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ABSTRACT
With increasing demand for air travel and overloaded airport facili-
ties, inefficient airport taxiing operations are a significant contribu-
tor to unnecessary fuel burn and a substantial source of pollution.
Although taxiing is only a small part of a flight, aircraft engines are
not optimised for taxiing speed and so contribute disproportion-
ately to the overall fuel burn. Delays in taxiing also waste scarce
airport resources and frustrate passengers. Consequently, reduc-
ing the time spent taxiing is an important investment. An exact
algorithm for finding shortest paths based on A* allocates routes
to aircraft that maintains aircraft at a safe distance apart, has been
shown to yield efficient taxi routes. However, this approach depends
on the order in which aircraft are chosen for allocating routes. Find-
ing the right order in which to allocate routes to the aircraft is a
combinatorial optimization problem in itself.

We apply a rolling window approach incorporating a genetic
algorithm for permutations to this problem, for real-world scenarios
at three busy airports. This is compared to an exhaustive approach
over small rolling windows, and the conventional first-come-first-
served ordering. We show that the GA is able to reduce overall taxi
time with respect to the other approaches.

CCS CONCEPTS
• Computing methodologies→ Search methodologies; • Ap-
plied computing → Transportation;

KEYWORDS
transportation, aircraft taxiing, routing, permutations, genetic al-
gorithm

1 INTRODUCTION
We need to make better use of existing aviation infrastructure as
worldwide air traffic is predicted to increase 1.5 times by 2035 [16].
This means fitting more aircraft into the same runways, terminal
gates and taxiways. Although taxiing is only a small part of a flight,
the inefficient operation of aircraft engines at taxiing speed can
contribute disproportionately to the overall fuel burn. These effects
apply particularly at larger airports, where ground manoeuvres are
more complex, but also for short-haul operations, where taxiing

represents a larger fraction of a flight. It is estimated that fuel burnt
during taxiing alone represents up to 6% of fuel consumption for
short-haul flights resulting in 5 m tonnes of fuel burnt per year
globally, equating to 1.6 billion pounds given today’s fuel prices.
This situation is only set to get worse as more aircraft are squeezed
in to the existing infrastructure.

Allocating routes to taxiing aircraft can be modelled as find-
ing shortest paths across a graph, with the extension of a time
dimension. A shortest path algorithm based on the well known
A* algorithm is able to sequentially allocate efficient routes to air-
craft, avoiding conflicts by routing around other aircraft, or waiting
for other aircraft to move. However, this approach is affected by
the order in which aircraft are presented for routing. This paper
proposes the application of a rolling window approach, based on
the receding horizon concept [6, 7, 21, 22, 37], incorporating a
permutation-encoded genetic algorithm (GA), to find the best se-
quence in which to allocate routes to the aircraft. This approach
is compared with the baseline method, First-Come-First-Served
(FCFS), and an exhaustive search within small rolling windows.
The approach is applied to three international airports: Doha, Hong
Kong and Beijing Capital. We show that the GA was able to find
better routings than FCFS and small window exhaustive search, by
virtue of being able to explore much larger windows. The approach
is able to reduce the delays by using FCFS by over 70%. This simple
application of a GA represents an effective improvement for aircraft
taxi routing that could have substantial impact.

We begin with a summary of related work in Section 2 and in-
troduce background concepts including the taxiing problem and A*
algorithm in Section 3. We describe our rolling window method-
ology and the genetic algorithm in Section 4. Experiments and
results for the three airports considered are given in Sections 5 and
6, before we draw our conclusions in Section 7.

2 RELATEDWORK
Optimisation of taxi routes (or Ground Movement) is a challenging
problem that has been tackled in a variety of ways. Comprehensive
reviews of this area are [2] and [3]. Early approaches [18, 19, 30]
used a list of routes that were either human-designed or generated

Published in Proceedings of the Genetic and Evolutionary 
Computation Conference 2018 by ACM. The original publication 
is available at: https://doi.org/10.1145/3205455.3205558

https://doi.org/10.1145/3205455.3205558


before the algorithm was run using a shortest path algorithm. Meta-
heuristics were then used to choose an appropriate route and wait
points for each aircraft. Genetic algorithms have also been used to
evolve the routes rather than choosing predefined ones [24]. Alter-
native efforts including [13, 17, 20, 36] formulated Ground Move-
ment as a mixed-integer linear programming problem. A recent
approach using pre-computed routes formulated Ground Move-
ment as a job-shop scheduling problem [1].

An alternative approach [32] generates the routes for aircraft
each time, allowing the route and its timings to be tailored to ac-
count for the movements of other aircraft. Ravizza et al. described
the Quickest Path Problem with Time Windows (QPPTW) algo-
rithm, an adaptation of Dijkstra’s shortest path algorithm that adds
a time dimension and accounts for the movements of previously-
allocated aircraft. The A* algorithm variant for taxiing that we use
tackles the problem in much the same way [26]. While the approach
will find the quickest path for an aircraft given existing movements,
Ravizza et al. noted that QPPTW was dependent on the order in
which aircraft were chosen for allocating routes: this also applies
to the A* approach we use. This is the problem we tackle in the
present paper.

Often the focus is on optimising taxi times, but other objec-
tives have attracted some attention, particularly reducing aircraft
emissions and fuel consumption due to taxiing [11, 12, 17, 35]. An
advantage of accurate and efficient taxi routing is that aircraft can
be made to wait at the gate until the last possible minute before
starting engines and pushing back, saving fuel that would otherwise
be wasted waiting in a queue at the runway [4].

Metaheuristics have been applied to other aviation optimisation
problems including gate assignment [8], runway sequencing [7],
and flight path planning [31]. The Rolling Window or Receding
Horizon approach has been demonstrated to be useful in handling
dynamic problems in aviation [6, 7, 13, 21, 22, 37] and a wide variety
of other application domains (e.g. wireless base station planning
[38]).

Metaheuristics have also found application in a variety of other
routing and transportation problems including GPS navigation [33]
and railway scheduling [15].

3 BACKGROUND
3.1 Taxiing and Ground Movement
Allocation of routes for aircraft taxiing or Ground Movement is a
combined routing and scheduling problem [3]. Time-efficient routes
must be allocated to aircraft seeking to pass through the taxiways
between the runways and gates or stands. For safety reasons, it is
crucial that two aircraft never conflict with each other throughout
the taxiing process. All routes have to respect allocated runway
times, taxi route restrictions, and safety constraints on the proximity
of other aircraft. At airports with low air traffic, with only one or
two aircraft moving at any one time, routes could be assigned using
shortest path algorithms like Dijkstra’s or A*. However, interactions
between moving aircraft mean that a more sophisticated approach
is required at busier airports. At busy airports, taxiways almost
always cross each other. In addition, with obstacles such as runways
aircraft must be carefully timed to cross busy junctions, reducing
the need to change speed or stop. Both reducing speed or stopping

can cause a knock-on effect in terms of delay, and also increases
fuel consumption

3.2 A*
The routing algorithm used in this paper is a multi-objective short-
est path A* algorithm [26] adapted to the ground movement prob-
lem. Although in the present work we only use one objective (taxi
time) we intend to extend this to also consider fuel consumption,
which has a complex relationship with speed. For each aircraft,
routed sequentially, a set of optimal routes is found from the start
node to the end node. Then, the fastest route is reserved. Aircraft
are routed on a directed graph, representing the taxiway layout,
where nodes represent gates, stands, taxiway intersections, inter-
mediate points and runway exits and edges represent taxiways. In
order to ensure conflict-free routes, each edge can be occupied by
only one aircraft at a time. This also applies to any edges close to
one holding an aircraft (within a radius of 60m) that would cause a
conflict. Edges are connected together to form straight and turning
segments. The angle between adjacent edges is less than 30 degrees
in straight segments. For each straight segment, its taxi time corre-
sponds to the fastest speed profile, i.e. maximum acceleration (0.1 g,
where g is 9.8ms−2), followed by maximum allowed constant speed
(30 knots) phase and braking (0.1 g). For turning segments, constant
speed (10 knots) is assumed. A more detailed description of speed
profile generation is in [12]. In order to accelerate the search, while
not compromising the optimality of routes, a heuristic function is
used. The heuristic function provides estimates of costs from the all
nodes to the end node. For taxi time, it is calculated as the length of
the shortest path to the end node divided by the maximum allowed
speed (30 knots).

The advantage of this approach is that the route of the aircraft
is not pre-determined, allowing greater flexibility for solutions.
The times of entry/exit at the runway are fixed for departures and
arrivals. The sequential approach to allocating taxi routes will then
be used to minimise the taxi time for each individual aircraft given
the planned movement for the aircraft which have already been
routed.

4 METHODOLOGY
The natural order in which to allocate routes to aircraft is first-
come-first-served (FCFS). If departing and arriving aircraft require
routes allocated at the same time, arriving aircraft are allocated
routes first because the departing aircraft can simply wait at the
gate.

Ravizza et al. [32] noted approximately a 1% reduction in total
taxi time by using a bespoke swap heuristic. This was embedded
within their QPPTW algorithm. Wherever an aircraft deviated from
its shortest possible path (either by having to stop, or taking a
longer route), the conflicting aircraft causing the delay is identified,
and the two aircraft are swapped and re-routed. If this results in
a shorter total taxi time for the two aircraft, the new routes are
kept, if not, the initial routes are retained. The approach we take
is a separate search over permutations of aircraft, which can be
independent of the specific shortest path algorithm used.
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Algorithm 1 Procedure for allocating routes to set of Aircraft
A = a0, . . . ,an−1, for a window. Note, there is a correction for the
final window where its size is smaller than usual to avoid running
off the end of the aircraft list: this is omitted for simplicity. Function
reserve(r ,G) reserves the route r on taxiway graph G.
1: Inputs: G,A,w ▷ taxiway graph, set of aircraft, windowSize
2: s = 0 ▷ window start
3: whilewindowStart < n do
4: W = as ,. . .,as+w ▷ Aircraft in the current window
5: minP = null,minTime = +∞
6: for all Permutations p over W do ▷ can be run in parallel
7: if s > 0 then ▷ if not on first window
8: reserve((ras−w , . . . , ras−1 ),G)

▷ Reserve routes for previous window’s
▷ aircraft on taxiways, so the present

▷ windows aircraft avoid them
9: end if
10: Let time=0
11: for a inW do
12: ra = allocateRoute(a) ▷ Apply A* to find route
13: t = length(ra ) ▷ (length in seconds)
14: time += t
15: reserve(ra , G) ▷ Ensures remaining

▷ aircraft in the present window avoid a
16: end for
17: if time < minTime then
18: minTime = time
19: minP = p
20: end if
21: Clear reservations on G

▷ Allows next permutation to be checked afresh
22: end for
23: Apply routes found forminP toW
24: s +=windowSize
25: end while

4.1 Rolling Windows
We can consider a window containing the nextw waiting aircraft,
and assign routes to aircraft for different potential orderings. A
simple approach will examine allw! permutations of aircraft in a
window of sizew . For a given window sizew , all permutations of
Aircraft 1 tow will be considered, and the routes allocated to the
aircraft in the order specified by each permutation. The quickest
routing is chosen then those aircrafts’ routes are fixed. The window
then rolls to Aircraftw +1 to 2w , within which all permutations are
considered, and routes allocated also accounting for the now chosen
routes for Aircraft from the first window. This continues, with the
window rolling forward w aircraft at a time, allocating routes to
aircraft then fixing them so that subsequent aircraft avoid earlier
ones. This is more formally set out in Algorithm 1 and illustrated
in Figure 1.

However, this exhaustive approach is limited by the long run
time of the routing algorithm. For example, around 5 seconds to
allocate routes to 10-20 aircraft for Doha Airport, and up to 200
seconds for Beijing. These observations suggest a window size of

more than 5 or 6 aircraft is not practical. However, at busy airports
it can be the case that 10–15 aircraft are taxiing at any one time, any
of which may be in conflict, so a larger window size might yield
some improvement in the routes. This motivates use of a heuristic
search method.

4.2 Genetic Algorithm
We now consider a simple implementation of a genetic algorithm
to searching the permutations of aircraft within the larger rolling
windows, in place of the exhaustive search described in the previous
section. The GA will be run once for each window to determine
the permutation that results in the shortest overall taxi time once
aircraft routes have been allocated. The window will then move to
the next set of aircraft and the GA will run again.

The GA encodes the aircraft in a window as a list of integers,
each being an index into the aircraft list. The encoding is such that
each aircraft is represented once and only once. The population
is initialised with a set of permutations generated uniformly at
random, with one seed solution in which the aircraft are arranged
in FCFS order. Four elite solutions are carried over from one gener-
ation to the next. 2-tournament selection is used to choose parents
for recombination. Recombination is the order-crossover [14], in
which a sub-sequence of indices from the first parent is chosen at
random and copied to the offspring. The offspring is then completed
by adding the remaining indices in-order from the second parent.
Mutation used two operators, chosen at random with an equal prob-
ability. The Swap Mutation operator [29], which takes two indices
in the permutation and swaps them. Displacement mutation [27]
takes a random sub-sequence within the permutation and shifts it
to another position chosen at random.

5 EXPERIMENTS
5.1 Airport Scenarios
In this paper, we use a set of instances of real arrival and departure
flights from 3 airports: Doha International Airport (DOH), Hong
Kong International Airport (HKG) and Beijing Capital International
(PEK). The complexity of the taxiway layout ranges from simple
(DOH), medium (HKG) to complex (PEK). The instances consist of
following number of aircraft: 180 (DOH) from 16.3.2014, 506 (HKG)
from 17.1.2017 and 349 (PEK) from 9.7.2014. The data provided
specifies landing/pushback times, gates/runway exits and weight
category for each flight. The taxiway graph of Hong Kong Interna-
tional Airport is illustrated in Figure 2. The graph specifying the
airport layout and movement data were prepared using the GM
Tools1 [10].

In all of the experiments, the route allocations were run in up to
24 parallel threads. This depends on the number of permutations
being tested: obviously smaller GA population sizes, and window
sizes 2 and 3 with 2 and 6 permutations respectively, did not use all
these threads).

5.2 Parameter tuning
There is a balance to be made in where the effort of evaluating
permutations takes place. In the dynamic and rapidly changing

1https://github.com/gm-tools/gm-tools/wiki
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routing forthcoming

w2
fixed forthcoming
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Figure 1: Illustration of a rolling window of size four (aircraft are a mixture of arrivals and departures)
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Figure 2: Layout of taxiways atHongKong InternationalAir-
port

environment of the airport, there is only a certain allowable length
of time that we can take to find a solution for each group of aircraft.
This is an important physical constraint if we aim for our approach
to be used in real time under operating constrains and conditions.
This time limit corresponds to an upper limit on the number of
permutations that we can sample for a set of aircraft. The following
two factors trade-off against each other:

• a larger window size means a larger search space, so poten-
tially needing a longer-running GA, but fewer windows will
be required to cover all aircraft

• in common with many other applications, the GA can run
for a fixed length of time, meaning either a larger popula-
tion for few generations, or a smaller population for many
generations

• the run length for the routing algorithm increases with the
number of aircraft, but due to set up times there is not an easy
rule of thumb to determine the optimal number of aircraft
to route with respect to running time

The run time for our A* implementation for a permutation of 20
aircraft on Hong Kong Airport is approximately 40s (DOH is around
5s, PEK is around 200s). Ideally we want the runs to complete in
real time, so at 120s separation between aircraft, we have 2400s
per window, so only about 60 evaluations allowed per window: 3
per aircraft. We can (and do) improve this situation by running
evaluations of the permutations in parallel: with 24 threads we are
limited 1440 evaluations for windows of 20 aircraft, or 72 evalua-
tions per aircraft. Obviously we could add additional cores within
reason to extend this further (at least 5x the number so that we
can achieve the same run times for PEK as for HKG). The above
might seem like a long-winded way of reaching the average figure
of 72s per aircraft: it needs to be thought of from the perspective
of a reasonable window length (in the range of 10-60) because due
to set-up time, a run of the routing algorithm for a single aircraft
is still several seconds, and while not constant is fairly consistent
across this range of window sizes. These run times do not impact
on the potential taxi time savings of the approach: the reason we
limit the times is to ensure a high enough throughput that aircraft
can have their routes allocated before they are due to start taxiing.

In order to find a good balance between the population size, GA
evaluation limit and window size, we ran a preliminary parameter
tuning experiment on a subset of 120 aircraft at Hong Kong Airport.
At 72 evaluations per aircraft this means we have 8640 evaluations
for all 120 aircraft. Population size and window size were varied,
then the GA evaluation limit computed by dividing the total number
of allowed evaluations (8640) by the number of windows required
to cover the 120 aircraft. The tuning was carried out using the
Sequential Model-based Algorithm Configuration (SMAC) tool [23],
with a limit of 1000 GA runs. The tuning also included the mutation
and crossover rates for the GA: these are simply the proportion of
offspring that crossover and mutation were applied to.

The best parameters found by SMAC were as follows:
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• GA population size: 17
• Window size: 56
• GA evaluation limit (computed from the above): 4032
• Crossover rate: 0.226
• Mutation rate: 0.496

At this point we havemade the assumption that the configuration
for HKG will carry over to the other airports. Strictly speaking the
parameter tuning should be carried out for each, but in this study
we are more interested in proving the concept rather than ensuring
maximal performance.

6 RESULTS
Table 1 summarises the results. The first block of the table gives total
taxi times in seconds for all routed aircraft at each airport when
using the different approaches. The lower bound was determined
by running the routing algorithm for each aircraft in isolation,
avoiding any waiting times or detours. This is of course may not
be achievable, but gives us some indication of performance. FCFS
is the result when using the standard first-come-first-served order
for allocating routes. “Exhaustive WSx” are the figures for the
exhaustive rolling window approach, with window sizes of 2–6.
“GA RW” are the average figures from 20 repeat runs of the GA
rolling window approach with the tuned parameters (including a
window size of 56). “GA all aircraft” was a single run of the GA
conducted as a sanity check, working over the permutation of all
aircraft, running for 3000 evaluations with a population size of 20
(this would be no use in practice as the run time was several hours).

The “gap” values in the lower half of Table 1 are the gap or
delay in seconds between the lower bound and the result found by
each of the methods. The “reduction of gap” values are the relative
improvement of the GAWS56 approach over FCFS, ExhaustiveWS2
and Exhaustive WS3. The exhaustive search over rolling windows
of 6 for HKG and 5 and 6 for PEK is omitted; in these cases the run
times were prohibitive for practical use.

It is clear that all of the approaches offer an improvement over
FCFS, reducing the gap between the routed times and the theoreti-
cal lower bound for the situation where no aircraft are in conflict
with each other. In general, increasing the window size means that
permutations leading to faster routes can be found, although in
some cases (e.g. DOH window sizes 5 and 6), increasing the size
actually causes the delays to increase. This is because the change
in window size causes conflicting 2 aircraft to fall on the bound-
ary between windows where they previously did not: when this
happens they cannot be swapped to improve the conflict situation.

The GA with rolling window approach (GA RW) was able to
find the permutation leading to the shortest overall taxi times for
all three airports. In all, the reduction in the delay (gap) over the
minimal times compared to FCFS was between 74 and 85%, with
similar reductions for the exhaustive rolling window approaches
with small window sizes.

The sanity-check single GA run on the whole permutation for
each airport was not able to improve on the GAwith rollingwindow:
we expect that this was due to the large search space involved but
this requires further investigation.

2conflicting in the sense that they are competing for a route rather than risking safety

Table 1: Results: total taxi time at each airport when using
each method (‘Exhaustive’ abbreviated to ‘Exh.’). For the GA
WS56 rolling window results, this is the mean over 20 runs,
with standard deviation given in subscript

Total taxi time (s)
Method DOH HKG PEK
Lower bound 32 430 128 763 88 119
FCFS 32 685 129 366 88 707
Exh. WS2 32 685 129 229 88 703
Exh. WS3 32 685 129 274 88 542
Exh. WS4 32 515 129 066 88 640
Exh. WS5 32 515 128 954
Exh. WS6 32 684
GA RW 32 435 35 128 852 100 88 246 79
GA all aircraft 32 515 129 070 88 192
FCFS gap 255 603 588
Exh. WS2 gap 255 466 584
Exh. WS3 gap 255 511 423
Exh. WS4 gap 85 303 521
Exh. WS5 gap 85 191
Exh. WS6 gap 254
GA RW gap 64 89 127
GA all aircraft
gap

85 2307 1073

% reduction of
gap over FCFS

74.90 85.24 78.40

% reduction of
gap over Ex. WS2

74.90 80.90 78.25

% reduction of
gap over Ex. WS3

74.90 82.58 69.98

The reductions in delay with respect to the total taxi times may
seem insignificant in terms of percentages, but it is important to
see how this translates into financial cost for this real world prob-
lem. Given a lower bound of 128 763s for the movements of the
aircraft at Hong Kong Airport, reducing the delays by 514s (0.40%)
may seem trivial. However, this is for 506 aircraft, part of one day
of movements. For the 421 000 aircraft movements in 2017, this
amounts to a saving of 427 656s. Following the assumption of [9]
that a single aisle jet aircraft uses 25 pounds of fuel per minute
while taxiing, and an assumed $5 US per gallon of fuel (one gallon
being 6.7lbs), the savings in fuel at Hong Kong Airport alone would
be approximately $133k per year. However, it should be noted that
other sources question the actual fuel rate for taxiing, which is
possibly slightly overestimated by ICAO [25, 28].

7 CONCLUSION AND FUTUREWORK
Growing air traffic means heavier demands on existing airport in-
frastructure including taxiways. Although taxiing is only a small
part of an overall flight, ground movement is is responsible for a
disproportionate amount of fuel burn. This is because jet engine
are very efficient at cruising speed, but relatively inefficient while
moving on the ground at low speed. Consequently, even small
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improvements in efficiency in taxiing will reduce economic and en-
vironmental costs, notwithstanding reduced frustration for delayed
passengers.

An existing method based on A* has proven successful for rout-
ing aircraft without conflicts, but its performance is dependent on
the sequence in which aircraft are presented to it for routing. We
proposed the application of a rolling window approach incorpo-
rating a permutation-encoded genetic algorithm to find the best
sequence in which to allocate routes to the aircraft. This was com-
pared with FCFS, and an exhaustive search within small rolling
windows. When applied to Doha, Hong Kong and Beijing Capital
International Airports, the GA based approach was able to find bet-
ter routings than FCFS or exhaustive search. Delays added by FCFS
were reduced by over 70%. This simple application of a relatively
naive genetic algorithm represents an effective improvement for
aircraft taxi routing that could have substantial impact.

In terms of future directions to explore, rather than moving the
complete window forward each time, a more continuous rolling
window could be considered. For window sizeW , the order would
be determined, n <W aircraft would be dispatched, the window
moved on by n, and the next order for the nextW aircraft found
(potentially reordering the lastW −n of the first window’s aircraft).
This would avoid the anomalous situation we observed where con-
flicting aircraft span the boundary of a window and can not be
reordered. Additionally, given that one of the key obstacles en-
countered in this work was the long running time of the routing
algorithm, we are investigating more advanced search algorithms
such as model based algorithms (e.g. [5]) and surrogates (one possi-
bility for permutations being [34]). Our model of aircraft movement
also incorporates an estimation of fuel consumption for the allo-
cated routes and we are particularly interested in exploring what
the possible multi-objective trade-off between fuel consumption
and taxi time looks like. Understanding this will be an important
part of tackling the problem of airport congestion as air traffic
continues to grow.
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