Population structure and virulence gene profiles of Streptococcus

agalactiae collected worldwide from different hosts

1

2

3 4 Running Title: DNA microarray typing of GBS 5 6 Marina Morach^a, Roger Stephan^a, Sarah Schmitt^b, Christa Ewers^c, Michael Zschöck^d, Julian 7 Reyes-Velez^{e,f}, Urs Gilli^g, María del Pilar Crespo-Ortiz^h, Margaret Crumlishⁱ, Revathi 8 Gunturu^j, Claudia A. Daubenberger^{k, 1}, Margaret Ip^m, Walter Regliⁿ, Sophia Johler^a* 9 10 11 Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland^a 12 13 Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Zurich, Zurich, 14 Switzerland^b 15 Institute of Hygiene and Infectious Diseases in Animals, Justus-Liebig University, Giessen, Germany^c 16 Hessian State Laboratory, Department of Veterinary Medicine, Giessen, Germany d 17 18 Department of Health Management, Atlantic Veterinary College, University of Prince Edward 19 Island, Charlottetown, PE, Canada e 20 Tropical Medicine Institute of Colombia, Antonio Roldan Betancur - CES University, 21 Tropical Medicine Research Group, Medellin, Colombia^f 22 IDEXX Diavet Laboratories, Bäch, Switzerland ^g 23 Department of Microbiology, University of Valle, Department of Biomedical Sciences, Santiago de Cali University, Cali, Colombia h 24

25	Institute of Aquaculture, University of Stirling, Stirling, United Kingdom i
26	Aga Khan University Hospital, Nairobi, Kenya ^j
27	Swiss Tropical and Public Health Institute, Basel, Switzerland ^k
28	University of Basel, Switzerland ¹
29	Department of Microbiology, Chinese University of Hong Kong, Prince of Wales Hospital,
30	Shatin, Hong Kong, China ^m
31	labor-zentral.ch, Geuensee, Switzerland ⁿ
32	
33	
34	
35	Accepted for publication in European Journal of Clinical Microbiology and Infectious
36	Diseases published by Springer. The final publication is available at Springer via
37	https://doi.org/10.1007/s10096-017-3146-x
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	

- *Corresponding author. Mailing address: Winterthurerstrasse 272, CH-8057 Zurich,
- 49 Switzerland. Phone: +41-44-635-8655. Fax: +41-44-635-8908. E-mail: sophia.johler@uzh.ch,
- 50 ORCID: 0000-0003-4299-5651

51	Abstract
31	Austract

Streptococcus (S.) agalactiae is a leading cause of morbidity and mortality among neonates
and causes severe infections in pregnant women and nonpregnant predisposed adults, as well
as various animal species worldwide. Still, information on the population structure of S .
agalactiae and the geographical distribution of different clones is limited. Further data is
urgently needed to identify particularly successful clones and obtain insights into possible
routes of transmission within one host species and across species borders. We aimed to
determine the population structure and virulence gene profiles of S. agalactiae strains from a
diverse set of sources and geographical origins. To this end, 373 S. agalactiae isolates
obtained from humans and animals from five different continents were typed by DNA
microarray profiling. A total of 242 different S. agalactiae strains were identified and further
analyzed. Particularly successful clonal lineages, hybridization patterns, and strains were
identified that were spread across different continents and/or were present in more than one
host species. In particular, several strains were detected both in humans and cattle, and several
canine strains were also detected in samples from human, bovine, and porcine hosts. The
findings of our study suggest that while S. agalactiae is well adapted to various hosts
including humans, cattle, dogs, rodents, and fish, interspecies transmission is possible and
occurs between humans and cows, dogs, and rabbits. The presented virulence and resistance
gene profiles enable new insights into interspecies transmission and make a crucial
contribution in the identification of suitable targets for therapeutic agents and vaccines.

- Keywords: genotype B Streptococci, GBS, transmission, capsular serotype, resistance,
- 74 clonality

75 Introduction

Streptococcus (S.) agalactiae, also known as group B Streptococcus (GBS), emerged in the 1970s as a major cause of morbidity and mortality in neonates and pregnant women. The organism leads to meningitis and septicemia in newborns and severe peripartum complications in pregnant women [1]. S. agalactiae has been linked to disease in the elderly and in nonpregnant adults suffering from chronic diseases [2,3]. The organism is also commonly found in food [4] and there are some indications for foodborne/ feedborne transmission [5–7]. In spite of numerous eradication programs, S. agalactiae is still a common cause of bovine intramammary infections in many countries [8], with particularly high herd prevalence levels in countries with emerging dairy industries [9].

Capsular polysaccharide (CPS) was recognized as a major virulence factor of *S. agalactiae* and plays an important role in the evasion of host defence mechanisms. CPS has also been used to type GBS and assign isolates to distinct CPS serotypes (Ia, Ib, and II to IX), with serotypes Ia, Ib, II, III and V being highly prevalent in human invasive GBS isolates in many regions of the world [10–12]. Vaccines combining these serotypes can be highly effective, they fail however to offer protection against other GBS serotypes, which cause the majority of GBS infections in some regions of the world such as Japan [11,12].

GBS strains can harbour a wide range of genes encoding virulence factors such as Bac involved in immune evasion, the alpha-like proteins involved in invasion, or the pilus islands, which play a role in host adaptation and specificity. GBS also frequently exhibit resistance genes, including genes conferring resistance to macrolide, lincosamide, and tetracycline. Recently, several studies typing and characterizing *S. agalactiae* isolates have been published [13–19] and a tool for rapid GBS typing based on DNA microarray hybridization patterns (HPs) has been introduced [13]. However, comprehensive information on the population structure and virulence gene profiles of *S. agalactiae* and the geographical distribution of

different clonal lineages is extremely scarce. In particular, comprehensive data on the population structure and virulence gene profile of isolates from a broad range of host species is missing. This data would be crucial to obtain further insights into host adaptation, to identify particularly successful clones, and to determine the geographical distribution of different clonal lineages. It could also be used to identify suitable targets for vaccines and antimicrobial agents, and to further elucidate possible routes of transmission.

A prospective cross-sectional cohort study found that exposure to cattle is a predictor of human colonization with *S. agalactiae* [20]. Case reports and some GBS typing data indicate possible transmission not only between human hosts and cows, but also human hosts and dogs, cats, and crocodiles [21–25]. In addition, experimental studies have evidenced transmission of bovine and human *S. agalactiae* strains to fish [26–28]. Still, data on interspecies transmission is scarce and strain typing studies involving a diverse set of hosts and geographical areas are missing.

Therefore, here we provide data on the population structure and virulence gene profiles of *S. agalactiae* strains isolated from a diverse set of hosts and a wide variety of geographical areas.

118 Material and methods

Bacterial isolates

In this study, a total of 373 *S. agalactiae* isolates from 5 different continents were analyzed. Countries of origin represented in this study were: Belgium (n = 1), Colombia (n = 86), Costa Rica (n = 1), Germany (n = 109), Honduras (n = 3), Hong Kong SAR, China (n = 30), Kenya (n = 33), Switzerland (n = 103), Thailand (n = 6), Vietnam (n = 1). Isolates included in this study originated from human hosts (n = 225), cattle (n = 84), dogs (n = 16), fish (n = 15), mice (n = 11), elephants (n = 7), guinea pigs (n = 3), emerald monitors (n = 3), rats (n = 2), snakes (n = 2) and one isolate each was collected from a rabbit, a goat, a pig, a turtle, and a frog. A full summary stating the host species, geographical source, and sample type is provided as Online Resource 1.

DNA extraction and **DNA** microarray

All isolates other than fish isolates were cultivated on 5% sheep blood agar (Oxoid Limited, Hampshire, UK) and incubated for 48 to 72 hours at 37°C. *S. agalactiae* isolates obtained from fish were streaked on both sheep blood agar and Tryptic Soy Agar (Becton Dickinson), and incubated for 72 hours at 30°C. Subsequent DNA extraction was performed using a Qiagen DNeasy kit and following the recommendations of the DNA microarray S.agaType AS-1 kit provider (Alere Technologies, Jena, Germany). As this protocol proved unsuccessful in fish isolates, these isolates were cultivated in 10 mL Tryptic Soy Broth and/or 10 mL Brain Heart Infusion and incubated at 28°C and at 200 rpm/min for 48h or until clouding of the broth culture was visible. The following day, cells were harvested by centrifugation and dissolved in A1 lysis buffer, before transfer to the A2 lysis enhancer Eppendorf tube, to which 400 U achromopeptidase was added. Subsequent steps were performed according to the manufacturer's protocol (Alere Technologies). A ND-100 UV-Vis

spectrophotometer (NanoDrop Technologies, Wilmington, Germany) was used to measure DNA concentrations in all samples.

The DNA microarray used in this study provides data on the presence/absence of typing markers (capsule/pilus-associated genes and *alp* genes), as well as genes conferring resistance (resistance to macrolide/ lincosamide antibiotics, tetracycline, heavy metals) or encoding virulence factors, enzymes and other metabolic functions [13]. Linear PCR amplification and DNA microarray hybridization, washing steps, and staining were performed as suggested by the DNA microarray manufacturer. Hybridization patterns and signal intensities were measured applying an ArrayMate reader (Alere Technologies) and were used for *S. agalactiae* species confirmation, assignment to a clonal complex and capsule type, hybridization pattern, and strain, where possible [13].

SplitsTree analysis

Similar to Coombs et al., DNA microarray hybridization profiles were used to calculate unrooted phylogenetic networks from molecular sequence data [29,30]. Stringent inclusion criteria were applied to avoid bias. Multiple isolates were considered to represent the same strain (*e.g.* S1) if DNA microarray hybridization results were identical for all positive/negative signals. In these cases, only one *S. agalactiae* DNA microarray profile was considered for construction of the SplitsTree and was included in the statistical analysis. This resulted in a total number of 161 strains from humans, 52 strains from ruminants, 15 strains from dogs, 8 strains form rodents, 8 strains from fish, and 12 strains from other hosts being included in the statistical analysis. SplitsTree4 (www.splitstree.org) was used to depict the degree of similarity of the different *S. agalactiae* hybridization patterns [31].

Statistical analysis

Statistically significant differences ($p \le 0.050$) in the distribution of virulence and resistance genes between isolates from different sources (hosts or host groups) were determined either by Chi squared test or Fisher's exact test (in case n < 5) using SPSS 24.0 (IBM Corp., Armonk, NY, USA).

173 Results

The 373 GBS isolates included in this study could be assigned to 242 different strains. Multiple isolates representing the same strain were detected in many host species and across different countries or continents (see Table 1). We observed particularly high rates of duplicates assigned to the same strain among murine (64%), piscine (47%), and bovine isolates (39%). In addition, isolates representing the same *S. agalactiae* strains were not only detected multiple times within one host species, but in some cases also across different host species (see Fig. 1).

We determined pronounced host-specific differences in the frequency of different clonal complexes (Table 2). In GBS from human hosts, CC19-19 was most prevalent (35%), followed by CC23 (20%). In contrast, GBS strains isolated from ruminants were most commonly assigned to CC23 (21%), strains from dogs to CC19-10 (40%), strains from rodents to CC19-01 (75%), and strains from fish to CC260/261 (75%). Some host-specific differences were also visible in the prevalence of capsular serotypes (Table 3). While serotype IB was highly prevalent in GBS strains from fish (63%), it was only rarely detected in isolates from other hosts. In contrast, serotypes IA, II, III, and V were common in GBS from different host species. As illustrated in the SplitsTree (see Fig. 2), the *S. agalactiae* strains investigated in this study also exhibited highly heterogeneous DNA microarray hybridization profiles. With the exception of *S. agalactiae* isolated from fish, no distinct clustering of strains based on host species, geographical origin, or clonal complex assignment could be observed.

The prevalence of selected virulence and resistance genes among different host groups is presented in Table 4. Depending on the host, different combinations and variants of the pilus island gene clusters were observed. The *speM* gene encoding exotoxin M was detected in only one isolate (S209, CC19-19), originating from a recto-vaginal swab from a patient in China. With regard to the allelic variants of the alpha-like GBS surface proteins, the allele *alp_rib* (R4) was significantly more prevalent in strains of human origin than in strains from all other sources. The *bac* gene encoding a GBS surface protein was frequently present in isolates from dogs. In addition, the genes of the first pilin gene cluster (*pilA/B/C-1*) were more common in canine GBS isolates, whereas prevalence was low in fish isolates. In contrast, the *pilA/B/C-2b* genes of the second pilin gene cluster were significantly more prevalent in GBS from fish compared with GBS isolated from humans, dogs, and rodents. The vast majority of human isolates (94%) harbored *scpB*, which encodes for C5a peptidase and is used as a diagnostic marker.

As for genes conferring resistance to antimicrobial agents, the *emrB/qacA* multidrug resistance transporter gene was present in all tested strains. The majority of strains also exhibited *tetM*, a gene associated with tetracycline resistance, and *cadD*, involved in cadmium resistance. Among human and canine strains, we frequently detected *merA/R*, genes involved in mercuric resistance. Online Resource 2 provides a comprehensive overview of the frequency of all virulence and resistance genes detected among the different host groups, as well as *p*-values for statistically significant differences. Full DNA microarray hybridization patterns of all strains are included in Online Resource 3.

215 Discussion

To date, data on GBS interspecies transmission is limited. In particular, the zoonotic potential and the directionality of transmission of GBS infections are poorly understood.

Experimental studies showed the transmissibility of various bovine and human GBS strains to fish [26–28] and characterization and genotyping studies suggested occasional transmission between humans and cattle [23,24]. Very recently, transmission of *S. agalactiae* through ingestion of raw fish sushi was reported to have led to severe infections in humans (Kalimuddin et al., 2017). In addition, cases of GBS infections acquired through contact with GBS from other host species have been reported: necrotizing fasciitis and endocarditis cases in humans occurred after a dog [25] and a cat bite [21], respectively, and necrotizing fasciitis cases in a group of crocodiles were likely of human origin [22].

In our study, isolates from various hosts were assigned to the same strain, suggesting interspecies transmission. Five GBS strains were detected in at least one bovine and one human host, and another strain was detected in a human, a bovine, and two canine hosts. In addition, a canine and a porcine isolate were assigned to the same strain. The relatively high number of *S. agalactiae* strains identified in both a sample from a dog and at least one other host species is particularly striking, considering that only 15 canine strains were included in this study. However, the data provided in this study does not allow for conclusions regarding the directionality of transmission. In addition, it needs to be taken into consideration that the strain collection tested predominantly comprises human and bovine GBS strains originating from Europe, which may bias results.

Nitschke et al. [13] introduced GBS typing based on DNA microarray hybridization patterns and provided data on human GBS from Germany and the Caribbean, as well as bovine GBS from Germany: The most prevalent hybridization patterns detected were HP-01 (CC19-01), HP-30 (CC19-17), HP-35 (CC19-19), and HP-48 (CC23), corresponding to the whole-genome sequenced reference strains CJB111, COH1, Gottschalk 1003A, and Strain 515, respectively. All four hybridization patterns were also frequently detected in our study, with HP-01 being linked to the most diverse set of hosts. GBS of HP-01 originated from

243	humans $(n = 5)$, cows $(n = 3)$, dogs $(n = 2)$, mice $(n = 3)$, emerald monitors $(n = 2)$, a rat $(n = 3)$
244	1), and a snake $(n = 1)$. GBS of HP-30 originated from human hosts $(n = 10)$, a rabbit $(n = 1)$
245	a cow $(n = 1)$, and a goat $(n = 1)$. GBS of HP-35 originated from humans $(n = 8)$, a dog $(n = 1)$
246	1), and a cow $(n = 1)$, and GBS of HP-48 were detected in human $(n = 15)$, bovine $(n = 3)$,
247	and canine $(n = 2)$ hosts.
248	The versatility and wide spread of these strains becomes evident, when considering the hosts
249	and geographical locations, in which some of the strains investigated in this study were
250	isolated: S60/S250/S256 (HP-01) was detected in a sample from the skin of a dog in Germany
251	as well as in a human vaginal swab from China, and bovine mastitis milk in Germany.
252	S117/S254 (HP-30) was identified in a sample from a rabbit in Germany, as well as in human
253	samples in Germany and Colombia. S185/S255 (HP-35) was detected in a sample from the
254	paw of a dog in Germany, and vaginal swabs from women in Colombia and Switzerland.
255	This study provides comprehensive data on the occurrence of capsular serotypes
256	among human and animal GBS isolates. CPS typing data is not only essential for
257	epidemiological purposes, but is also needed in the development of effective CPS-based
258	vaccines [11,12,32].
259	Among the GBS strains investigated in this study, we frequently detected genes
260	conferring resistance to antimicrobial agents and heavy metal resistance markers. Genes
261	associated with macrolide/ clindamycin resistance were exclusively found among GBS from
262	humans, ruminants, dogs, and a pig. Various recent studies report that 15-21% of GBS strains
263	isolated from pregnant women or cases of neonatal GBS infections are resistant to macrolide
264	and/or lincosamide [33-35]. The high prevalence of tetM detected in our study in human
265	(76%) and ruminant (48%) strains is consistent with findings of Nitschke and colleagues,
266	which reported prevalence rates of 78% and 71% in human GBS from Germany and the
267	Caribbean, as well as 48% in bovine GBS from Germany [13].

268	In our study, 40% of the canine strains and 25% of fish strains exhibited bac, while the
269	gene was only detected in 13% of GBS strains from human origin. The bac gene encodes the
270	C protein beta antigen (Bac), which is able to simultaneously bind to the Fc fragment of IgA
271	and the complement regulator factor H, thus likely contributing to immune evasion [32,36]. In
272	addition, increased Bac expression was reported in invasive strains compared to strains
273	collected from vaginal carriers [37]. Previous studies have associated bac sequence types with
274	capsular serotype assignment [37,38]. In contrast to our findings, a study investigating human
275	GBS from Asia, Australia, Europe, New Zealand, and North America found that bac was
276	present in 97% of serotype Ib isolates and 37% of serotype II isolates, while being largely
277	absent in GBS assigned to other serotypes [38].
278	Low prevalence of the <i>speM</i> gene encoding exotoxin M has been reported among GBS
279	from human and bovine sources [13]. This is consistent with our findings. In this study, we
280	detected speM in only one isolate (S209, CC19-19) originating from a recto-vaginal swab
281	from a patient in China.
282	In our study, the alpha-like GBS surface protein allele alp_rib (R4) (= R4, rib) was
283	significantly more prevalent in strains of human origin than in strains from all other sources.
284	The alpha-like proteins are chimeras forming mosaic structures on the surface of the organism
285	[39]. While the function of many alpha-like proteins is still poorly understood, they may act
286	as invasins mediating adherence to cervical epithelial cells, as well as transmembrane passage
287	and translocation of the organism [39].
288	In our study, different hosts were associated with different combinations and allelic
289	variants of genes of the pilus islands. Each of the three pilus islands (Pl-1, Pl-2a, Pl2b)
290	encodes one backbone and two ancillary proteins that mediate interactions with host cells. The
291	pilus islands and their combinations were shown to play an important role in host adaptation

and specificity, as well as disease presentation [40].

293	The findings of our study suggest that while S. agalactiae is well adapted to various hosts
294	including humans, cattle, dogs, rodents, and fish, interspecies transmission is possible and
295	occurs amongst others between humans and cows, dogs, and rabbits. Involvement of a canine
296	host in interspecies transmission events may be particularly frequent, with the directionality of
297	transmission still being unclear. The virulence and resistance gene patterns determined in our
298	study significantly extend the limited current knowledge on interspecies transmission. They
299	could also be utilized in the identification of suitable targets for therapeutic agents, as well as
300	vaccines.
301	
302	Acknowledgements
303	We thank the Institute of Medical Microbiology, University of Zurich, for providing strains.
304	
205	T
305	Funding
305	All materials used for this study were funded by the Institute for Food Safety, University of
306	All materials used for this study were funded by the Institute for Food Safety, University of
306 307	All materials used for this study were funded by the Institute for Food Safety, University of
306 307 308	All materials used for this study were funded by the Institute for Food Safety, University of Zurich. No third party funding or external grants were involved.
306 307 308 309	All materials used for this study were funded by the Institute for Food Safety, University of Zurich. No third party funding or external grants were involved. Conflict of Interest
306 307 308 309 310	All materials used for this study were funded by the Institute for Food Safety, University of Zurich. No third party funding or external grants were involved. Conflict of Interest The authors declare that the research was conducted in the absence of any commercial or
306 307 308 309 310 311	All materials used for this study were funded by the Institute for Food Safety, University of Zurich. No third party funding or external grants were involved. Conflict of Interest The authors declare that the research was conducted in the absence of any commercial or
306 307 308 309 310 311 312	All materials used for this study were funded by the Institute for Food Safety, University of Zurich. No third party funding or external grants were involved. Conflict of Interest The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
306 307 308 309 310 311 312 313	All materials used for this study were funded by the Institute for Food Safety, University of Zurich. No third party funding or external grants were involved. Conflict of Interest The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. Ethical Approval

to sampling for the purpose of the present study.

318
319 Informed consent
320 This was a retrospective study. For this type of study formal consent is not required.

321		References
322	1.	Krohn MA, Hillier SL, Baker CJ. Maternal peripartum complications associated with
323		vaginal Group B Streptococci colonization. J Infect Dis 1999;179:1410–1415
324	2.	Farley M, Harvey C, Stull T et al. A population-based assessment of invasive disease
325		due to group B Streptococcus in nonpregnant adults. N Engl J Med 1993;328:1807-
326		1811
327	3.	Jackson LA, Hilsdon R, Farley MM et al. Risk factors for group B streptococcal
328		disease in adults. Ann Intern Med 1995;123:415-420
329	4.	van der Mee-Marquet N, Domelier A-S, Salloum M et al. Molecular characterization of
330		temporally and geographically matched Streptococcus agalactiae strains. Foodborne
331		Pathog Dis 2009;6:1177–1183
332	5.	Foxman B, Gillespie BW, Manning SD, Marrs CF. Risk factors for group B
333		streptococcal colonization: potential for different transmission systems by capsular type.
334		Ann Epidemiol 2007;17:854–862
335	6.	Hetzel U, König A, Yildirim AÖ, Lämmler C, Kipar A. Septicaemia in emerald
336		monitors (Varanus prasinus Schlegel 1839) caused by Streptococcus agalactiae
337		acquired from mice. Vet Microbiol 2003;95:283-293
338	7.	Duremdez R, Al-Marzouk A, Qasem JA, Al-Harbi A, Gharabally H. Isolation of
339		Streptococcus agalactiae from cultured silver pomfret, Pampus argenteus (Euphrasen),
340		in Kuwait. J Fish Dis 2004;27:307–10
341	8.	Barkema HW, Green MJ, Bradley AJ, Zadoks RN. Invited review: The role of
342		contagious disease in udder health. J Dairy Sci 2009;92:4717-4729
343	9.	Keefe G. Update on control of Staphylococcus aureus and Streptococcus agalactiae for
344		management of mastitis. Vet Clin North Am - Food Anim Pract 2012;28:203-216
345	10.	Le Doare K, Heath PT. An overview of global GBS epidemiology, Vaccine

346		2013;31:D7–12
347	11.	Johri AK, Paoletti LC, Glaser P, Dua M, Sharma PK, Grandi G, et al. Group B
348		Streptococcus: global incidence and vaccine development. Nat Rev Microbiol
349		2006;4:932–942
350	12.	Nuccitelli A, Rinaudo CD, Maione D. Group B Streptococcus vaccine: state of the art.
351		Ther Adv Vaccines 2015;3:76–90
352	13.	Nitschke H, Slickers P, Müller E, Ehricht R, Monecke S. DNA microarray-based
353		typing of Streptococcus agalactiae. J Clin Microbiol 2014;52:3933-43
354	14.	Yao K, Poulsen K, Maione D et al. Capsular gene typing of Streptococcus agalactiae
355		compared to serotyping by latex agglutination. J Clin Microbiol 2013;51:503-507.
356	15.	Yildirim AÖ, Lämmler C, Weiß R. Identification and characterization of <i>Streptococcus</i>
357		agalactiae isolated from horses. Vet Microbiol 2002;85:31-35
358	16.	Skov Sørensen UB, Poulsen K, Ghezzo C, Margarit I, Kilian M. Emergence and global
359		dissemination of host-specific Streptococcus agalactiae clones. MBio 2010;1:1-9.
360	17.	Delannoy CM, Crumlish M, Fontaine MC et al. Human Streptococcus agalactiae
361		strains in aquatic mammals and fish. BMC Microbiol 2013;13:41
362	18.	Ip M, Cheuk ESC, Tsui MHY, Kong F, Leung TN, Gilbert GL. Identification of a
363		Streptococcus agalactiae serotype III subtype 4 clone in association with adult invasive
364		disease in Hong Kong. J Clin Microbiol 2006;44:4252–4254
365	19.	Belard S, Toepfner N, Capan-Melser M et al. Streptococcus agalactiae serotype
366		distribution and antimicrobial susceptibility in pregnant women in Gabon, Central
367		Africa. Sci Rep 2015;5:17281
368	20.	Manning SD, Springman AC, Million AD et al. Association of group B Streptococcus
369		colonization and bovine exposure: a prospective cross-sectional cohort study. PLoS
370		One 2010;5

371	21.	Ashrafian H, Griselli M, Rubens MB, Mullen MJ, Sethia B. Pulmonary Homograft
372		Endocarditis 19 Years after a Ross Procedure. Thorac Cardiovasc Surg 2007;55:55–56
373	22.	Bishop EJ, Shilton C, Benedict S et al. Necrotizing fasciitis in captive juvenile
374		Crocodylus porosus caused by Streptococcus agalactiae: an outbreak and review of the
375		animal and human literature. Epidemiol. Infect. 2007;135:1248–1255
376	23.	Dogan B, Schukken YH, Santisteban C, Boor J, Boor KJ. Distribution of serotypes and
377		antimicrobial resistance genes among Streptococcus agalactiae isolates from bovine
378		and human hosts. Society 2005;43:5899-5906
379	24.	Oliveira ICM, Mattos MC De, Pinto TA, Benchetrit LC. Genetic relatedness between
380		group B Streptococci originating from bovine mastitis and a human group B
381		Streptococcus type V cluster displaying an identical pulsed-field gel electrophoresis
382		pattern. Clin Microbiol Infect 2006;12:887–893
383	25.	Lee S, Roh KH, Kim CK et al. A case of necrotizing fasciitis due to Streptococcus
384		agalactiae, Arcanobacterium haemolyticum, and Finegoldia magna in a dog-bitten
385		patient with diabetes. Korean J Lab Med 2008;28:191-195
386	26.	Chen M, Wang R, Luo FG et al. Streptococcus agalactiae isolates of serotypes Ia, III
387		and V from human and cow are able to infect tilapia. Vet Microbiol 2015;180:129–135
388	27.	Evans JJ, Klesius PH, Pasnik DJ, Bohnsack JF. Human Streptococcus agalactiae
389		isolate in nile tilapia (<i>Oreochromis niloticus</i>). Emerg Infect Dis 2009;15:774–776
390	28.	Pereira UP, Mian GF, Oliveira ICM, Benchetrit LC, Costa GM, Figueiredo HCP.
391		Genotyping of Streptococcus agalactiae strains isolated from fish, human and cattle
392		and their virulence potential in Nile tilapia. Vet. Microbiol. 2010;140:186–192
393	29.	Coombs GW, Monecke S, Ehricht R et al. Differentiation of clonal complex 59
394		community-associated methicillin-resistant Staphylococcus aureus in Western
395		Australia. Antimicrob Agents Chemother 2010;54:1914–1921.

396	30.	Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies.
397		Mol Biol Evol 2006;23:254–267
398	31.	Wattinger L, Stephan R, Layer F, Johler S. Comparison of Staphylococcus aureus
399		isolates associated with food intoxication with isolates from human nasal carriers and
400		human infections. Eur J Clin Microbiol Infect Dis 2012;31:455–464
401	32.	Lindahl G, Stålhammar-Carlemalm M, Areschoug T. Surface proteins of Streptococcus
402		agalactiae and related proteins in other bacterial pathogens. Clin Microbiol Rev
403		2005;18:102–127
404	33.	Bolukaoto JY, Monyama CM, Chukwu MO et al. Antibiotic resistance of
405		Streptococcus agalactiae isolated from pregnant women in Garankuwa, South Africa.
406		BMC Res Notes 2015;8:364
407	34.	Creti R, Imperi M, Berardi A et al. Neonatal group B Streptococcus infections. Pediatr
408		Infect Dis J 2017;36:256–262
409	35.	Rojo-Bezares B, Azcona-Gutiérrez JM, Martin C, Jareño MS, Torres C, Sáenz Y.
410		Streptococcus agalactiae from pregnant women: antibiotic and heavy-metal resistance
411		mechanisms and molecular typing. Epidemiol Infect 2016;144:3205-3214
412	36.	Areschoug T, Linse S, Stålhammar-Carlemalm M, Hedén LO, Lindahl G. A proline-
413		rich region with a highly periodic sequence in streptococcal beta protein adopts the
414		polyproline II structure and is exposed on the bacterial surface. J Bacteriol
415		2002;184:6376–6383
416	37.	Nagano N, Nagano Y, Taguchi F. High expression of a C protein beta antigen gene
417		among invasive strains from certain clonally related groups of type Ia and Ib group B
418		Streptococci. Infect Immun 2002;70:4643–4649
419	38.	Kong F, Gidding HF, Berner R, Gilbert GL. Streptococcus agalactiae Cβ protein gene
420		(bac) sequence types, based on the repeated region of the cell-wall-spanning domain:

421		Relationship to virulence and a proposed standardized nomenclature. J Med Microbio
422		2006;55:829–837
423	39.	Maeland JA, Afset JE, Lyng R V., Radtke A. Survey of immunological features of the
424		alpha-like proteins of Streptococcus agalactiae. Clin Vaccine Immunol 2015;22:153-
425		159
426	40.	Springman A, Lacher DW, Waymire EA et al. Pilus distribution among lineages of
427		group b Streptococcus: an evolutionary and clinical perspective. BMC Microbiol
428		2014;14:159
429		
430		

431	Figure legends
432	
433	Fig 1 Interspecies transmission. Several S. agalactiae strains were detected in samples from
434	more than one host species, indicating interspecies transmission. This figure provides an
435	overview of the links detected and their frequency.
436	
437	Fig 2 SplitsTree. SplitsTree illustrating the degree of similarity of virulence and resistance
438	gene profiles of S. agalactiae strains from different sources: Human host (pink), ruminant
439	(green), dog (orange), elephant (grey), fish (blue), rodent/rabbit (yellow), other (purple)
440	Strains detected in two or more host species are marked by red circles.
441	

Tables Tables

Table 1: Clonal lineages and strains identified in more than one continent and across multiple host species. In some clonal complexes, strains were isolated more than once, some of them beyond country borders and from different host species.

Clonal Strain		Source	Sample	Countrya		
complex						
CC19-01	S48/S244/S245	Rat (n = 1)	Abscess	СН		
		Monitor $(n = 2)$	Lung/ kidney/ liver/ intestine	DE		
		Mouse $(n = 3)$	Intestine	DE		
	S53	Mouse $(n = 5)$	Intestine	DE		
	S57/ S249	Snake $(n = 2)$	Liver, skin	DE		
		Monitor $(n = 1)$	Liver	DE		
	S60/S250/S256	Dog (n = 2)	Skin	DE		
		Human $(n = 4)$	Vaginal swab	НК		
		Bovine $(n = 2)$	Milk	DE		
	S61/S251	Rat $(n = 1)$	Trachea	DE		
		Mouse $(n = 2)$	Prepuce	DE		
	S63	Bovine $(n = 4)$	Milk	DE		
	S64	Bovine $(n = 3)$	Milk	DE		
	S65	Bovine $(n = 2)$	Milk	DE		
	S69	Bovine $(n = 5)$	Milk	DE		
	S81	Human $(n = 2)$	Vaginal swab	НК		
	S84	Human $(n = 2)$	Vaginal swab	НК		

	S92	Human $(n = 2)$	Vaginal swab	НК
	S102	Human $(n = 2)$	Vaginal swab, abdominal	HK, KY
			tissue	
CC19-02	S 3	Guinea pig $(n = 2)$	Nose, liver	DE
	S7	Bovine $(n = 2)$	Milk	DE
CC19-10	S58/S252	Bovine $(n = 1)$	Organs	DE
		Human $(n = 3)$	Urine, vaginal swab, wound	CO, CH, KY
	S66	Bovine $(n = 2)$	Uterus, milk	DE
	S68	Bovine $(n = 3)$	Milk	DE
	S73	Human $(n = 2)$	Pus, urine	CO
	S85	Human $(n = 2)$	Vaginal swab	НК
	S90	Tilapia (n = 4)	Kidney	TH
	S91	Tilapia $(n = 2)$	Kidney	TH, VN
	S112	Human $(n = 2)$	Urine, blood	KY
CC19-17	S116	Human $(n = 4)$	Mastitis, blood, vaginal swab	DE, CO, CH
	S117/S254	Rabbit $(n = 1)$	Unknown	DE
		Human $(n = 4)$	Vaginal swab, urine	CO, CH
	S120	Elephant $(n = 3)$	Abscess/ foot	DE
	S126	Bovine $(n = 2)$	Milk	DE
	S152	Human $(n = 3)$	Vaginal swab	НК
	S153	Human $(n = 2)$	Vaginal swab	СН
	S157	Human $(n = 2)$	Vaginal swab	СН
	S169	Human $(n = 4)$	Vaginal swab	СН
	S175	Human (n = 4)	Blood, urine, vaginal swab	KY

CC19-19	S186/S255	Dog (n = 1)	Paw	DE
		Human $(n = 4)$	Vaginal swab, urine	CO, CH
	S190	Human $(n = 2)$	Urine, vaginal swab	CO
	S193	Human $(n = 2)$	Urine	CO
	S195	Human $(n = 3)$	Urine, vaginal swab	CO
	S197	Human $(n = 2)$	Vaginal swab	CO
	S198	Human $(n = 2)$	Urine, blood	CO
	S218	Human $(n = 2)$	Vaginal swab	СН
	S222	Human $(n = 2)$	Vaginal swab	СН, КҮ
	S227	Human $(n = 3)$	Vaginal swab	СН
	S235	Human $(n = 2)$	Vaginal swab	СН
	S237	Human $(n = 2)$	Blood, vaginal swab	KY, CO
CC19-67	S5/S243	Dog (n = 1)	Skin	DE
		Bovine $(n = 1)$	Milk	СН
	S17	Bovine $(n = 4)$	N.C:11-	CO
	517	Dovine (n = 4)	Milk	CO
	S23	Bovine $(n = 4)$	Milk	СН
CC23		, ,		
CC23	S23	Bovine $(n = 2)$	Milk	СН
CC23	S23	Bovine $(n = 2)$ Dog $(n = 1)$	Milk Skin	CH DE
CC23	S23 S124/248	Bovine (n = 2) Dog (n = 1) Pig (n = 1)	Milk Skin Milk	CH DE DE
CC23	S23 S124/248 S128	Bovine (n = 2) Dog (n = 1) Pig (n = 1) Bovine (n = 2)	Milk Skin Milk Milk	CH DE DE DE
CC23	\$23 \$124/248 \$128 \$130	Bovine $(n = 2)$ Dog $(n = 1)$ Pig $(n = 1)$ Bovine $(n = 2)$ Bovine $(n = 2)$	Milk Skin Milk Milk Milk	CH DE DE DE DE
CC23	\$23 \$124/248 \$128 \$130 \$133	Bovine $(n = 2)$ Dog $(n = 1)$ Pig $(n = 1)$ Bovine $(n = 2)$ Bovine $(n = 2)$ Bovine $(n = 3)$	Milk Skin Milk Milk Milk Milk	CH DE DE DE DE DE

	S137	Human $(n = 12)$	Vaginal swab, biopsy, urine,	CO, CH, KY	
			blood		
	S139	Human $(n = 3)$	Urine, blood, secretion	CO	
	S141	Human $(n = 2)$	Vaginal swab, urine	CO	
	S142	Human $(n = 2)$	Vaginal swab	CO	
	S145	Human $(n = 3)$	Vaginal swab	CH, CO	
	S162	Human $(n = 3)$	(n = 3) Vaginal swab		
CC103	S11/S247	Bovine $(n = 1)$	Milk	DE	
		Human $(n = 1)$	Pus	CO	
	S14	Bovine $(n = 5)$	Milk	DE	
	S16/S246	Bovine $(n = 1)$	Milk	DE	
		Human $(n = 1)$	Urine	CO	
CC260/261	S31	Tilapia (n = 2)	Spleen, kidney	HN, CO	
	S32	Tilapia (n = 3)	Spleen, kidney	HN, CO	
CC298	S19	Bovine $(n = 3)$	Milk	CO	
not assigned	S10	Bovine $(n = 2)$	Milk	DE	
	S18	Bovine $(n = 2)$	Milk	CO	

^{447 &}lt;sup>a</sup> Country abbreviations: CH = Switzerland, CO = Colombia, DE = Germany, HK = Hong

 $^{448 \}qquad Kong \ SAR \ (China), \ HN = Honduras, \ KY = Kenya, \ TH = Thailand, \ VN = Vietnam$

Table 2. Clonal complex distribution. This table provides an overview of the prevalence of
 455 different clonal complexes among *S. agalactiae* strains from various hosts (in percent).

Clonal complex	Hosts (% of strains)					
	Human	Ruminant	Dog	Rodent	Fish	Other
	(n = 161)	(n = 52)	(n = 15)	(n = 8)	(n = 8)	(n = 12)
CC19-01	12	19	13	75	0	25
CC19-02	4	2	7	25	0	0
CC19-04	1	0	0	0	0	0
CC19-10	12	12	40	0	25	17
CC19-17	10	6	0	0	0	17
CC19-19	35	4	13	0	0	0
CC19-22	2	0	0	0	0	0
CC19-67	1	13	7	0	0	8
CC23	20	21	20	0	0	33
CC26	1	0	0	0	0	0
CC103	2	10	0	0	0	0
CC130	1	0	0	0	0	0
CC260/261	0	0	0	0	75	0
CC298	0	2	0	0	0	0
not assigned	0	12	0	0	0	0

Table 3: Prevalence of capsular serotypes.

Capsular serotype	Hosts (% of str				strains)			
	Human	Ruminant	Dog	Rodent	Fish	Other		
	(n = 161)	(n = 52)	(n = 15)	(n = 8)	(n = 8)	(n = 12)		
IA	16	35	20	0	13	25		
IB	9	8	7	0	63	0		
II	17	19	20	50	0	0		
III	22	21	13	0	13	33		
IV	4	10	13	0	0	0		
V	21	8	20	50	0	25		
VI	1	0	0	0	0	0		
VII	2	0	0	0	0	0		
IX	1	0	0	0	0	0		
negative	2	0	0	0	13	17		
not assignable	5	0	7	0	0	0		

458

Table 4. Virulence and resistance genes. Prevalence of selected virulence and resistance genes among GBS strains isolated from different hosts: humans, ruminants, dogs, rodents, fish, and other (snake, turtle, frog, elephant, pig, rabbit). A comprehensive list of DNA microarray results including *p*-values is provided as Supplementary Table 2.

Gene	Function			Host (%	of strains)		
		Human	Ruminant	Dog	Rodent	Fish	Other
		(n = 161)	(n = 52)	(n = 15)	(n = 8)	(n = 8)	(n = 12)
Virulence gen	es						
speM	Exotoxin M	1	0	0	0	0	0
cylD	Beta hemolysin locus	96*F	100*F	100*F	100*F	25*HRDXY	100*F
cylE	Beta hemolysin locus	87*F	94*F	100*F	100*F	25*HRDXY	100*F
alp_3	Allele of the α -like protein/ α -antigenic cell wall protein	7*X	10*X	13*X	75*HRDF	0^{*X}	25
alp_rib (R4)	Allele of the α -like protein/ α -antigenic cell wall protein	52*RXFY	24*H	20	0^{*H}	0*H	9*H
bac	β-antigenic cell wall protein	13*D	15	40^{*H}	0	25	8
pilA1	Pilin gene cluster 1	51	50	80*F	71	25*D	50

pilB1	Pilin gene cluster 1	63	48*D	80*RF	75	25*D	50
pilC1	Pilin gene cluster 1	66	56	80	75	38	50
pilA2a	Pilin gene cluster 2a	81*RFY	52*HDX	87*RF	100*RFY	13*HDX	50*HX
pilC2a	Pilin gene cluster 2a	82*RF	52*HDX	93*RF	100*RF	13*HDX	58
pilA2b	pilin gene cluster 2b	15*RFY	48*HDX	7^{*RF}	0^{*RF}	63*HDX	42*H
pilB2b	Pilin gene cluster 2b	15*RFY	48*HDX	7^{*RF}	$0^{* m RF}$	67*HDX	42*H
pilC2b	Pilin gene cluster 2b	14*RFY	48*HDX	7^{*RF}	$0^{* m RF}$	75*HDX	42*H
scpB-var1	Complement-inactivating C5a peptidase	94*RDXFY	50*H	67*HF	25*H	13*HD	27*H
scpB-var2	Complement-inactivating C5a peptidase	94*RDXFY	48*H	67*HF	25*H	13*HD	25*H
fsb-var3	Allele of a fibrinogen binding protein	61*X	46*X	73*F	100*HRFY	25*DX	33*X
Resistance ge	nes						
cadC	Cadmium efflux system accessory protein	21*R	2*H	13	0	0	0
cadD	Cadmium resistance protein	75*F	77*F	93*FY	100*FY	14*HRDX	50*DX
emrB/qacA	Multidrug resistance transporter	100	100	100	100	100	100
ermA	Macrolide/clindamycin resistance	9	2	13	0	0	8

ermB	Macrolide/clindamycin resistance	19	10	7	0	0	0
ermC	Macrolide/clindamycin resistance	0	0	0	0	0	0
merA	Mercuric reductase	58*RXFY	11*HD	45*R	0^{*H}	13*H	10*H
merR	Mercuric resistance operon regulatory protein	57*RXFY	12*H	33	0^{*H}	13*H	17*H
tetM	Tetracycline resistance	76*RF	48*HD	93*RF	75	25*HD	58

^{*}The distribution of the respective gene differed significantly between strains from the stated hosts (with $p \le 0.050$). Host groups are indicated as follows: humans (H), ruminants (R), dogs (D), rodents (X), fish (F), and other (Y).