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CHAPTER O

INTRODUCTION

The basic mathematical structure to be studied in this thesis
is that of the complex Banaph algebra. We shall impose certain algebraic
conditions on this structure, in addition to those it already possesses
and investigate the properties which the resulting structure possesses.
Definition Let A be a linear associative algebra over the field,
€, of complex numbers. A is called a normed algebra if we can
associate with each element x € A a real number, | x|, (called
the norm of x) which satisfies

1) n b4 ” 2 0 and .” x “ =0 if and only if x = 0,

2) lx+ylsllxll+llyll foreach x, yea,
3) faxll=]alll=xl for each a € C, x € 4,
8) lxylsl=lliyl for each X, y € A+

Given a nofm on A we have a natural metric determined by

the norm, namely
alx,y) = || x -y |l for each x, y € A.

If A is complete with respect to this metric then it is called a
(complex) Banach algebra, Unless otherwise stated, we shall always
be considering non-commutative éomplex Banach algebras, Henceforth
‘we shall omit the adjective "complex" . If A has a unit we shall
denote this unit by 1 .

Most of the work in this thesis stémmed from a remark of
Professor E. L. Stout of the University of Washington, made at a
seminar at the University of Glasgow. Stout remarked that it ought

to be possible to prove that a commutative Noetherian Banach algebra



is finite-dimensional by using more elementary techniques than those
employed in the proofs available at that time. He suggested a theorem
due to Kaplansky ( [21] ) as a possible route. This theorem states
that a éemi—simple Banach algebra in which every element has a finite
spectrum is necessarily finite-dimensional. Due to the problems in
handling spectra this theofem is sometimes difficult to apply.

In Chapter 1 we prove a result which is more basic than the
"finite spectrum" theorem, namely that a semi-prime Banach algebra
which is all socle is finite-dimensional. By making use of this
theorem we are able to'prove a variety of results including the finite
spectrpm theorem,

In Chapter 2 we ;tudy the ef'fect of putting chain conditions
on a Banach algeébra, It is well known that a semi-gimple Artinian
Banach algebra is finite-dimensional, We give an elementary proof of
this fact, consider various ways of weakening the Artinian chain
condition and then study the coﬁééquences. Next in this chapter we
prove that a Noetherian Banach algebra is finite-dimensional., As
corollaries of this result we obtain that any Aftinian Banach algebra
is finite-dimensional and that any Banach algebra in which every left
ideal is closed is finite-dimensional.

Chapter & is concerned with Banach *-algebras, We give a
simplified proof of the Shirali-Ford theorem., The techniques used to
prove thié theorem find further application in showing that the
positive wedge in a Banach *~algebra is closed when the involution is
Hermitian and continuous, Finally,with reference to the material in
Chapter 1, we show that a B*-algebra is finite-dimensional if every

self-adjoint element of' the algebra has finite spectrum.



In Chapter 4 we collect together_several miscellaneous
results, Some of these are concernad Qith guestions of existence for
nilpotents and quasinilpotents in a Banach algebra, Others are concerned
with conditions which force a Banach algebra to be commutative., We
obsgrve that the above two problems are very intimately connected in
certain special cases. Also in this chapter, we consider some
properties of the spectrum of an element of a Banach algebra,
Remark In the following, if a result holds for arbitrary (not
necessarily normed) algebras we shall indicate this by stating simply

"algebra'" rather than "Banach algebra",
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CHAPTER 1

In this chapter, we are concerned with algebraic conditions on
Banach algebras which force finite dimensionality. In the main,
these are conditions on the ideals in the algebra. To begin with,
we shall assume the existence of an identity element and then later
remove this assumption.

The basic theorem in this chapter states that a Banach algebra
with‘identity which is topologically simple and has minimgl one-sided
ideals is necessarily finite dimensional. We then show that a
semi-~prime Banach algebra (with identity) which coincides with its
own socle is a finite direct sum of simple Banach algebras with
miniﬁal one~sided ideals and so is finite dimensional. As an
application of the "socle" theorem we prove Kaplansky's "fihite
spectrun” theorem. We remark that Kaplansky's theorem extends easily
to the case of Banach algebras Qiéhout identity and use this fact
to deduce that the socle theorem also holds for Banach algebras
without identity. Several consequences of the socle theorem are then
considered,

Fundémental to the proofs of most of the theorems in this chapter
is the concept of the idempotént element. In a given algebra we may
Jook at families of orthogonal idempotents (assuming such exist) and
by determining how large these families may be we obtain information
about the dimensionality of the algebra. Our first result (Lemma 1)
makes this statement more precise.

Definition An element e of an algebra A is idempotent if

e2 = e. Two idempotents e, £ € A are said to be orthogonal if

]

ef fe = 0, A family of idempotents is pairwise orthogonal if for



each pair {e, f} of distinct idempotents in the family e and f

are orthogonal.

Notation We write Sp(A, x) for the spectrum of x in A,
Lemma 1 If A is a Banach algebra (not necessarily with an identity

element) which contains an ?nfinite sequence, (en) ' of‘pairwise
orthogonal non-zero idempotrents then there is an element x € A such
that Sp(A, x) is an infinite set.

Proof: Choose  (c, ) c {positive real numbers} such that there are

r N
an infinite number of distinct c, and 2 c.e, converges in A,
’ n=1
0
Let x = z c_e then xe =c e, for each n and so

c € Sp(A, x) (see for examplev[29] Theorem 1.6.9). Thus Sp(A, x) is
infinite.
Definition For a Banach algebra A, the carrier space of A is the
hou-Zero :

set, @A ' of[yultiplicative linear functionals on A . Note that a
multiplicative linear functional on a Banach algebra is automatically
continuous so that @A E.A' - the dval of A . We take the topology
on @A to be the relative topology induced by the weak & topology
on A' ,

The proof offour next result requires the following theorem due

to Silov.

Silov's Idempotent Theorem

Let A be a commutative Banach algébra. Let ¥ be a non-empty
open and closed subset of "@A. Then there is a non-zero idempotent
e € A such that
v ={¢ € 2, 1 ¢le) = 1} .

Note If ¢€9, and ech is idempotent then ¢(e) ¢ {0, 1} so

o) \ ¥={¢c¢ 2, : ¢(e) = o} .



Notation If a set is both open and closed we say it is clopen.
Notation 'We write rad(a) for the (Jacobson) radical of a. If
rad(A) = 0 we say that A 1is sermi-simple,

Definition A left (right, two-sided) ideal I of A is said to
be (i) nil if every element of I is nilpotent;

(ii) nilpotent if there is a poéitive integer k such that for
any elements aj; , ... ay in I we have a;,,. ak = 0. Clearly,
a nilpotent ideal is nil;

(iii) topologically nil if every element a € I is quasi-niléotent
i.e. Sp(a, a) =0, (a € I); (Notice that a nilpotent element is
guasi-nilpotent.)

(iv) quasi-regular if every element a € I 1is quasi-regular.
Notice that a quasi-nilpotent element is quasi-regular.

We shall require the following property of the radical in a
Banach algebra:
The radical is a topologically nii’ideal which is equal to the sum of
all the topologically nil left (right) ideals in the algébra.

In particular,.every nil ideal is contained in the radical.

In an arbitrary algebra the following holds:
the radical is a quasi-regular ideal which is equal to the sum of all
the quasi-regular left (right) ideals in the algebra. Note that
““since a non-zero idempotent cannot be quasi-regular the only
idempotent in the radical of an algebra is 0.
-Remark: If P, Q are disjoint clopen sets in @C then the
idempotents e,f (given by Silov's theorem) which correspond to
P,Q0 are or£hogonal. For,

¢(ef) =0 (6 e o)

and so ef € rad(C)., But O is the only idempétent in rad(C) so



Theorem 2 Let C be a commutative Banach algebra such that

Sp(C, X) is finite for each x € C. Then

C = rad(C) & a? V (for some n e.ﬁ) ) .
Proof: Let S = { i}' :'i} is a family of pairwise disjoint
clopen sets in @C whose union is Qé}. By Lemma 1 and the remark
preceding the theorem each 3} € 8 is finite. Define a partial
ordering on S as follows:

531 < g,z if for every Fy € f}z there is Fj € 3’1 with Bc F.

Suppose ( E%’n) is a chain in 8. ( E}n) must have an upper bound.
Otherwise, at least one of the F ¢ %ﬁ must be an infinite union

of pairwise disjoint clopen sets which contradicts our assumption that
every spectrum is finite. We now apply Zorn's lemma to obtain a
maximal element ?36 in S. ?ﬁo is finite and, since it is maximal,
each of its members is a connected set. Thus ®C has a finite number
of components. Suppose &, is a ‘component of @C. If @‘-is not a
singleton we may choose an element ¢ € C such that

€6(2;) = {¢(c) + ¢ € &} is not a singleton, Since & is continuous
(with respect to the weak * topology), &(®;) is a connected subset

of the complex numbers so is uncountable. But &(%)) < sp(C, ¢) so

this is impossible. Hence ¢; is a singleton. Thus ¢c is finite,
¢, = {017 + vorv ¢n} , say .

Let e, 4 ... , e, be the idempotents (given by Silov's theorem)

which correspond to ¢71 , +ee , ¢n. By the remark immediately

preceding the theorem these idempotents are pairwise orthogonal. Let

E

linear span of {ey , ... ,ben} .

Then



. n . ‘
n .
So, x=- ) ¢.(Ke, € rad(C) .
: = J J
J
Thus C=rad(C) +E .

Since E n rad(C) = O,k C =rad(C) ® E .

It follows that C = rad(C) @ @n .

Remark: Since C is commutative rad(C) = {x € C : x is quasi-nilpotent}.

So every element of C may be expressed uniquely as the sum of a quasi-
nilpotent and a linear combination.of idempotents.

Corollary 3 If C ‘is semi-simple then it is finite dimensional.

Corollary 4 Let A be a commutative Banach algebra in which every na-2ero.
closed ideal of A can be expressed as a finite intersection of maximal

modular ideals. Then
A =~ rad(ad) (—D@n - for some n e\P.

25223: Since a maximal modular ideal of A has codimension one, our
assumption on clesed ideals means that each closed ideal must be cofinite.
As the kernel of any continuous representation of A is a closed ideal it
follows that these representations must all be finite dimensional. 1In
particular, the regular representation of A (on X =2A or X=AO®C
depanding on whether A has a unit or not) is finite dimensicnal.

We have
Sp(A, a) = sp(B(X), T.) (a € A)

where Tax = ax(x € X) and B(X) is the space of bounded operators
on X. Write Bj = {Ta : a € A}, Sp(By, T, is finite (a € A) so,
since Sp(B(X), T,) ©Sp(By, T) (aeB), Sp(r,a) is finite (a ¢ B)

and the theorem épplies.



Remark: If A is as in Corollary 4 and A has a non-zero Filpotent
. ’ o

element then (rad(a))? = 0 and rad(A) is one-dimensional. [ fte way

suppose that there is z € A \ (0) , z2 = 0. Then Az is nil so

Az < rad(A). If Az = 0 then the closed nil ideal {z € A : Az = 0}
is non-empty so is equal to rad(A). Then (rad(na))2 = 0. If Az # 0
then Az = rad(A) and henc; r2 =0 (re rad(a)). Thus if

r, s € rad(d) , ¥s = 3(r + s)2 =0 so (rad(a))? = 0.

}éd(A) is one-dimensional as all its finite dimensional subspaces are
closed ideals.

Our next objective in this chapter is to prove the theorem which
allows us to determiné the nature of the "building blocks" in the socle
theorem - ﬁamely, the theorem which states that a topologically simple
Banach algebra (with identity element) which has minimal one~sided ideals
is necessarily finite dimensional.

For the proof of the theorem we require several standard algebraic
results concerning minimal ideaiézwhich we shall state without proofs.
Lemma 5 Let A be an arbitrary algebra and L a minimal left ideal
in A such that I2 # 0. Then there is an idempotent e € A such that
L = Ae and eke fis a division algebra with unit element e .
Corollary 6 If A is a Banach algebra then L 1is closed and
(by Mazur's theorem) eRle = Cé.

Definition An idempotent e in a Banach algebra .A is said to be
minimal if eRe = Qe,
Definition An algebra is said to be semi-prime if (0) is the only

ideal (left or right) which has square equal to (0).

Remark : A semi-simple algebra is necessarily semi-prime.
Lemma 7 Let A be a semi-prime Banach algebra. An idempotent

e € A is minimal if and only if Ae and eA are minimal (left, right
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respectively) ideals.

Notation We refer to a two-sided ideal as a bi-ideal.
Definition The sum of all the minimal left (right) ideals of A is

called the left (right) socie of A. When the left and right socles
exist and are equal the resulting bi-ideal is called‘simply the soclé
of A and is denoted by soc(A).

Lemma 8 If A is a semi-prime algebra which coﬂtains minimal
one-sided ideals then soc(A) is defined.

Definition An algebra, A, of operators on a complex vectof space, X,
is said to be strictly dense on X if, given any positive integer k,
and arbitrary vectors X1 7 eee 4 X ' and Yj , ees 4 yk where

k

X1 4 ees g x, ~are linearly independent, there is an operator T € A

such that
™x, = y. G=1, ... , k)

If an algebra of operators on k'isatisfies the above condition for
k'= 1 the algebra is said to be (strictly) irreducible on X.
We require the following result which was proved (independently)

by Rickart and qud (see for example [29] Theorem (2.4.6)).
Theorem 9 Let A be a strictly irreducible complex Banach algebra
of operators on a complex vecfor space X. Then A is strictly dense
on X, PFor the next theorem we require the following definitions.

(i) If S is a subset of an algebra A we define the left

annihilator of S to be the set
lan(s) = {x € A : x8 = 0} .

The right annihilator of S is the set
ran(s) = {x e A : sx = 0} .

lan(s) (ran{(S)) is a left (right) ideal of A . If A is a normed
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algebra the left and right anrihilators of any set are always closed.

If L ‘is a left ideal of A then lan(L) is a bi-ideal of A.
Similarly, ran(R) is a bi-ideal if R is a right ideal.

(ii) An algebra A 1is said to be (algebraically) simple if the only
bi~ideals of A are (0) and A.. A normed algebra is said to be
topologically simple if the only closed bi-ideals of A are (0) and

A,

Notation If X is a normed linear space we denote by B(X{

the space of all boundéd operators oh X;

Theorem 10 If A is a Banach algebra with unit which is topologically

simple and contains minimal one-sided ideals then A must be finite-

dimensional.
Proof: Suppose L is a minimal left ideal of A. Since AL % 0

and lan(i) is a closed bi-ideal we must have lan(L) = 0. Thus, the
left regular representation of lA: on L is faithful. Since L is
minimal this representation is also irreducible so we may regard A as-
an irreducible Banéch algebra of operators on L.

It now follaws (Theorem 9) that A is strictly dense on L so
that soc(A) coincides with the set of finite rank operators in A
(see for example Rickart [29] P.65). Since A = soc (B) , 1 (the unit
in A) is a limit of finite rank operators in the given norm on AA and
hence in the usual operator norm on B(L). Since L is closed
‘(Corollary 6) the set of compact operators in B(L) is closed in the
uniform operator topology. Thus 1 is a compact operator and so the
unit ball in L is compact and hence L is finite dimensional.
Since A € B(L) . we have that A  is finite dimensional.4
Remarks: (a) Theorem 10 fails if A has no unit. The algebra of

compact operators on an infinite dimensional Hilbert space is a
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topologically simple Banach algebra (in the uniform norm) and contains
minimal one-sided ideals.

(b} The converse of Theorem 10 is clearly faise.

(c) We shall see later that if we strengthen the other
conditions then the assumption that A has a unit may be removed.
Notation If {Si : ie I} is a family of subspsces of a linear
space X we denote by z S; the sum of the subspaces S;. If the

' ielI
sum is direct we write 2 e Si .

' iel A _
Definition We say that two left ideals I, J of an algebra A are

module-isomorphic if there is a linear bijective mapping ¢ : I + J

of I onto J such that
d(xa) = x¢ (a) (xen,aceclI .

Suppose A is an algebra for which soc(A) is defined. Given a
minimal left ideal L of A let
M(L) = {K : K is a minimal left ideal and K  is module-isomorphic to

Let H_ = 2 K ; then we call HL the homogeneous component of the
KeM(L)

socle determined by L.
Remark: The homogeneous components of soc(dA) are bi-ideals. We
require the following’purely algebraic results.
Lemma 11 If- A is an algebra such that A = soc(A) then A is a
direct sum of its homogeneous components,
~Lemma 12 If A is a semi-prime algebra the homogeneous components
of soc(A) are simple algebras.
Thesé results may be found in Jacobson [18) P64, P65,

'We are now ready to prove the main theorem in this chapter.
Theorem 13 If A is a semi-prime Banach algebra with unit and

A = soc(A), then A is finite-dimensional.



Proof: If L is a minimal left ideal of A then, since A 1is
semi—prime; L = Ae for some minimal idempotent e € A, Since 1 € A
and A = soc(A), there are minimal idempotents ej; , ... , enl(say)

and elements aj , ... , an' in A such that

n
and hence A= z Ae, .

That is, we can express A as a finite sum of minimal left ideals.

Thus, by Lemma 11,
m
A=) o1,
j=1
whexe Ij , «u. Im are the homogeneous components of A,

Since the homogeneous components of A are bi-ideals, (Lemma 12

asserts that they are in fact minimal bi-ideals)

m
I.Ik = 0 if j # k. Suppose .:1l = z 1. is the decomposition of
3 : j=l
with respect to the direct sum A = ? ] Ij then.it is clear that
j=1

is the unit element of Ik(k =1, ... , m. Each Ik is closed.

k= lan(.x 43 Il)) is simple as an algebra (Lemma 12) and by its
5%k |

(T

definition contains a minimalbleft ideal RAe of A. We have

m
Ce = ele = e z @ I,je = eIke so that
=1

Ae = Ike is a minimal left ideal of Ik.

By Theorem 10, each Ik is finite-dimensional so since A is a

finite sum of Ik's it also must be finite-dimensional.
Remarks: (a) Theorem 13 gives us a characterisation of semi-prime
finite-dimensional Banach algebras. That is,

A is finite-dimensional if and only if A = soc(a).

(If A is finite-dimensional then A = soc(A) is a consequence

of the Wedderburn Structure Theorem).



(b) We shall see later that Thecrem 13 holds without the
assumption of a unit element,

The next lemma was proved by Kaplansky [21]. We include a proof
of the result since the one.given here differs from that given by
Kaplansky.

Lemma 14 If A is a semi-simple Banach algebra such that Sp(a, x)
is a singleton for each xe€ A, then A is one-dimensional. |
Proof: First suppose that A is primitive; then A can be regarded
as a strictly dense Banach algebra of operators on some Banach séace, X.
Thus, if x, y are two linearly independent vectors in X there is

T e A such that
™ = 0 and Ty =Y

This would mean that {0, 1} c Sp(A, T; which contradicts our
assumption that every spectrum is a singleton., It follows that X is
one~-dimensional and hence- that ‘A: is one-dimensional,

Now suppoée that A is semi-simple and that P is a primitive
ideal of A. If x + Pe€ %@> then, since Sp(§&>, x + P) c sp(a, x),
the above gives that %¢> is one-dimensional. This says that every
irreducible representation of A is one-dimensiocnal so A is
commutative, The result now follows easily (for example, by Theorem 2).

The next two lemmas are well-known Banach slgebra results fo we
omit theif proofs.

Lemma 15 Let " A be a Banach algebra and let e be é proper idempotent
in A, Then |
Sp(A; x) = Sp(eRe, x) U (0) (x € ele)

(By a proper idempotent we mean e is non-zero and e # 1).



Lemma 16 A Banach algebra A will contain a proper idempotent if
and only if there is at least one element éf A whose spectrum is not
connected.

(See for example [12] Theorem 5.5.2).

We are now ready to prove the finite spectrum theorem of
Kaplansky [21]1. Other prodfs of this iesult are to be found in [6 ] and
[131.

Theorem 17 Let A be a semi-simple Banach algebra with unit.
Suppose that, for each x € A, Sp(A, x) is a finite set, Then A is
finite dimensional.
Proof: The proof falls naturally into three parts:

(i) 1If évery spectrum is a singleton then Lemma 14 applies.
Otherwise, by Lemma 16, A has proper idempotents.

(ii) A cannot contain an infinite sequence of pairwise orthogonal
non-zero idempotents. This is clear from our assumption on the spectra‘.
and Lemma 1.

(iii) Suppose e € A 1is a proper idempotent. e; = e , ep =1 ~ e
are orthogonal and 1 = e} + e,. Now consider the Banach algebra

(1)

ejAe) which has e) as identity element. If e; is an idempotent

in ejAe; other than 0 or e; then eil) and eél) - e&l)

(1) (1)

orthogonal and e; = e + e2”’, Similarly, in ejAe,, we may obtain

(1) (1)

= €31 axe

idempotents ej3 r €y which are orthogonal and satisfy

) 4

ey = egl) + eél) . Thus 1 = Z egl) and {e;l): j =1 0000, 4}
i=1

is a set of pairwise orthogonal idempotents. We repeat the process

for‘ egl)Ae;I) and so on.

If at any stage e(?) is the only non-zero idémpotent in

then Sp(e(n)Aegn), x) 1is connected for each X € eén)Ae;n)

e?n)Aefn) .
J J

J
(n)_  (n)

s0 is a singleton (Lemmas 16, 15). Since ej Aej is semi-simple,



(n)

it is one~dimensional (Lermma 14) so ej> is a minimal idempotent

(n)

and Ae, is a minimal left ideal. By (ii) and Lemma 1, this
J
"splitting process" must terminate after a finite number of steps.

We now have a set {f; , ... , fk} of pairwise orthogonal

k n
minimal idempotents such that 1 = Z fj' Hence A = z @ Afj and
3=1 =1

so, by Theorem 13, A is finite-dimensional.
Remark: Theorem 17 holds without the assumption that A has a unit,

for if A is semi-simple then so is A & @ and also
sp(a, x) = Sp(A & @, x) (x € A)

so that A ® ¢ satisfies the conditions of the theorem.

Corollary 18 If A is a Banach algebra such that Sp(a, x) is

finite for each x ¢ A then rad(a) is cofinite.

Proof: A/:cad(A) is semi-simple and

Sp(A/rad(A) , X + rad(a)) < sp(a, x) (xea) .
Hence A'/.ir:a.d(A) is finite-dimensional.

Corollary 19 Let X be a complex Banach space and suppose that each

compact operator on X has finite rank. Then, X is finite-dimensional.
Proof: The Baﬂéch algebra of compact operators on X is semi-simple.
The assuﬁption above implies that each compact operator has finite
spectrum so by the theorem the algebra of compact operators on X 1is
‘finite-dimensional. In particular, the algebra of finite rank operators
is finite-dimensional and the result follows. (Corollary 19 tells us that
every infinite-dimensional Banach space has defined oh it a compact
infinite rank operator.)

Definition An arbitrary algebra A is said to be lbcally finite if

every finitely generated subalgebra of A is finite-dimensional.

A is said to be algebraic if every singly generated subalgebra of A



is finite-dimensional.

We require the following results on local finiteness (see for
example Jacobson, [18]).
Lemma 20 Let A beban afbitrary algebra and let I be a bi-ideal
of A such that I and %ﬁ[ are locally finite. Then A is locally
finite.
Lemma 21 The radical of a locally finite algebra is nil,

We also require the following result due to Grabiner, [e].

Lemma 22 A nil Banach algebra is nilpotent.
Corollary 23 For a Banach algebra A, the following are equivalent:

(i) A 4is locally finite

(ii) rad(a) is nilpotent and cofinite.
Proof: If A is locally finite then, for each x € A, Sp(A, Xx) is
finite so by Corollary 18 rad(A) is cofinite. By Lemma 21 rad(a) is
nil so by Lemma 22 rad(A) is nilpotent. The converse is immediate
by Lemma 20.

Coxollary 24 If A is a semi-simple algebraic Banach algebra with

unit then A is finite-dimensional.
Proof: Every ébectrum is finite.

We now extend some of our previous results by removing the
assumption of a unit element. We observed that Theorem 10 as it stands
.fails if A has no unit but if we strengthen our other assumptions,
replacing topologically simple by (algebraically) simple, then we obtain
a theorem which is true for A without unit.

Theorem 25 If A is a simple Banach algebra with minimal one-sided
ideals then A ié finite~dimensional.
Proof: Suppose that L 1is a non-zero minimal left ideal of A and

that 12 = 0. lan(L) is a non-zero bi-ideal and so lan(L) = A,



A that is, A2 =0, If uead\ (0

It

Thus ran{(A) # 0 so ran(a)
then linear span of {u} is a non-zero bi-ideal. Hence A is

one~dimensional.

Now suppose that L is a non-nilpotent minimal left ideal of A,

Since A 1is simple, 1lan(L)

0 and so the left regular representation

of A on L is faithful. Since L is also minimal, the representation

is strictly irreducible. (If xe L\ (0), Ax # 0 for otherwise

ran(A) = A so that A" = 0. Hence BAx = L). Thus A can be regarded

as a strictly dense Banach algebra of operators on 1L (Theorem 9) and

hence
A = soc@) = {finite rank operators in A} .

This implies that every element of A has finite spectrum. Since A

is certainly semi~simple, Theorem 17 gives that A is finite-dimensional.

We now prove Theorem 13 for Banach algebras without unit.

Theorem 26 If A is a semi-prime Banach algebra and A = soc(A) then

A is finite~dimensional.

Proof: By Lemma 11, A = z ® I, where {IA : A € A} are the
AeA

homogeneous components of A. These are simple algebras by Lemma 12.

-

As in Theorem 13 each IA is closed, being the left annihilator of
(-]
Z, = E ® I, , This can be seen as follows:
Ao A ;
A=A,
c - - .
. Clearly IAO__ lan(ZAO) sirnce IAOIA 0 if Az)A, .
Conversely, suppose X, € 1an(ZA ), X, = XA + 2z where
o o

xko € Iio’ z € ZAo' Then x z =0 (g € Zlo) and so z_z =0 (z €
since x, 2, = (0)., If z # 0 then L = lan(Z., ) n 2, # 0. Thus

L AO )\O . ° AO Ao
L2 = 0 which is impossible since A is semi-prime., Thus x_ = x_ €

[ }\0

By Theorem 25 each I is finite dimensional and it remains to

A

show that A has at most a finite number of homogeneous components.



[

Suppose, on the contrary, that A _is infinite. Then we may
choose an infinite sequence (en) of pairwise orthogonal non-zero

idempotents such that each e, belongs to a different I As in

A°
Lemma 1, we may choose a seéuence (cn) ce \ (0) such that
X, = (flcnen belongs to A. But x ¢ soc(A) which contradicts
our azsumption that A is ali socle. Hence A must be finite and
the theorem is proved.
Remark: We cannot weaken the condition A = socf{d) to A = EZETKT.
Suppose, for example, that A 1is an infinite dimensional semi-simple
annihilator Banach algebra then A has dense socle (see for example
Rickart [29)). However, if A 1is a semi-simple Banach algebra
satisfying A = ESETKT then A is in some sense "nearly" finite-
dimensional as the following discussion showe.
Definition - A Banach algebra A 1is said to be finite rank if
X > axa is a finite rank operator for each a e.A and compact if
x> axa 1is a compac£ operator for each a € A. A finite rank algebra
is therefore a compact algebra.

Now suppose also that A is semi-simple. Alexander [ 1] has shown
that x - axa is finite rank if and only if soc(d) exists and
a € soc(d). Thus, if A is a‘semi—simple finite rank Banach algebra
then A = soc(A) and so (Theorem 26) A is finite-dimensional. Since
it is immediate that a finite-dimensional algebra is finite rank it
follows that for semi-simple Banach algebras the two notions are
equivalent. This is the content of the following theorem.
Theorem 27 If A is a semi-simple Banach algebra then A is finite-

dimensional if and only if A is finite rank.

Of interest in connection with the preceding Remark is the following

theorem which is due to Alexander { 11].
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Theorem 28 If A is a semi-simple Banach algebra and A has
dense socle then A is compact. |
Notes (1) Alexander [ 1] has also shown that a B*—aigebra is
compact if and only if it has dense socle., |

(ii) We note in passing that an infinite dimensional compact
Banach algebra can have no.unit.

We now look at the problem of identifying Banach aléebras in which
each closed left ideal can be expressed as a finite intersection of
maximal modular left ideals. We considered the commutative case of this
problem in Corollary 4. Clearly this condition is fairly restrictive.
In general, in the eem~commutative case we cannot obtain each closed ideal
even as aﬁ infinite intersection of maximal modular ideals. For example,
Malliavin [25] has shown that, for G a non~compact abelian group,
LY(G) will always contain a closed ideal which is not an intersection
of maximal modular ideals.

For A a non-cémmutative ﬁéﬁach algebra we start by considering
the special case in which the zero ideal.is a finite intersection of
maximal modular left ideals.

Theorem 29 If . A is a Banach algebra such that for‘sqmggfinite set
{Lj :j=1, ... , n} of ma#imalvmodular left idéaiéJof a,

B, -0,

j=1 9

LY

then A is finite-dimensional.

Proof: We may suppose, without loss of generality, that
Kk, = Nz, = o (3=1, ... , n)
3 A §
i#]

in which case {Kj :3=1, «.. , n} is a family of minimal left

ideals of A. (This follows easily from the fact that A = Lj ® Kj
for each 3j).



Let a € A and suppose that
a = 1, + k,
J J

is the expression for a with respect to the direct sum decomposition

A‘-—-Lj GKj (=1, ... , n). Then,

a -k, - 2 k, (3
L i
i#j

]
1

n

a - zk. lp LY ;‘h)
o 1
i=l

« 7 n)

|I
=
-

.

1, - 2 k, € L, (3

n n n
Hence a - z k € (L, =0 so a= X k, .

Lon :

i=1 i=1 =

Thus A = soc(d) so, since A is evidently semi-simple, it follows by
Theorem 26 that A is finite-dimensionzl.

Corollary 30 If A is a Banach algebra whose radical is a finite

intersectipn of maximal modular left ideals then rad(ad) is cofinite,

Proof: zé/rad(A) satisfies the conditions of Theorem 29,
Corollary 31 Let. A be a Banach algebra in which every proper closed

N

left ideal is a finite intersection of maximal modular left ideals ana
suppose that A contains a proper idempotent element. Then A is
finite~dimensional and semi-simple.
'EESQE’ Supposé. e ¢ A 1is a proper idempotent. Then Ae, A(l - e)
are proper closed left ideals of A which have zero intersection.
Hence 0 = ;iéﬁ for some finite set {Lj :3=1, ... , n} of

j=

maximal modular left ideals so A is finite-dimensional.

" Corollary 32 If A is a semi-prime Banach algebra with minimal

one-sided ideals which satisfies the intersection property given in the
above corollary then A is finite-dimensional.

Proof: The result follows from Corollary 31 and Lemma 5.

Corollary 33 If A is a Banach algebra such that R = rad(a) = 0

and every proper left ideal is a finite intersection of maximal modular



left ideals then R = 0. If also A has a unit then A is finite-

dimensional,
Proof: Suppose there is x € R such that Ax = 0, Then ranA # O.

Since ranA ¢ R it follows that ranA = R and hence R? = 0. Now
suppose that Ax # 0 (x € R)., Hence lanR # 0., Otherwise, the lert
regular representation of h on R 1is faithful and irreducible which
is impossible. If lanR n R = 0 then (0)~ is a finite intersection
of maximal modular left ideals which implies that R = 0 - contrary to
assumption. Thus lanR N R # 0 and hence R<lanR so that RZ = 0.
Now suppose A has a unit.

By Corollary 30, IyR is finite-dimensional so there are elements
Uy 7 eoe g un of A, not in R, such that eacﬁ a € A has an expression

of the form

n
~a = gfa) + z ai(a)ui
j=1

where g(a) € R and. aj(a) € c"Kj =1, «eo ; Nn), Fix x_ € R.- Then
R = Ax, = linear span of {uj x, +3=1, ... ,n}.

Hence R is finite~dimensional and so A is finite-dimensiénal.
Remark: It is ‘not known whether topol&gically irreducible Banach
algebras of operators need be semi-simple and so we are unable to apply
the above technique to the case in which every closed left ideal is a

fiuite intersection of maximal modular left ideals.

~Example
a vy O
Let A = 0O ao :a,p,yec . Then
0 08
0O y O
R = 0O 0 O t vy € @ and the only ideals in A are the maximal
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o v O fok %
ideals I =40 o O st 0, YeC

6 0 0 ELH s

(0 Yy O
and J=410 0 0] : B, yea .

0o 0 B

Thus A satisfies the conditions of Corollary 33.

Definition Let {AA :t A € A} be a family of Banach algebras.
Write z ® AA for the class of all functions £ on A with
NF ‘
£(\) € Ay for each A, and such that {Hf())”lzx € A} is a bounded
set (where ”- IA is the given norm on AQ. Define
| £] = sup!]f(kﬂk
tAeA

Then, with the usual pointwise operations and |" .as norm, z é~A)
NF
is a Banach algebra.which we call the normed full direct sum of the Ax'

If B is a subalgebra of 2 ® Al such that the point evaluation
NF

mappings are all surjections then B is called a normed subdirect sum

of the AA' We denote a normed subdirect sum by z ® A,. DNote that
¢ NS

these need not be complete with respect to l'l.
We require the following result (see for example Rickart [20]
Theorem (2.6.1) (i)).
Theorem 34 A semi-simple Banach algebra A 1is continuously isomorphic
Prinetive
with a normed subdirect sum of{Banach algebias. (In fact, the normed

subdirect sum of the theorem is just 2 ® Aéa. where {PA : A e A}
NS

is the set of primitive ideals of A.)



Suppose now that A is a semi-simple Banach algebra which is
not primitive and that A satisfies our intersection property for

closed left ideals; then -

Proposition 35 A is a subdirect sum of full matrix algebras.
That is,
AZ ) eMnA .
NS
- Proof: If P is a primitive ideal of A then, by Theorem 29,
A

AP is finite-dimensional so, by Wedderburn's Structure Theoren,

is isomorphic to M’ for some n € f’ where M® is the Banach

algebra of all n x n complex matrices. Let {PA : A € A} Dbe the
: n

family of all primitive ideals of A and suppose ZVPA EM A then,

by Theorem 34,

n
a2 Jem .
NS

Remark : While we have not as yet determined whether the Banach
algebras A of Proposition 3& need be finite-dimensional we note that
any infinite-dimensional example must possess the following property:

If X €A and x is non-zero them x, is non-zero for A in some

A
infinite subset of A (xk is the Ath coordinate of x with respect
. ,
to a= Jaeunh,
NS
For, if this were not so and xA is non-zero only finiﬁely many
times A, 000, Ak (say) then
k™,
axcYem 7
1

and so is finite-dimensional and hence closed. Thus Ax = r\ ‘LA
XeA
]

for some finite set {LA : A€ Ao} of maximal modular left ideals.
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Each LA is cofinite (since its quotient is cofinite) and so Ax is
cofinite wﬁich means that A must be finite-dimensional.

Next, in this chapter, we give elementary proofs (using the socle
theorem) that regular Banach algebras and semi-simple m-regular Banach
algebras are finite~dimensional. Both. results are due to Kaplansky
([19]1 and 201).

Definition An algebra A is said to be regular if for each a € A

there is some X € A such that

axa = a .
Note Such algebras are usually called "von Neumann regular" after
J. von Neumann who first introduced the concept (see [26]). Here,
however, we shall always refer to them simply as regular algebras.

A regular algebra is always semi-simple (see [16] for example) and
we include a proof of this fact.
Remark: A non-triyial regular algebra A contains non-zero
idempotents. For, if x e A, X ? 0, and y € A satisfies xyx = x

then xy and yx are both non-zero idempotents.

Lemma 36 A regular algebra is semi-simple.
Proof: Let A be a regular algebra and suppose X € rad(aA). Then

there is y € A such that xyx = x, If x # 0 then xy is a non-zero
idempotent in rad(A) which is impossible.

Lemma 37 A regular Banach algebra cannot contain an infinite sequence
of pairwise orthogonal non-zero idempotents.

Proof (Kaplansky [19]) Suppose on the contrary that A is a regular
Banach algebra containing an infinite sequence (en) of pairwise
orthogonal idempotents.

-]

Let ¢, = 2"k”ek||—l (k e V) and put x = Zc Then
1

%k

X € A and since A is regular we may choose y € A such that =xyx = X.
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We now have

= = = = a2 ’
) & T e Xe =e xyxe =c e ycoe =cieve

N

so that cﬁ|ed| cﬂ]eﬁ|%[ﬂ] which leads to

1 s ol
Thus livll = c;l“ek”~l = 2k (x ¢ ) which is impossible.
Theorem 38 (Kaplansky [191]) A regular Banach algebra is finite-
dimensional.
Proof: Let A be a regular Banach algebra and suppose, for the moment,

that A contains only one non-zero idempotent element, e . From the
remark immédiately preceding Lemma 36 it is clear that e 1is the identity
element of A and that A 1is a division algebra. Hence, by Mazur's
Theorem A = Ce,

Now suppose that A has more than one non-zero idempotent. Let E
be a maximal set of pairwise orthdgonal non-zero idempotents of A. By
Lemma 37, E is finite, E = {el,'°°-, em} (say). Consider the
algebra elAq . This is a semi-simple regular Banach algebra with
unit e;. If e) is the only non-zero idempotent in ej; Ae; then
ejde; = Cey. Suﬁpose that £; is a non-zeroc idempotent in ej;Ae;
different from e;. Then, £, e; - £; are orthogonal (non-—zerb)
‘idempotents. Replace e; in E by £f; and e; - f£3. This "idempotent-
splitting" procedure may be continued until finally we obtain é finite

(Lemma 37) maximal set of pairwise orthogonal minimal idempotents,

F = {f,00°°, fn} (say) .

n
Let £ = ij and consider the algebra (1 - £f) A(1 - £). This is
1
a (semi-simple) regular Banach algebra so, if it is non-zero, it must

contain a non-zero idempotent fn+ orthogonal to F., This contradicts

1



=D -

the maximality of F so it must be that

(1 - £)A(L - £) =0 .
Hence,‘

(a(l - £))2 = 0 ((1 - £)a)2

]

L]

so since A is semi—simp]é, A(l - £) 0 = (1 - f)A. That is,
£ is a unit element for A, Since £ = gfj we now have A = soc(A)
and an application of the socle theorem completes the proof.

We now consider a condition which is weaker than regularitx.
Definition An algebra A is said to be mw-regular if for each

X € A there is y e A and n € © (depending on x) such that

n_.n n
X yx = x,

T-regularity is-clearly preserved under homomorphisms.

Remark: v Kaplansky ([2(]) noted that any algebraic algebra is w~-regular
so w-regularity is a generalisa;ion of the algebraic condition, As with
regular algebras, the m-regular %lgebras (except of course in the nil case)
have a plentiful supply of idempotents. For, if x e A is non-nilpotent
and y € A satisfies xn§rxn = xn for some n e P , then xny, yxn
are non-zero idempotents.

It is clear that a m-regular algebra need not be semi-simple.
However, if x 1is in the radical of a m-regular algebra then x is
necessarily nilpotent, Otherwise, by the same argument as used in
Lemma 36, we would have a non-zero idempotent in the radical. Thus the
radical of a m-regular algebra is nil, If A is a m-regular Banach
algebra an application of Lemma 22 gives the following result.

Lemma 39 The radical of a wm—-regular Banach algebra is ﬁilpotent.
In a similar way to that in which we proved Lemma 37 we may prove:
Lemma 40 A m-regular Banach algebra cannot contain an infinite sequence

of pairwise orthogonal non-zero idempotents.



Theorem 41 . A semi-simple m-regular Banach algebra is finite-dimensional.
Proof:  First suppose that A is a semi-simple m-regular Banach algebra

which coritains only one non-zero idempotent element, e . Suppose w, z € A
satisfy wz =0, w# 0, z # O, Since A is semi-~simple, Aw and zA are
non-zero, non-nil one~sided idéals of A so we may choose a, b € A such

that aw, zb are not nilpotent. Since A is m-regular there are elements
X, Y ¢ A such that xaw, zby are non-zero idempotents. Hence

Xaw = e = zby, so
e = e = (xaw) (zby) = 0

which is. a contradiction to the assumption e # 0. Thus one of z,w is

zexro and so 0 is the only zero divisor in A. If x € A\(0) then since

e(ex - x) =0 = (ge - X)e we have ex = X = xe so that e is the identity
of A. The w-regularity of A and the fact that A has no nilpoterts
{(other than 0) show that every (pop—zero) element of A has an inverse
so, by Mazur's theorem; A = Ce.

The reét of the proof is the same as the proqf of Theorem 38 except
that we replace "regular" wherever it appears by "m-regular" and use
Lemma 40 instead of Lemma 37.
Corollary 42 For Banach algebras, m-regularity is an equiﬁalent
condition to local finiteness.
Proof: Use Lemma 20, aud Memark ok Paﬁ”— 2.

We close this chapter with the following recent result due to
T. J. Laffey [R2].
Theorem 43 If A is an algebra in vhich every commutative subalgebra is
finite~-dimensional then A is finite-dimensional.
Remark: To prove the theorem for Banach algebras it is sufficient to
show that the result holds for nilpotent Banach algebras; The assumption
of the theorem impliés that A is algebraic so, if A 1is a Banach algebrs,

rad(A) is nilpotent and cofinite.
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CHAPTER 2

In this chapter, we study the effect of imposing chain
conditions on the ideal structure of a Banach algebra. More
precisely, we ask that every descending (or ascending) chain of
left ideals of a certain t§pe has at most finite length.

We begin the chapter by proving the (known) result that a
semi-simple Artinian Banach algebra is finite-dimensional. Next,
we consider a weakening of the Artinian condition and investigate
some of the properties of such "weakly Artinian" Banach algebras.

We then go on to look at a chain condition which is intermediate in
strength 5etween weakly Artinian and Artinian. We show that a éemi—
simple Banach algebra with this property is finite-dimensional.

Finally, we look at the consequences of imposing an ascending
chain condition on a Banach algebra. It is alread? known that a
commutative Noetherian Banach aiéébra must be finite~dimensional
(see for example [11], [251). Here we are able to obtain a
generalisation of this result by removing the'commutativity condition,
Definition Antalgebra A is said to be Artinian if every

descending chain

.

of left ideals becomes stationary. That is, there is some integer

n_ such that L =1L = eces
o n n +1
o o
Remark: In a non-zero algebra, this condition guarantees the

existence of minimal left ideals and hence, in the case of a semi-
prime algebra, the existence of minimal idempotents.
Theorem 1 Iet A Dbe a semi-simple Artinian Banach algebra. Then &

is finite-~dimensicnal.
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Proof: Let ii = {LK : A € A}, where -A is an indexing set,
be the family of all maximal modular left ideals of A, Suppose that

for every finite subset A, of A\

NL=0.

AeA A
[-]
If L, L, are distinct me mbers of i then "~
o]
Jy =L # Ly YLy, = Jp (say) .
Further, there is L3 € ﬁi such that

=)
Jy =L \Ly L3N\ Ly N\ Ly = J3 ,

otherwise
sz_nL =0,
AeA A
n-1
which is contrary to our assumption. In general, once Jn—l = (M) Lj
J=1

where Jn = Jn_l(\ L for

C
has been obtained, we obtain Jn # Jn-l

some Ln e‘jl . Since I is never zero, such L. will always

-1
exist. In this way we obtain a strictly decreasing.infinite sequence
(Jn) of left ideals of A, This contradicts the fact that A is

Artinian. It follows that for some finite subset A, of A we have

{:& L) = 0 and hence, by Theorem 1.29, A is finite-dimensional.
o :
Remark: It is well-known ([16], Theorem 19) that a semi-simple

Artinian algebra is a direct sum of minimal left ideals. This fact,

together with the socle theorem gives an alternative proof of Theorem 1.

Lemma 2 A homomorphic image of an Artinian algebra is Artinian.

This is clear since an infinite (strictly) descending.chain of left
ideals in the image will, on taking inverse images, give rise to an

infinite (strictly) descending chain of left ideals in the pre-image.
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Lemma 3 The radical of an Artinian algebra is nilpotent. (For a
proof of this fact see [18],P.38.j

Corolla%x 4 An Artinian Banach algebra is locally finite,

Proof: By Lemma 2, Ayracil(A) is Artinian so, by Theorem 1, is
finite-dimensional. The result follows by Lemma 3 and Lemma 1.20.
We now consider a chain condition which is weaker than the Artinian
condition.

Definition An algebra A is said to be weakly Artinian if for

each x € A, the chain of principal left ideals, (Axk) , terminates.

ket

That is, there is an integer k, (depending on x) such that

k k +1
o o
Ax = Ax = esee
k°+r ko
Notice that Ax. = Ax , for any integer r, implies that
k k +1
o o
Ax = Ax = sees

A stronger condition has been considered by Le Page ([24]) who
showed that any Banach algebra with unit which satisfies Ax2 = Ax (x € A)
is necessarily semi-simple and commutative., It had previously been shown
by Arens and Kaplansky ([2])that any such A mist in fact be finite-
dimensional so that the only compbx Banach algebras with unit which
satisfy Le Page'évcondition are (up to isomorphism) algebras of diagonal
matrices.

Note: The condition AxZ = Ax (x € A) is usually called strong
regularity.

In the appendix of [20], Kaplansky discusses arbitrary weakly
Artinian algebras but, so far as we know, very little is known about
this general case.

We note that the weakly Artinian condition is genuinely weakex
than strong regularity for, any semi-simple finite-dimensional (normed)

algebra is weakly Artinian while if it is non-commutative it will not

be strongly regular.



Remarks: ‘ (1) A homomorphic image of a weakly Artinian algebra
is weakly Artinian.
(ii) If ee A is a non-zero idempotent then eRe is
weakly Artinian whenever A is weakly Artinian.,
Examples: (1) Any Artinian algebra is weakly Artinian.,
(ii) BAny locally finite Banach algebra is weakly Artinian.

Proof of (ii}: Suppose A 1is a locally finite Banach algebra;

then rad(a) is nil and so (Grabiner, [9]) nilpotent and A/rad(d)
is finite-dimensional, Let x e A. If x is nilpotent then ciearly
(Axk) terminates so we may suppose that x is non-nilpotent.

Write A = A/rad(A) and x = x + rad(a). Since A is finite-

dimensional, (X;k) terminates. Suppose

— P —

AXP 1 A P
then

- [ .

A(xP)3 = AX

' - =P —p
so there is a ¢ A such that a(x )3 = (x )2,
That is,

ax3P - x2P € rad(d) .

Writing y = xP, this says ay’ - y2 € rad(a) — (*) .
Thus a(ay3 - y3)y = a2yl+ - ay3 € rad(A) which gives —— when added

with (*) — azy” - y2 € rad(A). Continuing the process we see that

akyk+2 - y%2 € rad(n) xeP ).

n
Since rad(h) is nilpotent, (rad(A))” =0 for some ne P  so that

(akyk+2 - yz)n =0 (k € \P ) — ().

Choose k € E) such that 2n < k + 2; then from () we have

zyk+2 = Y2n for some 2z € A

. k .
and so (Ayk) terminates which implies that (Ax) terminates.

Hence A is weakly Artinian.,
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Proposition 5 A weakly Artinian Banach algebra has nilpotent
radical.
Proof: Let A be a weakly Artinian Banach algebra and suppose

x ¢ rad(A). Then x is quasi-nilpotent, If x is not nilpotent

then (Grabiner, [10]), (Ax&) is an infinite strictly decreasing chain

of left ideals which contradicts our assumption that 2 is weakly
Artinian. Thus, rad(a) is a nil ideal and is therefore (Grabiner, [9])
nilpotent.

Remark: From the proof of the above proposition we note that a

weakly Artinian Banach algebra cannot contain any properly quasi-nilpotent
elements,

Proposition 6 Let A be a weakly Artinian Banach algebra. Then A

cannot contain an infinite sequence of pairwise orthogonal non-zero

idempotents,
Proof; We suppose that A does contain such a sequence and derive

a contradiction. Let (en) be such a sequence and choose

(c.) ce¢ \ (0) such that ¢_ >0 as n > and x = 2 ¢_e_ belongs
n - i n pel B D

to A. x is clearly not nilpotent. Since A is weakly Artinian there

. 3k
is an integer k such that Axk+l = Axk so that Ax = Axk and hence

for some a ¢ A we have

3k 2k
ax = X .

Thus z ach‘e =§:czke and on multiplying each side by e. we obtain
n n n n J

k
c.ae
J

5 =8y (3 eP) .

m

Hence ”ej” < |cj|k ”d[”ej” (3¢ P) which implies that

ldl = hj['k (3 e P) and this is impossible so the proposition is

proved.

If we now assume that there is a uniform bound to the lengths of
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our descending chains we are able to prove the following result.

Theorem 7 Suppose A is a semi-simple weakly Artinian Banach

algebra with unit and that there is some fixed integer n  such that
) o

n°+1 n,
Ax = AX (x € A) .

Then A is finite-~dimensional.
Proof: Kaplansky, [20], has shown that if (as we have here assumed)
n, is independent of x then we can find an element y € A which
n +1 n,
commutes with x and satisfies yx = x . This gives that
n n
[+

Y *x is an idempotent. If the unit of A is the only idempotent

in A we would therefore have that every non-nilpotent element of

A 1is invertible and hence that
Sp(A,x) = {A e € : A - x is nilpotent} (x € 2) .

Since the spectrum is always non-empty this means that A 1is
algebraic and hence finite-dimensional by Corollary 1.%/4. By
Wedderburn's structure theorem we now have A = ClL. (Alternatively,
for the case in which the unit of A is the only idempotent in A
‘We may prove that A = ¢l by the same method we used in the first
part of the proof of Theorem 1.41).

Suppose that A has proper idempotents. We employ the
"idempotent-splitting” technique and Proposition 6 to produce a
finite set {el, ves en} of pairwise orthogonal idempotents

satisfying 1 = e, and such that ej is the only non-zero

313

idempotent in e.Ae.,. Each ej is therefore a minimal idempotent
J

e~

and so A = soc(A). Thus, by Theorem 1.26, A is finite-dimensional.
Theorem 8 Let A be a weakly Artinian Banach algebra with unit
and suppose that rad(A) coincides with the set of nilpotent elements

in A. Then A/rad(A) is commutative and finite-dimensional.



Proof: B = A/rad(R) is weakly Artinian and by assumption has no
non-zero nilpotent elements. If P is a primitive ideal of B then
C= %@) is a'primitive weakly Artinian Banach algebra. Suppose x
is a non-zero element of C then for some yecC, kep we have

yx2k - xk .

k, k
Thus [x (yx =- 1)]%2 = 0 so since C has no properly nilpotent
k k - k k| , <
elements we must have x yx = X . Thus yx is an idempotent. Now,

for any proper idempotent ¢ ¢ c,

(ex - exe)2 = 0 = (xe - exe)? (x € C)
and so ex = exe = xe so that e is central. Thus yxk is a central
idempotent. Since C is primitive this means that yxk = 1., Thus

every non-zero element of C has a left inverse so, by Mazur's theorem,

cC=a1.
It follows that every irreducible representation of B 1is one
dimensional and so since B is‘sémi—simple it is therefore commutative.
Now suppose that u is a non-zero element of B, For some

v € B, p e ¥ we have

and as above, vuf  is idempotent. If 1 is the only non-zero

idempotent in B then B = €l. By Proposition 6, the féct that eBe
is weakly Artinian for any idempotent e € B, and the "idempotentf
splitting" argument we see that B is finite-dimensional.

Corollaxy 9 If A is a commutative weakly Artinian Banach algebra

with unit then A is locally finite.

Proof: Since A is commutative, rad(A) and the set of nilpotent

elements coincide and so the theorem applies to give A/rad(A)

finite-dimensional. 7The result follows by Propositiocn 5 and Lemma 1.20.

We may also prove Corollary 9 as follows:



Suppose x € A and Sp(A,x) is infinite. Then Sp(A,x) has a
cluster point p e Sp(A,x). By considering a translation of x we
may suppose that p = 0. Using the fact that Sp(A,x) = {¢(x) : ¢ € QA}

we choose a sequence (¢n) < ¢, such that
0= ¢n(x) >0 as n+>o ,
Since A is weakly Artinian there is y e A, k ¢ [P such that

k+1 k
yx =x .

Hence

k+1 k
| ¢n(y)¢n(x) = ¢n(x)

S0 ¢n(y) = 4>n(x)-l + ® as n~* * vhich is impossible. It
follows that Sp(A,x)  is finite (x € A) and hence
A = rad(a) ® € (for some n e P) by
Theorem 1.2. By Proposition 5 and Lemma 1.20, A is locally finite.
The following result is an easy corollary of Theorem 8. It is
due in part to Arens and Kaplansky ([2]) who proved finite-dimensionality
ﬁnd in part to Le.Page ([24]) who proved semi-simplicity and commutativity.

Theorem 10 Let A be a Banach algebra with unit such that

Ax? = Ax for each x € A ,
Then A is semi-simple, commutative and finite-dimensional.
Proof: The condition Ax2 = Ax (x € A) implies that A has no proper

nilpotent elements.

Remarks: (1) The converse of Theorem 10 is immediate from Wedderburn's

theorem.,

(ii) The assertion of the theorem fails without the assumption
of a unit element. Any Banach algebra, A, with the trivial multiplication
(i.e. all products are zero) satisfies ax2 = Ax {x € A).

(iii) Let A = C[0,1], the algebra of continuous complex



functions on [O,l]._ Then Ax™ = Ax for each invertible element X,
and the set of invertible elements is dense in A. In this example
we have the weaker condition that

2;5 = Ax (x € A) (*)

It would be of interest to charactérise those Banach aljebras which
satisfy (*).

(iv) Let A be an arbitrary Banach algebra and let
g € A be a properly quasinilpotent element. Then (Grabiner, [10}1)
the sequence (Aqn) is strictly decreasing.

Proposition 11 If A is a semi-simple weakly Artinian Banach algebra

then A cannot contain an infinite family of pairwise orthogonal
non-zero bi-ideals.

Proof: ‘Suppose (Ij)jem is an infinite family of pairwise
orthogonal non-zero bi-ideals of A. Since A is semi-simple none

of the Ij's are nil and so, for each j el , we may choose an
X € I, with x, non-nilpotent and l]x]l = 1.
J J J J ®
Let (c.) € 11, c, >0 (jeWP)., Then x = Z c, X, € A and x
J J j=1 J

is non-nilpotent: As in the preceding proposition there is %k e\P

and a € A such that ax3k = x2k .
(=] =]
Thus z 'c3.ka x?k = z c%k x2,k and multiplication of each
P B P B
j=1 i=1 -
side by xj gives cgka.x§k+l = c?kx§k+%n (j.e Py .
' : 3k 2k+1 k 2k+
Hence c#a.x?kfl = x%k+l and so Je.|" [laflll =57 =" 2 | HI
B J J J J J

which gives | 4| 2 |cj|-k (5 ¢ ) which is impossible.

Jacobson ([17]1) has shown that in any algebra A with unit if
xy = 1 while yx # 1 for some elements x,y €¢ A then A contains

an infinite sequence of pairwise orthogonal non-zero idempotents.
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This, together with Proposition 6, shows that in a weakly Artinian
Banach algebra with unit if an element is left (or right) invertible
then it is invertible. That is, writing Inv(A) for the set of

invertible elements in A,‘

Inv(d) = {x € A : x has a left or right inversel.

This leads to the following characterisation of Invi{a):
Inv(A) = {x € A : lan(x) = 0} .

It is clear that Inv(a) E_{x € A : lan(x) = 0}. Conversely,

suppose lan(x) = 0., Then, in particular, x is not nilpotent so

there is y € A\ (0) and k €{P such that yxk+1 = xk. so, .

{yx - l)Xk = 0 and hence yx =1, x € Inv(h).

For each x € A there is a smallest integer k € W) - such

that yxk-rl = xk for some y € A. Denote this integer by ind(x)

ind (x)+1 - xind(x)} .

and define R(x) = {y € A : yx If x € Inv(a)

'

then R(x) is a singleton. The converse also is true for suppose

ind (x)+1 _

R(x) is a singleton, {y} , and that zx = 0. Then 2x 0

ind (x)+1 = xlnd(x) so y=y + 2z and hence z = 0,

and (y + z)x
Therefore lan(x) = 0 and x € Inv(A).
Lastly, when A is semi-simple, x € Inv(A) if and only if

R(x) c Inv{(A). It is clear that x € Inv(A) implies R(x) E.Inv(A).

Suppose R(x) ¢ Inv(R) and let 2z ¢ lan(x) then

A - z)Xind(x)+1 - x:Lnd(x)+1

xJ.nd(x)+l - x1nd(x)

so if y € R(x) we will have y(l - z) which

gives
y(l - z) € R(x) € Inv(a) .
Since y € Inv(A) this means that l-2zc¢ Inv(A), z 1is quasi~-

regular. Thus lan(x) is a quasiregular left ideal, lan(x) ¢ rad(a)
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and so0 x € Inv(A). We collect these results together in

Proposition 12 Let A be a weakly Artinian Banach algebra with unit.
Then

Inv(A)

{xe A : x is left or right invertible}

{xen: lan(x) = 0}

]

{x € A : R(x) is a singleton} .

If also A is semi-simple then

Inv() = {x €A : R(x) S Inv(d)} .

Conjecture: A semi-simple weakly Artinian Banach algebra is finite-

dimensional.
Remark : To prove this using the "idempotent-splitting" technique one

would necessarily require to have some method of constructing idempotents
in A. We have so far been unable to do this using only the equations of

the type yxk+l =

xk' which the éﬁain condition gives us.

However, by strengthening the chain condition slightly we are able
to obtain idempoteﬁts.
Definition A .is said to satisfy the descending chain condition
(dece):.on principal left ideals if every descending chain of principal
left ideals stabilises.
Remarks (1) Such an algebra necessarily contains minimal leftv
ideals and h%Ee, in the semi-prime case, minimal idempotents.

(ii) Any homomorphic image of A also satisfies the given
chain condition.
’ idewn '

(iii) If e € A is =m@dpotent, eAe satisfies the d.c.c.
on principal left ideals.

Theorem 13 Let A be a semi-simple Banach élgebra which satisfies

the d.c.c. on principal left ideals. Then A is finite-dimensiocnal.
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Proof: We begin by remarking that since A is in particular weakly
Artinian it cannot contain an infinite sequence of pairwise orthogonal
non-zerco idempotents (Proposition 6).

Let E be a maximal set of pairwise orthgonal idempotents in A.
By the above remark, E is finite; E = {e;, «++ , em}, say. Consider
ejAe;. This is a semi-simple Banach algebra which satisfies the d.c.c.
on principal left ideals so contains a minimal idempotent f;. Since
e; is the unit for e Ae; we have

f1aff = fig Reyf) = Cf

so f; is minimal with respect to A. £f; and e; - f; are orthogonal
idempotents and if e; - £f; # 0 we replace e; in E by e; - f1; and
f1. The rest of the proof is identical to the corresponding part of
the proof of Tﬁeorem 1.38 except that we replace "regular Banach alaebra"
by "Banach algebra satisfying the d.c.c. on principal left ideals",

Corollary 14 For Banach algebras, the d.c.c. on principal left ideals

implies local finiteness.
Proof: If A satisfies the d.c.c. on principal left ideals, A is
weakly Artinian so has nilpotent radical. By Theorem 13 and Remark (ii)
the radical is c;finite. The result follows by Lemma 1,20,
Remark: Irn view 6f Corollary 14 and the fact that a locally finite
Banach algebra.is weakly Artinian, local finiteness appears as a
condition which, for Banach algebras, is intermediate in strength'between
the weakly Artinian chain condition and the d.c.c. on principal left
ideals. |

" We are able to prove one further result on weakly Artinian Banach
algebras,
Definition Aﬁ algebra A is two-sided wéakly Artinian if, for each

k k .
X € A, the chains (Ax ), (x A) terminate.
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Theorem 15 A two-sided weakly Artinian‘semi—simple Banach algebra, & ,
is finite-dimensional,
Proof: We show that A is mw-regular. Let x € A, We may suppose

that x is not nilpotent. There are integers p, q € “’ such that

+
aEl o P, 1T 2 %

Let k = max(p,q) so that

k+1 k k+1 k

Ax Ax , x A

It
»
b

and in particular

Ax4k = Axk ' x4kA' = xkA .

. 2 :
Write a = x k then there are y, z € A such that

ya2 = a=a’z .
Thus
ya = yalz = az
and hence
aya = a?z = a .
That is, x2kyx2% = x2k . so A is w-regular. By Theorem 1l.41,

A is finite-dimensional..

Corollary 16 A two-sided weakly Artinian Banach algebra is locally

finite. The converse is also trua.

The last section of this chapter consists of a discussion of the
effect an ascending chain condition has on a Banach algebra.
Definition. An algebra is said to be Noetherian if every ascending
chain of left ideals becomes stationary.

Remark: The other chain conditions which we have studied in this_
thesis have all been descending chain conditions. Most of these have
had the effect of guaranteeing the existence of minimal ideals. Thé‘

ascending chain condition guarantees the existence of maximal ideals
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but since we are working in a Banach algebra we already know that
these exist sb, in this respect at least, the Noethefian condition
tells us nothing new.

It is well known that.a commutative Noetherian Banach algebra
is finite-dimensional ([11], [25]); So far, there has been no
elementary proof of this fact. Here we prove that any Noetherian
Banach algebra is finite-dimensional. The main tools we shall use
are the open mapping theorem for bounded operators and Kaplansky's
finite spectrum theorem, We start with the following result which
may be found in [11l]. (The proof given here is essentially the same
as that in [11]).

Theorem 17 Let A be a Noetherian Banach algebra. Then all left
ideals in" A are closed.

Proof: Let L be a non-zero left ideal of A. We show that
ESL. |

Since A is Noetherian, I is finitely generated. 1In fact,

there are elements aj, a; *** , a € L such that
L= + ses + Aa_ .
L = Aa) + Aay a,

Define ¢ : A" + L by
n
d(xy, **° , x) = .z X, a, .

. n .
With norm "(xl, eee , xn)” = max{”xﬂl :i=1, **+ , n}, A is

n
a Banach space and ¢ is a bounded linear operator from A"~ onto L.
If € >0 ,write B(e) = {x ¢ A : ||d| < e} Then, by the open mapping
- n _ '
theorem, L + Z B(g)a. 4is all of L. Thus there are elements bi € L,
i
i=1

cij € B(e) (i, j=1, 2, **+ , n) such that

n
a, =b, + ZC..a. (1 =1, *** , n)
i 4= i3 3
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S0
)
b,=a bd c,. a (l:l LY n)
h 8 ’ 4 .
1 j=1 1]
Define VY : A"+ at by
n .
(‘{IX)i=x.i—j£lcijxj (1=1' e e 'n) .

Then Y is a bounded linear operator on A" and if I x{[ <1

l(x-¥sd <ne (I = identity operator) .

Thus, if ne <1, ¥ 4is invertible with inverse V¥ given by
. X v .k
J(r-v"= Je @=1I-Y) .
k=0 k=0
n
Now (6x), = X c,. X, so that
i . 1] J
j=1
X v (k) (k)
(06°x), = z c./'x, for some elements <c,., €A .
' 2y 1373 ij
J—.
N ‘ n N
Thus H Z ek] x}i = Z [z cik)]x where c(o) 1, cj(-l.) = cl
k=0 " 3=1lk=0 HJ +J J

(il j=ll 2] ey, n)o NeXt,

N
7 e
k=0 I

A

’ n

<1+ ¢+ ne? +n%d 4 000

€
1l - ne

=1+

- v )
Hence Y c,.’ | converges in A. Write ci
k=0 *J

Z cj(,k) (ll =1, 2,°°°", n).

Then, as N = o,
N ' ‘
([Z'Ok]x]. -+ (\P lx]. (i =1, *¢** , n)
1 1
k=0

N n ’
and § ['2 f?’]xj > Y x.  (i=1, e, m),
| L
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n .
-1
so, (¥ x)i = Z <’ xj and in particular

[+
]

=1 _
(W‘ b)i = 2 clj bJ € .

Hence L' € L and L ‘is closed.

Lemma 18 Let A be a normed algebra and - m be the left (right) -
regular representation of A on A. Then

Sp(a,x) U (0) = sp(B(A), m(x)) U (0) (x¢€ A)> and in particular
9Sp(A,x) U (0) =3sp(B(A), 7#(x)) U (0) (x € A) where "3" means
topological boundary.

Lemma 19 Let X be a Banach space and T € E(x). Suppose that
TX is closed and O € 0Sp(B(X),T). Then O is an eigenvalue of T.
Proof: ‘Since 0 ¢ 3Sp(B(X),T) there is a sequence (xn) c X

such that I!XJI =1 and TX +~0‘ as n -+ o (see [29], P. 278),
‘Since TX is closed Banach's Isémorphism Theorem shows that

Ker T = 0.

Lemma 20 Let A' be a Noetherian Banach algebra. Then rad(a)

has finite codimension in A,

Proof: The proof is by contradiction. Suppose there is an element
X € A such that 9Sp(aA,x) is infinite. Choose a sequence

(ln) c 3sp(a,x) \ (0) of distinct elements, kn. Let

Ln ={aed :ald; - x)(Ag = x) =oe (An - x) = 0}.

Then (Ln) is a non-decreasing sequence of closed left ideals of A,

By Theorem 17 and Lemmas 18, 19 there is a € A \ (0) such that

a(An+l -x%) =0

while

cally= X)) (hp = X) ceee (kn - x) = (A\; - xn+l) sese (%ﬁ-ln+l)a 20 .

Thus (L_) is a strictly increasing sequence which contradicts our
n .
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assumptionithat A is Noetherian. Hence 9sp(a,x) is finite;
So SP(Q,X) is finite for each x € A. The result follows by
Kaplansky's finite spectrum theroem.
Theorem 21 Let A be ;'Noetherian Banach algebra. Then A is
finite—dimensional.
Proof: By Lemma 20 it is sufficient to show that rad(a) is
finite~dimensional. We show first that rad(aA) is nilpotent.

Let X € rad(d). . The sequence, (lan(xk)), of left ideals of
A must become stationary since 2 is Noetherian;

1an(xN) = lan(xN+l) = eeee , QY .

Let B = A/lan(xN) and define T : B » B by

T(a + lan(xN)) = ax + lan(xN) .
Then T is a well-defined bounded operator on B. Furthermore, T
is quasinilpotent because x € fad(A) " and one~to-cne because
lan(xN+l) = lan(xN). Also, TB = (Bx + lan(xN))/lan(xN) is closed
in B since Bx + lan(x') is closed in A (Theorem 17). Thus, by
Lemma 19, O is an eigenvalue of T. This contradicts the fact

' N
that T is one-to-one. It follows that 1lan(x ) = A and hence

that x is nilpotent. Thus rad(d) is nil and so nilpotent;

m
R = 0, say, where R = rad(a).
- m-1
Suppose R" 1 is infinite~dimensional. If x € R then,
m-1 . -
since A/R is finite-dimensional and R.R = 0, Ax is finite-

dimensional. There are two cases to consider:

(i) AR.m'.1 is infinite-dimensional,

1

(i1) aR™ % is finite-dimensional.

m-1
If case (i) obtains then we may choose a sequence (xn) SR such

that (ax, +++<++ Ax_) is a strictly increasing sequence of left
n
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ideals of A. This contradicts the fact that A is Noetherian.

If case (ii) obtains then A annihilates an infiniteédiﬁensional
subspace 2 6f Rﬁ"', Then each subspace of 2 is also a left ideal
of A which is impossible since A is Noetherian. . Thus B! is
finite-dimensional. A= A/RW"’ is a Noetherian algebra with radical
Ry = R/R™' and A/R¢ 2 A/R is finite~dimensional-._ Since: B~' = 0
the above argument, applied to A, and R, , shows that R¥"2 is
finite-dimensional., Thus R" ® 4is finite-dimensional. A finite.
induction completes the proof,

Lemma 22 Let A be a Banach algebra in which every left ideal is
closed. Then A is Noetherian.

Proof (S.J. Sidney) : Let (in) be an increasing chain of left ideeals
in A. By assuzmption, each L, and L =521m is cloged. By Baire's
category theqrem some In, has non-empty interior in <L and hence

Ip, =L and A vis Noetherian. X

Theorem 25 A Banach algebra in which every left (right) ideal is
closed is finite-dimensiocnal,

Proof: The result follows immediately from Lemma 22 and Theorem 21.

We complete this chapter by proving the following extension

of Theorem 1.

Theorem 24 ‘An Artinian Banach algebra is finite-dimensional.
Proof': Let R Dbe the radical of an Artinian Banach algebra A.

Then ([18], p. 261) A/R is Noetherian and therefore finite-dimensional.
R is nilpotent ([18], p. 38 Theorem 1) ; XK' =0 (say).

R 1 45 a unital A/R-module ([18], p. 46 Theorem 1) so is
completely‘ieducible([18], p. 47 Theorem 2(1)). Thus R™' is the

direct sum of all the irreducible A/R—modules»which it contains.




From the way in which the module multiplication is defined, it can be
seen that these are in fact minimal left ideals of A. Since A is
Artinian, R™ ' can be written as a finite direct sum of these of
these minimal left ideals 3 R" '= L, L,® ... ® Lx. Each L; is
finite-dimensional since A/R is finite-dimensional. So, R™' is
finite-dimensional and closed, The Banach algebra A, = A/R™ ' has
radical Ry = R/R™' where R{"* = 0. It follows that R™ 2 is
finite~-dimensional, The process is repeated until, after a finite
number of steps, we obtain that R is finite-dimensional.

The results on Noetherian Banach algebras in Chapter 2
appear in a paper, [31], which Allan Sinclair and myself have recently

submitted to the journal Mathematische Annalen,
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CHAPTER 3

The aim of this chapter is to prove two results in the theory
of Banach *-algebras. The first is the well-known Shirali-Ford theorem
([30]) which states that if the involution on a Banach *-algebra is
Hermitian then it.is aymmetric. The second result is proved using the
same technique as is used to pro?e the Shirali~Ford theorem., This
time we are working in a Banach *-algebra in which the involution is
assumed to be both Hermitian and continuous, The result is that: the
positive wedge in such an algebra is a closed set.

Definition Let A be an arbitrary algebra., An involution on A
is a conJUgatg—linear, anti-automorphism of A of period two. That
is, a mapping };" x* of A into A with the following properties

1) (r x)* = A x* (€€, x €A, where A is the

complex conjugate of ab,

) (x+y) =@y (myed),
3) (x y)* = y¥ x* (%, ¥ € A),
8 () =x (x € A).

An algebra with involution is often called simply a
*—algebra, A Banach algebra which has an involution defined on it is
called a Banach *-algebra. The image x* of an element x under the
involution is called the adjoint of X. An element x in 'A» is said
to bé self-adjoint if x* = x. and non-negative if

sp(a, x) CE={ aecRt 20},
The involution is said to be Hermitian if for each self-adjoint element
x € A we have Sp(A, x) CR. The involution is said to be symmetric

+
if for each x € A we have Sp(4, x*x) CR.
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The equivalence of the preceding two notions for Banach
*=-algebras was demonstrated by Ford and Shirali in [30]. It is almost
immediate that a symmetric Banach *-algebra is Hermitian; . Here we
iptend to give a simple proof of the converse. Basic to the proof is
the following square root lemma which is due to Ford, [8 ]. We denote
by r(x) the spectral radius of an element x in 4 where

r(x) = sup{[A| s+ A e sp(a, x) 1.
Lemma 1 et A be a Banach *-algebra with unit, If x is arself—
adjoint element of A and r(1-x) < 1 then there is an element w
in A such that w is self-adjoint and w®= x.
Definition For each x € A we define

P(x) =Er(x*xﬂ%.

Lemmas 2 and 3 are due to Ptdk, [28].

Lemma 2 -~ If A is'a Banach *-algebra with a Hermitian involution
then ' r(x) < P(x) (x € A).

Egggf:@kdg(The lemma is proved uﬁ&er the assumption that A has a
unit but the result is extended easily to the case in which A has
no unit.)
Te show that if P(x) < 1 then 1 ¢ Sp(A, x). Then since
P(Aa) = |A| P(a) (AeC, ach) the result will follow,
Suppose P(x) < 1 then 1 - x*x € Inv(A) and so, by Lemma 1,

there is a self-adjoint element w in A such that 1 - x*x = W

Thus (1 e x)(1 = x) = (1 - x*x) + (x* - x)

we o+ (x* - x)

]

wl 1+ 7 (x* - x)v' Jw

Now iﬁq(x*'~ x)w' is self-adjoint so has real spectrum. Thus

oo
-1 ¢ sp(a, w'(x* - x)¥') and so 1 - x has[}eft inverse t—w—mx,
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- has
Similarly, we may show that 1 # x* s a right inverse fmm—t——x,

Hence 1 - 'x 1is invertible and 1 # Sp(A, x).

Lemma 3 Let A be a Banach *-algebra with a Hermitian involution.
Then 1) r(-) is submultiplicative on the set of self-ad joint
elements,

2) a sum of non-negative elements is non-negative.

Proof:(?&k)ﬂ Let u, v € A be self-adjoint then

r(uv) < P(uv) = r(vua)? = r(u®v?)2.

Thus  r(uv) < r(e®? )2 (n € P)
e e FRET e
> 2(u) r(v)  as  n o

2) It is sufficient to show that if u, v are non-negative

then =-1¢ Sp(A, u + v). Thus, suppose u, v € A and Sp(4, u) C R,

i)

and Sp{A, V) CR. Then 1 +u+v=(1+u)(1+7v) - uv

(1 + w1 - kJ(1 +v)

where h = (1 + u51u; k=(1+ §§1v and r(h) < 1, r(k) < 1.

Thus, by 1), r(hk) <1 so 1 +u +v € Inv(4) and -1 ¢ Sp(4, u +.v).
We are now ready to prove the main theorem of this chapter.

Throughout the proof of this theorem, since we shall be concerned only

with spectra of elements relative to the whole algebra A, we shall

abbreviate Sp(4, x) to simply sp(x).

‘Theorem 4 Let A Dbe a Banach *-algebra with unit. If the

involution on A is Hermitian then it is symmetric.

2222;: Let x € A. We have to show that Sp(x*x) CR. The proof

is by éontradiotion. Write h = (x + x*)/2 and k = (x - x*)/2i so

that h, k are self-adjoint and x = h + ik, Since the involution on

A is Hermitian and x*x is self-adjoint, Sp(x*x) CR. Let

4+

a = inf Sp(x*x), B = sup sp(x*x) so that a < x*x € B.



Since a sum of non-negative elements is non-negative, we have

Cxx* = 2(h° 4+ k) - x*x > -B.
since Sp(x*x)\(0) = Sp(xx*)\(0) this shows that =8 < a, also that
B cannot be strictly negative, and that if 8 = 0 then a = 0. We
mey assume without loss of generality that Sp(x*x) C (-1,1).

Suppose now that « < 0 and put y = 2x(i + x*x51. Then
vty =1 = (1 = x*x)2(1 + x*xja s0, by the Spectral Mapping Theorem,
inf Sp(y*y) = £(a), sup Sp(y*y) = £(8) where f£: (-1,0) >R is
given by f(A) =1 - (1 - A)2(1 + ASZ. It is clear that

fla) < 0 < £(B) < 1.

- if f(a) < =1 then we are finished for f(8) 2 -f(a), £(B) < 1 will
provide a contradiction, If not, we repeat the process with
z = 2y(1 + y*yii. Observe that f(y) < 4y for any y € (-1,0) so
 that inf sp(z*z) = £(£(a)) < 4%a,
Tt is clear that eventually (fofo...of)(a) € -1 while we
always have (fofo...of)(B8) < 1 and this gives the desired contradiction.
Corollary 5 The theorem holds even if A has no unit,

Proof': A @ C1 is a Banach *-algebra with a Hermitian involution.



Theorem © Let A Dbe a Banach *-algebra with unit and suppose that

the given involution on A is Hermitian and continuous. Then the

positive wedge, P = {h € A: h* = h, h > 0], is closed.

Proof': " Since the involution is continuous the set of self-adjoint

elements is closed. Suppose (hy) CF, 0 s hp€ @ < 1 and

o >h § P so that @ = inf Sp(h) < 0. Since the involution is

Hermitisn, r(+) is subadditive on the set of self-adjoint elements [%e WJJ
and so  |r(hy) - r(h)| < r(hs - h).< lha - hll >0 as n > e,

Hence -1 < ~-a & h s @< 1,

Define g: (-1,0) =R by g(A) = 2A/(1 + A) . Then
g(hn) > g(h) as n* e~ 80, since 0 g g(hn) € g(a) < 1 we have
-1 < -g(a) & g(h) < g(e) < 1. Now, g(ﬁ) = inf Sp(g(h)) so if
g(B) € -1 we ﬁave a contradiction. If not, we consider (gog)(hp)
and so on. For -1 < y< O we have g(y) < 2y and so, aS in the
proof of Theorem 4, we see that eventually (gogo...og)(8) s -1
while we always have (gogo...;gy(h) > -1, This proves the theorem,

We éonclude thic chapter on Banach *-algebras with a theorem
which is.a B*-algebra version of Kaplansky's fiﬁite spectrum theorem.
Definition A Banach *-algebra A 1is called a B*-algebra if the
norm and the involution on A are reiated by the formula

e =l (x € ).
Remark A B*-algebra is semi-simple. (see e.g. [29 ], P.188).
Theorem 7. Let A be a B*-algebra in which every self-adjoint
element has a finite spectrum, Then A is finite-dimensional,
Proof: We may suppose without loss that A has a unit ([29],
Lemna(4,1.13) ). Provided A # €1 we may obtain self-adjoint

minimal idempotents in A as follows. Let C be a maximal commutative
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¥~subalgebra of A and let x € C. Suppose x =h + ik where h, k

are self-adjoint. Then h, k € ¢ and sp(C,x) = {¢(h)+ip(k): ¢ € 8],

But [¢ (h): ¢ € &}
¢ (K): ¢ € 8.}

sp(C, h)

sp(C, k)

-5p(4, h) and

Sp(4, k) are finite and therefore
so is Sp(C, x). Since C _1is semi-simple we. have,by Theorem 1.2 ,
C = Cey® Cez® ... @ Cey where ey, €2, ... , €p are pairwise
orthogonal minimal (in C ) idempotents. 1In fact, each ey is self-
adjoint and minimal in A, For,

e; ef i€ € Ce;

= ef.e'eﬁ € &ef so that e? = e; while

J
if "y =u + iv € A then &y e =%uq4d%v%60% since
e;u e, &V e ;RinC-Wmumuﬁm
Let ﬁ be a maximal set of pairwise orthogonal self-adjoint
minimal idempotents in A. By our assumption on spéctra and Lemma 1,
E is finite, E = {f4,f2, ... ,fn} say. We have fyi+ for o0 + = 10
~For if not, then £ ; 1 —'ZLT1:f; is a self-adjoint idempotent énd
fAf is a B*-élgebra satisfying the condition of the theorem so that,
by the process already described, we may find a self-adjoint minimal
‘idempotent in fAf which is orthogonal to E thereby# contradicting
the maximality of E. It folloﬁs that A = soc(A) and so A is
finite~-dimensional.
- Note In [27], Ogasawara considers certain other conditions which

force finite-dimensionality in Banach *-algebras. In particular,

Theorem 7 (above) is an eaayAconsequence of Theorem 1 in [27].



CHAPTER 4

In ihis chapter we collect together several miscellanecus
results on Banach algebras most of which have appeared in [(7].

We consider some.conditiOns which are sufficient to ensure
the existence of proper nilpotent elements in a Banach tlgebra and
then go on to construct a non-commutative Banach algebra in which
there are no quasinilpotent elements - and hence no nilpotent elements.
A slight alteration in the construction of this algebra produces a non-
commutative radical Banach algebra which has no divisors of zero other
than 0,

Next we éonsider conditions on a Banach algebra which imply
that the Banach algebra is commutative. In certain special cases we see
that the commutativity question and the existence of nilpotents question
are closely related, .

Finally, wé look at thé spectrum of an element of a Banach -
algebra and show by an example that it is not in general possible to
remove all ( or indeed any ) of the interior points of the spectrum by
enlarging the algebra which contains the element.,

Our first result is entirely algebraic.

Theorem 1 An algebra of operators on a complex vector space which
contains a non-central operator of finite rank also contains a non-

. zero nilpotent operator.

Proof': Let A be an algebra of operators on a complex vector space
and-let b be a non-central finite rank operator in A, Since b

has finite fank,»the subalgebra bAb is finite-dimensional and hence

its radical consists of nilpotents. Suppose therefore that bAb is
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polynomials in T and so belongs to A. In particular, if every P

semi-simple, By Wedderburn's Structure Theorem bAb is isomorphic to
a finite direct sum of full matrix algébras over € and hence contains
non-zero nilpotents unless if is commutative. Thus we may suppose that
bAb is commutative, Let { e¢: i =1, ... ,k } bea spanniﬁg subset
of minimal idempotents of bAb, and let t € A. For each 1i,
e;t - e te; and te; - e;tei are niipotent. If these are all zero
then et =te, - (i=1, ... ,k) , and so

(1) ct = te (t<€ A, ¢ € bAb) which implies that

(2) (bt)n= (tb)n (t €Ay n=2,3,...,")
By using (1) and (2) we can show that each term in the expansion of

3 3 3
(bt - tb) is precisely (bt) and hence we have (bt - tb) = 0.

‘Since b is non-central, bt - tb is non-zero for some t € A and

thus A alwayé has a non-zero nilpotent.

Corollary 2 Let A be an irreducible Banach algebra of operators
and suppose that A contains a non-zero finite rank operator. Then
A contains a non-zero nilpotentlsperator.

Proof's The centre of A is either (0) or the 'scalar multiples of
the identity. |
Corollary 5 Let H be a Hilbert space and suppose that T € B(H)
is a compact Hermitian operator° Then any closedlsubalgebr%25f B(H)
which contains T and in which T is non-central also contains a
non-zero nilpotent operator.

Proof: For each A € Sp(4, T)\(0) there is a corresponding finite

rank spectral projection PA . Each P is a uniform limit of

P
A
is central in A then so is T. Thus, for some A €-Sp(a, T)\(O),

P, 1is non-central and the theorem applies.

A
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Remark In general, we cannot drop the "non-central'" condition, For
example, let X be a complex vector sﬁace and choose any two. linearly
independent vectors u, v € X, Now choose f, g € X' (the dual of X)
such that f(u) = g(y) = 1 and f(v) = g(u) = 0. For x e,'x, h € X
define . (x ® h)(z) = h(z)x (z € X). Then
x®h is a rank one operétor on X. .Let S=uRf +vReg and
T=ug+veFf, Then $* =T =3 and ST =TS = T. Clearly, the
algebra generated by S and T is simply the linear span of |{S, T}
and a simple calculation shows 0 to be its only nilpotent., (A non=-
trivial example is given by Theorem 8). |

The following theorem which is due to Behncke, [ 3], gives a
necessanyland sufficient condition far the existence of non=-zero
nilpotents in a certain class of L'-algebras,

Theorem 4 Let G be a locally compact group. Then L'(G) has non-
zero nilpotent elements if andkaﬁly if G is non-abelian,

Remark Any algebra which con&éins a non-central idempotent element
also contains a non-zero nilpotent (see froof of Theérem 1).

In general, non-commutativity alone is not sufficient to
guarantee the existence of non-zero nilpotents (or even guasinilpotents)
- in & Banach algebra, This is made clear by our next theorem.

Theorem 5 There exists a non-commutative Banach algebra in which 0
is the only quasinilpotent element,

252223 Let F:; be the free algebra on two symbols u, v. That is,
the algebra of all finite linear combinations of words in u and v,
The set of all such words, {wp}, dis countable and we take the
standard enumeration given by

2
u, v, v, uv, vu, v3, u®, u?v, uw, ...



-57 =

Let B be the algebra 11(Fz) with pointwise multiplication.

That is, B is the algebra of all infinite series x = 2: W
“x“—

whereL I< © , Then B 1is a non-commutative Banach algebra. Let
x € B, x # 0, and let a, be the‘first non-zero coefficientlin the
series E:qn W . Then the coefficient of wj in *" is
precisely 4, and so -" < > | &le (m=1,2, «o. ).
Hence r(x) > | ap| > 0.

Remark B is an infinite dimensional non-~commutative Banach algebra

in which the set of qua31n11potents coincides with the set of nilpotents.
With Fx, @s in Theorem,l, let v (wp) denote the length of

the word w, , and let C be the algebra of all infinite series

qu‘wn wﬂere lx| = §:|cml/v(wn)!< w, It is straightforward to

verify that C is a non-commutative Banach algebra under || « §}.

Let x €C, k ¢ P. Then

" xk"$ |an'|... Ianl
Z; v(wn oo Wo)!
z: v(wn)!.....v(wn)! Iaml.... lanl

; ("(Wn) oot V(Wnk)) ! V(wn‘) Teee .V:(wnk) {

(/e || = |I*.

Thus r(x) = 0. "It is clear that C has no divisors of zero. We

have proved the follﬁwing result,

Theorem 6 There exists a non-commutative radical Banach algebra
‘which has no divisors of zera.

Remark Hirschfeld and Rolewicz, [14], have constructed a clasé of
Banach algebras without divisors of zero. In fact, given a commutative
Banach algebra with no divisors of zero, they construct an associated
non-commutative Banach algebra which has the same»property.
We now consider conditions which force commutativity. Our

first result concerns a condition on the ideals in the algebra.
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Theorem 7 If A is a complex normed algebra such that Ax = xA
RO -

for each x in A then  A/rad(a) is commutative.

Proof': Note first that every left or right ideal of A is in fact
a bi-ideal, |

Any quotient of A by a bi-ideal satisfies the given condition
so we may suppose that A -is semi-simfle. It is therefore enough to
show that every irreducible representation of A is one-dimensional,

Suppose P is a primitive ideal of A. .Then B = A/P is
a primitive normed algebra. For any modular ideal M of B we have
M = (M:B) - the quotient of M in B. Since B is primitive there
is a maximal modular ideal M such that (M:B) = 0, Hence (0) is a
maximal mAdular ideal of B. Thus B is a division algebra so, by
Mazur's theorem, B is one—dimensional., It follows that every
irreducible representation of A dis one-dimensional,

Theorem 2.10 gives a sufficient algebraic condition for a
Banach algebra with unit to be ;6§mutative-- namely that A satisfy
the strong regularity condition, Ax" = Ax (x € K).

In [24], Le Page gives a variety of conditions (including
strong regularity) which force Banach algebras with a unit element to
be commutative. Most of these are conditions on the norm structure of

the Banach algebra, For example,

) el=1=|® for each x € A

(2) " ab || = a" ba || for some a > 0, each a, b € A
A slight variation of the proof which Le Page gives for (1) yields
the following sufficient condition for commutativity.

(1)' r(x) 2 k| x || for some k-> 0, each x € A

(See for example [4 ], Theorem 4.10)
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The next theorem which is due to Kaplansky (see [5 ], P.58)
gives a neéessary and sufficient condition for commutativity in
C*~algebras., Recall that a C*-algebra is just a closed self-édjoint
subalgebra of B(H) for some Hilbert space H.

Theorem 8 A C*-algebrsg ig commutative if and only if 0 is its
only nilpotent element, |

The above theorem is obviously of interest also in connection
with the question of existence for nilpotent elements which we discussed
earlier,

Finally in this chapter we take a brief look at how the
spectrum of an element of a Banach'algebra behaves when we shrink or
enlarge the algebra to which the element telongs.

Let A be a Banach algebra with unit and let B be a
closed subalgebra of A with 1 € B, For x € B it is well—-known
that sp(a, x) € sp(B, x), | asp(a, x) 203p(B, x).

In particular, if Sﬁ(A, x) is finite then Sp(a, x) = sp(B, x).
Zelazko, [32], has shown that for commutative A  Sp(A, x) = Sp(B, x)
(x € B, B any closed subalgebra of A) if and only if Sp(a, x) is
totally disconnected for each x € A. In general, for non-commutative
A, it is known (seer for example [12], Theorem ) that if x € B
where B is a closed subalgebra of A then Sp(a, x) = Sp(B, x) if
and only if Sp(A, x) fails to separate the plane. In the opposite
direction we may ask if it is possible to remove the topological
interior of Sp(A, x) by considering Sp(C, x) for some (sufficiently
large) superalgebra C of A. The next example shows that this is not
always possible and that in fact the worst possible case can occur.

That 1s, we may not be able to remove any of the topological interior.
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Example 9 Let A be the Banach algebra of all bounded operators
on 1%, and let s be the unilateral shift operator, Then

sp(a, s) = A eCs |Al <13,

Since every singular element of A 1is a topological divisor of zero,
A-s is a topological divisor of zero and hence permanently singular

for each A € Sp(a, s). (See [29], pps. 185 and 20.)
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