a 4-cycle. Since H is unicyclic,
we deduce that |E(R,R′)| ≥ 5, a contradiction. The case (q, g) = (4, 6)
is eliminated by Lemma 3.5. Hence q ≤ 3 and H is the tree described in
Lemma 3.5. If q = 3 then the vertices 1′, 2′, 3′ are the endvertices of H
adjacent to the vertex of degree 4 in H (say 4′). Without loss of generality,
|∆X(5′)| = 2 and |∆X(6′)| = 3. Since the numbers gi (i ∈ R) are 1,1,1,1,2,
each of 5′, 6′ is adjacent to a vertex in R with just one neighbour in Q′.
It follows that 〈f5, j〉 = 〈f6, j〉 = 0. Hence if gi = 2 then 〈bi, j〉 = −2, a
contradiction.

Hence q = 2, g = 6 and H is a tree. By Lemma 3.5 we have µ = 1
and we may take ∆H(3′) = {1′, 2′, 4′, 5′}, ∆H(5′) = {3′, 6′}. Some vertex
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w ∈ ∆X(4′) is adjacent to a vertex in Q′ and then H + w is the unicyclic
graph of type 7-22, but this graph does not have 1 as an eigenvalue, a
contradiction.

If t = 5 then k = 6, n = 11 and q ≤ 5. We note first that µ 6= 1 for
otherwise G has spectrum 4, 1(6), µ1, µ2, µ3, µ4, with Σ4

i=1(µi − d)2 < 0. If
q = 0 then gi = 1 (i = 1, . . . , 6) and H is a tree. For each v ∈ X, H + v is a
unicyclic graph with µ as a non-main integer eigenvalue 6= −1, 0, 1. Hence
H + v is a 6-cycle and µ = −2. Then H is a path and the neighbours of v
in H are the endvertices of H. Now Lemma 2.2 affords a contradiction. If
q > 0 then each tree H + v (v ∈ Q) is of type 109, and µ = −2. Then H
is the tree with degree sequence 32111, and it has only one vertex at which
we can add a pendant edge to obtain a graph with eigenvalue −2. Hence
q = 1, g = 6 and the summands gi are 1,1,1,1,2. In particular, R contains a
vertex w such that the graph H + w is unicyclic with −2 as an eigenvalue.
The H + w is a 6-cycle, a contradiction.

If t = 4 then G is a cubic graph of order 8 with an eigenvalue −1− µ 6∈
{−1, 0} of multiplicity 4. But there is no such graph, by [8, Theorem 1.1].

We have shown that k ≤ 2t − 5, equivalently 3k ≤ 2n − 5, when µ 6∈
{−1, 0}. Since k is an integer, we have k ≤ b(2n − 5)/3c. This bound is
attained in 3K2 (with µ = −2), in the Paley graph of order 9 (with µ = 1
and µ = −2), and in the graph of order 12 labelled I12,1 in [6] (with µ = 1).
In these examples, k is at most 1

2n, and it remains to be seen whether there
exists a constant c ≥ 0 such that k ≤ t + c. Meanwhile we go on to show
that always k ≤ (3n − 1)/5 when µ 6∈ {−1, 0}: this bound is superior to
(2n− 5)/3 precisely when n ≥ 23.

Lemma 3.6. Let G be a connected quartic graph of order n with µ as an
eigenvalue of multiplicity k. If µ 6∈ {−1, 0} then k ≤ (3n− 1)/5.

Proof. In view of the remarks above, we may assume that n ≥ 23. We
have k = |E(X,X)| − g ≤ 2t + 2 − g and t − 1 ≥ q ≥ k − g, whence
k ≤ 2t + 2 + (t − 1 − k) and 2k ≤ 3t + 1. If 2k = 3t + 1 then q = t − 1,
and in this case the vertex in R′ is adjacent to all vertices in R by Lemma
3.2. It follows that k ≤ t+ 2 and hence that n ≤ 8, contrary to assumption.
If 2k = 3t then 3

2 t = k ≤ 2t + 2 − g ≤ 2t + 2 − k + q ≤ 3
2 t + 1, and so

q ∈ {t − 1, t − 2}. If q = t − 1 then k ≤ t + 2 as before, and we have the
contradiction n ≤ 10. If q = t − 2 then |R| ≤ 6 because each vertex in
R′ is adjacent to at most 3 vertices in R; then k ≤ t + 4 and we have the
contradiction n ≤ 20. It follows that 2k ≤ 3t− 1, equivalently 5k ≤ 3n− 1.

2

We combine the results of this Section as follows:

Theorem 3.7. Let G be a connected quartic graph of order n with µ as
an eigenvalue of multiplicity k. If µ 6∈ {−1, 0} then k ≤ (2n − 5)/3 when
n ≤ 22, and k ≤ (3n− 1)/5 when n ≥ 23.

4 The case µ ∈ {−1, 0}
Here again G denotes a connected quartic graph of order n with µ as an
eigenvalue of multiplicity k. As before we let t = n − k and we take H

7



(= G−X) to be a star complement for µ. In the case that µ ∈ {−1, 0} we
shall require the following observation.

Lemma 4.1. (See [8, Lemma 4.1].) Let G be graph with X as a star set for
the eigenvalue µ, and let H = G−X. Suppose that u, v are distinct vertices
in X such that ∆H(u) = ∆H(v).
(i) If µ = −1 then ∆X(u) ∪̇ {u} = ∆X(v) ∪̇ {v} (and so u, v are co-duplicate
vertices).
(ii) If µ = 0 then ∆X(u) = ∆X(v) (and so u, v are duplicate vertices).

When µ ∈ {−1, 0} the neighbourhoods ∆H(u) (u ∈ X) are non-empty
[8, Lemma 2.4], but not necessarily distinct. In particular, k ≤ |E(X,X)| =
4t − 2|E(H)| ≤ 2t + 2. In this section we determine the graphs for which
µ ∈ {−1, 0} and k = 2t + 2 (equivalently 3k = 2n + 2). Note that in this
situation, |∆H(u)| = 1 for all u ∈ X, and H is a tree; moreover, if t = 1
then G = K5 and µ = −1.

Now suppose that t > 1 and µ = −1. Since H is connected there exists
a vertex v′ ∈ X with exactly 3 neighbours in X, say v′ = 1′ and ∆X(1′) =
{1, 2, 3}. By Lemma 4.1 the vertices 1, 2, 3 are co-duplicate, and so the ver-
tices 1, 2, 3 are pairwise adjacent. The fourth neighbour of 1 lies in X and so
we take ∆G(1) = {1′, 2, 3, 4}; then ∆G(i)∪̇{i} = {1, 2, 3, 4} (i = 1, 2, 3). The
fourth neighbour of 4 lies in X \ {1′} and so we take ∆G(4) = {1, 2, 2′, 3}.
Note that ∆H(2′) = {4} by Lemma 4.1. By Theorem 2.1(ii), E(−1) con-
tains a vector x = (x(u) : u ∈ V (G)) such that x(1) = 1 and x(i) = 0
(i = 2, . . . , k). We calculate the remaining entries of x by means of the
relation −x(u) = Σv∼ux(v). We find x(1′) = x(2′) = −1; moreover x(i′) = 0
whenever i > 2 and i′ is adjacent to X. If j′ is a vertex of degree 4 in H then
consider the components T1, T2, T3, T4 of H − j′. Without loss of generality,
we may take V (T1) ⊆ X \ {1′, 2′}. Note that ∆X(i′) ⊆ X \ {1, 2, 3, 4} for all
i′ ∈ V (T1). Now x(i′) = 0 for all i′ ∈ V (T1) by induction on the distance of
i′ from an endvertex of H in T1. It follows that x(j′) = 0, and so the only
non-zero entries of x are 1,−1,−1. This is a contradiction because −1 is a
non-main eigenvalue. Our conclusion is the following.

Proposition 4.2. Let G be a connected quartic graph of order n with −1
as an eigenvalue of multiplicity k. Then k ≤ 2

3(n + 1), with equality if and
only if G = K5.

Now suppose that µ = 0 and k = 2t+ 2. Necessarily t > 1 |∆H(u)| = 1
for all u ∈ X, and H is a tree. Again X has a vertex 1′ adjacent to exactly
3 vertices in X, say 1,2,3. By Lemma 4.1, these vertices are duplicate
vertices and so there exist vertices 4,5,6 in X such that 1,2,3 and 4,5,6
induce a complete bipartite graph K3,3. If i′ is a vertex of X adjacent to
{4, 5, 6} then ∆X(i′) ⊆ {4, 5, 6} by Lemma 4.1. By Theorem 2.1(ii), G has
a 0-eigenvector x = (x(u) : u ∈ V (G)) such that x(1) = 1 and x(i) = 0
(i = 2, . . . , k). Then x(1′) = 0 and x(i′) = −1 whenever i′ ∼ {4, 5, 6}.
Arguing as in the case µ = −1, we find that x(i′) = 0 for all remaining
i′ ∈ X. Since x is orthogonal to the all-1 vector, necessarily 4,5,6 have a
common neighbour in X, say 2′. Necessarily 1′ ∼ 2′, and so we have:

Proposition 4.3. Let G be a connected quartic graph of order n with 0 as
an eigenvalue of multiplicity k. Then k ≤ 2

3(n+1), with equality if and only
if G = K4,4.
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[3] D. Cvetković, M. Doob, I. Gutman, A. Torgasev, Recent Results
in the Theory of Graph Spectra, North-Holland, 1988.
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