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Abstract 

This study investigated the biological activity of a macrophage activating factor (MAP) 

produced by activated lymphocytes from the rainbow trout (Oncorhynchus mykiss) and attempts 

to discover its molecular source. 

Peripheral blood lymphocytes were shown to release factors with MAP activity following 

incubation with a variety of stimulants and were subsequently shown to activate macrophages 

using at least two different methods, the nitroblue tetrazolium (NBT) colourimetric assay and 

the luminol-dependent chemiluminescent assay. The latter technique detected an immediate 

response which decayed over a 40 minute period on the addition of cell-free supernatants from 

activated lymphocytes to macrophages. 

A number of molecular approaches, including degenerate PCR primer amplification, DNA 

cross-hybridisation and cDNA library screening were used in this study to try to isolate any 

cytokine genes from Oncorhynchus mykiss. As a control ~-actin cDNA was successfully 

amplified from Oncorhynchus mykiss using primers based on the salmon sequence. The 

Oncorhynchus mykiss orthologue of IFN-y was initially targeted. However, although a PCR 

product of the appropriate size was amplified using degenerate primers based on mammalian 

and avian IFN-y sequences, the sequence was not related to IFN-y or any other known 

Oncorhynchus mykiss sequence. A similar strategy was used to try and amplify the 

Oncorhynchus mykiss orthologue of mammalian IL-15. Again despite amplification of a DNA 

fragment of approximately the correct size there appeared to be no relationship between it and 

the known IL-15 sequences. 

As an alternative strategy a cDNA library from stimulated peripheral blood lymphocytes (PBLs) 

was constructed and screened using cDNA probes derived from stimulated and non-stimulated 

PBLs in order to detect mRNAs which might have been upregulated as a result of in vitro 

stimulation. A number of positive clones were obtained from the differential screening of the 

library including cDNAs showing similarity to other unidentified fish sequences as well as to a 
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number of proteins predicted to be involved in regulation of cell proliferation. neocorticogenesis 

and embryo development. Additionally. the library was also screened using ovine cytokine 

cDNA probes. although no positively hybridising clones were obtained. The ovine IFN-y gene 

was also used to probe genomic DNA from Oncorhynchus mykiss. but unlike previous studies 

with human IFN-~ gene no hybridisation between the ovine IFN-y gene and Oncorhynchus 

mykiss DNA was observed. 

This investigation highlights the potential difficulties of using various molecular strategies such 

as DNA cross-hybridisation or peR techniques for the cloning of fish cytokine sequences. 

Consequently. future strategies for cloning fish cytokine genes may require targeting the 

biological activity through expression libraries. 
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1.1 General Introduction 

The aquaculture industry has expanded significantly over the past two decades. However, the 

threat of infectious diseases continues to be a major problem to successful fish husbandry due to 

the high intensity culture of fish. Difficulties associated with antibiotic resistance and the lack of 

effective chemotherapy for the control of viral diseases has led scientists to focus on fish 

immunology. 

In mammals cytokines have been shown to regulate immune activity and form an 

integral part of the immune response to pathogens. As a result of this, therapies based on the use 

of cytokines as adjuvants, or on the stimulation of their production, have been assessed as a 

means of controlling infectious diseases. Relatively little is known about the fish immune 

system by comparison to that of mammals and the existence of cytokines in fish has only 

recently been established. However from the literature that has emerged over the last few 

decades it would appear that the fish immune system, including the role of cytokines, is likely to 

be similar to that found in mammals. As a result, attempts to clone and express immune effector 

molecules from fish such as the cytokines have increased greatly. It is hoped that identification 

and isolation of these molecules from fish will lead to an improved health status and reduce 

economic losses within the aquaculture industry. 

1.2 The Fish Immune system 

The immune system of fish is similar to higher vertebrates and consists of innate defences and 

adaptive defences. Leucocytes present in lymphoid tissues or circulating blood can be divided 

into phagocytes and cytotoxic cells which affect the innate responses, and lymphocytes which 

effect the adaptive responses (Secombes, 1994). 

The major lymphoid tissues of fish include the thymus, kidney and spleen (Rowley et 

al., 1988). As in higher vertebrates the thymus of fish plays a significant role in the 

development of immunity within individuals and normally involutes with age (Chilmonczyk, 

1992). In adult fish, the kidney is the most important lymphoid tissue and is subdivided into the 
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head kidney (pronephros) and middle kidney (mesonephros). Both regions exhibit haemopoietic 

activity, producing red and white blood cells although the greatest production is in the head 

kidney, which loses its renal function (Ellis and De Sousa 1974; Zapata, 1979, 1981). In some 

species, for example elasmobranchs, the spleen can also be divided into erythroid (red pulp) and 

lymphoid (white pulp) regions. However, in teleosts it is typically an unorganised tissue. 

Scattered foci of leucocytes also exist in mucosal sites such as the skin, gut and gills but again 

no organised lymphoid structures exist (Secombes, 1994). Evidence supports the presence ofT­

like and B-like lymphocyte populations and of antigen-presenting cells all of which have been 

shown to be involved in the fish immune response to infection (Zapata and Cooper, 1990). 

1.2.1 Innate Immunity 

In addition to the physical barriers such as epithelial surfaces and mucus, both cellular and 

humoral responses are involved in the mediation of fish innate defences. The innate system is 

the first line of defence against microbial infection in vertebrates and is mediated by an array of 

cells and antimicrobial proteins, glycoproteins and peptides in tissues and body fluids. It is 

triggered by the recognition of such molecules as fungal cell wall /3-glucans, bacterial 

lipopolysaccharide (LPS) and peptidoglycan, bacterial DNA and viral double stranded RNA. In 

fish the innate defence system has been found to be similar to that in higher vertebrates and 

includes the presence of phagocytic and non-specific cytotoxic cells and the production of 

molecules in the blood and mucus such as lysozyme and complement which directly lyse 

bacteria, anti-proteases (a2-macroglobulin, ai-proteinase inhibitor), transferrin and Type I 

interferon (IFN-a,-/3) which inhibit bacterial and viral replication respectively (Alexander and 

Ingram, 1992; Dalmo et al., 1997). As in mammals the innate defence can be down-regulated by 

stress (Anderson, 1992; Robertsen et al., 1994, Raa, 1996, Robertsen, 1999). 

Phagocytes have important pro-inflammatory, accessory and effector activities in innate 

immune responses. Phagocytosis and subsequent killing of internalised bacteria by both 

macrophages (monocytes) and polymorphonuclear leucocytes are important immunological 
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events in the prevention of disease (Bly and Clem, 1992). In mammalian systems, the 

mechanisms that lead to the clearance of pathogenic bacteria are well defined. However, 

phagocytosis of bacteria and various foreign particles by macrophages and neutrophils has also 

been reported for a range of fish species (MacArthur and Fletcher, 1985). Antibodies, 

complement and C-reactive protein (CRP) have all been described in fish and can act as 

opsonins to increase uptake of bacteria by phagocytic cells (Finco-Kent and Thune, 1987; 

Ainsworth and Dexiang, 1990; Alexander and Ingram 1992; Manson et ai., 1992). The resulting 

production of reactive oxygen species (ROS) and nitrogen species (RNS) within the phagocytic 

cells leads to the intracellular killing of bacteria (Secombes, 1998). The production of toxic 

oxidative burst products has been assessed in rainbow trout Onchorynchus mykiss macrophages 

(Sharp et ai., 1991) and channel catfish Ictaiurus punctatus neutrophiis (Dexiang and 

Ainsworth, 1991) amongst others. In particular, superoxide anion and hydrogen peroxide have 

been studied and their production blocked by specific respiratory burst inhibitors (Sharp et al., 

1991). Chemiluminescence has also been used as an indicator of an intracellular oxidative burst 

(Scott and Klesius 1981; Waterstrat et al., 1991). 

Non-specific cytotoxic cells (NCC) that lyse target cells by necrotic and apoptotic 

mechanisms have been described in fish (Greenlee et al., 1991). Evans and Jaso-Friedmann 

(1992) have suggested that these cells are the equivalent of natural killer (NK) cells and can lyse 

a variety of target cells including tumour cell lines and protozoan parasites. The NCC antigen 

receptor is a vimentin-like molecule which recognises a -40 kDa molecule on the target cells 

(Harris et al., 1992). A monoclonal antibody to this antigen receptor has been shown to inhibit 

mammalian NK cell activity, suggesting it is evolutionarily conserved (Harris et al., 1992). 

1.2.2 Adaptive immunity 

Adaptive immunity in fish is mediated by two populations of lymphocytes: B-like cells, 

responsible for antibody secretion, and T -like cells which direct cell killing and regulate 

immune responses. Indirect evidence for the presence of these two populations exists in fish, 

that is they have been shown to produce antibodies, reject grafts, and secrete lymphokines 
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(Rowley et ai., 1988; Secombes, 1991), however antibodies to the cell markers which 

distinguish these phenotypes in mammals are as yet unavailable in the fish. There are many 

studies describing the specific antibody response of fish to a variety of pathogens, but this 

review will concentrate on the specific cell-mediated response to infection. 

In general. T-like lymphocytes are described as surface immunoglobulin negative (sIg') 

cells whereas the B-like cells are considered to be sIg+ (Sizemore et ai., 1984; Miller et al .• 

1987; Thuvander et ai., 1990; Navarro et ai., 1993). Several efforts have been made to generate 

reagents to distinguish the T -like cell population from other cell phenotypes in the fish, but so 

far have been largely unsuccessful. However, in the channel catfish (Ictaiurus punctatus), one 

antibody has been found which reacts with cells that have T-cell functions, but it also reacts 

with neutrophils and thrombocytes, A second antibody has been described that reacts with the 

majority of thymocytes and does not recognise B cells, granulocytes, thrombocytes. 

macrophages or erythrocytes (Miller et ai., 1987, Passer et ai., 1997). Similarly, in Seabass 

Dicentrarchus labrax, a monoclonal antibody mAb DLT15, which reacts with the majority of 

cells in the thymus and T -like cells in the periphery. has also been characterised (Scapigliati et 

ai., 1995). DLT15+ cells have also been found in the gut-associated lymphoid tissue GALT; 

(Picchietti et al., 1997). Gene cloning studies have identified a number of T cell receptor (TCR) 

sequences in several teleost species, including rainbow trout (Oncorynchus rnykiss), Atlantic 

salmon (Salrno saiar) and channel catfish (Partula et al., 1994, 1995; Hordvick et al., 1996; 

Wilson et ai., 1998). Despite this, no TCR-specific mAbs have been generated, although 

techniques such as in situ hybridisation with the TCR sequences as probes have been used to 

detect fish T cells in different haemopoietic organs. Finally, the division of the T-cell population 

into specific subsets is yet to be established in fish as again there are no definitive T-cell surface 

markers for the teleost equivalents to mammalian CD4 and CD8 molecules. 

In mammals, antigen-specific cell-mediated immunity is primarily a function of the T­

helper (CD4+) and T -cytotoxic (CD8+) cell subsets, Indirect evidence for the existence of both 

of these cell types in fish has been demonstrated in that T -like cells have been reported to have 

an important accessory function in the activation of both B cells (Clem et al., 1991; Kaattari, 
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1992) and macrophages. Similarly rejection of allogeneic scale and skin grafts in fish has been 

studied extensively (Stet and Egberts, 1991). Invasion of the graft with lymphocytes and the 

establishment of immunological memory accompany the rejection, suggesting it is an event 

mediated by lymphocytes similar to mammalian cytotoxic T cells (Nakanishi et al., 1999). 

Although, from a functional perspective the presence of allo- and virus- specific cytotoxic T 

cells in teleosts has been reviewed (Nakanishi et al., 2002), the mechanisms of recognition and 

killing and the precise nature of cells involved is less well defined. 

Graft rejection does not occur within clonal lines of fish (Komen et al., 1991) and is 

delayed within serologically typed second generation gynogenetic siblings (Stet et al., 1990). 

Also, it has been demonstrated that allogeneic macrophages cannot effectively present thymus­

dependent antigens for induction of antibody production and that homologous (but not 

heterologous) alloantisera block this presentation by autologous cells for the same reason 

(Vallejo et al., 1992a). This data suggests histocompatibility genes and their products influence 

the immune system of fish, and that fish T cells will probably respond to antigens in association 

with the major histocompatabiIity complex (MHC) molecules as with mammals. 

The existence of MHC genes in fish has been demonstrated in a number of species, 

including rainbow trout, Atlantic salmon, carp (Cyprinus carpio), channel catfish (lctalurus 

punctatus), shark (Triakis scyllia), striped bass (Morone saxatilis) and zebrafish (Danio rerio). 

Both class I and class II genes have been sequenced (Juul-Madsen et al., 1992; Okamura et al., 

1993, Ono et al., 1993a; Okamura et al., 1997; Hordvick et al., 1993; Hardee et al., 1995; Van 

Erp et al., 1996a,b; Takeutchi et al., 1995; Grimholt et al., 2000) as well as the B2 -

microglobulin gene (Ono et al., 1993b; Dixon et al., 1993). A number of groups have reported 

extensive polymorphism within the fish MHC (Ono et al., 1992, 1993a; Sultmann et al., 1993; 

Grimholt et al., 1994; Miller and Withler, 1996). However, the exact number of both MHC 

class I and class II loci, and the number of alleles contained within these loci, has not been 

established, although in zebrafish, it has been shown that the MHC class I and class II loci are 

located on different chromosomes (Postlethwait et al., 1994; Bingulac-Popovic et al., 1997). 

Linkage analysis in Atlantic salmon indicated the two classes are either located far apart on one 
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chromosome or are situated on different chromosomes (Orimholt and Lie, 1998). Analysis of 

the MHC gene sequences has revealed many sequence similarities to those in higher vertebrates, 

reflecting both functional and structural requirements (reviewed by Kaufman et al., 1994). For 

example, disulphide bridges, glycosylation sites and salt bridges found in higher vertebrate 

MHC molecules are also present in the fish eDNA sequences. In addition potential CD4/CD8 

binding domains have been reported (Stet et al., 1996; Rode, 1997), providing more indirect 

evidence of the MHC restricted T cell sub populations. 

Investigation of MHC class II ~-gene expression has been assessed in both lymphoid 

cells and organs of fish. In carp, relatively higher levels of expression have been found in 

peripheral blood leucocytes, thymocytes and head kidney leucocytes than in gut leucocytes and 

splenocytes (Rodrigues et ai., 1995). High expression of the class II ~-gene was also found by 

northern blot analysis in the gills of a variety of salmon species (Orimholt et ai., 1994). The 

regulation of MHC class II gene expression has been studied (Mach et al., 1996). Whilst 

constitutive expression on B cells and macrophages occurs, many soluble factors have been 

shown to either up-regulate or down-regulate this expression (Glimcher and Kara, 1992). For 

example, up-regUlation of MHC class II ~-chain expression on trout head kidney macrophages 

has been shown to occur using a trout MHC class II ~ polyclonal antiserum (Van Lierop et al., 

1998), as a result of incubating the macrophages with tumour necrosis factor (TNFu) and 

bacterial lipopolysaccharide LPS (Knight et ai., 1998). Although, the expression was modulated 

by the synergistic action of the cytokine and bacterial product, tumour necrosis factor TNFu 

alone had little effect. This is similar to previous studies of other fish leucocyte functions, where 

TNFu has little effect unless in combination with a second signal (Hardie et ai., 1994; Jang et 

ai., 1995a). Down regulation of both MHC class I and II mRNA expression has also been 

demonstrated using a macrophage-like cell line derived from the head kidney of Atlantic 

salmon, following stimulation with human recombinant insulin-like growth factor-I (lOF-I). A 

decline in both MHC class I and II mRNA expression, using IOF-I, was seen in SHK-1 (salmon 

head kidney) cells (Koppang et al., 1999), as with mammalian cells (Trojan et ai., 1996; 
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Shevelev et al., 1997). Whereas, infection of SHK-l cells with infectious pancreatic necrosis 

(IPNV) and infectious salmon anaemia virus (ISA V), produced initial increase in levels of 

mRNA expression followed by a decline in expression (Koppang et al., 1999). 

As mentioned previously, T cell receptor genes have been described in rainbow trout 

(Partula et al., 1994, 1995) and are very similar to the TCR a and (3 genes of higher vertebrates. 

Genes similar to the mammalian 'Y and 0 isoforms have been described in cartilaginous species 

(Rast and Litman, 1994; Rast et al., 1995, 1997). Cell-mediated responses are also characterised 

by the production of cytokines by T cells following stimulation with mitogens or specific 

antigen. The biological activities of many such cytokines have been described in fish 

(Secombes, 1991), and will be discussed in more detail later. Some of the activities described so 

far include those analogous to mammalian macrophage activating factor (MAP) I y-interferon 

(Graham and Secombes, 1990a,b), interleukin-2 (IL-2) (Grondel and Harmsen, 1984), migration 

inhibition factor (MIF) (Smith et al., 1980; Mckinney et al., 1981) and chemotactic factor 

(CTF) (Bridges and Manning, 1991). More recently a number of cytokine genes/cDNAs have 

been described. These will also be discussed in more detail later. 

One of the most important differences between specific cell-mediated immune 

responses (CMI) in fish compared with mammals is the temperature dependence of fish T cell 

responses (Clem et al., 1991; Bly and Clem, 1992). Low temperatures inhibit proliferation of 

fish T cells to both mitogens (and allogeneic cells). Also, the inhibition of helper activity, which 

B cells require to respond to thymus dependant antigens occurs. Following cell activation, the 

inability of T cells to desaturate stearic acid to oleic acid in the plasma membrane, possibly 

through an effect on membrane viscosity had been implicated in the reduction of signalling T­

cell functions at lower temperatures (Bly and Clem, 1992). However, it now seems unlikely that 

low temperature immunosuppression results from this inability of T cells to adapt and instead 

minor changes in T cell plasma membrane are thought to be involved (Clem et al., 1991). 
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If cytokine release from T cells is inhibited at low temperatures in fish, then in addition to the 

potential problems for signal transduction at low temperature there may be a lack of critical 

growth factors for lymphocyte responses (Hardie et ai., 1995). 

1.3 General macrophage functions 

In vertebrates, cell types displaying phagocytic activity are well-characterised and are broadly 

classified as granulocytes and monocytes/macrophages (Rowley et al., 1988), and in higher 

vertebrates macrophages in particular are multi-functional. In teleost fish, phagocyte cell types 

are less well characterised, although it is known that macrophages, monocytes and neutrophils 

(PMNs) in blood, tissues and inflammatory exudates are phagocytic (McKinney et ai., 1977; 

Braun-Nesje et al., 1981; Thuvander et al., 1987; Secombes and Fletcher, 1992; Pedrera et ai., 

1993; Lamas and Ellis, 1994a, b; Brattgjerd and Evensen, 1996; Dalmo et al., 1997). 

Macrophages play an important role in both the innate and adaptive immune responses 

in fish. Apart from being migratory and actively phagocytic (Secombes and Fletcher, 1992), 

macrophages generate a number of oxygen dependent and independent microbiocidal molecules 

such as ROS and RNS (Secombes and Fletcher, 1992; Neumann et al., 1995). Additionally, they 

secrete soluble mediators (important in inflammatory events) such as cytokines (Zelikoff et al., 

1990; Clem et al., 1991; Jang et al., 1995a) and eicosanoids (Pettit et al., 1991a,b; Rowley et 

al., 1995). Macrophages act as accessory cells for lymphocyte responses and are involved in the 

processing and presentation of antigens (Vallejo et al., 1992a,b). 

The role of macrophages as accessory cells in the immune responses of higher 

vertebrates is well-established (Unanue et al., 1984). In studies on the proliferative responses of 

fish to Concanavalin A (Con A), monocyteslmacrophages or factors released by them have been 

shown to be necessary for the activation of lymphocytes (Smith and Braun-Nesje, 1982; 

Sizemore et al., 1984; Clem et al., 1985). The dependence upon accessory cells for the optimal 

production of MAF was shown by Graham and Secombes (1988), in studies on the cellular 

requirements for lymphokine secretion by rainbow trout leucocytes. Some MAF activity has 
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been detected in supernatants produced by stimulated lymphocytes in the absence of 

macrophages. 

1.3.1 The priming and activation of macrophages 

Primed macrophages are usually considered to be cells that have some increased functions, for 

example phagocytosis or chemotaxis, but have not yet acquired a heightened killing activity. In 

comparison, activated macrophages are defined as cells having an increased ability to kill 

micro-organisms (Nathan, 1986). The molecular basis for the priming of macrophages could 

include modification of the cell in a number of ways. However, an increase in the number and 

affinity of plasma membrane receptors does not appear to explain priming on its own. Changes 

in the transduction events responsible for stimulus-response coupling might lead to a more 

efficient stimulation or function of the enzyme responsible for respiratory burst. Thus it may 

well be that priming can be explained partly by a modification of the respiratory burst enzyme 

such that it binds its substrate nicotinamide adenine dinucleotide phosphatase (NADPH) more 

efficiently. This could be achieved either by an increase in the amount of enzyme or by an 

increase in its efficiency, an increase in an enzyme cofactor, or a reduction of an enzyme 

regulator (Johnston and Kitagawa, 1985). 

In mammals, IFN -y has been shown to be a primary agent in both priming and 

activation of macrophages and neutrophils early in infections with pathogenic bacteria (Byrne 

and Turco 1988). Recombinant IFN-y (rIFN-y) has been shown to enhance the functional 

activities of human, bovine and porcine neutrophil and chicken heterophils (Steinbeck et al., 

1986; Canning and Roth 1989; Berton and Cassatella 1992; Coe et al., 1993; Semani et al., 

1993; Kabbur et aI., 1995; Kogut et al., 2001). Meyer et al., (1991) investigated the priming 

effects of IFN-y in vitro, on the ability of human alveolar macrophages and monocytes to 

release superoxide anions in response to exposure to phorbol myristate actetae (PMA). They 

also determined whether simultaneous exposure of these cell types to IFN-y and LPS enhanced 

or suppressed superoxide anion generation. Their results demonstrated that simultaneous 
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exposure to lower concentrations of LPS had an additive effect with IFN-y in priming alveolar 

macrophages for an increased respiratory burst. In fish it is recognised that macrophages can be 

activated by a soluble factor derived from lymphocytes. This soluble factor has both acid and 

heat labile properties characteristic of mammalian IFN-y, and therefore it is thought that the 

major macrophage activating factor in fish could be the equivalent of mammalian IFN-y. 

It has been demonstrated that several specific cell proteins undergo phosphorylation 

when macrophages are exposed to PMA (Vaux and Gordon 1982, Andrews and Babior 1983, 

Babior et al .• 1984a.b, Kiyotaki and Bloom 1984, White et al.. 1984). The phosphorylation of 

proteins by protein kinases acting synergistically with increased concentrations of intra-cellular 

Ca2+ may act to mediate the respiratory response. 

1.3.2 Macrophage respiratory burst activity 

The respiratory burst reaction, catalysed by a plasma membrane-bound NADPH oxidase, is 

characterised by the reduction of molecular oxygen to the superoxide anion (Oi) radical 

(reviewed by Seifert and Gunter, 1991). These highly reactive oxygen products possess 

microbiocidal activities and are responsible for the intracellular killing of engulfed bacteria. An 

increased oxygen uptake together with the production of oxygen free radicals has been 

demonstrated in salmonid leucocytes and macrophages (Nagelkerke et al.. 1990). The kinetics 

of oxygen consumption by Japanese eel (Anguilla japonica) PMNs during respiratory burst has 

also been shown to be similar to the pattern seen in mammalian PMNs. 

In mammals, the capacity to respond to stimulation with enhanced respiratory burst can 

be induced in vitro by incubating cultured macrophages (or blood monocytes) with: soluble 

stimulants such as ConA, PMA (Graham and Secombes, 1988), bacterial endotoxin, bacterial 

cell wall component muramyl dipeptide (Pabst et al., 1982; Pabst and Johnston, 1980), 

proteolytic enzymes (Johnston et at., 1981; Speer et al., 1984), sodium periodate (Tsunawaki 

and Nathan, 1984), supernatants from stimulated lymphocytes (reviewed by Nathan et al., 1983) 

and IFN-y (Murray et al., 1983; Nathan et at., 1983). In addition, macrophages are activated in 
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vivo by bacterial products or by other molecules generated during an inflammatory response 

(Johnston and Kitagawa, 1985). Similarly teleost phagocytes in blood, haemopoietic organs and 

the peritoneal cavity have been reported to synthesise a variety of ROS upon stimulation with 

different particulate and soluble stimulants (Scott and Klessius, 1981; Higson and Jones, 1984; 

Chung and Secombes, 1988; Secombes et al., 1988; Zelikoff et al., 1991; Anderson et al., 

1992). In addition, evidence exists that trout phagocytes produce these ROS, including the 

glucose dependent production of superoxide anion (0£), and the presence of a membrane bound 

NADPH oxidase enzyme (Higson and Jones, 1984; Secombes, et al., 1988; Nagelkerke et al., 

1990). 

It has been established that in fish, the production of oxygen species is not sensitive to 

mitochondrial inhibition (Secombes et al., 1988). Studies on the stimulation of rainbow trout 

phagocytes by Nagelkerke et al., (1990) in the presence of sodium azide, demonstrated that 

respiratory burst is independent of the mitochondrial cytochrome system, agreeing with studies 

on mammalian phagocytes (Karnovsky 1962; Babior 1978, 1984a, b). Following membrane 

stimulation, rainbow trout phagocytes have a markedly increased oxygen uptake, which is 

dependent upon the presence of glucose. In the absence of glucose, superoxide anion production 

by trout macrophages is completely inhibited (Secombes et ai., 1988). 

Macrophage activation can be assessed by measuring respiratory burst activity via a number of 

in vitro functional assays. The generation of microbiocidal products is useful for monitoring 

whether macrophages are activated, since they contribute directly to any increased killing. 

Individual ROS released following macrophage stimulation, such as O2• (Secombes et ai., 1988) 

and hydrogen peroxide (H20 2) (Chung and Secombes, 1988) can be detected. The reduction of 

ferricytochrome C (Secombes, 1990) and nitroblue tetrazolium can be used to measure the 

production of the superoxide anion radical O2, whereas the horseradish peroxidase-dependent 

oxidation of phenol red - measures H20 2 (Chung and Secombes, 1988). 

Chemiluminescence analysis also provides a sensitive measure of phagocytic function 

(Anderson and Brendzel, 1978; Easmon et al., 1980; Nelson et al., 1977), and the substrate 

Luminol can be used as a chemiluminescence probe for the measurement of respiratory burst 
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metabolism following macrophage stimulation. The low amounts of measurable light produced 

in inherent chemiluminescence, requires the need for an amplification compound such as 

luminol, a cyclic hydrazide, which enhances the magnitude of the light produced during 

chemiluminescence (Nagelkerke et al., 1990; Vazzana et al., 2003). 

1.4 Regulation of macrophage activity in fish 

Macrophage activity in fish can be modulated by exogenous molecules and such signals can act 

synergistically and antagonistically to achieve up or down regulation of macrophage function. 

Modulation of respiratory burst of head kidney macrophages isolated from rainbow trout was 

observed following treatment with several biologically active substances (Novoa et al., 

1996a,b). Studies have shown synergistic effects of MAF-containing supernatants with LPS and 

TNF-cx on macrophage respiratory burst activity (Hardie et al., 1994; Jang et al., 1995a), nitric 

oxide (NO) production (Neumann et al., 1995) and production of macrophage-derived MAP 

(Jang et aI., 1995b). Potential interaction of both stimulatory (cytokines, LPS, glucans) and 

inhibitory (prostaglandins) molecules on respiratory burst activity in vitro was examined. Of the 

stimulants used, MAP-containing supernatants were most stimulatory. Addition of LPS, glucans 

and TNF-cx simultaneously with MAP supernatants increased respiratory burst activity further 

and the inhibitory effect of prostaglandin on macrophage function could be overcome by co­

incubation or pre-treatment with stimulatory molecules. 

In comparison little is known about the interactions between suppressive agents on fish 

macrophages, or between suppressive and stimulatory factors. Precedents exist for interactions 

of suppressive agents on other fish leucocytes, as with the interaction seen between testosterone 

and cortisol in reducing antibody-secreting cell numbers (Slater and Schreck, 1993). Similarly, 

in mammals TGF-~, can down-regulate macrophage activity (Adams and Hamilton, 1992; 

Alleva et ai., 1995). 

It is well established that fish T-cell responses are particularly temperature sensitive 

(Bly and Clem, 1992; Clem et al., 1984; Miller and Clem, 1984). The effect of temperature on 
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macrophage activation and the production of MAP by rainbow trout leucocytes have been 

investigated. It is generally accepted that the production of MAP is temperature dependent both 

in vivo and in vitro and bacteriocidal activities are severely impaired at low temperatures (Scott 

et al., 1985~ Ainsworth et al., 1991~ Hardie et al., 1995). MAP production in rainbow trout 

leucocytes is inhibited at non-permissive temperatures (temperature below optimal but within 

physiological range) which produces immunosuppression. Thus, it is the T cell that is the 

temperature sensitive cell~ the macrophage function itself remains intact at low temperatures 

when stimulated with MAP (Hardie et al., 1995). 

1.5 Cytokines 

Interactions between cells of the immune system are characterised by the release of regulatory 

soluble factors known as cytokines which act as signalling molecules within the immune system 

(Callard and Gearing, 1994; Thomson, 1994). Their constitutive production is usually low, and 

their synthesis is triggered as a result of new gene transcription following cell stimulation. Since 

transcription is typically transient and cytokine mRNA short-lived, cytokine secretion is a brief 

self-limiting event (Secombes et al., 1996). Cytokines normally act locally within the tissues 

and the range of their influence is usually restricted to cells within the immediate vicinity of the 

cytokine-producing cell. Cytokines normally act in a paracrine or autocrine fashion (Hamblin, 

1993) and therefore act as local chemical mediators, although in some instances, they can 

function in an endocrine manner and reach target cells via the blood stream. Also, they can 

display pleiotropic effects: inducing different responses in different targets by acting on target 

cells via high affinity specific receptors (Secombes et al., 1996). 

Cytokines can act in both a stimulatory or inhibitory manner, leading to an altered 

biological response, as a result of influencing the expression of other cytokines. Cytokines often 

act synergistically (Vilcek and Le, 1994) with other cytokines and pathogen-derived molecules, 

for example LPS, and therefore it is unlikely for a cell to encounter a single cytokine in vivo. 

Synergy can result when two signals are required for stimulation of a target cell or when contact 
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with the first signal I cytokine induces receptor expression for the second signal (Hamblin. 

1993). Although less well documented. there are also examples of antagonistic effects between 

cytokines. For example, transforming growth factor TGF~. down regulates MAP initiated 

reactions such as macrophage respiratory burst activity. Type I interferons (IFNa and IFN~) 

and growth factors (Fibroblast growth factor FGF, epidermal growth factor EOF. and platelet 

derived growth factor PDGF) can act as mutual antagonists. Growth factors reverse antimitotic 

effects of IFNs and in turn IFNs can block growth factor induced entry of cells into the S phase 

growth (De Maeyer and De Maeyer Ouignard. 1988). 

Conventially cytokines have been divided into a number of different families, for 

example interferons (IFN), interleukins (IL), chemokines, colony stimulating factors (CSF). and 

TNF. However. due to increased structural knowledge available regarding cytokines (Sprang 

and Bazan. 1993), a revision of this classification was required based primarily on the helical 

class (a/~), type of protein folding of the cytokine, and receptor type. Using structural criterion, 

several hormones including insulin, prolactin and growth hormone display an obvious 

association with cytokines. Classification of cytokines on a structural basis has led to the natural 

grouping of receptor molecules they bind. So far. at least three receptor families have been 

identified (Miyajima et ai., 1992; Foxwell and Barrett, 1993) namely Type I cytokine receptors, 

including the receptors for hemopoietic growth factors and IL-2 - IL-7. Type II receptors which 

include those for IFNa. IFN f3 and IFNy. and Type IV or Immunoglobulin-like receptors. 

Fish produce a number of cytokine like soluble products. of which most have been 

identified in biological assays on the basis of their functional similarity to mammalian cytokine 

activities. whilst others have been detected either through their antigenic cross-reactivity with 

mammalian cytokines or on the basis of biological cross-reactivity on cytokine-dependent 

mammalian cell lines. Indirect evidence for TNFa-like. TGFf3.-like and IL-I-like factors in 

rainbow trout has been provided by biological and antigenic cross-reactivity (Zelikoff et ai., 

1990; Ahne. 1993. 1994; Jang et al .• 1994). 
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Jang et al.. (1995a) demonstrated that macrophage respiratory burst, mitogen-induced 

lymphoproliferation and neutrophil migration in the trout were exacerbated by incubation with 

human TNFa., and all activities were reduced by either co-incubation with antibodies against 

human TNF-a. or prior incubation of cells with antibodies against human TNF receptor 1. 

Respiratory burst activity of rainbow trout rnacrophages was also shown to be increased by 

incubation with supernatants derived from activated trout rnacrophages (Jang et al., 1995b), 

suggesting the presence of a TNF-a. like factor in these supernatants. Similar studies have been 

carried out with human hTGF~h showing a dual effect on respiratory burst activity depending 

on the concentration employed (Jang et al., 1994). 

Indirect evidence also suggests inducible production of an IL-l-like factor by common 

carp Cyprinus carpio. rnacrophages and neutrophils in vitro. Supernatants from these cells 

induced proliferation of an IL-l-dependent mammalian T-cell line, which was suppressed by 

co-incubation with antibodies against hIL-Ia. and hIL-l~ (Verburg van Kemende et al., 1995, 

Weyts et al., 1997). Two different monocyte-deri ved IL-l-like proteins been identified in 

channel catfish (Ellsaesser and Clem, 1994). 

1.5.1 Macrophage activating factor (MAF) 

Approaches to isolate/identify MAF in fish have involved looking for functional activity. MAF 

production in fish has mainly been demonstrated by stimulation with mitogens, although some 

reports also report MAF production as a result of stimulation of fish leucocytes with specific 

antigens. Graham and Secombes (1988) described the production of a macrophage activating 

factor in rainbow trout leucocytes incubated in the presence of the T cell mitogen, Concanavalin 

A. They found that the cell-free supernatants were capable of activating fish macrophages in 

vitro, as shown by their ability to increase the release of ROS and bacteriocidal activity of 

rainbow trout rnacrophages in culture. 

The isolation and purification of the molecule responsible for the macrophage activating 

activity has however proved difficult. Nevertheless it appears that the MAF is a T cell product 
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with a molecular weight of approximately 19 kDa and is temperature and pH sensitive, 

properties similar to mammalian IFN-y (Graham and Secombes, 1990b). Based on this, it has 

been suggested that it may well correspond to mammalian IFN-y. 

Marsden et a/., (1994) investigated antigen-induced release of MAP from rainbow trout 

leucocytes to establish whether detection of a variety of lymphocytes responses after 

immunisation could be used to measure the success of a vaccination system, especially if such 

responses corresponded to disease resistance. The aim of their study was to confirm the 

production of MAP in response to specific antigens following immunisation against Aeromonas 

salmonicida and investigate the kinetics of this response in relation to antibody and proliferation 

responses. Their results demonstrated that MAP can be released in vitro in response to specific 

antigens and following incubation with supernatants derived using the highest dose of antigen 

(to stimulate MAP release from primed cells), the relative increase in macrophage respiratory 

burst activity was similar to that found when using mitogens. Also, the release of MAP 

following immunisation with A. salmonicida peaked approximately 4-5 weeks post 

immunisation and correlated with peak antibody titres. 

1.5.2 Interferons (lFNs) 

The interferons are glycosylated proteins of approximately 20kDa, which represent a large 

family of soluble cytokines with biological and antiviral activity, acting via specific receptors 

(Gresser, 1997). The IFNs have been implicated in cell proliferation and differentiation, as well 

as in the suppression of some forms of cancer (Chawla-Sarkar et al., 2001; Kang et al., 2002). 

IFNs are divided into two groups, a group consisting of IFN-a.,-B,-<o,-O,-K,-t, and a 

group consisting of IFN-y (Sen and Lengyel, 1992). Genes for IFN-aiB/r%hdt group have been 

cloned from a variety of mammals, including humans (Lawn et al., 1981a,b), mice (Shaw et al., 

1983; Daugherty et al., 1984), pigs (Lefevre and La Bounardiere et al., 1986) and several avian 

species such as ducks (Schultz et al., 1995), chickens (Sekellick et a/., 1994) and turkeys 

(Suresh et al., 1995). 
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IFN-a and IFN-~ are glycoproteins with molecular weights of between 16 and 26kDa. IFN-a is 

very polymorphic with nine types in humans, whereas IFN-~ appears to be of a single type 

(Yano, 1996a,b). lFN-a and lFN-~, due to their many similarities are grouped together as type I 

IFN. They share approximately 30% amino acid (a.a) sequence homology, are acid stable and 

act via a single receptor. The 45% nucleotide homology detected between cloned human IFN-a 

and IFN-~ suggests that they originated from a common ancestral gene (Taniguchi et al., 1980; 

Miyata et al., 1985). IFN-a belongs to a multi gene family, whereas a single gene encodes IFN­

~. IFN-a and IFN-~ genes do not contain introns. Both IFNs are produced by all cell types, are 

induced in cells infected with virus and exhibit a broad range of antiviral activity. Hybridisation 

studies by Wilson et al., (1983), using the human interferon-~ gene as a probe against fish 

genomic DNA suggested that fish too are likely to possess an IFN-~ gene although to date the 

gene has not been isolated. 

IFN-y is unrelated to IFN-a and IFN-~ and is termed a Type II IFN. IFN-y is a 

glycoprotein with a molecular weight (mw) similar to IFN-a and IFN-~ (Yip et al., 1982) but it 

shares less than 10% a.a. sequence homology. IFN-y is unstable at pH below 4 and at high temp. 

(> 56°C) and acts via a separate receptor (Epstein, 1984; Langer and Pestka, 1988). It differs 

from Type I IFN in its spectrum of biological activities which include cell regulation, cell 

differentiation and intercellular communication (Trinchieri and Perussia, 1985). In addition to 

its antiviral activity, IFN-y can activate macrophages (Schultz and Kleinschmidt 1983), augment 

B-cell responses (Leibson et ai., 1984), enhance T-cell responses (Frasca et al., 1985) and 

induce expression of both class I and class II MHC molecules on a variety of cell types 

(reviewed by De Maeyer and De Maeyer-Guignard, 1988). 

IFN-y is produced by a restricted set of immune cells (T cells and NK cells), in response 

to immune and I or inflammatory stimuli and functions to stimulate the development and actions 

of immune effector cells. One of the most important consequences of IFN-y secretion is the 

activation of macrophages, this is achieved through the induction of ROS and nitrogen oxide 

(NO) which activate a variety of anti-bacterial, anti-tumour and anti-viral responses (Billiau, 
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1996a.b). So far no IFN-y genes have been identified in fish. although as mentioned previously 

circumstantial evidence suggests that the macrophage activating factor produced by fish 

lymphocytes may be the equivalent molecule. 

IFN-y receptors are expressed on nearly all cell types. with possible exceptions of 

mature erythrocytes. and display strict species specificity in their ability to bind IFN-y (Farrar 

and Shreiber. 1993). Binding of IFN-y to its receptor on the surface of a cell results in the 

activation of signal transducers and activators of transcription mediated through Janus tyrosine 

kinases OAKs) at the cell membrane. IFN-y signalling is dependent on five distinct proteins: 

type 1 integral membrane proteins IFNGRI and IFNGR2 (subunits of IFN-y receptor) and 

JAKI. JAK2 and signal transducers and activators of transcription STATI (Schindler and 

Darnell. 1995; Bach et al., 1997). The signalling pathway results in the release of signal 

transducers and transcription factors and their migration to the nucleus, where they can induce 

or suppress the expression of many different genes (Stark et al., 1998). The IFN-induced family 

of DNA-binding transcription factors include the interferon regulatory factors: IRFl, IRF2, 

IRF3, interferon-y stimulated gene factor 3 (lSGF3y), IFN consensus sequence-binding protein 

(ICSBP) and IRF4, a transcription factor expressed only in lymphocytes also known as 

consensus sequence-binding protein in adult T-cell leukemia cell line or activated T cells: 

Interferon Consensus Sequence binding protein for Activated T cells (ICSAT), and lymphocyte­

specific interferon regulatory factor (LSIRF). 

Proteins of the IRF family such as IRF2 (Harada et al., 1989), ICSBP (Nelson et al., 

1993) and ICSAT (Yamagata et al., 1996), bind to interferon-stimulated regulatory elements 

and negatively regulate the expression of the associated genes. 

IFN-y can up-regulate the expression of MHC class I proteins, an activity it shares with 

IFN-a. and IFN-~, and thereby promote the development of CD8+ T-cell responses (Boehm et 

al., 1997). This expression is known to be driven by the transcription factor IRFI (Reis et al., 

1992; Chang et al., 1992). Interferons also play an important role in antigen processing by 

regulating the expression of many proteins required to generate antigenic peptides. IFN-y 
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modifies the activity of proteasomes (multi-subunit enzyme complex responsible for the 

generation of all peptides that bind to MHC class I proteins), by modulating the expression of 

both enzymatic and non-enzymatic components (York and Rock, 1996; Boehm et al.. 1997). 

Thus, interferons enhance immunogenicity by increasing the quantity and repertoire of peptides 

displayed in association with MHC class I proteins. 

IFN-y has an important effect on Thl cell development. In vitro, antibody-mediated 

neutralisation of IFN-y greatly reduces the development of Thl cells and augments the 

development of Th2 cells (Hsieh et al., 1993). IFN-y facilitates Thl production by enhancing 

the synthesis of IL-12, which drives developing CD4+ T cells to become Thl cells (Hsieh et aI., 

1993; Trinchieri, 1995). In addition, IFN-y blocks the development of Th2 cells by inhibiting 

production of IL-4, required for Th2-ceU proliferation (Szabo et al., 1995) and thereby 

preventing proliferation (Gajewski and Fitch, 1988). 

Interferons play complex and sometimes conflicting roles in regulating humoral 

immunity. They exert their effects either indirectly, by regulating the development of specific T 

helper cell subsets, or directly at the level of B cells. In the latter case, interferons are 

predominantly responsible for regulating three specialised B-cell functions: development and 

proliferation, immunoglobulin secretion and immunoglobulin heavy-chain switching (Stark et 

al., 1998). 

Processes that negatively regulate IFN-y signalling are now being defined. For example, 

in certain cells such as T cells, IFN-y can induce desensitisation by down-regulating the 

expression of the interferon-y receptor signal-transducing chain IFNGR2 mRNA and protein 

(Bach et al., 1995; Pernis et al., 1995). Recently a family of proteins known as suppressors of 

cytokine signalling (SaCS) have also been shown to affect IFN-y signalling (Greenhalgh and 

Hilton, 2001). These proteins are induced by IFN-y and other cytokines and regulate IFN-y 

signal transduction in a classic negative feedback mechanism, by binding to and inhibiting 

activated JAKs. In addition, they combine such direct inhibitory interactions on the cytokine 
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receptors and signalling proteins with a mechanism of targeting associated proteins for 

degradation (Alexander, 2(02). 

Most of the current literature on interferon synthesis has focussed on human and murine 

systems, although a few studies have addressed the issue of whether lymphocytes from lower 

vertebrates produce interferon. There are no reports of cytokines with antiviral activity in 

amphibian or reptile species. IFN like activity involving cytokines showing antiviral or 

tumouricidal activity have been demonstrated in birds. For example, avian reoviruses induce 

IFN-like activity in chick epithelial fibroblasts (CEF) in vitro and in vivo (Ellis et al., 1983). 

Subsequently, a gene encoding chicken IFN was cloned and expressed from a primary chick 

embryo cDNA library (Sekellick et ai., 1994). In addition, IFN genes from several other avian 

species such as ducks (Schultz et al., 1995), and turkeys (Suresh et al., 1995) have been 

identified. 

Anti-viral activity in fish cells has been reported (Gravell and Marlsberger, 1965; Oie 

and Loh, 1971; De Sena and Rio, 1975; Graham and Secombes, 1990b). Previous studies in fish 

have reported the production of JFN-like activities in vivo and in vitro in response to viral 

infection (De Sena and Rio, 1975; De Kinkelin et ai., 1982) and of cytokines in general in 

response to mitogen stimulation in vitro (Smith and Braun-Nesje, 1982, Graham and Secombes, 

1988). Interferon-like anti-viral activity was shown in the serum of rainbow trout after 

experimental infection with several pathogenic salmonid viruses: viral haemorrhagic 

septicaemia virus (VHSV) (De Kinkelin and Dorson, 1973), infectious haematopoietic necrosis 

virus (llINV) (De Kinkelin and Le Berre, 1974), and IPNV (Dorson et ai., 1992). In addition 

anti-viral activity has been demonstrated in rainbow trout leucocytes in response to stimulation 

in vitro with both live and inactivated VHSV (Gaillard et ai., 1989). A similar activity was 

found in salmonids after exposure to the interferon-j3 inducer poly I: C, a synthetic ds RNA 

(Eaton, 1990). Studies by Snegaroff (1993) described the ability of various viruses to stimulate 

interferon-like activities in leucocytes from rainbow trout kidney in vitro and also tested its 

protective action in vivo with VHSV infected trout. The best inducer found was Newcastle 

disease virus (NOV), followed by two coronaviruses (porcine transmissible gastroenteritis 
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coronavirus (TGEV) and a bovine coronavirus). Interferon was also produced by leucocytes 

stimulated with glutaraldehyde-fixed cells infected with VHSV, but the titre was much lower. 

None of the individual proteins responsible for the IFN-like anti-viral activities have been 

isolated. However the various activities obtained provide evidence for the existence of both 

Type I and Type II IFNs. 

1.5.3 Interferon induced genes 

The production of IFN and subsequent receptor signalling events leads to the transcription of a 

variety of other genes. It is these lPN-induced genes which mediate both the anti-viral effects 

and cell regulatory effects of IFN. Genes corresponding to several IFN-induced genes in 

mammals have been cloned and sequenced in fish and include: Mx (Leong et al., 1995), Vig-l 

(Boudinot et al., 1999), Vig-2 (Boudinot et al., 2001) and IRF (Yabu et al., 1995; Richardson et 

al., 2001). The latter, a member of a family of DNA-binding transcription factors is implicated 

in the regulation of IFN production and cell growth (Eisenbeis et al.. 1995; Matsuyarna et 

al..1995; Yamagata et al .• 1996). The existence of such genes in the fish is further evidence for 

the likely existence of IFN in fish. 

1.5.4 Interferon related cytokines 

Regulation of IFN-y synthesis is one of the most stringently controlled processes of an immune 

response. Its production is essentially restricted to activated CD4+ T helper cells, CDS+ 

cytotoxic T cells and NK cells (Billian et al., 1996). For each cell type, IFN-y secretion is 

further restricted by the availability of IFN-y inducing cytokines such as interleukin (IL)-12 and 

TNFa., which arise from accessory cells following activation (Billiau, 1996a,b). Apart from IL-

12, TNFa. and ll..-2 which directly induce the expression of IFN-y (Billiau 1996a,b; Locksley, 

1993), IL-IS has been added to the short list of IFN-y regulators (Ushio et al., 1996). In 

addition, IL-15 has been shown to activate peripheral blood lymphocytes (PBLs; Grabstein et 
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ai., 1994; Oirl et aI., 1994, 1995a.b) and to stimulate the production of IFN-y (Calarota et ai., 

2003; Strengell et ai., 2003). 

IL-18 was originally known as IFN-y inducing factor (IOIF) and is a pro-inflammatory 

cytokine which is a potent inducer of IFN-y production by T cells (Okamura et al., 1995, 

Micallef et al., 1996) and NK cells (Tsutsui et ai., 1996). IL-18 is structurally similar to IL-lf3 

and as such is initially synthesised as a biologically inactive precursor molecule, requiring the 

IL-lf3 converting enzyme (ICE) for cleavage into an active mature molecule. The activity of 

mature IL-18 is also closely related to that of IL-l. (Dinarello, 1999) with profound effects on 

T-cell activation. 

Either independently or in synergy with IL-12, the effects of IL-18 through its induction 

of IFN-y can lead to a rapid activation of the monocyte/macrophage system resulting in up 

regulation of these cells innate immune capabilities (Billiau, 1996a,b). IL-18 is induced by 

stressful stimuli (bacterial or neurogenic signals) (Okamura et al., 1995; Conti et ai., 1997), and 

it has been proposed that a stress-induced release of the cytokine can lead to a further cycle of 

IFN-y/IL-18 production. Following initial IL-18 induced IFN-y production, newly secreted IFN­

y can stimulate macrophageslmonocytes to increase their ICE activity. In the presence of 

continued IL-18, increased ICE activity probably results in more processed IL-18, which leads 

to more lymphocyte IFN-y production and subsequent macrophage ICE activity (Suda et al., 

1993). Therefore. the IFN-y inducing factor not only promotes IFN-y synthesis but also possibly 

participates in its overall activities (Figure 1.1). IL-18 has been cloned in mice from partial a.a. 

sequences deduced from the purified proteins (Okamura et al., 1995) and in humans (Ushio et 

al., 1996). More recently IL-18 was cloned from the chicken, but this is the only non­

mammalian vertebrate to date known to possess this cytokine (Schneider et al., 2001). 

IL-15, formerly known as T-cell growth factor in recognition of its ability to induce the 

proliferation of T cells (Orabstein et al., 1994; Oiri et al., 1994, 1995a,b), is a novel cytokine 

that shares many biological properties with IL-2. However it lacks any obvious amino acid 

homology with IL-2. IL-15 has been shown to be a chemoattractant for human blood T 
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lymphocytes (Wilkinson and Liew, 1995) and able to induce lymphokine-activated killer (LAK) 

activity in NK cells, as well as inducing the generation of cytolytic effector cells. High affinity 

cell surface receptors for IL-15 have been detected on a variety ofT cells and B cells, as well as 

non-lymphoid cells (Giri etaZ., 1994, 1995a,b). 
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Figure 1.1 Regulation of IFN-y synthesis and the role of IFN-y regulators IL-18/IL-IS 
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1.6 The cloning of fIsh cytokine genes 

Although the biological activities of fish cytokines are known. only recently has there been 

progress with cloning the genes. A number of fish cytokine genes have been sequenced in 

recent years. and include amongst others. Interleukin-1J3 (Secombes et al .• 1997. 1998; Fujiki et 

al .• 1998). transforming growth factor-J3 (Hardie et al .• 1998). fibroblast growth factor (Kiefer et 

al .• 1996; Hata et al .• 1997) and several chemokines (Dixon et al .• 1997; Fujiki et al .• 1998; 

Najakshin et al .• 1998). A complete list of the fish cytokine genes/cDNAs which have been 

cloned from a variety of different species is given in Table 5.4. The most common approach 

taken has been peR based homology cloning. which has been successful for the cloning of 

cytokines from several teleost species including rainbow trout. Atlantic salmon and plaice 

(Laing et al .• 2000. 2001; Subramaniam et al .• 2001). The fish cDNAs were successfully 

amplified using the peR with primers based on highly conserved regions of the known 

mammalian sequences. 

1.6.1 Interleukin-1 

In mammals. IL-l is the prototype pro-inflammatory cytokine (Dinarello. 1997) and exists in 

two forms, IL-I a and IL-I J3. which are indistinguishable on the basis of their biological effects. 

They are produced as precursor molecules but only the IL-Ia precursor is biologically active. 

The crystal structures ofthe mature peptides ofIL-la and IL-IJ3. together with the IL-l receptor 

antagonist. consist of 12 J3-sheets forming 6 hairpins (Nicola. 1994). 

IL-IJ3 has been sequenced in rainbow trout (Zou et al .• 1998) and carp (Fujiki et al .• 

1998), but as yet the existence of a fish equivalent to IL-Ia or the IL-I receptor antagonist has 

yet to be established. Isolation of the trout and carp IL-IJ3 sequences involved different 

approaches. In trout, primers designed against conserved regions of known mammalian IL-IJ3 

amino acid sequences were used in the (peR) polymerase chain reaction (using trout 

macrophage cDNA) to amplify the IL-IJ3 cDNA. With carp, a subtractive eDNA library was 

generated from stimulated peritoneal cells. followed by random sequencing of individual clones. 
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Both trout and carp sequences share approximately 41-48% nucleotide homology (28-31 % a.a. 

identities) to various mammalian IL-IJ3 cDNAs. However, they are also only 47% similar to 

each other at the nucleotide level (36% a.a. identity), showing that even within teleosts there can 

be considerable divergence between individual species of fish (Secombes, et al., 1999a,b). The 

trout and the carp genes are predicted to encode proteins of 260 and 276 a.a. respectively, a size 

similar to the mammalian proteins, suggesting that they too are produced as precursor 

molecules. The trout gene is not constitutively expressed in leucocytes but expression can be 

induced in both head kidney leucocytes and macrophages, by stimulation with 

phytohaemagglutinin PHA or LPS (Zou et al., 1998). The full-length sequence of a second IL­

IJ3 gene (IL-IJ32) in rainbow trout has also been obtained (Pleguezuelos et al., 2000). The 

predicted 254 amino acid sequence of the second IL-l J3 gene has 82% identity to the first gene, 

45% identity to carp IL-IJ3, and 40% identity to human IL-IJ3. Expression studies performed by 

reverse transcriptase-polymerase chain reaction (RT-PCR) using primers specific for the IL-IJ32 

transcript revealed a clear dose-dependent induction of this gene in cultured trout leukocytes by 

stimulation with LPS. 

1.6.2 Transforming growth factor J3 

TGF-J3 is a pleiotropic cytokine involved in proliferation and differentiation of cells, tissue 

remodelling, wound repair and is expressed in a wide range of cells and tissues. Three isoforms 

of TGF-J3 exist in mammals (TGF-J31-3) and birds (TGF-J32-4) and two in frogs (TGF-J32 and 

TGF-J3s) (Burt and Law, 1994). TGF-J3 belongs to a superfamily of structurally related proteins 

including activins and inhibins, growth differentiation factors and bone morphogenetic proteins 

(BMPs) (Burt and Law, 1994). Their conserved cysteine residues show a characteristic 'cysteine 

knot' crystal structure (Nicola, 1994). The mature TGF-J3 peptide is a potent differentiation 

modulator and immunosuppressive agent within the immune system, and is able to down­

regulate the expression of many cytokines and cytokine induced effects, for example the 

deactivation of macrophages (Derynck, 1994). 
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Fish macrophages not only possess receptors that are cross-reactive to mammalian TGF-/3h but 

bioassay experiments also suggested the existence of TGF-/3 in fish. For example, it has been 

shown that mammalian (bovine) TGF-/3 suppresses the activation of trout macrophages and 

thereby inhibits respiratory burst activity in a dose-dependent way, following their activation by 

MAF (lang et al., 1994). A full-length eDNA, probably corresponding to TGF-/31. has now been 

sequenced in rainbow trout. It is predicted to encode a 382 a.a precursor molecule containing a 

20 a.a. signal peptide, a tetrabasic cleavage site, downstream of which is a 112 a.a. region 

thought to correspond to the mature functionally active peptide (Secombes et al., 1999a). This 

mature peptide contains the TGF-/3 superfamily motif as with other known forms of TGF-/3. The 

trout TGF-/3 has highest homology (68%) to mammalian TGF-/31 and Xenopus TGF-/35 (62.5%) 

suggesting that Xenopus TGF -/35 may also be related to an ancestral form of TGF-/31 (Secombes 

et al., 1998). 

Other members of the TGF-/3 superfamily have been cloned in fish, including the bone 

morphogenetic proteins (BMPs) and activins. Three BMPs have been cloned in zebrafish, 

encoding proteins of 386, 400 and 411 a.a. (Martinez-Barbera et al., 1997), and giving rise to 

mature peptides of 112, 113 and 115 a.a. in length that have -85-92% a.a. identity with their 

mouse counterparts (BMP2 and BMP4). Activins modulate secretion of follicle stimulating 

hormone in addition to mesoderm inducing and erythroid differentiation activity. Two activin 

genes /3A and /3B have also been cloned in goldfish (Ge et al., 1993). Both activin genes show 

high homology to their mammalian counterparts with 78% and 94% a.a. homology to human 

/3A and /3B genes respectively. 

1.6.3 Tumour necrosis factor 

In mammals, TNF-a is a pro-inflammatory cytokine produced by monocyteslmacrophages in 

response to antigen exposure. In studies reviewed below, it has been shown that TNF-a plays an 

essential role in the inflammatory response to pathogen invasion and in immunological 

regulation, apoptosis and lipid metabolism. 
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Several components of the TNF family have been cloned and characterised in fish. A 

TNFa gene was discovered as part of EST studies in the Japanese flounder Paralichthys 

olivaceus, (Hirono et al., 2000) and is the first non-mammalian TNF sequence to be reported. 

The flounder sequence shows 29-31 % a.a. identity with human TNF molecules: TNFa, TNF13, 

LT (lymphotoxin) and LT13. The gene has also been sequenced in several other fish species, 

including rainbow trout 0. mykiss (Laing et al., 200la), brook trout Salvelinus jontinalis (Bobe 

and Goetz, 2000) and channel catfish Ictalurus punctatus (Zou et al., 2001). In rainbow trout, 

two TNFa genes have been discovered (Zou et al., 2002) which share 95% a.a. identity. In 

addition, a TNF receptor ligand and a TNF decoy receptor were cloned and expressed in brook 

trout (Bobe and Goetz, 2oo0b). The similarity between catfish TNF and other fish TNF 

homologues was markedly higher (range 30.9-45.7%). Furthermore, except for the expected 

high similarity between the trout and carp TNF-l and TNF-2 sequences (92.5 and 78.2%, 

respectively), the percent similarity in pairwise comparisons among fish TNF sequences (range 

35.8-64.7%) was lower than among mammals. Thus, within the six mammalian species 

examined, the percent similarity between pairwise combinations of TNF genes ranged from 

69% (cow vs. rat) to 93% (rat vs. mouse) and from 70% (mouse vs. human) to 96% (rat vs. 

mouse) among TNF genes. While the number of species examined was relatively small, it 

appears that sequence divergence among fish TNF is greater than that seen among mammalian 

TNF proteins. The greater divergence in fish vs. mammalian TNF may be a reflection of the 

longer (compared to mammals) separation times of extant fish species. In keeping with this 

observation, carp, which are more closely related taxonomically to catfish than trout and 

flounder, show higher levels of amino acid similarity (47.5%) within the TNF gene than do trout 

and flounder (36 and 39%, respectively). 

1.6.4 Fibroblast growth factor 

Fibroblast growth factors (FGFs) are a family of 15-31kDa, heparin binding proteins, involved 

in cell growth, differentiation, angiogenesis and tissue repair (Nicola. 1994). The crystal 
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structure of FOF is similar to IL-l and consists of 12 ~-sheets, forming a ~-trefoil. Some 

members of the family lack a signal peptide and the mechanism of their secretion is unknown. 

In mammals, there are nine members, sharing 30-70% a.a. identity. Five FOFs have been 

sequenced in birds and six in amphibians (Secombes, 1998). In fish, an FOF eDNA has been 

cloned and sequenced in rainbow trout (Hata et al., 1997) and zebrafish (Kiefer et al., 1996). In 

trout, the gene codes for a protein of 155 a.a (-17kDa) and has 70% a.a identity with 

mammalian FOF-2. A recombinant trout FGF produced from bacteria binds tightly to heparin­

sepharose and promotes fibroblast proliferation and blastema I growth (Hata et al., 1998), which 

is typical of known vertebrate FGFs. The zebrafish FOF is composed of approximately 155 a.a, 

shares 78% identity with the analogous region of Xenopus laevis FOF3 and 72% identity with 

the product of the more distantly related human gene. However, the N-and C-terminal domains 

of zebrafish FOF3 are very different from those of other known homologues. 

1.6.5 Chemokines 

Chemokines are a low molecular weight group of structurally related cytokines able to attract 

leucocytes (Wuyts et al., 1998). They are characterised by the presence of four conserved 

cysteine residues, important in determining the secondary structure (Nicola, 1994). Depending 

on whether the first two cysteines are separated by an amino acid they are classified either as C­

C (or ~) or C-X-C (or a) subfamily. C-C chemokines can attract and activate a wide range of 

leucocytes but not neutrophils, which are targeted by C-X-C chemokines. Within the two 

subfamilies the sequence similarity is quite variable, for example ranging from 23-88% a.a 

identity for C-X-C group. A gene (9E3/CEF4) with homology to C-X-C chemokines sharing 

51 % homology with IL-8 and 45% homology to a growth related protein GRO -a, has been 

sequenced in chickens (Martins-Green and Hanafusa, 1997). 

A number of chemokine genes have been sequenced in fish. These include a C-C chemokine in 

rainbow trout (Dixon et al., 1997) and carp (Fujiki et al., 1998) and a C-X-C chemokine in 

lamprey (Najakshin et al., 1998). The trout CK-l gene has 46% nucleotide identity and 65% a.a. 
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similarity to mammalian C-C chemokines, in particular with the C6-~ chemokine subfamily. 

The C-X-C chemokine IL-S, which activates neutrophils and is up-regulated by LPS has also 

been discovered in both rainbow trout and Japanese flounder and demonstrates 48-51 % 

nucleotide identity with known mammalian IL-8 genes (Laing et al., 2002). Chemokine 

receptors CXCR4 (CXC receptor family) and CCR7 (CC receptor family) have also recently 

been cloned and sequenced in rainbow trout (Daniels et al., 1999) and carp (Fujiki et al., 1999). 

Two TNF receptors have been cloned in expressed sequence tag (EST) studies in 

Japanese flounder (Nam et al., 2000). Receptors for platelet derived growth factor ~ (PDGFR~) 

and colony stimulating factor-l (CSFIR) in Puffer fish Fugu rubripes, have also been sequenced 

from genomic DNA (How et al., 1996). In addition, the common cytokine receptor y chain 

(CRyC) has been cloned in trout (Wang and Secombes, 2001). 

1.7 Project aims and rationale 

The aim of this study was to examine the biological source of a macrophage activating factor 

produced by leucocytes from rainbow trout and to try and determine the identity of this 

molecule. In addition, a number of different molecular strategies such as homology cloning and 

hybridisation studies were taken to try and isolate cytokine cDNAs from the trout. 

The thesis is divided into several experimental chapters addressing different aspects of the 

research: 

Develop T cell and macrophage culture methods for the establishment of a reproducible 

source of macrophage activating factor. Assessment of cell-free supernatants derived from 

stimulated lymphocytes to determine their capacity to activate macrophages in vitro. (Chapter 3) 

Homology cloning approach to isolate fish cytokines, using PCR amplification with degenerate 

primers designed against highly conserved regions of mammalian and avian cytokine 

sequences. (Chapter 4) 
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Screening of a stimulated leucocyte cDNA library using a number of hybridisation methods, 

including the use of ovine cytokine probes and the differential screening with probes derived 

from stimulated and non-stimulated lymphocytes, to isolate genes up or down regulated as a 

result of lymphocyte stimulation. (Chapter 5) 
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2.1 Chemicals and reagents 

All chemicals and reagents used were supplied from Sigma Chemicals, England unless 

otherwise stated. 

2.2 Fish 

Rainbow trout (o'mykiss) were purchased from a local fish farm (Penicuik Trout Farm, 

Valleyfield Road, Penicuik) and transported by road in a 54.5 litre tank to the Moredun 

Research Institute. The average weight and length of fish ranged between 600-900g and 36-

43cm respectively. Upon arrival fish were immediately transferred to a 20 litre holding 

container and anaesthetised with 40mgL,J benzocaine in methanol. 

After anaesthesia, fish were killed with a sharp blow to the head using a blunt 

instrument and bIed via the caudal vein using a 10mI vacutainer and 200 needle (Becton 

Dickinson, Plymouth). Approximately 10mI of blood per fish were collected in vacutainer 

tubes, containing 100J.Ll heparin (10UnitsmrJ) to prevent clotting. 

2.3 Isolation and culture of lymphocytes from peripheral blood and head kidney 

Lymphocytes were prepared as described by Secombes (1987). Peripheral blood and head 

kidney cell suspensions were diluted in L-15 medium with 10% heat inactivated foetal bovine 

serum (10% HI PBS), layered onto 51 % (v/v) Percoll and centrifuged at 900xg for 35-45 min at 

18°C. Alternatively, lymphocytes derived from peripheral blood were isolated from the buffy 

coat, formed following centrifugation of heparinised blood at 600xg for 10 min prior to density 

centrifugation. The resulting lymphocyte enriched band of cells was collected from the 

interface of the L-15 medium and 51 % Percoll and washed twice in L-15 medium by 

centrifugation at 600xg for 10 min. The final pellet was resuspended in L-15 medium (0.1 % v/v 

HI PBS) and the cell concentration adjusted to 2 x 106 or 1 x 107 viable cells mI'J. An 

estimation of a viable cell count was obtained as described in Section 2.5.1. Lymphocytes were 

incubated for 24/48 h in L-15 medium, in the presence of appropriate mitogens, in 25cm2 tissue 

culture flasks or 96-well microtitre plates. 
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2.4 Isolation and culture of head kidney macrophages 

Head kidney macrophages were prepared from rainbow trout. as described by Brauwn-Nesje et 

al (1981) and modified by Secombes (1990). Cell suspensions were enriched for macrophages 

using discontinuous Percoll density gradient centrifugation. followed by further purification 

utilising the inherent property of macrophages to adhere to plastic. 

Immediately after fish were anaesthetised. sacrificed and bled as described (Section 

2.2). the head kidney was dissected using aseptic techniques. A single cell suspension in 

homogenising medium (L-15 medium containing lOUmr\ heparin. 100UmI-\ penicillin. 

O.lmgml-\ streptomycin) was obtained by disrupting the head kidney tissue through a lOOllm 

nylon gauze. The disrupted cell suspension was layered onto a 34% I 51 % Percoll (Pharmacia) 

density gradient. 

Percoll density gradients were freshly prepared, using two solutions of different density~ 

the bottom 51% (v/v) Percoll solution (1.080gr\) and the top 34% (v/v) Percoll solution 

(1.070gr1
). The gradients were prepared by carefully layering the 34% Percoll solution on top 

of the 51 % Percoll solution, without disturbing the interface between the two solutions. 

Density gradients were centrifuged at 900xg for 35-45 mins at 18°C and the band of cells at the 

interface between the two different densities collected. Cells were then washed twice in 

attachment medium (L-15 medium containing 0.1 % HI FBS) by centrifugation at 600xg for 10 

min at 18°C and then resuspended in L-15 medium. An estimation of viable cell concentration 

was obtained using 0.4% (w/v) trypan blue dye (Section 2.5.1). 

The cell concentration was adjusted to 2 x 107 viable cells mI-\ and lOO1l1 of cell 

suspension was dispensed into triplicate wells of a 96 well sterile flat-bottom microtitre plate 

(Nunc. UK). Macrophages were allowed to adhere for 2-3 h at 18-20°C. Unattached cells were 

removed by gentle washing with L-15 medium (O.l%HI FBS). The attachment medium was 

replaced with 100lllwelr l of growth culture medium (L-15 medium containing 10% v/v heat 

inactivated HI FBS) and the monolayer of cells incubated for 24 - 48 h prior to use. 
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2.5.1 Lymphocyte and macrophage viable cell counts 

Estimation of the number of viable lymphocyte and macrophage cells isolated from both head 

kidney and peripheral blood was made using 0.4% (w/v) trypan blue dye and a Neubauer 

haemocytometer (Hawksley, England). Live cells exclude the blue dye and appear clear whilst 

dead cells stain blue. The average number of cells per large square (mm2
) of the 

haemocytometer was estimated under phase contrast, using an inverted microscope (Leica, 

Portugal). The numbers of cells rnI-1 of the original suspension were calculated using the 

following equation: 

Viable cells mrl 

df (dilution factor) 

= cell count x df x 104 

104 (factor to adjust for the volume between the coverslip and haemocytometer chamber) 

2.5.2 Estimation of adherent macrophages 

Estimation of adherent macrophages was made as described by Secombes (1990). Unattached 

cells were removed from the microplate by gentle pipetting, and the macrophage cultures 

washed with L-15 medium (0.1 % v/v HI PBS). To allow the release of nuclei from the attached 

macrophages, 50J..lI macrophage lysis buffer (O.lM citric acid, 1% (v/v) Tween 20, 0.05% (w/v) 

crystal violet) was added per well. The number of macrophage nuclei per m1 of lysis buffer was 

estimated using the Neubauer haemocytometer at a magnification of >x 600. The number of 

nuclei, and consequently original attached macrophages per 50 J.tl lysis buffer and hence per 

well was determined by dividing the count per m1 by 20: 

No. of macrophages I J..lllysis buffer = nuclei x df x 104 

20 
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2.6 Preparation of MAF containing supernatants from stimulated lymphocytes 

Supernatants from stimulated and non-stimulated lymphocytes were prepared using a 

modification of the method of Secombes (1987), for the preparation of MAP from rainbow trout 

leucocytes. 

Lymphocytes were isolated from peripheral blood (Section 2.3) and seeded at 2 x 106 1 

Ix 107 cells ml·1 in 25cm2 tissue culture flasks. A range of mitogens including PMA, Con A and 

LPS were used to induce lymphocyte stimulation. Lymphocytes were incubated at 20°C in L-15 

medium (10%v/v HI PBS) containing mitogens at a range of concentrations. After several h the 

cells had adhered slightly to the culture flasks thus enabling the removal of supernatants 

containing mitogen without disturbing the monolayer. To remove any residual mitogen, the 

cultures were resuspended in PBS and centrifuged at 600xg for 10 min and the supernatants 

discarded. The cell pellets were then resuspended in fresh L-15 medium (10% vlv HI PBS) and 

cultured for a further 24/48h, after which supernatants were collected and stored at -70°C. 

Flasks of lymphocytes grown without stimulation by the mitogens, were incubated at 20°C for 

24/48 h before collection of control supernatants. 

2.7 Assessment of lymphocyte proliferation 

The capacity of T and B lymphocytes, derived from peripheral blood, to be stimulated either by 

mitogens or cell free supernatants was determined by a lymphocyte stimulation assay. 

To triplicate wells of a 96-well sterile flat-bottomed microplate, 20~1 volumes of L-15 

Medium (10%v/v HI PBS) were dispensed. In addition, 20~1 of the following stimulants: 

ConA, PMA, PHA, Pokeweed, LPS at a range of concentrations were added separately to 

appropriate wells. 2xlOs lymphocytes (Section 2.3) in 200~1 of the prepared lymphocyte 

suspension were added to all wells containing either control medium or stimulants, followed by 

incubation at 20°C for 3 - 4 days. Radiolabelled 3H-thymidine was diluted to 0.74 Bq~rl in L­

IS medium and SO~1 added to each well and the plate incubated for approximately 18 h prior to 

scintillation counting. The cells were harvested with a semi-automatic multiple harvester, 
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transferred onto glass fibre filters and washed in distilled water. Radioactivity of the filters was 

counted in a liquid scintillation counter. 

Results were expressed as either 'mean counts per min' (cpm) or as stimulation indices (SI): 

SI = mean cpm stimulated cultures 

mean cpm non-stimulated cultures (control) 

2.8 Assessment of respiratory burst activity of macro phages 

Lymphocyte supernatants were assayed for their capacity to induce respiratory burst activity in 

macrophages. This was measured in two ways, either spectrophotometrically measuring the 

reduction of nitroblue tetrazolium (NBT) to formazan (Pick and Mizel, 1981; Rook et ai, 1985; 

Chung and Secombes, 1988), or using a luminometer to measure reduction of the substrate 

Luminol (aminophthalic acid hydrazide). 

2.8.1 Reduction of NBT 

Respiratory burst can be determined by the addition of NBT to the macrophage suspension. The 

yellow NBT reacts with the superoxide anions generated by the burst and turns into the blue­

black formazan: 

NBT + -----.~ formazan + 

Precipitation of the formazan can be visualised and measured spectrophotometrically. 

Supernatants from both stimulated and non-stimulated lymphocytes were diluted in L­

IS medium (lO%v/v HI FBS). Triplicate 200J,.Ll samples of supernatants, each at the following 

dilutions: neat, 1110, 11100 were added to Ix 107mrl macrophage monolayers prepared 

previously (Section 2.4) and incubated at 20°C for 48 h. 

The macrophage cultures were washed twice with L-15 medium to remove unattached 

cells. With the exception of the macrophage controls, 100J,.LI NBT (lmgmrl)! PMA (lJ,.Lgml·l) 

were added per well and the plate incubated at 20°C for 30-40 min. The supernatant medium 

was removed and the reduction reaction stopped by fixing the cells with 100J,.Ll methanol for 5-

10 min. After washing the macrophages with 70% (v/v) methanol to remove any non-reduced 
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NBT the wells were air-dried. The reaction products were dissolved in 120~1 2M KOH and 

140~1 dimethyl sulphoxide (OMSO). 

The optical density (00) at a wavelength of 620nm was determined using an enzyme­

linked immusorbent assay (ELISA) plate reader (Oynatech MR5000). The number of 

macrophages per well was estimated from the triplicate control wells, containing macrophage 

cells incubated with L-15 medium alone. The macrophages were lysed with lysis buffer for 2 

min and the released nuclei counted (Section 2.5.2). 

The results were expressed as 'Macrophage activity' and adjusted to absorbance per 10' 

cells. The mean 00 for each triplicate culture was calculated and divided by the number of cells 

per well to obtain the 00 per lOs cells. 

00620 / 2x lOS cells = mean 00 per triplicate culture x 100 

no. of cells / well 

2.8.2 Reduction of Luminol 

The macrophage activation assay with luminol, was used as an alternative method of assessing 

respiratory burst metabolism following macrophage stimulation. Chemiluminescence is an 

energy product of phagocyte oxygenation activity, and the chemiluminesecent probe (CLP) 

luminol allows continuous monitoring of early oxygenation activity (Allen, 1977) Figure 2.1-

2.2. 

Viable macrophages suspended in Ca2+/Mg2+_ free, indicator-free, hank's balanced salt 

solution (HBSS) at 2x106 cells mI'l (1.2 x 106 cells well'l) were added 100~1 well'l to triplicate 

wells of a white, opaque 96 well microplate (Oynex Microlite). Equal volumes of luminol 

(200J.AM) in Ca2+JMg2+ -, indicator free HBSS, followed by cell free supernatant from stimulated 

PBL were added, PMA (5~gmrl HBSS) was used as a positive control to stimulate respiratory 

burst. HBSS and L-15 medium were included as negative controls. 

Chemiluminescence was monitered for 40 min at 20°C, using a luminometer (TR717, 

PE Biosystems). The results were expressed as relative light units per second (RLU sec'l), and 
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the area below the response curve (integral) was determined in triplicate samples. Kinetic 

measurements were analysed using the 'WinGlow' 1.24 software program. 

ConAlPMA 

Macrophage Respiratory Burst 

Activity 

Mye\operoxidase 

Aminophthalate + 

c=:> O2• H202, HO­

(ROJ) 

+ 

Luminol substrate 

11 
+ hv 

Figure 2.1 Schematic diagram representing the respiratory burst activity of macrophages using 

Luminol as substrate. Macrophages respond to stimuli by 'activating respiratory burst' metabolism. A 

proportion of the oxygenating agents generated yield electronically e)(cited products of which a number 

of excited molecules relax by photon emission. 
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Figure 2.2 Dioxygenation of luminol to aminophthalate. 

+ hv 

photon 

The overall reaction responsible for luminol chemiluminescence is an oxidation. Luminol reacts with O2 

to yield aminophthalate and a photon. 
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2.9 cDNA library synthesis using pCMV mammalian plasmid expression vector 
system 

A cDNA library was prepared from RNA isolated from stimulated peripheral blood 

lymphocytes, using the pCMV-ScriptR XR cDNA library construction kit (Stratagene). This kit 

is designed for generating directional libraries in the pCMV -script mammalian expression, such 

that it can be screened by functional assay in mammalian cells or with a DNA probe in E.coli 

cells. 

The pCMV -Script mammalian expression vector is derived from a high copy-number 

ColEl based plasmid and is designed to allow protein expression in mammalian systems. The 

presence of the kanamycin-resistance gene allows for prokaryotic selection. The vector is 

predigested with EcoRI and XhoI restriction enzymes and allows the finished cDNA to be 

inserted into the vector in a sense orientation (EcoRI and XhoI). The cloning region of the 

pCMV -vector does not possess an ATG initiation codon and therefore only clones containing 

their own ATG initiation codon will be expressed. 

cDNA synthesis of the first-strand is initiated in the presence of nucleotides and buffer, 

when reverse transcriptase locates a template and a primer. In this instance the template is 

messenger RNA (rnRNA) and the primer is a 50-base oligonucleotide sequence: 

5'- GAGAGAGAGAGAGAGAGAGAACTAGTCTCGAGTI"I I II ITI ITITITI"I"I'-3' 

"GAGA" Sequence XhoI Poly (dT) 

The oligonucleotide sequence design features an 18 - base poly(dT) sequence with a 

"GAGA" sequence to protect the Xho I restriction enzyme recognition site. The poly (dT) 

region binds to the 3'Poly (A) region of the rnRNA template, allowing priming of the first 

strand cDNA synthesis by Maloney murine leukemia virus reverse transcriptase (MML V -RT). 

For the first strand synthesis reaction, the nucleotide mixture contains normal dATP, 

dGTP, dTTP in addition to the analogue 5-methyl dCTP. Consequently, the completed first 

strand will possess a methyl group on each cytosine base, which functions to protect the cDNA 

from restriction enzymes used in subsequent cloning steps. 
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RNase H is used to introduce nicks into the RNA bound to the first strand cDNA and these act 

as priming sites for DNA polymerase I, which 'nick-translates' them into second-strand cDNA. 

The resulting double stranded cDNAs possess uneven termini which are blunted with Pfu DNA 

polymerase, prior to ligation with EcoR I adapters. The EcoR I adapters are composed of 

complementary oligonucleotides, with an EcoR I cohesive end. 

Release of the EcoR I adapter and residual linker-primer from the 3' end of the cDNA is 

performed by Xho I digestion (Figure 2.3). The resulting fragments are separated on a drip 

column containing Sepharose CL-2B gel filtration medium. The size fractionated cDNA is then 

precipitated and ligated to the pCMV-Script vector. Since most E.coli strains digest DNA 

containing 5'-methyl dCTP, it is necessary to initially transform XLlO-Gold cells (McrA- McrB­

strain) with the ligated DNA, to obtain a high yield. After which the DNA can be grown on 

McrA+ McrB+ strains eg XLI-Blue strain, as it is no longer hemimethylated. 

2.10 eDNA synthesis 

The pCMV-Script XR cDNA library construction kit (Stratagene) is optimised for 5J..lg of poly 

(A) + RNA (prepared from total RNA isolated from stimulated lymphocytes, Sections 2.17-

2.18). All non-enzymatic first and second strand components were thawed and briefly vortexed 

before being placed on ice. 

2.10.1 First strand eDNA synthesis 

The following reagents were added in order to an RNase-free tube: 5J..lI lOx first-strand buffer, 

3J..lI first-strand methyl nucleotide mixture, 2.8ng linker-primer (1.4J..lg mI- I
). 

12.5J..lI diethylpyrocarbonate (DEPC) -treated water, 40U RNase block ribonuclease 

inhibitor. The reaction was gently mixed and 24.5J..lI of poly (A) +RNA added. For the control, 

the above annealing reaction was used with 5J.lg of test RNA and 12.5J..lI DEPC-treated water. 

The primer was allowed to anneal to the template for 10 min at room temperature (rt) before the 

addition of 50U MMLV-RT, to give a final reaction volume of 50J..l1. The sample was mixed 

gently and centrifuged. 5J.lI of this first-strand synthesis reaction was transferred to a tube 
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containing O.SIlI [a)2P]dCfP (800Ci mmo·'l) and this constituted the first strand synthesis 

control reaction. Both reactions were incubated at 37°C for 1hr: the non-radioactive first strand 

synthesis reaction was placed on ice and the radioactive control reaction kept at -20°C. 

2.10.2 Second strand cDNA synthesis 

The following components were added in order to the 4SIlI non radioactive first strand synthesis 

reaction on ice: Ix second strand buffer, 6111 second strand deoxyribonucleotide (dNTP) 

mixture, 114111 sterile water, 2111 [a)2P]dCTP (800Ci mmor'). To this second strand synthesis 

reaction 3U of RNase Hand 99U DNA polymerase I enzymes were added. The reaction was 

gently mixed, centrifuged and incubated at 16°C for 2.S h. After the second strand synthesis, the 

reaction was placed on ice immediately. The low incubation temperature was critical in 

preventing formation of unclonable hairpin structures. 

To the second strand synthesis reaction 23111 blunting dNTP mix and IOU cloned Pfu 

DNA polymerase were gently mixed and centrifuged followed by incubation at noc for 30 

min. 200111 phenol-chloroform [1: 1 (v/v)] was added and mixed by vortexing. The reaction was 

centrifuged for 2 min at rt and the upper aqueous layer containing the cDNA transferred to a 

fresh tube, carefully avoiding removal of any interphase. An equal volume of chloroform was 

added and mixed. The cDNA was precipitated overnight at -20°C, with 0.1 x vol 3M sodium 

acetate and 2 x vol 96-98% (v/v) ethanol, followed by centrifugation at maximum speed for 60 

min at 4°C. The supernatant was discarded and the cDNA pellet gently washed with SOO1l170% 

(v/v) ethanol and air-dried. The pellet was resuspended in 9111 EcoR I adapters and incubated at 

4°C for at least 30 min. 1111 of this second strand synthesis reaction was transferred to a fresh 

tube and this represented the second strand synthesis control reaction. 

2.10.3 Resolving cDNA on alkaline agarose and non-denaturing acrylamide gels 

cDNAs can be resolved by electrophoresis on an alkaline agarose gel to determine their size 

range. The first and second strand cDNA synthesis reactions prepared in Section 2.10 including 

controls were resolved on a 1 % (w/v) alkaline agarose gel (l-3kb eDNA size range). Due to the 
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low buffering capacity of these gels the reactions were electrophoresed in Ix alkaline buffer 

(5M NaOH, 0.5M EDTA) and run at 5 Vcm'l for approximately 3.5 h. The gel was dried using 

a gel dryer and exposed to x-ray film over night at -70°C. 

Alternatively, the size fractionated cDNAs prepared in Section 2.11 were 

electrophoresed at 10-20 Vcm'l for I hr on a 5% (w/v) non-denaturing acrylamide gel and 

exposed to x-ray film over night at -70°C. 

2.10.4 Ligation of EcoR I adapters 

The following kit components were added to the blunted cDNA and EcoR I adapters: Ix ligase 

buffer, l).d lOmM rATP and 4U T4 DNA ligase and incubated overnight at 8°C. The ligase was 

heat inactivated at 70°C for 30 min, after which the reaction was centrifuged for 2 seconds 

before being cooled at rt for 5 min. 

2.10.5 Phosphorylation of EcoR I ends 

The EcoR I adapter ends were phosphorylated by the addition of: Ix ligase buffer, 2J..lI lOmM 

rATP, 6J..lI sterile water and lOU T4 polynucleotide kinase and incubated for 30 min at 37°C. 

The kinase was heat inactivated for 30 min at 70°C, after which the reaction was centrifuged for 

2 seconds before being cooled at rt for 5 min. 

2.10.6 Xho I digestion 

The eDNA was digested with Xho I restriction endonuclease with the addition of 28J..lI Xho I 

buffer and I20U Xho I, followed by incubation for 1.5 h at 37°C. 5J..lI of 10 x STE buffer (lM 

NaCl, 200mM Tris-HCL pH 7.5, IOOmM EDTA) and I2J..lI 96-98% (v/v) ethanol were added 

and the cDNA precipitated overnight at -20°C. 

Following precipitation, the cDNA was centrifuged for 60 min at 4°C, and the pellet 

dried completely before resuspension in I4J..lI Ix STE buffer. 3.5J..lI of the column loading dye 

was added to the sample, prior to size fractionation. 
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2.11 eDNA size fractionation 

The cDNA was size fractionated using a drip column containing sepharose CL-2B gel filtration 

medium assembled according to the manufacturer's instructions. The column was washed with 

10ml of Ix STE buffer, ensuring a steady flow was maintained and preventing the column 

drying out. When approximately 50J..l.l of STE buffer remained above the surface of the resin, the 

cDNA sample was loaded gently onto the column bed. Once the sample entered the sepharose 

CL-2B gel filtration medium, 3ml of 1 x STE buffer were added to the reservoir. 

In order to gauge sample elution from the column, the progress of the dye was 

monitored. As the cDNA sample eluted through the column, the dye gradually migrated through 

the resin. A minimum of 12 fractions, each containing 3 drops (-100J.ll) were collected. To 

ensure the cDNA had been successfully eluted, the fractions were monitored for the presence of 

radioactivity and collected until the unincorporated nucleotides were eluted. 

Before process of the fractions and recovery of the size-fractionated cDNA, 

approximately a tenth of each fraction was saved for analysis by alkaline agarose gel 

electrophoresis (Section 2.10.3): to assess the effectiveness of the size fractionation and 

determine which fractions would be used for ligation. 

2.12 Processing eDNA fractions 

To recover the size selected cDNA, the fractions collected from the drip column were extracted 

with phenol-chloroform and precipitated with ethanol to remove contaminating proteins, carried 

over from previous steps. To ensure the cDNA had been recovered, the level of radioactivity 

present in the pellet was monitored. 

The pellet was carefully washed with 200J..l.l 80% (v/v) ethanol, centrifuged for 2 min at rt and 

air-dried for a maximum of - 5 min. Recovery of the cDNA was verified by radioactive 

monitoring. 
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2.13 Quantification of DNA: Ethidium Bromide Plate Assay 

DNA can be quantified by u. v visualisation on ethidium bromide (EtBr) agarose plates [0.8 

%(w/v) agaroselfris-acetate media (O.04M Tris-acetate, O.OOlM EDTA)lEtBr (lOmgmr l »), 

using a DNA sample of known concentration as a standard. 

Several dilutions of a DNA sample of known concentration (lKb DNA ladder) were 

prepared in lOOmM EDTA ranging from 10-200 ng)!r l
. 0.5)!1 of each standard was spotted on 

the surface of lOOmm Petri dishes containing the above agarose. Immediately, 0.5)!1 of the 

cDNA was spotted adjacent to the standards, and the samples absorbed into the plate for to-15 

min at rt. The spotted sample of unknown concentration was then compared with the standards 

and quantified by examination under u.v. transillumination. 

2.14 Generation of inserts 

2.14.1 Ligations and transformations 

Five individual ligations were prepared using lOng cDNA! 30ng vector, including a LacZ test 

insert control (2.25.1). Individual transformation reactions were prepared with XL-to Gold 

ultracompetent E.coli cells (Stratagene) with each ligation reaction, including a pUC18 plasmid 

control. Following heat pulse, and incubation at 42°C with NZY+ broth (NZ amine! casein 

hydrolysate, yeast extract, NaCl, supplemented with the following: 1M MgCh, 1M MgS04, 

20% w/v glucose) for 1 hr with shaking at 225-250 rpm, the transformation reactions were 

pooled (2.27.1). This resulting pool constituted the primary library and was stored at 4°C, ready 

for amplification as soon as possible. 

In order to detennine the total number of primary transformants the pooled 

transformations were plated out in 11l1, 10 and SOIlI volumes onto LB-kanamycin (X­

gal/IPTG) agar selection plates (Section 2.28.2). The ampicillin - resistant test insert 

transformation was plated onto LB-ampicillin (lOOl-tgmrl) agar plates: (NaCI, tryptone, 

yeast extract, agar: adjusted to pH 7 with S N NAOH and diluted to llitre with 

deionised water). 
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2.14.2 Verifying insert percentage and size 

Individual colonies were examined to determine the percentage of plasmids with inserts, and the 

average insert size, by restriction analysis of individually prepared plasmid DNA. Plasmids 

DNA of single, random clones from the primary library were purified from E.coli (50J,tgml·1 

kanamycin) and digested with EcoR I and Xho I restriction enzymes (Section 2.20). Restriction 

profiles were obtained by resolving the digested DNA on a 1 % agarose I TBE gel. 

2.15 Amplification of the pCMV -Script cDNA Library 

Amplification of the primary library was necessary to obtain a large and stable quantity of 

clones. However, in order to avoid under representation of slow growing clones it was 

important to only perform one round of amplification. The library was amplified in semi-solid 

suspension allowing for three-dimensional, uniform colony growth. 

The plasmid library was amplified in 500ml bottles of 2x Luria-Bertani (LB) agarose 

using a semi-solid amplification method. Each bottle could accommodate -5xlOs primary cfu. 

On a heated stirring plate, 0.135g SeaPrepR agarose was added to 45ml of 2 x LB and heated 

until the agarose was in solution and cooled to 37°C for 1 hr. Kanamycin (50J,tgml' l ) and 3xl04 

cfulbottle of primary library was added and stirred for several min. The library was incubated 

for 1 hr in an ice bath at O°C followed by incubation at 30°C for 4045 min, since incubation at 

the latter temperature reduces under-representation of slower growing colonies. The library was 

centrifuged at 1O,000xg for 20 min at rt and the pellet resuspended in 4.5ml of 12.5% 2 x LB­

glycerol: 2x LB broth, 100% v/v glycerol). For the estimation of the library titre and further 

characterisation, 50J,t1 of the library was removed and the remainder stored at -70°C. 

2.16 Estimation of the amplified library titre 

The total numbers of transformants in the amplified library were determined by preparation of 

lO-fold serial dilutions with 50J,t1 of amplified library diluted in 450J,t1 2xLB glycerol medium. 

A number of dilutions of the library: 50J,t1 of lO-s. 10-6 and 10-7 were plated out onto LB agar I 
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501lgml-1 kanamycin (Section 2.27.2). and the number of colonies counted over a portion of the 

plate. Amplification of the primary library should result in a 10
3 

fold increase of total number 

of trans formants. 
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Figure 2.3: Flow chart of cDNA synthesis 
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During the first-strand synthesis an oligo (dT) linker-primer containing the Xho I restriction site anneals 

to the messenger RNA, which is reverse transcribed using MMLV-RT and 5-methyl dCTP. RNA 

fragments are 'nick translated' by DNA polymerase I during second strand synthesis, resulting in double 

stranded eDNA. The blunt ends of the eDNA fragments are ligated with EcoR I adapters and subsequent 

digestion with Xho I, releases the EcoR I adapters and residual primer-linker from the 3' end of the 

eDNA. 
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2.17 Isolation of total RNA from tissues/cells 

The guanidinium thiocyanate-phenoVchloroform extraction method (Short and Sorge. 1992) 

was used to isolate total RNA. 

To achieve a good quality preparation of undegraded RNA. it is essential to inhibit the 

activity of RNases during cell lysis by the use of RNase inhibitors. Cells can be disrupted and 

RNases inhibited simultaneously by the use of strong denaturants such as guanidinium 

thiocyanate and B-mercaptoethanol and detergents such as sodium lauroyl sarcosine. If the cell 

lysate is then mixed with phenol I chloroform under acidic conditions. protein. genomic DNA 

and membrane lipids will partition to the organic phase. whilst RNA will partition to the 

aqueous phase. 

RNA was isolated from a range of tissues and lymphocytes. Liver. kidney and spleen 

tissue were ground to a fine powder using a pestle and mortar with liquid nitrogen and 

homogenised in the following extraction buffer: 4M guanidine isothiocyanate. 250mM sodium 

citrate pH7, 10 % (w/v) sodium lauroyl sarcosine. 14.2M B-mercaptoethanol. For Ig of tissue or 

108 cells. 5rnl extraction buffer was used. Peripheral blood lymphocytes grown in suspension 

were harvested by centrifugation at 12000 rpm and RNA extracted immediately or disrupted 

with RNA extraction buffer and stored at -20°C for later extraction. 

A tenth of the extraction buffer volume of 3M sodium acetate (pH 5.2) was added. The 

low pH of the acid causes neutralisation. resulting in the precipitation of most of the protein and 

genomic DNA. An equal volume (with respect to the total aqueous volume) of phenol. followed 

by a fifth volume chloroform. was added and the solution shaken vigorously for 10 min. It was 

then left on ice for 10 min and the aqueous and organic phases separated by centrifugation at 

12000 rpm for 20 min at rt' The aqueous phase was carefully removed to a fresh tube and the 

RNA precipitated by addition of an equal volume of isopropanol. The solution was mixed and 

left at -20°C for at least 1 hr. followed by centrifugation at 12000 rpm for 20 min. 
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Depending on the clarity of the preparation, i.e. presence of protein 1 DNA contamination after 

the isopropanol precipitation, the procedure may be repeated from the addition of sodium 

acetate onwards. 

Once the supernatant had been discarded, the resulting pellet was washed with 70% 

(v/v) ethanol and allowed to air dry for a few min. The RNA pellet was resuspended in 200J.l.I in 

TE buffer (lOmM Tris.CI pH 8, ImM EOTA pH 8) 1108 starting cells. 

The RNA extracts were electrophoresed at lOOV for 30 - 60 min, using 1% (w/v) 

agarose gel prepared in MOPSIEOTA buffer (O.2M MOPS [3-(N-morpholino) propanesulfonic 

acid], SOmM sodium acetate, IOmM EDTA). The agarose was dissolved using a microwave and 

once cooled below 50°C, 2mI of 37% formaldehyde was added and the gel allowed to set. RNA 

extracts were diluted liS with RNA loading buffer (O.7Srnl formamide, O.ISmI IOxMOPS 

buffer, 0.24mI formaldehyde, O.lml glycerol, O.1mI of 0.5% (w/v) bromophenol blue, O.Olml 

ethidium bromide (lOmgmrJ
) and O.lml sterile water) and heated to 6SoC for 10 min followed 

by chilling on ice before loading. 

2.18 Nucleic acid quantification 

The concentration of RNA can be determined by measurement of ultraviolet (UV) absorbance 

spectrophotometrically at 00260 of a diluted sample RNA, using the following conversion 

factor: A26iJ of 1 corresponds to 40J,.lg RNA mI-!. UV absorbance was also used to check the 

purity of the RNA preparations. For a pure sample of RNA the ratio of absorbance at 260nm 

and 280nm (AwJA2&Q) is approximately 2. 

The concentration of DNA samples was quantified by UV absorbance at AU/J, at which 

wavelength an absorbance of 1.0 corresponds to SOJ.l.g of ds DNA mr!. With a pure sample of 

DNA the ratio of the absorbances at (A~ A2&Q) is approximately 1.8. 

2.19 Isolation of PolyA + mRNA 

The quantity and expression pattern of poly A + RNA in cells and tissues varies with cell type and 

developmental stage. Total cellular RNA is composed mainly of ribosomal RNA (rRNA) and 

Chapter 2 51 



transfer RNA (tRNA), with mRNA accounting for only 1-5%. Some mRNAs constitute less 

than 0.01 % of the mRNA pool. Enrichment of such low level messages is essential for cDNA 

library construction where isolation of pure, intact mRNA is crucial for characterising mRNA 

molecules. 

Purification ofpolyA+ mRNA from total RNA was performed with the Oligotex mRNA 

mini kit using the spin column protocol (Qiagen) as per the manufacturer's instructions. The 

procedure takes advantage of most eukaryotic mRNAs ending in a polyA tail of 20-250 

nucleotides, as opposed to rRNA and tRNA which are non- polyadenylated. 

PolyA + mRNA is purified by hybridisation of the polyA tail to an oligo-dT oligomer 

coupled to a solid-phase matrix. The tRNA and rRNA species do not bind to the oligo-dT and 

are washed from the column. As hybridisation requires high salt conditions the polyA+ mRNA 

is readily dissociated by lowering the ionic strength and destabilising the dT -dA hybrids. 

The concentration and purity of total RNA was determined spectrophotometrically 

(Section 2.18) and approximately 100~g of total RNA suspended in 500111 with RNase-free 

water. An equal volume of binding buffer and 55J,l1 oligotex suspension were added and mixed. 

(The maximum theoretical binding capacity is 600mg~rl mRNA oligotex suspension). The 

sample was incubated for 3 min at 70°C to disrupt the secondary structure of the RNA and 

hybridised with the oligotex particle at room temperature for 10 min. The oligotex-mRNA 

complex was centrifuged for 2 min at 13,000x g and the supernatant discarded. The oligotex­

mRNA pellet was resuspended in 400J,l1 wash buffer, transferred to a spin column and 

centrifuged for 1 min at maximum speed. The column was washed with 400lli wash buffer as 

above and the PolyA + mRNA eluted by resuspension of the resin with 40J,l1 hot (70°C) elution 

buffer, followed by centrifugation for 1 min. The PolyA+ mRNA was quantified by UV 

absorption at A2(J) and stored at -20°C until required. 
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2.20 Purification of Plasmid DNA 

Methods used for the purification of plasmid DNA exploit the small size and covalently closed 

circular nature of the plasmid DNA. Bacteria are recovered by centrifugation and lysed by a 

number of methods. including treatment with nonioniclionic detergents. organic solvents, alkali 

or heat. These treatments cause the host bacterial chromosomal DNA to denature by disrupting 

base pairing. However, strands of closed circular plasmid DNA remain intertwined. 

Plasmid DNA was purified from E. coli using an adaptation of the alkaline lysis 

methods of Birnboim and Doly (1979), and Ish-Horowicz and Burke (1981). A lOml culture of 

E.coli inoculated in LB medium containing 50J'gmr' ampicillin at 37°C overnight, was 

harvested by centrifugation at 3000rpm for 10 min. Cells were resuspended thoroughly in 200J,.l1 

alkaline lysis buffer I (50mM glucose, lOmM EDT A pH 8, 25 mM Tris.HCI pH 8), followed by 

incubation on ice for 5 min, after which 400J,.l1 of alkaline lysis buffer II (0.2M NaOH, 1 %SDS) 

was added and mixed by inversion. This was incubated on ice for 5 min after which 300J,.l1 of 

alkaline lysis buffer III (3M sodium acetate pH 4.8/5.2) was added and mixed by vortexing for 

15 seconds and incubated for 30 min on ice. The cellular debris was pelleted by centrifugation 

at 13000 rpm for 10 min. To 0.7rnl supernatant transferred to a fresh tube, 0.6 volume of 

isopropanol was added and left on ice for at least 10 min. The precipitated nucleic acids were 

centrifuged and the supernatant discarded. The nucleic acid pellet was washed with 1ml 70% 

(v/v) ethanol and re-centrifuged. The supernantant was discarded and the pellet allowed to air 

dry for a few min, prior to resuspension in 50J,.l1 TE buffer (lOmM Tris.CI, 1mM EDTA pH8) 

containing RNase A (O.lmgrnl·'). 

Alternatively plasmid DNA was purified using the spin miniprep kit protocol (Qiagen) 

as per the manufacturer's instructions. The procedure is based on alkaline lysis of bacterial cells 

followed by adsorption of DNA onto silica in the presence of high salt (Vogelstein and Gillespie 

1979). 

The protocol allows the purification of up to 20J,.lg of high-copy plasmid DNA from 

lOml overnight cultures of E.coli in LB medium. The pelleted bacterial cells were resuspended 
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in 2S0~1 of buffer PI, an equal volume of buffer P2 was added and the contents mixed by 

inversion. To prevent shearing of the genomic DNA mixing by vortexing was avoided. After the 

addition of 3S0~1 of buffer N3 the solution was mixed by inversion and centrifuged at 13,000 

rpm for 10 min. The supernatant was decanted to a silica spin column and centrifuged for 1 min. 

Following salt removal by washing with 7S0~1 of buffer PE, the DNA was eluted in either SO~1 

of buffer EB (lOmM Tris.CI, pH 8.S), TE (1OmM Tris.CI, ImM EDTA, pH 8.0) or water (pH 7-

8). The purified plasmid DNA is quantified by UV absorbance at A260 (Section 2.18). 

2.21 Purification of DNA from TBE agarose gels 

The GeneClean II protocol (Bio101) was used to purify DNA from agarose gel slices as per the 

manufacturer's instructions. The method is based on the principle of DNA binding to silica in 

high salt concentrations and elution in low salt (Vogelstein and Gillespie, 1979). Different sizes 

of DNA remain bound to the silica under various salt, pH and wash conditions. Maximum 

binding efficiency of smaller DNA fragments (200-S00bp) can be achieved by lowering the pH 

of NaI to 6-6.S by the addition of 10% v/v acetic acid or TBE modifier™ (kit component 

consisting of a mixture of concentrated salts for removing DNA, and is used to overcome the 

inhibitory effect of TBE and other borate-containing buffers on the binding of DNA to silica). 

The DNA to be purified was excised from an ethidium bromide-stained agarose gel and 

weighed. The agarose was dissolved by incubation at 4S-S5°C for S min with 0.5 volumes of 

TBE modifier and 4.S volumes of 6M Nal. To allow binding of the DNA to the silica matrix S~l 

of resuspended silica was added, followed by vortexing and incubation at rt for S min. The 

amount of silica required is based on the amount of DNA and volume of NaI solution. 1~1 of 

silica matrix binds l-2~g DNA. The silica-bound DNA is pelleted by centrifugation at 13,000 

rpm and the supernatant discarded. The resulting pellet was washed 3 times with 700~1 NEW 

Wash (kit component containing NaC!, Tris, EDTA, 96-98% v/v ethanol) and the pellet air­

dried for 5-10 min to remove any residual ethanol which could interfere with downstream 

reactions. The DNA was eluted from the silica by resuspending the pellet in 1O~1 water or TE, 
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pelleting the matrix and collecting the supernatant. Approximately 80% of the bound DNA is 

eluted, though a second elution can recover an additional 10-20%. 

2.22 Purification of cDNA using Phenol-chloroform extraction 

The cDNA fractions prepared (Section 2.11) using the pCMV-Script XR eDNA Library 

Construction Kit were extracted with phenol-chloroform and precipitated with ethanol to 

recover the size selected cDNA. Phenol-chloroform extraction was necessary to remove 

contaminating proteins, in particular kinases carried over from previous steps since they often 

retain activity following heat treatment. 

An equal volume of phenol-chloroform [l:lCv/v)] was added to the fractions collected 

from the drip column, followed by mixing by vortexing and centrifugation at 13,000 rpm for 2 

min at rt. The upper aqueous layer was transferred to a fresh tube and an equal volume of 

chloroform added. After mixing by vortexing and centrifugation for 2 min at rt the upper 

aqueous layer was transferred to a fresh tube. To each extracted sample, 96-98% (v/v) ethanol 

equal to twice the individual sample volume was added, followed by precipitation overnight at-

20°C. The samples were pooled at this stage and centrifuged at 13,000 rpm for 60 min at 4°C 

and the supernatant transferred to a fresh tube. To ensure the cDNA had been recovered, the 

level of radioactivity present in the pellet was monitored. 

The pellet was carefully washed with 200J.l1 80% (v/v) ethanol and centrifuged for 2 

min at rt. The ethanol was discarded and the cDNA pellet air-dried for approximately 5 min. To 

confirm the cDNA had been recovered, the numbers of counts per second (cps) were detected 

by radioactive monitoring. 

2.23 cDNA amplification by RT -peR of mRNA 

Coupled Reverse Transcription and PCR amplification CRT-PCR) is used to establish relative 

levels of mRNA species in cells/tissues. RT-PCR allows the amplification of DNA generated by 

reverse transcription of mRNA. Since RNA cannot be used as a template for PCR, the Reverse 

Transcriptase (RT) uses an RNA transcript to generate DNA that can be subsequently amplified 
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by PCR. RT catalyses the first step of RT -PCR. the reverse transcription of RNA into single­

stranded cDNA. 

This first strand synthesis can be primed using anchored oligo-dT primers, random 

hexamers or sequence-specific primers. The oligo-dT primers are designed to anneal at the 

mRNA I Poly A junction end of the mRNA, and so transcription is primed at the beginning of 

the portion of the mRNA of interest, rather than an arbitrary point within the poly-A tail. By 

avoiding unnecessary transcription through the polyA tail. an increased cDNA yield and 

specificity of PCR products are achieved compared with other first strand synthesis primers. 

Random hexamer primers anneal non-specifically along the whole length of the RNA target and 

are used when problems of secondary structure are encountered in the target DNA. Sequence­

specific primers are used when the target sequence is known, often resulting in lower cDNA 

yields. 

The reaction mixture for the first strand synthesis was prepared with the following 

components: 1x Avian Myeloblastosis Virus (AMV) RT Reaction Buffer (250mM Tris. Hel. 

40mM MgCh, 150mM KCI, 5mM dithiothreithol pH 8.5). dNTPs each at 2mM, Oligo dT (20-

200 pmols) or random hexamer primers (20-50 pmols) or specific internal primers (10-

15pmols), IJ.Lg total celluar RNA or 100ng Poly (At RNA. suspended in a volume of 49J.LI with 

sterile RNase-free distilled water. The reaction mixture was heated to 65°C for 10 min, cooled 

on ice and briefly centrifuged, to remove secondary structure. 25U AMV RT was added and the 

reaction incubated at 42°C for 1.5 h. The resultant cDNA was stored at -20°C. 

2.24 Polymerase Chain Reaction (PCR) 

Selective amplification of a specific sequence of DNA by the polymerase chain reaction (PCR) 

is performed by the thermostable Taq DNA polymerase (Chien et al., 1976). Two 

oligonucleotides are used as primers for a series of synthetic reactions catalysed by DNA 

polymerase. 

Template DNA is initially denatured. by heating in the presence of an excess of primers 

and the 4 dNTPs. The reaction mixture is cooled to allow annealing of the primers to the 
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template DNA sequence, after which the annealed primers are extended with DNA polymerase. 

The cycle of extension, annealing and DNA synthesis is repeated and the products from the 

initial round of amplification serve as templates for the next cycle. Consequently each 

successive cycle results in the doubling of the amount of DNA product. The exponential 

amplification of target sequence is not an unlimited process. The Taq DNA polymerase 

becomes limiting after 25-30 cycles of amplification (amplification level of 106
). 

The PCR reaction mixture contained the following components in order: Ix DNA 

buffer, 25mM MgCh, dNTPs each at 2mM and 2.5U Taq DNA polymerase. O.l-0.5J..1.m 

(100pmoIJLr1
) of each forward and reverse primer (MWG-Biotech UK Ltd, Milton Keynes) and 

various amounts of template DNA I cDNA (O.OOI-lng) were added and sterile water, to give a 

final reaction volume of 25JLl. 

PCR amplification was performed with a number of different oligonucleotide primers at 

a range of annealing temperatures (Table 4.3), using a thermal cycler MultiBlock System 

(Hybaid Ltd). Amplification conditions for denaturation, annealing and polymerisation were as 

follows: first cycle: denaturation at 95°C for 5 min, subsequent 35 cycles: denaturation at 95°C 

for 45 seconds, primer annealing between 37°C-55°C for 45 seconds, elongation at noc for 1 

min, final cycle: denaturation at 95°C for I min, primer annealing at 37°C-55°C for 1 min, 

followed by primer polymerisation at noc for 8 min (Table 4.3). Amplified PCR fragments 

were electrophoresed using 2% agarose gel. 

2.25 Cloning of peR products using pGEM-Teasy Vector 

PCR products were cloned using the pGEM-Teasy Vector System 1 (Promega), which allows 

blue/white selection of recombinants. The vector has EcoR I and Not I recognition sites flanking 

the insertion site, allowing the removal of inserts by a single restriction digest after cloning. 

Purified PCR products are ligated to the linearized vector, using T4 DNA Ligase and competent 

JM109 E.coli cells transformed (Section 2.29); followed by selection of white colonies on 

ampicillin I IPTG I X-gal plates (Section 2.28.2). 
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2.25.1 Ligation ofPCR products using the pGEM-Teasy Vector 

Ligation reactions with lOng PCR product and 50ng vector (1:5 molar ratio) were set up using 

the following: Ix Rapid Ligation Buffer (60JlM Tris-HCL pH 7.S, 20mM MgCh, 20mM orr, 

2mM ATP, 10% (v/v) polyethylene glycol), 50ng pGEM-Teasy Vector, lOng PCR product, 3U 

T4 DNA ligase and deionised water to give a final volume of 10 JlI. The reactions were mixed 

and incubated at 4°C overnight. A positive control ligation reaction using Sng control insert 

DNA was included to determine the ligation efficiency. In addition, a background control 

ligation was set up with 50ng of vector with out insert, to determine the number of background 

colonies. 

2.25.2 Transformations using pGEMT-easy vector ligation reactions 

LB/ampicillin/IPTGIX-Gal plates were prepared for each ligation reaction (Section 2.25.1) and 

for determining transformation efficiency. Ligation reactions were briefly centrifuged and 2Jll 

of each reaction were added to a sterile 1.5ml prolypropylene tube (Falcon) and placed on ice. 

To determine the transformation efficiency of the E.coli (JM109) competent cells, O.lng uncut 

plasmid was used for the transformation reaction. To each reaction 50Jll of thawed competent 

JM109 cells were added, mixed gently and incubated on ice for 30 min. The cells were heat-

shocked for 2 min at 42°C and immediately placed on ice for a further 2 min. An optional step 

involving the incubation of transformed cells with SOC medium (2g Bacto-tryptone, 0.5g 

Bacto-yeast extract, supplemented with 1M NaCl, 1M KCl, 2M Mg2+stock, 2M glucose) may be 

included. In which case, to the cells transformed with ligation reactions and the cells 

transformed with uncut plasmid, 900Jll SOC medium was added and the reactions incubated at 

37°C for 1.5-2 h. 100JlI of each transformation culture was plated onto duplicate 

LB/ampicillin/IPTG/X-gal plates and incubated at 37°C overnight (16-24 h). 

The transformation efficiency of the competent cells was determined by transformation with 

uncut plasmid and calculation of cfu/Jlg DNA: 

cfu on control plate x final dilution = cfu/Jlg DNA 
ng vector plated 
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2.26 Cloning of cDNA using the pCMV· Script plasmid vector 

2.26.1 Ligation of cDNA into pCMV. Script plasmid vector 

Purified size fractionated cDNA (Section 2.22) was ligated into the pCMV-Script Vector using 

pCMV-Script XR cDNA library construction kit ( Stratagene). A pilot ligation and 

transformation for each sample was performed to establish the ligation efficiency of the test 

insert and cDNA with the pCMV -Script vector. The ligation and transformation reactions were 

then scaled up and optimized to achieve a primary library consisting of a target number of 

transformants. 

A control ligation to ligate the test insert into the pCMV -Script vector was set up with 

the following: 30ng pCMV -Script vector, lOng LacZ test insert, Ix ligase buffer, Ix lOmM 

rATP (pH 7.5), and 1.5J.t1 water. 2U T4 DNA ligase was added. For the sample ligation the 

following components were added: -lOng resuspended eDNA, O.5J.t1 Ix ligase buffer, O.5J.t1 

lOmM rATP (pH 7.5), 1.0J.t1 pCMV-Script vector (30ngJ.tr') and 1.5J.t1 water to give a final 

volume of 4.5J.t1. To this 2U T4 DNA ligase was added. Both the control and sample ligations 

were incubated for 2 days at 4°C. 

2.27.1 Transformation using pCMV· Script Vector ligation reactions 

XL-lO Gold ultra competent E.coli (Stratagene) were transformed using pCMV script vector. 

To an aliqout of lOOJ.t1 of ice-thawed XLlO-Gold ultracompetent cells, 4J.t1 of the P-ME mix was 

added and gently mixed by swirling, followed by incubation on ice for 10 min. The entire 

ligation reaction was added to the cells and gently mixed as above. For the control, IJ.t1 of the 

ligation was added to lOOJ.t1 cells and O.lng ofpUCl8 plasmid diluted 1110 in water was used as 

a transformation control. All 3 reactions were incubated on ice for 30 min and heat pulsed at 

42°C for 30 seconds, followed by incubation on ice for 2 min. The duration and temperature of 

the heat pulse was critical for obtaining the highest efficiencies. To each tube 0.9ml of 

preheated (42°C) NZY+ broth (lOg NZ amine Icasein hydrolysate, 5g yeast extract, 5g NaCI, 
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supplemented with 1M MgCh, 1M MgS04 and 2M filter-sterilised glucose solution) was added 

and the reactions incubated at 37°C for 1 hr with shaking at 225-250 rpm. 

2.27.2 Determination of number of transformants 

For plating quantities of the ligations; 1J.LI, 1OIJ.I and 50IJ.I of each 1ml pilot transformation was 

plated out onto LB-kanamycin (X-gal/IPTG) agar plates (Section 2.28.2). In addition 1J.Ll, lOJ.LI 

and 50J.LI of the ampicillin-resistant test insert transformation was plated out on LB-ampicillin 

agar plates. 

The numbers of resistant colonies were determined as follows: 

colonies I xlJ.I x 1000J.Ll = total cfu. 

2.28.1 Preparation of LB agar ampicillin !kanamycin plates 

To prepare antibiotic plates, 500rnl LB agar was melted using a microwave at low power for 20 

min. Appropriate antibiotics (ampicillin at 100J.Lgrnl·1
, kanamycin at 50J.Lgmr1

) were added after 

the agar was cooled to below 55°C. Approximately 25 rnl of LB agar was poured into 100mm 

petri dishes and allowed to set at room temperature. The plates were dried for 10-15 min and 

stored at 4°C in the dark for up to 1 month. 

2.28.2 Preparation of Ampicillin! IPTGIX-Gal plates 

LB agar plates with ampicillin prepared in Section 2.28.1 were supplemented with 100IJ.I IPTG 

(lOOJ.LM in H20) and 20IJ.I X-Gal (50mgrnl·1 in dimethylformamide). The mixture was spread 

over the surface of the agar plate and left for 30 min at 37°C before use. 

2.29 Preparation of competent E.coli (JMI09) cells 

JM109 cells are maintained on M9 minimal medium plates (42mM Na2HP04.22mM KH2P04, 

0.85mM NaCI. 18mM Nl4CI. 1M MgS04• 1M CaCh. 20% (w/v) glucose. 1M Thiamine HCl) 

supplemented with thiamine HCI, which selects for the presence of the F episome carrying the 

lacZ gene required for the blue/white screening process. The following procedure developed by 

Hanahan (1983). was used to produce competent E.coli. 
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E.coli was streaked on M9 minimal plates and incubated at 37°C overnight. A single colony 

was picked and cultured overnight in liquid broth (lOg Bacto tryptone, Sg Bacto yeast extract, 

0.17M Sodium chloride, pH 7), with shaking at 37°C. From the overnight culture, 10ml of cells 

were added to SOOml LB and incubated with shaking at 37°C, until an OD600 of approximately 

0.9 was reached. The bacteria were harvested by centrifugation at SOOOrpm for IS min at 4°C 

(using a Beckman J2-21 centrifuge and JA-14 rotor), and the supernatant discarded. Cells were 

resuspended in 2S0ml ice-cold sterile l00mM CaCho placed on ice for 20 min and centrifuged 

as above. Following resuspension in a further 20ml ice-cold lOOmM CaCh, glycerol was added 

to a final concentration of 10% and the cells gently mixed. Aliquots of O.Sml of competent cells 

were stored at -70°C. 

The transformation efficiency of the JM109 E.coli cells was determined using lOngJlr l 

pUC 18 supercoiled plasmid as described in Section 2.27.2. 

2.30 Preparation of 32 P (l-dCTP labelled eDNA probes 

Radioactive cDNA probes complementary to single stranded RNA were generated by reverse 

transcription of entire mRNA populations using oligo (dT) or short oligonucleotides of random 

sequence as primers. Oligo (dT) primers are used with RNAs possessing poly (A) tracts and 

subsequently generate probes which contain mostly sequences derived from 3' terminus of the 

mRNAs. 

Radioactive cDNA is generated by the incorporation of a)2P-dNTP during the reverse 

transcriptase step of cDNA synthesis using an RNA dependent DNA polymerase. 

The following constituents were added to a centrifuge tube: lx AMV reaction buffer 

(Roche Diagnostics Ltd. Sussex) Ix dNTP mix containing dATP, dGTP, dTIP (each at 2mM), 

O.SJlg Oligo (dT) or random hexamer primer, 0.5Jlg RNA and the volume adjusted to 44JlI with 

sterile water. The mixture was vortexed and heated to 65°C for 10 min to allow annealing of the 

primers to the RNA. 1.85 MBq Redivue a)2P-dCTP (Amersham Pharmacia biotech, UK) was 
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added to the mixture followed by 25U AMV Reverse Transcriptase and the solution mixed and 

incubated at 42°C for several h. 

2.31 Radioactive labelling of DNA probes with random hexanucleotides 

DNA probes were labelled using the Rediprime™n random labelling system (Amersham 

Pharmacia Biotech). The use of random sequence hexanucleotides to prime DNA synthesis on 

denatured template DNA at a number of sites along its length was introduced by Feinberg and 

Vogelstein (1983, 1984). The primer-template complex is a substrate for the klenow fragment of 

DNA polymerase I, with the radioactive DNA being produced by the incorporation of 

radiolabelled nucleotides in newly synthesised strand of DNA. 

The rediprime system allows labelling of very small quantities of DNA «25ng) to a 

high specific activity of 1.9x109 dpmj..l.g·l, using a)2P-dCTP. The DNA to be labelled was 

diluted to 45)..1.1 in TE buffer (IOmM Tris HCL, ImM EDTA pHS.O) and denatured by heating at 

95-100°C for 5 min. The DNA was snap cooled on ice for 5 min, briefly centrifuged and added 

to the labelling reaction containing: buffered solution of dATP, dGTP, dTTP, exonuclease free 

Klenow enzyme and random primers. To the reaction mixture 1.85MBq of Redivue a}2p -

dCTP was added, mixed by pipetting and incubated at 37°C for at least 10 min. 

2.32 Non-radioactive labelling of DNA probes with digoxigenin 11·dUTP 

As an alternative to radioactive-labelling DNA can be labelled with the non-radioactive 

substrate digoxigenin-ll-dUTP, using the DIG-Nick translation mix (Roche) and following the 

manufacturer's instructions. 

The nick translation method (Rigby et aI., 1977) is based on the ability of DNase I to 

introduce nicks randomly distributed into the double stranded DNA, at low enzyme 

concentrations in the presence of Mg2+. 5'-3' exonuclease activity of E.coli DNA polymerase I, 

produces single stranded nicks and eliminates stretches of single stranded DNA (ssDNA). The 

degraded DNA is then replaced with labelled dNTPs by the 5'-3' polymerase activity. Labelled 

fragments obtained in the standard labelling reaction, range from 200-500 nucleotides. 
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For the labelling reaction, IJ.Lg template DNA was added to 4J.LI of DIG-Nick Translation Mix 

containing DNA polymerase I, DNase I, digoxigenin (DIG)-ll-dUTP, dATP, dCfP, dGTP, 

dTIP and reaction buffer concentrate in 50% glycerol. The volume was adjusted to 20J.LI, and 

the reaction mixed, briefly centrifuged and incubated at 15°C for 90 min. The reaction was 

chilled to O°C and stopped with the addition of IJ.LI 0.5M EDTA (pH8.0) and heating to 65°C 

for 10 min. 

2.33 Detection of DIG·ll·dUTP labelled nucleic acids 

DNA labelled with DIG-ll-dUTP can be detected using an antibody against digoxygenin 

(Anti-Digoxygenin, Fab fragments conjugated to alkaline phosphatase), and the colorimetric 

detection reagents nitroblue tetrazolium (NBT) and 5-bromo-4-chloro-3-indolyl (BCIP). 

Following hybridisation and post-hybridisation washes, the membrane was equilibrated in 

washing buffer (100rnM maleic acid, ISOrnM Nael, pH 7.5,3% (v/v) Tween 20) for 1 min and 

then blocked in 1 %w/v DIG Blocking Reagent (Roche) dissolved in Maleic acid buffer (O.1M 

maleic acid, O.l5M NaCI, pH 7.5, 3% (v/v) Tween 20) for 30 min. The membrane was 

incubated at rt for 30 min with 150Umr l anti-DIG- AP conjugate (Anti-Digoxygenin -AP, Fab 

fragments conjugated to alkaline phosphatase) diluted 1/5000 in blocking buffer. To remove 

non-specifically bound and unbound antibody conjugate, the membrane was washed twice with 

washing buffer for 15 min, followed by equilibration in detection buffer (lOOmM Tris.HCI, 

loomM Nael, pH 9.5) for 2 min. The substrate mixture of 45J.LI NBT and 35J.LI BCIP, (Roche) 

was added to 10ml of detection buffer and the filter incubated in the dark at rt for 10 min or 

until bands become visible. The colour reaction was stopped by washing the membrane in 

distilled water or TE Buffer (lOrnM Tris, lrnM EDTA pH 8.0) and air-dried. 

2.34 Nucleic Acid Hybridisation 

2.34.1 Southern hybridisation 

The transfer of DNA from gels to nitocellulose filters or nylon membranes by capillary 

transfer was described by Southern (1975). The DNA is exposed to weak acid resulting in 
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partial depurination, followed by alkaline denaturation with a strong base and subsequent 

neutralisation. Hydrolysis of the phosphodiester backbone occurs at depurinated sites, resulting 

in smaller DNA fragments (-1 kb) which can be transferred efficiently. 

The DNA to be blotted was electrophoresed in 1 % agarose gels in TBE buffer (1M Tris, 

10mM EDTA, 1M Boric acid, ethidium bromide (O.OlfJgmr1). If the fragments of interest were 

larger than 15Kb, transfer was improved by depurinating the DNA prior to denaturation. In 

these instances the gel was washed with O.25M HCI for 15 min at rt and rinsed with water. 

Following this the DNA was denatured by submerging the gel in denaturation solution (O.5N 

NaOH, 1.5M NaCI) for 2 x 15 min, followed by neutralisation with 1M N~ acetate and O.02M 

NaOH for 2x15 min. Membrane filters for the southern transfer were prepared according to 

manufacturer's instructions and the DNA blotted overnight by capillary action. The DNA was 

fixed to the membrane by exposure to UV irradiation (300nm) for 1 min. 

DNA was on occasion transferred simultaneously and rapidly from an agarose gel to 

two membranes as described by Smith and Summers (1980). This procedure was useful when 

target DNA fragments were to be screened with more than one probe. After fixing the DNA to 

the membrane, the membrane was prehybridised. Pre-hybridisation prepares the membrane for 

probe hybridisation by blocking non-specific nucleic acid binding sites on it, resulting in a 

lowered background. Filters were pre-hybridised in 5ml pre-hybridisation buffer (Rapid-hybaid 

buffer, Amersham Pharmacia Biotech, UK) for several h at 65°C. Double stranded DNA probes 

were boiled for 10 min to denature the DNA and immediately chilled on ice. 

The DIG Il-dUTP labelled or a}2P-dCfP labelled probes were diluted at optimum 

concentrations (5-25ngml-1) in hybridisation buffer and incubated with the membrane overnight 

at 65°C. The diluted probes could be stored at -20°C and reused by denaturing at 95°C for 10 

min prior to hybridisation. 

Following hybridisation unbound probe was removed by washing the filter twice with 

2xSSC I 0.1 % (w/v) SDS for 5min at rt and then twice with 0.2xSSC I 0.1 % (w/v) SDS at 65°C 
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for 15 min. Once washed, the filter was sandwiched between two layers of NSaran WrapN and 

subjected to autoradiography or antibody detection as appropriate. 

2.34.2 Northern hybridisation 

The transfer of RNA from gels to nylon membranes is similar to those used for the transfer of 

DNA. Following electrophoresis of RNA using MOPSIEOTA buffer (Section 2.17), the gel was 

washed with 10 x SSC transfer buffer (NaCI, Na citrate adjusted to pH7) for 2 x 10 min with 

shaking. The denaturing and neutralising steps are not necessary, as the RNA is denatured in the 

gel. 

Membrane filters for the northern transfer were prepared according to manufacturer's 

instructions. The RNA was blotted by capillary action onto a nylon membrane (Hybond N, 

Amersham) using 10 x SSC as the transfer buffer, either for several h or over night. The 

transferred RNA was fixed to the membrane by UV -cross linking at 300nm for 1 min. Blots 

were rinsed in 2 x SSC before hybridisation. 

Conditions for prehybridisation, hybridisation and post-hybridisation washes were 

essentially the same as those used for ONA except that prehybridisation and hybridisation was 

carried out using northern blot prehybridisation buffer (5x SSPE, 5x Oenhardt's reagent, 50% 

formamide, 0.5% SOS) at 42°C. To remove unbound probe, the filter was washed twice with 

2xSSC I 0.1% (w/v) SOS for 5min at 42°C and then twice with 0.2xSSC I 0.1% (w/v) SOS at 

42°C for 15 min. 

2.35 Colony Hybridisation 

Colony hybridisation as described by Grunstein and Hogness (1975) allows the screening of 

bacterial libraries for specific DNA sequences. The bacterial colonies are transferred to a nylon 

membrane. Alkaline treatment lyses the colonies and the denatured DNA is immobilised on the 

membrane. A digoxigenin labelled probe was used and hybrids were detected with the 

colorimetric immunoassay using the chromogenic substrates NBTIBCIP as before. 
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Bacterial colonies were replicated from the surface of agar plates onto nitrocellulose filters, to 

screen large numbers of colonies by hybridisation. 

The bacteria adhering to the filter can be lysed immediately or the filter can be placed 

colony side up on the surface of a fresh LB agar plate with antibiotics for a few h at 37°C to 

allow the colonies to regenerate. 

Replica filters were prepared when colony hybridisation with several probes was 

performed. The original filter was placed colony side up on the surface of a fresh LB agar plate 

containing the appropriate antibiotic. A second dry filter was carefully placed on top of the 

template membrane and its orientation marked to allow realignment to the original. The replica 

filter was carefully peeled off and depending on the efficiency of the transfer; the filters were 

incubated at 37°C until colonies were obtained. 

Master colony filters and replicas were stored at -70°C. Hybond N+ membrane 

moistened with LB agar containing antibiotics and 15% v/v glycerol were placed on top of the 

colony filter. Filters were sandwiched between two layers of 3MM paper and sealed in plastic 

bags and stored at -70°C. 

The method for colony lysis, based on the original procedure of Grunstein and Hogness 

(1975), describes the release of DNA from bacterial colonies and it's binding to nitrocellulose 

filters in situ. 

The filters were placed colony side up on a pool of 10% w/v SDS for 3 min. Filters 

were then placed, in turn, onto a pool of; denaturing solution (0.5N NaOH, 1.5M NaC!) for 5 

min, and neutralising solution (1.5M NaCl, 0.5M Tris.CI pH 7.4) for 2x 5 min. The membranes 

were treated with 2xSSC solution for 2x 5 min and air-dried for 30 min at rt. Bacterial debris 

was removed by submerging the filters in 2xSSC and wiping the surface with a paper towel. 

This reduces background hybridisation without lowering the intensity of the signal. Filters were 

air-dried as before and the DNA fixed to the membrane by exposure to UV illumination 

(300nm) for 1 min. 
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3.1 Introduction 

Respiratory burst is an innate response of macrophages to exposure to a wide range of external 

stimuli. These include particulate stimulants, for example zymosan, bacterial species including 

fish pathogens Aeromonas salmonicida (Sharp and Secombes, 1992) and Vibrio anguillarum 

(Stave et aI., 1985), parasite extracts (Whyte et al., 1989) and soluble stimulants such as PMA, 

Con A, LPS, PHA and pokeweed mitogen (Chung and Secombes, 1988; Tillit et al., 1988; 

Zelikoff et al., 1991). This alteration in oxidative metabolism is enhanced by the priming of 

macrophages via immunologic stimuli such as cytokines (Babior, 1984a,b). 

Graham and Secombes (1988), using an in vitro functional assay based on the reduction 

of NBT showed that mitogen stimulated O. mykiss head kidney and blood leucocytes were 

capable of secreting a soluble factor capable of activating macrophages (MAF). In mammals, a 

macrophage activating factor (MAF) has been identified showing antiviral and macrophage 

activating properties, sensitive to both acid pH and temperature, parameters which are known to 

affect IFN-y. Although IFN-y or genes encoding IFN-y have not yet been identified in fish, it 

has been suggested that O. mykiss MAF might be equivalent to mammalian IFN-y (Graham and 

Secombes, 1990b) based on similarities with the mammalian cytokine (Nathan et al., 1983). The 

factor produced by mitogen-stimulated fish lymphocytes was both heat and pH labile and 

supernatants containing the factor protected a trout cell line challenged with infectious 

pancreatic necrosis virus (Graham and Secombes, 1990b). Isolation of MAF from these 

supernatants has proved difficult, but it appears to be a T cell product (Graham and Secombes, 

1990a) with a molecular weight of approximately 19 kDa. However, attempts to isolate cDNA 

clones corresponding to the mRNA encoding MAF have so far failed. 

The main aim of this particular study was the development of T cell and macrophage 

culture methods, to establish a reproducible source of MAF from O. mykiss lymphocytes. 

Lymphocyte stimulation assays were performed to optimise culture conditions and to evaluate 

the responsiveness of T cell lymphocytes to the following mitogens: PMA, Con A, LPS, PHA 

and pokeweed, the latter stimulates B-cells but in a T -cell dependent manner. Cell-free 
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supernatants from the stimulated T -cells were then assayed for their ability to stimulate 

respiratory burst activity in O. mykiss macrophages in vitro. as assessed by the reduction of 

NBT and Luminal. 
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3.2 Materials and Methods 

To establish MAP production, O. mykiss leucocytes derived from peripheral blood were 

cultured in vitro with T cell mitogens. Macrophage activation by supernatants from these 

stimulated cultures was determined by the reduction of either NBT or the chemiluminescence 

substrate Luminol. following incubation of the macrophages with the supernatants. 

3.2.1 Production of cell-free supernatants from stimulated lymphocytes 

Cell suspensions were prepared from O. mykiss lymphocytes derived from either head kidney or 

peripheral blood, according to Secombes (1990). Briefly, the cell suspension diluted in L-15 

(5ml) was layered onto a 51 % Percoll (Amersham) density gradient and the leucocytes carefully 

isolated from the mediurnlPercoll interface as described in Section 2.3. 

Viable cells were adjusted to 2.0 x 106 cells mrl, and aliquots of the cell suspensions 

were added to 25cm2 tissue culture flasks. ConAlPMA, diluted to appropriate concentrations 

(20J..Lgml-1 and 5ngml-1 respectively), were added and cells containing L-15 instead of mitogen 

were included as controls. Leucocytes were stimulated for 3 h, washed with fresh L-15 and 

incubated at 20°C for 48 h, after which supernatants were collected by centrifugation at 600 xg 

for 10 min. 

3.2.2 Lymphocyte stimulation assay (LSA) with a range of mitogens 

A number of mitogens and soluble stimulants were assessed for their ability to activate O. 

mykiss peripheral blood lymphocytes (PBL) in vitro. Lymphocytes isolated from peripheral 

blood, were prepared and cultured as described in Section 2.3 and stimulated with the 

following: Concanavalin A (Con A), Phorbol-myristate acetate (PMA), Phytohaemagglutinin 

(PHA), Pokeweed and Lipopolysaccaride(LPS). Mitogens were diluted at 1,5, 10 and 20J..Lgmrl 

in L-15 medium. Leibowitz L-15 medium or lymphocytes grown without mitogen in the 

medium were included as controls. After culturing the lymphocytes in the presence of the 
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mitogens for 3-4 days, the extent of stimulation was assessed by measuring the incorporation of 

3H-thymidine into the cells after further 18 h incubation. 

The cells were harvested with a semi-automatic multiple harvester (Micromate ™ 196 

Packard), transferred onto glass fibre filters (Packard) and washed in distilled water. The 

amount of 3H-thymidine incorporated by the cells was assessed using liquid scintillation 

counting. Each mitogen was assessed in triplicate and results expressed as mean 'counts per 

minute'. 

3.2.3 Respiratory burst activity of head kidney macrophages assessed by reduction of NBT 

Macrophage intracellular respiratory burst activity was measured by the reduction of NBT (Pick 

and Mizel, 1981; Rook et al., 1985) as described in Section 2.8.1. MAP activity of CFS from 

stimulated lymphocytes was assessed by incubating macrophage monolayers (lx107mrl) in the 

presence of PMA (l)..tgml'l), with either supernatants from control cells or lymphocytes 

stimulated from 0 to 48 h. Supernatants were used undiluted or as dilutions of 1: 10 and 1: 100 in 

L-15 medium. The assay was developed as described in Section 2.8.1 and results were 

expressed as mean OD (At;30nnJ values per lxlOs cells ± SD for triplicate samples. 

To determine the optimum period of lymphocyte stimulation to produce MAP activity 

in the cultures, CFS from lymphocytes stimulated with mitogen for 0-80 h were also assessed. 

Supernatants were assayed undiluted and at 1:10 and 1:100 dilutions in L-15 medium, as above. 

3.2.4 Respiratory burst activity of head kidney macrophages assessed by reduction of 

Luminol 

MAF activity of CFS derived from stimulated lymphocytes was assessed by monitoring the 

chemiluminescence produced by isolated head kidney macrophages using the substrate 

Luminol. as described in Section 2.8.2. 

Macrophages isolated from the head kidney of O. mykiss were prepared and cultured as 

described in Section 2.4. Luminol was added to triplicate samples of an equal suspension of 

macrophages (1.2x106cells/well) and CFS from either 24/48 h mitogen-stimulated lymphocytes. 
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The corresponding CFS from non-stimulated lymphocytes derived from the same source were 

also assessed. PMA (5/-lgmr' HBSS) was used as a positive control to stimulate respiratory 

burst. and indicator-free HBSS and L-15 medium were included as negative controls. 

Chemiluminescence was monitored for approximately 40 mins using a luminometer (TR717. 

PE Biosysterns). The results were expressed as relative light units (RLU/Sec) and kinetic 

measurements analysed with the 'Winglow' 1.24 software program. 

3.2.5 Statistical analysis 

Statistical tests were performed using Minitab V 13. Results from each experiment were 

analysed by one-way ANOVA with an accepted significance level of P<0.05 and Tukey's 

multiple comparison tests with a family error rate of 0.05. One way - ANOVA was chosen as it 

allowed the differences among means with equal sample size to be examined using multiple 

comparisons (Appendices 3.1-3.7). 

In addition. a set of residual plots were generated for analysis. Normality probability 

plots of the residuals (observed-predicted values) and plots of residual versus fits were used to 

assess if residuals were random I normally distributed and to examine best fit (Appendix 3.8). 

Normality of variance was confirmed before any parametric test was applied. In instances where 

this failed. logarithmic transformations (loglO) of data were applied to normalise variability 

within each treatment (Appendices 3.4 -3.7). 
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3.3 Results 

3.3.1 Activation of lymphocytes with a variety of stimulants in vitro 

Lymphocytes were stimulated using either LPS, PHA, Con A, PMA or Pokeweed mitogen. All 

of the mitogens tested, with the exception of PMA, were able to stimulate the lymphocytes to 

proliferate to a greater or lesser extent. The degree of stimulation varied with concentration of 

the mitogen. The results expressed as mean cpm ± standard error of the 3H-thymidine 

incorporated are presented in Table 3.1. Optimal stimulation of lymphocytes was obtained with 

lOJ,l.gml') LPS, lJ,l.gml') PHA, 20J,l.gml'! Pokeweed and 20J,l.gml') Con A. When rnitogens were 

compared, LPS produced consistently higher SI values than any of the other mitogens at all 

concentrations tested (Figure 3.1). 

Table 3.1 Incorporation of 3H-thymidine by peripheral blood lymphocytes following 

stimulation in vitro with LPS, PHA, Con A, Pokeweed and PMA 

Mitogen (J,l.g mI'l) 

1 5 10 20 

LPS 638.7 ± 103.9* 874.7 ± 215.9 1048.0 ± 32.7 1038.0 ± 60.6 

PHA 388.0 ±44.3 327.6 ± 4S.9 257.6 ± 3.4 153.3 ± 16.9 

Con A 64.3 ± IS.S 299.3 ± 88.8 351.7 ± 55.4 388.0 ±56.2 

Pokeweed 311.3 ± 22.3 342.7 ± 15.3 329.3 ± 13.4 474.0 ± 21.8 

PMA 92.0 ± 6.7 33.7 ± 6.9 20.3 ± 0.9 33.0 ± 11.5 

Cells only 128.7 ± 18.8 132.3 ± 49.9 92.7 ±29.4 65.0± 9.0 

L-15 Medium only 27.7 ± 0.9 17.7 ± 2.S 14.6 ± 2.9 26.0± 4.6 

'ill 
StimulatIOn of penpheral blood lymphocytes (2xl0 Iml) In vItro with LPS, PHA, Con A, Pokeweed and 

PMA (l-20~gmr!) was assessed by the incorporation of 3H-thymidine. The amount of 3H-thymidine 

incorporated after ISh in culture is shown. *Results are expressed as mean cpm ± standard error. The 

different concentrations of mitogens were tested on cells from the same fish and the data are from a single 

experiment representative of at least two similar experiments. Non-stimulated lymphocytes and L-15 

medium are included as controls. 
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Figure 3.1 Stimulation of lymphocytes in vitro with LPS, PHA, Con A and Pokeweed at a 

range of different concentrations: 1 S . 10 . and 20 • ~gmrl. 

Cellular proliferation is expressed as Stimulation Indices (Sl) ± standard error. SI = mean cpm 

stimulated cultures / mean cpm non-stimulated cultures. Results are from a single experiment 

representati ve of two experiments. 
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Lymphocyte stimulation with PHA decreased with increasing concentration of mitogen. In 

comparison, both Con A and Pokeweed demonstrated a slight increase in lymphocyte 

stimulation with increasing mitogen concentration. 

Statistical analysis was performed with these SI values using a one-way ANOVA test 

(P<0.05) and Tukey's pairwise comparisons with a family error rate of 0.05. The analysis 

confirmed a significant difference in responses between LPS stimulated lymphocytes and all 

other treatments (Appendix 3.1). 

At the concentration range tested (ie 1-20J,tgml'l) PMA proved to be ineffective at 

stimulating PBLs. Instead, SI values of <1 were obtained, indicating a lack of cell proliferation 

and suggesting that PMA concentrations above 1 J,tgmr I may be toxic to the cells, resulting in 

their death. A further assay was performed to optimise lymphocyte stimulation using PMA, 

where cells were cultured in the presence of a lower range of PMA concentrations (0.005-

5J,tgml"), the results of which are presented in Table 3.2 and Figure 3.2. 

Table 3.2 Incorporation of 3H thymidine by peripheral blood lymphocytes following in 

vitro stimulation with PMA. 

Mean counts per minute (cpm) 

PMA (J.1gmr1
) 0.005 0.01 0.02 0.04 

555.0 ± 69.0* 963.0 ±4S.2 1070.7 ± 47.S 1165.0 ± 194.2 

0.08 0.10 0.25 0.50 

1164.0 ± 33.6 1380.5 ± 68.5 1389.0 ± 15.6 1406.3 ± 204.9 

0.75 1.00 2.50 5.00 

1346.0 ± 215.1 1467.0 ± SO.3 1059.3 ± 23.6 33.3 ± 1.2 

Cells only 307.7 ± 58.7 287.7 ±23.6 301.7 ± 22.4 306.3 ±42.S 

Medium only 15.6 ± 4.7 49.6± 9.9 25.6 ± 9.5 28.6 ± 4.1 
6 Stimulation of Peripheral blood lymphocytes (2xlO mil) In vitro with PMA (O.OO5-5J..lgmrl) was 

assessed by the incorporation of 3H-thymidine. The amount of 3H-thymidine incorporated after ISh in 

culture is shown. *Results are expressed as mean cpm ± standard error. The different concentrations of 

stimulant were tested on cells from the same fish and the data are from a single experiment representative 

of at least two similar experiments. Non-stimulated lymphocytes and L-15 medium are included as 

controls. 
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Figure 3.2 Optimisation of lymphocyte stimulation in vitro with PMA. 

The cellular proli ferati ve responses from Table 3.2 expressed as Stimulation Indices (S I) ± standard error. 

SI = mean cpm stimulated cultures! mean cpm non-stimulated control cultures. Peripheral blood 

lymphocytes (2x 106mrl ) stimulated in vitro with PMA (O.005-5)..lgmr l) were grown in the presence of 

3H-thymidine. 

In this subsequent assay results indicate a gradual increase in the proliferative response 

of blood leucocytes to PMA with concentrations between lOngmr l - 2.5)..lgmr l, wi th the 

optimum dose being l)..lgmr l (Figure 3.2). At 5)..lgmr l 
PMA no stimulation was observed. 

3.3.2. Reduction of NBT by O. mykiss head kidney macrophages 

Evidence of macrophage acti vation by the supernatants of 0. mykiss lymphocytes cultured in 

the presence of mitogens was demonstrated in the present study. PMA (5 ngmrl ) was used as a 

co-stimulant in addition to Con A (lO)..lgmr \ to increase the production of MAF. 

The length of incubation of the lymphocytes with the mitogens is critical to obtain 

macrophage activation acti vity in the supernatant. The reduction of NBT by head kidney 

macrophages in the presence of PMA (l)..lgmr l), with control supernatants (derived from non-

stimulated lymphocytes) or supernatants from lymphocytes stimu lated for between 0 and 48 h is 

shown in Figure 3.3. No significant di fference was observed in macrophage activation after 
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incubating with CFS from controls. However, stimulation of MAF production was significantly 

higher wi th CFS from lymphocytes stimulated for 48 h compared with non-stimulated control 

cultures. The optimal di lution of 1: 10 of supernatants from stimulated lymphocytes produced 

the maximum stimulation for NBT reduction by head kidney macrophages. 

A one-way ANOV A test (P<0.05) and Tukey's pairwise compari son with a famil y error 

rate of 0.05 , were performed using mean OD values from the NBT assay. The stati stical 

analysis demonstrated a significant difference in the reduction of NBT by head kidney 

macrophages incubated with CFS from lymphocytes stimulated for 48 h (* diluted I: 10) 

compared with CFS from unstimulated lymphocytes. No significant di fferences in means of the 

responses between the remaining indi vidual treatments were observed (Appendi x 3.3). 
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Figure 3.3 Reduction of NBT by head kidney macrophages, following incubation ill the presence of 

PMA (lJ.Lgmr i
) , with supernatants from non-stimulated lymphocytes . or supernatants from 

lymphocytes undiluted . ; 1:10 . ; 1:100 . for 0 or 48 h. 

Results are expressed as means of triplicate readings per 105 cells ± standard error and are representati ve 

of twO experiments. '" Significant difference in reduction of NBT by head kidney macrophages ac hieved 

for 1: 10 diluted CFS from lym phocytes stimulated for 48 h. 
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3.3.3 Determining the optimal length of lymphocyte stimula tion to produce MA F, as 

assessed by NBT reduction assay 

Results from the initial assay (Figure 3.3), with supernatants from lymphocytes stimu lated wi th 

mitogen compared with unstimulated lymphocytes demonstrated macrophage ac ti vating activ ity 

by the reduction of NBT. These findings are shown in Figure 3.4, in whic h the opti ma l time for 

lymphocyte stimulation to produce MAF was assessed using a NBT assay. 

Macrophages incubated with CFS from 48 h cu ltures produced the greatest leve ls f 

respiratory burst activity, with significantly higher NBT reduction by these head kidney 

macrophages than macrophages cultured wi th CFS from 24 and 72 h cultures. Supernatants 

dil uted 1: 10 in L-15 produced the greatest reduction of NBT. 
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Figure 3.4 Reduction of NBT by head kidney macro phages in the I>resence of PM A (lllglllr 1) 

follo wing incubation with supernatants from lymphocytes stimula ted for va ry ing times with Con A. 

The supernatants were derived fro m 0-80 h Con A / PMA (20)..tg/S ng ml"l) stimulated lymphocytes and 

assayed using: undiluted . I: JO .A 1:100 . dilutions in L- IS med ium . Results arc expressed as mea ns 

of triplicate readings per 105 cell s and are representative o f two experiments. 
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3.3.4. Respiratory burst activity of head kidney macrophages as assessed by reduction of 

Luminol 

A chemiluminescence-based assay was used in vitro to investigate the Luminol-dependent 

chemiluminescent response attained when O. mykiss head kidney macrophages, were incubated 

with CFS derived from mitogen-stimulated lymphocytes. A number of experiments were 

performed to optimise the assay conditions necessary to assess the respiratory burst of head 

kidney macrophages using Luminol, and to examine factors which influence the level of 

chemiluminescence. The influence of serum, pH indicator present in the medium (phenol red) 

and macrophage viability on chemiluminescence output was assessed. The data presented for 

each set of conditions/factors are from a single experiment and the chemiluminescent responses 

are representative of several replicate experiments. 

3.3.4.1 The effect of Phenol red indicator on Luminol-dependent chemiluminescence 

The effect of phenol red indicator on the chemiluminescent response produced as a result of 

oxidative burst by O. mykiss macrophages was investigated. The media in all instances were 

identical apart from the presence or absence of phenol red indicator. A reduction in 

chemiluminescence was observed with both CFS from LPS (lOJ,.lgmr l
) stimulated PBL and 

corresponding CFS from non-stimulated PBL (Figure 3.5). It was demonstrated by the results 

that although the presence of the indicator may reduce the chemiluminescence output measured, 

the reduction was not sufficient to mask the overall response seen in the activated macrophages. 

Phenol red, similarly to the effect seen in intact and lysed red blood cells, absorbs a portion of 

the emitted light and thus reduces the overall light detected. 
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Figure 3.5 Effect of phenol red indicator on the chemiluminescent response of O. myki!;s hcnd 

kidney macrophages. Macrophages (2x 106mr l) were incubated wi th: CFS fro m PBL stimulated with 

LPS (lOJ,!.gmrl) in L-15 medi um containing indicator . , CFS from PBL stimulated with LPS ( IOJ,!.gmr l) 

in L-15 medium without indicator . , with CFS from non-stimulated cultures in L-15 med ium containing 

indicator · and with non-stimulated PBL cultures wi thout indica tor 4 . The result s are expressed as 

means of triplicate readings per 106 cells. 
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3.3.4.2 The effect of serum on Luminol-dependent chemiluminescence 

T he presence of serum in L- lS med ium of CFS was assayed for its e ffec t o n the 

chemiluminescence signal (Figure 3.6). A significant reduc ti on was appare nt In the 

chemil uminescence output when measuring CFS witho ut serum compared wi th FS conta ining 

se rum. A strong response with a sharp peak at 104 re lati ve light uni ts (R LU), fo ll o wed by a 

g rad ual decline in chemiluminescence was seen with C FS conta ining seru m, whereas ce ll s 

wi thout serum produced a re latively poor response. Macrophages wi th L- IS mediu m alone 

e licited a base line chemi luminescent response as expec ted . 
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Figure 3.6 Effect of serum on the chemiluluminesccnt rcsponse of O. mykiss hcad kidncy 

macrophagcs. Macrophages (2x I06mr l) were incubated with L- IS medi um '" F from PMA 

(l ).lgmr l) stimulated lymphocytes in L-JS medium containing FBS ( 10%) . and with CF from PMA 

(l).lgmrl ) stimulated lymphocytes in L-J5 medium wi thout FBS • . The results are expressed as means 

of triplicate reading per J 0
6 

cell s. 
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3.3.4.3 The effect or macrophage viability on Luminol-dependent chemiluminescence 

The effect of macrophage viability on chemiluminescence production was assessed. A reduction 

in total chemiluminescent output by a third, was demonstrated using macrophages incubated 

overnight at +4°C in Hank's balanced salt solution (HBSS) compared to fresh macrophages 

from the same source (results not shown). Phagocytes maintained in incomplete media or 

buffered salt solutions exhibit a rapid decline in activity. This is in contrast to J. punctatus 

phagocytes which maintain a high level of activity over a prolonged period of time, as assessed 

after incubation for 10 h at 20°C in complete HBSS (Scott and Klesius, 1981). 

3.3.4.4 Chemiluminescent response or head kidney macrophages to CFS from PM AlCon 

A-stimulated lymphocytes 

The response of head kidney macrophages to CFS from PBL stimulated with PMAI Con A 

(5ngmr', 250llgml-1) was investigated, the results of which are presented in Figure 3.7. A clear 

difference in the level of chemiluminescence was observed between macrophages incubated 

with CFS from stimulated and non-stimulated PBL cultures. The former producing a bell 

shaped curve reaching a peak 10-12 min after the addition of Luminol, followed by a gradual 

decline in response. In comparison, baseline values were obtained with the corresponding CFS 

from non-stimulated PBL and macrophages incubated with L-15 medium alone. 

CFS from stimulated PBL elicited a chemiluminescent response, which increased more 

rapidly, reaching a higher mean peak of 1.8 x 103 RLU with Fish A and 1.6 x 103 RLU with Fish 

B. The response seen with Fish A was also sustained for a longer period of time than that 

elicited by fish B. Although a similar kinetics profile was obtained for both fish, differences 

confirmed the general variations observed between individual fish. 
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Figure 3.7 Chemiluminescent response of O. mykiss head kidney macrophagcs to CFS from 

PMA/Con A-stimulated lymphocytes. Macrophages (2 x 106mr ') derived from two fi h designated A 

and B were incubated with CFS from PBL stimulated wi th PM AlCon A (S ngmr', 2S0~gmr' ) in L- IS 

medium (A . , B • ) and wi th CFS from non-stimulated PBL cultures in L- IS medium (A .... , B. ). The results are expressed as means of triplicate read ing per 10
6 

cells. 
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3.3.4.5 Chemiluminescent response of head kidney macrophages to CFS from PMA. 

stimulated lymphocytes 

The chemiluminescent response using head kidney macrophages with cell-free supernatants 

from PBLs stimulated with PMA (lllgmrJ) was assessed (Figure 3.8). Supernatants from 

stimulated PBL elicited a chemiluminescent response. reaching a plateau within the first 5 - 10 

minutes of the cycle time and continuing for the monitoring period. The plateau effect could be 

due to the macrophages becoming saturated and not able to respond further. thus achieving their 

maximum response. In comparison. low baseline results were obtained with CFS derived from 

non-stimulated PBL and L-15 medium alone. 

3.3.4.6 Chemiluminescent response of head kidney macrophages to CFS from LPS­

stimulated lymphocytes 

The chemiluminescent response using head kidney macrophages with supernatants from PBLs 

stimulated with LPS (1OIlgml-J) was assessed (Figure 3.9). Supernatants from stimulated PBL 

elicited a chemiluminescent response. reaching a peak of 1.2 x 103 (mean RLU) after 10 min. 

followed by a gradual decline. In comparison, a much lower chemiluminescent response was 

obtained with CFS derived from non-stimulated PBL reaching a peak of 0.2 X 103 (mean RLU). 

and baseline response with L-15 medium alone. 

The effect of LPS as a soluble stimulant to directly potentiate respiratory burst in O. 

mykiss macrophages was assessed, by performing a titration using the mitogen at a 

concentration range of 1O-250llgml-J (results not shown). When using LPS. an immediate rapid 

chemiluminescent response (15-23.5 x 103 RLU) was evident which decayed down to 

background level in less than 10 min. At lower concentrations, the initial magnitude of the 

response was reduced, although the time course of the reaction remained unaltered. 
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Figure 3.8 Chemiluminescent response of O. mykiss head kidney macrophagcs to CFS from PMA­

stimulated lymphocytes. Macrophages (2 xl06ml" l) were incubated with L-IS medium alone . 

CFS from PBL stimulated with PMA (l J.!gmr 1
) in L- IS medium . and with CFS from non-stimulated 

PBL cultures .A . The results are expressed as means of triplicate reading per 106 ce ll s. 
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Figure 3.9 Chemiluminescent response using O. mykiss head kidney macrol>hagcs to CFS from 

LPS-stimulated lymphocytes. Macrophages (2x106mrl) were incubated with L- IS medium alone .... . 

CFS from PBL stimulated with LPS (lOllgmr l
) in L-IS medium • and wi th CFS fro l11lloll -stilllulated 

with PBL cultures • . The results are expressed as means of triplicate reading per 106 cells. 

To overcome the problem of variability of macrophage responses between each experiment, the 

resul ts of a single experiment are shown (where macrophages from the same source were used) 

and are representative of the general trend observed. In addit ion, all the di ffe rent CFS were 

tested on macrophages from the same fis h, to allow direct comparisons to be made. 

Statistical analysis was performed on all data using a one-way ANOY A test (P<0.05) 

and subsequent Tukey's pairwise comparisons with a family error rate of 0.05. The analys is 

demonstrated a significant difference in the chemiluminescent response va riati on between 

means of the individual treatments within each experiment (Append ices 3.4-3.7). 
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3.4 Discussion 

Cellular immune reactivity of lymphocytes in vitro can be evaluated using leucocyte 

microtitration assays (Galeotti et al., 1996). Peripheral blood lymphocytes of O. mykiss have 

been previously reported to be stimulated by mitogens (Warr and Simon, 1983; Tillit et al., 

1988; Reitan and Thuvander, 1991), which provoke lymphoblastic transformation of T cells 

(PHA and Con A) and B cells (LPS) in higher vertebrates (Janossy and Greaves, 1971). It was 

shown in the present study that leucocytes from peripheral blood of O. mykiss responded to a 

variety of mitogens and soluble stimulants: LPS, PHA, Con A, PMA and Pokeweed. The 

optimal stimulation conditions reflected the mitogen dose used in the assay. LPS is a good 

stimulator of lymphocytes from lymphoid organs and generally gives higher SI values than 

PHA over a wide dose range. LPS gave the highest stimulation of all the mitogens used in this 

study and was comparable to results previously found for O. mykiss (Reitan and Thuvander, 

1991), Atlantic salmon (Smith and Braun-Nesje, 1982), and sea bass (Galeotti et al., 1996). This 

is in contrast to the response observed with lymphocytes from mammals (mice and humans), 

which respond only weakly to low levels of LPS whilst higher levels are toxic. It has been 

suggested the apparent differences in LPS sensitivity, between fish and mammals, might be 

related to the fact that mononuclear cells from non-mammalian species lack a specific LPS 

binding protein (Roeder et al., 1989). 

It was observed that PBL from O. mykiss were stimulated less by Con A than by LPS, 

similar to the results obtained by Etlinger et al., (1976). However, studies by Chilmonczyk 

(1978) on O. mykiss PBL stimulation by mitogens in vitro, demonstrated the dose range of 

optimal concentrations to be broader for PHA (l-50llgmr1) than Con A (1-1OIlgmr1), and 

stimulation with LPS was only obtained at a dose of Illgml-
1. These variations are probably due 

to differences in the experimental conditions. 

The lower cell proliferation obtained with Con A compared with LPS may be explained 

by the fact that Con A is known to activate T cell suppressor activity. Thus, demonstrating that 

the degree of lymphocyte activation can also be influenced by cell regulators present in the 
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culture (Stites, 1987). Several reports have described interactions between serum component(s) 

and mitogen responding cells resulting in either suppression or activation of lymphocytes 

(Edinger et al., 1976), by altering the specificity of a selective mitogen. 

Typical dose-response and kinetic experiments in the past have involved collating 

cultures of lymphocytes from several fish, due to limitations in the yields of cells from any 

single fish. However, data presented in these studies for each set of test conditions are derived 

from the cells of a single fish. The responses are representative of the activity found from 

several repetitions of the same experiment, although on occasion lymphocytes from an 

individual fish failed to respond or responded very poorly (results not shown). 

This variation in the level of stimulation found amongst fish may be in part caused by 

individual differences between fish and variation within fish species. Reduced sensitivity maybe 

species specific, since the efficacy of the different mitogens varies amongst the different fish 

species (Sahai, 1981; Reitan and Thuvander, 1991; Hamers, 1994). 

The results of this study demonstrate that supernatants of lymphocytes from o. mykiss 

stimulated with mitogens release a soluble factor(s) capable of activating trout macrophages in 

vitro, as shown by their ability to produce respiratory burst activity measured by the reduction 

of NBT (Section 3.3.2). These observations are in accordance with activities shown both in vivo 

and in vitro, in response to T -lymphocyte mitogens (Smith and Braun-Nesje, 1982; Graham and 

Secombes, 1990b) and antigens such as A. salmonicida (Francis and Ellis, 1994; Marsden et al., 

1994). Also confirming findings of Graham and Secombes (1988), who showed that stimulation 

of MAF release was significantly higher when PMA was used as a co-stimulant with Con A, 

similar to that seen for mammalian MAF production. 

The NBT time-course assay assessed the capacity of cell-free supernatants derived from 

lymphocytes stimulated for different times (0-80 h), to initiate respiratory burst in O. mykiss 

macrophages. The assay demonstrates that optimal macrophage-activating activity of the 

supernatants was obtained with cultures taken from lymphocytes 48 h after stimulation with 

PMAlCon A. On the other hand, CFS derived from lymphocytes stimulated with mitogen for 

less than or more than 48 h induced a lower respiratory burst activity in macrophages. Results 
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from the present study are in accordance with studies by Graham and Secombes (1988), who 

have shown that supernatants from lymphocytes incubated for 48 h had consistently increased 

levels of activity compared to those from 24 h cultures. In addition, the optimum dilution of 

1: 10 is similar to 1: 8 obtained by Graham and Secombes (1988), using 2-fold dilutions of 

supernatants. 

An inhibitory effect on macrophage activity has also been seen with leukocyte 

supernatants containing MAF when used at sub-optimal concentrations (Graham and Secombes, 

1990a). These supernatants probably contained less MAF activity than the 48 h supernatants, 

since they were less stimulatory to head kidney macrophages. Little difference was observed in 

responsiveness to MAF using supernatants from >48 h stimulated lymphocytes compared with 

the 48 h cultures. At high concentrations of lymphokine-containing supernatants, a suppressive 

effect on NBT reduction was sometimes observed (Graham and Secombes, 1988). This could be 

due to a variety of factors being present in the supernatant, some of which are suppressive. 

The NBT reduction assay has been widely accepted as the traditional method of 

assessing respiratory burst activity in both mammalian and fish macrophages. However, from 

personal observations during the course of these investigations, the assay has proved highly 

variable and difficult to repeat. This lack of consistency led to efforts of seeking an alternative 

method for assessing macrophage activity. 

Luminol dependent chemiluminescence analysis is a reliable and efficient method of 

measuring respiratory burst with advantages over liquid scintilation counting (lSC) 

measurements. However, reliability of chemiluminescence as a measure of macrophage 

respiratory burst depends mainly on the preparation and maintenance of cell suspensions. Thus, 

a number of factors which may influence chemiluminescence output were investigated, 

including the composition of the medium, particularly the presence of phenol red indicator and 

serum. 

The presence of erythrocytes or haemoglobin is an important factor shown to influence 

chemiluminescence (Nelson et al., 1977; Anderson and Brendzel, 1978; Anderson and 

Amirault, 1979; Easmon et al., 1980) and can be a major limitation. Isolation of phagocyticaUy 
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active cells from the peripheral blood on a Percoll gradient can produce an erythrocyte-free 

preparation (Scott and Klesius, 1981). In the present study macrophages were isolated from the 

head kidney to reduce any effects of contaminating RBC. 

When assessing Luminol dependent chemiluminescence, a critical feature of the 

medium is the presence of phenol red indicator, which markedly diminishes the response as 

observed by Nelson et al., (1977) and Basmon et al., (1980). As with erythrocytes. phenol red 

indicator consistently suppresses the light detected when using Luminol due to the overlap of its 

absorption spectrum with a significant portion of the chemiluminescence emission spectrum. 

The presence of serum in the medium was assessed for its effect on Luminol dependent 

chemiluminescence. The results demonstrated the addition of protein to the system increased 

chemiluminescence output, although this response was minimal at the lower concentration of 

serum (1 %). This may possibly be due to the presence of components within the serum which 

are cross reactive with the macrophages, leading to a direct increase in their activation. Studies 

by Basmon et al. (1980), when using human PBLs (5 x lOs) with opsonized zymosan 

demonstrated the presence of FCS influenced the chemiluminescence output. However. their 

observations showed a reduction in chemiluminescence from 18 to 12 (mV) over FCS 

concentrations ranging from 0.3% - 6%. 

The effect of cell viability was also assessed in the present study (results not shown). A 

reduction in total chemiluminescence output by a third was observed. when using macrophages 

incubated overnight at +4°C in HBSS compared to fresh macrophages. These findings are in 

accordance with studies by Basmon et al., (1980) where a loss of 40% cell viability and 30% 

reduction in chemiluminescence was observed, when using cell suspensions (human PBLs in 

HBSS) maintained in balanced solutions after 4 h. 

Chemiluminescent responses from o. mykiss head kidney rnacrophages to CFS from 

lymphocytes stimulated with various mitogens were recorded. The results indicate a range in 

ability of lymphocytes to initiate a chemiluminescent response. and hence activate 

rnacrophages. Different kinetic profiles were obtained using CFS from lymphocytes stimulated 

with PMAlCon A. PMA alone and LPS. The optimum concentration and magnitude of the 
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chemiluminescent response being characteristic of the specific mitogen used to produce MAF. 

For example, the chemiluminescent response of O. mykiss head kidney macrophages to CFS 

from PBL stimulated with PMA (lj.Lgml- l
) produced a plateau effect maintained throughout the 

assay, which may be due to residual PMA stimulating macrophages and the target cells 

becoming saturated and unable to respond further. However, a bell-shaped curve was observed 

when using CFS from PMAlCon A co-stimulated lymphocytes to initiate a chemiluminescent 

response. A very rapid and intense response which was not sustained but fell rapidly was 

apparent. In comparison CPS from LPS (lOj.Lgml- l
) stimulated lymphocytes, produced a more 

rapid response which reached a peak that gradually declined. 

The magnitude and the rate of chemiluminescence produced from O. mykiss cells are 

dependent on a number of factors. The respective kinetic profiles obtained from the various 

chemiluminescent responses are probably correlated to the amount of MAP present in the 

lymphocyte supernatants. 

When using LPS as a direct stimulator of respiratory burst in O. mykiss macrophages, 

an immediate rapid chemiluminescent response was produced, which decayed down to 

background level (results not shown). At lower concentrations, the initial magnitude of the 

response was reduced, although the time course of the reaction remained unaltered. These 

results are comparable to decay curves observed by Lawrence et a1.. (1982), when examining 

the Luminol-dependent respiratory burst of human neutrophils. Although LPS like PMA can 

prime macrophages for an enhanced respiratory burst (Pabst and Johnston, 1980; Drath, 1986; 

Kaku et aZ., 1983), low concentrations of LPS have been reported to suppress the enhanced 

respiratory burst by IFN-y primed murine peritoneal macrophages (Ding and Nathan, 1987). 

The kinetic profile of the macrophage responses produced with CFS from stimulated 

lymphocytes differed in comparison to the chemiluminescent response attained with PMA or 

LPS as direct stimulators of respiratory burst. With the latter, a rapid response initiated within 

the first few minutes produced a significant peak, whereas the chemiluminescent responses 

achieved with CFS from stimulated PBL gave a delayed and more gradual response sustained 
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over a longer period of time, as expected of a biological response. Thus, confirming the 

responses are not due to a sudden exposure to the Luminol substrate but a genuine response as a 

result of biological stimulation. 

Interestingly, although LPS produced the highest lymphocyte stimulation of PBLs in 

earlier studies (Section 3.3.1), the corresponding CFS from these stimulated lymphocytes did 

not however result in the greatest activation of macrophages. Instead, highest chemiluminescent 

response was attained using CFS from PBLs co-stimulated with PMNCon A. 

From the bioassay studies, it was established that O. mykiss lymphocytes cultured in the 

presence of mitogens were sufficiently stimulated to produce factors capable of activating 

macrophages as demonstrated by their respiratory burst activity. In addition, chemiluminescence 

measurement using Luminol has been shown to be a more reliable assay in comparison to the 

traditional NBT assay, in the assessment of respiratory burst by trout head kidney macrophages. 

Despite finding that Con NPMA gave the highest production of MAP, it was decided 

to stimulate lymphocytes with all the mitogens tested to allow a greater possibility of isolating 

cytokine genes. Having achieved a reproducible source of MAF, RNA from these stimulated 

lymphocytes was subsequently used as source material for both PCR amplification and 

construction of a cDNA expression library in the molecular studies performed in subsequent 

chapters. 
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4.1 Introduction 

Research on fish cytokine activity has focused primarily on Rainbow trout (O.mykiss) with the 

majority of cytokines being identified in biological assays on the basis of their functional 

similarity to mammalian cytokines. Many phagocyte functions are modulated by cytokines but 

although cytokine-like biological activity has been detected in fish it is only recently that 

molecular techniques have been used to identify some of the cytokines themselves. Progress in 

the cloning of fish cytokine genes, their receptors and several homologues of chemokines has 

been made but only a few such genes have been described to date (Table 4.1). 

In recent years several fish cytokine genes have been cloned amongst others including 

those molecules encoding the homologue of mammalian IL-l~ (Zou et al., 1999a,b; Scapigliati 

et al., 2001), TNF-(X (Hirono et al., 2000; Laing et al., 2001a) and TGF-~ (Hardie et al.,1998, 

Laing et al., 2000). Several homologues of chemokines, including IL-8 and y-IFN inducible 

protein (y-IP) have also been identified (Laing et al., 2002). 

A number of molecular based approaches have been adopted in the search to identify 

fish cytokine genes; peR amplification, screening with homologous probes and EST analysis. 

This chapter will focus on the peR approach to cloning of fish cytokine cDNAs. Nucleotide or 

protein sequences conserved over a range of species can be used in the design of common 

primers to amplify a particular gene fragment by peR, and thereby allow rapid cloning of 

known genes from different species. PCR amplification using degenerate primers based on 

homologous sequences has proved successful in the cloning of cytokines cDNAs in the trout. 

For example, IL-l~ cDNA has been amplified from a number of different fish species 

using degenerate primers, based on evolutionarily conserved regions of the molecule, to amplify 

the cDNA from cells likely to secrete IL-l~. These include the IL-l~ from Rainbow trout, the 

first non-mammalian IL-~ sequence to be cloned, (Zou et al., 1999a,b), carp (Fujiki et al., 2000) 

and seabass (Scapigliati et al., 2001). Similarly, a trout TGF-~ sequence was obtained using 

degenerate primers based on conserved motifs within the mature peptide of the different 

mammalian TGF-~s (Laing et al., 1999a). Degenerate primers based on TGF-~ genes, have also 
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been used in a PCR to probe plaice genomic DNA for TGF-~ (Laing et al .• 2(00). A number of 

different isoforms of TGF-~ have been isolated in different fish species (Sumathy et al .• 1997; 

Hardie et al., 1998; Daniels et al., 1997 and Harms et al., 1997), including TGF~3 in trout, 

sturgeon and eel using PCR (Laing et al., 1999a). 

Once a cytokine has been cloned in one species of fish PCR primers based on that 

sequence have been successfully used to isolate the corresponding sequence from other fish 

species. For example, PCR with primers specific for the recently published TNFa sequence of 

Japanese flounder (Hirono et al., 20(0), were used to isolate full length cDNA sequence of trout 

TNFa from a PHA-stimulated leucocyte cDNA library. In this study, a PCR approach was used 

in an attempt to isolate the Rainbow trout (0. mykiss) cDNAs corresponding to a number of 

mammalian cytokines, with particular emphasis on those corresponding to IFN-y. IL-15 and IL-

18. RNA isolated from activated lymphocytes (Chapter 3) was used as the template for cDNA 

production since in mammals the majority of cytokines are not expected to be expressed 

constitutively. Initial work concentrated on attempting to amplify a cDNA corresponding to 

IFN-y as the molecule most likely to be the source of the MAF activity produced by the 

activated lymphocytes. IFN-y cDNAs have been isolated from a number of species and 

therefore oligonucleotides corresponding to regions of conserved sequence between these 

species were used as primers for the PCR. Similarly primers based on regions of the IL-15 and 

IL-18 molecules conserved across a number of species were also used in PCR reactions. IL-18 

is a potent inducer of IFN-y production by T cells (Okamura et ai., 1995; Micallef et ai., 1996). 

It is also known as IFN-y inducing factor and is a pro-inflammatory cytokine. closely related to 

IL-1 (Dinarello, 1999) with profound effects on T-cell activation. 1L-15 is a cytokine with 

biological activities similar to IL-2 and has been shown to activate PBLs and stimulate the 

proliferation ofT -cells ( Grabstein et al., 1994; Giri et al., 1994, 1995a,b). 
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Table 4.1 O. mykiss cytokine sequences identified to date and comparisons with known mammalian, 

vertebrate and fish cytokines. 

Cytokine %Amino % Nucleotide Species homology Accession 
Acid homology number 
homolo2Y 

IL-l[3 49 - 56 43 - 49 Mammalian IL-l (3 • 
(AJ004821) (260 aa translated molecule) 

42 - 45 Mammalian IL-l a • 
71 70 Plaice (237 bp partial sequence) AJ010640 
57 49 Carp ABOI0701 
59 - 62 58 Seabass (nt homology to AJ269472 

168-234 partial sequence) 

TGF-[31 68 Human (3. BC022242 
(X99303) 53 Human (32 BC011170 

59 Human (33 NMOO3239 
62 Chicken [34 ( specific to birds) M31160 
62 Xenopus (35 ( specific to J05180 

amphibians) 

TNF-a 38-41 Mammalian TNFa • 
(AJ277604) 35-39 Mammalian TNF(3 • 

IL-8 35 50 Human NMOOO584 
(AJ279069) 38 Chicken isoform K60 peptide NM205018 

56 66 Flounder AF216646 
31 47 Lamprey (CXC chemokine) AJ231072 
17 35 Zebra fish (SCYBA peptide) AF279919 
18 47 Rainbow trout CK-l (CC AF093802 

chemokine) 

CK-l 33-36 Mammalian C6-(3 chemokine • 
(AF093802) 

Chemokine 81 67 Human CXC-R4 AFOO5058 
Receptors 59 56 HumanCC-R7 NMOO1838 
(AJOO3159) 

Chemokine. their receptors and other related molecules are also presented. • Accession numbers for 
mammalian cytokine sequences are absent, as results are expressed as a range and are compiled from a 
number of different mammalian species. 
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4.2 Materials and Methods 

RT -PCR experiments with degenerate primers designed and based on a range of mammalian 

and vertebrate cytokines. were performed with RNA extracted from mitogen (PMAlCon A) 

stimulated head kidney cells and peripheral blood lymphocytes of 0. mykiss. 

4.2.1 Isolation of total RNA and conversion to cDNA 

Total RNA was isolated from either activated lymphocytes or kidney and spleen tissues of 

individual fish using guanidinium thiocyanate - phenoVchloroform extraction method (Section 

2.17). 

PolyA+ RNA was purified from total cellular RNA. using an oligotex ™ mRNA kit 

(Qiagen) as per manufacturers instructions (Section 2.19). The cDNA was synthesised from IJ..l.g 

total RNA or lOOng mRNA (polyA + RNA) using AMV reverse transcriptase (Roche). at 42°C 

for 1.5 hrs with oligo (dT) or random hexamer primers (Life Technologies) and used as 

template for PCR. 

4.2.2 Design of PCR primers 

IFN-y homologues from 21 species were aligned at both the amino acid and nucleotide level 

using Clustal W (Version 1.74). to highlight conserved regions of sequence. In addition, a 

codon usage table was constructed to check for bias towards particular codons found in salmon 

sequences. The table was created from 16 salmon gene sequences from a GenBank database 

search of approximately 300 sequences (Appendix 4.1). The multiple alignments were used to 

determine which regions of the IFN-y sequence would be used to design the degenerate PCR 

primers and the codon frequency table was used to ensure that any bias present in salmonid 

DNA was reflected in the primer sequences. Similar approaches were employed for the design 

of both the IL-15 and IL-18 cytokine primers. To verify that the RT-PCR was working primers 

specific for ~-actin and aldolase B cDNA were used. The trout sequences for these molecules 

were not available and so the primers were based on the corresponding salmon sequences. 
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4.2.3 PCR amplification and cloning ofPCR products using pGEMT-Easy Vector 

PCR amplification was perfonned using the cDNA prepared in Section 4.2.1 as template and 

the various sets of degenerate forward (F) and reverse (R) primers (Table 4.2) designed against 

conserved regions of known mammalian cytokine sequences (Section 2.24). 

PCR reactions were conducted using a thermal cycler MultiBlock System (Hybaid), 

following cycling protocols specific for each set of primers (Table 4.3.). Resultant PCR 

products were visualised on 2% (w/v) agarose gels containing ethidium bromide (lOOngmr1) 

using 100 bp ladder (Promega) and lkb DNA ladder (MBI) as size markers. Amplified PCR 

products were ligated into the linearized PCR cloning vector pGEMT-Easy (Section 2.25.1) 

using T4 DNA Ligase. Following transfonnation of competent JM 109 E. coli cells, 

recombinants were identified using blue/white colour selection on ampicillin /JIYfGIX-Gal 

plates (Section 2.25.2). DNA clones were digested with Eco RI and/or Not I and were analysed 

on a 2% metaphor® agarose gel. 

4.2.4 Sequence analysis 

Plasmid DNA from several independent clones was recovered using a QIAprep spin Miniprep 

kit (Qiagen). Sequence reactions were perfonned on double stranded plasmid DNA (25-

500ng/J.1g-1
) with T7 and SP6 vector specific primers and run on an ABI 377 fluorescent DNA 

automated sequencer (PE Biosystems) using "Big-Dye" Tenninator chemistry (courtesy of the 

Functional Genomics Unit). 

The nucleotide and amino acid sequence data generated were compared with entries in 

the GenBank and Swissprot databases respectively, using the FASTA (Pearson and Lipman, 

1988) and BLAST (Altschul et al., 1990) alignment search programmes. Results were presented 

as percentage identity to sequences in the databases. 
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Direct comparison between the trout cDNA sequences and potential homologous sequences 

from the databases were also performed using the GAP alignment program within the 

Wisconsin Genetics Computer Group Sequence Analysis Software Package (Version 10.0). 
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Table 4.2 Degenerate oligonucleotide primer against multiple alignments used for the amplincation 
of the following O. mykiss cytokine genes: IFN-y, IL-15, IL-18. 

Primer: 
Forward (F) 
Reverse (R) 

IFN-y(F) 

IFN-y (R) 

IL-15 (F) 

IL-15 (R) 

IL-18 (F) 

IL-18 (R) 

*B-actin (F) 

*B-actin (R) 

* Aldolase B (F) 

* Aldolase B (R) 

5' -+ 3' Sequence 

CARATXGTYTCYTTYTAC 

CTGRCTYCTYTTCCGCTT 

CCWAARACAGARGCMAA 

TCYTCACAYTCYTTGCA 

ARTRACATCATMTTYTT 

TTYTTYAAAATKARTTT 

CACTGGTTGTTGACAACGGA 

GATCTTCATCAGGTAGTCTG 

AGACGCTGTACCAAATGTCG 

AGACATGGTGGTCGTTCAGA 

Length (nt) 

48.0 18 

54.0 18 

49.2 17 

49.2 17 

40.7 17 

35.9 17 

57.3 20 

55.3 20 

57.3 20 

57.3 20 

Wherever possible, primer pairs were designed to have similar T Ann values. These were estimated using 
the following formula: 
T Ann. 2°C X (no. of A and T residues) + 4°C x (no. of G and C residues) 
In some instances, optimal annealing temperatures may differ slightly from calculated values. 
*Control PCR primers derived from Salmo salar (Atlantic salmon) (3-actin mRNA and aldolase B mRNA 
sequences were used for the amplification of house keeping genes. 

Nucleotide ambiguity codes include: 
K = Gff W = Aff 

M = AlC X = AlClGff 

R = AlG Y = err 
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Table 4.3 Gradient and standard PCR cycling protocols for IFN-y, IL-lS, IL-18 cytoklne primers 
and control p-actin and aldolase B primers. 

IFN-y 

IL-IS IIL-18 

Aldolase B 

p-aetin 
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Number of cycles 

1 
36 

1 
36 

1 
36 

1 

1 
30 

95°C 
95°C 
37-52 
72 °C 
72 °C 

95°C 
95 °C 
35-50 
72 °C 
72 °C 

95°C 
95°C 
43 -58 
72 °C 
72 °C 

95°C 
95 °C 
43-58 
72 °C 
72 °C 

PCR conditions 

Gradient Standard 

5 min 95 °C 5 min 
30 s 95°C 30s 
30 s 45°C 30 s 
1 min 72 °C 1 min 
5 min 72 °C 5 min 

5 min 
30 s 
30s 
30s 
5 min 

5 min 
30 s 
30 s 
30 s 
5 min 

5 min 
30s 
30 s 
30s 
5 min 

101 



4.3 Results 

4.3.1 Control PCR primers 

In order to verify that the RT-PCR was effective on each occasion, it was necessary to include a 

positive control. This normally consists of including primers corresponding to a specific mRNA 

considered to be expressed universally in each cell. To find such 'house-keeping' genes as 

positive controls for the PCR amplification, EMBL and OenBank database searches were 

performed for all trout (O.mykiss) and salmon (S.salar) sequences, using the LOOKUP I 

FASTA programme (OCO, Version 10). Two universally abundant proteins were selected: 

Salrno salar f3 actin mRNA, a cytoskeleton protein, and aldolase B mRNA, an enzyme involved 

in glycolysis. The B-actin control primers selected were based on an internal region of the 

complete salmon B-actin cDNA sequence (accession number AF012125), such that a fragment 

of approximately 550 bp would be amplified from the trout cDNA. Similarly, the aldolase B 

primers were designed from the salmon aldolase B cDNA sequence (accession number 

AF067796), such that a peR product of approximately 420 bp would be expected. 

peR amplification conditions for both salmon B-actin and aldolase B were optimised by 

varying annealing temperatures (TAnn) and MgCh concentrations, using standard PCR cycling 

protocols (Table 4.3). Amplified PCR fragments of the sizes expected for both B-actin (550bp) 

and aldolase B (400bp) were obtained from the eDNA derived from both kidney and spleen 

(Figure 4.1). The strongest amplification was achieved using an annealing temperature of 52°C. 

4.3.2 Cloning and subsequent sequence analysis of B-actin PCR products 

Amplified peR products generated using the f3-actin primers were cloned into the peR cloning 

vector (pOEM-TEasy) and plasmid DNA prepared. Purified plasmid DNA from two 

independent clones was digested with EcoRl restriction enzyme to verify that the -550 bp 

fragment had been cloned (Figure 4.2). Two fragments which correspond to the vector (- 3000 

bp) and a 575 bp insert are highlighted. 
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DNA marker 
range 
(0.5-1.0 kb) 

0.5 

M K1 K2 

- 550bp 

- 4 Obp 

Sl S2 

Figure 4.1 peR amplification products of rainbow trout kidncy and spleen DNA wi th primcrs 

designed against salmon aldolase B and ~-actin. 

Amplification products of approximately 400 bp and 550 bp which correlate with aldolase 0 and ~-actin 

are shown using rainbow trout kidney cDNA (Kl, K2) and spleen cDNA (Sl , S2). A lKb NA ladder 

(MEl) wi th fragments ranging from 0.5- LO kb was used a a DNA marker (M). 
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Ve 1 r 

3000 +- - kb 

1600 

1 kb DNA ladder 
1000 (0.5- 1.2kb) 

Insert 
+-

500 
- 575bp 

M 1 2 

Figure 4.2 Restriction enzyme digestion of cloned rainbow trout ~-llctln DNA with Eco lH 

Purified ~-actin DNA: clone #1 , clone #2 digested with EcoR I and ele lrophore ed n n I Yo agarose gel. 

Two fragments which correspond to the vector (- 3000 bp) and a 575 bp purified ~-a tin insert nre 

presented. The insert size is calculated as follows: 557 + 18 bp (Two E oR I fl anking insertion sites at 

positions 70 and 52 wi thin the multiple cloning lie of pGEMT-Easy ve tor). A I kb DNA ladder (500-

1200 bp) was included as a DNA marker (M). 
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The sequence generated from the cloned PCR amplification product was used to search the 

GenBank nucleotide database and was found to correspond to f3-actin eDNA. A pairwise 

alignment of the nucleotide sequence with the salmon ~-actin cDNA sequence is presented in 

Figure 4.3. The trout sequence was 557 bp in length and was found to be 98 % identical to the 

salmon ~-actin cDNA sequence, with only the occasional single base variation/difference 

between the two fish sequences. A pairwise comparison with the human f3-actin sequence 

demonstrated that the trout and human sequences were 87% identical. 

4.3.3 The design of IFN-y degenerate primers 

IFN-y sequences from 18 different species (mammalian and avian) obtained from the GenBank 

database (Table 4.4), were used to create a multiple sequence alignment (Figure 4.4-4.7) using 

CLUSTAL W (Version 1.74). Initially the predicted amino acid sequences were aligned to 

check for particular regions which were conserved across all the sequences. Once regions of 

protein identity had been found, the DNA sequences corresponding to these regions were 

aligned. Two regions of conserved amino acids were found corresponding to residues 73-78 and 

156-161 (numbering with respect to the human sequence, with the initiator Methionine (M) 

numbered 1). The PCR forward primer was derived from region 73-78 whilst the reverse primer 

was based on region 156-161. Ambiguities were included in the primer sequences according to 

the nucleotide alignments or if the codon usage table suggested a particular bias (Figure 4.8). If 

the trout sequence was similar to the sequences used to design the primers a fragment of 

approximately 260 bp would be amplified. 

Initial PCR reactions using cDNA from mitogen stimulated lymphocytes and 

degenerate primers designed against IFN-y sequences produced an amplification product of 

approximately 280 bp. The PCR product was amplified using a gradient PCR protocol (Table 

4.3) with a range of annealing temperatures (37-52°C). Although, a gradient PCR was used to 

optimise conditions for the amplification of a PCR product, subsequent PCR conditions used a 
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standard PCR protocol with an annealing temperature of 45°C to verify that a fragment of ... 280 

bp was reproducibly produced. 
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Bactin - PCR 
Bactin - tro 
Bactin - sal 

Bactin- PCR 
Bactin - tro 
Bactin - sal 

Bactin- PCR 
Bactin - tro 
Bactin- sal 

Bactin - PCR 
Bactin - tro 
Bactin- sal 

Bactin - PCR 
Bactin- tro 
Bactin- sal 

Bactin - PCR 
Bactin - tro 
Bactin - sal 

Bactin - PCR 
Bactin- tro 
Bactin - sal 

Bactin - PCR 
Bactin - tro 
Bactin - sal 

Bactin - PCR 
Bactin - tro 
Bactin - sal 

Bactin - PCR 
Bactin - tro 
Bactin - sal 

.. 2 0 40 
CACTGGTTG'l'TGACAACGGATCCGG1'A'I'O'I'GCAl\l\GCCGC;' 

CACTGGTTG'l''l'Gl\CAACGGA'l'CCGG'!'A'!'G'I'GCAA/\GCCGG 

CACTGGTTGTTGACA/\CGGA'!'CCGG'l'/\'l'G'l'GCAAAGCCGG 

60 80 .. 100 
GCGCCTCGGGCTGTCTTCCCC'I'CCATCG'l'CGG CGT CCCAGGC/\'!'C AGGGAO'l'GA'l' 
GCGCCTCGGGc'rGTCT'l'CCCC'l'CCl\'l'CG'l'CGG CG'!'CCC l\GGCA'l'CAGGGAO'I'OA'I ' 

GCGcc'rCGGGCTG'l'C'l'TCCCC'l'CCA'l'CG'!'CGG CG'!'CCC/\GOCA'l'C/\OGGA(J'!'G/\'! ' 

120 .. 140 .. 1 0 
GGTTGGGATGGGCCAG/\A G/\CAGCTACG'!' GGAGACGAGGC'l'C/\GI\GCI\I\GI\GGG 

GGTTGGGATGGGCCAGAA GACAGC'!'ACG'!,· GGI\GI\CGI\GGC'l'CI\GAGCAI\GI\GGG 

GGTTGGGATGGGCCAGAA GAC/\GC'l'ACG1 ' riGAG/\CGAGGC'I'CI\GI\GCI\I\OI\O(iC 

* 190 .. 
G ATCCTGAC CTGAAGTACCCCA'l' 

G ATCCTGAC C'l'G/\AGTACCCCA'l' 

G A'l'CCTGAC CTGAAG'l'ACCCCA'1 

240 .. 

200 

C 

22 0 
GGCA'!'CG'l'CACCI\I\C'l'OGGI\CGI\(, 

UGCA'!'CG'l'CI\CCAAC'!'GGUACG/\(' 

( lGC/\'!'CO'l'CACCI\AC'l'OGGI\CGI\(' 

260 .. 2 80 
ATGGAGAAGA'l'CTGGCA'l'CACACCTTC'l'I\CI\I\CGI\GC'j'GAG G'l'GGC 
ATGGAGAAGATC'l'GGCA'l'CAC/\CCT'l'C'l'ACAACGAGC'I'GAG \J '!'GGC 

ATGGAGAAGA'I'C'rGGCA 'l'CAC I\CC'l'TC'!'AC AACOI\GC'l'O llC \ ;'I'C:GC' 

.. 300 
GCACCC GTCCTGCTCAC 

GCACCC GTCCTGC'l'CAC 
GCACCC ' GTCC'l'GCTCAC' 

340 .. 

.. 

36 0 .. 
TGACCCAGATCATG'l"l"l'GAGACC'r'l'C/\ACACCCC 

TGACCCAGATCA'l'G'l'TTGAGACC'l'TCAACACCCC 

'l'GACCCAGA'l'C/\'l'G'l"!"rG/\o/\cC'l''l'Cl\lIC/\CCC(' 

400 .. 420 

320 

380 
GCC/\'j'G'l'/\CG'I'GGCC/\'l'CCAU 

nCCA'j'G'l'/\CG'l'GGCCI\'l'CCI\(; 

\ ;cC/\'l'G'l' ACG'l'ClGCCA'l'CC /\{ ; 

.. 440 
GC~GTGTTGTCCC'l'GTACGCC'l'C'l'GGCCG'l'I\CCACCGG'I'A'l'CG'j'C/\'l'GG/\C'!'CCGG 

GC GTGTTG'l'CCCTU'l'I\CGCc'!'c'rGGCCG'l'I\CCACCGG'I'A'l'CG'l'CA'l'GG/\C'l'eCG( ; 

GC GTG'l'TGTCCC'rG'1'/\CGCC'I'C'I'GGCCG'I'ACC/\C(:O(J'I'A'I'CG'j'C /\ '!'(.GI\C'1'( :<:(;(; 

* 460 490 .. 500 
'l'GACGGCGTGACCCACAC/\G'l'/\CCC/\'j'C 'l'ACnAGGC: '!'ACGC'!'C'I'GCCCC/\CGCCA 

'l'GACGGCGTG/\CCCACACI\G'l'/\CCCA'l'C'l'I\CGI\G(]( ; 1'/\CGC'l'C'j'CCCCCI\CGCCA 

'l'GACGGCGTGI\CCCAC/\C I\G'l'ACCC A 'I'C'I'ACG A< ;<;( ; I' /\CC;C'I'C'l'GCCCC AC(JCC A 

.. 52 0 540 
TCCTGCGTC'l' , GATC'rGGCCGG CGCG/\CC'l'CACAGAC'j'ACC'!'GA'I'G/\I\UA'l'{' 

'l'CC'I'GCGTC'1 GA'l'C'l'GGCCGG COCGACC'!'C/\CI\(J/\C'l'ACC'j'OA'1'G/\AGI\'l'( ' 
'I'CCTGCG'rC'j GATC'l'GGCCG(; ' ,~OC(JACC'l'CACI\GAC'I'ACC'!'()A'I'(;I\I\(JI\'!'(' 

Figure 4.3 Nucleotide sequence alignment of trout and salmon J3-actin sequences. 

112 
112 
ll2 

1 8 
1 8 
1 8 

22 4 
2 2 4 
2 2 4 

557 
557 
557 

280 
280 
280 

336 
336 
33 

392 
3 2 
392 

44 8 
44 8 
44 8 

5 04 
5 04 
5 04 

The actin sequence deri ved from peR amplification of trout cDNA usi ng salmon based actin primers, i 

compared with the rainbow trout and salmon ~-actin (Accession numbers: AJ438 158 and AFO 12 125), 

T he peR derived sequence demonstrates 100% identity with the rainbow tr ut sequence and 98% identity 

with the salmon sequence over a stretch of 557bp sequence, 
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Table 4.4 Mammalian and avian mRNA sequences employed in the design of degenerate, cytokine primers for RT -PCR. 

Common Name Latin Name 

Cat Felis catus 
Cattle Bos taurus 
Oeer (Red) Cervus elaphus 
Dog Canis familiaris 
Dolphin (marine) Tursiops truncatus 
Horse Equus caballus 
Human Homo sapiens 
Mouse Mus musculus 
Pig Sus scrofa 
Rat Rattus norvegicus 
Woodchuck Mamwta monax 
Sheep Ovis aries 

IFN-y 
030619 
M29867 
L07502 
AF126247 
AB022044 
028520 
M29383 
XM125899 

Y14138 
X52640 

African green monkey Cercopithecus aethiops 
Mangabey (red-crowned) Cercocebus torquatus 126025 
Macaque (crab-eating) Macacafascicularis 089985 
Macaque (rhesus monkey) Macaca muJatta 126024 
Macaque (pig-tailed) Macaca nemestrina L26026 
Chicken Gallus gallus AF424744 
Duck Anas platyrhynchos AJ012254 
Guinea fowl Numida me/eagris AJOO1263 
Japanese quail Cotumix japonica AJOOI678 (gene) 

Accession Number 
11..-15 
AF108148 (precursor) 
Q28028 (precursor) 

NMOOO585 (partial cds) 
NMOO8357 (partial cds) 
Q95253 (protein) 
AF015719 

Q9XSJ6 (protein) 
NMOO8357 

AB000555 (precursor) 
U19843 

AF139097 

11..-18 
AB046211 
AF124789 (precursor) 

Yll133 

Yl1l31 

AFI91088 

AJ401033 (gene) 

AF303732 

AJ277865 (gene) 
AF336122 (partial cds) 
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Consensus I I Q s Q I V S F Y 
Cat I I Q S Q I V S F Y 
Cattle I I Q S Q I V S F Y 
Sheep I I Q S Q I V S F Y 
Deer I I Q s Q I V S F Y 
Dog I I Q S Q I V S F Y 
Dolphin I I Q S Q I V S F Y 
Horse I I Q S Q I V S F Y 
Human I Q S Q I V S F Y 
Mangabey I Q S Q I V S F Y 
Macaque (crab-eating) I Q S Q I V S F Y 
Macaque (rhesus) I Q S Q I V S F Y 
Macaque (pig-tailed) I Q s Q I V S F Y 
Mouse I Q s Q I I s F y 
Woodchuck I I Q S Q • V S Y 
Duck I I S Q I V • Y 
Guinea fowl I I S Q I V S Y 
Quail I I S Q I V S Y 
Chicken I I S I V S Y 

71 • • • 80 

Figure 4.4 Multiple amino acid alignments of known mammalian and avian IFN-y sequences. 
Design of the forward IFN-y primer was based on the stretch of highly conserved amino acids QIVSFY (residues 75 -80), showing highest identity. The consensus 
sequence is highlighted in bold and identical (. ) residues, identified by the CLUST AL programme are indicated. Residues non-identical to the consensus sequence are 
shaded. 
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Consensus S N L R K R K R S 0 
Cat S N L R K R K R S Q 
Cattle S N L R K R K R S Q 
Sheep S R L r K R K R S Q 
Deer S N L K R K R S Q 
Dog S N L R K R K R S Q 
Dolphin S N L R K R K R S Q 
Horse N L R K R K R S Q 
Human II 

I 
K R K R S Q 

Mangabey I K R K R S Q 
Macaque (crab-eating) I K R K R S Q 
Macaque (rhesus) K R K R S Q 
Macaque (pig-tailed) K R K R S Q 
Mouse S L R K R K R S 
Woodchuck S L e K R K R S Q 
Duck S I K R K R S Q 
Guinea fowl L K R K R II Q 
Quail K R K R S Q 
Chicken K R K R S 

152 * * * * 161 

FtgUre 4.5 Multiple amino acid alignments of known mammalian and avian IFN-y sequences. 
Design of the IFN-y reverse primer was based on the stretch of highly conserved amino acids KRKRSQ (residues 156 - 161) showing highest identity. The consensus 
sequence is highlighted in bold and identical (*) residues, identified by the CLUST AL programme are indicated. Residues non-identical to the consensus sequence are 
shaded. 
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Consensus 
Cat 
Cattle 
Sheep 
Deer 
Dog 
Dolphin 
Horse 
Human 
Mangabey 
Macaque (crab-eating) 
Macaque (rhesus) 
Macaque (pig-tailed) 
Mouse 
Woodchuck 
Chicken 
Duck 
Guinea fowl 

205 

ATT 

A T T 

A T T 

A T T 

A T T 

A T T 

A T T 

A T T 

A T 

A T 

A T 

A T 

A T 

I T 
A T 

A T 

A T 

A T 

A T 

CAG AGC CAA ATT GTC TCC TTC TAC TTC 

C A 6 AGe C A A A T T G T C T C C T T C T A C I T I 
C A GAG C C A A A T T G T C T C C T T C T ACT T C 
C A GAG C C A A A T T G T C T C C T T C T ACT T C 
C A GAG C C A A A T T G T C T C C T T C T ACT T C 
C A GAG C C A A A T T G T C Te l T T C T ACT T -
C A GAG C C A A A T I GTe T C C T T C T ACT T C 
C A GAG C C A A A T G T C T C C T T C T ACT T C 
C A GAG C C A A A T T G T C T C C TT l T ACT T C 
C A GAG C C A A A T T G T C T C C T T T ACT T C 
C A GAG C C A A A T T G T C T C C T T T ACT T C 
C A GAG C C A A A T T G T C T C C T T T ACT T C 
C A GAG C C A A A T T GTe T C C T T T ACT T C 
C A GAG C C A I A T T & T eTC I TT C T A c i T C 

~ IA~ ~~~ ~~ IA ! ~~ ~~ IC ~~ IT~ IC ~~~ ~~C 
C GAG C C A A T T G T i c C T T ACT T 
C G AGC CA ATT GT T C I T TAC TT 
C GAG C C A A T T G T T CT . T ACT T 

* * * * * * * * * * * * * 

FIgUre 4.6 Multiple nucleotide alignments of known mammalian and avian lFN-y sequences. 

234 

Design of the forward IFN-y primer was based on the following stretches of highly conserved sequence (nucleotides 214 - 231 ), showing highest identity. The 
consensus sequence is highlighted in bold and identical (*) nucleotides, identified by the CLUST AL programme are indicated. Regions non-identical to the consensus 
sequence are shaded. 
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Consensus 
Cat 
Cattle 
Sheep 
Deer 
Dog 
Dolphin 
Goat 
Horse 
Human 
Mangabey 
Macaque (crab-eating) 
Macaque (rhesus) 
Macaque (pig-tailed) 
Mouse 
Woodchuck 
Chicken 
Duck 
Turkey 
Guinea fowl 
Pheasant 

uail 
452 

T C T 
T C T 
T C T 
T C T 

AAC 

A A C 
A A C 

A A C 

T C T A A C 
T e C A A C -T C T A A 

T C T A A C 
C T A A C 

e T 
e T 
C T 
C T 
C T 

T C 
T C T 
T 

T 

T C 
T C 
T C 
T C 

AA 
A A 

AA 
A A 

A A 

Ale 
A C 

A I 
A C -AA - A 

A 

A 

CTC AGA AAG 

CT I AG I AAG 
CTC AGA AAG 
CTC AGA AAG 
C T e 
C T B 
C T C 
C T C 

A l A AAG 
AG II AAG 
AGA 
AGA 
A G 

G 

A A G 

A A G 

A A G 

A A G 

T II G I AAG T G A A G 

T . G A A G 
T GA AAG 

eTC AG II AAG 
CT I AG I AAG 

T 

T C 
T C 

T C 
T C 

A A A G 

A A A G 

A A A G 

A A A G 

A A A G 

A A A G 

••• 

CGG AAA 

CGG AAA 
C G G A A 

eGG A A 
eGG A A 
eGG AAA 
eGG A 
eGG A A 
C G G A A 

eG I AAA eGA A A 
eGA A A 

eGA A A 

eGA A A 
eGG AAA 
eG a AAA 

AGG AGT 

A G GAG 

AG I AGT 
A GAG T 
A GAG T 
AGG AGT 

AG I AGT 
A GAG T 
AGG AGT 
AGG AGT 
AGG AGT 
AGG AGT 

AGG AGT 

AGG AGT 
AGG AGT 
AGG AGT 

G AAA AGG AG 

G AAA AGG AG 

G AAA AGG AG 

G AAA AGG A I 
G AAA AGG AG T 

G AA A AGG AG 

• • • • 
Fagure 4.7 Multiple nucleotide alignments of known mammalian and avian IFN-y sequences. 

C A G 

C A G 
C A G 
C A G 
C A G 
e A G 
C A G 
C A G 
C A G 
C A G 
e A G 
C A G 

C A G 
C A G 
C I -
C A G 
C A G 

C A G 
C A I 
C A G 
C A G 
C A G 
• 483 

Design of the IFN-y reverse primer was based on the following stretches of highly conserved sequence (nucleotide 464 - 483), showing highest identity. The consensus 
sequence is highlighted in bold and identical (*) nucleotides, identified by the CLUST AL programme are indicated. Regions non-identical to the consensus sequence 
are shaded. 
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IFN·'Y (1) Forward primer 
Amino acid 
Nucleotide 5' 
Primer sequence 5' 

IFN.'Y (1) Reverse primer 
Amino acid 
Nucleotide 5' 
Antisense strand 3' 
Primer sequence 5' 

IL.15 Forward primer 
Amino acid 
Nucleotide 5' 
Primer sequence 5' 

IL.15 Reverse primer 
Amino acid 
Nucleotide 5' 
Primer sequence 5' 

IL.18 Forward primer 
Amino acid 
Nucleotide 5' 
Primer sequence 5' 

IL.18 Reverse primer 
Amino acid 
Nucleotide 5' 
Primer sequence 5' 

Nucleotide ambiguity codes: 

K = Gff 

M = NC 

R = NG 

Q I V S F Y 
CAG IATG IGTG IAGG ITTT ITAC 
CAR I ATX I GTY I TCY I TTY IT AC 

K R K R S Q 
AAG I AGG I AAG I AGG I AGG I CAG 
TTC I GCe I TTT I TCT I TeG I GTe 
CTG I RCT I YCT I YTT I CCG I CTT 

p K T E A N 
CCT IAAA IACA IGAA IGCC IAA 
CCW IAAR IACA I GAR I GeM IAA 

e K E e E E 
TGC IAAA I GAA ITGT I GAG IGAA 
TCYI TCA ICAY ITCY ITTG ICA 

S DIN I I F F 
AAT I GAC I ATC lATA IITC ITIT 
ART IRAC I ATC I ATM IITY lIT 

K L I L K K 
AAA ICTC IATT IITG IAAA IAAA 
TTY ITTY I AAA I ATK I ART lIT 

W 

x 
y 

= 

= 
= 

Atr 

NClGff 

CIT 

3' 
3' 

3' 
5' 
3' 

3' 
3' 

3' 
3' 

3' 
3' 

3' 
3' 

Figure 4.8 Design of IFN·'Y, IL·15 and IL·18 degenerate primers using both multiple sequence 
alignments of a range of species, and a codon usage frequency table specific for fish. Nucleotides 
selected from the codon frequency table are presented in bold whilst nucleotide ambiguity codes are 
underlined. 
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4.3.4 Cloning and subsequent sequence analysis of IFN-y PCR products 

The PCR products resulting from the use of the IFN-y primers, were purified with QIAprep spin 

Miniprep kit (Qiagen) and cloned into a PCR cloning vector pGEM-TEasy (Promega). Plasmid 

DNA was prepared from five independent clones and was digested with a) Not I and b) Eco RI 

restriction enzymes and analysed on a 2% metaphor® agarose gel. Digestion with Not I 

produced a single restriction fragment of approximately 300 bp whereas, digestion with Eco RI 

enzyme generated two bands of approximately 120 and 170 bp (Figure 4.9). This suggested that 

each of the clones contained an identical insert and contained an internal Eco RI restriction site. 

Clones #1 and #3 were selected for sequencing. 

The sequence of each clone was identical. The data was analysed to verify that the PCR 

amplification product contained sequence corresponding to both a forward and a reverse IFN-y 

primer (Figure 4.10). 

TGGCTTC~CGCTTCCTGGTGCCCCTCCACGTCCTTTTTCTCTCCATTGCTGTTGCTGCAG 

GGAGAGTGGTTTCGTGCAATATCTGGCATAGTGACCGGGAATTCCGCAGTTATACCACTGGTAG 

TTTCCCCCTCTGTATGGTCCAGTGTAGGGGCCTCGTTGAGCCCGTTGCTGTTGCAGGATATACC 

ACTGTGGGGGAGGGTAATGGGGTGGTGGGGCTGCCTGCTGTTGGATCATCTGAGAGACAATTTG 

Figure 4.10 Nucleotide sequence of peR fragment amplified using degenerate IFN-y primers 

Nucleotide sequence of the amplified fragment obtained from initial PCR amplification using IFN-y 

degenerate primers, followed by automated sequencing using vector specific SP6 primers. Both IPN-y 

forward (S'gagagacaatctggctc 3') and reverse primer (5' tggcttctttttcgctt 3') sequences are presented in 

bold. 

The nucleotide sequence data was compared with entries in the Genbank database using 

the Fasta3 search programme. The results of the top 20 DNA sequences matching with the 

query DNA sequence are presented in Appendix 4.2. Unfortunately the DNA sequence did not 

appear to correspond to any known IFN-y sequence, however to verify that this was the case the 

DNA nucleotide sequence was translated into 6 reading frames, all of which were analysed for 
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the presence of an open reading frame (Figure 4.11). Reading frames that did not contain stop 

codons were used to quiz the Swissprot protein database in search of homologous sequences. 

The BLAST P programme, which compares a protein query to a protein database was 

used for the protein homology search to generate sequences with best scores (E-value) for each 

ORF (Figure 4.12). The Z-scores and percentage identities indicate the similarity between 

sequences. Once again however none of the ORFs showed any significant homology to any of 

the known IFN-y sequences. Furthermore, none of the ORFs appeared to correspond to any 

known protein sequences in the database. 
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~ 300bp 

EcoRI 

170bp 

120bp 

Figure 4.9 Restriction enzyme digestion of cloned peR products amplilied using IFN-y primers. 

Plasmid DNA clones: #1-5 (from left to right fo llowing DNA markers) digested with a) Notl and b) 

EcoRI restriction enzymes and analysed on a 2% metaphor® agarose gel. A 100bp DNA ladder 

(Promega) is included as a size marker. 

a) NotI digestion generates a single fragment of approxImately 300 bp. 

b) £CoRI digestion generates 2 distinct bands of approx imately 120 and 170 bp. 
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Figure 4.11 Protein maps representing open reading frames (ORFs) derived from IFN-y peR product. 
Upper strand open reading frames 1,2 and 3 represent forward sequence (red) and lower strand frames 4,5 and 6 represent reverse sequence (green), The 
translated protein sequence for the ORF generated (MapDraw™ V 5,03) is displayed using single-letter standard genetic codes. 
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ORF Sequence Accession number Z-Score E Value % Identity 

ORF#l Hypothetical protein (Burkholderiafungoram) NZ_AAACO 1000292 30.4 5.2 36 

Hypothetical protein XP _164074 XM_164074 30.0 7.0 34 
(Mus musculus) 

ORF#2 Hypothetical membrane protein (Corynebacterium) AP005280 33.7 1.5 48 
Glutamicum ATCC 
MRNA-binding protein CSP41 precursor (Spinacia oleracea ) U49442 33.7 1.5 40 

ORF#4 Myosin heavy chain Myr 8 (Homo sapiens) XM_170134 36.3 0.24 53 

Unknown (Streptococcus agalactiae) AL766849 35 0.59 57 

ORF#5 Hypothetical protein (Homo sapiens) AL832323 37.4 0.047 38 

Gag polyprotein (Simian immunodeficiency virus) AL832323 37.4 0.047 38 

ORF#6 Probable 60s ribosomal protein Ll9 (Caenorhabditis elegans) NM_058980 30.4 4.9 32 

Amiloride-sensitive sodium channel type I delta polypeptide NM_OO2978 29.6 8.7 28 
(Homo sapiens) 

Figure 4.12 Protein homology searches perfonned using Blast P programme with open reading frames derived from the IFN-y peR product 
Open reading frames coding throughout the entire sequence of the amplified PCR product were chosen for further analysis using the Blast P programme 
which compares a protein query to a protein database. Protein sequences with best scores for each ORF are presented and the overall similarity between 
sequences is indicated by the Z-scores and % identities. An expected E value is calculated. which gives the expected numbers of random alignments 
with Z-scores greater than or equal to the value observed. 
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Consensus G C 1: S A G L P K T E A N 
Cat d C I G A G L P K T E A N 
Cattle G C I S A D L P K T E A N 
African green monkey G C 

I 
s A G L P K T E A N 

Human G C S A G L P K T E A N 
Rhesus monkey G C S A G L P K T E A N 
Macaque (crab-eating) G C S A G L P K T E A N 
Mouse G C S A G L P K T E A N 
Pig G C I S A G L P K T E A 
Sheep G C I S A G L P K T E A N 
Chicken C ~ I g P K T E A N 

58 * * * * * * 70 

Consensus C T C C C T AAA A C A GAA G C C AAC T G G C T G 

Cat C T C C T AAA A C A G A G C A A C T G G C G 
Cattle C T C C i AAA A C A G A A G C A A C T G G C G 
Sheep C T C C AAA A C A G A A G C A A C T G G C G 
Pig C T C C T A A A A C A G A A G C A m C T G G C G 
African green monkey eTC C C T AAA A C A G A A Gee A A C T G G T G 
Macaque (crab-eating) eTC C C T AAA A C A G A A Gee A A C T G G T G 
Rhesus monkey eTC C C T AAA A C A G A A Gee A A C T G G T G 
Mouse eTC C C T AAA A C A G A I Gee A A C T G G T 
Rat eTC C C T AAA A C A G A Gee A A C T G G T 
Chicken ~ T R ee l A A n A C A G A A Ge l A A I I I - C T G 

184 * * * * * * * * * * * * * 210 

Figure 4.13 Multiple nucleotide and amino acid alignments of known mammalian and avian IL-15 sequences. Design of the IL-15 forward primer was based on 
the following stretches of highly conserved sequence: nuc1eotides 187 - 203 I residues 65 - 70, showing highest identity. The consensus sequence is highlighted in bold 
and identical (*) residues, identified by the CLUST AL programme are indicated. Regions non-identical to the consensus sequence are shaded. 
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Figure 4.14 Multiple nucleotide and amino acid alignments of known mammalian and avian IL-IS sequences. The following stretches of highly conserved 
sequence: nucleotides 162 - 167 I residues 470 - 488 were used in the design of an IL-IS reverse primer. The consensus sequence is highlighted in bold and identical 
(*) residues, identified by the CLUST AL programme are indicated. Regions non-identical to the consensus sequence are shaded. 
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Figure 4.15 Multiple nucleotide and amino acid alignments of known mammalian and avian IL-18 sequences. The following stretches of highly conserved 
sequence: nucleotides 451 - 4681 residues 153 - 158 were used in the design of an IL-18 forward primer. The consensus sequence is highlighted in bold and identical 
(*) residues identified by the CLUST AL programme, are indicated. Regions non-identical to the consensus sequence are shaded. 
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Figure 4.16 Multiple nucleotide and amino acid alignments of known mammalian and avian IlA8 sequences. The following stretches of highly conserved 
sequence: nucleotides 568 - 588 I residues 192 - 197 were used in the design of an IL-18 reverse primer. The consensus sequence is highlighted in bold and identical 
(*) residues. identified by the CLUST AL programme are indicated. Regions non-identical to the consensus sequence are shaded. 
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550 bp 

130 bp 

M C M 

Figure 4.17 PCR amplification using IL-IS degenerate primers 

A PCR amplification product of 130bp generated, using cDNA from mitogen stimulated lymphocytes and 

the following degenerate oligonucleotide primers designed against the IL-15 forward primer 5' 

cc(at)aa(ag)acaga(ag)gc(ac)aa 3' and 5' tc(ct)tcaca(ct)tc(ct)ttgca 3' reverse primer. Salmon j3-actin primers 

were used as a PCR control to generate an approximately 550bp product (C). A l00bp DNA ladder (0.1-

1.5kb) is included as a size marker (M). 
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4.3.5 The design of IL-15I1L-18 degenerate primers and subsequent RT-PCR 

A similar approach as outlined previously for IFN-y was used in the design of degenerate 

primers for both the IL-IS and IL-18 cytokines (Table 4.4). Oligonucleotides of either 15 or 18 

bases in length were constructed, based on conserved regions of homology between IL-15 or IL-

18 sequences from different species (Figures 4.13- 4.16). If the corresponding trout sequences 

were similar to the mammalian cytokines a fragment of approximately 300 bp corresponding to 

amino acid residues 65-167 (187-488 nt) would be expected to be amplified for IL-15, and a 

fragment of approximately 130 bp corresponding to amino acid residues 153-197 (451-588 nt) 

would be expected for !L-I8. 

4.3.6 Cloning and subsequent analysis ofIL·15 and IL·18 peR products 

RT-PCR experiments were performed with RNA isolated from mitogen-stimulated head kidney 

cells and peripheral blood lymphocytes of rainbow trout using the degenerate primers designed 

for both the !L-I5 and IL-I8-sequences. Although the annealing temperatures for both !L-i5 

forward and reverse primers were identical, the !L-I8 primers had a TAnn value of 40.7 and 35.9 

respectively. As a consequence, the PCR reactions were performed using a gradient PCR 

protocol with a range of annealing temperatures (35 - 50°C) as described in Table 4.3. 

PCR products of approximately 130 bp were obtained for the IL·I5 primers (Figure 

4.17) but unfortunately, no amplification products were obtained using the IL-I8 degenerate 

primers. Amplified fragments were cloned into a PCR cloning vector (pGEMT-Easy) and the 

resultant plasmid DNA clones were digested with Eco RI restriction enzyme. All the clones 

containing the !L-I5 amplification product had an insert of approximately 130 bp. Two of these 

clones were selected for sequencing. 

Although the amplified fragments obtained using !L-i5 primers were not of the size 

anticipated, the sequences of the PCR products were determined. This was because there is 

always the possibility that the corresponding trout sequences may contain either deletions or 

Chapter 4 124 



insertions of sequence in comparison to the mammalian sequences. The sequence of both IL-IS 

clones was identical. However analysis of it revealed that the forward degenerate primer was 

present at both ends of the PCR product. Therefore it was highly unlikely that the PCR product 

was in any way related to IL-IS. Nevertheless the sequence was compared with entries in the 

EMBL database to try and identify if it was related to any known fish sequences. The result of 

the database searching found that the sequence was possibly related to a zebrafish (D.rerio) 

DNA sequence derived from genomic DNA (accession #AL929078). The trout sequence was 

64% identical over 93 nuc1eotides with the zebrafish sequence (Figure 4.18). No function has 

been assigned to the zebrafish sequence. 

ILlS 
120 

CCTAAGACAGAAGCCA .... " .... . .. .. " .... . 
EM_OV: GATTTGCTTTAGAAATAGAAATATTTTGCTATTATCTACT--TTTCTTAGACAGAAAATA 

90250 90260 90270 90280 90290 90300 

110 100 90 80 70 60 
ILlS !CACGCACATAGGTAACACACACAGACAGCTTTACC--TCCTTAGCTAACCTGTGGGAGC ................ " ... " .......... . . .......... . .. '" ...... . . .. . .. 
EM_OV: AGCAGCTCTGAACTACGACACACAGAGACCTTTATCAATCTTTATCAAACCAGAGTAAGC 

90310 90320 90330 90340 90350 90360 

50 40 30 20 10 
ILlS AGCCAAAACTACACCTCAGTGTCATGTTTGGCCTCTGTCTTTGG 

EM_OV: TGCTGCCATATATTATACTGCCTTTTATGGGTTTAGGTGAATAA 
90370 90380 90390 90400 90410 

Figure 4.18 CLUST AL generated nucleotide alignment comparing PCR sequence amplified using lL-iS 

degenerate primers with a Zebrafish (D. rerio) DNA sequence from the EMBL database (Accession 

#AL929078). The sequence derived from clone CH211-155115 in linkage group 3, complete sequence 

demonstrates 64% identity over 93 (nt) region with the reverse complement sequence. Conservation of 

nucleotide identity is shown as (:) and both forward and reverse primer sequence are presented in bold. 

4.3.7 Amplification of cytokine cDNA using ovine cytokine primers 

PCR experiments were performed on trout cDNA using a number of paired ovine cytokine 

primers available in the laboratory (kindly provided by A. Wood): ILII3, IL2, IL3, IL4, !LS, 

IL6, IL8, GMCSF, IFN, LT, MCP, MIP, RANTES, TGFI3, TNF-a. The initial PCR comprised 

of 20 cycles with an annealing temperature of 37°C. No amplification products could be 
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visualised on an agarose gel from these initial reactions, but the an aliquot from each of the 

reactions was used in a second round of amplification involving 30 cycles at a higher annealing 

temperature of 50°C. However, no amplification products could be detected for any of the 

primer pairs after this second PCR. 

4.4 Discussion 

The polymerase chain reaction has been used successfully to isolate the fish counterparts of a 

number of mammalian cytokines. It was decided to use the same approach to try and isolate the 

rainbow trout equivalents of mammalian IFN-y, IL-15 and IL-18. In order to verify that the RT­

PCR reactions were working on each occasion primers designed to amplify the trout ~-actin 

cDNA were included as a positive control. The trout p-actin sequence was not known and so 

primers based on the salmon sequence were used. These were designed to amplify a 557 bp 

fragment of the salmon ~-actin sequence. A fragment of a similar size was amplified from the 

trout cDNA and was subsequently cloned and sequenced. The trout sequence was found to be 

98% identical to the salmon sequence. Recently, a rainbow trout sequence (Accession no. 

AJ438158) has appeared in the DNA databases and a pairwise comparison of it with the trout 

PCR amplification product revealed that the two sequences were 100% identical. Pairwise 

alignment of the trout ~-actin sequence with the human ~-actin cDNA sequence showed that 

they were 87% identical. 

The degenerate IFN-y primers were designed from regions of the cDNA sequence 

corresponding to amino acids that were highly conserved between 15 mammalian and 6 avian 

species. If the trout IFN-y sequence was similar to these sequences then a PCR product of 

approximately 260 bp would be expected. A PCR product of approximately 280 bp was 

amplified using a standard PCR protocol and an annealing temperature of 45°C. This PCR 

product was cloned, but although analysis of the sequence confirmed that it contained both the 

forward and reverse degenerate primers, the sequence itself did not appear to be related to IFN­

y, or indeed to any sequences in the databases. Furthermore, none of the potential ORFs 

Chapter 4 126 



contained within the sequence corresponded to any known protein sequences. It was concluded 

that this peR product was not related to IFN-y. The reasons for not amplifying a peR product 

corresponding to IFN-y could be many fold. It may be simply that the trout sequence is so 

divergent from the other sequences that have been published that the peR approach using these 

specific primers would just not work. Alternatively it may be that the trout IFN--y sequence was 

not present, or was present at very low levels, in the starting population of RNA. However in 

order to counteract this possibility RNA isolated from cells activated with a number of different 

stimulants was pooled prior to preparing the cDNA. Another possibility is that fish do not 

possess an IFN-y gene. So far IFN-y sequences have been found only in mammalian and avian 

species. Attempts by many groups to isolate fish IFN-y have so far failed. Even within the EST 

cloning approaches taken for a number of fish species no IFN-y related sequence has been 

reported. To counteract this however, groups have reported being able to detect anti-viral 

activity, which is both heat and acid labile, a property that is associated with IFN-y. Similarly in 

this thesis and elsewhere a macrophage activating activity (MAP activity) which could be due to 

an IFN-y-like molecule has been demonstrated. In addition recently the trout sequence 

corresponding to an IFN-y-inducible gene (Laing et al., 2001b) has been reported. 

Having failed to amplify a peR fragment corresponding to IFN--y. attention was 

focussed on other cytokines, which possess activities linked to IFN-y. Interleukin-15 is a T-cell 

growth factor which appears preferentially to stimulate the growth of the Th I subset of helper 

T -cells. Classically Thl cells are thought of as IFN-y producing cells and it has been shown that 

administration of IL-15 directly leads to the increased production of IFN--y (Biber et aI., 2002; 

Liew, 2(03). Similarly ll...-18 is alternatively known as interferon gamma inducing factor 

(lGIF). It too stimulates the production of IFN-y from both Thl cells and natural killer (NK) 

cells. Mice that are deficient in IL-18 have reduced production of IFN--y, despite normal levels 

of IL-12 another cytokine with IFN-y-inducing properties (Dinarello, 1999). 

Once again all the available ll...-15 and ll...-18 sequences were aligned to find regions of 

amino acids that were conserved across as many species as possible. If the corresponding trout 

sequences were similar to those published sequences, the primer pairs that were designed would 
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be expected to amplify fragments of approximately 300 bp and 130 bp corresponding to IL-15 

and IL-18 respectively. 

Amplification with the IL-15 primers reproducibly produced a peR product of 

approximately 130 bp in length. much smaller than was expected. This was cloned and 

sequenced. However analysis of the sequence revealed that the same degenerate primer was 

present at both ends of the fragment and therefore it was highly unlikely that it would be related 

to IL-15. This was verified by using the sequence to search the DNA databases. The best match 

to the amplification product was a sequence derived from a region of the zebrafish genome for 

which no function has yet been assigned. A search of the protein databases with the potential 

ORFs contained within the amplification product sequence also failed to suggest any function. 

Amplification with the IL-18 primers failed to produce a peR product. 

Unlike the sequence derived from using the IFN-y primers. that derived from using the 

IL-15 primers appeared at least to be related to fish sequences. However even here it is not clear 

whether or not they are really related to expressed sequences or could be derived from 

contaminating genomic DNA. The results with the three sets of primer pairs also illustrate the 

dangers of using degenerate primers. The more degenerate the primer the greater the chance of 

amplifying something which is not related to the original target. However equally. if the target 

sequence is highly related to the sequences that the primers were designed from then the correct 

fragment should be amplified with the degenerate primers. With the IL-15 primer pairs used. a 

peR fragment of reproducible size was obtained on each occasion the peR was performed. but 

none corresponded to the cytokines that were being sought. The reasons for this are unknown. 

but could be the same as discussed previously for the IFN-y. 

As a final attempt to amplify trout cytokine cDNAs RT -peR was performed with a 

range of primer pairs specific for ovine cytokines. However as one might have expected no 

amplification products were obtained in this instance. It is likely that there is insufficient 

homology at the nucleotide level between these ovine cytokine primers and the corresponding 

trout sequences as no attempt was made to ensure that the regions covered by the primers 

corresponded to regions known to be conserved across different species. 

Chapter 4 128 



Since the peR approached proved to be unsuccessful it was decided to construct a cDNA 

library from lymphocytes activated with a variety of stimulants and to screen this in several 

ways to try and isolate trout cytokine genes. 

Chapter 4 129 



CHAPTER 5 

Differential screening and hybridisation studies of 

rainbow trout stimulated lymphocyte cDNA library 



CHAPTERS 

Differential screening and hybridisation studies of rainbow trout 
stimulated lymphocyte cDNA library 

5.1 Introduction ................................................................................................................................ 131 

5.2 Methods ....................................................................................................................................... 133 
5.2.1 Southern hybridisation of trout genomic DNA ......................................................................... 133 
5.2.2 Construction of a cDNA library with RNA isolated from stimulated rainbow trout 
leukocytes ........................................................................................................................................... 133 
5.2.3 Screening of the cDNA library .................................................................................................. 134 
5.2.4 Preparation of probes ................................................................................................................. 135 
5.2.4.1 Ovine cytokine cDNA probes ................................................................................................ 135 
5.2.4.2 Single-stranded cDNA probes ................................................................................................ 135 
5.2.5 Sequence analysis ...................................................................................................................... 136 
5.2.6 Northern blot analysis of cDNA clones from trout leucocyte cDNA library ............................ 136 

5.3 Results .......................................................................................................................................... 137 
5.3.1 Analysis of genomic DNA by Southern Hybridisation ............................................................. 137 
5.3.2 Random isolation of cDNA clones from the stimulated leukocyte primary cDNA library ....... 137 
5.3.3 Screening of the rainbow trout leukocyte eDNA library with ovine cytokine probes .............. 139 
5.3.4 Screening of the trout cDNA library with single-stranded cDNA probes prepared using the 
primerTAAAT ................................................................................................................................... 139 
5.3.5 Screening of the trout eDNA library with single-stranded eDNA probes derived from 
stimulated PBLs, non-stimulated PBLs and whole liver .................................................................... 139 
5.3.6 Sequence analysis of positive clones isolated from differential screening ................................ 144 
5.3.7 Northern blot analysis of cDNA clones isolated from the stimulated leucocyte cDNA 
library ................................................................................................................................................. 145 

5.4 Discussion .................................................................................................................................... 148 

Chapter 5 130 



5.1 Introduction 

The existence of a number of fish cytokines have been inferred based on functional similarity to, 

or biological cross-reactivity with, mammalian cytokines. Apart from MAP, there is evidence in 

fish for IL-I, IL-2, type I and 2 interferons, macrophage migration inhibition factor (MlF), 

TNF-a and TGF-~. Several groups have demonstrated cytokine-like biological activity in cell­

free supernates from stimulated lymphocytes (Secombes et al., 1996, 1998), but have failed to 

purify the molecules responsible for such activities using conventional protein purification 

techniques (Secombes, 1994a; Secombes et al., 1996). For example, secretion of MAF from 

activated fish lymphocytes has been reported, but the factors responsible have yet to be purified 

(Graham and Secombes, 1990a,b). 

Molecular techniques have recently enabled the identification of some fish cytokine 

genes and have provided support for the biological datu on cytokine activity (Secombes, 1999a). 

However, there are still very few fish cytokine genes that have been cloned (Zou et al., 1999b). 

Although it is considered unlikely that fish will possess all the cytokine genes present in 

mammals, it will be interesting to determine which cytokines genes they do possess and whether 

or not they possess any unique genes or acti vities (Secombes, 1999a). 

Cytokine genes are unlikely to be expressed constitutively in most instances, and 

therefore to increase the chances of cloning their cDNAs it is important to use a reliable means 

of inducing their expression. This is achieved either in vitro by mitogen stimulation or in vivo 

using bacterial pathogens (Marsden et aI., 1996a.b). The cytokine cDNAs that have been cloned 

were identified either by screening cDNA libraries with gene probes derived from mammalian 

cytokine sequences or by other molecular techniques such as the PCR, or EST analysis 

(Wittbrodt et ai., 1998). For example, the IL-l~ gene has been cloned recently in rainbow trout 

using the PCR (Zou et ai., 1998) and in Carp by the EST approach (Fujiki et ai., 2000; Yin and 

Kwang, 2000), and has been discovered in Seabass using the trout sequences as a probe 

(Scapigliati et ai., 2001). 
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In the trout, primers designed against conserved regions of known mammalian IL-lf3 

genes were used to amplify the fish gene (Zou et al., 1998). Whereas, the EST analysis 

approach for the isolation of the Carp IL-lf3 involved the generation of a cDNA library to allow 

for enrichment of genes of interest by in vivo stimulation of peritoneal cells with sodium 

alginate. Individual clones were randomly sequenced and some of the fragments of interest used 

as probes, yielding full-length cDNAs homologous to mammalian interleukin-lf3 (Fujiki et al., 

1998). 

In the present study, a cDNA library was constructed from mitogen-stimulated rainbow 

trout leucocytes in order to screen for cytokine genes. Initial development of T-cell culture 

methods focussed on the establishment of a reproducible source of MAF, (Chapter 3), but RNA 

was eventually isolated from lymphocytes activated with a variety of different mitogens and 

stimulants. This was in order to increase the possibility of cloning a variety of different 

cytokines. The library was screened initially with a range of ovine cytokine cDNA I gene 

probes. Differential screening was also performed using probes prepared from stimulated and 

non-stimulated leucocyte RNA. Clones isolated from the library were sequenced for further 

characterisation. 
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5.2 Methods 

5.2.1 Southern hybridisation of trout genomic DNA 

Southern blot analysis was performed on genomic DNA, isolated from rainbow trout spleen 

tissue using a DNA isolation kit (Qiagen). The genomic DNA (O.9Ilg) was digested with the 

following restriction enzymes: BamHI, EcoRI, Hind III and Pst! and electrophoresed on a O.S% 

agarose gel. A lower percentage gel was used to obtain better separation of the high molecular 

weight bands. The blot was hybridised with 32p labelled ~-actin (PCR product) and ovine IFN-y 

(gene) probes at 65°C for 4 h. Following stringency washes, the membrane was exposed to x­

ray film for -12 h. 

5.2.2 Construction of a cDNA library with RNA isolated from stimulated rainbow trout 

leukocytes 

Peripheral blood leucocytes were stimulated with a range of T cell mitogens in an attempt to 

activate the expression of cytokine genes. A eDNA library was prepared from RNA isolated 

from the peripheral blood lymphocytes stimulated with the mitogens (Section 2.9), using the 

pCMV-script@ XR cDNA library construction kit (Stratagene, USA). This kit is designed for the 

generation of directional libraries in the plasmid based pCMV -script mammalian expression 

vector, such that it can be screened by functional assay using mammalian cells or with DNA 

probes in E.coli cells. 

First the mRNA was purified from total RNA using an oligotex-dT ™ Kit (Qiagen), 

following manufacturers instructions (Section 2.19). Then, cDNA was synthesised from the 

polyA+ RNA (1.68Ilg) template using Moloney murine leukemia virus reverse transcriptase 

(MMLV-RT) and DNA polymerase I. The eDNA was size fractionated (1.8-0.Skb) and ligated 

into the pCMV-Script vector used to transform competent E.coli XLIO-Gold® cells. The initial 

library was titred and then amplified as described in Sections 2.1S and 2.16. To ensure slow­

growing clones were not under-represented in the library, only one round of amplification was 

performed. 
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5.2.3 Screening of the eDNA library 

The cDNA library was plated out at high density (lOs colonies per 22 cm2 plate) onto L-agar 

plates containing kanamycin (50J,.lg/ml) and grown overnight at 37 DC. Bacterial colonies were 

transferred onto nitro-cellulose filters, in preparation for colony hybridisation. The filters were 

placed colony side up in 10% SDS for 3 min. They were then placed, in tum, into denaturing 

solution (0.5N NaoH, l.5M NaCl) for 5 min, neutralising solution (1.5M NaCl, 0.5M Tris.CI 

pH 7.4) for 2 x 5 min, 2 x sse solution for 2 x 5 min and then air dried for 30 min at room 

temperature. Bacterial debris was removed by submerging the filters in 2 x sse and wiping the 

surface with a paper towel. This reduces background hybridisation without lowering the 

intensity of the specific signal. Filters were air-dried as before and the ONA fixed to the 

membrane by exposure to UV illumination (302nm) for 1 min. Replica filters were prepared as 

appropriate for screening with different (l 32p_dCTP radiolabelled probes (Section 2.35). Filters 

were pre-hybridised in Rapid-Hyb™ (Amersham Life Sciences) for several hours at 65De prior 

to addition of radio-labelled probes. Probes were incubated overnight at 65De in Rapid-Hyb™ 

buffer. After hybridisation filters were washed with 2 x sse / 0.1 % (w/v) SOS for 5 min at rt 

and then twice with 0.2 x sse / 0.1 % (w/v) SOS at 65 De for 15 min prior to autoradiography. 

Positive colonies were selected and re-plated on L-agar plates (containing kanamycin) 

at a lower density. These colonies were then re-screened with the radio-labelled probe to ensure 

that the correct clone had been selected. Individual clones selected from this second round of 

screening were amplified and sequenced. 
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5.2.4 Preparation of probes 

5.2.4.1 Ovine eytokine eDNA probes 

Several ovine cytokine cDNAs were used to screen the cDNA library. The cytokine cDNAs 

were purified from plasmids, the DNA quantified, and combined into three groups (Table 5.1). 

The grouped cDNAs (25ng) were labelled with a)2p dCTP by the random prime method using 

Rediprime II DNA labelling system (Amersham, Section 2.31), and denatured by boiling for 5 

min prior to hybridisation. 

Table 5.1 Ovine eytokines used to screen the O. mykiss stimulated leucocyte cDNA library. 

Group 1 Group 2 Group 3 

IL-lf3 IL-5 RANTES 

IL-2 GMCSF SCF 

IL-3 TNFa VEGF 

IL-4 MIPla y-IFN 

TGFf3 

The DNA probes were [a.-32PjdCTP-labelled using random primer labelling (Rediprime II DNA labelling 

system, Amersham). 

5.2.4.2 Single-stranded eDNA probes 

Single-stranded eDNA probes were generated from both total RNA and polyA+ RNA isolated 

from stimulated PBL, non-stimulated PBL and whole liver using MMLV reverse transcriptase. 

First-strand cDNA synthesis was primed as before (Section 2.23) using either Oligo (dT), 

random hexamers (pdN6) or the primer TAAAT. Multiple repeats of the known mRNA 

instability motif (TAAAT) are commonly found in the 3' non-coding region of inflammatory 

cytokine genes, and have been reported previously in fish IL-lf3 (Seeombes et al., 1999a). 

Synthesis of the single-stranded cDNA was allowed to proceed for 1.5 h at 42°C, but using a-

32p_dCfP in place of the unlabelled dCfP. Probes were denatured by boiling for 5 min prior to 

hybridisation. 
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5.2.5 Sequence analysis 

Clones selected from the various screenings of the library were sequenced on an ABI automated 

sequencer, with universal forward and reverse primers. Nucleotide sequence data were 

compared with entries in the GenBanklEMBL databases using the FASTA search program. 

Amino acid sequences were compared with protein sequences in the protein databases 

(TrEMBL, SWISSPROT and pm). 

5.2.6 Northern blot analysis of cDNA clones from trout leucocyte cDNA library 

Northern blot analysis was performed using cDNA clones (clones #5 and #144/3) isolated from 

the library as a result of the differential screening using probes corresponding to stimulated and 

non-stimulated leukocytes. Total RNA (0.3g/lane) from non-stimulated lymphocytes and 

lymphocytes stimulated with PMA (Jlgmr') was electrophoresed through a 1 % w/v agarose gel 

containing formaldehyde (Section 2.17), transferred to a nylon membrane and probed with the 

32P-Iabelled cDNA clones. The trout ~-actin cDNA was used as a positive hybridisation control. 

Hybridisation was at 65°C overnight and was followed by 2 washes in 2 x SSC for 5 min at 

42°C and 2 washes in 0.2 x SSC for 15 min at 42°C, prior to autoradiography. 
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5.3 Results 

5.3.1 Analysis of genomic DNA by Southern Hybridisation 

In order to assess whether or not a cross-hybridisation approach using probes derived from 

mammalian cytokine sequences was likely to be successful, trout genomic DNA was probed 

with an ovine y-IFN gene probe. The trout j3-actin cDNA (Section 4.3.2) was used as a positive 

hybridisation control. No specific hybridisation was detected using the ovine y-IFN probe, 

whereas several hybridisation signals were obtained with the controlj3-actin probe (Figure 5.1). 

5.3.2 Random isolation of eDNA clones from the stimulated leukocyte primary eDNA 

library 

Before amplification of the cDNA library, eight clones were randomly selected to determine the 

percentage containing cDNA inserts. Restriction endonuclease analysis showed that each of the 

eight clones contained a differently sized insert ranging from just below 0.5 kb to approximately 

1.2 kb in length. Three of these clones (C3, C7 and C8) were subsequently sequenced using the 

vector-specific T3 and T7 primers. A search of the GenbanklEMBL databases using the FASTA 

search algorithm identified each as being similar to known mammalian and fish sequences. The 

most significant matches to each of the clones are listed in Table 5.2. 

Table 5.2 Representative clones isolated from the O. mykiss stimulated leucocyte eDNA 

library 

Clone Homologous Sequences Accession % nucleotide 
Number identitI 

C3 O. mykiss mRNA j3globin D82926 92 in 396 nt (533) 

S. salar mRNA ~globin X69958 91 in 422 nt (747) 

C7 Human 60S ribosomal protein L30 BE015979 
D.rerio (Zebrafish) adult retina/olfactory AW232981 
cDNA5' 

C8 S. scrofa (pig) cDNA from EST study AW787193 
H. alosoides (goldeye teleost) X98840 85 in 191 nt (1775) 
18S rRNA ~ene 

Sequences from the eDNA library were compared with those in GenBankiEMBL, using the FASTA 

search program. Sequences showing greatest homology at the nucleotide level with the clones derived 

from the library are presented. Clones were sequenced in both directions using T3 forward and T7 reverse 

vector specific primers. 
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(a) f3-actill (b) Ovillc IFN-y 

Figure 5.1 Southern blot analysis of O. mykiss genomic DNA. 

Trout spleen genomic DNA digested with restriction enzymes and hybridised (0 .9~g DNA/lane) with 32 P 

labelled trout (a) (3-actin probe or (b) ovine IFN-y probe. Lanes: (I) A 1 kb BRL DNA ladder used to size 

linear double stranded DNA fragments ranging from 500bp to 12 kb; (2) Bam HI; (3) EcoR I; (4) Hind III 

and (5) Pst I. 
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5.3.3 Screening of the rainbow trout leukocyte eDNA library with ovine eytokine probes 

Despite not detecting a positive hybridisation signal between the ovine y-IFN probe and the 

rainbow trout genomic DNA, it was still considered worthwhile to screen the cDNA library with 

a number of ovine cytokine cDNAs (Table 5.1). However, despite screening 4 x 105 clones from 

the amplified leukocyte cDNA library no positive clones were identified even when the filters 

were hybridised and washed at relatively low stringency. 

5.3.4 Screening of the trout eDNA library with single-stranded eDNA probes prepared 

using the primer TAAA T 

Initial screening of the library with a ss-probe derived from RNA isolated from stimulated PBLs 

and primed with the primer TAAAT, produced a number of colonies displaying strong 

hybridisation signals. These positives were re-screened as described previously (Section 5.2.3) 

and 4 strong positives (nos. 2, 7, 8 and 9) selected for sequence analysis. However, FASTA 

searches of both the nucleotide and protein databases with the DNA sequence and potential 

amino acid sequences from these clones failed to find any cytokine-related sequences. 

5.3.5 Screening of the trout cDNA library with single-stranded eDNA probes derived from 

stimulated PBLs, non-stimulated PBLs and whole liver 

In order to identify genes either up or down regulated as a result of lymphocyte stimulation, the 

trout cDNA library was screened differentially using ss-cDNA probes derived from stimulated 

PBLs, non-stimulated PBLs and whole liver. Clones from the amplified library (2 x 103
) were 

replica plated onto nitrocellulose filters and screened with each of the three probes. An example 

of replica filters is shown in Figure 5.2. The majority of the clones produced a positive 

hybridisation signal with both stimulated and non-stimulated PBL probes. However some 

hybridised more strongly with the stimulated PBL probe, whereas others hybridised more 

strongly with the probe from non-stimulated PBLs. Few clones hybridised strongly with the 

liver probe. Initially 460 clones were selected on the basis that they hybridised more strongly 

with one probe than with the others. These were re-plated on L-agar plates and the colonies re-
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screened with the ss-cDNA probes. The cDNA clones demonstrating the greatest difference in 

hybridisation signal between the stimulated PBL and non-stimulated PBL probes were selected 

for sequencing. In total 24 clones were selected from this second screening. These were 

sequenced and found to represent 10 different gene sequences (Table 5.3). At the same time the 

purified plasmid DNA from each was re-probed with the ss-cDNA probes, derived from the 

stimulated and non-stimulated PBLs, to confirm that the insert sequences did indeed hybridise 

more strongly with one probe than with the other (Figure 5.3). 
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stirn ulated PBL non-stimulated PBL liver 

Figure 5.2 An example of differential screening by colony hybridisation of the PBL expression library with: stimulated PBL (above), non-stimulated PBL (centre) and liver 
probes (right). Strong positives indicated with a white, dotted line. 

Colonies were selected on the basis of strongest difference in hybridisation between the three probes. 23 positive colonies which hybridised strongly with the stimulated PBL probe and 7 
positive colonies which hybridised strongly with non-stimulated probe were identified. 
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Table 5.3 Sequences from GenBanklEMBL databases, showing greatest homology to positive clones isolated from the O. mykiss stimulated leucocyte cDNA library. 

Clone Sequence Homology Accession E - value %Nucleotide Identity 
Number 

53/24 O. mykiss 18S ribosomal rRNA gene AF243428 6.3e94 96 in 354 nt (661) 

O. mykiss p globin subunit mRNA AY026061 2.ge142 97 in 576 nt (622) 
S. safar mRNA ~ globin X69958 7.8e137 e96 in 577 nt (747) 

57/32 

59/43 O. mykiss mRNA for a globin D88114 9.1e120 99 in 466 nt (469) 

144/3 H. sapiens mRNA for KIAAI068 protein (partial cds) AB028991 l.le31 77 in 261 nt (4793) 
D. rerio C32 fin cDNA 3' similar to WP:F53A2.4 BE605981 8.2e38 82 in 261 nt (653) 
CEl6096.mRNA sequence 

5 (05/19) P. olivaceus leucocyte cDNA, no assigned function C82242 2.7e19 83 in 133 nt (700) 

48 D. rerio fin cDNA 5' similar to TR:042585 fizzy-related AI330687 0.04 60 in 175 nt (435) 
protein 
D. rerio gridded kidney cDNA 3' similar to TR:075869 AW42 1025 0.13 60 in 181 nt (634) 
R33374_1 fizzy related protein 

46/19.2 P. olivaceus spleen cDNA clone HFI mRNA C23506 4.3e42 66 in 468 nt (565) 

07n P. olivaceus spleen cDNA clone HE8 (1) mRNA C23502 5.0e141 94 in 603 nt (636) 

09/8 P. olivaceus spleen cDNA clone Irnl (1) mRNA C23517 6.6e34 67 in 405 nt (582) 

20/2 M. musculus mRNA for NDAP7 gene Q99JA3 AB057593 1.4e12 82 in 198 nt (2539) 

Significance of the homology is represented by E-value and % identity at the nucleotide level. E-value represents the number of alignments with 
scores equal to (S) that would be expected by chance alone. 
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a) stimulated probe a) stimulated probe 

1 2 3 4 5 6 7 8 9 10 11 12 13 

1 2 3 4 5 6 7 8 9 10 11 12 13 

b) non-stimulated PBL probe b) non-stimulated probe 

Figure 5.3 Southern blot hybridisation of cDNA clones derived from the stimulated leucocyte trout 

library with 32Pa_dCTP labelled DNA probes 

Plasmid DNA of positive cDNA clones digested with EcoRI and Xhol, denatured, separated by 

electrophoresis on a 0.7% agarose gel and blotted onto a nylon membrane. Hybridisation of eDNA clones 

was performed with a) stimulated PBL and b) non-stimulated PBL 32Pa_dCTP labelled DNA probes. A 

clear difference in hybridisation is apparent between the two probes. Strong hybridisation signals 

observed with eDNA clones using the stimulated PBL probe compared with the non-stimulated PBL 

probe, demonstrate the di fferential screening process . 
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5.3.6 Sequence analysis of positive clones isolated from differential screening 

Of the 24 clones sequenced eight corresponded to ~-globin, five to a-haemoglobin and four to 

18S rRNA. However several were found to be similar to fish sequences derived from EST 

studies of various lymphoid tissues. These included, clone #5 which was 83% similar at the 

nucleotide level with a cDNA which had been isolated during an EST study of genes expressed 

in the leukocytes of a Japanese flounder, Paralichthys olivaceus, infected with Hirame 

rhabdovirus (Figure 5.4). It is thought that this cDNA may be similar to that encoding a 

ribosomal protein, L41 from the cat. However, neither our search of the nucleotide databases 

nor the protein databases, produced a positive match with the conceptual amino acid sequences 

from the three possible open reading frames (ORFs) present in clone #5. 

clone 5 
220 230 240 250 260 270 

CAAAGGGCTTGGAGTGGGTGGAGAAAAACAATCACNGCAGTAGGGGAATGGGCCAGTCTA ............ ..... .. .... . 
EM_EST GTGTCAGTCGTATGGAGAGGCTCGGACGGGATCACAGCTGTAGCGATGAGGGC----TTA 

220 230 240 250 260 270 

280 290 300 310 320 330 
clone 5 CTTGGACCTCTGCCTCATCTTTCGCCTTTTACGCTTCAGCCTGCGCATACGCTTCTTCCT 

::: :::::::::::::::::::: :::::::::::::::::::::::::::::::::::: 
EM_EST CTTGGACCTCTGCCTCATCTTTCTCCTTTTACGCTTCAGCCTGCGCATACGCTTCTTCCT 

280 290 300 310 320 330 

340 350 360 370 380 
clone 5 CCACTTTGCTCTCATCTTGTGGAGATGTGTCTCTACAGC--GAAGCGAG 

:::::: ::::::::: :::::::: : ........ .... . ... . ..... . . ..... . 
EM_EST CCACTTAGCTCTCATCGTGTGGAGAAGATTCTCGA-AGCGAGAAGGGAGACCTGGCCCAG 

340 350 360 370 380 

Figure 5.4 Nucleotide sequence homology with EST encoding P. olivaceus leukocyte cDNA. 

Clustal generated nucleotide alignment comparing clone #5 derived from the cDNA library with a 

Japanese flounder (P. olivaceus) EST from the GenBanklEMBL databases (Accession # C82242). The 

leucocyte cDNA sequence demonstrates 83% similarity over l33 (246-379 nt) region. Conservation of 

nucleotide similarity is shown as (:). 
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Three clones. #46/19.2. #0717 and #09/8. were also found to be similar to Japanese flounder 

EST sequences derived from a survey of expressed genes in the liver and spleen (Inoue et al., 

1997, Appendices 5.1-5.3). No function has been ascribed to any of these ESTs. One clone, #48, 

was found to be related to two ESTs from zebra fish (Danio rerio), one derived from a study of 

expressed sequences in the kidney (EST: AW421025, Appendix 5.4) and one derived from 

sequences being expressed during the regeneration of fin tissue (EST: AI330687, Appendix 

5.5). Both zebra fish ESTs have been suggested to correspond to that encoding fizzy-related 

protein from the African clawed frog (Xenopus laevis). However, the trout sequence is only 

60% identical to both zebra fish sequences over approximately 180 nucleotides and so whether 

clone 48 corresponds to the fizzy-related protein or not is unknown. 

Clone #144/3 appears to correspond to another zebra fish EST from a study of 

sequences expressed in fin tissue (EST: BE605981, Appendix 5.6). However, the best match in 

the FASTA analysis was with a human cDNA corresponding to a gene expressed primarily in 

brain tissue (Accession no. AB028991, Appendix 5.7). The function of the hypothetical protein 

encoded by this gene is unknown, but is probably related to that of a nuclear movement protein 

(NUD-l) from Caenorhabditis elegans which is required for germline proliferation and 

embryonic development. 

The final cDNA clone appeared to correspond to a murine gene encoding a neuronal 

development associated protein (NDAP-7) identified during a study of transcripts expressed 

differentially in primary cultures of GABAergic neurons (Li et al .• 2002; Appendix 5.8). 

5.3.7 Northern blot analysis of eDNA clones isolated from the stimulated leucocyte cDNA 

library 

Clones 5 and 144/3 were labelled with 32P-dCTP and used as probes in Northern blots of total 

RNA isolated from stimulated and non-stimulated PBLs. This was in order to try and verify that 

the cDNA clones did indeed correspond to mRNAs which were differentiaIly expressed in 

lymphocytes according to their activation state. The trout ~-actin cDNA was used as a control 

probe. 
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Strong hybridisation signals were observed with the f3-actin probe for both RNAs from non­

stimulated and stimulated lymphocytes (Figure 5.5). The signals were of equal intensity as 

anticipated, since f3-actin (house-keeping gene) is expected to be constitutively expressed in 

both tissues and was not expected to be affected by mitogen stimulation. However, no 

hybridisation was observed with either of the probes (clones: #5, #144/3) isolated from the 

library. 
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Lanes: 1 2 3 4 5 6 

Probe: ~.actin clone # 5 clone # 144/3 

Figure 5.5 Northern blot analysis of positive cDNA clones from the mitogen stimulated leucocyte 

cDNA library (with 32p a. dCTP labelled probes) 

RNA from non-stimulated and stimulated PB L was denatured , separated by electrophoresis o n a 1% 

agarose gel and blotted onto a nylon membrane. Hybridisation of RNA fro m stimulated lymphocytes 

(Lanes 1,3,5) and non-stimulated lymphocytes (Lanes 2,4,6) was performed with positive clones selected 

from the leucocyte cDNA library: clone # 5 (Lanes 3-4), c lone # 144/3 (Lanes 5-6) and ~-actin control 

probes (1 -2) . Strong hybridisation signals with the l3-actin probe are observed in lanes representing RNA 

from non-stimulated lymphocytes and stimulated lymphocytes. 
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5.4 Discussion 

Many of the fish genes that playa regulatory role in the immune response. for example genes 

encoding MHC molecules and T-cell receptors. were identified by cross hybridisation and peR 

techniques. However. these approaches have only been successful in the identification of a 

limited number of cytokines. in particular IL-lf3. TNF. TOF-f3 and FOF (references for these 

cytokines are presented in Table 5.4). This may be due to the fact that most cytokine genes are 

transcribed transiently and at low levels (Fujiki et al., 2003) or because the fish cytokines have 

diverged significantly from the mammalian sequences. Expression of cytokine genes in 

lymphocytes can be increased in response to stimulation with mitogen. If cDNA libraries are 

prepared from stimulated cells the chances of isolating cytokine sequences should be greater. 

However this is also dependent on how divergent the fish sequences are from those used to 

screen the library. An alternative approach is to use differential hybridisation to identify genes 

either up- or down-regulated as a result of, for example, lymphocyte activation. In the present 

study a stimulated PBL cDNA library was screened using both DNA probes corresponding to 

mammalian cytokines and by differential colony hybridisation with probes derived from 

stimulated and non-stimulated PBLs. 

An ovine y-IFN gene probe was used to assess the likelihood of detecting the 

corresponding fish sequence (if it exists) by cross-hybridisation. The probe contained 

approximately 7 kb of sequence covering the entire ovine y-IFN gene. However, no 

hybridisation signal was detected on the Southern blot of trout genomic DNA suggesting that 

either there are no related sequences present in the fish genome or that the corresponding fish 

sequence has diverged such that it was not detectable under the hybridisation conditions used. 

The trout p-actin cDNA was used as a positive hybridisation control. Several bands were 

detected on the Southern blot. This is not unexpected since p-actin belongs to a multi-gene 

family whose members might be expected to cross-hybridise. 

Chapter 5 148 



Table 5.4 Fish cytokine and receptor sequences identified using molecular approaches. *Chemokines IL-8 and y-IP (y- interferon inducible protein) are included. 

Cytokine 

Allograft Inflammatory factor 1 
Chemokine -1 
CK-l (CXC chemokine) 
lPN-like Protein 
NK cell enhancing factor 
IL-l~ 

IL-2 
*IL-8 
*y-IP 
IL-8 

INOS 
TGF-{3 
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Fish species 

Carp (C.carpio) 
Carp (C.carpio) 
R. trout (O.mykiss) 
Flatfish (P.olivaceus) 
Carp (C.carpio) 
R. trout (O.mykiss) 

Sea bass (D.labrax) 
Carp (C.carpio) 

Reference 

Fujiki et al 1999 
Fujiki et al1999 
Dixon et al 1998 
Tarnai et al1993 
Fujiki et al 1999 
Zou et al1999, 
Pleguezuelos et al 2000 
Scapigliati et at 200 1 
Fujiki et aI2000, Yin & Kwang 2000 
Verburg -Van Kemenade et al 1995 

Gilthead Seabream (S. auratus) Pelegrin et a12001 
Turbot (S. maximus) Low et al., 2000 
Catshark (S.canicula) Bird et a12002 
Catfish (/. punctatus) Ellsaesser & Clem 1994 
Goldfish (C.auratus) Bird 2002 
Plaice (P.platessa) Bird 2002 
Zebrafish (D.rerio) Johnson 1998 
Flatfish (P.olivaceus) Tarnai et all992 
R. trout (D.mykiss) Laing et aI., 2001 
R. trout (D.mykiss) Laing & Secombes 2001 
Halibut (P.Olivaceus) Lee et a12001b 
Dogfish (T.scyl/ium) Inoue et aI., 2001 
R. trout(O.mykiss) Laing et all999b 
R. trout (O.mykiss) Hardie et all998 
Hybrid striped bass (M.chrysops) Harms et a12000 
Carp (C.carpio) Desai et al., 1998 
Plaice (P.platessea) Laing et a12000 (partial ) 
European eel (A. anguilla) Laing et all999a 
Sturgeon (A.ban) Laing et all999a 
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Table 5.4 (cont.) Fish cytokine and receptor sequences identified using molecular approaches. Chemokine receptors: CXCR4, CCR7 are included. 

Cytokine 

TGF-133 

FGF-3 
FGF-6 
FGF-8 
TNF-a 

Receptors: 
CXCR4 

CCR7 

CR)C (common cytokine 
receptor gamma chain) 

IL-13 R-2 
IL-I Receptor-like protein 
TNF receptors 
PDGFRI3 
CSFIR 
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Fish species 

R. trout (O.mykiss) 
Eel (A. anguilla) 
Sturgeon (A.baeri) 
Goldfish (Cauratus) 
Zebrafish (D. rerio) 
R.trout (O.mykiss) 
Zebrafish (D.rerio) 
R. trout (O.mykiss) 
J. flounder (P.olivaceus) 
Brook trout (S.fontinalis) 
Channel catfish (l.punctatus) 

R. trout (O.mykiss) 
Carp (C carpio) 
R. trout (Omykiss) 
Carp (C carpio) 
R. trout (O.mykiss) 

R. trout (O.mykiss) 
Salmon (S.salar) 
J. flounder 
Puffer fish (F.rubripes) 
Puffer fish (F.rubripes) 

Reference 

Laing et al 1999a 
Laing et al 1999a 
Laing et al1999a 
Laing et al 1996 (partial) 
Kiefer et al 1996 
Rescan 1998 
Sleptsova-Friedrich et aI., 1997 
Laing et al200la 
Hirono et al 2000 
Bobe et al 2000 
Zou et al 200 I 

Daniels et al 1999 
Fujiki et al1999 
Daniels et al 1999 
Fujiki et al1999 
Wang & Secombes 2001 (partial) 

Lockyer et al 200 I 
Subramaniam et al2001 
Nam et al 2000 
How et a11996 
How et al1996 

150 



A cDNA library was constructed from RNA isolated from stimulated fish PBLs. Despite not 

detecting a hybridisation signal with the ovine y-IFN gene, it was stilI considered appropriate to 

use all the ovine cytokine cDNA probes that were available to screen this cDNA library, but 

unfortunately no positively hybridising clones were obtained. Although mammalian cytokine 

probes have been used successfully in hybridisation studies to confirm the presence of 

corresponding fish genes (Tengelson et al., 1991; Shiels and Wickramasinghe, 1995), cDNAs 

that have been identified are still quite divergent from the mammalian sequences. For example, 

the rainbow trout IL-l~ gene has 49-56 % a.a. and 43-49% nt identity to mammalian IL-l~ 

genes (Zou et al., 1999a) and the carp IL-1~ gene shows similar identities to mammalian IL-l~ 

genes to that shown by the trout gene ( Fujiki et al., 2000). However, the trout IL-l~ gene is 

only 36% identical at the nucleotide level and 47% identity at the a.a. level with C.carpio, 

demonstrating the evolutionary divergence within the fish species (Secombes, 2(02). 

Other researchers have found it equally difficult to isolate fish cytokines using cross­

hybridisation. Lee et al., (2001) constructed a cDNA library from mRNA isolated from flounder 

leucocytes stimulated with bacterial LPS and haemagglutinin. Initial screening of this library 

with human cytokine gene probes: IL-2, IL-4, IL-5, IL-10, IL-12, IL-13, IFN-a, IFN-y, and 

lymphotoxin (LT), was unsuccessful and a homologue of the mammalian IL-8 gene was only 

isolated following the random sequencing of clones. 

It was decided to screen the cDNA library with ss-cDNA probes corresponding to 

mRNAs expressed in "resting" lymphocytes and those expressed by lymphocytes activated with 

a variety of stimulants (Section 2.6). A probe derived from liver mRNA was also used to try and 

bias the selection of clones to those that might be specific to lymphocytes. Twenty-four clones 

were selected as a result of this differential screening. Their cDNA inserts were sequenced and 

the data compared to the nucleotide databases. In some instances potential amino acid sequences 

were compared with the protein databases. 

Seventeen of the 24 sequences corresponded to globin sequences, haemoglobin 

sequences or ribosomal RNAs or proteins. It is thought likely that the globin and haemoglobin 
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clones are probably derived from contaminating RBC. Although careful attention was taken to 

remove the majority of RBC from the PBL preparations using ammonium chlorideffRIS lysis 

buffer prior to Percoll density gradient purification, problems of complete separation of 

lymphocytes from RBCs were encountered. This is probably as a result of fish RBCs being 

nucleated and therefore having similar densities to that of the lymphocytes. Without complete 

separation cDNAs derived from RBC would subsequently be found in the cDNA library. It 

might be expected that production of both ribosomal RNAs and proteins would be increased in 

activated cells. This is likely because, given the increase in protein production in a cell arising 

from activation, there is likely to be an increase in the demand for the machinery required for 

protein production. 

The other clones isolated from the differential screening of the library appeared to be 

similar to a number of different sequences from various EST analyses of fish tissues. Significant 

nucleotide homologies were found to a number of proteins, including those predicted to be 

involved in regulating cell proliferation, neocorticogenesis and embryo development. 

Others however were similar to sequences to which no specific identities or functions have been 

assigned. It would be interesting to check both the nucleotide and protein sequence databases at 

a later date, to ascertain whether any functions have been assigned to these sequences. 

For example, clone 144/3 appears to correspond to both human and zebra fish cDNAs 

that have been tentatively identified as encoding a nuclear movement protein (NudC). The 

human homologue of NudC, has been identified as a nuclear distribution (nud) factor which 

interacts with Lis 1, a neuronal migration protein important during neocorticogenesis. Both 

nuclear movement and neuronal migration are thought to use a common mechanism (Aumais et 

al., 2001). Clone 48 appears related to a Zebra fish gene which is thought to encode a protein 

similar to one which has been shown to down-regulate mitotic cyclins and is required for the 

arrest of cell proliferation in the African clawed frog (Sigrist and Lehner, 1997). 

Database searching with a query sequence using the statistical algorithm such as that employed 

in the FASTA program is designed to predict the likelihood that the query sequence is related to 

a particular sequence in the database. The E-value produced by the FASTA alogorithm is a 
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measure of the significance of the match between the query sequence and a sequence from the 

database. The value given to "E" is calculated as the number of alignments with scores equal to 

(S) that expected by chance alone. Thus although the FASTA output suggests that the query 

sequence is related to a sequence in the database it does not guarantee a definitive identification. 

As examples, the match between clone 57/32 and O. mykiss ~-globin was given an E-value of 

2.ge x 10-142
, the match between clone 144/3 and the human KIAA1068 cDNA sequence was 

l.le x 10-31 , whereas the match between clone 48 and the zebra fish fizzy-related protein 

(AI330687) was 0.04. Therefore although we can say with some certainty that clone 57/32 is a 

~-globin cDNA and that clone 144/3 is probably the equivalent of the human KIAA1068 eDNA, 

much more characterisation of the cDNA represented by clone 48 would have to be carried out 

before it could be said for certain that it was the equivalent of the zebra fish fizzy-related 

sequence. 

Northern blotting was performed to try and verify that the transcripts represented by 

clones 5 and 144/3 were indeed differentially expressed in lymphocytes according to their 

activation status. Unfortunately however no hybridisation signals were obtained on the blots. 

This may be due to the fact that the sequences represent transcripts which are present in the 

lymphocyte mRNA population at relatively low levels. 

It could be predicted that the eDNA library constructed from the mRNA isolated from 

stimulated lymphocytes would be enriched with sequences involved in the regulation of fish 

immune responses. However, unfortunately none of the clones isolated from the library have 

been positively identified as having an immunoregulatory role. Isolating fish cytokine genes has 

proved on the whole to be challenging. Techniques for screening eDNA libraries and for trying 

to enrich cell populations for particular cytokines are constantly being developed and refined. It 

may be that the random approach of EST analyses of lymphoid tissues will be as successful if 

not more so, than a targeted approach. 
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CHAPTER 6 

General Discussion 



General Discussion 

The components that comprise the fish immune system are less well defined than those of 

mammalian species. Current genetic and or functional evidence however, supports the existence 

of various effectors of innate immunity in teleosts, including NK cells (Hogan et al., 1997; 

Miller et al., 1998; Stuge et al., 1997), complement (Yano, 1996a,b), antimicrobial peptides 

(Silphaduang and Noga, 2001), and IFN (Altmann et al., 2003). 

The main aim of this study was to investigate the biological activity of a macrophage 

activating factor (MAP) produced by activated lymphocytes from the rainbow trout (0. mykiss) 

and to discover its molecular source. Initially, the activation of rainbow trout peripheral blood 

lymphocytes to release factors with MAP activity, following incubation with a variety of 

stimulants was assessed (Chapter 3). Subsequently, two alternate molecular approaches were 

taken, to try and isolate molecules which were responsible for the MAP activity in particular 

and homologues of mammalian cytokines in general. Degenerate primers, based on conserved 

sequences derived from a range of mammalian and avian cytokines, were designed and used in 

the RT- PCR in order to isolate the equivalent sequences in the trout (Chapter 4). In 

conjunction, a cDNA library from stimulated peripheral blood lymphocytes was constructed and 

screened differentially using ovine and trout probes, to isolate cytokine or immune-response 

related cDNAs I genes (Chapter 5). 

It is well established that fish macrophages can be activated 'in vitro' and 'in vivo' 

(Olivier et al., 1986; Chung and Secombes, 1987; Graham and Secombes, 1988; Marsden et al., 

1994). This activation is brought about by one or more molecules termed MAF(s) released from 

head kidney and peripheral blood lymphocytes. In particular it has been shown that fish 

lymphocytes release factors with MAP activity following stimulation with the T cell mitogen 

Con A (Graham and Secombes, 1988). Several groups have demonstrated the biological activity 

of MAFs in fish using homologous assay systems (Secombes et al., 1996, 1998) but have failed 

to purify the molecules sufficiently to allow definitive identification of the protein(s) 

responsible. For example, secretion of fish MAP from activated lymphocytes has been 
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demonstrated and suggested to be as a result of the fish equivalent of mammalian IFN-'}' 

(Graham and Secombes. 1990a.b). but complete purification of the factor and cloning of the 

corresponding genets have not yet been reported. 

This study demonstrated that macrophage activation could be assessed by at least two 

different methods. the NBT colourimetric assay or the luminol-dependent chemiluminescent 

assay. It was found however. that a number of factors can affect the level of macrophage 

activation detected when assessing respiratory burst using the NBT assay and that in this study 

more reproducible results were obtained using the luminol-dependent chemiluminescent assay. 

The factors which influenced detection of MAF activity included incubation times of 

lymphocyte supernatants with macrophages. the concentration of CFS and the macrophage cell 

density and purity. Although the presence of un-diluted CFS actually inhibited the activation of 

the target cells (cultures incubated for more than 48 hour with MAF supernatants lead to a 

decrease in macrophage activity in the NBT assay unless the supernatants were changed. as 

demonstrated by Graham and Secombes (1988). the continuous presence of MAF seems 

necessary to achieve maximal stimulation of macrophages. This may reflect increased activity 

in individual activated macrophage cells. probably associated with a need for multiple cycles of 

receptor-ligand complex internalisation (Evered et al.. 1986). Interestingly there was no 

difference in the level of stimulation observed with macrophages left in culture overnight before 

the addition of supernatants (results not shown) when compared with rnacrophages cultured for 

several days prior to use as observed by Graham and Secombes (1988). This contrasts with 

some mammalian studies which suggest that the longer the macrophages are cultured before the 

addition of CFS the less responsive they are (Nacy et al., 1984). Similarly it was found that 

macrophages could be cultured at a higher density than is generally optimal for mammalian 

cells. 

Possibly. as a consequence of the relatively low stimulation indices it was difficult to 

obtain reproducible results from the NBT assay. Therefore it was decided to try an alternative 

assay which could be performed on freshly isolated macrophages in the hope that they might be 

relatively more responsive to the CFS. In these bioassay experiments, the respiratory burst was 
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measured using the leucocyte chemiluminescence response amplified with the 

chemiluminescent enhancing substrate, Luminol. This is a non-specific indicator which reacts 

with a variety of ROS including, superoxide, hydrogen peroxide and singlet oxygen (Allen et al 

1972; Scott and Klesius, 1981). The measurement of chemiluminescence emitted by stimulated 

phagocytes is a sensitive indicator of their oxidative microbiocidal activity (Klebanoff, 1982; 

DeChatelet et al., 1982). The ability to measure the induced respiratory burst response of 

macrophages using Luminol has enabled the investigation of phagocytic responses to pathogens 

(Basmon et ai., 1980; Stave et al., 1983, 1985). For example, virulence mechanisms of fish 

bacterial pathogens in relation to their ability to stimulate phagocytic cells have been assessed in 

the striped bass, Morone saxitilis (Walbaum) which exhibit a unique chemiluminescence 

response to different genera of bacterial fish pathogens, suggesting that bacteria possess factors 

that modulate interaction with phagocytic cells (Stave et al., 1983). Luminol-dependent 

chemiluminescence has also been used to determine the nutritional 'in vitro' effects on the 

amount of ROS produced during the respiratory burst activity of Atlantic salmon HK 

phagocytes (Lygren and Waagb~, 1999). In this study it was found that addition of CFS from 

activated lymphocytes to macrophages produced an immediate response which decayed over the 

following 40 minutes. The quality of response was dependent on the source of the CFS and 

although there was considerable variation in the maximum RLU values obtained from 

macrophages isolated from different fish this did not interfere with the interpretation of the 

assay results. 

If parallels can be drawn with the mammalian immune system, one of the obvious 

candidates responsible for activating macrophages would be the fish equivalent of IPN-y. Genes 

for lPN-a, J3, y and 't group interferons have been cloned from a variety of mammals, including 

humans (Lawn et al., 1981a,b), mice (Shaw et al., 1983; Daugherty et al., 1984) and pigs 

(Lefevre and La Bonnardiere, 1986), and several avian species such as ducks (Schultz et al., 

1995), chickens (Sekellick et al., 1994) and turkeys (Suresh et al., 1995). Despite demonstration 

of lPN-like antiviral biological activity in a variety of fish species (Nygaard et ai., 2000), at the 
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outset of this study there had been no reports of an interferon gene being cloned from any fish 

species apart from one report describing a flatfish cDNA putatively encoding IFN (Tarnai et al., 

1993). The flatfish IFN sequence had been obtained using PCR amplification. Analysis of its 

predicted amino-acid sequence with the protein sequence databases using the basic local 

alignment search tool (BLAST) revealed >60% identity between two-thirds of this sequence and 

sequences from filamentous phage (Magor and Magor, 2001). In fact, the only stretch of 

significant homology found between the fish sequence and mammalian IFN cxl13 sequences lies 

in the area corresponding to the PCR degenerate primer sequences. Little homology was found 

over the remaining sequence, with only 14% overall identity with the human IFN-13 sequence 

(Taniguchi et al., 1980). This is an illustration of the dangers inherent in the PCR approach to 

cloning unknown sequences across species using degenerate primers and will be discussed in 

more detail later. 

The immune IFNs of mammals comprise of three basic forms, a., 13 and y. IFN-a. and 

IFN-13 are collectively referred to as Type I IFN, whereas IFN-y is also known as Type II IFN. 

Type I and Type II IFNs are distinguished by the fact that the Type I genes contain no introns 

whereas the IFN-y gene contains three. In addition, the Type I IFNs are produced by a variety of 

cell types, whilst IFN-y is expressed only by activated lymphocytes and NK cells. There are 

multiple isoforms of IFN-a, encoded by multiple loci, whereas IFN-13 and IFN-y are encoded by 

separate single loci. Despite having functionally similar anti-viral activities, IFN-13 shares only 

20-30% a.a. sequence identity with any particular IFN-a. (Vilcek and Sen, 1996), whereas there 

is no obvious sequence relationship between Type I and Type II IFNs (Pestka et al., 1987; 

Leonard, 1999; Biron and Sen, 2001». In an attempt to demonstrate the presence of IFN genes 

in the fish, mammalian (human) IFN-a and IFN-13 cDNA probes have been used to probe for 

homologous sequences in fish genomic DNA. Studies by Wilson et al., 1983, demonstrated that 

both human IFN-a. and IFN-13 cDNA probes hybridised to a range of non-mammalian vertebrate 

DNAs from birds to bony fish. Thus, suggesting the presence of a fish sequence with homology 

to human IFN-13 gene. Similar results were also obtained by Tengelson et al., (1991) who 
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demonstrated that the human IFN-~ gene hybridised with genomic DNA from rainbow trout and 

coho and chinook salmon. Despite this no actual teleost gene sequence corresponding to the 

human IFN-~ was isolated in these studies. In this study the ovine IFN-y gene was used to probe 

genomic DNA from the rainbow trout, but unlike the previous studies with the human IFN-~ 

gene no hybridisation between the ovine IFN-y gene and trout DNA was observed. This could 

be as a result of there not being an IFN-y gene present in the trout genome or because the 

corresponding sequences are so divergent that hybridisation could not be detected under the 

conditions used. It is known that avian species, which are thought to have diverged from 

mammals approximately 350 million years ago, have been found to contain both Type I and 

Type II IFN genes. Although the genes are very similar in structure to those found in mammals 

(for example, the Type I genes are intron-Iess and the IFN-y gene has four exons and three 

introns) there is very little cross-reactivity in terms of either DNA hybridisation or antigenicity. 

Until very recently the existence of IFN genes within the fish genome had remained 

speculative, with the only evidence being the fact that IFN-like anti-viral activity can be induced 

in fish using a number of different stimuli (Trobridge et al., 1997, 1995; Kim and Ponka, 2000). 

In the last year however the cloning and characterisation of an IFN gene from zebrafish has 

been reported (Altmann et aI., 2003). Thirty-two Type I IFN (aJ~/ro/8hdT) gene sequences of 

vertebrates, mainly mammals and birds, were employed in the PCR homology cloning approach 

to isolate the zebrafish (zf) IFN. The isolated cDNA possesses 15% and 14% identity (protein) 

over the entire sequence to human IFN a. and ~ respectively (with 25% and 24% over the 

conserved domain), and 18% and 16% identities to chicken IFN a. and ~ respectively. Its 

expression can be induced by poly (I)-poly(C), a known inducer of mammalian IFN, and the 

expressed protein is able to reduce viral plaque formation in a zebra fish cell line (Eaton, 1990). 

The zfIF'N sequence was used to search the completed fugu genome sequence for 

similar sequences. Only one such sequence was found suggesting that teleost fish, such as fugu 

and zebrafish may contain only one form of Type I IFN. Interestingly, the putative fugu gene 

shares only 27% identity with zfIFN (Altmann et al., 2003). A putative catfish (cf)IFN cDNA 
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has also been identified by BLASTX screening of a cf EST library generated from a mixed 

lymphocyte population enriched for NK-like cells (Long et ai., 2003). Analysis of the deduced 

a.a. sequence of cfIFN demonstrated 15% similarity to human IFNa and 13% similarity to 

human IFN-(3, whereas the cfIFN showed 35% similarity to the zfIFN and only 9% identity to 

putative flounder IFN (Tarnai et ai., 1993) and 11% identical to the fugu IFN sequence. Similar 

to the zfIFN, the expression of cflFN mRNA in catfish ovary (CCO) cells was up-regulated 

following exposure to UV-CRV or treatment with poly I:C, both of which induce IFN in 

mammals and birds (Long et ai., 2003). This up-regUlation was accompanied by the presence of 

an antiviral factor in the culture medium. Recombinant cfIFN was then produced and shown to 

protect CCO cells from catfish herpesvirus (CCV) challenge. 

The relatively low levels of homology between the fish IFN sequences may reflect the 

fact that each represents a different Type I gene. However, low levels of homology have also 

been found between the IL-l(3 sequences from different fish species. The trout IL-l(3 molecule, 

which is 28-31 % a.a identical to various mammalian IL-l(3 cDNAs, is only 36% identical to the 

carp IL-IP sequence. In addition, although the Japanese flounder and salmonid (brook trout) 

TNF sequences have similar homology to mammalian TNFa and TNF(3 (typically 30-37% a.a. 

identity), the salmonid TNF sequence has a relatively low homology to the known rainbow trout 

sequence (Hirono et ai., 2000; Laing et ai., 2001a). This suggests that there is a relatively large 

evolutionary distance between certain fish species and as a consequence care should be taken 

when trying to extrapolate results in one fish species to a quite separate fish species. 

Although the genetic and functional assays support the hypothesis that catfish, zebrafish 

and fugu contain at least one IFN gene responsible for antiviral activity, it is unclear what the 

exact genetic relationship is to the mammalian Type I IFNs. Despite demonstrating a slightly 

higher a.a. similarity to IFN-a genes than IFN-P genes, other observations suggest that the 

cfIFN at least is more (3-like than a-like. Similarly to mammalian IFN-(3, cfIFN contains one 

potential N-glycosylation site and also possesses three rather than four or more cysteine residues 

as are found in the mature mammalian and avian IFN-as. In addition, the highly conserved 
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CA WE sequence motif found within most IFN-a genes is notably absent from the cfIFN (Long 

et al., 2003). What does seem apparent at this stage is that the IFN sequences obtained from 

these fish do not appear to be related to the mammalian IFN-y gene. Equally it has not been 

tested whether these recombinant fish IFNs are able to activate macrophages and therefore the 

status of a fish equivalent to the mammalian IFN-y is still unknown. It may well be that fish do 

only possess the one IFN gene and do not possess the more highly evolved IFN classes seen in 

mammals and birds. It is possible that following the divergence of tetrapods from bony fish 

-450 million years ago (Kumar and Hedges, 1998), mammalian IFN genes underwent 

considerable duplication and diversification leading to the generation of three main classes of 

immune IFN genes, whereas teleost IFN genes failed to expand or diversify (Long et al., 2003). 

A similar lack of expansion and diversification is seen in the teleost Ig heavy chain 

genes. Although presumably derived from a common ancestor, fish possess only two Ig heavy 

chain isotypes (Ig~ and 19B), whereas mammals possess five Ig isotypes (lgG, IgM. IgA,lgD. 

and IgE) two of which (lgG and IgA) are characterised by the presence of four and two 

subclasses, respectively (Miller et al., 1998). Only as more IFN sequences from fish and other 

lower-order vertebrates are identified and characterised, will a clearer picture of the evolution of 

this gene family will be obtained. 

Biological evidence for the existence of other fish cytokine homologues has also led to 

a search for their corresponding gene(s). Several approaches have been taken, including PCR­

based cloning, the screening of cDNA libraries with mammalian and fish cDNA probes and the 

systematic analysis of EST libraries. No matter which approach has been taken efforts have 

been made to maximise the likelihood that the RNA population being screened is likely to 

contain the mRNAs of interest. For example, cytokine gene expression has been induced either 

in vitro by mitogen stimulation or in vivo using bacterial or viral pathogens of some sort of 

selective enrichment for cells likely to express the target sequence(s) has been used (Marsden et 

al., 1996a,b). 
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The most common approach taken to clone fish cytokine genes has been PCR based cloning in 

which highly conserved regions of the mammalian and avian sequences have been used for 

primer design. as illustrated above for the Type I IFNs. This approach has been successful for 

the cloning of several cytokine cDNAs from teleost species including Rainbow trout. Atlantic 

salmon and Plaice. However the cloning of the flatfish "IFN" gene and the results from this 

study demonstrate the potential problems of this approach. The more degenerate the primer the 

greater the chance of amplifying a product which may not be related to the original target. This 

is illustrated in this study. The l3-actin cDNA was successfully amplified from the rainbow trout 

using primers based on the salmon sequence. No ambiguities were built into the primer 

sequences. although there may well have been mis-matches between the primers and the target 

sequence. It had been assumed that being a structural protein the (3-actin sequence would be 

highly conserved between trout and salmon as it is between mammals. This was borne out in 

practice. However cytokine sequences are generally not as well conserved as structural proteins 

and often have diversified to such an extent that their biological activity is species restricted. In 

this study primers were based on regions of the IFN-y protein which were relatively well 

conserved across sixteen mammalian and six avian species. At the DNA level however this 

required primers with ambiguities at five out of 18 and three out of 18 sites. Although a PCR 

product of approximately 280 bp was amplified (assuming the trout IFN-y would be similar in 

size to the mammalian and avian sequences) subsequent analysis found that the sequence was 

not related to IFN-y or any other sequences in either the DNA or protein databases. The same 

strategy was used to try and amplify the cDNA corresponding to mammalian IL-15. a T- cell 

growth factor known to induce the production of IFN-y. Again despite amplifying a DNA 

fragment of approximately the correct size there appeared to be no relationship between it and 

the known IL-15 sequences. 

The screening of cDNA libraries using cross-reacting DNA probes has been successful 

for the cloning of trout TGF(3 and ILII3. amongst others. However. in this study no positively 

hybridising clones were obtained using 13 sheep cytokine cDNAs as probes. It may well be that 
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the stringency of hybridisation used was too high to detect cross-hybridisation or simply that the 

fish equivalents of the ovine cytokines used were not represented in the library. This is unlikely 

however since the library had been constructed from mRNA populations pooled from a number 

of different cell cultures stimulated by a variety of methods. As an alternati ve strategy the 

library was screened using cDNA probes derived from stimulated and non-stimulated PBLs in 

order to detect mRNAs which might have been upregulated as a result of in vitro stimulation. A 

number of positive clones were obtained from this differential screening of the library, but apart 

from a number of cDNAs showing similarity to other unidentified fish sequences as well as to a 

number of proteins predicted to be involved in regulation of cell proliferation, neocorticogenesis 

and embryo development, a large proportion of the sequences isolated from this screening of the 

library were of either globin or ribosomal (rRNA) origin. 

Other research groups have taken alternative approaches to enrich for cDNA sequences 

expressed under particular conditions. These include subtractive hybridisation and suppression 

subtraction techniques (Lee et al., 2001). Subtractive cDNA hybridisation has been a powerful 

approach to identify and isolate cDNAs of differentially expressed genes (Hedrick et al., 1984; 

Duguid and Dinauer, 1990; Hara et al., 1991). Despite the successful identification of numerous 

genes for example, T-cell receptors (Hedrick et al., 1984) by these methods, they are usually 

inefficient for obtaining low abundant transcripts (as they require increased amounts of poly 

(At RNA, involve multiple or repeated subtraction steps and are labour intensive). 

Suppression subtractive hybridisation (SSH) is designed to generate cDNA libraries 

highly enriched for differentially expressed genes of both high and low abundance, since it 

utilises peR amplification after equalisation of the subtracted fragments (Diatchenko et al., 

1996). SSH allows selective amplification of target cDNA fragments and simultaneously 

suppress non target DNA amplification. The subtraction method overcomes the problem of 

differences in mRNA abundance by inclusion of a normalisation step, which equalises the 

abundance of cDNAs within the target population whilst the subtraction step excludes the 

common sequences between the target and driver popUlations (Diatchenko et al., 1996). In 
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addition, the uncloned subtracted cDNA mixture can be used as a hybridisation probe to allow 

the screening of recombinant DNA libraries. 

SSH has resulted in the successful cloning and sequencing of several fish homologues 

of mammalian cytokines such as rr...-l(3 (Fujiki et ai., 1998) and TGF-(3 in Carp (Yin and 

Kwang, 2000) as well as other rare gene transcripts to be found from the fish immune system 

(Fujiki et al., 1999, 2000; Bayne, 2000; Alonso and Leong 2002; Liu et al., 2002; Sangrador­

Vegas et al., 2002). 

More recently the systematic analysis of EST libraries prepared from activated 

leukocytes has been used successfully for isolating a variety of fish cDNAs. EST analysis 

involves determining the partial sequence of DNA clones selected randomly from a cDNA 

library and has been used successfully for identifying novel genes, as well as characterising the 

expression profile of genes in particular cells, tissues or species (Adams et al., 1991, 1993; 

Davies et al., 1994; Hwang et al., 1995; Wolfsberg and Landsman, 1997). Several homologues 

of biodefence molecules from fish have been identified using an EST approach, such as 

complement components C3, C7, C8 and C9, complement component factor (Katagiri et al .• 

1998, 1999), an IFN regulatory factor (Yabu et al., 1998), lysozyme (Hikima et al., 1997) 

transferrin (Kim et al., 1996) and various others (Inoue et al., 1997). 

Nam et al (2000) constructed a cDNA library of P. olivaceus leucocytes infected with 

HRV in order to analyse genes induced and expressed as a result of the virus infection. Twenty­

one different cDNAs associated with the immune-response, including a homologue of lL-8 were 

obtained from 300 randomly selected cDNAs that were sequenced, suggesting that EST analysis 

is a useful and powerful method for accumulating information on the fish immune response to 

viral infection. 

The ability of some fish cytokines to cross-react with antibodies directed against mammalian 

cytokines has been reported (Manning and Nakanishi, 1996). Despite this cross-reactivity, 

screening of an LPS-stimulated leucocyte cDNA library from Japanese flounder with antibodies 

against human cytokines lPN-a and rr...-4, did not actually yield any positive results. 
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Although it is unlikely that fish possess all the cytokine genes present in mammals, 

progress in the field of fish cytokine biology is steadily progressing. Doubt still remains as to 

whether or not fish possess the extended family of IFNs seen in mammals and birds and 

similarly, evidence suggests that fish probably do not possess the multi-gene chemokine 

families seen in higher vertebrates. Other cytokines, such as IL-l do appear to be present as a 

multi-gene family as it is in mammals and birds. For example, multiple copies of IL-lf3 genes 

have been found in the carp (Fujiki et al., 2000; Engelsma et al., 2001) and in goldfish (Bird, 

2002). In addition, some genes appear to have diverged to a greater extent in fish than in 

mammals. For example, two different copies of the TGFf3A and TGFf3B genes are found in fish, 

but only one copy of each gene exists in higher vertebrates. 

The relative lack of success in cloning fish cytokines via DNA cross-hybridisation or 

peR techniques may mean that any future strategy for cloning fish cytokine sequences may 

require targeting the biological activity through expression libraries. Only as more cytokine 

genes and other immune-regulatory genes are discovered will it become clearer as to the extent 

of conservation between the fish and mammalian immune systems. In addition, it may well be 

discovered that fish have evolved unique cytokine genes or activities not seen in the mammals. 
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Appendix 3.1 

One-way ANOV A and Tukey's pairwise comparisons: lymphocyte stimulation 
responses using different mitogens 

Analysis 
source 
Mitogen 
Error 
Total 

Level 
ConAl 
ConAl 0 
ConA20 
ConA5 
LPS1 
LPS10 
LPS20 
LPS5 
PHA1 
PHA10 
PHA20 
PHA5 
PMA1 
PMA10 
PMA20 
PMA5 
PW1 
PW10 
PW20 
PW5 

of Variance for SI 
DF SS 
19 501. 65 
40 45.15 
59 546.80 

N 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

Mean 
0.615 
3.362 
3.709 
2.862 
6.106 
9.972 
9.924 
8.362 
3.716 
2.463 
1.466 
3.133 
0.880 
0.194 
0.315 
0.322 
2.976 
3.149 
4.532 
3.276 

pooled StDev = 1. 062 

MS 
26.40 

1.13 

StDev 
0.312 
0.917 
0.930 
1.471 
1. 718 
0.391 
1.004 
3.574 
0.733 
0.056 
0.280 
0.810 
0.110 
0.015 
0.191 
0.114 
0.369 
0.222 
0.361 
0.254 

Tukey's pairwise comparisons 
Family error rate = 0.0500 

Individual error rate = 0.000498 

Critical value = 5.36 

F 
23.39 

P 
0.000 

Individual 95% CIs For Mean 
Based on Pooled StDev 
---+---------+---------+---------+---

(---*--) 
(---*--) 
(---*--) 

(--*---) 
(--*---) 

(---*--) 
(---*---) 

(--*---) 
(---*--) 

(---*--) 
(---*--) 
(---*--) 
(---*--) 

(---*--) 
(---*---) 

(---*--) 
(--*---) 

(--*---) 
(--*---) 

(---*--) 

---+---------+---------+---------+---
0.0 3.5 7.0 10.5 

Intervals for (column level mean) - (row level mean) 

ConAl ConA10 ConA20 ConA5 LPS1 LPS10 

ConAl 0 -6.035 
0.541 

ConA20 -6.382 -3.635 
0.193 2.940 

ConA5 -5.534 -2.787 -2.440 
1.041 3.788 4.135 

LPS1 -8.779 -6.032 -5.684 -6.532 
-2.203 0.544 0.891 0.044 

LPS10 -12.644 -9.897 -9.550 -10.398 -7.154 
-6.069 -3.322 -2.974 -3.822 -0.578 

LPS20 -12.596 -9.849 -9.502 -10.350 -7.106 
3.240 

-6.021 -3.274 -2.926 -3.774 -0.530 
3.336 
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LPS5 -11. 035 -8.288 -7.940 -8.788 -5.544 
1.678 

-4.459 -1. 712 -1.365 -2.213 1.032 
4.897 

PHA1 -6.388 -3.642 -3.294 -4.142 -0.898 
2.968 

0.187 2.934 3.281 2.434 5.678 
9.544 

PHA10 -5.136 -2.389 -2.042 -2.889 0.355 
4.220 

1. 439 4.186 4.534 3.686 6.930 
10.796 

PHA20 -4.139 -1. 392 -1.044 -1. 892 1. 352 
5.218 

2.437 5.184 5.531 4.684 7.928 
11. 793 

PHA5 -5.805 -3.058 -2.711 -3.559 -0.315 
3.551 

0.770 3.517 3.865 3.017 6.261 
10.127 

PMA1 -3.552 -0.805 -0.458 -1. 306 1.938 
5.804 

3.023 5.770 6.118 5.270 8.514 
12.380 

PMA10 -2.867 -0.120 0.227 -0.620 2.624 
6.489 

3.708 6.455 6.803 5.955 9.199 
13.065 

PMA20 -2.988 -0.241 0.106 -0.742 2.503 
6.368 

3.587 6.334 6.682 5.834 9.078 
12.944 

PMA5 -2.995 -0.248 0.100 -0.748 2.496 
6.362 

3.581 6.328 6.675 5.828 9.072 
12.937 

PW1 -5.649 -2.902 -2.555 -3.403 -0.158 
3.707 

0.926 3.673 4.021 3.173 6.417 
10.283 

PWl0 -5.821 -3.074 -2.727 -3.575 -0.330 
3.535 

0.754 3.501 3.849 3.001 6.245 
10.111 

PW20 -7.204 -4.457 -4.110 -4.958 -1.714 
2.152 

-0.629 2.118 2.466 1. 618 4.862 
8.728 

PW5 -5.949 -3.202 -2.854 -3.702 -0.458 
3.408 

0.627 3.374 3.721 2.874 6.118 
9.983 

LPS20 LPS5 PHAl PHA10 PHA20 PHAS 
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LPS5 -1. 726 
4.849 

PHA1 2.920 1. 358 
9.496 7.934 

PHA10 4.172 2.611 -2.035 
10.748 9.186 4.540 

PHA20 5.170 3.608 -1.038 -2.290 
11. 745 10.184 5.538 4.285 

PHA5 3.503 1. 942 -2.705 -3.957 -4.954 
10.079 8.517 3.871 2.619 1.621 

PMA1 5.756 4.195 -0.452 -1. 704 -2.701 
1. 035 

12.332 10.770 6.124 4.872 3.874 
5.541 

PMA10 6.441 4.880 0.234 -1.019 -2.016 
0.350 

13.017 11. 455 6.809 5.557 4.559 
6.226 

PMA20 6.320 4.759 0.112 -1.140 -2.137 
0.471 

12.896 11. 334 6.688 5.436 4.438 
6.105 

PMA5 6.314 4.752 0.106 -1.146 -2.144 
0.477 

12.889 11.328 6.682 5.429 4.432 
6.098 

PW1 3.659 2.098 -2.548 -3.801 -4.798 
3.132 

10.235 8.673 4.027 2.775 1.777 
3.444 

PW10 3.487 1. 926 -2.721 -3.973 -4.970 
3.304 

10.063 8.501 3.855 2.603 1. 605 
3.272 

PW20 2.104 0.543 -4.104 -5.356 -6.353 
4.687 

8.680 7.118 2.472 1.220 0.222 
1.889 

PW5 3.360 1. 798 -2.848 -4.100 -5.098 
3.431 

9.935 8.374 3.728 2.475 1.478 
3.144 

PMA1 PMA10 PMA20 PMA5 PW1 PW10 

PMA10 -2.603 
3.973 

PMA20 -2.724 -3.409 
3.852 3.167 

PMA5 -2.730 -3.415 -3.294 
3.845 3.160 3.281 
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PW1 -5.385 -6.070 -5.949 -5.942 
1.191 0.506 0.627 0.633 

PW10 -5.557 -6.242 -6.121 -6.114 -3.460 
1.019 0.334 0.455 0.461 3.116 

PW20 -6.940 -7.625 -7.504 -7.497 -4.843 

4.671 
-0.364 -1. 049 -0.928 -0.922 1. 733 

1. 905 

PW5 -5.684 -6.369 -6.248 -6.242 -3.587 

3.415 
0.891 0.206 0.327 0.334 2.988 

3.160 

PW20 

PW5 -2.032 
4.543 
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Appendix 3.2 

One-way ANOV A and Tukey's pairwise comparisons: lymphocyte stimulation 
responses using PMA at varying concentrations 

Analysis of Variance for SI 
Source DF SS MS 
Conc. 11 61.093 5.554 
Error 24 23.782 0.991 
Total 35 84.875 

Level N Mean StDev 
5 3 1. 8500 0.3982 

10 3 3.2111 0.2608 
20 3 3.5689 0.2759 
40 3 3.8833 1.1213 
80 3 3.8800 0.1938 

100 3 3.0678 2.6666 
250 3 4.6300 0.0902 
500 3 4.6878 1.1830 
750 3 4.4867 1. 2417 

1000 3 4.8900 0.4638 
2500 3 3.5311 0.1360 
5000 3 0.1111 0.0069 

pooled StDev = 0.9955 

Tukey's pairwise comparisons 

Family error rate 0.0500 
Individual error rate = 0.00142 

critical value = 5.10 

F P 
5.60 0.000 

Individual 95% CIs For Mean 
Based on Pooled StDev 
------+---------+---------+---------+ 

(-----*-----) 
(-----*-----) 

(-----*-----) 
(-----*-----) 
(-----*-----) 

(-----*-----) 
(-----*-----) 
(----*-----) 

(----*-----) 
(----*-----) 

(-----*-----) 
(-----*----) 

------+---------+---------+---------+ 
0.0 2.0 4.0 6.0 

Intervals for (column level mean) - (row level mean) 

5 10 20 40 80 

10 -4.2922 
1. 5700 

20 -4.6500 -3.2889 
1.2122 2.5733 

40 -4.9644 -3.6033 -3.2455 
0.8978 2.2589 2.6167 

80 -4.9611 -3.6000 -3.2422 -2.9278 
0.9011 2.2622 2.6200 2.9344 

100 -4.1489 -2.7878 -2.4300 -2.1155 -2.1189 
1. 7133 3.0744 3.4322 3.7467 3.7433 

250 -5.7111 -4.3500 -3.9922 -3.6778 -3.6811 
4.4933 

0.1511 1. 5122 1.8700 2.1844 2.1811 
1. 3689 

500 -5.7689 -4.4078 -4.0500 -3.7355 -3.7389 
4.5511 

0.0933 1. 4544 1. 8122 2.1267 2.1233 
1.3111 
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750 -5.5678 -4.2067 -3.8489 -3.5344 -3.5378 

4.3500 
0.2944 1.6555 2.0133 2.3278 2.3244 

1. 5122 

1000 -5.9711 -4.6100 -4.2522 -3.9378 -3.9411 

4.7533 
-0.1089 1.2522 1.6100 1.9244 1.9211 

1.1089 

2500 -4.6122 -3.2511 -2.8933 -2.5789 -2.5822 

3.3944 
1.2500 2.6111 2.9689 3.2833 3.2800 

2.4678 

5000 -1.1922 0.1689 0.5267 0.8411 0.8378 

0.0256 
4.6700 6.0311 6.3889 6.7033 6.7000 

5.8878 

250 500 750 1000 2500 

500 -2.9889 
2.8733 

750 -2.7878 -2.7300 
3.0744 3.1322 

1000 -3.1911 -3.1333 -3.3344 
2.6711 2.7289 2.5278 

2500 -1. 8322 -1. 7744 -1.9755 -1.5722 
4.0300 4.0878 3.8867 4.2900 

5000 1. 5878 1. 6456 1.4445 1. 8478 0.4889 
7.4500 7.5078 7.3067 7.7100 6.3511 
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Appendix 3.3 

One-way ANOV A and Tukey's pairwise comparisons: respiratory burst responses 
of head kidney macrophages, using MAF containing supernatnats from 0 and 48 h 
stimulated lymphocytes 

Analysis 
Source 
Dilution 
Error 
Total 

Level 
1/10 Ohr 
1/10 48h 
1/100 Oh 
1/100 48 
control 
control 
Neat Ohr 
Neat 48h 

of Variance for 
DF 

7 
16 
23 

N 
3 
3 
3 
3 
3 
3 
3 
3 

SS 
0.060288 
0.015787 
0.076075 

Mean 
0.11633 
0.22900 
0.06667 
0.10700 
0.07333 
0.07333 
0.07200 
0.11067 

OD 
MS 

0.008613 
0.000987 

StDev 
0.02754 
0.04424 
0.00702 
0.01473 
0.00473 
0.00473 
0.00458 
0.06962 

pooled StDev = 0.03141 
Tukey's pairwise comparisons 

Family error rate = 0.0500 
Individual error rate = 0.00319 

Critical value = 4.90 

F P 
8.73 0.000 

Individual 95% CIs For Mean 
Based on Pooled StDev 
------+---------+---------+---------+ 

(-----*----) 

(-----*----) 
(----*-----) 

(----*-----) 
(----*-----) 
(----*-----) 

(-----*----) 

(-----*----) 

------+---------+---------+---------+ 
0.070 0.140 0.210 0.280 

Intervals for (column level mean) - (row level mean) 

1/10 Ohr 1/10 48h 1/100 Oh 1/100 48 Control control 

1/10 48h -0.20153 
-0.02380 

1/100 Oh -0.03920 0.07347 
0.13853 0.25120 

1/100 48 -0.07953 0.03314 -0.12920 
0.09820 0.21086 0.04853 

Control -0.04586 0.06680 -0.09553 -0.05520 
0.13186 0.24453 0.08220 0.12253 

control -0.04586 0.06680 -0.09553 -0.05520 -0.08886 
0.13186 0.24453 0.08220 0.12253 0.08886 

Neat Ohr -0.04453 0.06814 -0.09420 -0.05386 -0.08753 
0.08753 

0.13320 0.24586 0.08353 0.12386 0.09020 
0.09020 

Neat 48h -0.08320 0.02947 -0.13286 -0.09253 -0.12620 
0.12620 

0.09453 0.20720 0.04486 0.08520 0.05153 
0.05153 

Neat Ohr 

Neat 48h -0.12753 
0.05020 
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Appendix 3.4 

One-way ANOV A and Tukey's pairwise comparisons: Effect of serum on CL 
response of bead kidney macropbages 

Analysis of Variance for 
Source DF SS 
Treatment 2 1.901564 
Error 6 0.004929 
Total 8 1.906493 

Level 
+FBS/PMA 
-FBS/PMA 
L-15 

N 
3 
3 
3 

pooled StDev = 

Mean 
6.9086 
6.3542 
5.7828 

0.0287 

log10 RLU 
MS 

0.950782 
0.000822 

F 
1157.27 

p 

0.000 

Individual 95% CIs For Mean 
Based on Pooled StDev 

StDev ------+---------+---------+---------+ 
0.0329 (*-) 
0.0065 (-*) 

0.0366 (*) 
------+---------+---------+---------+ 

5.95 6.30 6.65 7.00 

Tukey's pairwise comparisons 

Family error rate = 0.0500 
Individual error rate = 0.0220 

Critical value = 4.34 

Intervals for (column level mean) - (row level mean) 

-FBS/PMA 

L-15 

Appendices 

+FBS/PMA 

0.4826 
0.6263 

1. 0541 
1.1977 

-FBS/PMA 

0.4996 
0.6433 
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Appendix 3.5 

One-way ANOV A and Tukey's pairwise comparisons: CL response of head kidney 
macrophages using CFS from PMA stimulated lymphocytes 

Analysis of Variance for 
Source DF SS 
Treatment 2 3.072274 
Error 6 0.003141 
Total 8 3.075415 

Level 
B48 Stirn 
B48NS 
L-15 

N 
3 
3 
3 

pooled StDev = 

Mean 
5.4808 
4.2084 
4.2773 

0.0229 

10g10 RLU 
MS 

1.536137 
0.000523 

StDev 
0.0290 
0.0188 
0.0195 

Tukey's pairwise comparisons 

Family error rate 0.0500 
Individual error rate = 0.0220 

critical value = 4.34 

F 
2934.66 

P 
0.000 

Individual 95% CIs For Mean 
Based on Pooled StDev 

------+---------+---------+---------+ 
(* ) 

(* ) 
(* ) 

------+---------+---------+---------+ 
4.40 4.80 5.20 5.60 

Intervals for (column level mean) - (row level mean) 

B48 Stirn B48NS 

B48NS 1.2151 
1.3298 

L-15 1.1462 -0.1263 
1.2608 -0.0116 
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Appendix 3.6 

One-way ANOV A and Tukey's pairwise comparisons: CL response of head kidney 
macrophages using CFS from PMA I Con A stimulated lymphocytes 

Analysis of Variance for 
Source DF SS 
Treatment 3 2.0073 
Error 8 0.2290 
Total 11 2.2363 

Level 
NS (A) 
NS (B) 
Stirn (A) 
Stirn (B) 

N 
3 
3 
3 
3 

Mean 
5.2835 
5.7932 
6.2841 
6.2608 

pooled StDev = 0.1692 

10g10 RLU 
MS 

0.6691 
0.0286 

StDev 
0.0776 
0.3145 
0.0804 
0.0559 

Tukey's pairwise comparisons 

Family error rate = 0.0500 
Individual error rate = 0.0126 

Critical value = 4.53 

F 
23.37 

P 
0.000 

Individual 95% CIs For Mean 
Based on Pooled StDev 

----+---------+---------+---------+-­
(-----*-----) 

(-----*----) 
(-----*-----) 
(-----*----) 

----+---------+---------+---------+--
5.20 5.60 6.00 6.40 

Intervals for (column level mean) - (row level mean) 

NS (A) NS (B) Stirn (A) 

NS (B) -0.9522 
-0.0672 

Stirn (A) -1. 4432 -0.9335 
-0.5581 -0.0484 

Stirn (B) -1.4198 -0.9101 -0.4192 
-0.5347 -0.0250 0.4659 
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Appendix 3.7 

One-way ANOV A and Tukey's pairwise comparisons: CL response of head kidney 
macrophages using CFS from LPS stimulated lymphocytes 

Analysis of Variance for 
Source DF SS 
Treatment 2 3.2302 
Error 6 0.0640 
Total 8 3.2942 

Level N Mean 
L-15 3 4.9445 
LPg stirn 3 6.3846 
NS 3 5.4202 

pooled StDev = 0.1033 

log10 RLU 
MS 

1.6151 
0.0107 

F 
151.37 

p 

0.000 

Individual 95% CIs For Mean 
Based on Pooled StDev 

StDev -----+---------+---------+---------+-
0.1170 (--*--) 
0.0280 (--*--) 
0.1325 (--*--) 

-----+---------+---------+---------+-
5.00 5.50 6.00 6.50 

Tukey's pairwise comparisons 

Family error rate = 0.0500 
Individual error rate = 0.0220 

Critical value = 4.34 

Intervals for (column level mean) - (row level mean) 

LPS stirn 

NS 
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-1.6989 
-1.1813 

-0.7345 
-0.2169 

0.7056 
1. 2232 
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Appendix 3.8 

Normal probability and residual plots: lymphocyte stimulation responses using 
different mitogens 
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Appendix 4.1 

Codon usage frequency table for the design of IFN-y degenerate primers: 
Constructed from 16 salmon (S. salar) gene sequences from GenBank database. 

Amino Acid Codon Number 11000 Fraction 

Gly GGG 82.0 14.32 0.22 
Gly GGA 94.0 16.42 0.25 
Gly GGT 81.0 14.15 0.22 
Gly GGC 117.0 20.43 0.31 

Glu GAG 319.0 55.71 0.78 

Glu GAA 91.0 15.89 0.22 

Asp GAT 102.0 17.81 0.35 

Asp GAC 192.0 33.53 0.65 

Val GTG 157.0 27.42 0.44 
Val GTA 32.0 5.59 0.09 
Val GTT 54.0 9.43 0.15 
Val GTC 115.0 20.08 0.32 

Ala GCG 40.0 6.99 0.09 

Ala GCA 97.0 16.94 0.22 

Ala GCT 125.0 21.83 0.28 

Ala GCC 178.0 31.09 0.40 

Arg AGG 82.0 14.32 0.31 

Arg AGA 62.0 10.83 0.23 

Ser AGT 70.0 12.22 0.15 

Ser AGC 112.0 19.56 0.25 

Lys AAG 299.0 52.22 0.71 

Lys AAA 123.0 21.48 0.29 

Asn AAT 58.0 10.13 0.32 

Asn AAC 125.0 21.83 0.68 

Met ATG 163.0 28.47 1.00 

lie ATA 31.0 5.41 0.11 

lie ATT 74.0 12.92 0.27 

lie ATC 165.0 28.82 0.61 

Thr ACG 25.0 4.37 0.07 
Thr ACA 85.0 14.84 0.25 
Thr ACT 76.0 13.27 0.22 
Thr ACC 157.0 27.42 0.46 

Trp TGG 53.0 9.26 1.00 
End TGA 5.0 0.87 0.36 
Cys TGT 56.0 9.78 0.42 
Cys TGC 78.0 13.62 0.58 
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Amino Acid Codon Number 11000 Fraction 

End TAG 4.0 0.70 0.29 

End TAA 5.0 0.87 0.36 
Tyr TAT 59.0 10.30 0.34 
Tyr TAC 113.0 19.73 0.66 

Leu TTG 71.0 12.40 0.12 
Leu TTA 14.0 2.44 0.02 

Phe TIT 62.0 10.83 0.30 

Phe TTC 142.0 24.80 0.70 

Ser TCG 25.0 4.37 0.05 

Ser TCA 45.0 7.86 0.10 

Ser TCT 91.0 15.89 0.20 

Ser TCC 112.0 19.56 0.25 

Arg CGG 28.0 4.89 0.11 

Arg CGA 18.0 3.14 0.07 

Arg CGT 36.0 6.29 0.14 

Arg cae 40.0 6.99 0.15 

Gin CAG 194.0 33.88 0.81 

Gin CAA 45.0 7.86 0.19 

His CAT 53.0 9.26 0.36 

His CAC 96.0 16.77 0.64 

Leu CTG 288.0 50.30 0.50 

Leu CTA 45.0 7.86 0.08 

Leu CTT 34.0 5.94 0.06 

Leu CTC 119.0 20.78 0.21 

Pro CCG 18.0 3.14 0.08 

Pro CCA 63.0 11.00 0.30 

Pro CCT 54.0 9.43 0.25 

Pro CCC 77.0 13.45 0.36 

Code Amino acid Code Amino acid 

Ala A Alanine Leu L Leucine 

Arg R Arginine Lys K Lysine 

Asn N Asparagine Met M Methionine 

Asp D Aspartic acid Phe F Phenylalanine 

Cys C Cysteine Pro P Proline 

Glu E Glutamine Ser S Serine 

Gin Q Glutamic acid Thr T Threonine 

Gly G Glycine Trp W Tryptophan 

His H Histidine Tyr Y Tyrosine 

lie I Isoleucine Val V Valine 

Single and 3-letter code for amono acids employed in the codon usage frequency table. 
End = stop codon 
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Appendix 4.2 

Top 20 DNA sequences with best scores (E-values) generated by Fasta3 nucleotide 
homology search from Genbank database. All sequence entries were compared 
against the sequence derived from the peR amplification using IFN-y primers. 

FASTA (3.39 May 2001) function [optimized. +5/-4 matrix (5:-4)] ktup: 6 
Join: 48 opt: 33. gap-pen: -161-4. width: 16 

The best scores are: opt bits E value 

EM_HUM:HSDJ79416 AL109976 Human DNA sequence f (39695) [f] 171 43 0.0046 

EM_HUM:AK023919 AK023919 Homo sapiens eDNA FU (2152) [r] 171 41 0.012 

EM_HUM:HS879Jl8 AL035400 Human DNA sequence fr (79682) [r] 153 39 0.039 

EM_HUM:AC069243 AC069243 Homo sapiens 3 BAC RP (79682) [f] 152 39 0.045 

EM_PRO:AE004720 AEOO4720 Pseudomonas aeruginos (12547) [r] 156 39 0.048 

EM_MUS:AL596215 AL596215 Mouse DNA sequence fr (79682) [r] 150 39 0.058 

EM_MUS:AL662839 AL662839 Mouse DNA sequence fr (50916) [f] 148 38 0.087 

EM]L:ATT22P22 AL163814 Arabidopsis thaliana D (13829) [f] 147 38 0.15 

EM_HUM:AC006152 AC006152 Homo sapiens BAC cion (79682) [r] 142 37 0.17 

EM_HUM:AC067836 AC067836 Homo sapiens chromoso (79682) [f] 142 37 0.17 

EM_HUM:AL133512 AL133512 Human DNA sequence fr (79682) [r] 142 37 0.17 

EM_HUM:AC003111 AC003111 Human DNA from chromo(40649) [f] 143 37 0.18 

EM_HUM:AClO0781 AClO0781 Homo sapiens chromoso (78804) [f] 141 37 0.19 

EM_MUS:AC073938 AC073938 Mus musculus 18 BAC R (79682) [r] 140 37 0.22 

EM_HUM:AC009634 AC009634 Homo sapiens chromoso (79682) [r] 140 37 0.22 

EM_MUS:AC020971 AC020971 Mus musculus chromo so (79682) [f] 140 37 0.22 

EM_HUM:AC090051 AC090051 Homo sapiens 12q BAC (68744) [f] 140 37 0.23 

EM_MUS:AC020967 AC020967 Mus musculus chromoso (67131) [f] 140 37 0.23 

EM_OV: GGBLOCUS AL023516 Chicken DNA sequence f(36113) [r] 141 37 0.25 

EM_HUM:AL445685 AL445685 Human DNA sequence fr (79682) [r] 139 37 0.25 

EM_PL:AP003294 AP003294 Oryza sativajaponica (79682) [r] 139 37 0.25 
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Appendix 5.1 

Nucleotide sequence homology with EST encoding J. flounder spleen cDNA HFI. 

Clustal generated nucleotide alignment comparing clone # 46/19.2 derived from the cDNA library with a 

Japanese flounder spleen cDNA clone HFl, mRNA sequence from the GenBanklEMBL databases 

(Accession #C23506). The mRNA sequence demonstrates 66% identity over a 468 (92-559 nt) region. 

Conservation of nucleotide identity is shown as (:). 

510 500 490 480 470 460 
19.2 TCAGAACATAATCCCTTGTCTGTGGTGCATTTAGAAGTACCGACTGCCCATGGCTGCGAC ..... .... . . ., .. . . ., .. . . . . . 
EM_EST CGGGATGTGAGAGATTGCCTCTCCTGAGCCTCAGTGGTACTGTTTGCCCAGAGCGGACAC 

70 80 90 100 110 120 

450 440 430 420 410 400 
19.2 AACCACTTTCATGAACTTCTGCCAGGTTGCNTGAATTTCAGGAGTGAA---AGAGGCTCC . , .... ... " .. .. ............. . .. ............. . .... , ... . . . . . .... 
EM_EST AACCACAGCCAAGAACTTCTGCCAGGCCTCCTGGACATCAGCGGTGAAGACGGAGGGGCC 

130 140 150 160 170 180 

390 380 370 360 350 340 
19.2 GAACTTGGCGGCAATGACAATTGTGAGGACGTCAGCCAACACCCTGAAATTGTCAGGGTC 

::::::::: :: : : •••••• ., • I •••••••••••• ...... . .............. . 
EM_EST GAACTTGGCAGCCACGCACACACTGATGCACTCAGCAAGAAGCCTGAAGTTATCAGGATC 

190 200 210 220 230 240 

330 320 310 300 290 280 
19.2 GACGAAGAGTTTGTTAGCGTGGGTCTCGCTCAGTGACTTGTATGTGGCCAAGATGTTGCC . , .. , . .. ... . ....... . ... .. . .. ... . ....... . ...... . ... . . . ..... . . .. , .. , 

EM_EST CACATGGAGCTTCTCAGAGTGCATCACGCTCAGCTTGGTGTAGGCGTTCTTGATGTCGTC 
250 260 270 280 290 300 

270 260 250 240 230 220 
19.2 CATGTTCTTCACAGCTTTATCCAGAGCTCCACACACGACCTTGCCGTGAGCAGCAACTTT 

: : : : : : : : : : : : : : :: : ::::: ........ .. .. .. .. . ...... . . ...... . 
EM_EST CATGTTCTTCACAGCTCTTTCCAGCCCTCCCATCACTGTCTTGCCATGCTCTGCGACTTT 

310 320 330 340 350 360 

210 200 190 180 170 160 
19.2 GGGGTTGCCCATGATTGCTGCGGGAGTGGACACATCTCCGAAAGAGCCGAAATAACGCTG .............. .. .... ... .. ... . .... . . .... . . .... . . .... . · .. . · .. . 
EM_EST CTCATTTCCCAGGATGGCGGCGTTGCTGGACAGGTTGCCAAATGATGTGAAGTGTCTCTG 

370 380 390 400 410 420 

150 140 130 120 110 100 
19.2 AGTCCAGGGGTAGACGATCAGGACTCTTCCCAGAGCCAGTGGTCCGATCTCATTGATATC 

:::::: :: :: :: :::: .................. . , " .............. . · .. . · .. . 
EM_EST AGTCCACGGATATACAATCAAAAGCCTGGTCAGAGCCTGGGGTCCAATCTCCCCCACATC 

430 440 450 460 470 480 
90 80 70 60 50 40 

19.2 TACTTTGCCCCAGACGGCACTGATGGTGCTCTTCTCTGCGTCTGTCCATTCAACCATGTT 
: ::: ::::: : :: :::::::: : ... .... . ..... . ... .... . ..... . 

EM EST GATTTTTCCCCACAGGGAACTGATGGCGGCGCGCTCAGGACCTGACCACTGGACCATGGT 
- 490 500 510 520 530 540 

30 20 10 
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Appendix 5.2 

Nucleotide sequence homology with EST encoding J. flounder spleen eDNA BES. 

Clustal generated nucleotide alignment comparing clone # 0717 derived from the cDNA library with a 

Japanese flounder spleen cDNA clone HE8 (1), mRNA sequence from the GenBanklEMBL databases 

(Accession #C23502). The mRNA sequence demonstrates 94% identity over a 603 (69-557 nt) region. 

Conservation of nucleotide identity is shown as (:). 

40 50 60 70 80 90 
07/7 GGGCTGCAGGAATTCGGCACGAGGGCCAGTAGCATATGCTTGTCTCAAAGATTAAGCCAT 

................................ . .... . .... .. .. ........ , ........... . 
AGCATATGCTTGTNTCAAAGATTAAGCCAT 

10 20 30 

100 110 120 130 140 150 
07/7 GCAAGTCTAAGTACACACGGCCGGTACAGTGAAACTGCGAATGGCTCATTAAATCAGTTA 

::: ::: :::::::::::::::::::::::::::::::::::::::::::::::::;::: 
EM_EST GCAAGTNTAAGTACACACGGCCGGTACAGTGAAACTGCGAATGGCTCATTAAATCAGTTA 

40 50 60 70 80 90 

160 170 180 190 200 210 
07/7 TGGTTCCTTTGATCGCTCCAACGTTACTTGGATAACTGTGGCAATTCTAGAGCTAATACA 

:::::: :::::::::::: ::::::::::: ::::::::::::: ::: :::::::::::: 
EM_EST TGGTTCCTTTGATCGCTCTCACGTTACTTGGATAACTGTGGCAATTCCAGAGCTAATACA 

100 110 120 130 140 150 

220 230 240 250 260 270 
07/7 TGCCAACGAGCGCTGACCTCCGGGGATGCGTGCATTTATCAGATCCAAAACCCATGCGGG 

:::::::: :::::::::: :::::: :::::::::::::::: :::::::::::::::: 
EM_EST TGCCAACGGGCGCTGACCTTCGGGGACGCGTGCATTTATCAGACCCAAAACCCATGCGGG 

160 170 180 190 200 210 

280 290 300 310 320 330 
07/7 ----CCAATCTCGGTTGCCCCGGCCGCTTTGGTGACTCTAGATAACTTCGAGCCGATCGC .. .. . ............................................. . .. .. . ............................. , .................... . 
EM_EST GTGCCCCACCCGGGGTGCCCCGGCCGCTTTGGTGACTCTAGATAACCTCGAGCTGATCGC 

220 230 240 250 260 270 

340 350 360 370 380 390 
07/7 GCGCCCTTTGTGGCGGTGACGTCTCATTCGAATGTCTGCCCTATCAACTTTCGATGGTAC 

:::: : ::::::: ::::::::::::::::::::::::::::::::::::::::::: 

EM_EST TGGCCC-TCGTGGCGGCGACGTCTCATTCGAATGTCTGCCCTATCAACTTTCGATGGTAC 
280 290 300 310 320 

400 410 420 430 440 450 
07/7 TTTCTGTGCCTACCATGGTGACCACGGGTAACGGGGAATCAGGGTTCGATTCCGGAGAGG 

::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
EM EST TTTTTGTGCCTACCATGGTGACCACGGGTAACGGGGAATCAGGGTTCGATTCCGGAGAGG 

330 340 350 360 370 380 

460 470 480 490 500 510 
07/7 GAGCCTGAGAAACGGCTACCACATCCAAGGAAGGCAGCAGGCGCGCAAATTACCCACTCC 

: ::: ::::::::::::::::::::::::::::: ::::: :::::::::::: :::::::::: 
EM_EST GAGCCTGAGAAACGGCTACCACATCCAAGGAAGGCAGCAGGCGCGCAAATTACCCACTCC 

390 400 410 420 430 440 
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520 530 540 550 560 570 
07/7 CGACTCGGGGAGGTAGTGACGAAAAATAACAATACAGGACTCTTTCGAGGCCCTGTAATT 

::::::::::::::::::::: :::::::::::: :: :::::::::::::: :: :: ::::::: 
EM_EST CGACTCGGGGAGGTAGTGACGAAAAATAACAATACAGGACTCTTTCGAGGCCCTGTAATT 

450 460 470 480 490 500 

580 590 600 610 620 630 
07/7 GGAATGAGTACACTTTAAATCCTTTAACGAGGATCCATTGGAGGGCAAAGTCTGGTGCCA 

:::::: :::::::::::::::::::::::::::::::::::::: :: ::::::::::::: 
EM_EST GGAATGAGTACACTTTAAATCCTTTAACGAGGATCCATTGGAGGGC-AAGTCTGGTGCCA 

510 520 530 540 550 560 

640 650 660 
07/7 GCAGCCCGCGGTAATTTCAAGCTTCAATAGCGTAT ............................ .... ......... ... ... .. ...... . 
EM_EST GCAG-CCGCGGTAA-TTCCAGC-TCCATAGCGTTCTAAAGTTGCTGCAGTTAAAAGCTCG 

570 580 590 600 610 620 

EM_EST TAGTTGGACCT 

630 
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Appendix 5.3 

Nucleotide sequence homology with EST encoding J. flounder spleen cDNA HHI. 
Clustal generated nucleotide alignment comparing clone # 09/8 derived from the cDNA library with a 

Japanese flounder spleen cDNA clone HH1 (1), mRNA sequence from the GenBanklEMBL databases 

(Accession #C23517). The mRNA sequence demonstrates 67% identity over a 405 (220-619 nt) region. 

Conservation of nucleotide identity is shown as (:). 

400 390 380 
09/8 CCAGGATCTTGAAGTTGGTGGGGTCCACCC '".... ............ ... . .. , .. . . , ....................... . 
EM_EST ACATGGCCATGACCAGGATGATGTTGTGGGCCAGGNTCTTGAAGTTGGAGGGAYCCACCC 

190 200 210 220 230 240 

370 360 350 340 330 320 
09/8 TCAGCTTGGTGGCGTGCAGTTCACTGAGCTTGGTCAAGAAACCAAAGAGATCGTCCATGT ....... ... ... . .. , ..... ........ . .... . ... ..... ........ . .... . ::: :: :::::: 
EM_EST TCAGCTTTTAGGCATGCAGCTCACTGAGGCTGCTCAGGGCCGCGGTGAGATTATCGATGT 

250 260 270 280 290 300 

310 300 290 280 270 260 
09/8 GGCCAACACAGTCAT-CGATCTGAT-TCATGATGGTGATGCCGTGCTTCTTCACTGGAGG 

........ ... . ... . . .... . . ... .. .... . ...... . . ........... . . .. . .. 
EM_EST --TTTTCACGGCCATGCCCACGGCTCCCATGATCACCCCTCCGTKTTTCTTCACCTGAGA 

310 320 330 340 350 360 

250 240 230 220 210 200 
09/8 GGAACTGGGGGCCA---CGGAAGCCCAGTGGGAGAAGTAGGCCTTGGTCTGGGGGTAGAC ..... .. . .. . ... . . ... . :::: ::: ::: ::::::::: ::: :: 
EM_EST GTTCTGAGGAGTCAGATCAGTCCCCCACTCTGAGAAGTAGGTCTTGGTCTGCGGGGAGGA 

370 380 390 400 410 420 

190 180 170 160 150 140 
09/8 TACGAGCATCCTGGAAAGAGCCTGGTCTCCAATCTCATCGGATTTAGGGAGGATCTTGCC 

....... '" .. .......... . '" .. ,"., ...... , '" .. '" . '" . '" .. ,"., ........... '" '" . ... .. '" . 
EM_EST CACCAACATCCTGCCCAGAGCCTCGCCTCCGATCTCAGCGACCTTCCCCTCAGCTTTGGC 

430 440 450 460 470 480 

130 120 110 100 90 80 
09/8 CCAGATGGCCTTCACGTTAGCTTTGTCCTTGGCTGAGAGACTCATAGCTGCGTCTTGTCC 

'" '". '" .. '" '" .. '" 
'" ,"' '". . '". '". . ...... '". '". '" . '" '" .... '" '" ... ,"' .. '" . . '" '" '". '" .... ". '" '" .... '" ....... '" ... . 

EM_EST CCACAGGTTTTTCACCAGGGTCTTGTCTTTCGCTGAGAGACTCATGGCTGCCTTTTTT--
490 500 510 520 530 540 

70 60 50 40 30 20 
09/8 GTTCCTCGTGCCGAATTCCTGCAGCCCGGGGGATCCGCCCGGGCTAGAGCGGCCGCCACC 

'" '" '" ... '" '" ,"' '". '" ............ . ..... ....... ...... ....... . . ............... . . ............... . 
EM_EST -TTAGCGGCCGCGAATTCCTGCAGCCCGGGGGATCCACTAGTTCTAGAGCGGCCGCCACC 

550 560 570 580 590 600 

10 
09/8 GCGGTGGAGCTCCAG 

:::::::::::::: : 
EM EST GCGGTGGAGCTCCAGCTTTTGTTCCTTTAGTGAGGGTTAATTTCGAGCTTKGCGTAATCA 

- 610 620 630 640 650 660 
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Appendix 5.4 

Nucleotide sequence homology with EST encoding Zebrafish kidney eDNA. 

Clustal generated nucleotide alignment comparing clone # 48 derived from the cDNA library with a zebra 

fish (D. rerio) kidney cDNA similar to TR: 075869 R33374_1. mRNA sequence from the 

GenBanklEMBL databases (Accession #AW421025). The mRNA sequence demonstrates 60% identity 

over a 181 (305-474 nt) region. Conservation of nucleotide identity is shown as (:). 

350 340 330 320 310 300 
48 GATGGGAGATATAAAGGCCACAAGGCGTGGCTGAGCTCTAAGCACATATAAGGACACCAC .... .. .. . ..... '" .... . . ... .. .. . ............ . 
EM_EST AAAAAAAACAAGCACACATAAAATCATGAACTGAACTGTA--CACATAAAAGTAAACAAC 

280 290 300 310 320 330 

290 280 270 260 250 240 
48 ATATTTACCAAAAATATGAAAGTGTACTGAGGAACTGAAAAGTGCAGCGACAGGTAATAC ................ .. ...... ... . . ... . ... . 
EM_EST --ATTTAAACTTAAGATGAAA-TGT-CAG-GGGAGAGAAAAACAAAGTGTGGATGAAAGC 

340 350 360 370 380 

230 220 210 200 190 180 
48 GAGTGGTGACTGACAGCACAAGCAGGATGATCAAGACCTTCAACCTACTTGGTTTTG-AG ............ ....... . .... . ..... . . .... " 

EM_EST GAG-AGAGAAAGAGAG--CAAGCAGTA-GATCTTGATCTTTAATGTCCAGTCTACTGTAT 
390 400 410 420 430 440 

170 160 150 140 130 120 
48 GAAACCAATGATGACGGACAGGAGGAAGATGTGGCATCCAACATGAAGGTGGAGGCCGCA ........ .. ..... . . ....... . . ....... . 
EM_EST GCGACTGATGATGATGATGAAGAAGAAGAAGATATGCTATAAAGATTCAATCTGTTTTAC 

450 460 470 480 490 500 

110 100 90 80 70 60 
48 CCACCTGCAGTCTGACAGTTCCAAACTGACCATATAGCCAACAATGTGGACATGATGGCA 

EM_EST AAGCCCAATTATCGTATTCTGGTGAACAAGTTTAAAACTGACACANATTGCTTTGTTGAT 
510 520 530 540 550 560 
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Appendix 5.5 

Nucleotide sequence homology with EST encoding Zebrafish fin eDNA. 

Clustal generated nucleotide alignment comparing clone # 48 derived from the cDNA library with a zebra 

fish (D. rerio) fin eDNA similar to TR: 042585 fizzy-related protein. mRNA sequence from the 

GenBanklEMBL databases (Accession #AI330687). The mRNA sequence demonstrates 60% identity 

over a 175 (202-367 nt) region. Conservation of nucleotide identity is shown as (:). 

110 120 130 140 150 160 
48 CAGGTGGTGCGGCCTCCACCTTCATGTTGGATGCCACATCTTCCTCCTGTCCGTCATCAT .................... .. ...... .. . . . ...... . 
EM_EST AATTGGGCTTGTAAAACAGATTGAATCTTTATAGCATATCTTCTTCTTCTTCATCATCAT 

180 190 200 210 220 230 

170 180 190 200 210 220 
48 TGGTTTCCT-CAAAACCAAGTAGGTTGAAGGTCTTGATCATCCTGCTTGTGCTGTCAGTC .... . . .. .. ... .. .. ... .. . ........ . . .... . . ........ . . .... . 
EM_EST CAGTCGCATACAGTAGACTGGACATTAAAGATCAAGATC-TACTGCT--TGCTCTCTTTC 

240 250 260 270 280 

230 240 250 260 270 280 
48 -CACTCGTATTACCTGTCGCTGCACTTTTCAGTTCCTCAGTACACTTTCATATTTTTGG 

. ... . ............ . .... .. ... . . ... .... . ... 
EM_EST -TCTCTCGCTTTCATCCACACTTTGTTTTTC-TCTCCCCTG-ACA-TTTC--ATCTTAAG 

290 300 310 320 330 340 

290 300 310 320 330 340 
48 TAAATATGTGGTGTCCTTATATGTGCTTAGAGCTCAGCCACGCCTTGTGGCCTTTATATC ................. . .... .. . ... ..... . 
EM_EST TTTAAATGTTGTTTACTTTTATGTGTACAGTTCATTCATGATTTTATGTGTGCTTGTTTT 

350 360 370 380 390 400 

Appendices 186 



Appendix 5.6 

Nucleotide sequence homology with EST encoding Zebraflsh C32 fln eDNA. 

Clustal generated nucleotide alignment comparing clone #144/3 derived from the cDNA library with a 

zebra fish (D. rerio) C32 fin cDNA similar to WP: F53A2.4 CE16096 mRNA sequence from the 

GenBanklEMBL databases (Accession #BE605981). The mRNA sequence demonstrates 82% identity 

over a 261 (279-539 nO region. Conservation of nucleotide identity is shown as (:). 

290 280 270 260 250 240 
144/3 CTCTCAACCCCAATCCCCAACATTGTGTGTTCACATCTGTACGGCGCTGGAGGGGATGTC 

::: : ::: :: ::::::: : :: :::: 
EM_EST CAGCATCAGTGTGTGGGACGGGAAGGGACATCAAAACTGAACAGCGCTGGGCGGGATGTT 

250 260 270 280 290 300 

230 220 210 200 190 180 
144/3 GAACATGGAGGGATCAAACTGTTGTCCTTTAAAGGGAGAGCCCTCAGCATCCCACCCCTT 

::::::::: :: ::::::: :: :::: ::::: ::::: :::::::: ::::: :: :: 
EM_EST GAACATGGACGGGTCAAACTCCTGTCCTTTAAATGGAGATCCCTCAGCGTCCCAGCCTTT 

310 320 330 340 350 360 

170 160 150 140 130 120 
144/3 CTTCAGCATGTCATGCACCTTCATCTCGTGGCTCTGGGGCTTGCCCTGTAGTTTCTGGTG 

::::::::: :: ::::: ::::::::::::::::: :: :: ::::: ::::::::::: 
EM_EST CTTCAGCATATCGTGCACTTTCATCTCGTGGCTCTGTGGTTTCCCCTGCAGTTTCTGGTG 

370 380 390 400 410 420 

110 100 90 80 70 60 
144/3 GTAGTCGAAGGTGAGTCTGTCCAGCACGGCATGCTCCTCCTCATCCNCCGTGGCCATGGA .................................................... ......... .. .... ......... ..... ..... ...... .......... .. 
EM_EST GTAGTCGAATGTCAGTCGGTCCAGCACCGCATGTTCCTCTTCATCCACCGTGGCCATAGA 

430 440 450 460 470 480 

50 40 30 20 10 
144/3 GCGCTCTCTGTTGATCTGGTTCACATCAATCTCCTTCTCCCCTTTCAACAC 

. ...... . ................. . ....... . ................. . . ......... . .. .. .... .. . 
EM_EST TCGCTCTCGATTAATCTGGTTAACATCGATTTCAGCTTCACCCTTCAGCACAGCGCTCCA 

490 500 510 520 530 540 

EM_EST CCAGACCTCACTGCACTTACTGAGAGAGAGCAGAACACAGCGTCCAGGGTGCAGACTCCA 
550 560 570 580 590 600 
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Appendix 5.7 

Nucleotide sequence homology with an mRNA encoding a human KIAAI068 

protein. 

Clustal generated nucleotide alignment comparing clone #144/3 derived from the cDNA library with a 

Homo sapiens mRNA encoding for KIAAI068 protein (partial cds) from the GenBanklEMBL databases 

(Accession #AB028991). The mRNA sequence demonstrates 77% identity over a 261 (810-1070 nt) 

region. Conservation of nucleotide identity is shown as (:). 

144/3 
10 20 30 

GTGTTGAAAGGGGAGAAGGAGATTGATGTGAACC .. . .. .. .. . .. .. .. .... . ... . . . . 
EM_HUM AGGTGGGCGAGTATTGGTGGAACGCCATCCTGGAGGGAGAAGAGCCCATCGACATTGACA 

780 790 800 810 820 830 

40 50 60 70 80 90 
144/3 AGATCAACAGAGAGCGCTCCATGGCCACGGNGGATGAGGAGGAGCATGCCGTGCTGGACA ......... . ......................................... . ......... . ......................................... . 
EM_HUM AGATCAACAAGGAGCGCTCCATGGCCACCGTGGATGAGGAGGAACAGGCGGTGTTGGACA 

840 850 860 870 880 890 

100 110 120 130 140 150 
144/3 GACTCACCTTCGACTACCACCAGAAACTACAGGGCAAGCCCCAGAGCCACGAGATGAAGG 

: :: ::::: :::::::::::::: :: ::::::::::: :::::::: ::: :::: : 
EM_HUM GGCTTACCTTTGACTACCACCAGAAGCTGCAGGGCAAGCCACAGAGCCATGAGCTGAAAG 

900 910 920 930 940 950 

160 170 180 190 200 210 
144/3 TGCATGACATGCTGAAGAAGGGGTGGGATGCTGAGGGCTCTCCCTTTAAAGGACAACAGT · ........................................ . · ........................................ . . .... . . .... . 
EM_HUM TCCATGAGATGCTGAAGAAGGGGTGGGATGCTGAAGGTTCTCCCTTCCGAGGCCAGCGAT 

960 970 980 990 1000 1010 

220 230 240 250 260 270 
144/3 TTGATCCCTCCATGTTCGACATCCCCTCCAGCGCCGTACAGATGTGAACACACAATGTTG · ., ., ................ . ......... . · .. .. ..... ... ..... ... ...... .. . .. .. 
EM_HUM TCGACCCTGCCATGTTCAACATCTCCCCGGGGGCTGTGCAGTTTTAATGACCAGAAGGAA 

1020 1030 1040 1050 1060 1070 

280 290 300 310 320 330 
144/3 GGGATTGGGGTTGAGAGACTGAGGAGGGTTAGCAGATTTATCAATAGAAACTGCCTGGTA 

EM_HUM AGGAAACCCTCGCCGGTGGGGAGGCAGAGCCTTATCCTCGGCTGCCCTTCTTGGCTCCCT 
1080 1090 1100 1110 1120 1130 
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Appendix 5.8 

Nucleotide sequence homology with an m.musculus mRNA encoding an NDAP7 

protein. 

Clustal generated nucleotide alignment with a Mus musculus (house mouse) mRNA coding for a 

neuronal-development associated protein NDAP7 gene Q99JA3. The sequence from the GenBanklEMBL 

database (Accession #AB057593) demonstrates 82% homology at the nucleotide level in a 198 nucleotide 

stretch (2171-2366). Conservation of nucleotide identity is shown as (:). 

420 410 400 390 380 370 
20/2 AGGAACCTANAACGGCTCCACATCCAAGAAGCACAGGGCGCAATNCCCACTCCGATCGGG .......... . .. . .. .. . . . . . . 
EM_RO: GCTACCACATCCAAGGAAGGCAGCAGGCGCGCAAATTACCCACTCCCGACCCGGGGAGGT 

2150 2160 2170 2180 2190 2200 

360 350 340 330 320 
20/2 AGGTAGTACGAAAATACCAATNCA-GNCT-TTTCGAGGCCNTG-AATTGGAATGAG-ACA ....................................... ...... .... .. . .. ........... .. ........ ,... . . 
EM_RO: AGTGACGA--AAAATAACAATACAGGACTCTTTCGAGGCCCTGTAATTGGAATGAGTCCA 

2210 2220 2230 2240 2250 

310 300 290 280 270 260 
20/2 CTTT-AATCCTTT-ACGAGGATCCATTGGA-GGCAAGTCTGGT-CCAGCAGCCGCGGTAA 

: ::: :::::::: :::::::::::::::: :::::::::::: :::::::::::::::: 
EM_RO: CTTTAAATCCTTTAACGAGGATCCATTGGAGGGCAAGTCTGGTGCCAGCAGCCGCGGTAA 

2260 2270 2280 2290 2300 2310 

250 240 230 220 210 200 
20/2 TTCCAGCTCCAATAGCGTATCTTAAAGTTGCTGCAGTTAAAAAGCTCGGTCCCGCCGTTT 

........... , •••••••••••••••••••••••• , •••••••••• t ............................. ,., ... , .......... . 
EM_RO: TTCCAGCTCCAATAGCGTATATTAAAGTTGCTGCAGTTAAAAAGCTCGTAGTTGGATCTT 

2320 2330 2340 2350 2360 2370 

190 180 170 160 150 140 
20/2 TCAGTGCTGATACTCAGAAGCCTTCCAGAAGTTCCTGCTGTCGTTGTGCCGCTCTTGGCA 

EM_RO: GGGAGCGGGCGGGCGGTCCGCCGCGAGGCGAGTCACCGCCCGTCCCCGCCCCTTGCCTCT 
2380 2390 2400 2410 2420 2430 
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