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Abstract: Information processing within neural systems often depends upon selective amplification
of relevant signals and suppression of irrelevant signals. This has been shown many times by
studies of contextual effects but there is as yet no consensus on how to interpret such studies.
Some researchers interpret the effects of context as contributing to the selective receptive field
(RF) input about which neurons transmit information. Others interpret context effects as affecting
transmission of information about RF input without becoming part of the RF information transmitted.
Here we use partial information decomposition (PID) and entropic information decomposition (EID)
to study the properties of a form of modulation previously used in neurobiologically plausible neural
nets. PID shows that this form of modulation can affect transmission of information in the RF input
without the binary output transmitting any information unique to the modulator. EID produces
similar decompositions, except that information unique to the modulator and the mechanistic shared
component can be negative when modulating and modulated signals are correlated. Synergistic and
source shared components were never negative in the conditions studied. Thus, both PID and EID
show that modulatory inputs to a local processor can affect the transmission of information from
other inputs. Contrary to what was previously assumed, this transmission can occur without the
modulatory inputs becoming part of the information transmitted, as shown by the use of PID with the
model we consider. Decompositions of psychophysical data from a visual contrast detection task with
surrounding context suggest that a similar form of modulation may also occur in real neural systems.

Keywords: information theory; partial information decomposition; entropic information decomposition;
synergy; redundancy; contextual modulation; neural information processing

1. Introduction

Amplifiers, such as hearing aids, for example, are designed to increase signal strength without
distorting the informative content that it transmits, i.e., its “semantics”. Though independence of
semantics has been a truism of information theory since its inception, information decomposition
may help distinguish the effects of amplifying inputs from driving inputs which determine what the
output transmits information about, which is what we will refer to here as its “semantics”. It may seem
intuitively obvious that any output must necessarily transmit information about all inputs that affect it,
but that intuition is misleading. Here, we use information decomposition to show that a modulatory
input can influence the transmission of information about other inputs while remaining distinct from
that information.

This may help resolve a long-standing controversy within the cognitive neurosciences concerning
the nature of “contextual modulation”. Many see the wide variety of psychophysical and physiological
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phenomena that are grouped under this heading as demonstrating that the concept of a neuron’s
receptive field, i.e., what the cell transmits information about, needs to be extended to include an
extra-classical receptive field; see e.g., [1]. In contrast to that many others see these phenomena as
evidence that contextual modulation does not change the cell’s receptive field semantics; see e.g., [2–4].

Resolution of this issue requires an adequate definition of “modulation”, which is used in several
different, and often undefined, ways. It is frequently used to mean simply that one thing affects
another. That unnecessary use of the term introduces substantial confusion, however, because the
term is also often used to refer to a three-term interaction. It could be used to refer to any three-way
interaction in which A effects the transmission of information about B by C. Our use is more specific
than that, however. The essence of the modulatory interaction that we study here is that the modulator
affects transmission of information about something else without becoming part of the information
transmitted. The effect of the volume control on a radio provides a simple example. It changes
signal strength without becoming part of the message conveyed. The use of the term “modulation”
in telecommunications potentially adds further confusion, however, because in either amplitude
modulation (AM) or frequency modulation (FM) it is the “modulatory” signal that is used to convey
the message to be transmitted. That is the opposite of what we and many others in the cognitive and
neurosciences refer to as “modulation”. While awaiting a consensus that resolves this terminological
confusion we define our usage of the term “modulation” as explicitly and as clearly as we can.
Modulation that increases output signal strength is referred to as “amplification” or “facilitation”.
Modulation that decreases output signal strength is referred to as “disamplification”, “suppression”,
or “attenuation”.

Information decomposition could help clarify the notion of “modulation” as used within the
cognitive and neurosciences in at least three ways. First, by requiring formal specifications to which
decompositions can be applied it enforces adequate definition. Second, by being applied to a transfer
function explicitly designed to be modulatory, it deepens our understanding of the information
processing operations performed by such interactions. Third, decomposition of a modulatory
interaction that is formally specified shows the conditions under which it can be distinguished from
additive interactions and provides patterns of decomposition to which empirically observed patterns
can be compared.

In this paper we apply information decomposition to a transfer function specifically designed
to operate as a modulator within a formal neural network that uses contextually guided learning
to discover latent statistical structure within its inputs [5]. We show that this transfer function has
the properties required of a modulator, and that they can be clearly distinguished from additive
interactions that do contribute to output semantics. A thorough understanding of this modulatory
transfer function is of growing importance to neuroscience because recent advances suggest that
something similar occurs at an intracellular level in neocortical pyramidal cells, and may be closely
related to consciousness [6,7]. It is also important to machine learning because the information
processing capabilities of networks such as those used for deep learning might be greatly enhanced if
given the context-sensitivity that such modulatory interactions can provide.

Modulatory interactions distinguish the contributions of two distinct inputs to an output, so they
imply some form of multivariate mutual information decomposition. Various forms of decomposition
have been proposed, however, and they may offer different resolutions to this issue. We therefore
compare resolutions that arise from two proposals discussed elsewhere in this Special Issue. One is Partial
Information Decomposition [8–11]. The other is Entropic Information Decomposition [12,13]. We find
that though there are important differences between these two proposed forms of decomposition, they
are in agreement with respect to their implications for the issue of distinguishing between additive
and modulatory interactions.

The notion of modulation is essentially a three-term interaction in which one input variable
modulates transmission of information about a second input variable by an output. The two inputs
therefore make fundamentally different kinds of contribution to the output. In contrast to that,
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additive interactions do not require the two inputs to remain distinct because their contributions can
be summarized via a single integrated value. Many information decomposition spectra and surfaces
are displayed in the following, demonstrating their expressive power and the variety of information
processing operations that a single transfer function can perform.

2. Notation and Definitions

In this section we describe our notation and define the information-theoretic concepts which are
used in the sequel. A generic “p” is used to denote a probability mass function, with the argument of
the function signifying which distribution is being described. Capital letters are used to denote random
variables, with their realised values appearing in lower-case. We denote the conditional probability
that Y = y, given that X1 = x1 and X2 = x2 by the conditional mass function p(y|x1, x2) for y ∈ B,
and (x1, x2) ∈ B2, where B = {−1,+1}.

In [14], the RF and contextual field (CF) inputs were multivariate, but here we consider the special
case of the local processor in [14] having two binary inputs, X1 and X2, and one binary output, Y,
with all three random variables having range space B. The joint distribution of (Y, X1, X2) is given by
the probability mass function (p.m.f.) p(y, x1, x2), where

p(y, x1, x2) = Pr(Y = y, X1 = x1, X2 = x2), (y, x1, x2) ∈ B3.

This distribution will be considered in the form

p(y, x1, x2) = p(y|x1, x2)p(x1, x2), (1)

and we will separately specify a joint p.m.f p(x1, x2) and a conditional p.m.f. p(y|x1, x2).
In the local processor in Figure 1, the value of X1 provides the receptive field (RF) input to

the local processor, while the value of X2 is the input from the contextual field (CF). The value
of the RF input, X1, is multiplied by the signal strength s1 to form the integrated RF input and
similarly for the CF input, X2. Therefore, the values taken by the integrated RF and CF inputs are
r = s1x1 and c = s2x2. These integrated values have both strength and a sign. The strength is a constant
property of the defined system, while the sign can change from sample to sample. The signal strengths,
si, are positive real numbers. The manner in which these signals are combined in the output unit will
be described in Section 3.

In this study, it is assumed that Pr(X1 = 1) = Pr(X2 = 1) = 1
2 and that the correlation between

X1 and X2 is d, where −1 < d < 1. This means that

λ ≡ Pr(X1 = 1, X2 = 1) = Pr(X1 = −1, X2 = −1)=
1 + d

4
, (2)

µ ≡ Pr(X1 = 1, X2 = −1) = Pr(X1 = −1, X2 = 1) =
1− d

4
. (3)

It is also assumed that the conditional output probability has a logistic form, with

Pr(Y = 1|X1 = x1, X2 = x2) = 1/(1 + exp (−T(x1, x2))), (4)

where T is a transfer function which depends also on the signal strengths, s1, s2. In Section 3,
the two transfer functions that are used in this study are specified. It should be noted that we
are actually considering a class of trivariate probability distributions that are indexed by (s1, s2, d),
where s1 > 0, s2 > 0,−1 < d < 1, although this indexation is suppressed in the sequel for ease of
notation. The various classical measures of information and measures of partial information used are
calculated using a member of the class of trivariate probability distributions, defined in (1)–(4), that is
given by a particular choice of (s1, s2, d).
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Figure 1. A local processor with binary receptive field (RF) input X1, contextual field (CF) input X2

and output Y. The weights on the connections from the RF and CF inputs into the output unit are s1, s2,
which represent the strengths given to the input signals. The integrated RF input, r, and the integrated
CF input, c, are passed through a transfer function T and a logistic nonlinearity within the output unit
to produce the conditional output probability, θ, as well as the output conditional mean, m.

We now define the standard information theoretic terms that are required in this work and based
on results in [15]. We denote by the function H the usual Shannon entropy, and note that any term
with zero probabilities makes no contribution to the sums involved. The total mutual information that
is shared by Y and the pair (X1, X2) is given by,

I[Y; (X1, X2)] = H(Y) + H(X1, X2)− H(Y, X1, X2). (5)

The information that is shared between Y and X1 but not with X2 is

I[Y; X1|X2] = H(Y, X2) + H(X1, X2)− H(X2)− H(Y, X1, X2), (6)

and the information that is shared between Y and X2 but not with X1 is

I[Y; X2|X1] = H(Y, X1) + H(X1, X2)− H(X1)− H(Y, X1, X2). (7)

Finally, the co-information of (Y, X1, X2) has several equivalent forms

I[Y; X1; X2] = I[Y; X1]− I[Y; X1|X2] = I[Y; X2]− I[Y; X2|X1] = I[X1; X2]− I[X1; X2|Y], (8)

where, for i = 1, 2,

I[Y; Xi] = H(Y) + H(Xi)− H(Y, Xi), and I[X1; X2] = H(X1) + H(X2)− H(X1, X2). (9)

We note that classical Shannon information measures have been used in neural coding studies to
investigate measures of synergy and redundancy; see for example [16].

When we come to define measures of partial information it will be necessary to calculate these
information quantities with respect to another p.m.f., say q(y, x1, x2), and to denote this we add the
subscript “q” to such terms, e.g., Iq(Y; X1; X2). This means that the p.m.f. q(y, x1, x2) is used in the
computation rather than the original p.m.f. p(y, x1, x2).
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3. An Interaction Designed to Be Modulatory

Our concern here is with variables that can take either positive or negative values, which can be
seen as being analogous to excitation and inhibition in neural systems. We model that decision as a
probabilistic binary variable that chooses between the values 1 and −1. The criteria to be met by a
modulatory transfer function in this case have been stated and discussed in many previous papers;
see e.g., [17–19]. The criteria for a modulatory interaction were stated for a local processor receiving
two inputs: the integrated RF input, r, and the integrated CF input, c. The requirements were stated in
terms of the level of activation within the local processor, although in this paper we use this term to
denote the value of the transfer function, and they are amended slightly here. Please note that the term
’integrated’ was used in previous work to refer to the weighting and summing of the components of a
multivariate input; we continue to use this term here even though the input to each field is univariate.
The value of the transfer function is fed into a logistic function to compute the conditional probability
that a 1 will be transmitted. Stated in those terms the CF input modulates transmission of information
about the RF input if four criteria are met:

1. If the integrated RF input is extremely weak, then the value of the transfer function is close to zero.
2. If the integrated CF input is extremely weak, then the value of the transfer function should be

close to the integrated RF input.
3. If the integrated RF and CF inputs have the same sign, then the absolute value of the transfer

function should be greater than when based on the RF input alone. On the other hand, if the RF
and CF inputs are of opposite sign then the absolute value of the transfer function should be less
than when based on the RF input alone.

4. The sign of the value of the transfer function is that of the integrated RF, so that the context cannot
change the sign of the conditional mean of the output.

In general terms, the CF input would have no modulatory effect on the output when the output and
the CF input are conditionally independent given the value of the RF input, which is equivalent to the
conditional mutual information I[Y; X2|X1] being equal to zero. One case where this happens for any
member of the class of trivariate binary distributions defined in (1)–(4) is when the correlation between
the inputs X1, X2 is ±1, for then I[Y; X2|X1] = 0; see Theorem 5. On the other hand, in situations
where this conditional mutual information is non-zero then X2 influences the prediction of the output
Y by the input X1 in the sense that

Pr(Y = y|X1 = x1, X2 = x2) 6= Pr(Y = 1|X1 = x1),

for at least one (y, x1, x2) ∈ B3. This is a very general form of modulation, but the type of modulation
defined in requirements 1–4 is very specific and we call it “contextual modulation”. This contextual
modulation is relevant within the local processor at the level of individual system inputs and outputs.
On the other hand, the following conditions express the notion of contextual modulation for the whole
ensemble of inputs and outputs:

M1: If the RF signal is strong enough and the CF input is extremely weak then I[Y; X1|X2] can have
its maximum value, I[Y; X1] can be maximised and I[Y; X2|X1] is close to zero. This shows that
the RF input is sufficient, thus allowing the information in the RF to be transmitted, and that the
CF input is not necessary.

M2: I[Y; X2|X1] and I[Y; X1] are close to zero when the RF input is extremely weak no matter how
strong the CF input. This shows that the RF input is necessary for information to be transmitted,
and that the CF input is not sufficient to transmit the information in the RF input.

M3: When s1 < s2 and when the RF input is weak, I[Y; X1] and I[Y; X1|X2] are both larger when
the CF input is moderate than when the CF input is weak. Thus the CF input modulates the
transmission of information about the RF input.
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One might expect that these two definitions of contextual modulation are linked. In the limiting
situation of s1 → 0 it is possible to show that requirement 1 implies M1, and as s2 → 0 one finds that
requirement 2 implies M2. It seems difficult to prove more general connections and so this matter is
considered computationally in subsection 3.1.

Multivariate binary processors were also considered in [5], thus allowing for choice between many
more than two alternatives. It was also shown that the coherent infomax learning rule also applies to
this multivariate case such that the contextually guided learning discovers variables defined on the RF
input space that are statistically related to variables specified in, or discovered by, other streams of
processing within the network. Thus it implements a multi-stream, non-linear, form of latent structure
analysis. There are two distinct aspects of semantics in this system, i.e., the receptive field selectivity of
each unit within a local processor and the positivity or negativity of its output. Here we are primarily
concerned with that latter aspect. We show below that:

(i) the modulatory input affects output only when the primary driving integrated RF input is
non-zero but weak;

(ii) that even when it does have an effect it has no effect on the sign of the conditional mean
output, and

(iii) that it can have those modulatory effects without the binary output transmitting any unique
information about the modulator.

In the case where the processor has a binary output, the transfer function has the form

T(x1, x2) = r [k1 + (1− k1) exp (k2rc)] , (k2 > 0, 0 < k1 < 1),

where r = s1x1, c = s2x2, k1 and k2 are constants, and here we take k1 = 1
2 and k2 = 1.

This transfer function was designed to effect a modulatory interaction between two input sources,
with one source being the primary driver while the role of the the second “contextual” source is to
modulate transmission of information about the primary source. The effect of the contextual source
is to amplify or disamplify the strength of the signal from the primary source in such a way that
the semantic content (the sign) of the primary source is not changed. Neither of the PID and EID
considered in this paper has previously been applied to this kind of signal and we now show this to
be possible.

In this paper, the version of the modulatory transfer function we use takes the form

TM(x1, x2) =
1
2 r [1 + exp (rc)] = 1

2 s1x1 [1 + exp (s1x1 × s2x2)] , (10)

for given values x1, x2 of the random variables X1, X2, and given signal strengths s1, s2. Here the
integrated RF input is r = s1x1 and the integrated CF input is c = s2x2, and they both have a sign and
a strength. The output conditional probability is given by

θ = Pr(Y = 1|X1 = x1, X2 = x2) = 1/[1 + exp (−TM(x1, x2))]. (11)

Whether this probability is greater than or less than 1
2 is determined solely by the value of x1(±1),

and the form of TM ensures that the contextual signal cannot change the sign of the output conditional
mean. Thus the output produced has semantic content, and also the value of the output conditional
probability, θ, gives the semantic content a measure of strength in the sense that values of θ closer to 0
or 1 indicate a more definite decision. The conditional variance of Y is 4θ(1− θ), and so uncertainty
in the output decision is largest when θ = 1/2 and zero when θ = 0 or 1. An alternative description
is to say that the precision (reciprocal variance) is least when θ = 1/2 and it tends to infinity as θ

approaches 0 or 1. Within the local processor the conditional mean of the output, m = 2θ − 1, is also
computed. It has both a sign and a strength.
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Given the form of TM, the integrated RF will be amplified in magnitude whenever the signs of x1

and x2 agree, and it will be disamplified when these signs do not agree. The role of the integrated CF
is to modify the strength of the conditional mean output without conveying its own semantic content
(i.e., its sign). This form of transfer function ensures that the maximum extent of any disamplification
of the primary signal is by a factor of 2.

By way of contrast, we also consider an additive transfer function by simply adding together the
integrated RF and CF inputs, r, c, to give

TA(x1, x2) = r + c = s1x1 + s2x2, (12)

with the output conditional probability given by

Pr(Y = 1|X1 = x1, X2 = x2) = 1/[1 + exp (−TA(x1, x2))]. (13)

The use of this transfer function also affects the values of θ and m but, unlike the modulatory
transfer function, this additive transfer function can change the sign of the output conditional mean
m, which is not consistent with the fourth condition for a modulatory transfer function described
above. The additive transfer function does satisfy condition M1 but does not satisfy condition M2 or
M3. This additive transfer function can be seen as a simple version of the common assumption within
neurobiology that neurons function as integrate-and-fire point processors. While this assumption does
not imply that all integration is linear it does mean that such integration computes a single value per
local processor. The results produced using the these two different transfer functions will be discussed
in Sections 5–8.

Please note that in the sequel we normally abbreviate the terms “integrated RF input” and
“integrated CF input” by using just “RF input” and “CF input”, respectively. In particular, whenever a
strength is implied for the RF or CF input, then we mean that the ‘integrated’ values of these inputs
are being considered.

3.1. Analysis Using Classical Shannon Measures

We start in this section by presenting results involving the classical Shannon measures for the
system defined in Sections 2 and 3. First we recall that λ and µ are defined in (2) and (3) and set up
some further simplifying notation which is used in the results. We set

u = Pr(Y = 1|X1 = 1, X2 = 1), and v = Pr(Y = 1|X1 = 1, X2 = −1). (14)

The parameters u and v are function of s1 and s2, and u takes the value uM or uA depending on
which transfer function is being used; similarly for v. From (10) for transfer function TM

uM = 1/(1 + exp (− 1
2 s1(1 + exp (s1s2))), and vM = 1/(1 + exp (− 1

2 s1(1 + exp (−s1s2))), (15)

whereas, from (12), for transfer function TA

uA = 1/(1 + exp (−(s1 + s2)), and vA = 1/(1 + exp (−(s1 − s2)). (16)

Finally, we define

z = 2λu + 2µv, w = 2λu + 2µ(1− v) and h(v) = −v log(v)− (1− v) log(1− v), (17)

where 0 < v < 1. We note also that the value of z has two forms: zM when transfer function TM is used
and zA when transfer function TA is employed; similarly for w. We now collect together our results in
the following theorem, proof of which is relegated to the appendix.
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Theorem 1. It is assumed that s1 > 0, s2 > 0. For the probability distribution defined in (1)–(4), the following
results hold.

(a) I[Y; X1|X2] = h(w)− 2λh(u)− 2µh(v);
(b) I[Y; X2|X1] = h(z)− 2λh(u)− 2µh(v);
(c) I[Y; X1] = 1− h(z);
(d) I[Y; X2] = 1− h(w);
(e) I[Y; X1; X2] = 1− h(z)− h(w) + 2λh(u) + 2µh(v);
(f) I[Y; (X1, X2)] = 1− 2λh(u)− 2µh(v),

where from (15) and (16), u = uM, v = vM when the transfer function TM is employed and u = uA, v = vA
when the transfer function TA is used.

Since we are particularly interested in interactions among the three variables, Y, X1, X2, we now
show the classic Shannon information measures defined in (6)–(9), with surface plots given in Figures 2
and 3. A correlation between the inputs of 0.78 was considered to ensure that these measures have
the same maximum possible value of 0.5 bits, and a zero correlation was considered to represent the
case of independent inputs. One purpose is to discuss the general links between requirements 1–4 and
conditions M1–M3 from Section 3 and also the use of the transfer functions defined in (10) and (12).

First, we notice in Figure 2 that the modulatory and additive transfer functions produce very
different surfaces. In Figure 2a,b, the surface for TM rises more quickly to its maximum than the surface
for TA, and in Figure 2a sections parallel to the s1 axis are similar for s2 ≥ 2, whereas the surface for
TA is symmetric about the line s1 = s2. Figures 2d,f,h,j and 3d,f,h,j for TA show clear asymmetry about
the line s1 = s2.

When the strength of the CF input, s2, is very small we notice in Figures 2e and 3e that I[Y; X2|X1]

is close to zero. Figure 2c shows that I[Y; X1|X2] rises quickly, then gradually, towards its maximum at
0.5 as the strength of the RF input, s1, increases, as does the surface in Figure 3c although there the
maximum value is higher at 1. Figures 2g and 3g show that I[Y; X1] rises towards a maximum value
of 1; this rise is much steeper when the correlation is 0.78 than when it is zero. These observations
provide support for condition M1 when the modulatory transfer function is used. Similar observations
on the corresponding figures based on the use of the additive transfer function show that condition
M1 is satisfied in this case also.

Figures 2e,g and 3e,g show, when s1 is close to zero, that I[Y; X2|X1] and I[Y; X1] are both close
to zero, thus supporting condition M2 when the modulatory transfer function is used. This is not
the case when the additive transfer function is employed, as can be seen from Figures 2f,h and 3f,h.
It is important to note that these figures do not all use the same scales for the heights of the surface.
For example, the scales of Figures 2e and 3e are expanded because I[Y; X2|X1] is always small when
the transfer function is modulatory.

Also, when the strength of the RF input is weak (say s1 = 1), we notice in Figures 2c,g and
3c,g that both I[Y; X1] and I[Y; X1|X2] are larger for moderate CF strengths (say s2 = 5) than when
the the strength of the CF input is extremely weak (s2 = 0.05, say), with this effect being stronger
when the correlation between inputs is 0.78. This provides support for condition M3 when the
modulatory transfer function is used. Inspection of the corresponding plots based on the additive
transfer function show this effect only for I[Y; X1] in Figure 2h, and so condition M3 does not hold for
the additive function.
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(a) Modulatory, I[Y; X1; X2] (b) Additive, I[Y; X1; X2]

(c) Modulatory, I[Y; X1|X2] (d) Additive, I[Y; X1|X2]

(e) Modulatory, I[Y; X2|X1] (f) Additive, I[Y; X2|X1]

(g) Modulatory, I[Y; X1] (h) Additive, I[Y; X1]

(i) Modulatory, I[Y; X2]
(j) Additive, I[Y; X2]

Figure 2. Classical Shannon measures (in bits), based on additive and modulatory transfer functions,
and a correlation between inputs of 0.78.
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In Figure 3a,b, the surfaces of the co-information I[Y; X1; X2] are negative, as expected from (8),
since the correlation between X1 and X2 is zero and so their mutual information is zero.

Finally we focus discussion on the phenomenon of particular relevance to the subject of this paper
by considering the surface plots of I(Y; X2|X1). In Figure 2e, an interesting pattern emerges. There is a
steep rise for small values of s1 and for all values of s2 ≥ 2, and then the surface quickly dies away.
This pattern is repeated in Figure 3e. This suggests that X2 is affecting the information shared between
Y and X1, indicating that modulation of some form might be taking place.

It could be argued, however, that X2 is part of the output semantics in the sense that the output
contains information specifically about X2 itself. Since I[Y; X2|X1] is clearly positive for these values
of s1, s2, it is impossible to know whether or not this is the case based on this classical Shannon
measure. It was shown in [8], that I[Y; X2|X1] could be decomposed into two terms: the unique
information that X2 conveys about Y as well as synergistic information that is not available from X2

alone, but rather gives the information that X1 and X2, acting jointly, have about the output Y. We now
apply information decompositions in order to resolve these different interpretations. For discussion of
some limitations of classical Shannon measures and the need for new measures of information, see [20]

(a) Modulatory, I[Y; X1; X2] (b) Additive, I[Y; X1; X2]

(c) Modulatory, I[Y; X1|X2] (d) Additive, I[Y; X1|X2]

(e) Modulatory, I[Y; X2|X1] (f) Additive, I[Y; X2|X1]

Figure 3. Cont.
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(g) Modulatory, I[Y; X1] (h) Additive, I[Y; X1]

(i) Modulatory, I[Y; X2]
(j) Additive, I[Y; X2]

Figure 3. Classical Shannon measures (in bits), based on additive and modulatory transfer functions,
and a zero correlation between inputs.

4. Information Decompositions

Williams and Beer [8] introduce a framework called the Partial Information Decomposition (PID)
which decomposes mutual information between a target and a set of multiple predictor variables into
a series of terms reflecting information which is shared, unique or synergistically available within and
between subsets of predictors. Here we focus on the case of two input predictor variables, denoted
X1, X2, and an output target Y. The information decomposition can be expressed as

I[Y; (X1, X2)] = Iunq[Y; X1|X2] + Iunq[Y; X2|X1] + IshdS+M[Y; (X1, X2)] + Isyn[Y; (X1, X2)]

and it is the basis of both the information decompositions described in Sections 4.1 and 4.2. Adapting
the notation of [21] we express our joint input mutual information in four terms as follows:

UnqX1 ≡ Iunq[Y; X1|X2] denotes the unique information that X1 conveys about Y;

UnqX2 ≡ Iunq[Y; X2|X1] is the unique information that X2 conveys about Y;

SharS+M ≡ IshdS+M[Y; (X1, X2)] gives the common (or redundant or shared) information that both
X1 and X2 have about Y;

Syn ≡ Isyn[Y; (X1, X2)] is the synergy or information that the joint variable (X1, X2) has
about Y that cannot be obtained by observing X1 and X2 separately.

It is possible to make deductions about a PID by using the following four equations which give a
link between the components of a PID and certain classical Shannon measures of mutual information.
The following are from Equations (4) and (5) in [21], with amended notation; see also [8].

I[Y; X1] = UnqX1 + SharS+M, (18)

I[Y; X2] = UnqX2 + SharS+M, (19)

I[Y; X1|X2] = UnqX1 + Syn, (20)

I[Y; X2|X1] = UnqX2 + Syn. (21)
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We will refer to these results in Section 5 and use them in Section 6.
We consider here two different information decompositions. Although there are clear conceptual

differences between the two, where they agree we can have some confidence we are accurately
decomposing information as we would like. Where they disagree, we hope this may shed light
on particular properties of the modulatory systems we study here, and also provide interesting
comparisons of the two approaches.

It has been noted [22] that there are two different ways shared information can emerge. Source
shared information refers to shared information that arises simply because the two inputs are correlated.
For example, if Y = X1 but X1 and X2 are correlated then there will be some I(Y; X2) and some
redundancy IshdS+M[Y; (X1X2)], even though X2 plays no role in the computation implemented by
the local processor. However, redundancy can also occur in systems where the inputs are statistically
independent—in this case, it is referred to as mechanistic shared information, since it arises as a
property of the function of the local processor. We denote IshdS+M as the standard PID measure of
shared information which quantifies both of these types together. However, both decompositions we
consider provide a way to separately quantify these two types of shared information, which we denote
by IshdS and IshdM for source and mechanistic respectively.

4.1. The Ibroja PID

In the Ibroja PID [9,10], the shared information component is based on an assumption that the
information shared between two predictors about a target should not be affected by the marginal
distribution of the two inputs (X1, X2) when the output is ignored. Instead, the shared information is
a function only of the individual input-output marginal distributions of (Y, X1) and (Y, X2). In other
words, the information about the output which is shared between the two inputs is independent of
the correlation between the two inputs. In [9], this is motivated with an operational definition of
unique information based on decision theory. It is claimed that unique information in input X1 should
correspond to the existence of a decision problem where two agents must try to guess the value of the
output Y in which an agent acting optimally on evidence from X1 can do systematically better (higher
expected utility) than an agent acting optimally based on evidence from X2; see also Appendix B2 in [21].

Following notation in [9], we consider a given joint distribution p for (Y, X1, X2), we let ∆ be the
set of all joint distributions of Y, X1 and X2, and define

∆p = {q ∈ ∆ : q(y, x1) = p(y, x1) and q(y, x2) = p(y, x2), for all (y, x1, x2) ∈ B3} (22)

as the set of all joint distributions which have the same (Y, X1) and (Y, X2) marginal distributions as p.
In Lemma 4 in [9] five equivalent optimisation problems are defined involving various information

components. In this work we chose to minimise the total mutual information I[Y; (X1, X2)] in order to
find the optimal distribution q, denoted by q̂. For the description of EID in Section 4.2, we note that
this is equivalent to finding the distribution in ∆p which maximizes the co-information I[Y; X1; X2].
This optimal distribution q̂ is then used to calculate the four partial information measures:

UnqX1 = Iq̂[Y; X1|X2], (23)

UnqX2 = Iq̂[Y; X2|X1], (24)

SharS+M = Iq̂[Y; X1; X2], (25)

Syn = Ip[Y; (X1, X2)]− Iq̂[Y; (X1, X2)], (26)

and the information quantities, except Ip[Y; (X1, X2)], are calculated with respect to the optimal
distribution q̂.



Entropy 2017, 11, 560 13 of 40

Using equations (7) & (8) from [23], the shared information can be split into non-negative source
and mechanistic components that are defined as follows (in amended notation).

IshdS[Y; (X1, X2)] = max{min(IshdS+M[Y; (X1, X2)], IshdS+M[X1; (X2, Y)]),

min(IshdS+M[Y; (X1, X2)], IshdS+M[X2; (X1, Y)])}
IshdM[Y; (X1, X2)] = IshdS+M[Y; (X1, X2)]− IshdS[Y; (X1, X2)]

A particular advantage of the Ibroja approach is that it results in a decomposition consisting of
non-negative terms. A possibly counter-intuitive feature is that in our two input, one output local
processor context, one might expect that IshdS+M[Y; (X1, X2)] should change depending on the marginal
distribution of the inputs, (X1, X2), in that source shared information should increase as the correlation
between the inputs increases (assuming the individual input-output marginals are fixed). In the
systems defined in Section 2, however, the marginal distributions of (Y, X1) and (Y, X2) do depend on
the correlation between the inputs, and so the Ibroja PID does change as this correlation changes.

4.2. The EID Using Iccs

An alternative measure of shared information was recently proposed in [12]. Since at a local
or pointwise level [24–28] (i.e., the terms inside the expectation), information is equal to change in
surprisal, Iccs seeks to measure shared information as the change in surprisal that is common to the
input variables (hence CCS, Common Change in Surprisal). For two inputs, Iccs is defined as:

Iccs[Y; (X1, X2)] = ∑
y,x1,x2

p(y, x1, x2)hcom
y (x1, x2)

hcom
y (x1, x2) =

{
iq̃(y; x1; x2) if sgn iq̃(y; x1; x2) = sgn iq̃(y; x1) = sgn iq̃(y; x2) = sgn iq̃(y; x1, x2)

0 otherwise

iq̃(y; x1; x2) = iq̃(y; x1) + iq̃(y; x2)− iq̃(y; x1, x2)

q̃ = arg max
q∈∆2

p

∑
y,x1,x2

−q(y, x1, x2) log q(y, x1, x2)

∆2
p =

{
q ∈ ∆ :

q(y, x1) = p(y, x1), q(y, x2) = p(y, x2)

q(x1, x2) = p(x1, x2), for all (y, x1, x2) ∈ B3

}

where lower case symbols indicate the local or pointwise values of the corresponding information
measures, i.e., Iq̃(Y; X1) = ∑y,x1

p(y, x1)iq̃(y, x1). The sign conditions ensure that only terms
corresponding to genuine shared information are included; terms not meeting the sign equivalence
represent either synergistic or ambiguous effects [12].

This approach has two fundamental conceptual differences from the Ibroja PID. The first is that
in [12] a game theoretic operational definition of unique information is introduced. This is very
similar to the decision theoretic argument in [9] but extends the considered situations to include games
where the utility function is asymmetric or the game is zero-sum. Both of these extensions induce a
dependency on the marginal distribution of (X1, X2). A specific example system is provided in [12] as
well as a specific game which demonstrates unique information even when there is none available
from the decision theoretic perspective.

The second conceptual difference is the way in which shared information is actually measured,
within the constraints imposed by the respective operational definitions. In the Ibroja PID, shared
information is measured as the maximum co-information over the optimization space ∆p. Iccs also
relies on co-information, but breaks down the pointwise contributions and includes only those terms
that unambiguously correspond to redundant information between the inputs about the output. This
is important because co-information conflates redundant and synergistic effects [8,12] so cannot itself
be expected to fully separate them. Iccs is calculated using the distribution with maximum entropy
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subject to the game theoretic operational constraints (equality of all pairwise marginals). However,
note that maximizing co-information subject to the extended game theoretic constraints is equivalent
to maximizing entropy.

A decomposition of mutual information can be obtained using Iccs following the partial
information decomposition framework [8].

UnqX1 = I[Y; X1]− Iccs[Y; (X1, X2)],

UnqX2 = I[Y; X2]− Iccs[Y; (X1, X2)],

SharS+M = Iccs[Y; (X1, X2)],

Syn = I[Y; (X1, X2)]− I[Y; X1]− I[Y; X2] + Iccs[Y; (X1, X2)],

The inclusion of p(x1, x2) in the constraints for q̃ means that the measured shared and unique
information is not invariant to the predictor-predictor marginal dependence. With Iccs this affects
the decomposition in an intuitive way: negative or no correlation between predictors results in more
unique information, while when correlation between the predictors increases, shared information
increases (driven by increased source shared information) and unique information decreases; see
Figure 7 in [12]. However, the PID computed with Iccs is not non-negative. In particular, the unique
information terms can take negative values, which can be challenging to interpret.

In [13], it was recently suggested that the PID formalism could be applied to decompose
multivariate entropy directly. The concepts of redundancy and synergy can apply just as naturally
to entropy, resulting in a Partial Entropy Decomposition (PED) which can separate a bivariate
entropy into four terms representing shared uncertainty, unique uncertainty in each variable, and
synergistic uncertainty which arises only from the system as a whole. This approach shows that mutual
information is actually the difference between redundant and synergistic entropy:

I[Y; X] = Hshd[(Y, X)]− Hsyn[(Y, X)]

and this relationship holds for any measure of shared entropy which satisfies the PED axioms.
This shows that mutual information does not only quantify common, shared or overlapping entropy,
but is also affected by synergistic effects between the variables. At the global level since joint entropy is
maximised when the two variables are independent (alternatively mutual information is non-negative),
this implies that Hshd[(Y, X)] ≥ Hsyn[(Y, X)]. Mutual information is the expectation over local
information terms that can themselves be positive, representing an decrease in the surprisal of event
y when event x is observed, or negative, representing an increase in the surprisal of y when x is
observed. Negative local information terms, which have been called “misinformation” [26], arise for
symbols where h(x, y) > h(x) + h(y); that is, those symbols provide a synergistic contribution to the
joint entropy expectation sum. The existence of such locally synergistic entropy terms suggest that
synergistic entropy is a reasonable thing to quantify within the PED framework. A shared entropy
measure (Hcs) can be defined in a manner consistent with Iccs as [13]:

Hcs(Y, X1, X2) = ∑
y,x1,x2

q̃(y, x1, x2)hcs(y, x1, x2)

hcs(y, x1, x2) = max
[
−iq̃(y, x1, x2), 0

]
This entropy perspective can give some insight into the meaning of negative terms within the Iccs

PID. With Iccs, shared information is calculated as shared entropy with the target that is common to
both inputs (positive local co-information terms in Iccs) minus synergistic entropy with the target that
is common to both inputs (negative local co-information terms in Iccs). Negative unique information
terms can therefore arise when there is more unique synergistic entropy between a target and the
predictor than there is unique shared entropy between the target and the predictor. Unique synergistic
entropy means there is synergistic entropy between say X2 and Y which is not shared with X1. This can
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arise for example, whenever the calculation of I[Y; X2] includes negative local terms in the expectation
(for some values of y, x2), but I[Y; X1] does not. In such cases, these negative local contributions to
the mutual information must be unique; they do not appear in I[Y; X1] since that calculation has no
negative terms.

The PED of our three variables also provides a way to separate the Iccs shared information into
mechanistic and source shared terms. The source shared information can be obtained from the three
way partial entropy term, Hshd[(Y, X1, X2)]. This term represents the entropy that is common to
all three variables, therefore it is included in the calculation of both I[Y; X1] and I[Y; X2] and so is
shared information. However, it is possible that this quantity also includes some mechanistic shared
information. This can only happen if Hcs[(Y, X1, X2)] > Hcs[(X1, X2)]—i.e., the two inputs share more
entropy in the context of the full system then they do when ignoring (by marginalising away) the
output. This corresponds to a negative partial entropy term Hshd[(X1, X2)]. Therefore we calculate
source and mechanistic shared information, from Equation (32) in [13], as:

IshdS[Y; (X1, X2)] = min (Hcs[(Y, X1, X2)], Hcs[(X1, X2)]) ,

IshdM[Y; (X1, X2)] = Iccs[Y; (X1, X2)]− IshdS[Y; (X1, X2)]

The first expression quantifies the source shared entropy: it is the three-way shared entropy
with any mechanistic shared entropy removed. Since Iccs quantifies source and mechanistic
shared information together, we obtain the mechanistic shared information by subtracting off the
calculated source shared information. Source shared information defined in this way is always positive,
but mechanistic shared information can be negative. Negative mechanistic shared information can arise
when, for example, both I[Y; X1] and I[Y; X2] contain negative local information terms, and those
local information terms are common, reflected in a negative local co-information term. Alternatively,
there is synergistic entropy between Y and X1 that overlaps with synergistic entropy between Y and
X2. Synergistic entropy between the target and a predictor is by definition a mechanistic effect, since
it is uncertainty that does not arise in the predictor alone, but is only obtained when the output
(i.e., the mechanism) is considered. Please see [13] for further details. Since this approach relies on
terms from the partial entropy decomposition as well as the partial information decomposition using
Iccs, we refer to it here as an Entropic Information Decomposition (EID).

5. Information Decomposition (ID) Spectra

We now describe a simple visual display [29] in which all the transmitted mutual information
components appear, together with the residual output entropy. These displays are referred to as
“spectra” because different colours are used for different components. Here the spectra are shown as
stacked bar charts, which facilitates presentation of many spectra in a single figure. These spectra
convey a simple but important message when applied to the goal of distinguishing between modulatory
and additive interactions, whether in real or artificial neural systems. The important message is that
modulatory and additive forms of interaction can have similar or even identical effects under some
conditions, but very different effects under others. Such plots can also be used to compare the
information processing performed in a system under different parameter regimes. They can also be
used to compare the kinds of information processing performed by individual subjects or groups of
subjects when completing psychophysical tasks; see Section 8.

5.1. Definition and Illustrations

The first five components are the partial information measures considered in Section 4: unique
informations, shared source and mechanistic information and synergy. To this is added the residual
output entropy.
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The residual output entropy is H(Y)res = H(Y|X1, X2), which appears in the following
decomposition, from Equation (6) in [21],

H(Y) = Iunq[Y; X1|X2] + Iunq[Y; X2|X1] + IshdS+M[Y; (X1, X2)]+ Isyn[Y; (X1, X2)]+ H(Y|X1, X2) (27)

and here we also use the decomposition

IshdS+M[Y; (X1, X2)] = IshdS[Y; (X1, X2)] + IshdM[Y; (X1, X2)].

In our discussion, we consider four different spectra as an illustrative test set. First, we take
s1 = 10.0 and s2 = 0.05 to represent the situation where the RF input is strong and the CF input is
extremely weak. Secondly, in the case where s1 = 0.05, s2 = 10.0, the RF input is extremely weak
while the CF input is strong. Thirdly, when s1 = 1.0, s2 = 0.05 the RF input is weak and the CF
input is extremely weak. Finally, when s1 = 1.0, s2 = 5.0, the RF input is weak and the CF input is of
moderate strength.

5.2. Ibroja Spectra

It is useful to bear in mind when interpreting these spectra that the information components are
not independent quantities since they satisfy the constraints (18)–(21) and (27); so these non-negative
components are negatively correlated. Figure 4a,b show PID decompositions when the two inputs
have a correlation of either 0.78 or 0. In both cases modulatory and additive transfer functions lead to
very similar decompositions when the RF input is strong (charts M1 and A1), or of moderate strength
(charts M3 and A3), and the CF input is very weak, since there is little or no difference between
charts M1 and A1 and between M3 and A3. Thus, when context is absent or very weak the modulatory
transfer function becomes effectively equivalent to an additive function.

When the RF input is either very weak (charts M2 and A2) or less weak but with strong CF input
(charts M4 and A4), modulatory and additive transfer functions have very different effects. Consider
the case where the RF input is very weak and the CF is strong. The modulatory function transmits little
or no input information (chart M2), implying that RF input is necessary to information transmission.
In contrast, the additive transfer function in that case transmits information unique to the CF input
with shared information if the two inputs are correlated (chart A2). Cases where RF input is present
but weak show the modulatory effect of the CF input. Consider transmission in the case of weak RF
input with extremely weak CF input (charts M3 and A3). The output residuals are then high, showing
that little information is transmitted. What is transmitted is a combination of shared information and
information unique to the RF input. If the RF input is weak but the CF input is strong, however, then
the modulatory function transmits more unique information about the RF than when the CF input is
weak, together with some synergy, some mechanistic shared, and some source shared if the inputs
are correlated (chart M4). In contrast, the additive transfer function transmits no information unique
to the RF but only information unique to the CF and shared information if the inputs are correlated
(chart A4).
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(a) PID spectra, correlation of 0.78

M1 A1 M2 A2 M3 A3 M4 A4
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(b) PID spectra, correlation of zero

(c) EID spectra, correlation of 0.78 (d) EID spectra, correlation of zero

Figure 4. Partial information decomposition (PID) and entropic information decomposition (EID)
spectra (in bits), based on additive (A) and modulatory (M) transfer functions for four combinations
of signal strengths: 1. (s1 = 10.0, s2 = 0.05), 2. (s1 = 0.05, s2 = 10.0), 3. (s1 = 1.0, s2 = 0.05),
4. (s1 = 1.0, s2 = 5.0), and two values of the correlation between inputs: 0.78 and zero.

5.3. EID Spectra

The EID spectra can have negative partial information measures, and so when interpreting them
it is useful to bear in mind the constraints (18)–(21). Therefore, for example, if the UnqX1 component
is negative then, since the classical Shannon measures are fixed, it would follow from (18) and (20)
that the components SharS+M and Syn would be larger than if the UnqX1 component were equal to
zero; of course the component SharS+M is split further into Source and Mechanistic terms, as discussed
in Section 4. In particular, if it were the case that I[Y; X1|X2] were equal to zero then the synergy
component would be positive and equal in magnitude to the UnqX1 component. Therefore, when a
negative component is present this is likely to make the relative magnitudes of the partial information
components appear different than in the corresponding Ibroja spectra, even though the same essential
message might be being expressed.

Consider Figure 4c. We note that the use of the modulatory and the additive transfer functions
leads to very similar spectra in charts M1 and A1, and M3 andA3. In charts M1 and A1, we see that
when the RF input is strong the residual output is zero and the information is transmitted mainly via
the source-shared component, but with some synergy and some unique information about the RF,
as well as some unique misinformation from the CF. Charts M2 and A2 reveal a marked difference
in the spectra due to the transfer functions. When the modulatory transfer function is employed
and the RF input is extremely weak then almost no information is transmitted. In contrast, the use
of the additive transfer function leads to all the information being transmitted, mostly in the form
of source shared information, with some synergy, some unique information about the CF and some
misinformation from the RF. In charts M3 and A3, the output residual is very high and so very little
information is transmitted when the RF input is weak and the CF input is extremely weak, and what is
transmitted is a combination of positive source shared information and negative mechanistic shared
information. Chart M4, where the CF input is moderate but the RF input is weak, indicates that more
information about the RF is transmitted than was the case in chart M3, since the output residual is
smaller. This information is transmitted mainly via source shared information and synergy, with some
unique misinformation from the CF.
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We now briefly consider Figure 4d. Charts M1 and A1 show that all the information is transmitted
in a form unique to the RF. We see a striking difference between charts M2 and A2, with no information
being transmitted in M1 and all the information unique to the CF being transmitted in A2. Charts M3
and A3 appear to be identical, with some information unique to the RF being transmitted and a high
output residual. Chart M4 shows that about one-half of the information is transmitted, mainly due to
that unique to the RF and synergy but also with some mechanistic shared and a little unique to the CF.
Much more information is transmitted in A4, predominantly in a form unique to the CF. A pleasing
feature of Figure 4d is that the source shared information component is zero in all the charts, while the
mechanistic shared component in chart M4 is positive; this is exactly what would be expected when
the inputs are uncorrelated, and here there are no negative mechanistic shared components unlike in
Figure 4c where the inputs are strongly correlated

5.4. Contextual Modulation and Information Decompositions

In Section 3, the conditions M1–M3 express the notion of contextual modulation. Here, we
translate these conditions using (18)–(21) into corresponding expressions of contextual modulation for
ID measures, denoted by S1–S3 for non-negative decompositions, with amended conditions S1’–S2’ for
the EID when it has negative components.

S1: If the RF signal is strong enough, and the CF input is extremely weak, then both UnqX2 and
Syn are close to zero, UnqX1 can have its maximum value, and the sum of UnqX1 and SharS+M

can equal the total output entropy. This shows that the RF input is sufficient, thus allowing the
information in the RF to be transmitted, and that the CF input is not necessary.

S2: All five partial information components are close to zero when the RF input is extremely weak no
matter how strong the CF input. This shows that the RF input is necessary for information to be
transmitted, and that the CF input is not sufficient to transmit the information in the RF input.

S3: When s1 < s2 and when the RF input is weak, then the sum of UnqX1 and Syn is larger when the
CF input is moderate than it is when the CF input is weak. The same is true of the sum of UnqX1
and SharS+M. Thus the CF input modulates the transmission of information about the RF input.

The following conditions provide amendments to S1-S2 when the EID has negative components:

S1’: When UnqX2 < 0, UnqX2 and Syn are approximately of the same magnitude, the sum of UnqX1
and Syn can have its maximum value, and the sum of UnqX1 and SharS+M can equal the total
output entropy.

S2’: If at least one component is negative, then we can set the left-hand sides of (18)–(21) to zero and
use the rule that the sum of the magnitudes of the negative components is approximately equal to
the sum of the magnitudes of the positive components. If in any of (18)–(21) there is no negative
term then all terms on the right-hand side are close to zero.

We now discuss the spectra in relation to the these conditions. First we discuss the PID charts in
Figure 4a. In charts M1 and A1, we see that Syn and UnqX2 are apparently equal to zero and that
the sum of UnqX1 and SharS+M is equal to 1, the value of the total output entropy; UnqX1 is equal to
0.5 which is presumably the maximum value it can take. Therefore Condition S1 is satisfied for the
modulatory and the additive transfer function. For charts M2 and A2, we see in M2 that all five of the
components are apparently zero, and hence condition S2 holds for the modulatory transfer function,
but this is not the case with the additive transfer function in A2 since the values of UnqX2 and SharS

are appreciable. Inspection of charts M3 and M4 shows that the sum of Syn and UnqX1 and the sum of
UnqX1 and SharS+M are larger in M4 than in M3, thus supporting condition S3. In charts A3 and A4
we see the same for the sum of UnqX1 and SharS+M, but the opposite for the sum of Syn and UnqX1,
and so S3 is not fully supported in the additive case.

We now consider the EID charts in Figure 4c. In charts M1 and A1, UnqX2 is negative and
UnqX2 and Syn have approximately the same magnitude. Therefore, the sum of UnqX1 and SharS+M
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is equal to 1, the value of the total output entropy. Also, UnqX1 is just larger than 0.2, presumably
the largest value it can take. Therefore, the conditions of S1’ are satisfied in both the modulatory
and additive cases. For charts M2 and A2, we see in M2 that the residual output entropy is almost
equal to 1, that UnqX1, UnqX2 and Syn are apparently zero and that the little negative mechanistic
shared information is counterbalanced by a similar amount of positive source shared information, thus
supporting condition S2’, since all the right-hand sides in (18)–(21) are close to zero. This condition
is, however, not supported in the additive case since the values of UnqX2, SharS, Syn and UnqX1
(negative) are all appreciable. Considering charts M3 and M4, we notice that the sum of Syn and
UnqX1 and also the sum of UnqX1 and SharS+M are larger in M4 than in M3, thus supporting condition
S3. In charts A3 and A4 we see the same for the sum of UnqX1 and SharS+M, but the opposite for
the sum of Syn and UnqX1, and so S3 is not fully supported in the additive case. Hence, when the
correlation between inputs is strong, we find that the conclusions for both PID and EID are the same
with regard to the use of modulatory and additive transfer functions.

In Figure 4b,d, the respective PID and EID spectra are virtually identical, and so the same
conclusions will hold for both decompositions. In charts M1 and A1, UnqX2 and Syn are apparently
zero, the sum of UnqX1 and SharS+M is equal to the total output entropy and this time UnqX1 is fully
maximized. Therefore condition S1 is supported in both charts. In chart M2 the residual output entropy
is close to 1 and so all five information components are close to zero, thus supporting condition S2.
We notice that the sum of Syn and UnqX1 and also the sum of UnqX1 and SharS+M are larger in M4
than in M3, thus supporting condition S3. In charts A3 and A4 we see that both these sums are smaller
in A4 than in A3, and so S3 is not supported in the additive case.

5.5. Comparison of PID and EID

Close comparison of the EID and PID spectra sheds light on both the information processing
properties of the form of modulation considered here, and on relations between PID and EID. Most
importantly for the purposes of this paper both PID and EID show the distinctive properties of the
modulatory interaction, in which the modulatory transfer function is employed. First, no information
dependent on the inputs is transmitted when the RF input is very weak whatever the value of the
CF input. This shows that the RF input is necessary for this transfer function to transmit information
about the input and that the CF input is not sufficient. Second, information is transmitted about the
RF input for all states of the CF input including those in which it is absent or very weak. This shows
that the RF input is sufficient for this transfer function to transmit information about the input and
that the CF input is not necessary. Third, when the RF input is strong no information dependent on
the CF input is transmitted by the output, but when the RF input is present but weak then the output
transmits less information dependent on the the RF input when context is very weak.

This shows the modulatory effect of the CF input. Fourth, modulatory interactions produce
the same components as additive interactions when the CF input is very weak, but very different
components when the CF input is stronger and the RF input is present but weak. This shows conditions
that distinguish these two forms of interaction. In general, the two inputs have equivalent opportunities
to effect the output for additive interactions, whereas the effects of the CF input are conditional upon
the RF input for the modulatory interaction. Fifth, when the two inputs are uncorrelated there is little
difference between the EID and PID decompositions other than the splitting of shared into source and
mechanistic by EID.

The spectra displayed may also shed some light on the negative components of EID, which still
await a clear and widely accepted interpretation. First, negative components are zero or tiny when
the two inputs are uncorrelated. Second, synergy and source shared were never negative in the
conditions studied. Third, negative unique components seem to be compensated for by positive
synergistic components. Fourth, source shared is never negative and positive only when the two
inputs are correlated. Whether these observations will aid interpretation of the negative components
remains to be seen.
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The spectra shown here are all for specific values of the two input strengths, so to see whether
the observations listed in the two preceding paragraphs hold for other values of those strengths the
following section presents surfaces showing each of the output components that depend on input as a
function of the two input strengths.

6. Analysis of the Transfer Functions Using the Ibroja PID over a Wide Range of Input Strengths

The five Ibroja surfaces were constructed as a function of the RF and CF signal strengths, s1 and s2.
In Figure 5, we notice the striking differences in the surfaces for each measure between the use of the
modulatory and the additive transfer function. In Figure 5b,d, there is a clear asymmetry that mimics
that shown in Figure 2d,f.

We notice, in particular, that it appears that UnqX1 is zero when s2 > s1 while UnqX2 is zero for
s1 > s2. In Figure 5a, UnqX1 rises towards its maximum as s1 increases, and the rise is similar for
s2 > 2. For s1 > 2 the shape of this plot matches that in Figure 2c. In Figure 5c, we note that UnqX2

appears to be zero for all values of s1 and s2. In Figure 5f,h,j plots of SharS, SharM and Synergy are
symmetric about the line s1 = s2 when based on the additive transfer function, and the maximum
values of SharM and Synergy happen along the line s1 = s2, while SharS flattens quite quickly onto a
plateau for most values of s1 and s2. On the other hand, there is no symmetry in Figure 5e,g,i, where
the surfaces of SharM and Synergy rise and fall as s1 increases and the pattern is similar for s2 > 2,
while the SharS surface rises quickly onto a plateau. The plot of synergy in Figure 5g appears to match
exactly the plot of I[Y; X2|X1] in Figure 2e, as expected, since it appears from Figure 5c that UnqX2 = 0.

In Figure 6, the surfaces for UnqX1 and UnqX2 are similar to the corresponding plots in Figure 5.
In particular, we note that again it appears from Figure 6c that UnqX2 = 0. Again, Figure 6g appears
to match the corresponding plot of I[Y; X2|X1] in Figure 2e. In Figure 6e,f, the SharS surface is zero for
all values of s1 and s2; this is expected since the source shared information should be zero when the
inputs are uncorrelated. By inspecting the surfaces in Figures 5e,f and 6e,f, we notice (as expected)
that the source shared information is much larger when the inputs are strongly correlated than when
they are uncorrelated. The plots of mechanistic shared information in Figures 5g,h and 6g,h indicate
that the presence of strong correlation does not have much effect. In Figure 6h, j, symmetry is again
apparent, with the maximum values occurring along the line s1 = s2.

Of special interest is the finding that UnqX2 appears to be zero. This suggests that X2 can modify
the transmission of information from the receptive field input X1 to the output Y without transmitting
any unique information about itself. This conclusion would be much stronger if it were possible to
prove mathematically that UnqX2 = 0, given the system defined in Sections 2 and 3. We now state
some formal results which indicate that this is indeed the case. We also define a class of transfer
functions, that includes our modulatory transfer function TM, for which UnqX2 = 0.

We saw also in the surfaces of UnqX1 and UnqX2, produced by the additive transfer function,
that UnqX2 appears to be zero when s1 > s2, and also that UnqX1 appears to be zero when s1 < s2.
We also state some mathematical results to confirm these impressions, as well as proving that when
s1 = s2 both uniques are zero. Then, using (18)–(21), the exact Ibroja decomposition is derived. Proofs
are given in the appendix. We now state the results.
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(a) Modulatory, UnqX1 (b) Additive, UnqX1

(c) Modulatory, UnqX2 (d) Additive, UnqX2

(e) Modulatory, SharS (f) Additive, SharS

(g) Modulatory, SharM (h) Additive, SharM

(i) Modulatory, Synergy (j) Additive, Synergy

Figure 5. Ibroja surfaces, based on additive and modulatory transfer functions, and a correlation
between inputs of 0.78.



Entropy 2017, 11, 560 22 of 40

(a) Modulatory, UnqX1 (b) Additive, UnqX1

(c) Modulatory, UnqX2 (d) Additive, UnqX2

(e) Modulatory, SharS (f) Additive, SharS

(g) Modulatory, SharM
(h) Additive, SharM

(i) Modulatory, Synergy (j) Additive, Synergy

Figure 6. Ibroja surfaces, based on additive and modulatory transfer functions, and zero correlation
between inputs.

Let F be a function of two real variables, x, y, which has the property that

F(−x,−y) = −F(x, y) and F(−x, y) = −F(x,−y), for x > 0, y > 0. (28)
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We consider F(r, c) as a transfer function, for integrated RF input r and integrated CF input c, and,
as in Section 3, we pass the value of F through a logistic nonlinearity to obtain output conditional
probabilities of the form, with r = s1x1 and c = s2x2,

Pr(Y = 1|X1 = x1, X2 = x2) = 1/(1 + exp [−F(s1x1, s2, x2)]). (29)

We also assume that the joint p.m.f. for (X1, X2) has the form given in (1)–(3).

Theorem 2. For the trivariate probability distribution defined in (1)–(3), (29) and a transfer function as defined
in (28), suppose that g ≥ 1

2 and h ≥ 1
2 but g and h are not both equal to 1

2 , where g and h are defined by

g = Pr(Y = 1|X1 = 1, X2 = 1) and h = Pr(Y = 1|X1 = 1, X2 = −1). (30)

Suppose also that λ 6= 0, µ 6= 0, s1 > 0, s2 > 0. Then, for such a system, UnqX2 = 0 in the Ibroja PID.

The conclusion of Theorem 2 also holds when the conditions on g, h are: g ≤ 1
2 , h ≤ 1

2 but both
g, h are not equal to 1

2 . The conclusion also holds when g = 1
2 , h = 1

2 , although in this case all of the
information components are zero since the total mutual information I[Y; (X1, X2)] = 0, because Y is
independent from (X1, X2).

We now state the results for the two transfer functions used in this study.

Corollary 1. If the modulatory transfer function TM is used in the system described in Theorem 2, and under
the conditions stated there, then UnqX2 = 0 in the Ibroja PID.

Corollary 2. If the additive transfer function TA is used in the system described in Theorem 2, and under the
conditions stated there, then UnqX2 = 0 in the Ibroja PID when s1 ≥ s2.

It is shown by Theorem 2 that there is a general class of transfer functions which, when used in
the system described in Sections 2 and 3, and which satisfy the conditions of the Theorem 2, have the
property of not transmitting any unique information about the modulator. The modulatory transfer
function used in this work is a member of this class. The additive transfer function TA is also a member
of this class but it does not satisfy the conditions required in Theorem 2 for all values of s1 and s2.

We now present a result regarding UnqX1 and UnqX2 when the additive transfer function is used
in the system considered in Sections 2 and 3.

Theorem 3. For the trivariate probability distribution defined in Sections 2 and 3, with the additive transfer
function TA, suppose that λ 6= 0, µ 6= 0, s1 > 0, s2 > 0. Then, for such a system, UnqX1 = 0 in the Ibroja
PID when s1 ≤ s2. When s1 = s2 then both UnqX1 and UnqX2 are zero in the Ibroja PID.

Given the results of Theorems 2 and 3, and since the Ibroja PID is a non-negative decomposition,
we can now state the following exact results

Theorem 4. For the trivariate probability distribution defined in (1)–(4), suppose that λ 6= 0, µ 6= 0, s1 > 0,
s2 > 0. Then, with uM, vM, uA, vA defined in (15)–(16), we have

(a) When transfer function TM is employed then

(i) Syn = I(Y; X2|X1) = h(zM)− 2λh(uM)− 2µh(vM);

(ii) SharS+M = I(Y; X2) = 1− h(wM);

(iii) UnqX1 = I(Y; X1|X2)− I(Y; X2|X1) = h(wM)− h(zM), and UnqX2 = 0.



Entropy 2017, 11, 560 24 of 40

(b) When the transfer function TA is used and s1 = s2 then

(i) Syn = I(Y; X2|X1) = h(zA)− 2λh(uA)− 2µ;

(ii) SharS+M = I(Y; X1) = 1− h(zA);

(iii) UnqX1 = UnqX2 = 0;

(c) When the transfer function TA is used and s1 < s2 then

(i) Syn = I(Y; X1|X2) = h(wA)− 2λh(uA)− 2µh(vA);

(ii) SharS+M = I(Y; X1) = 1− h(zA);

(iii) UnqX2 = I(Y; X2|X1)− I(Y; X1|X2) = h(zA)− h(wA) and UnqX1 = 0.

(d) When the transfer function TA is used and s1 > s2 then

(i) Syn = I(Y; X2|X1) = h(zA)− 2λh(uA)− 2µh(vA);

(ii) SharS+M = I(Y; X2) = 1− h(wA);

(iii) UnqX1 = I(Y; X1|X2)− I(Y; X2|X1) = h(wA)− h(zA), and UnqX2 = 0.

For the trivariate binary system considered in Sections 2 and 3, these results show that the Ibroja
PID is a minimum mutual information PID, as was found in [30,31] for the trivariate Gaussian system.
Finally, we give the PID for any non-negative decomposition in the case where λ = 0 or µ = 0, so that
the correlation between inputs is −1 or +1, respectively.

Theorem 5. Consider the probability distribution defined in (1)–(4). When the correlation between the inputs,
X1, X2, is +1, we have that

(a) UnqX1 = UnqX2 = Syn =0, and SharS+M = 1− h(u).

when the correlation between the inputs, X1, X2, is −1, we have that

(b) UnqX1 = UnqX2 = Syn =0, and SharS+M = 1− h(v),

where, from (15)–(16), u = uM, v = vM when the transfer function TM is employed and u = uA, v = vA when
the transfer function TA is used.

7. Analysis of the Transfer Functions Using EID over a Wide Range of Input Strengths

As in the previous section, five EID surfaces were constructed as a function of the RF and CF
signal strengths, s1 and s2, in the definition of the trivariate binary system. Many of the properties
of the resulting surfaces are common with the Ibroja PID surfaces: the opposite asymmeteries of the
unique information terms for the additive system (Figures 7b,d and 8b,d), the symmetry in s1 and s2 of
the other terms for the additive transfer function, and the asymmetries for the modulatory transfer
function where the surfaces are relatively constant along the s2 axis. However, there are also some
differences, most noticeably the presence of negative terms.

Figure 7c shows that for the modulatory transfer function, the EID shows negative unique
information about X2.
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(a) Modulatory, UnqX1 (b) Additive, UnqX1

(c) Modulatory, UnqX2 (d) Additive, UnqX2

(e) Modulatory, SharS (f) Additive, SharS

(g) Modulatory, SharM (h) Additive, SharM

(i) Modulatory, Synergy (j) Additive, Synergy

Figure 7. EID surfaces, based on additive and modulatory transfer functions, and a correlation between
inputs of 0.78.
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(a) Modulatory, UnqX1 (b) Additive, UnqX1

(c) Modulatory, UnqX2 (d) Additive, UnqX2

(e) Modulatory, SharS (f) Additive, SharS

(g) Modulatory, SharM (h) Additive, SharM

(i) Modulatory, Synergy (j) Additive, Synergy

Figure 8. EID surfaces, based on additive and modulatory transfer functions, and a zero correlation
between inputs.

This is relatively constant irrespective of the strength of the CF signal, and increases in magnitude
with stronger RF signals. SharS+M is here split into separate source and mechanistic components.
The source shared information for the modulatory transfer function plateaus for s1, s2 > 2 (Figure 7e).
In this case, there is a very strong correlation between the two inputs, which is reflected in the shared
source information. The source shared information is fixed due to the high correlation between the
inputs, however, the univariate information in the CF decreases as a function of s1. Therefore the
unique X2 information is negative. Similarly, as I[Y; X2|X1] is UnqX2 plus synergy in (21), the negative
unique interacts with the plateau of positive synergy to result in the I[Y; X2|X1] surface (Figure 2e).



Entropy 2017, 11, 560 27 of 40

In Figure 7g, we note that the mechanistic shared component is negative for small values of s1,
while in Figure 7h it is negative for some small values of s1, s2. In contrast, Figure 8g,h show that the
mechanistic component is non-negative when the correlation between the inputs is zero.

In general, the univariate mutual information I[Y; X2] is a sum of positive and negative terms,
representing shared and synergistic entropy respectively between the two variables in the calculation.
Since mutual information is non-negative, the positive terms always outweigh the negative terms
in the mutual information expectation summation. However, if some of the positive terms in the
calculation of I[Y; X2] are shared, or overlapping, with corresponding positive local information terms
of I[Y; X1], those terms will contribute to the shared information term of the decomposition, and not
be counted in the unique information terms. If enough of the shared entropy between X2 and Y is
overlapping with that shared between X1 and Y, and the negative synergistic entropy terms in I[Y; X2]

are not shared with X1, then the unique synergistic entropy between Y and X2 can be larger than the
unique redundant entropy between Y and X2, resulting in a net negative UnqX2 information term.

To illustrate this consider a specific example, when s1 = s2 = 2, with correlation between
inputs of 0.78. We can consider the local contributions to the univariate mutual information I[Y; X1].
As I[Y; X1] is an expectation computed with a summation we can consider each local term in the
summation which we denote e(y, x1) = p(y, x1)i(y, x1) :

e(−1,−1) = e(1, 1) = 0.46

e(−1, 1) = e(1,−1) = −0.06

and similarly for I(Y; X2), the e(y, x2) are:

e(−1,−1) = e(1, 1) = 0.40

e(−1, 1) = e(1,−1) = −0.11

Note that here the strong similarity in the profile of the local information terms results from the
high correlation between the two inputs. Local co-information values when x1 = x2 = y = −1 and
when x1 = x2 = y = 1 show that the terms are largely, but not completely, overlapping (0.37 bits).
There are no other local contributions to the Iccs shared information measure.

Further consideration of these pointwise terms reveals that there are some positive and some
negative local unique contributions to the univariate information for both predictors. The shared local
information for the state (y, x1, x2) = (−1,−1,−1) is 0.37 bits. The corresponding (y, x1) = (−1,−1)
term in the calculation of I(Y; X1) gives 0.46 bits of information. Since 0.37 bits of that is shared with
X2, 0.46− 0.37 = 0.09 bits are unique to X1 for that local contribution. Similarly there is a contribution
of 0.09 bits of unique X1 information when (y, x1) = (1, 1). Considering the same local terms for X2

there are again 0.37 bits shared with X1 and now 0.40− 0.37 = 0.03 bits of unique X2 information.
So in total, when the output matches the RF X1 input, those states contribute 0.18 bits to the unique X1

information and 0.06 bits to the unique X2 information.
Moving to the cross-terms, since there is no corresponding local shared information these

contributions to the univariate mutual information are entirely unique. So for X1 the unique information
is 2×−0.06 = −0.12 bits, and X2 has 2×−0.11 = −0.22 bits of unique information. So the total net
unique information in X1 is 0.18− 0.12 = 0.06 bits, and for X2 there are 0.06− 0.22 = −0.16 bits of
unique information. This shows that in this system both variables have both positive and negative
contributions to unique information, and that a negative value results when the negative contributions
are larger.

In this case, when the sign of either input matches the sign of the output, they have locally
redundant entropy, some of which is shared with the other input, but a small fraction of which is
unique to that variable (i.e., related to the residual variance over that determined by the correlations
between the variables). Instead, when the sign of the input does not match the sign of the output,
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there is local synergistic entropy between the variables. In other words, that particular local value of
the input variable is misleading about the corresponding local output value, in the following sense.

Imagine a gambler was trying to predict the output of the system, starting with knowledge of
the marginal distribution of the output p(Y). They would determine a gambling strategy to optimise
payout based on that distribution of Y. Observing the value of an input variable, combined with
knowledge of the function of the system, would allow the gambler to form a new distribution of the
output, p(Y|X2 = x2). In this updated conditional distribution some specific values of the output
would have higher probability than under p(Y), and some would have lower probability. In the
alternate sign cross terms in this example, the actual outcome is one of those that had lower probability
under the conditional distribution obtained after observing the input. The particular (local) evidence
provided by the value of the input on that trial moved the conditional distribution in the wrong
direction for that output value—i.e., it was misleading about that particular output value, because it
suggested it was less likely to happen, but then it did happen anyway. The fact that negative local
values correspond to misleading evidence from the perspective of prediction explains why they have
been termed misleading information or “misinformation” [26].

Therefore for both variables there are some unique information contributions that are both positive
and negative (positive when the sign of the input is preserved in the output, and negative when the
sign is changed in the output). Because a change in the sign of the output is rare, as a consequence of
the design of the transfer function, that joint event is less likely to happen than would be predicted
from the independent marginal local probability of the two events. The surprisal of the joint event
is greater than the sum of the surprisal of the individual events. In conditional probability terms,
p(y|x1) < p(y), the likelihood of seeing that value of y is decreased by conditioning on that value of x1.

While in Figure 7c, the unique X2 information is always negative, as shown in the example above
there can be both positive and negative components. It would be possible to further split Iccs to
consider positive and negative terms separately, and so keep these shared vs. synergistic entropy
effects separate throughout the decomposition. However here we focus on the net unique information
effects to present a simpler decomposition and one that can be directly compared with the Ibroja PID.
Note that in Figure 8c the balance is different. Here the two inputs are independent. Without the
strong correlation between the inputs the positive local information terms are smaller, and the balance
between positive and negative contributions to unique information is closer. Therefore, there is a
narrow parameter region, when s1 < 2 in which there is net positive unique information about X2.
In Figure 8, which shows all the surfaces for independent inputs, the surfaces for the modulatory
transfer function do not plateau so much. They remain mostly constant along s2 axis, and along the s1

axis UnqX1 increases while SharM and Synergy decrease (SharS is always zero here due to the fact the
inputs are independent.)

8. Applications of ID Measures to Psychophysical Data

We now turn our attention to demonstrating the practicality of using PID and EID to decompose
spectra from real-world data. We use the example of a behavioural lateral masking paradigm whereby
the driving RF input is a centrally presented gabor patch (a sinusoidal grating combined with a
gaussian function) of varying contrast. CF input takes the form of high-contrast gabor patches
that flank the central target in the upper and lower visual fields; see Figure 9 for example stimuli.
Neurophysiological studies have demonstrated that, in this experimental setup, when flankers are
presented concurrently with targets but placed outside the classical receptive field, the cell’s response
to the target is modulated [32,33]. Furthermore, due to the size of stimuli, orientation, contrast,
and their wavelength, CF input can suppress detection of the centrally presented target gabor [32,33].
This paradigm is a suitable testbed for PID measures since it measures the influence of a modulatory
input (CF), surrounding flanker stimuli, on performance, in this instance a contrast detection task on
a centrally presented gabor (RF). Furthermore, the paradigm can be manipulated to conform to the
predictions outlined in Section 3.
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Figure 9. Examples of gabor patch stimuli used in the psychophysical experiment. In all conditions,
the task was to detect the presence of a centrally presented target gabor.

We tested 21 participants from the University of Stirling’s undergraduate psychology programme
(Mean age = 19.1 years, SD = 1.3), who all had normal or corrected to normal vision. Ethical approval
for the study was obtained from the University of Stirling’s research ethics committee. Participants
first completed a two-alternative forced choice staircase experiment, in which individual contrast
sensitivity thresholds were established. Participants were asked to report whether a Gabor patch
appeared to the left or right of a central fixation cross; the Gabor patch steadily decreased in contrast
over the course of the experiment until a threshold of 60% accuracy was determined. This procedure
was run twice with participants, and the average contrast threshold was used. After thresholds were
established, participants completed the main experiment in which they were tasked with detecting a
central target gabor in three conditions: (1) Over threshold target; (2) At threshold target; (3) No target
present. In all three conditions, flankers were either present or not with equal occurrence; see Figure 9
for example stimuli.

Participants completed 100 trials per condition (except in the “No target” conditions, where they
viewed 25 trials per condition, giving 450 trials in total), and all stimuli were presented for 500 ms,
with a 2000 ms inter-stimulus interval for participants to respond.

Gabor patch stimuli for both the staircase and the main experimental paradigms were viewed on
a gamma corrected CRT monitor (Tatung C7BBR, 60 Hz refresh rate, Taipei, Taiwan) at a distance of
80 cm, had a spatial frequency of 0.5 cycles per degree, and subtended a visual angle of no more than
1.93◦ in horizontal and vertical dimensions. From upper to lower flanker, the whole image subtended
no more than 8.22◦ of vertical visual angle. All stimuli were presented on a medium grey background
(RGB, 128,128,128). Gabors were phase shifted by ±90◦ to present equal weightings of black/white.
Flanker gabors in the main experiment were presented at 0.85 Michelson contrast across all trials,
whereas central target gabor contrast varied by individual (Mean = 0.012, SD = 0.003).

Table 1. Estimated accuracy, with estimated standard error, for each combination of the three conditions
and the absence or presence of flankers.

No Target At Threshold Over Threshold

Without Flankers 0.9096 (0.0273) 0.8797 (0.0289) 0.9824 (0.0037)
With Flankers 0.9629 (0.0150) 0.3766 (0.0532) 0.9849 (0.0039)

Summary statistics for the accuracy data are shown in Table 1. Of particular note is the suppression
of contrast detection accuracy in the “At Threshold” condition when flankers are present. We found,
using a 3 (Threshold: Over, At, No target) by 2 (Flankers: With vs. Without) repeated measures ANOVA
model (Huynh-Feldt corrections reported where appropriate), that accuracy for detection of the central
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gabor patch was lower in “at threshold” conditions in comparison to “over threshold” [F(1.147, 22.937)
= 66.401, p < 0.001, η2 = 0.769]; post hoc comparison, Mean difference = 0.356, p < 0.001]. Furthermore,
the presence of flankers further reduced the contrast detection accuracy [F(1, 20) = 55.508, p < 0.001,
η2 = 0.735], however this was a consequence of flanker stimuli suppressing contrast detection
when target was at threshold, but not when the target was over threshold [F(1.334, 26.678) = 85.042,
p < 0.001, η2 = 0.81]. These results indicate that the CF input in these conditions served to suppress
contrast detection; however the nature of the suppressive effect found could be additive/subtractive
or modulatory.

Group ID spectra for the analysis of this experiment show that in conditions where the central
target gabor was presented over threshold, i.e., in a case of near certainty, the majority of information
transmitted in Y is unique to X1, the driving RF input. The influence of CF flanker stimuli in this
condition makes very little contribution to the output (Figure 10). In contrast, in conditions of
uncertainty, i.e., at threshold, the unique contributions of X1 driving RF input is, by definition, much
reduced, and the effect of the X2 modulatory CF input is much increased via its contribution to the
synergistic component. This latter effect occurs even though the unique contribution of the CF input at
threshold is small. The pattern of decompositions observed when the target driving RF input is weak
is similar to that of the modulatory transfer function examined in Section 5, except for the occurrence
of a small amount of unique information from the X2 modulatory CF input.

Figure 10 shows group decomposition spectra, however the decomposition may vary across
subjects. Fortunately, enough data was collected for analysis of the individual data to be possible.
We show Ibroja spectra for individual subjects of interest also in Figure 10. When the RF input is
over threshold (i.e., strong), information transmitted is again unique to the RF in both subjects 10
and 18. However, at threshold (i.e., weak RF input) interactions that meet the criteria for modulation
do occur for many subjects. Subject 10 is a clear example of a subject for whom the flanking context did
indeed seem to function as a modulator. Information unique to the target stimulus was transmitted,
but information unique to the flanking context, X2, was at or near zero. X2 must have contributed
to output, however, because there is a substantial synergistic component. Such subjects therefore
display a decomposition that is remarkably similar to that for the modulatory function studied in
previous sections.

A few subjects performed very differently at threshold. Subject 18’s responses at threshold
conveyed no unique information about the target; unique information to CF input dominates, but again
with substantial shared information and synergy between RF and CF. Therefore, the target, X1, input
contributed to the synergy, but the subject’s response conveyed unique information only about X2.
Thus, under these conditions for these subjects, the central target, X1, modulated transmission of
information about the flankers, X2, not the other way round. This demonstrates the value of using ID
spectra to analyze such data.

Accuracy data for subject 18 suggests a very strong suppressive effect of CF input on contrast
detection when the central target was presented at threshold (Accuracy in at threshold condition
with flankers is 3%). The presence of some information unique to X2 in the group data is therefore
largely due to a few subjects whose performance at threshold was mainly transmitting information
about the flankers. It may be that there were subjects for whom the threshold was underestimated.
Overall, the decompositions of these psychophysical data confirm the rich expressive power of the
decomposition spectra, and we expect to see far more use of them for such purposes in the near future.

To summarise, the nature of the modulation presented above is uncovered through use of
decomposition measures. The suppression of contrast detection accuracy observed here when the RF
input is weak coincides with less unique information transmitted about the RF in the output, and in
addition, shared information and a synergistic relationship between RF and CF inputs. EID spectra
suggest that the shared information is not mechanistic (see Section 4). Differing PID spectra between
individual participants highlights the efficacy of PID for disambiguating modulatory interactions at
the single subject level. The empirically observed spectra shown in this section may also cast some
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light on relations between PID and EID. Overall, these two forms of decomposition are mostly in
agreement. With respect to the negative EID components they again show that where negative unique
components occur they seem to be compensated for by equivalent positive increases in the synergy.
In addition, these results show that most EID components are positive, with negative components
being the exception rather than the rule.

(a) PID spectra (b) EID spectra

Figure 10. Partial information decomposition (PID) and EID spectra (in bits) calculated for subject 10
(S10), subject 18 (S18) and the whole group of subjects (G) in the contrast detection experiment
calculated at threshold (AT) and over threshold (OT).

9. Conclusions and Discussion

9.1. Implications of These Findings for Conceptions of ‘Modulation’ in the Cognitive and Neurosciences

Intuition suggests that any variable that affects output must transmit information specifically
about itself in that output. That is clearly incorrect because output can be pure synergy. Furthermore,
as shown in Figure 2e, conventional information theoretic analysis weakens that view by showing
that the conditional mutual information transmitted about the modulator is at or near zero unless
the primary drive is present but weak. The PID and EID analyses reported in Sections 5–7 now show
that the conditional mutual information transmitted about the modulator was greater than zero when
the primary input was present but weak because the synergistic component is then greater than zero,
not because the modulator transmits unique information about itself. Thus, the intuitive view that
to have any effect modulators must transmit specific information about themselves is shown to be
seriously misleading.

Signals can have a kind of dual “semantics”, one concerned with the message being transmitted,
and one being concerned with the strength, salience, confidence, or precision with which that message
is conveyed. The notion of contextual modulation requires a distinction between signal strength and
signal semantics because it implies that the signal’s strength can be modulated without changing its
semantic content. A set of criteria to be met by what we call a modulatory transfer function were stated
in Section 3. The surfaces given in Sections 6 and 7 for PID and EID analyses respectively show that
our modulatory transfer functions meet these criteria. Section 5.2 showed a set of four ID spectra that
together would imply that a transfer function is modulatory. ID spectra have substantial expressive
power so it is possible that, when applied to empirical data from the cognitive and neurosciences, they
may reveal that modulatory interactions take various and unexpected forms.

Another perspective from which to view our distinction between drive and modulation is that of
the receiver of the output signal. Such a receiver can confidently infer the sign of the driving input
from the output alone when the driving input is sufficiently strong. This is true whatever the strength
of the modulatory input. Nothing can be confidently inferred from the output alone about the sign
of the modulatory input, however, no matter what the strength of that modulatory input. This again
supports our claim that modulatory inputs do not contribute to the message being conveyed by the
semantics of output.
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9.2. Comparisons between PID and EID

The most important outcome of the findings reported above is that they show that both EID
and PID support all the main conclusions made above with respect to the defining properties and
functions of modulatory interactions. Important strengths of EID shown here are that it distinguishes
between source and mechanistic forms of shared information, and it relates them appropriately to
the correlation between the two inputs. This is also the case with PID when the separation of shared
information from [23] is included in the Ibroja decomposition.

9.3. Using EID and PID to Analyze and Interpret Psychophysical Data

The application of PID spectra to psychophysical data is useful in distinguishing ways in which
two distinct inputs can contribute to a single measure of output. The methods outlined here can
establish the underlying nature of statistical interactions in real world systems that cannot be studied
with traditional multi-variate statistics alone. Future studies will apply these measures to continuous
data streams to elucidate the strength of modulatory effects in complex neuroimaging data for example.

9.4. Using ID Spectra to Analyze and Interpret Empirical Data in General

The spectra and surfaces shown here were computed from a known transfer function, but the
inverse problem may also arise. That is, to what extent can a transfer function, or properties of it,
be inferred from an ID spectra, or set of spectra? For example, ID spectra could be computed from
neurobiological observations, from psychophysical observations, from the activities of local processing
elements in deep learning architectures, or from the input-output activity of a system as a whole.
Work on information decomposition has so far focussed on the forward problem, i.e., on computing the
spectra given a known transfer function. When ID spectra are computed from empirical data, however,
then issues concerning the inverse problem will become more prominent and the application of formal
statistical modelling will be required. Future studies will apply these measures to continuous data
streams to elucidate the strength of modulatory effects in complex neuroimaging data for example.
Iccs and the EID can be easily computed for continuous Gaussian variables, which together with a
semi-parametric Gaussian copula assumption results in a promising approach for robustly estimating
these quantities from experimental data [34]. Further study of the statistical properties of these methods
when applied to experimental data, for example in terms of limited sampling bias [35] and optimal
permutation tests for valid statistical inference [36] are important areas for future work. For some
recent work with fMRI data, see [37].

Empirical studies will rarely provide enough data to compute the equivalent of the surfaces shown
above, so it is spectra that empirical studies will usually provide. The studies above show that the
conditions under which the spectra are measured must be carefully chosen if modulatory and additive
functions are to be distinguishable. We assume that transfer functions cannot be rigorously inferred
from observed spectra, but they can be examined to see whether or not they meet the requirements
for a modulatory interaction as described above. This will not fully constrain the unknown transfer
function producing the observed output because those requirements can be met in many different ways.
If an observed spectrum does meet our criteria for a modulatory interaction, then further experiments
might be designed to distinguish between different ways in which those criteria can be met.

9.5. Modulatory Regulation of Activity as a Crucial and Non-Trivial Aspect of Information Processing

Though the topics dealt with in this Special Issue have implications for many disciplines they
have special implications for the computational, cognitive, and neurosciences. This new perspective
on multivariate information decomposition substantially enhances our notions of what “information
processing” can be, and that is at the heart of all of those disciplines. Information processing is more than
simply transferring information from one time or place to another. As others have argued it also includes
creating new information via synergetic interactions between separate inputs; see [26,38]. Our argument
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here is that in addition to “enhancing computational capabilities via synergy” information processing
also includes distinguishing between currently relevant and currently irrelevant inputs. That is far from
trivial, and though we have not considered the various criteria by which relevance can be assessed,
we have done so elsewhere; see e.g., [19,39]. Here we have shown that it is possible to use any such
assessment to amplify relevant and disamplify irrelevant signals without corrupting their semantic
content. ID spectra can now be used as a way of exploring information processing within biological
systems. It will be of particular interest to see whether interactions similar to those produced by our
modulatory transfer function can be observed at the cellular level. We have shown that it is possible
to use any such assessment to amplify relevant and disamplify irrelevant signals without corrupting
their semantic content. Whether biology uses such modulatory interactions can now be explored by
applying the ID spectra that we have proposed to biological data. The ID spectra could also be used to
enhance our understanding of the information processing performed by local processors within various
machine-learning architectures. It will also be possible to build new architectures designed to exploit
the computational capabilities made possible by modulatory interactions such as those analysed here.
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Appendix A. Preliminary Results

Consider the logistic function L, from R to the open interval (0, 1), which is strictly increasing and
has the following properties

L(x) = 1/(1 + exp (−x)), L(−x) = 1− L(x), 0 < L(x) < 1,

L(x) > 1
2 , L(x) = 1

2 , L(x) < 1
2 ⇐⇒ x > 0, x = 0, x < 0, respectively. (A1)

From (14)–(16), we may use (A1) to write the values of u, v in the form

uM = L[TM(1, 1)], vM = L[TM(1,−1)], uA = L[TA(1, 1)], vA = L[TA(1,−1)]. (A2)

Now, we write from (10) that

TM(−1,−1) = − 1
2 s1(1 + exp (s1s2)) = −TM(1, 1),

TM(−1, 1) = − 1
2 s1(1 + exp (−s1s2)) = −TM(1,−1) (A3)

and so using (A1) it follows that

Pr(Y = 1|X1 = −1, X2 = −1) = L[TM(−1,−1)] = L[−T(1, 1)] = 1− L[TM(1, 1)] = 1− uM

Pr(Y = 1|X1 = −1, X2 = 1) = L[TM(−1, 1)] = L[−T(1,−1)] = 1− L[TM(1,−1)] = 1− vM

A similar argument using the additive transfer function, TA, shows that

Pr(Y = 1|X1 = −1, X2 = −1) = 1− uA, and Pr(Y = 1|X1 = −1, X2 = 1) = 1− vA.
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Therefore, the conditional output probabilities are {1− u, 1− v, v, u} when taken in the order
{−−,−+,+−,++}, where (u, v) are replaced by (uM, vM) when using the transfer function TM,
and by (uA, vA) when using TA. It follows from (1)–(4) that the joint p.m.f. p(y, x1, x2) may be written as

{λu, µv, µ(1− v), λ(1− u), λ(1− u), µ(1− v), µv, λu}, (A4)

where the probabilities are written in the order {p−−−, p−−+, p−+−, p−++, p+−−, p+−+, p++−, p+++},
so, for example, Pr(Y = −1, X1 = +1, X2 = −1) = p−+−. We find the marginal distribution of the
output Y. From (A4), we have that

Pr(Y = −1) = λu + µv + µ(1− v) + λ(1− u) = λ + µ = 1
2 ,

and so Y, as well as X1 and X2 has a uniform binary distribution.
We now calculate the various Shannon entropy terms that will be required in the sequel. Since

each of the three variables has a marginal uniform binary distribution, we can say that

H(Y) = 1, H(X1) = 1, and H(X2) = 1. (A5)

From (2) and (3), and noting that λ+ µ = 1
2 , we can write the Shannon entropy of the marginal (X1, X2)

distribution as

H(X1, X2) = −2λ log λ− 2µ log µ = 1− (2λ) log(2λ)− (1− 2λ) log(1− 2λ) = 1 + h(2λ),

where the function h is defined in (17). From (A4), we may write the marginal p.m.f.s of (Y, X1) and
(Y, X2) in the order {−−,−+,+−,++}.

p(y, x1) : {λu + µv, λ(1− u) + µ(1− v), λ(1− u) + µ(1− v), λu + µv} = { 1
2 z, 1

2 (1− z), 1
2 (1− z), 1

2 z}, (A6)

where, as in (17), z = 2λu + 2µv.

p(y, x2) : {λu + µ(1− v), λ(1− u) + µv, λ(1− u) + µv, λu + µ(1− v)} = { 1
2 w, 1

2 (1− w), 1
2 (1− w), 1

2 w}, (A7)

where, as in (17), w = 2λu + 2µ(1− v).
We now calculate the Shannon entropies of the marginal (Y, X1) and (Y, X2) distributions.

H(Y, X1) = −z log( 1
2 z)− (1− z) log( 1

2 (1− z)) = 1 + h(z). (A8)

H(Y, X2) = −w log( 1
2 w)− (1− w) log( 1

2 (1− w)) = 1 + h(w). (A9)

Finally, from (A4), we find the Shannon entropy of the joint distribution of (Y, X1, X2).

H(Y, X1, X2) = −2λu log(λu)− 2µv log(µv)− 2λ(1− u) log[(λ(1− u)]− 2µ(1− v) log[µ(1− v)],

= −2λ log λ− 2µ log µ− 2λ[−u log u− (1− u) log(1− u)]

− 2µ[−v log v− (1− v) log(1− v)],

= H(X1, X2) + 2λh(u) + 2µh(v). (A10)
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Appendix B. Proof of Theorem 1

(a) From (6), and using (A5), (A6), (A9) and (A10), we have that

I[Y; X1|X2] = H(Y, X2) + H(X1, X2)− H(X2)− H(Y, X1, X2)

= 1 + h(w) + H(X1, X2)− 1− H(X1, X2)− 2λh(u)− 2µh(v)

= h(w)− 2λh(u)− 2µh(v).

(b) From (7), and using (A5), (A6), (A8) and (A10), we have that

I[Y; X2|X1] = H(Y, X1) + H(X1, X2)− H(X1)− H(Y, X1, X2)

= 1 + h(z) + H(X1, X2)− 1− H(X1, X2)− 2λh(u)− 2µh(v)

= h(z)− 2λh(u)− 2µh(v).

(c) From (9), and using (A5) and (A8), we have

I[Y; X1] = H(Y) + H(X1)− H(Y, X1) = 2− 1− h(z) = 1− h(z).

(d) From (9), and using (A5) and (A9), we have

I[Y; X2] = H(Y) + H(X2)− H(Y, X2) = 2− 1− h(w) = 1− h(w).

(e) From (8) and parts (a) and (b), we have that

I[Y; X1; X2) = 1− h(z)− (h(w)− 2λh(u)− 2µh(v)) = 1− h(z)− h(w) + 2λh(u) + 2µh(v).

(f) From (5) and using (A5), (A6) and (A10), we have

I[Y; (X1, X2)] = H(Y) + H(X1, X2)− H(Y, X1, X2) = 1− 2λh(u)− 2µh(v).

Appendix C. Proof of Theorem 2

From Lemma 6 in [9] a necessary and sufficient condition for UnqX2 to vanish is that there exists
a row stochastic matrix S = [σ(x1; x2)] such that

Pr(Y = y, X2 = x2) = ∑
x1∈B

Pr(Y = y, X1 = x1)σ(x1; x2). (A11)

We first find expressions for the joint p.m.f. in this more general case, but the work involved is
very similar to that leading to (A4) above. From (29), (30) and (A1) we note that

g = L[F(s1, s2)], h = L[F(s1,−s2)] and 0 < g, h < 1.

Also, since λ 6= 0 and µ 6= 0 and λ+ µ = 1
2 , we have that 0 < λ < 1

2 and 0 < µ < 1
2 . From (28), (29)

and (A1) we have that

Pr(Y = 1|X1 = −1, X2 = 1) = L[F(−s1, s2)] = L[−F(s1,−s2)] = 1− L[F(s1,−s2)] = 1− h

Pr(Y = 1|X1 = −1, X2 = −1) = L[F(−s1,−s2)] = L[−F(s1, s2)] = 1− L[F(s1, s2)] = 1− g

It follows that the joint p.m.f. of (Y, X1, X2) is

{λg, µh, µ(1− h), λ(1− g), λ(1− g), µ(1− h), µh, λg}, (A12)
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and that the p.m.f.s for (Y, X1) and (Y, X2), in the order {−−,−+,+−,++}, are

p(y, x1) : {λg + µh, λ(1− g) + µ(1− h), λ(1− g) + µ(1− h), λg + µvh}, (A13)

p(y, x2) : {λg + µ(1− h), λ(1− g) + µh, λ(1− g) + µh, λg + µ(1− h)}. (A14)

Note that, since λ + µ = 1
2 , we can write

λ(1− g) + µ(1− h) = 1
2 − λg− µh, and λ(1− g) + µh = 1

2 − λg− µ(1− h).

From (A11), we now write out the system of equations that we will use to find a stochastic matrix.

λg + µ(1− h) = (λg + µh)σ−− + ( 1
2 − λg− µh)σ+− (A15)

1
2 − λg− µ(1− h) = (λg + µh)σ−+ + ( 1

2 − λg− µh)σ++ (A16)
1
2 − λg− µ(1− h) = ( 1

2 − λg− µh)σ−− + (λg + µh)σ+− (A17)

λg + µ(1− h) = ( 1
2 − λg− µh)σ−+ + (λg + µh)σ++ (A18)

Using (A15) and (A17), we first solve for σ−− and σ+− and obtain[
λg + µ(1− h)

1
2 − λg− µ(1− h)

]
=

[
λg + µh 1

2 − λg− µh
1
2 − λg− µh λg + µh

] [
σ−−
σ+−

]

Hence, inverting the matrix, we can write[
σ−−
σ+−

]
=

1
∆

[
λg + µh λg + µh− 1

2
λg + µh− 1

2 λg + µh

] [
λg + µ(1− h)

1
2 − λg− µ(1− h)

]
,

where the determinant ∆ = λg + µh− 1
4 . Now, ∆ > 0 provided that g ≥ 1

2 , h ≥ 1
2 and g, h are not both

equal to 1
2 . After some manipulation we obtain[

σ−−
σ+−

]
=

1
∆

[
λg + 1

2 µ− 1
4

µ(h− 1
2 )

]
and so when g ≥ 1

2 and h ≥ 1
2 , but both are not equal to 1

2 then σ−− and σ+− are both non-negative
and they sum to 1.

Very similar calculations for solving (A16) and (A18) give that[
σ−+
σ++

]
=

1
∆

[
µ(h− 1

2 )

λg + 1
2 µ− 1

4

]

and the same reasoning as above shows that σ−+ and σ++ are both non-negative and they also sum
to 1. Hence we have found a row stochastic matrix

S =

[
σ−− σ+−
σ−+ σ++

]

which satisfies (A11), and we conclude that UnqX2 =0.

Appendix D. Proof of Corollary 1

It follows from (A3) that TM satisfies the properties of F in (28). We now show that uM > 1
2 and

that vM > 1
2 . From (A2) and (11) we have that

uM = L[ 1
2 s1(1 + exp (s1s2))] and vM = L[ 1

2 s1(1 + exp (−s1s2))].
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Since s1 > 0, s2 > 0, we conclude from (A1) that uM and vM are both greater than 1
2 . Hence,

from Theorem 2, UnqX2 = 0.

Appendix E. Proof of Corollary 2

Using (11) we know that

TA(−1,−1) = −s1 − s2 = −(s1 + s2) = −TA(1, 1),

TA(−1, 1) = −s1 + s2 = −(s1 − s2) = −TA(1,−1)

and so TA has the properties of F defined in (28). Also

uA = L[s1 + s2] and vA = L[s1 − s2],

and so from (A1), and the assumption that s1 > 0, s2 > 0, we have that uA > 1
2 and also that vA ≥ 1

2 if
and only if s1 ≥ s2. Hence, from Theorem 2 it follows that UnqX2 = 0.

Appendix F. Proof of Theorem 3

From Lemma 6 in [9], a necessary and sufficient condition for UnqX1 to vanish is that there exists
a row stochastic matrix T = [τ(x2; x1)] such that

Pr(Y = y, X1 = x1) = ∑
x2∈B

Pr(Y = y, X2 = x2)τ(x2; x1). (A19)

Since we are using TA, here g = uA and h = vA. From (A19), we now write out the system of
equations that we will use to find a stochastic matrix.

λg + µh = (λg + µ(1− h))τ−− + ( 1
2 − λg− µ(1− h))τ+−

1
2 − λg− µh = (λg + µ(1− h))τ−+ + ( 1

2 − λg− µ(1− h))τ++

1
2 − λg− µh = ( 1

2 − λg− µ(1− h))τ−− + (λg + µ(1− h))τ+−
λg + µh = ( 1

2 − λg− µ(1− h))τ−+ + (λg + µ(1− h))τ++

We note that the only difference in this system of equations, as compared with (A15)–(A18) is that
h has been replaced by 1− h, and so one would expect that the result will hold when uA > 1

2 and
vA ≤ 1

2 , and this turns out to be the case.
Following the same argument used in the proof of Theorem 2 it turns out that

T =
1

λg + µ(1− h)− 1
4

[
λg + 1

2 µ− 1
4 µ( 1

2 − h)
µ( 1

2 − h) λg + 1
2 µ− 1

4

]
,

and we see that T is a row stochastic matrix provided that g ≥ 1
2 and h ≤ 1

2 and g and h cannot both be
equal to 1

2 . From the proof of Corollary 2, we know that uA > 1
2 and from (A1) we know that vA ≤ 1

2 if
and only if s1 ≤ s2.

For the last part, we know from (A1) that, when s1 = s2,

vA = L[s1 − s2] = L[0] = 1
2 .

From (A14), with g = uA and h = vA = 1
2 , we have that the marginal distributions of (Y, X1) and

(Y, X2) are identical. Hence since both marginals have the same range space, B2, it follows from [9]
(Corollary 8) that UnqX1 = 0 and UnqX2 = 0. This completes the proof.
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Appendix G. Proof of Theorem 4

(a) We saw in Theorem 2, Corollary 1, that UnqX2 = 0. It follows from (21) and Theorem 1(b) that

Syn = I[Y; X2|X1] = h(zM)− 2λh(uM)− 2µh(vM).

From Theorem 1(a) and (20) we have that

UnqX1 = I(Y; X1|X2)− I(Y; X2|X1) = h(wM)− h(zM),

and from (19) we deduce that

SharS+M = I(Y; X2) = 1− h(wM).

(b) In this case, vA = 1
2 , so h(vA) = 1, and zA = wA. From Theorem 3, we know that UnqX1 = 0 and

UnqX2 = 0. From (20), (21) we have

Syn = I[Y; X1|X2] = I[Y; X2|X1] = h(zA)− 2λh(uA)− 2µ.

and from (18) and (19) it follows that

SharS+M = I[Y; X1] = I[Y; X2] = 1− h(zA).

(c) From Theorem 3, UnqX1 = 0, and using (18), (20) and (21) we obtain

Syn = I[Y; X1|X2] = h(wA)− 2λh(uA)− 2µh(vA),

UnqX2 = I[Y; X2|X1]− I[Y; X1|X2] = h(zA)− h(wA),

and
SharS+M = I[Y; X1] = 1− h(zA).

(d) From Theorem 2, Corollary 2, UnqX2 = 0. Using the same deductions as in part (a), we find that

Syn = I[Y; X2|X1] = h(zA)− 2λh(uA)− 2µh(vA),

UnqX1 = I[Y; X1|X2]− I[Y; X2|X1] = h(wA)− h(zA),

SharS+M = I[Y; X2] = 1− h(wA).

Appendix H. Proof of Theorem 5

For part (a), the correlation between inputs is +1, and so we know from (2),(3) and (17) that

λ = 1
2 , µ = 0, z = v, w = v.

Hence, from Theorem 1(a, b)

I[Y : X1|X2] = h(v)− h(v) = 0, and I[Y; X2|X1] = h(u)− h(u) = 0.

From (20) and (21) it follows that UnqX1 = UnqX2 = Syn = 0. Then from Theorem 1 and (18) it follows
that SharS+M = I[Y; X1] = 1− h(u).

In (b), the correlation between inputs is −1, and so we know from (2), (3) and (17) that

λ = 0, µ = 1
2 , z = v, w = 1− v.
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Hence, from Theorem 1(a,b), and noting that h(1− v) = h(v),

I[Y : X1|X2] = h(1− v)− h(v) = 0, and I[Y; X2|X1] = h(v)− h(v) = 0.

From (20) and (21) it follows that UnqX1 = UnqX2 = Syn =0. Then from Theorem 1 and (18) it
follows that SharS+M = I[Y; X1] = 1− h(v).

References

1. Gilbert, C.D.; Sigman, M. Brain States: Top-Down Influences in Sensory Processing. Neuron 2007, 54, 677–696.
2. Phillips, W.A.; Singer, W. In search of common foundations for cortical computation. Behav. Brain Sci. 1997,

20, 657–722.
3. Phillips, W.A.; Silverstein, S.M. Convergence of biological and psychological perspectives on cognitive

coordination in schizophrenia. Behav. Brain Sci. 2003, 26, 65–138.
4. Lamme, V.A.F. Beyond the classical receptive field: Contextual modulation of V1 responses. In The Visual

Neurosciences; Werner, J.S., Chalupa, L.M., Eds.; MIT Press: Cambridge, MA, USA, 2004; pp. 720–732.
5. Kay, J.; Floreano, D.; Phillips, W.A. Contextually guided unsupervised learning using local multivariate

binary processors. Neural Netw. 1998, 11, 117–140.
6. Larkum, M. A cellular mechanism for cortical associations: An organizing principle for the cerebral cortex.

Trends Neurosci. 2013, 36, 141–151.
7. Phillips, W.A.; Larkum, M.E.; Harley, C.W.; Silverstein, S.M. The effects of arousal on apical amplification

and conscious state. Neurosci. Conscious. 2016, 1–13, doi:10.1093/nc/niw015.
8. Williams, P.L.; Beer, R.D. Nonnegative Decomposition of Multivariate Information. arXiv 2010, arXiv:1004.2515.
9. Bertschinger, N.; Rauh, J.; Olbrich, E.; Jost, J.; Ay, N. Quantifying Unique Information. Entropy 2014, 16,

2161–2183.
10. Griffith, V.; Koch, C.; Griffith, V. Quantifying synergistic mutual information. In Guided Self-Organization:

Inception. Emergence, Complexity and Computation; Springer: Berlin/Heidelberg, Germany, 2014; Volume 9,
pp. 159–190.

11. James, R.G.; Emenheiser, J.; Crutchfield, J.P. Unique Information via Dependency Constraints. arXiv 2017,
arXiv:1709.06653.

12. Ince, R.A.A. Measuring multivariate redundant information with pointwise common change in surprisal.
Entropy 2017, 19, 318.

13. Ince, R.A.A. The Partial Entropy Decomposition: Decomposing multivariate entropy and mutual information
via pointwise common surprisal. arXiv 2017, arXiv:1702.01591.

14. Phillips, W.A.; Kay, J.; Smyth, D. The discovery of structure by multi-stream networks of local processors
with contextual guidance. Netw. Comput. Neural Syst. 1995, 6, 225–246.

15. Cover, T.M.; Thomas, J.A. Elements of Information Theory; Wiley-Interscience: New York, NY, USA, 1991.
16. Schneidman, E.; Bialek, W.; Berry, M.J. Synergy, Redundancy, and Population Codes. J. Neurosci. 2003, 23,

11539–11553.
17. Kay, J. Neural networks for unsupervised learning based on information theory. In Statistics and Neural

Networks: Advances at the Interface; Kay, J.W., Titterington, D.M., Eds.; Oxford University Press: Oxford, UK,
1999; pp. 25–63.

18. Kay, J.; Phillips, W.A. Activation functions, computational goals and learning rules for local processors with
contextual guidance. Neural Comput. 1997, 9, 895–910.

19. Kay, J.W.; Phillips, W.A. Coherent infomax as a computational goal for neural systems. Bull. Math. Biol. 2011,
73, 344–372.

20. James, R.G.; Crutchfield, J.P. Multivariate Dependence beyond Shannon Information. Entropy 2017, 19, 530.
21. Wibral, M.; Priesemann, V.; Kay, J.W.; Lizier, J.T.; Phillips, W.A. Partial information decomposition as a

unified approach to the specification of neural goal functions. Brain Cognit. 2017, 112, 25–38.
22. Harder, M.; Salge, C.; Polani, D. Bivariate measure of redundant information. Phys. Rev. E 2013, 87,

doi:10.1103/PhysRevE.87.012130.
23. Pica, G.; Piasini, E.; Chicharro, D, ; Panzeri, S. Invariant components of synergy, redundancy, and unique

information. Entropy 2017, 19, 451, doi:10.3390/e19090451.



Entropy 2017, 11, 560 40 of 40

24. Wibral, M.; Lizier, J.T.; Vögler, S.; Priesemann, V.; Galuske, R. Local active information storage as a tool to
understand distributed neural information processing. Front. Neuroinf. 2014, 8, doi:10.3389/fninf.2014.00001.

25. Lizier, J.T.; Prokopenko, M.; Zomaya, A. Local information transfer as a spatiotemporal filter for complex
systems. Phys. Rev. E 2008, 77, doi:10.1103/PhysRevE.77.026110.

26. Wibral, M.; Lizier, J.T.; Priesemann, V. Bits from brains for biologically inspired computing. Front. Robot. AI
2015, doi:10.3389/frobt.2015.00005.

27. Van de Cruys, T. Two Multivariate Generalizations of Pointwise Mutual Information. In Proceedings of the
Workshop on Distributional Semantics and Compositionality, Portland, Oregon, 24 June 2011; pp. 16–20.

28. Church, K.W.; Hanks, P. Word Association Norms, Mutual Information, and Lexicography. Comput. Linguist.
1990, 16, 22–29.

29. James, R.G.; Ellison, C.J.; Crutchfield, J.P. Anatomy of a bit: Information in a time series observation. Chaos
2011, 037109, doi:10.1063/1.3637494

30. Olbrich, E.; Bertschinger, N.; Rauh, J. Information decomposition and synergy. Entropy 2015, 17, 3501–3517.
31. Barrett, A.B. An exploration of synergistic and redundant information sharing in static and dynamical

Gaussian systems. Phys. Rev. E 2015, 91, doi.org/10.1103/PhysRevE.91.052802
32. Chen, C.C.; Kasamatsu, T.; Polat, U.; Norcia, A.M. Contrast response characteristics of long-range lateral

interactions in cat striate cortex. Neuroreport 2001, 12, 655–661.
33. Polat, U.; Mizobe, K.; Pettet, M.W.; Kasamatsu, T.; Norcia, A.M. Collinear stimuli regulate visual responses

depending on cell’s contrast threshold. Nature 1998, 391, 580–584.
34. Ince, R.A.A.; Giordano, B.L.; Kayser, C.; Rousselet, G.A.; Gross, J.; Schyns, P.G. A Statistical Framework

for Neuroimaging Data Analysis Based on Mutual Information Estimated via a Gaussian Copula.
Hum. Brain Mapp. 2017, 38, 1541–1573.

35. Panzeri, S.; Senatore, R.; Montemurro, M.A.; Petersen, R.S. Correcting for the Sampling Bias Problem in
Spike Train Information Measures. J. Neurophys. 2007, 98, 1064–1072.

36. Ince, R.A.A.; Mazzoni, A.; Bartels, A.; Logothetis, N.K.; Panzeri, S. A Novel Test to Determine the Significance
of Neural Selectivity to Single and Multiple Potentially Correlated Stimulus Features. J. Neurosci. Methods
2012, 210, 49–65.

37. Stramaglia, S.; Angelini, L.; Wu, G.; Cortes, J.; Faes, L.; Marinazzo, D. Synergistic and redundant information
flow detected by unnormalized Granger causality: Application to resting state fMRI. IEEE Trans. Biomed. Eng.
2016, 63, 2518–2524.

38. Timme, N.M.; Ito, S.; Myroshnychenko, M.; Nigam, S.; Shimono, M.; Yeh, F.-C. High-Degree Neurons Feed
Cortical Computations. PLoS Comput. Biol. 2016, 12, e1004858, doi:10.1371/journal. pcbi.1004858.

39. Phillips, W.A.; Clark, A.; Silverstein, S.M. On the functions, mechanisms, and malfunctions of intracortical
contextual modulation. Neurosci. Biobehav. Rev. 2015, 52, 1–20.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Notation and Definitions
	An Interaction Designed to Be Modulatory
	Analysis Using Classical Shannon Measures

	Information Decompositions
	The Ibroja PID
	The EID Using Iccs

	Information Decomposition (ID) Spectra
	Definition and Illustrations
	Ibroja Spectra
	EID Spectra
	Contextual Modulation and Information Decompositions
	Comparison of PID and EID

	Analysis of the Transfer Functions Using the Ibroja PID over a Wide Range of Input Strengths
	Analysis of the Transfer Functions Using EID over a Wide Range of Input Strengths
	Applications of ID Measures to Psychophysical Data
	Conclusions and Discussion
	Implications of These Findings for Conceptions of `Modulation' in the Cognitive and Neurosciences
	Comparisons between PID and EID
	Using EID and PID to Analyze and Interpret Psychophysical Data
	Using ID Spectra to Analyze and Interpret Empirical Data in General
	Modulatory Regulation of Activity as a Crucial and Non-Trivial Aspect of Information Processing

	Preliminary Results
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Corollary 1
	Proof of Corollary 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5

