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A B S T R A C T

Species range shifts have been well studied in light of rising global temperatures and the role climate plays in
restricting species distribution. In mountain regions, global trends show upward elevational shifts of altitudinal
treelines. However, there is significant variation in response between geographic locations driven by climatic
and habitat heterogeneity and biotic interactions. Accurate estimation of treeline shifts requires fine-scale
patterns of forest structure to be discriminated across mountain ranges. Satellite remote sensing allows detailed
information on forest structure to be extrapolated across mountain ranges, however, variation in methodology
combined with a lack of information on accuracy and repeatability has led to high uncertainty in the utility of
remotely sensed data in studies of mountain treelines. We unite three themes; suitability of remote sensing
products, ecological relevance of classifications and effectiveness of the training and validation process in re-
lation to the study of mountain treeline ecotones. We identify needs for further research comparing the utility of
different remotely sensed data sets, better characterisation of treeline structure and incorporation of accuracy
assessment. Collectively, the improvements we describe will significantly improve the utility of remote sensing
by facilitating a more consistent approach to defining geographic variation in treeline structure, improving our
ability to link processes from stand to regional scale and the accuracy of range shift assessments. Ultimately, this
advance will enable better monitoring of mountain treeline shifts and estimation of the associated to biodiversity
and ecosystem function.

1. Introduction

Climate plays a key role in limiting plant species' distribution
(Pearson and Dawson, 2003). Changes in temperature and precipitation
will, therefore, lead to the exacerbation or alleviation of plant stress
resulting in alterations to recruitment, growth rates, and adult mortality
at climate-limited range edges (Lenoir et al., 2009; Peñuelas et al.,
2007). Climate change scenarios predict a mean global temperature
increase between 0.3 and 4.8 °C by 2100 compared to the 1985–2005
mean (IPCC, 2013). Consequently, shifts in the geographical distribu-
tion of a wide range of species are expected as climate change con-
tributes to range expansion, retraction or fragmentation (Lenoir and
Svenning, 2013; Masek, 2001). Regional variation in temperature
anomalies means mountain ranges are expected to experience a higher
than average temperature increase than other areas of the globe,
making them particularly important for research into impacts of climate
change (Dirnböck et al., 2011; IPCC, 2007).

Understanding the role that contemporary climate change has

played in species range shifts has been the focus of much activity over
recent decades (Chen et al., 2011a; Gottfried et al., 2012; Lenoir and
Svenning, 2015; Parmesan and Yohe, 2003). In mountain ranges across
the globe, average elevational range shifts have been estimated be-
tween 6.1 m (Parmesan and Yohe, 2003) and 12.2 m (Chen et al.,
2011a) per decade. Although global average values demonstrate a
general uphill shift of species, they hide important variation in this
response between species and geographical locations. For example,
Chen et al. (2011a) report that 25% of species showed downhill shifts of
elevational range limits whilst Harsch et al. (2009) report that of 166
treeline sites investigated 52.4% showed upward treeline shifts, 46.4%
showed no change and 1.2% showed movement downslope. The sci-
entific literature on this topic shows a significant bias in research effort
towards North American and European mountain ranges. Southern
hemisphere and Asian ranges are less well studied and, consequently,
strongly under-represented in the literature (Chen et al., 2011a; Harsch
et al., 2009). The underrepresentation and omission of large mountain
ranges combined with interspecific variation in range shifts results in
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high uncertainty in the extent and impacts of species distribution shifts
in mountain ranges at a global scale.

The altitudinal treeline has been used as an indicator for assessing
species range shifts in mountainous regions for decades. The separation
between closed-canopy subalpine forest and open vegetation at higher
altitudes and the sensitivity to climatic change make mountain treelines
ideal candidates for monitoring species range shifts across wide geo-
graphic areas. Changes in altitudinal treeline position such as those
reported in the meta-analysis of Harsch et al. (2009) tell only part of the
story of how mountain forests respond to changes in climate. In areas
where mountain treelines have not advanced upward, forests have been
shown to respond to climatic change through increased tree density
below the upper tree limit or by lateral expansion across mountain
slopes (e.g. Bharti et al., 2012; Klasner and Fagre, 2002). Consequently,
when assessing mountain forest range shifts there is a need to identify
both lateral and altitudinal movement in the treeline.

Non-uniformity in species range shifts is partly driven by high ha-
bitat heterogeneity in mountain areas. Temperature is routinely noted
as the key limiting factor in plant species distribution (Chen et al.,
2011a; Gottfried et al., 2012; Lenoir and Svenning, 2015; Parmesan and
Yohe, 2003). At a global scale treeline position can be approximated by
temperature alone with a mean growing season temperature between
5.5 and 7.5 °C limiting tree growth (Körner and Paulsen, 2004) and
winter temperatures playing a key role in juvenile survival (Kullman,
2007; Rickebusch et al., 2007). However, in mountainous systems, to-
pographic and geological controls play important roles alongside cli-
mate in limiting species distribution (Chen et al., 2011b; Forero-Medina
et al., 2011; Pounds et al., 2006). Topography alters local temperature
and precipitation regimes resulting in cooler conditions on poleward
facing slopes (Malanson et al., 2011; Suggitt et al., 2011). Rain shadows
created on the leeward side of mountains may result in a moisture
limited system where the response to climatic change would be ex-
pected to differ from systems where temperature is the primary limiting
factor (Foden et al., 2007). Topographic modification of regional cli-
mate regimes leads to a variable treeline position in mountain regions
that differs with slope and aspect at a landscape scale (e.g. Butler et al.,
2007; Case and Buckley, 2015; Germino et al., 2002; Greenwood et al.,
2014; Fig. 1). Furthermore, at the plot level, differences in micro-cli-
mate arising from sheltering caused by slight topographic differences
and neighbouring vegetation influences seedling establishment, leading
to complex patterns of treeline advance or stasis (e.g. Germino et al.,
2002; Greenwood et al., 2015).

Non-thermal regulators lead to significant variation of within-spe-
cies range shifts where 42–50% of species show inconsistencies in the
direction of range shifts between different geographic regions despite
similar warming trends (Gibson-Reinemer and Rahel, 2015). At the
mountain treeline, non-thermal controls may restrict treeline response
to climatic change or cause a downslope retreat due to local differences
in resource availability (e.g. McNown and Sullivan, 2013; Sullivan
et al., 2015), radiative stress (Bader et al., 2007), drought stress (e.g.
Johnson and Smith, 2007; Leuschner and Schulte, 1991; Millar et al.,
2007), competitive dynamics (Wardle and Coleman, 1992) and dis-
turbance regimes (e.g. Cullen et al., 2001; Daniels and Veblen, 2003)
despite increased temperatures. In some cases, the stand structure of the
treeline itself can modulate response to climatic change through con-
straint or facilitation of tree establishment, growth, and mortality
within the ecotone (Camarero et al., 2016). We cannot, therefore, as-
sume that treeline shifts will be uniform within or between mountain
ranges.

1.1. The impact of treeline advance

Shifts in mountain forest distribution, whether due to climatic
change or release from a non-thermal control, are expected to impact
on local biodiversity (Greenwood et al., 2014). The relative isolation of
mountainous areas and highly heterogeneous habitats means that

mountain systems can harbour disproportionately high numbers of
endemic species and retain many rare species (Steinbauer et al., 2016).
Encroachment of forest into non-forested areas will threaten mountain
plant species through alterations to competitive dynamics where
grassland species are likely to be out-competed for space and substrate
by tree species as the forest advances (Grabherr et al., 1994) resulting in
loss of species with narrow environmental tolerances (Jump et al.,
2012).

In addition to the loss of biodiversity, shifts in high altitude forest
distribution are expected to impact on ecosystem function (Greenwood
and Jump, 2014). High altitude forests are important areas for carbon
storage and sequestration (Peng et al., 2009; White et al., 2000).
However, there has been little research into the impacts mountain
treeline advance will have on carbon storage potential (Greenwood and
Jump, 2014). Increased tree growth rates, density, and forest expansion
is expected to increase biomass in mountain forests and their ability to
act as carbon sinks may be increased as a result (Devi et al., 2008).

Ultimately, variation in mountain forest distribution shifts and the
associated impacts are driven by the speed and spatial distribution of
establishing juveniles at a plot scale. However, changes in forest dis-
tribution accumulate across the landscape and as such the impacts are
manifested to a greater degree across an entire mountain range (here-
after referred to as regional scale). Accurate estimation of treeline shifts
and the impacts, therefore, requires complex patterns of treeline ad-
vance or stasis at the plot level to be discriminated at regional scales.
The biggest challenge to characterising mountain treeline heterogeneity
at a regional scale is the generally poor accessibility of mountain
ranges. The best estimation of species range shifts would come from
multiple fixed monitoring sites across a mountain range (e.g. Global
Observation Research Initiative in Alpine Environments; Grabherr
et al., 2000). However, poor access means many studies have been
based on incidental historical records covering a limited number of sites
(Gottfried et al., 2012). Regional estimations based on limited field
surveys alone in highly heterogeneous systems increase the risk of
highly inaccurate estimates of change in forest distribution.

Remote sensing, a technique by which observations can be made
without direct contact with a feature of interest, is ideally suited to
capturing information across large geographic areas and its potential
for studying environmental change is well recognised (Buchanan et al.,
2015; Donoghue, 2002; Kennedy et al., 2014; Kerr and Ostrovsky,
2003). Considerable investment has been made over recent decades to
improve precision and global coverage of remotely sensed data to aid
monitoring of environmental change. Whilst the use of remotely sensed
data in studies of mountain treeline shifts is not yet extensive, studies
that have incorporated remotely sensed data have shown considerable
potential for the characterisation of structural variation in the treeline
(e.g. Allen and Walsh, 1996; Hill et al., 2007), assessment of distribu-
tion change (e.g. Bharti et al., 2012; Luo and Dai, 2013; Mihai et al.,
2017), and to better understand how environmental factors act to in-
fluence variation in treeline position and structure over differing geo-
graphic scales (Weiss et al., 2015).

The integration of spatially explicit data, derived from remotely
sensed data, on treeline structural variation and location across entire
mountain ranges has significant benefits to better understand patterns
and processes that govern treeline movement or stasis. Bader and
Ruijten (2008) identified the mountain treeline from a Landsat ETM
image and subsequently modelled the role of topography to predict
forest cover. By linking a classified map with a digital elevation model
Bader and Ruijten (2008) identified altitude as the main determinant of
forest cover, with aspect also having a significant effect and areas where
water and cold air accumulate resulting in inverted tree lines.
Greenwood et al. (2014) used a time series of aerial photographs to
identify patterns of treeline advance, highlighting the major role of
topography in controlling treeline advance and subsequently, the mi-
crosite characteristics influencing variation in tree establishment
identified from remotely sensed data (Greenwood et al., 2015). Work
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that established temperature as the primary control of the treeline in
field surveys (Baker and Weisberg, 1995) has been similarly advanced
using remotely sensed time-series data with variability in treeline po-
sition shown to be attributable to topography at the regional scale
(Allen and Walsh, 1996).

It is evident that significant benefits can be gained by incorporating
remotely sensed data into studies of mountain treelines; however,
spatially explicit data detailing the location and structural variation of
mountain forests at the treeline is lacking globally. Our understanding
of how processes operate at different spatial scales to influence the
heterogeneity of mountain treelines will be advanced by incorporating
spatially explicit data into analysis (Malanson et al., 2011). Ad-
ditionally, our ability to monitor shifts in mountain forest distribution,
identify the related impacts, and predict future changes in forest dis-
tribution should become more accurate as a result. Despite the con-
siderable benefits gained by using remotely sensed data to monitor
change in treeline position and structure, methodological approaches
vary considerably in the literature. This variation has coincided with
poor training and validation procedures which lead to uncertainty in
the suitability of remotely sensed data to assess change in mountain
forest distribution. The consequent lack of consistency between studies
will present a barrier to accurate and integrated estimations of change
and its impacts over coming decades.

To advance our ability to accurately quantify and predict changes in
forest structure and distribution in mountain regions, here we synthe-
sise information from three core themes: the suitability of remote sen-
sing data, the ecological relevance of classifications, and the effective-
ness of the training and validation process specifically in relation to the
study of mountain treeline ecotones. By identifying how we might
improve the consistency of current approaches and the ability to relate

results to the wider ecological literature, we aim to bridge the gap
between global and plot-level studies. In doing so, we endeavour to
provide new focus in the use of remote sensing data in mountain re-
gions to improve: (1) our understanding of pattern-process relation-
ships at the mountain treeline, and (2) estimates of species range shifts
and the impacts to biodiversity and ecosystem function.

2. Interpreting the mountain treeline in remotely sensed imagery

2.1. Suitability of remotely sensed data

When considering how appropriate an individual remote sensing
data set is for treeline research three key requirements need to be
considered. The first is the ability to characterise heterogeneity in forest
structure that occurs over short distances; the second is the ability to
quantify change that occurs over decadal periods; and the third is the
need to capture a large area (i.e. a mountain range) repeatedly and
consistently enough to allow for knowledge acquired in the field to be
extrapolated across a mountain range. There is usually a compromise to
be made between spatial, temporal and spectral resolution, geographic
coverage and cost. Therefore, there is a need to identify which data set
(s) are the most appropriate to address the need for characterisation of
treeline structural heterogeneity and variable response rates across a
mountain range.

2.1.1. Sensor type
Passive optical data are the primary choice of remote sensing data

for use in mountainous regions. Passive optical sensors normally collect
data in the visible and infrared spectrum during daylight when sunlight
is reflecting off surfaces on the ground, recording different wavelengths

Fig. 1. Treeline position varies over short distances on mountain slopes (a) with different structural treeline forms identified (b–d). Static forms (b) have a sharp boundary between old
growth forest and grassland, abrupt advancing forms (c) are characterised by a high density of establishing juveniles over a short distance and diffuse advancing forms (d) have low-
density juveniles spread over a long distance. All photographs show mountain forests in Taiwan dominated by the Taiwan fir, Abies kawakamii. Photo credit (a) PJM (b–d) S. Greenwood.
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of the spectrum into individual data bands. By capturing multiple
spectral bands, the spectral properties of different vegetation types may
be analysed by looking at the relationships between different bands.
More bands may be beneficial for identifying subtle differences in ve-
getation structure, however, the increasing data complexity requires
greater processing capacity and cost. Consequently, consideration
should be given to determine whether the increase in spectral in-
formation that comes with additional bands provides data that will be
ecologically meaningful.

There are significant challenges to overcome when using multi-
spectral data in mountainous areas. The presence of cloud and cloud
shadow in images frequently inhibits mapping from multispectral
images. To overcome this problem, multiple images collected over a
short time period may be mosaicked (stitching overlapping images to-
gether) to produce a single cloud-free image that can be used for ana-
lysis. Shadowing caused by steep terrain is also problematic in multi-
spectral data. The effect of shadowing caused by mountain slopes can
be reduced by topographic illumination correction, the use of spectral
indices that take ratios between individual spectral bands, or by in-
cluding shadow as a class during discrete classification procedures. It is
also necessary to correct for differences in geometry between images
that are used for mosaicking or for making comparisons between
images of different resolution or ages. Differences in the sensor position
at the time of acquisition relative to the area of interest can lead to
differences in the relative distances between features within an image.
This effect is magnified in mountainous terrain where slopes are stret-
ched disproportionately depending on their aspect in relation to the
sensor. Consequently, the resulting data sets may not overlay accurately
despite being in the same coordinate system, causing problems in
analysis or incorrect results if this distortion is not picked up early
during data processing.

Active sensors emit their own signal that interacts with and is re-
ceived back from ground surfaces. Synthetic Aperture Radar (SAR)
emits microwave signals that are able to penetrate cloud making SAR
imagery attractive for the study of persistently or seasonally cloudy
areas. However, SAR data suffers from geometric distortion and sha-
dowing in areas with steep terrain because the sensors use directional
signals, which when combined with high cost and the historically low
spatial resolution of available data has restricted the use of SAR to
monitor vegetation in mountainous environments (Halperin et al.,
2016; Sinha et al., 2015). To our knowledge, SAR has not been used to
study the mountain treeline. However, ongoing improvements in re-
solution and data availability make further investigation of the utility of
SAR for this purpose a priority.

Light Detection and Ranging (LiDAR) is an active optical sensor that
is widely used for the characterisation of forest structure (e.g. Coops
et al., 2013; Donoghue and Watt, 2006; van Leeuwen and Nieuwenhuis,
2010). Whilst there are significant benefits to using LiDAR data to
characterise structural variation at the treeline, data accessibility is a
major constraint. LiDAR data is typically acquired from airborne or
terrestrial platforms, is expensive to acquire and not routinely acquired
in mountain ranges globally restricting the use of such data. Conse-
quently, LiDAR has not been widely used to study mountain treelines
and has only been used to study relatively small areas (e.g. Coops et al.,
2013 covered approximately 700 ha of a valley in the Swiss Alps).
Using the satellite-borne LiDAR Geoscience Laser Altimeter System
(GLAS), Simard et al. (2011) produced a global forest canopy height
dataset. However, whilst this dataset represents a significant milestone
in mapping global forest canopy height, the 1 km resolution is not
suitable for the application of characterising heterogeneity in the
mountain treeline. The anticipated launch of the Global Ecosystem
Dynamics Investigation (GEDI) LiDAR sensor in 2018 will provide a
significant improvement in resolution over the GLAS sensor (Coyle
et al., 2015; Dubayah et al., 2014) and thus further investigation once
data sets become available will be a priority to assess the potential
suitability of LiDAR data sets from the GEDI sensor for characterisation

of mountain treeline structure.

2.1.2. Geographic coverage
When seeking to monitor changes in species distribution across a

mountain range, the platform on which a sensor is based has important
implications for the geographic extent of a study. Sensors may be borne
on satellite, manned aircraft, remotely piloted airborne systems (RPAS)
or used on the ground. As terrestrial platforms must be set up in the
field they are limited to sections of a mountain range with good access,
consequently, they are useful for surveys of individual plots but have
limited use in regional-scale studies. RPAS can provide very high-re-
solution data, however, they are most suited to local scale studies,
covering individual mountains, as they are limited by good weather
conditions with light winds and short flight times. Aerial photography
missions can cover a wide spatial area with high-resolution data cap-
tured. However, the use of aerial photography for regional-scale ana-
lyses is extremely limited since assembling a complete regional dataset
is not only time consuming and costly but also logistically highly
challenging due to the limited number of clear days available for survey
and time required to fly each mission. Therefore, satellite-borne sensors
are the preferred platform for detecting environmental change over
wide geographic areas due to the repeatable and predictable orbit
pattern that ensures frequent global coverage.

2.1.3. Temporal resolution
Changes in mountain vegetation distribution can be slow.

Consequently, the longevity and consistency of a data source over
decadal time periods is highly important when identifying historical
shifts in distribution and accounting for variation in rates of advance.
Where historical photographic records exist, aerial photographs often
offer the longest time record of remotely sensed data. However, the use
of aerial photography is limited in regional scale assessments due to
poor consistency of data between the dates of image acquisition and
patchy geographic coverage that results in a small subset of a study
region being covered by multiple records. Archives from satellite-borne
sensors are preferable because of the data consistency and wide area
coverage; however, whilst some historic declassified high-resolution
spy satellite data are available in some parts of the world, most new
commercial satellites have not been operational long enough to allow a
robust assessment of change in mountain treelines. The Landsat archive
is the most complete medium resolution satellite-borne archive, making
80 m pixel size imagery freely available dating back to 1973, and
30 m pixel size data available since 1982 (Wulder et al., 2016). The
longevity and consistency of the Landsat archive means that landscape-
scale changes in species ranges can be assessed and tracked as new
acquisitions are made available. However, whilst remotely sensed data
may be available, the lack of accompanying field data for each image in
a series presents a major constraint on analysis utilising images from
multiple dates. If only two images, spaced far apart in time, are used,
the error around the classification of any individual image could lead to
misinterpretation of change that may not be representative of ground
conditions. The inclusion of multiple images, separated by shorter time
periods, in an analysis will give a better indication of how treeline shifts
respond over time and increase confidence in changes detected rather
than taking two images at extremes of a study period (Kennedy et al.,
2014).

2.1.4. Spatial resolution
The spatial resolution of a sensor is most easily understood as the

size of a pixel, although one must be careful when interpreting the
ecological meaning of boundaries between pixels (Fisher, 1997). When
attempting to correlate field data on stand structure with remotely
sensed data it is necessary to ensure that the pixel size is suitably
matched to the plot size of interest because the resolution will affect the
ability to accurately represent the boundary. For example, very high-
resolution sensors allow for individual trees to be identified whereas
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coarse resolution data give a more general landscape pattern. There is
high variation in the rate of mountain treeline advance; however,
where advance occurs it is typically in the order of meters to tens of
meters over decadal periods. To characterise treeline heterogeneity, we
are primarily interested in sensors with resolutions capable of capturing
stand-level characteristics that exist at these orders of magnitude.
Coarse resolution (250–1000 m pixel size) MODIS or AVHHR imagery,
therefore, lacks sufficient resolution for the accurate characterisation of
vegetation heterogeneity in mountain systems.

Medium resolution imagery (circa 30 m pixel size), such as Landsat,
has been shown to accurately classify mountain treelines into categories
that recognised heterogeneity (Allen and Walsh, 1996). However,
others have raised concern that Landsat data may lack sufficient detail
to detect subtle differences in the treeline that exist over a very short
spatial scale (Bharti et al., 2012; Buchanan et al., 2015; Chen et al.,
2015). Consequently, there is uncertainty over the ability of data from
the Landsat archive to adequately characterise variation in treeline
heterogeneity. Imagery with a spatial resolution suitable for detecting
features or variation of ecological relevance is widely available due to
the development of many high-resolution sensors onboard satellites
(Kennedy et al., 2014; Kerr and Ostrovsky, 2003). Indeed, higher re-
solution imagery (10 m pixel size or smaller) has been frequently used
in studies of mountain treelines (Table 1). However, inconsistencies in
the treeline definition used amongst the current literature mean that it
has not been possible to quantify the spatial resolution at which de-
fining features of treeline structural heterogeneity can be resolved.

2.1.5. Radiometric resolution
The radiometric resolution of a data set is a technical aspect of data

storage. Radiometric resolution determines the number of unique va-
lues that can be stored by a sensor. 8-bit data hold 256 unique values
where-as 16-bit data hold 65,536 values. Although considered of less
relevance when choosing a data set, a higher radiometric resolution is
beneficial for ecotone characterisation as the higher contrast that comes

with a higher bit rate is likely to lead to better characterisation of ve-
getation heterogeneity and areas of diffuse boundary change. As data
storage and processing capabilities improve, modern sensors are
shifting to a higher number of bits for storage. A good example of this is
Landsat 8 which is recorded in 12-bit data but has retained a 30 m pixel
size to maintain consistency in spatial resolution with the previous
sensors in the series. Consequently, whilst the spatial resolution of the
sensor has not changed the greater radiometric resolution will result in
a better characterisation of features with subtle differences.

2.2. Ecological relevance of classification

Remotely sensed data have great potential to enable the production
of globally consistent maps that characterise variation in mountain
treeline structure and would make significant contributions to resolving
two major gaps in the literature. The first is the need for theoretically
and methodologically consistent approaches to better define geographic
variability in treeline pattern-process relationships (Malanson et al.,
2011). The second is the need to monitor impacts of treeline shifts to
biodiversity and ecosystem function across mountain ranges
(Greenwood and Jump, 2014).

2.2.1. Defining the treeline
A variety of different definitions of the mountain treeline have been

used in the literature. Single characteristics such as canopy cover (Hill
et al., 2007; Král, 2009), species (Bharti et al., 2012; Luo and Dai, 2013)
or height (Mathisen et al., 2014) have been used as well as combina-
tions of such characteristics to return structural classifications of the
treeline (Table 1). The definition of treeline ecotone used requires
careful consideration since the choices made can impact on any inter-
pretation of the change estimated and the subsequent utility of dis-
tribution maps.

Identification of broad areas of change where forest patches share
similar structure is important for improving consistency in the

Table 1
Summary of studies using passive optical remotely sensed data to study mountain treelines. Studies using a discrete classification define discrete classes of vegetation type, those using a
soft classification return a proportional representation of the criteria used for classification. Map accuracy assessment was considered quantitative if the authors returned a numerical
indicator of accuracy either through a traditional accuracy assessment or through regression as was the case in Hill et al. (2007). However, lack of good quality training validation data
limits the interpretation of some quantitative assessments and so the table is filtered top to bottom to indicate the relative robustness of the validation process based on the quality of
validation data and type of accuracy assessment.

Author Remote sensing
data

Spatial
resolution (m)

Time series
(years)

Criteria for treeline
classification

Method Training and validation data Map accuracy
assessment

Allen and Walsh,
1996

Landsat TM 30 12 Canopy cover and
growth form

Discrete
classification

Field survey and photo
interpretation

Quantitative

Luo and Dai, 2013 Aerial photographs
Quickbird

0.5
0.6–2.4

44 Species and height Discrete
Classification

Field survey and photo
interpretation

Quantitative

Bharti et al., 2012 Landsat MSS
Landsat TM

60
30

30 Species Discrete
classification

Field survey Quantitative

Mihai et al., 2017 Landsat ETM
Landsat OLI
Sentinel 2 MSI

30
30
10

13 Species Discrete
classification

Romanian National Forest
Inventory, Global Forest Loss
Product (Hansen et al., 2013)

Quantitative

Hill et al., 2007 SPOT 5 HRG 10 NA Canopy cover Soft classification Limited field assessment, 2.5 m
NDVI

Quantitative

Greenwood et al.,
2014

Aerial photographs 0.3–1 26–33 Canopy cover and
height

Discrete
classification

Field survey Qualitative

Resler et al., 2004 Digital orthophoto
quadrangle

2 NA Canopy cover and
growth form

Discrete
classification

Photo interpretation Quantitative

Dinca et al., 2017 Landsat TM
Landsat ETM

30
30

34 Canopy cover Discrete
classification

Photo interpretation Quantitative

Mathisen et al.,
2014

Aerial photographs
Quickbird
Worldview

2
0.6
0.5

48–50 Height Discrete
classification

Limited field survey Qualitative

Chen et al., 2015 Landsat TM 30 20 Canopy cover and
species

Soft classification Photo interpretation Qualitative

Klasner and Fagre,
2002

Aerial photographs
Digital orthophoto
quadrangles

1
1

46 Canopy cover and
growth form

Discrete
classification

Photo interpretation Qualitative

Král, 2009 Orthophoto map 0.9 NA Canopy cover Soft classification None Qualitative

P.J. Morley et al. Ecological Informatics 43 (2018) 106–115

110



definition of geographic variation in treeline. Individual elements of
forest structure return distinct information about the treeline; for ex-
ample, canopy cover can describe the spatial distribution and density of
trees within a plot, tree height indicates areas of forest establishment or
growth limitation, and separating out species composition identifies
species-specific responses to environmental conditions. However, defi-
nitions based on a single characteristic fail to recognise important
features of treelines that capture variation in the rate of change within a
mountain range (Fig. 2).

The benefit of definitions that consider multiple structural char-
acteristics over those based on a single characteristic lies in the ability
to assess variation in treeline response and ecosystem function. For
example, a forest class defined as having a closed canopy may exist both
in an old-growth forest and in an area of dense juvenile establishment.
Without a distinction between the height of trees within a pixel, change
is potentially misrepresented. Likewise, if the focus is solely on height, a
better indication of change may be indicated by smaller, establishing
trees but the underlying processes that drive differences in tree density
within plots cannot be linked to maps classified on height alone (Fig. 2).
When considering a discrete separation of treeline structural properties,
vegetation classes such as krummholtz, patch forest, continuous forest
and forested scree have been successfully classified in multispectral
imagery (Allen and Walsh, 1996; Klasner and Fagre, 2002; Resler et al.,
2004). However, the separation has primarily been based on canopy
cover and growth form with less focus on height and species. In-
corporating height into the definition of vegetation classes would re-
present a significant improvement in the biogeographic and ecological
use of the mapped forest classes because it would allow the additional
separation of the continuous and patch forest classes into categories
that identify differences in growth stage. Without the inclusion of
height, reliable assessment of change in forest distribution can only be
assessed through a robust analysis over time, provided that remotely
sensed images are available with good consistency, temporal and geo-
graphic coverage.

Patterns of juvenile establishment have been successfully classified

from aerial photographs by Greenwood et al. (2014), who defined
different stages of treeline advance including categories where the
spatial distribution and quantity of juveniles vary beyond the limit of
old growth forest. Unfortunately, issues in the registration of remote
sensing imagery meant that the treeline was manually delineated and so
the method does not represent a practical solution for regional studies.
However, the work of Greenwood et al. (2014) demonstrates promise
that such classification might be automated in the future.

2.2.2. Classification techniques
Ecotones can be difficult to delineate in remotely sensed imagery.

By their nature, ecotones typically have no discrete boundary between
the member classes at either end of a continuous scale (e.g. forest and
grassland). Consequently, ecotones are often represented in satellite
imagery as mixed pixels, a combination of membership to several dif-
ferent classes (e.g. a mixture of forest and grassland), raising the
question of how best to classify such areas.

Boundary detection techniques seek to identify where change in
vegetation occurs by seeking out the highest contrast in neighbouring
pixel values, however, have not been used in the detection of mountain
treelines from remotely sensed images as far as we are aware. Many
techniques are well suited to the detection of abrupt changes in vege-
tation type, however, detection of areas with a gradual gradient be-
tween forest and grassland is often more challenging due to the re-
duction in contrast between neighbouring pixels (Fagan et al., 2003). In
areas where the treeline is represented by an abrupt change, boundary
detection techniques offer a good option for identifying the position of
the treeline, however, they are not as well suited to defining variation
in forest structural or function parameters.

Discrete image classification techniques assign pixels to one of a
pre-defined set of categories. In areas where the number of boundary
pixels between classes is small, discrete classifications give a reasonable
estimate of area coverage. However, the mountain treeline ecotone can
exist over a long distance and so by assigning a pixel to a fixed category,
discrete image classification techniques may not be suitable if the

Fig. 2. Categorising mountain treelines using a single characteristic limits the interpretation of classified products. A forest classified by canopy cover alone may indicate how tree density
differs over an area but both old growth forest and areas of new establishment can share the same forest class (e.g. closed forest top left, open forest top right). Similarly, if classification
occurs by height alone then areas of establishment are identified but the processes that control differences in juvenile density cannot be interpreted. As such, classification based on
multiple classifications is required to capture both the spatial distribution and the size of trees/juveniles across the treeline ecotone. The Spatial resolution of remote sensing imagery
plays an important role in separating out fine scale differences in forest structure. Coarse resolution (Solid lines) capture information across a wider area and consequently results in mixed
pixels where the forested area is smaller than the area covered by a single pixel. Finer resolution imagery, represented by the dashed lines, reduces the error in classifying mixed pixels by
capturing a smaller area allowing areas with a homogeneous structure to be identified.
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thematic resolution of vegetation classes is too coarse (i.e. forest and
grassland only) (Settle and Drake, 1993). Discrete classifications are
attractive for treeline research, particularly for the investigation of
pattern-process relationships, because of the ability to relate vegetation
classes to existing literature that underpins our current understanding
of environmental influence on variation in treeline position and struc-
ture. Discrete classifications work best where there is an obvious re-
lationship between the spectral data and the ground variable of interest.
However, whilst discrete classification techniques are the most com-
monly used classification method in the literature (Table 1), there has
not been a quantitative assessment to identify how much variation in
treeline structure is captured in the spectral response.

Soft classification (also known as fuzzy classification) techniques
are an attractive alternative for ecotone mapping where no clear
boundaries exist between vegetation classes because soft classification
assigns individual pixels a score based on the degree of membership
that pixel has to a given end member. The resultant data, therefore,
describes a continuum in cover between different end members rather
than a discrete classification of cover type. However, the resultant maps
may not accurately represent actual vegetation cover depending on
how the outcome of soft classifications is used (Hill et al., 2007). To
describe areas of change, boundaries are often imposed onto soft clas-
sifications. However, when using a continuous definition of the treeline
the process of defining the boundary requires careful consideration and
should be based on detailed understanding of the ecological patterns
since the subjective nature of imposing boundaries will impact on
landscape metrics calculated from the chosen boundaries (Arnot et al.,
2004). If not carefully considered, the utility of such methods may be
reduced and the ability to relate classifications to the wider ecological
literature may be lost.

2.3. Training and validation

Remote sensing data are highly valuable in mountain environments
due to the ability to extrapolate information gathered from detailed
surveys in accessible areas to largely inaccessible regions, thereby en-
abling us to fill the substantial knowledge gaps that we have of the
pattern and rate of vegetation change in such regions. Classification of
remotely sensed imagery typically uses data from pixel values where
the ecological situation on the ground is well known to establish a rule,
or set of rules, to extrapolate to pixels that appear spectrally similar.
This supervised classification technique works best when there is a
large sample of high-quality ground training data to match the imagery
and an independent data set, derived from detailed field sampling,
against which to assess the accuracy of a classification.

The benefit of good training and validation data and its importance
for robust accuracy assessment has been well discussed elsewhere
(Castilla, 2016; Olofsson et al., 2013, 2014). However, of the studies
highlighted here, only seven (Allen and Walsh, 1996; Bharti et al.,
2012; Dinca et al., 2017; Hill et al., 2007; Luo and Dai, 2013; Mihai
et al., 2017; Resler et al., 2004) provide a quantitative accuracy as-
sessment of the classification produced, either through a traditional
confusion table with percent accuracy or through regression as in Hill
et al. (2007). In some cases (e.g. Greenwood et al., 2014), despite the
existence of detailed field data, a lack of quantitative accuracy assess-
ment stems from issues registering remote sensing data and consequent
manual classification. However, for most remaining cases, a lack of field
data appears to be the root of qualitative assessments (Table 1).

Limited access to mountain environments makes acquiring a robust
field data set to use for training and validation extremely challenging.
Consequently, a variety of approaches have been taken to construct a
data set that can be used to train classification algorithms and validate
maps. Allen and Walsh (1996) and Luo and Dai (2013) used field da-
tasets that identified forest structural classes, bolstered by additional
photo interpreted plots to train and validate their classifications. Mihai
et al. (2017) took advantage of existing national forest inventory data in

combination with data from the Global Forest Cover product (Hansen
et al., 2013) to create their training and validation data. Greenwood
et al. (2014) were unable to automate classification, however, classi-
fication was based on detailed field knowledge collected from forest
inventory data split across pre-defined structural classes. However, the
limited accessibility of mountain ranges means that many studies have
either carried out classification manually, without the use of training
data, or by substituting field data entirely with photo interpreted plots
from terrestrial photography (e.g. Klasner and Fagre, 2002) or very
high-resolution aerial or satellite images (e.g. Chen et al., 2015).

Photointerpretation can be used to support good field data, espe-
cially where challenging terrain limits field campaigns. However, the
use of photo interpretation as the sole source of training and validation
data risks high uncertainty or subjectivity in classified products. The
inclusion of novel remotely sensed data to assess the accuracy of a
classified product can, however, be particularly useful in mountain
areas where field sites cover a small area of a study region. Hill et al.
(2007) used pan-sharpened SPOT 5 red and near-infrared bands to
create a high-resolution NDVI product that could be used as a validation
data set independently of a classified 10 m resolution image. In doing
so, the subjectivity imposed by photo interpretation is reduced and, if
backed up by field assessments, offers a complementary approach to
accuracy assessment.

3. Research priorities

A lack of clarity in the definition of treeline structural classes that
identify areas indicative of forest expansion or stasis has compounded
issues in assessing the effectiveness of imagery with different resolu-
tions and pairing that imagery with the most appropriate classification
method. Inconsistencies have been exacerbated by a lack of field
training and validation data that hinder accuracy assessments and
crucially, when combined with poor treeline definitions, the relevance
of species distribution maps derived from remote sensing products to
the wider community is lost (Fig. 3). Accurate estimates of species
range shifts are required if we are to provide information relevant to
monitoring forest change with accompanying estimates of uncertainty.
If such accuracy assessment is lacking, the validity of subsequent ap-
plications is compromised and potentially misrepresents the impacts
that species distribution shifts are having on ecosystems, their function,
and the ecosystem services that they provide.

3.1. Suitability of remotely sensed data

The trade-offs between spatial resolution, temporal resolution and
geographic coverage has meant that the literature to-date generally
uses a single data type/resolution whilst a combined approach may be
more suitable for mountain ecosystems. By combining recent high-re-
solution imagery with a time series analysis of medium resolution
imagery punctuated by historic aerial photography, an improved
characterisation of the structural form and assessment of change may
be possible. A key priority is, therefore, to identify the most appropriate
method or a combination of methods that will allow for accurate as-
sessments of regional shifts in mountain forest distribution.

In establishing the most appropriate methodologies for monitoring
mountain forest shifts, there is a need to determine the resolution at
which defining biophysical characteristics of treeline form are unable to
be resolved within satellite images of decreasing spatial resolution. The
Landsat archives provide the most globally consistent remotely sensed
data available with images available since the 1980's at 30 m resolu-
tion. However, uncertainty remains over how well Landsat data can
characterise structural variation in the treeline, when used either in a
time series or as individual images. The recently available Sentinel 2
data represents an improvement in resolution over the Landsat archives
giving a pixel size equivalent to 10 m at ground level, however, these
data are only available since 2016. Establishing the level of detail

P.J. Morley et al. Ecological Informatics 43 (2018) 106–115

112



discernible in Sentinel 2 data will be useful to identify the necessity of
commercial imagery. Finer spatial resolution imagery is available down
to sub-meter pixels, however, this comes with an increase in financial
and processing costs and thus its utility must be weighed against the
expenditure since the increasing level of detail may not be necessary for
distinguishing between treeline forms. Given the necessity of mon-
itoring change over large areas, a key priority is then to identify the
appropriate compromise between resolution and cost that still allows
sufficient ecological and biogeographical information to be extracted
and changes in treeline position that occur over decadal periods to be
quantified.

3.2. Ecological relevance of classification

Ultimately the utility of remotely sensed images relies on the ability
to separate vegetation into classes that hold ecological relevance.
However, within the literature, we find an over-simplification of forest
classes in studies of mountain treelines. At the altitudinal limit of forest
distribution, treeline shifts, both lateral and elevational, are pre-
dominantly reflected by changes to the growth and establishment of the
few tree species present, rather than by complex changes in community
composition as might be expected in more tree species-rich forests.
Recognition of establishing juveniles is therefore required in classifi-
cations derived from remote sensing data as it is the quantity and
spatial distribution of establishing juveniles that determine the

direction and velocity of treeline advance.
Treeline forms are broad structural categories based on patterns of

tree and juvenile density, spatial distribution and size (Harsch and
Bader, 2011; Fig. 1). Structural classes include diffuse advancing,
abrupt advancing, abrupt static, island and krummholtz (Greenwood
et al., 2014; Harsch and Bader, 2011). A rich body of literature iden-
tifies the underlying controls on the distribution of such classes. A re-
view by Harsch and Bader (2011) described a hierarchy of mechanisms
that are hypothesised to cause variation in treeline form. The diffuse
form is primarily growth limited by low mean growing-season tem-
perature whereas the krummholtz form incorporates dieback and re-
growth of individuals. Abrupt forms are more extensively controlled by
seedling mortality (Harsch and Bader, 2011). Identifying treeline forms
that include local patterns of tree and juvenile density, distribution and
size such as those used by Greenwood et al. (2014) and Harsch and
Bader (2011), rather than classes based on adult distribution alone, will
significantly advance our ability to characterise mountain treelines at a
regional scale and study the impact that climate change is having on
species distribution shifts. Whilst these forms will not appear in all
mountain areas, they are sufficiently broad to allow a consistency in
approaches that can be adapted of the exact ground conditions.

The use of treeline forms supports efforts to make classifications
transferable to the wider literature and contribute to future monitoring
programs in a consistent manner. Whilst carefully defined discrete ca-
tegories may be linked to certain ecosystem functions, the ability to

Fig. 3. Roadmap to advance regional scale monitoring of fine-scale variation in treeline advance by integrating remote sensing methods, ecological perspective, and robust field data.
Whilst each of the three strands makes a modest advance in our ability to monitor treelines more effectively, when the individual themes are advanced in combination we significantly
improve our ability to scale plot-level field data up to a regional scale consistently and in a way that allows results to be linked to the wider ecological literature and national monitoring
schemes.
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directly measure the function of interest would contribute significantly
to the current knowledge gaps. Larger projects have identified variables
to monitor the impacts of climate change including Essential Climate
Variables from the Global Climate Observing System (Bojinski et al.,
2014) and the more recently proposed Essential Biodiversity Variables
(Pettorelli et al., 2016). However, treeline definitions that directly
quantify ecosystem function are lacking in the literature. One example
of global importance is above-ground biomass, which is noted for its
potential suitability as an Essential Biodiversity Variable (Pettorelli
et al., 2016). Changing forest distribution and increased densification at
the mountain treeline is expected to increase the carbon storage capa-
city of mountain forests. As a function of tree density, girth, height and
species, above ground biomass is an example of a continuous variable
that measures both ecosystem function and accounts for variation in
treeline structure. Whilst used extensively elsewhere, research is
lacking quantifying changes in above ground biomass at the mountain
treeline, yet the classification of above ground biomass from remotely
sensed images would make a significant contribution to national
monitoring projects.

3.3. Training and validation

Remote sensing classifications make assumptions about ground
conditions based on the spectral signature observed. When monitoring
inaccessible areas of mountain ranges, a robust field data set is required
to reduce subjectivity when training classification algorithms and to
independently assess the accuracy of distribution maps. The importance
of accuracy assessment has been highlighted previously (Bharti et al.,
2012; Castilla, 2016; Olofsson et al., 2013, 2014). However, low in-
corporation of field data and a quantitative accuracy assessment is a
persistent problem in the literature (Table 1). Whilst Olofsson et al.
(2014) made clear recommendations for sampling strategies to ensure a
robust assessment, in practice, few studies of the mountain treeline
either before or since have achieved this level. Consequently, there is a
clear need to improve the integration of field and remotely sensed data
to return a quantitative accuracy assessment and avoid misrepresenta-
tion of change in forest distribution.

Improving the integration of existing forest inventory datasets (e.g.
Mihai et al., 2017) with new field campaigns that target treeline
structures indicative of forest advance or stasis in accessible areas will
increase the representation of vegetation structures of interest. By
taking a purposive approach to data collection to first identify how the
biophysical properties of the treeline relate to the spectral properties of
remotely sensed data, we will be able to develop more robust protocols
for data sampling and hypothesis testing. Accuracy reporting may take
multiple forms. Presentation of confusion tables that compare the pre-
dicted class against that assigned in the field data would be suitable
where discrete categories are predicted. If using continuous variables to
characterise variation in forest structure reporting and visualising the
error of pixel assignment, for example as a range in confidence intervals
or the standard error, would contribute to our ability to assess how
much is noise versus real change. Ultimately, such improvements will
increase the efficiency of subsequent analysis and lead to the robust
measurement of accuracy.

4. Conclusion

Ongoing environmental changes demand that we monitor changes
in species distributions and identify their impacts over wide geographic
areas. Advances in remote sensing technology and data availability
provide a major opportunity to achieve regional scale monitoring.
However, in mountain regions, their application remains problematic
due to high habitat heterogeneity, variable rates of environmental
change and poor access that restricts collection of field data.
Considering key challenges for monitoring and predicting change in
mountain forests, here we identify a need for further research that

compares the utility of different remotely sensed data sets, better re-
presentation of variation in treeline structure, an improvement in the
reporting of accuracy assessment and resource efficiency. Together,
these advances will enable a more consistent approach to characterising
spatial variation in treeline structure and allow us to more accurately
link pattern and process over different geographic scales (Fig. 3). Ul-
timately, such improvements will enable us to meet a pressing need for
better quantification and prediction of changes in species distribution
and improved estimation of the impacts such changes will have on
biodiversity and ecosystem function in mountainous regions.
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