Accepted refereed manuscript of:

Capaverde J \& Rowlinson P (2017) Eigenvalue multiplicity in quartic graphs, Linear Algebra and Its Applications, 535, pp. 160-170.

DOI: 10.1016/j.laa.2017.08.023
© 2017, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

EIGENVALUE MULTIPLICITY IN QUARTIC GRAPHS

Juliane Capaverde ${ }^{1}$
Departamento de Matemática Pura e Aplicada
Instituto de Matematica
Universidade Federal do Rio Grande do Sul
90.000 Porto Alegre RS
Brazil
Peter Rowlinson ${ }^{2}$
Mathematics and Statistics Group
Institute of Computing Science and Mathematics
University of Stirling
Scotland FK9 4LA
United Kingdom

Abstract

Let G be a connected quartic graph of order n with μ as an eigenvalue of multiplicity k. We show that if $\mu \notin\{-1,0\}$ then $k \leq(2 n-5) / 3$ when $n \leq 22$, and $k \leq(3 n-1) / 5$ when $n \geq 23$. If $\mu \in\{-1,0\}$ then $k \leq(2 n+2) / 3$, with equality if and only if $G=K_{5}$ (with $\mu=-1$) or $G=K_{4,4}$ (with $\mu=0$).

AMS Classification: 05C50
Keywords: eigenvalue, quartic graph, star complement.

[^0]
1 Introduction

Let G be a regular graph of order n with μ as an eigenvalue of multiplicity k, and let $t=n-k$. Thus the corresponding eigenspace $\mathcal{E}(\mu)$ of a $(0,1)$ adjacency matrix A of G has dimension k and codimension t. From [1, Theorem 3.1], we know that if $\mu \notin\{-1,0\}$ then $k \leq n-\frac{1}{2}(-1+\sqrt{8 n+9})$, equivalently $k \leq \frac{1}{2}(t+1)(t-2)$. For connected quartic graphs, a bound which is linear in t follows easily from the equation $\operatorname{tr}(A)=0$. To see this, we suppose that $k \geq \frac{1}{2} n$, i.e. $k \geq t$. Then G is non-bipartite; also μ is an integer, for otherwise it has an algebraic conjugate which is a second eigenvalue of multiplicity k. It follows that if G is a connected quartic graph then $\mu \in\{-3,-2,1,2,3\}$ (see [5, Sections 1.3 and 3.2]). Let d be the mean of the eigenvalues other than 4 and μ, so that $4+k \mu+(n-k-1) d=0$. We have $-4<d<4$, and so:
(a) if $\mu=-3$ then $k<\frac{4}{7} n$, i.e. $k<\frac{4}{3} t$;
(b) if $\mu=-2$ then $k<\frac{2}{3} n$, i.e. $k<2 t$;
(c) if $\mu=1$ then $k<\frac{4}{5} n-\frac{8}{5}$, i.e. $k<4 t-8$;
(d) if $\mu=2$ then $k<\frac{2}{3} n-\frac{4}{3}$, i.e. $k<2 t-4$;
(e) if $\mu=3$ then $k<\frac{4}{7} n-\frac{8}{7}$, i.e. $k<\frac{4}{3} t-\frac{8}{3}$.

We show first that $k \leq 2 t-5$ whenever $\mu \notin\{-1,0\}$. Then k is at most $\lfloor(2 n-5) / 3\rfloor$, a bound which is sharp for $n=6,9,12$. The arguments are somewhat different from those in the paper [8], where a corresponding bound for cubic graphs was established. Section 2 contains the required results on star complements, while Section 3 provides details of the proof. It is quickly established that the bound holds when $t>9$ or $n>23$, and subsequently we are able to improve the bound to $(3 n-1) / 5$ when $n \geq 23$. The large number of quartic graphs of order ≤ 23 justifies our case-by-case analysis when $t \leq 9$: the cases $n>17$ are relatively easy to deal with, but there are already 86221634 connected quartic graphs of order $17[7$, Sequence A006820]. In Section 4 we show that when $\mu \in\{-1,0\}$ we have $k \leq(2 n+2) / 3$, with equality if and only if $G=K_{5}$ (with $\mu=-1$) or $G=K_{4,4}($ with $\mu=0)$.

2 Preliminaries

Let G be a graph of order n with μ as an eigenvalue of multiplicity k. A star set for μ in G is a subset X of the vertex-set $V(G)$ such that $|X|=k$ and the induced subgraph $G-X$ does not have μ as an eigenvalue. In this situation, $G-X$ is called a star complement for μ in G. The fundamental properties of star sets and star complements are established in [5, Chapter 5]. We shall require the following results, where we write $u \sim v$ to mean that vertices u and v are adjacent. For any $U \subseteq V(G)$, we write G_{U} for the subgraph of G induced by U, and $\Delta_{U}(v)$ for the set $\{u \in U: u \sim v\}$. For the subgraph H of G it is convenient to write $\Delta_{H}(v)$ for $\Delta_{V(H)}(v)$.
Theorem 2.1. (See [5, Theorem 5.1.7].) Let X be a set of k vertices in G and suppose that G has adjacency matrix $\left(\begin{array}{cc}A_{X} & B^{\top} \\ B & C\end{array}\right)$, where A_{X} is the adjacency matrix of G_{X}.
(i) Then X is a star set for μ in G if and only if μ is not an eigenvalue of C and

$$
\begin{equation*}
\mu I-A_{X}=B^{\top}(\mu I-C)^{-1} B . \tag{1}
\end{equation*}
$$

(ii) If X is a star set for μ then $\mathcal{E}(\mu)$ consists of the vectors $\binom{\mathbf{x}}{(\mu I-C)^{-1} B \mathbf{x}}$ $\left(\mathrm{x} \in \mathbb{R}^{k}\right)$.

Let $H=G-X$, where X is a star set for μ. In the notation of Theorem 2.1, C is the adjacency matrix of H, while the columns $\mathbf{b}_{u}(u \in X)$ of B are the characteristic vectors of the H-neighbourhoods $\Delta_{H}(u)(u \in X)$. We write $\langle\mathbf{x}, \mathbf{y}\rangle$ for $\mathbf{x}^{\top}(\mu I-C)^{-1} \mathbf{y}\left(\mathbf{x}, \mathbf{y} \in \mathbb{R}^{t}\right)$, where $t=n-k$. Eq. (1) shows that

$$
\left\langle\mathbf{b}_{u}, \mathbf{b}_{v}\right\rangle=\left\{\begin{array}{c}
\mu \text { if } u=v \\
-1 \text { if } u \sim v \\
0 \text { otherwise },
\end{array}\right.
$$

and we deduce from Theorem 2.1:
Lemma 2.2. If X is a star set for μ, and $\mu \notin\{-1,0\}$, then the neighbourhoods $\Delta_{H}(u)(u \in X)$ are non-empty and distinct.

We write \mathbf{j} for an all-1 vector, its length determined by context. Recall that μ is a main eigenvalue of G if $\mathcal{E}(\mu)$ is not orthogonal to \mathbf{j}, and that in an r-regular graph, every eigenvalue other than r is non-main. The next observation follows from Theorem 2.1(ii).
Lemma 2.3. (See [5, Proposition 5.2.4].) If X is a star set for the nonmain eigenvalue μ then $\left\langle\mathbf{b}_{u}, \mathbf{j}\right\rangle=-1$ for all $u \in X$.
Lemma 2.4. If X is a star set for μ in G and if U is a proper subset of X then $X \backslash U$ is a star set for μ in $G-U$. Moreover, if μ is a non-main eigenvalue of G then it is also a non-main eigenvalue of $G-U$.
Proof. We repeat the following argument as necessary. If $u \in X$ and $|X|=k$ then μ has multiplicity $k-1$ in $G-u$, and the first assertion follows. When μ is non-main we take $u=1$ and observe that if $\binom{0}{\mathbf{y}}$ $\in \mathcal{E}(\mu)$ then \mathbf{y} is a μ-eigenvector of $G-u$. It follows that the vectors \mathbf{y} are orthogonal to \mathbf{j} and constitute the ($k-1$)-dimensional eigenspace of μ in $G-u$.
Lemma 2.5. (See [5, Theorem 5.1.6].) Let μ be an eigenvalue of the graph G. If G is connected then G has a connected star complement for μ.

For subsets U, V of $V(G)$ we write $E(U, V)$ for the set of edges between U and V. When $H=G-X$ it is convenient to write \bar{X} for $V(H)$. The authors of [2] have determined all the graphs with a star set X for which $E(X, \bar{X})$ is a perfect matching, equivalently all the graphs for which $B=I$ in Eq.(1). Their result is the following.
Theorem 2.6. Let G be a graph with X as a star set for the eigenvalue μ. If $E(X, \bar{X})$ is a perfect matching then one of the following holds:
(a) $G=K_{2}$ and $\mu= \pm 1$, (b)
(b) $G=C_{4}$ and $\mu=0$,
, (c) G is the Petersen graph and $\mu=1$.

The spectra of all the connected graphs of order 6 or 7 are listed in [4] and [3] respectively. We say that a graph G is of type N or $M-N$ according as G is numbered N in [4] or labelled $M-N$ in [3].

3 The case $\mu \notin\{-1,0\}$

For the remainder of the paper, G denotes a connected quartic graph of order n with an eigenvalue μ of multiplicity $k=n-t \geq t$. Then μ is an integer, and in this Section $\mu \notin\{-1,0\}$. By Lemma 2.5 we may take $H(=G-X)$ to be a connected star complement for μ. Let $Q=\left\{i \in X:\left|\Delta_{H}(i)\right|=1\right\}$ and $R=X \backslash Q$. Let Q^{\prime} be the set of vertices in \bar{X} with a neighbour in Q, and let $R^{\prime}=\bar{X} \backslash Q^{\prime}$. By Lemma $2.2, E\left(Q, Q^{\prime}\right)$ is a perfect matching when $Q \neq \emptyset$. Moreover, if $i \in R$ then $\left|\Delta_{H}(i)\right|=1+g_{i}$, where $g_{i} \geq 1$. Let $q=|Q|\left(=\left|Q^{\prime}\right|\right)$ and $g=\Sigma_{i \in R} g_{i}$. We shall make use of the following four observations.

Lemma 3.1. If $j \in R$ then \mathbf{b}_{j} is not a linear combination of the vectors $\mathbf{b}_{i}(i \in Q)$.
Proof. Suppose by way of contradiction that $\mathbf{b}_{j}=\Sigma_{i \in Q} a_{i} \mathbf{b}_{i}(j \in R)$. (Here $Q \neq \emptyset$ because $\mathbf{b}_{j} \neq \mathbf{0}$ by Lemma 2.2.) Now $\Sigma_{i \in Q} a_{i} \geq 2$, and by Lemma 2.3 we have $-1=\left\langle\mathbf{b}_{j}, \mathbf{j}\right\rangle=\Sigma_{i \in Q} a_{i}\left\langle\mathbf{b}_{i} \cdot \mathbf{j}\right\rangle=-\Sigma_{i \in Q} a_{i} \leq-2$, a contradiction.

Lemma 3.2. We have $q \leq t-1$, and if $q=t-1$ then the vertex of H not adjacent to a vertex in Q is adjacent to every vertex in R.
Proof Clearly, $q \leq t$ because the singleton neighbourhoods $\Delta(i)(i \in Q)$ are distinct. If $q=t$ then $G-R$ has a perfect matching between H and the star set Q. By Lemma 2.4 and Theorem 2.6, $G-R$ is the Petersen graph, $\mu=1$ and H is a 5 -cycle. No graph of order >10 has a 5 -cycle as a star complement for the eigenvalue 1 [5, Example 5.2.3], and so $R=\emptyset$, a contradiction.

The assertion in the case $q=t-1$ follows from Lemma 3.1.
We write $\left\{\mathbf{f}_{1}, \ldots, \mathbf{f}_{t}\right\}$ for the standard orthonormal basis of \mathbb{R}^{t}. We take $X=\{1, \ldots, k\}, \bar{X}=\left\{1^{\prime}, \ldots, t^{\prime}\right\}$ with $Q^{\prime}=\left\{1^{\prime}, \ldots, q^{\prime}\right\}$ and $i \sim i^{\prime}(i=$ $1, \ldots, q)$. Without loss of generality $\mathbf{b}_{i}=\mathbf{f}_{i}$ for each $i \in Q$.
Lemma 3.3. Suppose that S is a proper subset of \bar{X} such that
(i) $\left\langle\mathbf{f}_{i}, \mathbf{j}\right\rangle=-1$ when $i^{\prime} \in S,\left\langle\mathbf{f}_{i}, \mathbf{j}\right\rangle=0$ when $i^{\prime} \notin S$, and
(ii) each vertex in S has a neighbour in X.

Then $\mu=1$ and G_{S} is 2-regular.
Proof. With suitable labelling we have $(\mu I-C)^{-1} \mathbf{j}=(-1, \ldots,-1,0 \ldots 0)^{\top}$. Thus if $C=\left(c_{i j}\right)$ then for $i \in S$ we have $1+\mu=\Sigma_{j \in S} c_{i j}$. It follows that G_{S} is regular of degree $1+\mu$, where necessarily $\mu \in\{1,2\}$. Finally, condition (ii) ensures that $\mu \neq 2$ because H is connected.

By Lemma 2.3 the set S above necessarily contains Q^{\prime}. We shall make repeated use of the following application of Lemma 3.3 in the case that $S=Q^{\prime}$.

Lemma 3.4. Suppose that for each $v^{\prime} \in R^{\prime}$ there exist vertices $u^{\prime} \in Q^{\prime}$ and $w \in R$ such that $\Delta_{H}(w)=\left\{u^{\prime}, v^{\prime}\right\}$. Then $\mu=1$ and Q^{\prime} induces a 2-regular subgraph.
Proof. By Lemma 2.3, we have $\left\langle\mathbf{b}_{w}, \mathbf{j}\right\rangle=-1=\left\langle\mathbf{f}_{u}, \mathbf{j}\right\rangle$. We have a matching between R^{\prime} and a subset of R, and so we may take $\mathbf{b}_{w}=\mathbf{f}_{u}+\mathbf{f}_{v}$. Then $\left\langle\mathbf{f}_{v}, \mathbf{j}\right\rangle=0$. It follows that

$$
\left\langle\mathbf{f}_{i}, \mathbf{j}\right\rangle=\left\{\begin{array}{cl}
-1 & \text { if } i=1, \ldots, q \\
0 & \text { if } i=q+1, \ldots, t,
\end{array}\right.
$$

and the result follows from Lemma 3.3.
Our objective is to show that if G is a quartic connected graph of order n with $\mu(\neq-1,0)$ as an eigenvalue of multiplicity k then $k \leq\lfloor(2 n-5) / 3\rfloor$. One can check directly that this inequality holds when $n \leq 7$, since the quartic graphs of order <8 are $K_{5}, \overline{3 K_{2}}, \overline{C_{7}}$ and $\overline{C_{3} \dot{U} C_{4}}$. Accordingly we suppose that $n \geq 8$. Since $k \leq \frac{1}{2}(t+1)(t-2)$, we have $t \geq 4$.

Suppose that $k \geq 2 t-a$, where $0 \leq a \leq t$. For $j \in \bar{X}$, let $d_{j}=\left|\Delta_{H}(j)\right|$, $e_{j}=\left|\Delta_{X}(j)\right|$. Then

$$
2 t-a+g \leq k+g=|E(X, \bar{X})|=\Sigma_{j \in \bar{X}} e_{j}=4 t-\Sigma_{j \in \bar{X}} d_{j}=4 t-2|E(H)| .
$$

Since $|E(H)| \geq t-1$ we deduce that $|E(X, \bar{X})| \leq 2 t+2$. Note also that $|E(X, \bar{X})|$ is even. Since $g \leq a+2$, we have $q \geq k-g \geq k-a-2$. Also, $q \leq t-1$ by Lemma 3.2 and so

$$
\begin{equation*}
2 t-a \leq k \leq t+a+1, \quad t \leq 2 a+1 . \tag{2}
\end{equation*}
$$

Note that $k<2 t-1$ for otherwise $t \leq 3$. Accordingly we suppose by way of contradiction that $k=2 t-a$ where $a \in\{2,3,4\}$. Note that $t \leq 9$, equivalently $n \leq 23$.
The case $k=2 t-2$. Taking $a=2$, we have $t \leq 5$. If $t=5$ then $k=8$ and $8+g=|E(X, \bar{X})| \leq 12$. Now $q \leq 4$ and $g \geq k-q \geq 4$. Hence $g=4, q=4$ and the vertex v of H not adjacent to a vertex of Q is adjacent to each of the four vertices in R. Thus v is isolated in H, a contradiction.

If $t=4$ then $k=6$ and so $n=10$. But $n \leq 9$ by [1, Theorem 3.1], a contradiction.

The case $k=2 t-3$. Taking $a=3$, we have $t \leq 7$ and $k+g=|E(X, \bar{X})|$ ≤ 18. If $t=7$ then $q \leq 6, k=11$ and $11+g=|E(X, \bar{X})| \leq 16$. Now $g \geq k-q \geq 5$ and so $g=5, q=6$; then the vertex v of H not adjacent to a vertex of Q is adjacent to each of the five vertices in R, contradicting 4 -regularity.

If $t=6$ then $k=9$ and $9+g=|E(X, \bar{X})| \leq 14$. Now $g \geq k-q \geq 4$ and so $g=5$. Then $q \in\{4,5\}$; and if $q=5$ then H has an isolated vertex. Hence $q=4, H$ is a tree and each vertex in R is adjacent to exactly two vertices of H. By Lemma 3.1, each vertex of R is adjacent to 5^{\prime} or 6^{\prime} (or both). On the other hand, at most one vertex of R is adjacent to both 5^{\prime} and 6^{\prime}, while each of $5^{\prime}, 6^{\prime}$ is adjacent to at most 3 vertices of R. It follows that there exist vertices $i \in R, j^{\prime} \in Q^{\prime}$ such that $\Delta_{H}(i)=\left\{j^{\prime}, 5^{\prime}\right\}$. We have $\mathbf{b}_{h}=\mathbf{f}_{h}(h=1,2,3,4)$ and (without loss of generality) $\mathbf{b}_{i}=\mathbf{b}_{j}+\mathbf{f}_{5}$. Since $\left\langle\mathbf{b}_{i}, \mathbf{j}\right\rangle=-1=\left\langle\mathbf{b}_{j}, \mathbf{j}\right\rangle$, we have $\left\langle\mathbf{f}_{5}, \mathbf{j}\right\rangle=0$. Again there exist vertices $u \in R$, $v^{\prime} \in Q^{\prime}$ such that $\Delta_{H}(u)=\left\{v^{\prime}, 6^{\prime}\right\}$, and we deduce similarly that $\left\langle\mathbf{f}_{6}, \mathbf{j}\right\rangle=0$. It follows that no vertex of R is adjacent to both 5^{\prime} and 6^{\prime}. Hence there are just two possibilities for the degree sequence of the tree H, namely (a) 112222 and (b) 111223. In case (a), $H \cong P_{6}$ and there exists $w \in Q$ such that $H+v \cong P_{7}$. But P_{7} has no integer eigenvalues. In case (b) there exists $w \in Q$ such that $H+w$ has degree sequence 1111233. Now among the trees of order 7 only those of type $6-4,6-5$ and $6-8$ have an integer eigenvalue $\neq-1,0$. It follows that $H+w$ is of type $6-5$ and H is of type 111. Then there exists $z \in Q$ such that $H+z$ is of type $6-3$, a contradiction. The possibility $t=6$ is therefore eliminated.

If $t=5$ then $k=7$ and we find that $g \in\{3,5\}$. If $g=3$ then by Lemma $3.2, q=4$ and H has degree sequence 12223. In this case, there are two possibilities for the unicyclic graph H, but always there exists $w \in R$ such that $H+w$ is a bicyclic graph of type 89 or 93 ; but these graphs have no integer eigenvalues $\neq-1,0$. If $g=5$ then $q \geq 2$, and we consider the three possibilities for the tree H. If H is $K_{1,4}$ or P_{5} then there exists $w \in Q$ such that $H+w$ is a graph of type 108,111 or 112 ; but none of these has an integer eigenvalue $\neq-1,0$. Hence H is the tree with degree sequence 11123. If $w \in Q$ then $H+w$ is a tree of type $108,109,110$ or 111. The first and last of these have no integer eigenvalue $\neq-1,0$. Since $q \geq 2$ it follows that w may be chosen so that $H+w$ is the tree of type 110. Then $\mu=1$ and we obtain a contradiction as follows. Let $\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}$ (with mean d) be the eigenvalues of G different from 4,1 . Then $d=-11 / 4$ and $\Sigma_{i=1}^{4} \mu_{i}^{2}=4 n-16-7=25$. Hence $\Sigma_{i=1}^{4}\left(\mu_{i}-d\right)^{2}=\Sigma_{i=1}^{4} \mu_{i}^{2}-4 d^{2}<0$, which is impossible.

If $t=4$ then $k=5=\frac{1}{2}(t+1)(t-2)$. By [1, Theorem 3.1], G is strongly regular; but there is no strongly regular graph with eigenvalue multiplicities $1,3,5$.

The case $k=2 t-4$. Taking $a=4$ in Eq.(2) we see that $t \leq 9$, while $k-q \leq g \leq 6$ and $q \geq 2 t-10$. The cases $t=9,(t, q)=(8,7)$ are ruled out by Lemma 3.2. Thus if $t=8$ then $k=12, q=6$ and $g=6$. Necessarily $g_{i}=1$ for all $i \in R$. Since H is connected Lemma 3.1 ensures that $\Delta_{R}\left(7^{\prime}\right)$ and $\Delta_{R}\left(8^{\prime}\right)$ are disjoint 3 -sets in R; moreover, $7^{\prime} \nsim 8^{\prime}$. Now Lemma 3.4 applies and we deduce that Q^{\prime} induces a 2 -regular graph. This is a contradiction because H is a tree.

If $t=7$ then $k=10$ and $q \in\{4,5,6\}$. If $q=6$ then by Lemma 3.2 the vertex 7^{\prime} is adjacent to all four vertices in R, hence is isolated in H, a contradiction. If $q=5$ then $g=6$ (since $g \geq 5$ and g is even). The neighbourhoods $\Delta_{R}\left(6^{\prime}\right), \Delta_{R}\left(7^{\prime}\right)$ are either (a) a 3 -set and a disjoint 2 -set or (b) 3 -sets with just one common vertex. Now the summands $g_{i}(i \in R)$ are $1,1,1,1,2$. It follows that in either case there exist vertices $i, j \in R$ such that $\Delta_{H}(i)=\left\{6^{\prime}, u\right\}$ for some $u \in Q^{\prime}$ and $\Delta_{H}(j)=\left\{7^{\prime}, v\right\}$ for some $v \in Q^{\prime}$. By Lemma 3.4, Q^{\prime} induces a 5 -cycle, a contradiction because H is a tree. Now suppose that $q=4$. Then $g=6$ and so $g_{i}=1$ for all $i \in R$; moreover H is a tree. If each vertex in R^{\prime} is adjacent to a vertex in R then examination of the possibilities for $E(R, \bar{X})$ shows that $\left\langle\mathbf{f}_{i}, \mathbf{j}\right\rangle=-1$ or 0 for each $i^{\prime} \in R^{\prime}$. By Lemma 3.3, H contains a cycle, a contradiction. Taking 7^{\prime} to be nonadjacent to R, we see that the neighbourhoods $\Delta_{R}\left(5^{\prime}\right), \Delta_{R}\left(6^{\prime}\right)$ are disjoint 3 -sets. By Lemma 2.2 the tree H has degree sequence 4311111 or 4221111. There are three possible trees, but in all cases we can choose $v \in Q$ such that $H+v$ is one of the trees shown in Fig.1. Then $H+v$ has no integer eigenvalue μ such that $\mu \neq-1,0$ and μ is not an eigenvalue of H. This disposes of the case $t=7$.

Figure 1: A choice of graphs $H+v(v \in Q)$.
It is convenient to introduce one further lemma before proceeding with the case $t=6$.
Lemma 3.5. If $q \geq 2$ and H is a tree of order 6 then $\mu=1, H$ is the graph with degree sequence 421111, and there are just three possibilities for the neighbour in Q^{\prime} of a vertex in Q.
Proof. If $v \in Q$ then $H+v$ is a tree with an integer eigenvalue $\mu \neq-1,0$, hence one of the trees of type $6-4,6-5$ or $6-8$. Since μ is not an eigenvalue of H, H is determined uniquely up to isomorphism in each case: H is of type 110,111 or 108 , with $\mu= \pm 2, \pm 2,1$ respectively.

Since $q \geq 2$ there exists $w \in Q$ with $w^{\prime} \neq v^{\prime}$. The graph $H+w$ has μ as an eigenvalue, and it follows that the only possibility is that $H+v, H+w$ are both of type $6-8$. (When H is of type $110, H+w$ is of type $6-3,6-6$ or $6-8$; when H is of type $111, H+w$ is of type $6-2,6-3,6-6$ or $6-7$; and when H is of type $108, H+w$ is of type $6-7,6-8$ or $6-9$.) Then H is the graph of type 110 (described in the lemma) and the only vertices of H at which we may attach a pendant edge are are the three endvertices adjacent to the vertex of degree 4 .

If $t=6$ then $k=8, q \in\{2,3,4,5\}$ and $g \in\{4,6\}$. If $(q, g)=(5,4)$ then we may take $g_{6}=g_{7}=1, g_{8}=2$. It follows that $\left\langle\mathbf{f}_{6}, \mathbf{j}\right\rangle=0$ and hence that $\left\langle\mathbf{b}_{8}, \mathbf{j}\right\rangle=-2$, a contradiction. Next suppose that $(q, g)=(5,6)$. Without loss of generality, either $g_{6}=1, g_{7}=2, g_{8}=3$ or $g_{6}=g_{7}=g_{8}=2$. In the first case, $\left\langle\mathbf{f}_{6}, \mathbf{j}\right\rangle=0$ and we obtain the contradiction $\left\langle\mathbf{b}_{7}, \mathbf{j}\right\rangle=-2$. In the second case we adapt the argument of Lemma 3.3 as follows. We may take $\mathbf{b}_{6}=\mathbf{f}_{1}+\mathbf{f}_{2}+\mathbf{f}_{6}$. Then $\left\langle\mathbf{f}_{6}, \mathbf{j}\right\rangle=1$ and $\mathbf{j}=(\mu I-C)(-1 .-1,-1,-1,-1,1)^{\top}$, whence $1=\mu+\sum_{j=1}^{5} c_{6 j}$. Now the vertex 6^{\prime} is adjacent to all three vertices in R, hence to just one vertex in Q^{\prime}, and so $\mu=0$, contrary to assumption. If $(q, g)=(4,4)$ then $g_{i}=1$ for each $i \in R$. If a vertex $i \in R$ is adjacent to both vertices in R^{\prime} then by Lemma 2.2, there exist vertices $u, v \in R$ such that $\Delta_{R^{\prime}}(u)=\left\{5^{\prime}\right\}$ and $\Delta_{R^{\prime}}(v)=\left\{6^{\prime}\right\}$ (for otherwise H has an isolated vertex). Then $\left\langle\mathbf{f}_{5}, \mathbf{j}\right\rangle=\left\langle\mathbf{f}_{6}, \mathbf{j}\right\rangle=0$, contradicting $\left\langle\mathbf{b}_{i}, \mathbf{j}\right\rangle=-1$. Hence $\left|\Delta_{R^{\prime}}(i)\right|=1$ for all $i \in R$, and by Lemma 3.4, Q^{\prime} induces a 4 -cycle. Since H is unicyclic, we deduce that $\left|E\left(R, R^{\prime}\right)\right| \geq 5$, a contradiction. The case $(q, g)=(4,6)$ is eliminated by Lemma 3.5. Hence $q \leq 3$ and H is the tree described in Lemma 3.5. If $q=3$ then the vertices $1^{\prime}, 2^{\prime}, 3^{\prime}$ are the endvertices of H adjacent to the vertex of degree 4 in H (say 4^{\prime}). Without loss of generality, $\left|\Delta_{X}\left(5^{\prime}\right)\right|=2$ and $\left|\Delta_{X}\left(6^{\prime}\right)\right|=3$. Since the numbers $g_{i}(i \in R)$ are $1,1,1,1,2$, each of $5^{\prime}, 6^{\prime}$ is adjacent to a vertex in R with just one neighbour in Q^{\prime}. It follows that $\left\langle\mathbf{f}_{5}, \mathbf{j}\right\rangle=\left\langle\mathbf{f}_{6}, \mathbf{j}\right\rangle=0$. Hence if $g_{i}=2$ then $\left\langle\mathbf{b}_{i}, \mathbf{j}\right\rangle=-2$, a contradiction.

Hence $q=2, g=6$ and H is a tree. By Lemma 3.5 we have $\mu=1$ and we may take $\Delta_{H}\left(3^{\prime}\right)=\left\{1^{\prime}, 2^{\prime}, 4^{\prime}, 5^{\prime}\right\}, \Delta_{H}\left(5^{\prime}\right)=\left\{3^{\prime}, 6^{\prime}\right\}$. Some vertex
$w \in \Delta_{X}\left(4^{\prime}\right)$ is adjacent to a vertex in Q^{\prime} and then $H+w$ is the unicyclic graph of type $7-22$, but this graph does not have 1 as an eigenvalue, a contradiction.

If $t=5$ then $k=6, n=11$ and $q \leq 5$. We note first that $\mu \neq 1$ for otherwise G has spectrum $4,1^{(6)}, \mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}$, with $\Sigma_{i=1}^{4}\left(\mu_{i}-d\right)^{2}<0$. If $q=0$ then $g_{i}=1(i=1, \ldots, 6)$ and H is a tree. For each $v \in X, H+v$ is a unicyclic graph with μ as a non-main integer eigenvalue $\neq-1,0,1$. Hence $H+v$ is a 6 -cycle and $\mu=-2$. Then H is a path and the neighbours of v in H are the endvertices of H. Now Lemma 2.2 affords a contradiction. If $q>0$ then each tree $H+v(v \in Q)$ is of type 109 , and $\mu=-2$. Then H is the tree with degree sequence 32111 , and it has only one vertex at which we can add a pendant edge to obtain a graph with eigenvalue -2 . Hence $q=1, g=6$ and the summands g_{i} are $1,1,1,1,2$. In particular, R contains a vertex w such that the graph $H+w$ is unicyclic with -2 as an eigenvalue. The $H+w$ is a 6 -cycle, a contradiction.

If $t=4$ then \bar{G} is a cubic graph of order 8 with an eigenvalue $-1-\mu \notin$ $\{-1,0\}$ of multiplicity 4 . But there is no such graph, by [8, Theorem 1.1].

We have shown that $k \leq 2 t-5$, equivalently $3 k \leq 2 n-5$, when $\mu \notin$ $\{-1,0\}$. Since k is an integer, we have $k \leq\lfloor(2 n-5) / 3\rfloor$. This bound is attained in $\overline{3 K_{2}}$ (with $\mu=-2$), in the Paley graph of order 9 (with $\mu=1$ and $\mu=-2$), and in the graph of order 12 labelled $I_{12,1}$ in [6] (with $\mu=1$). In these examples, k is at most $\frac{1}{2} n$, and it remains to be seen whether there exists a constant $c \geq 0$ such that $k \leq t+c$. Meanwhile we go on to show that always $k \leq(3 n-1) / 5$ when $\mu \notin\{-1,0\}$: this bound is superior to $(2 n-5) / 3$ precisely when $n \geq 23$.
Lemma 3.6. Let G be a connected quartic graph of order n with μ as an eigenvalue of multiplicity k. If $\mu \notin\{-1,0\}$ then $k \leq(3 n-1) / 5$.
Proof. In view of the remarks above, we may assume that $n \geq 23$. We have $k=|E(X, \bar{X})|-g \leq 2 t+2-g$ and $t-1 \geq q \geq k-g$, whence $k \leq 2 t+2+(t-1-k)$ and $2 k \leq 3 t+1$. If $2 k=3 t+1$ then $q=t-1$, and in this case the vertex in R^{\prime} is adjacent to all vertices in R by Lemma 3.2. It follows that $k \leq t+2$ and hence that $n \leq 8$, contrary to assumption. If $2 k=3 t$ then $\frac{3}{2} t=k \leq 2 t+2-g \leq 2 t+2-k+q \leq \frac{3}{2} t+1$, and so $q \in\{t-1, t-2\}$. If $q=t-1$ then $k \leq t+2$ as before, and we have the contradiction $n \leq 10$. If $q=t-2$ then $|R| \leq 6$ because each vertex in R^{\prime} is adjacent to at most 3 vertices in R; then $k \leq t+4$ and we have the contradiction $n \leq 20$. It follows that $2 k \leq 3 t-1$, equivalently $5 k \leq 3 n-1$.

We combine the results of this Section as follows:
Theorem 3.7. Let G be a connected quartic graph of order n with μ as an eigenvalue of multiplicity k. If $\mu \notin\{-1,0\}$ then $k \leq(2 n-5) / 3$ when $n \leq 22$, and $k \leq(3 n-1) / 5$ when $n \geq 23$.

4 The case $\mu \in\{-1,0\}$

Here again G denotes a connected quartic graph of order n with μ as an eigenvalue of multiplicity k. As before we let $t=n-k$ and we take H
$(=G-X)$ to be a star complement for μ. In the case that $\mu \in\{-1,0\}$ we shall require the following observation.
Lemma 4.1. (See [8, Lemma 4.1].) Let G be graph with X as a star set for the eigenvalue μ, and let $H=G-X$. Suppose that u, v are distinct vertices in X such that $\Delta_{H}(u)=\Delta_{H}(v)$.
(i) If $\mu=-1$ then $\Delta_{X}(u) \dot{\cup}\{u\}=\Delta_{X}(v) \dot{\cup}\{v\}$ (and so u, v are co-duplicate vertices).
(ii) If $\mu=0$ then $\Delta_{X}(u)=\Delta_{X}(v)$ (and so u, v are duplicate vertices).

When $\mu \in\{-1,0\}$ the neighbourhoods $\Delta_{H}(u)(u \in X)$ are non-empty [8, Lemma 2.4], but not necessarily distinct. In particular, $k \leq|E(X, \bar{X})|=$ $4 t-2|E(H)| \leq 2 t+2$. In this section we determine the graphs for which $\mu \in\{-1,0\}$ and $k=2 t+2$ (equivalently $3 k=2 n+2$). Note that in this situation, $\left|\Delta_{H}(u)\right|=1$ for all $u \in X$, and H is a tree; moreover, if $t=1$ then $G=K_{5}$ and $\mu=-1$.

Now suppose that $t>1$ and $\mu=-1$. Since H is connected there exists a vertex $v^{\prime} \in \bar{X}$ with exactly 3 neighbours in X, say $v^{\prime}=1^{\prime}$ and $\Delta_{X}\left(1^{\prime}\right)=$ $\{1,2,3\}$. By Lemma 4.1 the vertices $1,2,3$ are co-duplicate, and so the vertices $1,2,3$ are pairwise adjacent. The fourth neighbour of 1 lies in X and so we take $\Delta_{G}(1)=\left\{1^{\prime}, 2,3,4\right\}$; then $\Delta_{G}(i) \dot{\cup}\{i\}=\{1,2,3,4\}(i=1,2,3)$. The fourth neighbour of 4 lies in $\bar{X} \backslash\left\{1^{\prime}\right\}$ and so we take $\Delta_{G}(4)=\left\{1,2,2^{\prime}, 3\right\}$. Note that $\Delta_{H}\left(2^{\prime}\right)=\{4\}$ by Lemma 4.1. By Theorem 2.1(ii), $\mathcal{E}(-1)$ contains a vector $\mathbf{x}=(x(u): u \in V(G))$ such that $x(1)=1$ and $x(i)=0$ $(i=2, \ldots, k)$. We calculate the remaining entries of \mathbf{x} by means of the relation $-x(u)=\Sigma_{v \sim u} x(v)$. We find $x\left(1^{\prime}\right)=x\left(2^{\prime}\right)=-1 ;$ moreover $x\left(i^{\prime}\right)=0$ whenever $i>2$ and i^{\prime} is adjacent to X. If j^{\prime} is a vertex of degree 4 in H then consider the components $T_{1}, T_{2}, T_{3}, T_{4}$ of $H-j^{\prime}$. Without loss of generality, we may take $V\left(T_{1}\right) \subseteq \bar{X} \backslash\left\{1^{\prime}, 2^{\prime}\right\}$. Note that $\Delta_{X}\left(i^{\prime}\right) \subseteq X \backslash\{1,2,3,4\}$ for all $i^{\prime} \in V\left(T_{1}\right)$. Now $x\left(i^{\prime}\right)=0$ for all $i^{\prime} \in V\left(T_{1}\right)$ by induction on the distance of i^{\prime} from an endvertex of H in T_{1}. It follows that $x\left(j^{\prime}\right)=0$, and so the only non-zero entries of \mathbf{x} are $1,-1,-1$. This is a contradiction because -1 is a non-main eigenvalue. Our conclusion is the following.

Proposition 4.2. Let G be a connected quartic graph of order n with -1 as an eigenvalue of multiplicity k. Then $k \leq \frac{2}{3}(n+1)$, with equality if and only if $G=K_{5}$.

Now suppose that $\mu=0$ and $k=2 t+2$. Necessarily $t>1\left|\Delta_{H}(u)\right|=1$ for all $u \in X$, and H is a tree. Again \bar{X} has a vertex 1^{\prime} adjacent to exactly 3 vertices in X, say $1,2,3$. By Lemma 4.1, these vertices are duplicate vertices and so there exist vertices $4,5,6$ in X such that $1,2,3$ and $4,5,6$ induce a complete bipartite graph $K_{3,3}$. If i^{\prime} is a vertex of \bar{X} adjacent to $\{4,5,6\}$ then $\Delta_{X}\left(i^{\prime}\right) \subseteq\{4,5,6\}$ by Lemma 4.1. By Theorem 2.1(ii), G has a 0 -eigenvector $\mathbf{x}=(x(u): u \in V(G))$ such that $x(1)=1$ and $x(i)=0$ $(i=2, \ldots, k)$. Then $x\left(1^{\prime}\right)=0$ and $x\left(i^{\prime}\right)=-1$ whenever $i^{\prime} \sim\{4,5,6\}$. Arguing as in the case $\mu=-1$, we find that $x\left(i^{\prime}\right)=0$ for all remaining $i^{\prime} \in \bar{X}$. Since x is orthogonal to the all- 1 vector, necessarily $4,5,6$ have a common neighbour in \bar{X}, say 2^{\prime}. Necessarily $1^{\prime} \sim 2^{\prime}$, and so we have:
Proposition 4.3. Let G be a connected quartic graph of order n with 0 as an eigenvalue of multiplicity k. Then $k \leq \frac{2}{3}(n+1)$, with equality if and only if $G=K_{4,4}$.

References

[1] F. K. Bell, P. Rowlinson, On the multiplicities of graph eigenvalues, Bull. London Math. Soc. 35 (2003), 401-408.
[2] N. E. Clarke, W. D. Garraway, C. A. Hickman, R. J. Nowakowski, Graphs where star sets are matched to their complements, J. Combin. Math. Combin. Comput. 37 (2001), 177-185.
[3] D. Cvetković, M. Doob, I. Gutman, A. Torgasev, Recent Results in the Theory of Graph Spectra, North-Holland, 1988.
[4] D. Cvetković, M. Petrić, A table of connected graphs on six vertices, Discrete Math. 50 (1984), 37-49.
[5] D. Cvetković, P. Rowlinson, S. K. Simić, An Introduction to the Theory of Graph Spectra, Cambridge University Press (Cambridge), 2010.
[6] D. Cvetković, S. Simić, D. Stevanović, 4-regular integral graphs, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 9 (1998), 109123.
[7] The On-Line Encyclopedia of Integer Sequences, oeis.org.
[8] P. Rowlinson, Eigenvalue multiplicity in cubic graphs, Linear Algebra Appl. 444 (2014), 211-218.

[^0]: ${ }^{1}$ Tel.:+55 51 33086196; email: juliane.capaverde@ufrgs.br
 ${ }^{2}$ Tel.: +441786 467468; email: p.rowlinson@stirling.ac.uk (corresponding author)

