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ABSTRACT

We conduct a study of local optima networks (LONs) in a search
space using fractal dimensions. The fractal dimension (FD) of these
networks is a complexity index which assigns a non-integer dimen-
sion to an object. We propose a fine-grained approach to obtaining
the FD of LONs, using the probabilistic search transitions encoded
in LON edge weights. We then apply multi-fractal calculations to
LON:s for the first time, comparing with mono-fractal analysis. For
complex systems such as LONs, the dimensionality may be differ-
ent between two sub-systems and multi-fractal analysis is needed.
Here we focus on the Quadratic Assignment Problem (QAP), con-
ducting fractal analyses on sampled LONs of reasonable size for
the first time. We also include fully enumerated LONs of smaller
size. Our results show that local optima spaces can be multi-fractal
and that valuable information regarding probabilistic self-similarity
is encoded in the edge weights of local optima networks. Links
are drawn between these phenomena and the performance of two
competitive metaheuristic algorithms.
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1 INTRODUCTION

Interest is growing in the fractal structure of complex networks.
In particular, some networks have recently been shown to be self-
similar [2, 9], in that smaller copies of patterns can be found. The
fractal dimension has been of particular interest, where a non-
integer dimension can be assigned to an object as an index of
complexity. This captures the way that a shape fills the geometric
space it resides in, in terms of the relationship between scale and
observed detail.

Figure 1 shows two patterns with different fractal dimensions.
While Fig. 1a has dimension 1.4649, Fig. 1b is 1.7848. We can see the
latter is convoluted and complex. The former is more simple in the
way that it fills space. We can imagine if these were search spaces,
that intuitively the latter would provide more complications during
optimisation.

Assigning a single fractal dimension may not be appropriate for
a real-world complex network. Doing so has an inherent strong
assumption that the self-similarity in the network is roughly ho-
mogeneous. Such an assumption can sometimes be misguided, as
found in recent studies proposing multifractal analysis for complex
networks [2, 10]. This type of analysis means that a spectrum of
dimensions is produced to describe an object.

Indeed, Benoit Mandelbrot — the pioneer of fractal geometry —
argued that a continuous spectrum of dimensions are necessary
to properly capture the complicated dynamics of a real-world sys-
tem [7].

The main contributions of this paper are:

(1) First application of fractal analysis to sampled local optima
networks.

(2) A proposed methodology for probabilistic fractal dimensions
when studying LONs.

(3) First multi-fractal analysis of LONs.

(4) A comparison of monofractal, multifractal, and probabilistic
fractal characterisation for LONs.

(5) First study to contrast LON fractal attributes with competi-
tive search algorithm performance.
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(a) Quadratic von Koch curve (b) Von Koch curve 85— FD
(type 1) — FD 1.4649. 1.7848.

Figure 1: Two fractals, both with dimensions between one
and two.

2 BACKGROUND

2.1 Fitness Landscapes in Network Form

A fitness landscape [11] is a triplet (S, N, f) where S is the set of
all possible solutions, N : § — 25, a neighbourhood structure, is
a function that assigns to every s € S a set of neighbours N(s), and
f is a fitness (objective value) function such that f: S — R, where
the fitness value is a real number that can be viewed as the height
of a given solution in the landscape.

Local Optima Network. A Local Optima Network (LON) models
a subset of the fitness landscape. The local optima comprise the
node set, V. The edges, E, represent search connectivity between
two local minima. Specifically, a directed escape edge is traced
if the destination can be reached from the source by doing one
perturbation followed by hill-climbing.

2.2 A Fractional Dimension

Generally, dimensions are measured as integer numbers: a two-
dimensional square, for example, or a three-dimensional cube. In
reality, though, many patterns in nature exhibit a fractal or frac-
tional dimension [7]. This means that the shape doesn’t fill space in
a way that conforms to the available integer dimensions. Increased
interest in complex networks has naturally lead to the question
of whether these might contain some self-similarity. For this, a
decision must be made on how to calculate the fractal geometry of
a network. In general, to obtain the fractal dimension of an object,
two measures are needed: the scale at which the shape is measured,
s, and the detail observed at that scale, d. A popular algorithm for
networks found in the literature is termed box-counting [9]. The
general principle is boxing together nodes which can be considered
‘neighbours’. Nodes are iteratively boxed together if they are within
s links of each other. An elementary example of this is shown in
Figure 2. The parameter s provides the scaling or coarseness factor
needed for fractal dimension calculation. The extent of detail ob-
served is simply the number of boxes necessary to fully cover the
network at that scale.

The box-counting algorithm is agnostic of the semantics of the
network, and does not take into account node attributes. In a local
optima network, we are modelling a subset of the fitness landscape,
meaning node fitness is of great importance.

A previous study modified box-counting [14] for local optima
networks such that fitness distance was considered as well as link
distance: two nodes can be boxed together iff d(lo;, loj) < s and
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| f(lo;)— f(loj)| < e. We use and extend this approach in our fractal
analysis algorithms for this study.

2.3 The Multifractal Spectrum

Real world systems often do not conform to the assumed homo-
geneity traditional (mono)fractal dimension takes [6]. In this case,
the extent of fractal geometry cannot be characterised by a single
value, but rather a spectrum of numbers.

Indeed, pioneering authors in the fractal community have previ-
ously stated that the multifractal approach is necessary for many
real world shapes [4, 7].

In the past few years, studies have surfaced where the concept
of multifractality has been applied to complex networks [2, 8, 10].
In all cases, some of the networks studied required a dimension
spectrum to characterise the self-similar properties.

The competitive approach to calculating a set of generalised
fractal dimensions for a complex network is called a Sandbox Algo-
rithm, which is a variant of the box-counting process introduced in
Section 2.2.

Algorithm 1 Sandbox Algorithm for Multifractal Analysis of a
Local Optima Network

Initialisation:
>V : nodes in network
> CV, NCV : center nodes, non-center nodes
> R : set of sandbox radius values
> E : set of fitness difference values
> Q : set of values for q, i.e. set of numbers for the spectrum of
dimension
CV=[],NCV =V
for qin Q do
forrinR do
for e in E do
V=shuflle(V)
CV=rand(V, 100)
sizes = {}
for cin CV do
num.covered=0
for vinV do
d = dist(c,v)
j =diff(f(c), f(0))
if j<eandd < r then:
num.covered = num.covered+1

> sizes : set of sandbox sizes

sizes = sizes U {[num.covered]91}

mean.sizes[q][e][r]=mean(sizes)

A set of nodes are randomly selected to be sandbox centers. A
sandbox surrounds a center. These are allocated a maximum radius,
r. For each sandbox, s, nodes which are at most r links away from
the central node are added to s. The average of the box sizes is
taken. This process is repeated for various values for r. The basis
for the spectrum of dimensions is provided by using an arbitrary
set of numbers, g € Q. The value for g is used in the equation to
obtain fractal dimension:
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Figure 2: Three iterations of a box-counting algorithm with s = 2 (s is the maximum allowed edge distance separating nodes
which can be boxed together). Node colour indicates membership to a box. The start point is four boxes. A node is selected as
seed (hub) for first box, and so on for remaining nodes. Boxing two nodes is amalgamating them and considering them as a
single node. The links retained are those belonging to the amalgamated node, or hub. For this illistrative network, scale = 2
and detail = %, i.e. 2¥ = 0.125, which after solving for x gives a calculated dimension of 3.00.

dim = log(detail9™") )
(g — 1) * log(scale)

We use the range of values suggested in the literature [10], start-
ing at -10 and ending at +10, in step sizes of one.

We then extend this process, to allow for the special case of a
local optima network. Because these networks are a compression of
the fitness landscape, node fitness should also be taken into account.
We can easily add this to the Sandbox algorithm, in the form of an
additional condition for a particular node’s inclusion or exclusion
from a sandbox. Specifically, a node n can be included in a central
node ¢’s sandbox iff distance(n, ¢) < rand |(f(n)—f(c))| < €, where
r is the radius of the sandbox and € is the maximum allowable fitness
difference between the two nodes (local optima).

Both r and € should be varied to assess the nature of the scaling
in the object. Therefore, we have a set of values for ¢, r, and e.
Pseudocode for the sandbox algorithm, modified for the local optima
network case, is seen in Algorithm 1.

To obtain the set of generalised fractal dimensions, D(q), we per-

form a linear regression of the observed detail, log(mean(detail)?™1),

and the scale, (q — 1)log(scale), where detail is the mean size of a
sandbox as a proportion of the size of the network, and where scale
is the radius used as a proportion of the diameter of the network.

2.4 Probabilistic Dimensions

In a previous study, fractal dimensions were calculated on the LONs
of a set of NK Landscape instances [14]. The box-counting algorithm
used considered edge distance between nodes as a scaling factor
for dimension calculation.

The problem with this methodology is that if there is a small
network diameter, there can be a coarse-levelled reduction in the
detail observed at a particular scale. To arrive at a finer-grained view
of the relationship between scale and observed detail in networks,
we can use the edge weightings in the network.

Edge weights in local optima networks represent the probability
of a search path between two optima being followed. We can modify
the traditional box-counting algorithm to consider this instead: two
nodes can only be boxed together if it is deemed likely they will be
linked, in that the edge between them is of a certain weight.

To normalise the edge weights in the networks, we simply sub-
tract them from one, i.e. the standardised weight sw is defined as

1-w and we have the opposite probability. Mathematically, nodes
x and y are neighbours iff sw(Ey,y) < . Deciding a suitable value
for f is important. Here we use a set of values for the probability
parameter, € 0.90, 0.96, in step sizes of 0.02. The lower the value
for B, the stricter the probability condition. We use this range based
on preliminary runs and the observed distribution of network edge
weights. In this way, dimensions can be calculated such that the
stochastic nature of the information in a local optima network is
respected.

3 EXPERIMENTAL SETUP
3.1 Benchmark Problem

We focus on a benchmark combinatorial domain here: the Quadratic
Assignment Problem (QAP). In the QAP a set of facilities with given
flows have to be assigned to a set of locations with given distances
in such a way that the sum of the product of flows and distances is
minimised.

The cost associated with a permutation 7 is given by:

n n
C(r) = Z Z aijbﬂiﬂj
i=1 j=1
where n denotes the number of facilities/locations and A = {a;;}
and B = {b;j} are referred to as the distance and flow matrices,
respectively. The structure of these two matrices characterises the
class of instances of the QAP problem.

Our experiments are based on both benchmark and synthetic
instances. Some are from the well studied QAP Library (QAPLIB).
One of the contributions of this paper is the fractal analysis of
sampled local optima networks. A previous study [14], the first of
its kind, considered only fully enumerated networks. The instances
from the QAPLIB are larger (between twelve and 28 locations,
detailed in Table 1). For these, a full enumeration is not feasible.
We use sampled local optima networks for these, provided by the
authors of [3]. To obtain the local optima during the sampling,
they used one-swap best-improvement hill-climbing. For defining
the edges, they used random kick moves of three swaps. While
the sampling introduces an inevitable bias, the bias is towards the
search space regions likely to be encountered by heuristic search.

In addition to those, we use structured instances produced using
the generator proposed in [5]. The generator produces flow entries
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that are non-uniform random values. Clusters of points are placed
in compact circular areas, and all of these clusters are enclosed in
a large circle. These instances have the so-called “real-like” struc-
ture since they resemble the structure of QAP problems found in
practical applications.

The synthetic problem instances are fully enumerated, and as
such are constrained to a small size of 11. We use 30 local optima
networks of this type, as made available by the authors of [1]. To
obtain the local optima, the authors conducted best-improvement
pairwise exchange local search. Two nodes are connected by an
edge if the destination node can be reached from the source using
two pairwise exchanges (perturbation) followed by single-exchange
hill-climbing (local search).

3.2 Normalisation of Node Fitness Difference

We use logarithmic returns to normalise fitness values here, to allow
the setting of the fitness parameter € to be independent of any
particular fitness distribution. To calculate the logarithmic return
of two values, x1 and x3 — in our case, the objective values of two
local optima which are connected by a directed LON edge — we do
log(xa/x1).

3.3 Algorithms

The nature of the experiments can be split largely in two: those
relating to probabilistic dimension and the calculations of the multi-
fractal spectrum. For both algorithms, we begin with a box-counting
algorithm for (mono)fractal analysis from the literature [9], which
is written in C.

Probabilistic Dimension Analysis. A separate variant of the box-
counting algorithm is used to calculate what we term here proba-
bilistic dimensions, as described in full in Section 2.4. The network
edge weights represent search probabilities, so calculating a dimen-
sion using them reflects probabilistic complexity. We also apply the
original box-counting algorithm to the LONs for comparison.

Multifractal Dimension Analysis. To conduct multifractal analy-
sis on the local optima networks, we use the algorithm from [9] as
a starting point. We then proceed to implement the sandbox algo-
rithm proposed in [6] in C. This process is outlined in Algorithm 1
and described in Section 2.3.

Metaheuristics. For all fractal or landscape analysis conducted,
the obtained features of the local optima space must be contrasted
with search difficulty to arrive at some useful conclusion. Accord-
ingly, we collect heuristic search data on the underlying problem
instances. We select two competitive metaheuristics for the QAP to
this end: Robust Tabu Search (ROTS) [13] and Stutzle’s improved
Iterated Local Search (ILS) [12]. For the latter, we use the first-
improvement version, with a pairwise exchange as the local search
and 3n/4 exchanges for the perturbation.

4 RESULTS

We calculate the various fractal dimensions and associated metrics
of a set of local optima networks extracted from QAP instances.
For each problem, we run mono-fractal analysis (also referred to
as deterministic dimension analysis), multi-fractal analysis, and
probabilistic dimension analysis. These three are compared with
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one another, to assess which is the best fit for local optima networks.
In all cases, the fractal results are contrasted with observed search
effort by the two metaheuristics.

4.1 LONs: Monofractal or Multifractal?

The question of whether a local optima network is better suited
to a single fractal characterisation or a spectrum of dimensions is
now addressed.

Figures 3a, 3b, and 3c show boxplots of the fractal dimensions of
the local optima networks. Figure 3a represents the “real-like” in-
stances, and 3b and 3c are the Nug and Chr instances from QAPLIB,
respectively. Each bar represents the spread of dimensions when
using a particular fractal algorithm variant. The upper two bars
represent results obtained from using the traditional box-counting
algorithm, which gives a monofractal dimension, while the lower
three are multifractal dimensions — for the same networks — taken
from different arbitrary points in the full spectrum. These are an-
notated with mf1, mf2 and mf3.

Surveying Figure 3a, it can be seen that the ranges of the multi-
fractal dimensions (mf1, mf2, and mf3) deviate quite significantly
from the monofractal ranges for the same instances (det and det2).
Generally, the multifractal dimensions are smaller. In addition, the
three dimension ranges taken from different points on a single
multifractal spectrum are markedly different to one another. This
implies a lack of homogeneity or agreement in terms of complex-
ity in different parts of these local optima networks, indicating
multifractality. A similar phenomenon is seen in Figure 3b (Nug
instances), although here the dimensions are higher.

The Chr benchmark QAP problems display quite different re-
sults: observing Figure 3c, we can see that the spread of the multi
dimensions here (mfI-mf3) are much more parallel to the monofrac-
tal dimensions in the upper two bars (det1 and det2). The means
are very similar; furthermore, when comparing the three lower
distributions with one another, they are very close indeed. This
means that even when taking dimensions from different points on
the spectrum, they are almost the same. This implies that these are
monofractal networks.

4.2 Dimensional Determinism

We now conduct a comparison between the deterministic fractal
dimensions we calculated against the probabilistic ones. The re-
spective variants of the box-counting algorithm are run on each
problem instance considered.

The difference in the algorithms lies in the definition of the
scaling factor. In the former, the mere presence of links between
nodes is used for the boxing criterion. The other box-counting
variant uses the probability that the search path between the two
optima will be traversed; this probability is encoded in the link
weights in the networks. In this way, the existence of link between
two optima is not enough — it must pass a probability condition.

Figures 4a and 4b show the distribution of the deterministic
and probabilistic dimensions. The former reflects the “real-like” in-
stances, while the latter is for the QAPLIB instances. Similarly to
Figures 3a-3c, the upper two bars are the values obtained by the
traditional deterministic box-counting algorithm for complex net-
works (det1 and det2). The lower three show results from using the
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Table 1: QAPLIB instances used.

class instance name (number is problem size)  description = number of instances
chr {12{a-c},15{a-c},18{a-b},20{a-c},22{a-b}}  tree/complete 13
nug  {12,14,15,16{a-b},17,18,20,21,22,25,27,28}  grid-based 12

algorithm variant which uses the probabilistic LON edge weights
— instead of simply the existence of a link — as the scaling factor.
These are labelled with the parameter setting used in that variant
for 8, which is the maximum opposite probability (i.e., minimum
probability) that two nodes (local optima) will be connected during
search. Outliers are shown as red squares.

Figures 4a and 4b indicate that using a deterministic fractal anal-
ysis on a local optima network might miss important information
relating to likely search trajectories, encoded in the edge weight-
ings: we can see that for the QAPLIB instances (4b), the calculated
probabilistic dimensions are usually much higher (see 0.90-0.96),
implying a more multi-faceted and complex space-filling behaviour
from the networks than the deterministic dimensions hint at (det1-
2). Notice also that the calculated dimensions are lower for the
stricter boxing constraint of f = 0.90 than for the more lenient j
= 0.93. This will be due to nodes rarely passing the criteria, and
therefore not a lot of boxing takes place: the observed dimensions
are then constrained to the linear relation between f (0.90) and
the proportional number of boxes needed to cover the network,
which here must be 0.2 (number of boxes = #) because the fractal
dimensions are ~15.28, obtained from solving for x the equation
0.90% = 0.2.

4.3 Search Effort on Fractal Landscapes

To quantify performance of the two competitive heuristics on the
instances, we use two metrics for each: the number of iterations to
reach the global optimum or optima (ILS.t and ROTS.t for ILS and
ROTS, respectively), and the percentage above the global minimum
fitness within a fixed budget (ILS.p and ROTS.p). The two algorithms
are deployed 1000 times on each problem instance.

We now examine the correlations between pairs of variables. Fig-
ure 5a shows a correlation matrix and is focused on multifractality
in the local optima networks, while Figure 5b looks at probabilistic
dimensionalities.

Pairwise Spearman correlation coefficients are shown in the
upper triangle of the panel. The overall correlation is shown in
black text, with a split into class of instance shown through use
of colour. Red is the QAPLIB instances, while green is the “real-
like” ones. Density plots populate the middle diagonal row, with
scatterplots forming the lower triangles.

From left to right by column, Figure 5a includes two dimensions
taken from different arbitrary points in the multifractal spectrum
(mfI and mf4) as features; ILS performance metrics, denoted as
ILS.t (iterations to the global optimum or optima) and ILS.p (per-
centage above the global best fitness within a given budget); ROTS
metrics, shown as ROTS.t (iterations to the optimum) and ROTS.p
(percentage above the global minimum within a fixed budget); the
number of local optima in the fitness landscape (optima), and the
monofractal dimensions (detI and det2).

Figure 5b contains the same variables, with the exception of
fractal dimension type. Instead of dimensions taken from different
points on a spectrum, this matrix considers probabilistic dimensions
with different values for f: probabilistic1, (0.90) probabilistic2 (0.93)
and probabilistic3 (0.96).

Let us look at each of the correlation matrices in turn. Figure 5a
displays a few important points for this study. First, one of the
multifractal dimensions (mfI) has moderately strong positive cor-
relations with three out of the four search performance metrics we
consider here. This can be seen by following along the row labelled
mfl and checking the intersections with the search measures. For
all three metaheuristic performance features (ILS.t, ILS.p, ROTS.t),
the positive association with the dimensionality suggests that the
latter hinders the efficiency of the algorithms. What we notice,
however, is the relationships with search in the case of the other
dimension point from the spectrum are much weaker. This has two
implications: a single fractal dimension is insufficient to charac-
terise the dynamics written in a local optima network (if it was,
each of these would exhibit similar behaviour), and not all fractal
geometries in the space of local optima are significantly linked to
search challenges.

A further remark could be made when considering the dimension-
dimension correlations. While they are correlated, with p-values
indicating statistical significance, there is a marked difference when
comparing those of the benchmark instances with the synthetic
‘real-like’ instances. We can see this clearly from noting the contrast
between the correlations in red text (library instances) with those
in green (synthetic, structured instances).

The extreme resemblance of the dimensions calculated on the
benchmark instances hints that these might actually be monofractal
networks, with somewhat uniform self-similarity. Conversely, the
multifractal dimensions of the generated instances have far weaker
correlations with one another.

Turning our attention to Figure 5b, we can observe that the con-
nections between fractal geometry and search difficulty is more
pronounced in the probabilistic dimensions than in the determinis-
tic ones. This can be noted by checking the intersections of proba-
bilistic1, for example, against ILS.t and ROTS.t, and then comparing
with the deterministic dimension rows (det1, det2).

The probabilistic dimensions all exhibit moderate-to-strong cor-
relations with the runtime of the metaheuristics, with p < 0.001 in
all cases. This suggests that intricate paths or patterns in the local
minima space — and specifically, probabilistically likely search tra-
jectories — are linked to slower performance by search algorithms
on the underlying problem.

This is more prominent in the case of the QAPLIB instances,
shown in red, than the generated “real-like” ones in green.



GECCO 18, July 15-19, 2018, Kyoto, Japan

(a) Fractal dimensions of the LONs extracted from
generated QAP instances.
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(b) Fractal dimensions of the LONs extracted
benchmark QAP instances (Nug group).

35 45 55 6.5

(c) Fractal dimensions of the LONs extracted from
benchmark QAP instances (Chr group).

Figure 3: Quantile ranges of some of the multifractal dimen-
sions (taken from arbitrary positions on the spectrum) for
all LONs considered in this study (the three lower bars: mf1,
mf2 and mf3). The three are different only in their value for
q. Deterministic fractal dimension ranges for the same net-
works are shown with the two right-most bars: det1 is the di-
mensionalities when considering a fitness-discrepancy con-
dition for boxing nodes, while det2 reflects the results aris-
ing from not using this condition. The class which the in-
stances belong to are indicated in the captions.

Noteable also is the apparent discrepancies between determinis-
tic and probabilistic dimensions. With each other, these have only
a weak-to-moderate correlation.

This says that the two fractal dimension definitions provide
different information about repeating patterns in the space of the
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(a) Fractal dimensions of the LONs extracted from
generated QAP instances.
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(b) Fractal dimensions of the LONs extracted
from benchmark QAP instances.

Figure 4: Quantile ranges of the probabilistic fractal dimen-
sions for all LONs considered in this study (the lower three
bars: 0.90, 0.93, and 0.96). These are dimensions calculated
with f set at 0.90, 0.93 and 0.96, respectively. Deterministic
fractal dimension ranges for the same networks are shown
with the two right-most bars: det1 is the dimensionalities
when considering a fitness-discrepancy condition for box-
ing nodes, while det2 reflects the results arising from not
using this condition.

local optima; indeed, the density plots (of detI and probabilistic2,
for example) show very different distributions.

Table 2: Linear models using fractal dimensions of LONs to
predict runtime of metaheuristics.

ILS

ROTS

Predictor

Estimate

Estimate

Probabilistic Dim. !
Probabilistic Dim. 2
Deterministic Dim. !
Deterministic Dim. 2
Optima

0.1454 (0.212)
0.768(0.288)"

0.857 (1.090)

-0.751(1.068)

1.270(0.271)***

-0.031 (0.111)
0.260(0.151)
0.034 ( 0.570)
0.064 (0.559)
0.453(0.142)**

RZ

0.640

0.422
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Figure 5: Correlation matrices of performance metrics and landscape features (see facet titles). Lower triangle: pairwise scatter
plots. Diagonal: density plots. Upper triangle: pairwise Spearman’s rank correlation, ***p < 0.001, **p < 0.01, *p < 0.05.

Table 3: Linear models using fractal dimensions of LONs to
predict success of metaheuristics.

ILS ROTS

Estimate

0.390(0.118)"™*
-0.213 (0.123)
-0.034 (0.458)
0.000 (0.442)

0.744 (0.104)**

0.578

Estimate

0.763 (0.210)***
-0.519 (0.219)
1.557 (0.818)

Predictor

Multifractal Dim. !
Multifractal Dim. 2
Deterministic Dim. !
Deterministic Dim. 2 -1.412 (0.789)
Optima 2.004(0.186)***

R? 0.765

4.4 In Pursuit of Explaining Search Variance

We also compute and compare linear mixed models, to assess how
much fluctuation in search performance is attributable to fractal
complexity in the space of local optima. To this end, we use the
probabilistic dimensions of the LONs, alongside dimensions calcu-
lated by traditional box-counting, to help explain variance seen in
the number of iterations the search algorithms require to find the
global optimum. A summary of the models for this purpose is found
in Table 2: coefficient estimates are given, alongside indication of
p-value and the adjusted R? for the model. Predictors used are as
follows: the probabilistic dimension with § set at 0.90 (Probabilistic

Dim?) and 0.96 (Probabilistic Dim?), respectively; the deterministic
dimension with a strict value for e (Deterministic Dim') and with a
lenient value (Deterministic Dim?), and the number of local optima
(Optima).

The same format is used in Table 3, except the probabilistic
dimensions have been substituted for fractal dimensions taken
from the multifractal spectra of the LONs. Multifractal Dim.! and
Multifractal Dim.? are dimensions taken from arbitrary points on
the fractal spectrum obtained by the Sandbox algorithm.

Table 2 shows that the predictors in the models are able to explain
~64% and ~42% of variance seen in the runtime of the ILS and ROTS,
respectively. This is reflected in the R? values.

Surveying and comparing the coefficient estimates, we can con-
sider the emboldened text first. In both models, the strongest fractal
characteristic of the four is the feature named as Probabilistic Dim?,
with is the fractal box-counting with f set at 0.96, i.e. two nodes
boxed together must have a link weight greater than 0.04 in the
local optima network. The p-values indicate that this is only of
statistical significance in the ILS model, and not the ROTS.

The coefficient for this probabilistic fractal dimension predictor
is positive, implying an increase in the response variable (iterations
to the global optimum) with increased dimension of this type.

An interesting observation is available when comparing the
coeflicient estimates and standard errors for the two probabilistic
dimension predictor variables. Both are obtained using edge weight
as the scaling factor, but are differentiated by their setting of the
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allowed threshold 8. While the Probabilistic Dim? feature had § =
0.96, Probabilistic Dim! had § = 0.90. If we recall that the LON edge
weightings were taken as their opposite (w;; = 1 — w;j), i.e. the
probability of the search transition not happening, it follows that a
lower value for f is a stricter boxing condition.

The two probabilistic fractal features have very different coef-
ficient estimates and associated standard error. The dimensions
obtained using the stricter criterion appear to have little-to-no
effect on the response variables. The error rates are very large.

From a comparative perspective, it seems clear that Probabilistic
Dim? is more important than the deterministic dimensions as a
predictor for metaheuristic runtime. This can be seen comparing
the standard errors and p-value indications of the probabilistic and
deterministic dimensions in the model summaries.

Table 3 reflects mixed models with multifractal dimension points
as predictors, as well as the more traditional monofractal features.
Comparing the R? values of Table 2 and Table 3, we can see that
the models using multifractal dimensions are stronger than the
probabilistic dimensions, with ~77% and ~58% of variance explained
in the multifractal models.

Immediately on viewing the table, we can see that Multifractal
Dim! is, for both metaheuristic algorithms, the variable with the
strongest effect of the four fractal characteristics studied. The cor-
responding p-values are low, indicating a significant relationship
in both cases. The coefficients are positive: a larger dimension con-
nects to a larger runtime for the search algorithms. When viewing
these results, it is crucial to remember the multifractal dimensions
are taken from arbitrary points on a larger spectrum.

All other predictors in the model (except the landscape rugged-
ness) are not effective. They exhibit large error rates and weak
coefficent estimates; this is an interesting phenomenon, because it
implies that the fractal dimension is different depending on which
part of the network you are looking at. If the networks displayed
the same (or similar) scaling behaviour across the board, the ex-
pectation would be that the contributions and error rates for the
dimensional predictors would be more uniform. This also implies
that dimensionality within local optima connectivity is not always
important to metaheuristic search: it depends on the position in
the fitness landscape.

5 CONCLUSION

We have conducted a thorough study on the fractal geometry of the
local optima space in fitness landscapes. We considered sampled
LONSs for the first time (extracted from benchmark QAPLIB prob-
lems), and also some fully enumerated LONs for smaller problems.

Two new approaches for fractal analysis of LONs were proposed:
a fine-grained approach for calculating the probabilistic FD of a
LON, and multifractal analysis. The fractal characteristics obtained
through these were linked to the search performance of two com-
petitive metaheuristics for the QAP (ILS and ROTS).

The fractal characteristics were contrasted with the performance
of two competitive metaheuristic algorithms on the problem in-
stances.

The probabilistic fractal dimensions, and some of the dimensions
taken from the multifractal spectra, were shown to be connected
to slower search times.

S. L. Thomson et al.

We saw that the the Chr QAPLIB LONS studied appeared to be
monofractal (able to be characterised by a single fractal dimension),
but that “real-like” LONs and Nug QAPLIB instances exhibited mul-
tifractality. Therefore, it seems that for some local optima networks
a single (mono)fractal dimension is not sufficient to capture the het-
erogeneous search dynamics encoded in them. Instead, a spectrum
of dimensions, as we have calculated here, gives more information.

Finally, we have shown that probabilistic dimensions are more
significantly correlated with search than deterministic ones, and
therefore provide a more accurate picture of the complexity in
local optima connectivity patterns when taking into account search
probability.
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