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Abstract 

Rapid reactions are an essential part of performance in most sports. In Judo the 

main route of information input is somatosensory, yet reaction studies have 

historically utilised visual or audio prompts. We have addressed the gap in 

knowledge pertaining to judoka’s cognitive performance on a suitable reaction 

test. We have designed a Judo-specific reaction device with a sensory signal that 

is consistent with the stream of tactile feedback in Judo. We set up a study to 

evaluate this novel haptic choice reaction test device and found it to be valid and 

reliable. We found mean reaction time to haptic signals to be shorter compared 

to visual ones, which is consistent with findings reported elsewhere in scientific 

literature. We also found evidence of judoka having achieved consistently shorter 

mean reaction times to haptic signals than people with experience in sports 

where the dominant sensory input is visual. We then used the haptic device to 

collect reaction time data from a cohort of elite judoka on multiple occasions. In 

order to sustain the judoka’s attention during the tests we introduced competition 

in the testing procedure. Our approach has added to the ecological validity of the 

method used due to the Judo-specific sensory modality of the reaction task and 

because the tests took place at the judoka’s training environment, during regular 

training sessions, and under competition pressure. We collected data under three 

conditions of physical intensity: Baseline (at rest), Moderate Intensity (post warm 

up), and Severe Intensity (post maximum effort tests). Our results show that the 

mean reaction time improved from Baseline by a considerable margin in a group 

of elite judoka at Moderate Intensity with no difference in accuracy. We found no 

significant difference between the mean reaction time at Baseline and Severe 

Intensity but there was a significant deterioration in accuracy. 
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1.1 Introduction 

Imagine a Judo athlete (judoka) who is placed high in the World rankings and 

has achieved qualification for the Olympic Games. Now imagine this judoka at 

the Olympics about to start the first match on a quest for Olympic glory after years 

of physically intense training and competitions. Our judoka’s first opponent is 

somebody who is placed a lot lower in the World rankings. The match begins, the 

pace picks up and at a crucial point our judoka makes a wrong decision, a wrong 

move, and loses! Our judoka’s Olympic dream is over. What went wrong? How 

could our experienced judoka make such a decision error? Was our judoka too 

dehydrated? Could the extent of dehydration have had a negative effect on our 

judoka’s cognitive performance? Perhaps our judoka’s warm up routine did not 

evoke the desired mental arousal level? Maybe our judoka was too fatigued 

mentally from the intense preparation the weeks and months prior the event? 

Could it be that our judoka was never able to sustain attention at the intensity 

needed for such a big occasion? Of course, we do not know the answer to why 

our judoka made an erroneous decision but all the questions above point to the 

fact that even though cognitive performance is the least examined performance 

parameter in Judo it remains a crucial factor for success. 

Judo is a popular Olympic combat sport where two opponents of the same sex 

and similar age and body mass attempt throwing or grappling techniques against 

each other. Judo has been part of the modern Olympic Games since 1964 and 

the International Judo Federation (IJF) has 195 National Federation members. 

With such large participation around the World, it is unsurprising that Judo has 

become a highly competitive sport. The high physical demands of Judo 

(Franchini et al., 2011; Masashi et al., 2017) and the exceptional physical 

characteristics of elite judoka (Quintero et al., 2019) have already been studied. 

As is the case in other sports with extremely high competition standards, such as 

athletics and swimming, the performance margins between the top-level judoka 

are extremely small. Therefore, coaches and judoka are always looking at how 

to best optimise training adaptations and develop the tactical and technical skills 

necessary to increase the chance of winning major Judo tournaments.  
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Judo is an open skill sport, and as such there are no pre-determined moves a 

judoka can apply against their opponent during a fight. A judoka must identify, 

and exploit, opportunities to throw or force their opponent to submission to score 

points within the competition rules and the time limit of a bout. In Judo, cognitive 

performance and physical performance are interdependent; a powerful judoka is 

unlikely to be successful if unable to respond quickly with the correct defensive 

or attacking actions. Similarly, a tactically astute judoka is unlikely to be victorious 

if lacking the necessary athleticism and stamina to deal with a physically strong 

and well-trained opponent. Thus, the study of reaction time (RT) in Judo is 

important because it can lead to a better understanding of judoka’s cognitive 

performance under different training or competition conditions (e.g. training while 

fatigued or when suffering from a mild or high degree of dehydration). 

Making quick and correct decisions is an important ability elite judoka need to 

have so fast reactions are desirable. However, these are meaningless if not 

coupled with excellent execution and timing of the correct defensive or attacking 

response. Therefore, quick reactions in themselves cannot be a determinant of 

high-level skilled performance in judo. As shown in other sports, the ability to 

decipher sport specific cues from the opponent’s actions is a characteristic trait 

of skilled performers (Müller & Abernethy, 2006; Savelsbergh et al., 2002). 

However, it is obvious that any skilled judoka needs to rapidly process a stream 

of information input during a competitive bout and make equally quick decisions 

on the best action (Bahmani et al., 2019).  

Michael Posner considered RT as an indispensable component of skilled 

performance that deserves more attention (Posner, 1966). Human RT has been 

studied extensively, mainly by psychologists, both in the general population but 

also in sporting populations. The study of RT through various methods has long 

been thought of as a way to gain an insight into the function and performance of 

the central nervous system (CNS). Fast RT is a fundamental factor behind 

successful timing of movement and quick decision making, which means that 

short RT is important for success and injury prevention not only in Judo but in 

most other sports and in many situations in daily life.  
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RT can be affected by several factors. For example, RT gets faster from 

childhood to early adulthood and then slows down, progressively, as we age 

(Surwillo, 1963). It is also known that a person’s capacity for fast RT reduces 

when the processing of more information is needed (e.g. when trying to make a 

correct choice out of four options versus two options). Similarly, reaction speed 

diminishes when the CNS is fatigued (e.g. sleep deprivation) or under the 

influence of drugs (e.g. alcohol). 

In most sports the primary sensory routes used, and therefore conditioned, are 

the visual or aural, or both. This is reflected in the fact that widely used reaction 

test methods overwhelmingly utilise visual or audio prompts for their response 

tasks. However, Judo is mostly a kinaesthetic sport where participants react to 

many tactile cues during competition. To date, various studies have been 

conducted to examine the reaction speed of judoka but the reaction testing 

methods used were based on visual or audio signals (Badau et al., 2018; 

Cojocariu & Abalasei, 2014; Javier et al., 2013; Lech et al., 2011; Lima et al., 

2004; Morales et al., 2018; Sterkowicz et al., 2012; Supiński et al., 2014; 

Zukowski, 1989) despite the fact that judoka’s dominant sensory input is 

somatosensory and with tactile cues mostly received through their hands when 

they grip their opponents. 

In the following sections we review academic literature from the field of mental 

chronometry to: 1) present a brief history of RT tests and highlight that the level 

of accuracy needed for such measurements required innovation in technology 

that was not available until the mid-19th century, 2) outline the main factors 

known to influence response time, 3) describe a simple classification of RT 

testing methods, and 4)  show that different sensory signals (e.g. visual cue Vs 

audio cue) impact differently on response time. This latter point, regarding 

sensory route-based RT differences, has had a strong influence in our motivation 

to investigate judoka’s RTs to haptic signals. 

Currently it is unclear what is the typical RT and accuracy in a choice reaction 

test in experienced judoka. Despite the rather large body of work on human RT 

there is little information available on RT within the context of competitive Judo 

training and competition. It is unclear how experienced judoka’s reactions may 
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be influenced by their training load, warm up routines, or by the weight loss 

strategies they choose for acute weight loss i.e. dehydration to ‘make weight’ in 

the final days leading to competition.  

To be able to contribute to the judoka’s efforts to develop outstanding skills we 

first need a method to examine their RT parameters that is compatible with the 

dominant sense used, which in the judoka’s case is tactile. With the proper 

method in place, we would be enabled to define the typical range of RT and 

accuracy in this group of athletes and then investigate how such parameter 

values might be affected under different conditions during a typical training cycle 

or through a period of competitions.   
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1.2 What is Reaction Time? 

Reaction time (RT), also known as response time or latency, is a measure of how 

fast a person can complete a voluntary motor task following a stimulus. RT can 

be thought of as a sequence of distinct events including: 1) the arrival of the 

stimulus to the sensory organ, e.g. the acoustic wave following the firing of the 

starting gun reaches the tympanic membrane (eardrum) of the sprinter, 2) the 

processing of the stimulus in the brain, e.g. the sprinter perceives the vibration 

going through the inner ear as the firing of the starting gun, 3) the processing of 

the decision in the brain that initiates the relevant response, e.g. the sprinter 

recognises that the starting gun has been fired and knows it to be the signal that 

starts the race, 4) the neural response travelling out from the brain and through 

the efferent pathways to the relevant motor units, e.g. the sprinter’s brain 

generates electrical impulses (action potential) to the motor units necessary to 

push off the starting block, and 5) the initiation and completion of the motor 

response required to complete the task, e.g. the sprinter’s feet are pushed 

against the starting blocks at which point the reaction to the starting gun has been 

completed and the sprinter’s physical movement off the starting block has begun. 

A more simplified division of RT includes: 1) premotor RT; the time it takes from 

the initiation of a stimulus to a change in electrical activity produced by skeletal 

muscles as seen with electromyography (EMG), and 2) motor RT; the time from 

the change in EMG to completion of the movement (Botwinick & Thompson, 

1966). Of course, the latter description of RT does not exclude reflexes. However, 

RT of reflexes is of no interest for the purposes of competitive Judo training as a 

reflex does not involve a cognitive process (rather a nerve impulse through the 

afferent pathway to the spinal cord and then through the efferent pathway). 
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1.3 A brief history of Reaction Tests 

For a long time, scientists had wanted to study the connection between a 

person’s cognition and reaction to external stimuli. Studying reaction speed was 

thought of as a way to gain an insight into the function of the central nervous 

system but it was believed that reactions were too rapid to be measured 

accurately. Franciscus Donders, a pioneering Dutch ophthalmologist, was 

arguably the first scientist to have been able to measure RT in humans and did 

so in 1868 with the use of a phonautograph, which was an early sound-recording 

device, and the oscillations of a tuning fork (Donders, 1969). Other scientists 

followed soon after with new RT measuring devices e.g. Galton’s simple 

pendulum chronograph (Galton, 1890), and with the development of computers 

capable of high processing power measuring RT has become an easy and 

straightforward process. Reaction tests have advanced remarkably and are now 

a staple tool in many research areas and used in a wide range of settings. For 

example, over the years, various reaction tasks have been designed to assess 

whether RT slows down with sleep deprivation (Lim & Dinges, 2008), ethanol 

intake (Gustafson, 1986), dehydration (Ganio et al., 2011), hyperthermia (Holt & 

Brainard, 1976), mental fatigue (Pattyn et al., 2008), and disease (Stern et al., 

1984). 

Together with the first reliable data from reaction tests, Donders was also the first 

to develop three RT test methods that remain to date three of the most used RT 

test paradigms: 1) a simple response task, 2) a discrimination task, also known 

as go/no-go task, and 3) a choice reaction task. With his work Donders was able 

to demonstrate that RT is subject to the complexity of the test; simple reaction 

tasks produce shorter RTs than choice reaction tasks (Donders, 1969). It is 

perhaps obvious to us now, the RT from a simple reaction task only consists of 

the time necessary to receive the stimulus and execute the task in response. 

Whereas in a choice reaction task a higher level of information processing is 

needed that includes differentiating between signals and deciding on a choice 

before executing the task. 

In 1952, William Hick, showed that choice RT increases logarithmically, up to a 

point, as the number of available response options increase (Hick, 1952). This 
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concept is now widely known as Hick's law. Perhaps, within the context of highly 

competitive sports, Hick's law may provide part of the explanation as to how 

highly skilled and tactically astute performers can get the competitive edge; they 

are able to anticipate more accurately their opponents’ moves and so leave 

themselves with fewer potential choices to respond to.  

1.4 Why test Reaction Time? 

Fast RT is a fundamental factor behind successful timing of movement and quick 

decision making, which means that short RTs are particularly important in many 

sports and in many situations in daily life. For example, the ability of a goalkeeper 

to stop the ball going into the goal, or the ability of a driver to avoid a road traffic 

incident are largely dependent on possessing the ability to react quickly to an 

expected or an unexpected situation. In psychology and medicine studies there 

is a plethora of different cognitive tests (Psychometrics) with RT tests carried out 

in a wide variety of research areas. For example, some of the data gathered have 

shown RTs to correlate with ageing (Deary & Der, 2005; Salthouse, 1996), 

intelligence (Madison et al., 2016; Woodley et al., 2013), and mortality (Shipley 

et al., 2006; Yamada et al., 2013).  

Results from studies of RT in Judo have suggested that higher reaction speed 

amongst competitive judoka correlate with training experience (Supiński et al., 

2014) and performance level (Zukowski, 1989). But experienced athletes are 

likely to demonstrate shorter reaction times, including sport specific movement 

time, mostly due to improvements in premotor time and motor time (Lee et al., 

1999) from neurological adaptations that take place as a direct result of repeated 

practice and learning, which reduces cognitive burden and allow for better 

attention (Bengtsson et al., 2005; Reis et al., 2009). For example, an experienced 

driver does not have to think about the sequence of actions necessary every time 

the car’s gear needs shifted thus, the driver’s attention can be concentrated on 

watching for road hazards and ultimately respond faster to an unexpected 

situation. In contrast, inexperienced drivers are likely to respond slower in the 

same situation only because of the increased cognitive burden they face from 

having to think about the right steps to shift gears, the Highway Code rules, and 

watching for road hazards. 
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In a sport like judo, where there is a strong technical and tactical skill component, 

testing RT could be useful because the proper RT test could potentially expose 

any decline in cognitive performance (quick information processing) under 

different training or competition conditions e.g. training while fatigued, or when 

suffering from a mild or high degree of dehydration. However, if we are interested 

in investigating typical RT parameters in elite judoka then, only RT tests relevant 

to the kinaesthetic demands of Judo (i.e. haptic mode as most of the information 

stream during a Judo bout is tactile) should be used.  

1.5 What factors influence Reaction Time? 

In real life competitive environments, it is important to note that the relationship 

between an athlete’s anxiety level and physiological arousal is critical for best 

performance. According to the ‘catastrophe model of anxiety’ elevated levels of 

anxiety and physiological arousal can lead to a dramatic drop in performance 

(Hardy, 1996). Put differently, judoka may display a complete breakdown, a 

‘catastrophe’, in the speed and accuracy of their reactions if they have not been 

able to control their anxiety adequately. ‘Choking under pressure’ is a common 

phrase used mostly to describe a performance decrement under the pressure of 

competition (Baumeister, 1984). Outside this somewhat emotional response, 

which is of interest to sport psychologists, we can find a lengthy list of factors that 

have a more straightforward impact on the speed of reactions.  

It is proven that the time needed for the brain to process information and provide 

a response is heavily dependent on the complexity of the information received 

(Donders, 1969; Hick, 1952) and the primary sensory route through which the 

information reaches the brain e.g. visual versus acoustic (Donders, 1969). The 

degree of familiarisation test participants have with the reaction task and 

conditions matters too (Fontani et al., 2006; Lee et al., 1999) as well as their age 

(Deary & Der, 2005), sex (Silverman, 2006) and fitness (Bauermeister & Bunce, 

2016). It has been shown that RT results are also subject to the intensity of the 

stimulus (Brown et al., 2008; Nissen, 1977). Within the context of elite Judo, and 

most other high-performance sports, factors such as age, sex, and fitness are 

likely to be cancelled out as experienced adult competitors are well trained and 

are grouped by sex and within narrow body mass limits. Other factors at play that 
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can influence RTs may include fatigue (Corfitsen, 1994), drugs (Harms et al., 

1981; Kamimori et al., 2015), motivation (Eckner et al., 2011), and prior exercise 

(Ashnagar et al., 2015). Exercise is usually expected to improve reaction speed, 

but this outcome is not consistently observed and may be subject to the method 

used to assess RT (Arcelin et al., 1998). 

Irrespective of the factors at play, there is inter-individual variability within RT 

results from simple and choice reaction tasks, which means that any group of 

people cannot produce identical RTs between them. Also, a variability exists in 

the RT results achieved by the same person on the same reaction task (the main 

reasons for this variability are discussed in Chapter 6), and the mean of the intra-

individual standard deviation in RT across the same test appears to increase with 

age (Hultsch et al., 2002). Hence, when investigating the RT ability of any athlete, 

it is probably more meaningful to collect enough data from which we can estimate 

the typical mean RT and variability instead of seeking a single RT value.  

1.5.1 Simple Reaction Test Vs Choice Reaction Test 

As already explained in an earlier section, from his 19th century work on RT 

Donders had proposed three RT testing methods, which arguably could be 

broadly classified into two overall methods: a simple reaction test (SRT) and a 

choice reaction test (CRT). In a SRT all is needed is a single response to a single 

stimulus e.g. pressing a buzzer when a light comes on. In a CRT tasks can vary 

considerably. A simpler CRT test requires a single response to one of two options 

presented (i.e. go/no go) e.g. pressing a buzzer when a light goes green but 

ignore it if the light turns red. But there are CRTs where the task is more 

complicated and a specific response is required out of several stimuli e.g. 

pressing the correct letters on a keyboard, as soon as possible, when they 

appear on the screen. Historically, the tests devised for the cohorts of interest 

have primarily utilized visual or audio stimuli.  

SRTs result in faster responses compared to CRTs but the former also require 

the least amount of information processing by the brain. In practical terms, in 

open skill sports like judo or wrestling, an athlete could produce their fastest 

reaction possible only if they were to commit to a single counterattack against 

any attack by their opponent. In real life competitions it is uncommon for a 
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competitor to insist on performing a specific move against whatever their 

opponent intends to do. Some competitors may fixate on reacting with a specific 

move but only because they are convinced that the move in mind is the best 

choice against what they expect their opponent will do next. However, the above 

is arguably an example of an expert performer who can take advantage of 

proprioceptive, visual or other cues and correctly anticipate their opponent’s 

intention (Müller & Abernethy, 2006; Savelsbergh et al., 2002; Tanaka et al., 

2010). A limitation of SRTs is that they appear to be poor predictors of expert 

performance (Kida et al., 2005).  

SRTs cannot be used to expose those capable of short RTs but who at the same 

time are not good at distinguishing quickly enough the correct responses. CRTs 

are better tools to reveal performers who may sacrifice reaction speed for 

accuracy and vice versa. Minimising the potential speed over accuracy trade off 

(Heitz, 2014) is of the utmost importance in almost every competitive sport as 

athletes need to make quick and correct decisions. It has been argued that expert 

judoka are more likely to make more correct decisions and react faster (Supiński 

et al., 2014). Judo is an unforgiving sport where a lapse in concentration can 

allow the opponent the necessary position advantage to achieve an ippon (judo’s 

equivalent to a knockout). It has been shown that under extreme fatigue 

conditions, as those experienced during the latter part of an intense match, 

judoka may still be able to react fast but with more erroneous choices (Lima et 

al., 2004). It has also been shown that gradually more errors are made across 

the duration of a discrimination test (Esterman et al., 2013). Therefore, when it 

comes to investigating RT and accuracy, it is CRTs and not SRTs that are of 

much greater relevance to judoka, and to those helping them optimise their 

training adaptations. 

The use and relevance of RT results from SRTs should not be dismissed just yet 

as they are still important for judoka. The benefit of a SRT is in its simplicity; by 

not dealing with the potential data variability from having to process more 

complex information it is more likely to be able to reveal person’s pure reaction 

speed. A person’s baseline simple RT is a closer reflection of the speed with 

which nerve signals can be relayed via afferent and efferent pathways and how 
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quickly muscles are activated for a given task. Whilst fast simple reactions do not 

predict the best performers, at the same time, a person with slow simple reaction 

is unlikely to fare well in any sport where there is an inherent need for quick 

choice reactions. The difference between simple reaction and choice reaction, 

for comparable tests, is of interest to researchers as it can help them deduce the 

processing time needed to arrive to a decision.  
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1.6 Sensory route 

From the early beginnings of research in human mental chronometry scientists 

were eager to define typical response times to various tasks. and although the 

tasks used have been primarily based on visual and audio cues the interest in 

RT through tactile sensory routes (haptic) has gained momentum in recent years 

too (Calhoun et al., 2003; Godlove et al., 2014; Skedung et al., 2013). There has 

been some interest in the olfactory route as well (Olofsson, 2014) but to date the 

volume of work in that area remains somewhat limited. 

1.6.1 Auditory Reaction Tests 

Perhaps the best known real-life example of simple RT to sound in performance 

sport is the 100m sprinters’ race. In this quintessential event of the modern 

Olympics the sprinters push off the starting blocks as soon as an official fires the 

start gun. Modern technology allows officials to record accurately the time each 

sprinter takes from the start signal to when they initiate the push against the 

starting block. Arguably, World class sprinters are an ideal group to study 

reaction speed to a simple reaction test. Sprinters have conditioned themselves 

over years of training and competition to respond rapidly to a clearly defined 

signal (assuming they are performing in stadia where spectators stay quiet for 

the start signal).  

In the Athens 2004 and the Beijing 2008 Olympic Games the mean RT, and 

standard deviation (SD), of the male 100m sprinters was 164 (24) msec and 162 

(20) msec respectively (Paradisis, 2013). The average RT of the female 100m 

sprinters was 187 (29) msec in Athens and 190 (30) msec in Beijing (Paradisis, 

2013). At the Berlin 2009 Athletics World Championship 100m final, where the 

Jamaican sprinter Usain Bolt posted his World record of 9.58 seconds, Bolt 

reacted in 146 msec. Other sprinters in that final, or at earlier races on the same 

event, recorded RTs under 120 msec (IAAF, 2009). The International Association 

of Athletics Federations (IAAF) rules a reaction under 100 msec as a false start. 

It has been argued that auditory RT as short as 85 msec is possible (Komi, 2009; 

Pain & Hibbs, 2007) but the IAAF rule remains in place and some evidence in 

support of IAAF’s position has been reported elsewhere (Lipps et al., 2011).  
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Outside high-performance sport, a useful source of data on simple reaction 

speed to sound stimuli is the Baltimore longitudinal study of aging (BLSA). Data 

on participants have been collected since 1958 and simple reaction tests to audio 

stimuli were introduced in 1973 for men and 1978 for women. The average simple 

RT to a sound in a group of 16-24 years old, a similar age bracket to that of the 

cohort of Olympic sprinters, was 225 (36) msec (Fozard et al., 1994). Olympic 

sprinters can achieve much shorter RTs than the participants of the BLSA. 

However, any comparison between the BLSA reactions data and that from 

Olympic sprinters needs to be done tentatively because: 1) the testing conditions 

and methods differ markedly, and 2) sprinters spend years training their ability to 

react very quickly to a specific sound signal. It is conceivable that to reach 

Olympic standard, a high degree of conditioning to simple reaction to sound takes 

place and only those with extremely fast reaction can advance to higher levels of 

competition. In other words, the data from the Olympics come from a cohort made 

up from some of the fastest people in the World who have trained over many 

years to react quickly to sound. On the other hand, the data from BLSA come 

from a cohort with no qualitative filtering whatsoever. 

1.6.2 Visual Reaction Tests 

For most open skill sports quick processing of the information that reaches the 

brain, from the retina, via the optic nerve are decisive qualities for success. Team 

sports, racquet sports, combat sports like boxing and karate, and motor sports 

are all good examples where the dominance of visual sense and the need for fast 

reactions to the visual stream of information is unequivocal. Unlike the case with 

sprinters, there is no direct access to real life data from RTs in sports were quick 

reaction to visual information is crucial. For example, the RT of professional 

goalkeepers in penalty shootouts during major Championship finals is not 

measured and goalkeepers’ RT ability is assessed instead through bespoke 

reaction tests outside of real-life football game conditions (Rodríguez-Arce et al. 

2019). In most sports, data on athletes’ reactions are not formally recorded or 

made available. Therefore, we cannot quantify in detail what ‘fast reaction’ means 

within the context of high-level performance for most sports. Instead, we must 

turn to published research from mostly laboratory-based studies to elucidate the 

human limits of RT to visual stimuli. 
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Over the years, different researchers have reported a wide range of mean RTs 

for simple reaction tasks to a visual cue in young and healthy individuals: 154 

msec (Donders, 1969), 160 msec (J, 1885), 255 msec (Deary et al., 2011), 270 

msec (Der & Deary, 2006), 320 msec (Ng & Chan, 2012) and 334 msec (Soto-

Rey et al., 2014). Such variability in the results is most likely due to the different 

methods used, the different technology available, the different cohorts studied 

and the different aims of each study. It has been argued that the human brain 

needs just over 50 msec to capture and interpret an image (Maguire & Howe, 

2016). Others have claimed that the brain is capable of much shorter times in 

capturing and interpreting images (Potter et al., 2014) but such findings have 

been contested and not reproduced (Maguire & Howe, 2016).  

In any case, even at the shortest reported RTs there is still a remarkable amount 

of time that needs to be accounted for between the overall RT and the time it 

takes to capture and interpret an image. It is possible that the time recorded 

beyond that required by the human brain to identify a visual cue reflects how long 

it takes to decide, initiate, and complete the required motor task in response to a 

given signal.  

1.6.3 Auditory Vs Visual 

For most humans vision is the most dominant sense, and it is realised through a 

complicated process where photons from light reach photoreceptor cells in the 

retina to trigger electrical impulses via the optic nerve that eventually reach the 

visual cortex in the occipital lobe of the brain where visual information is 

processed (Cornsweet, 2017). In the case of the sense of hearing the process 

begins when sound waves reach the eardrum to produce vibrations that travel 

through the inner ear and affect hair cells that in turn produce electrical impulses 

via the auditory nerve, which reach the auditory cortex in the temporal lobe of the 

brain where sound information is processed (Gelfand, 2018).  

As soon as scientists devised a reliable method to record RT, they were 

immediately interested in comparing RTs between acoustic and visual stimuli 

(Donders, 1969). There have been studies where the investigators set out 

experiments to compare directly subjects’ RTs with visual tests and sound tests, 

and a clear consensus exists confirming what Donders had already reported in 
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1868: RT to sound is shorter than RT to light (Ghuntla et al., 2014; Jain et al., 

2015; Shelton & Kumar, 2010).  

Further confirmation of shorter mean RTs to acoustic stimuli came from studies 

where electroencephalography (EEG) technology was used. EEG is used to 

measure brain electrical activity and can measure reliably brain response 

following a visual, audio, tactile, or other specific cues (Baudena et al., 1995; 

Halgren et al., 1998). The electrical activity recorded with an EEG is also known 

as an event-related potential (ERP). The ERP from auditory tests show 

waveforms with a higher amplitude and a shorter latency of the peaks compared 

to visual tests (Nordin et al., 2011). Indeed, a research group used EEG and gave 

a group of air traffic controllers’ visual and auditory tasks to investigate the 

relationship between visual and auditory correct responses, reaction time, and 

the corresponding brain areas and functions. These data proved that RT to visual 

cues is slower than RT to auditory ones (Abbass et al., 2014). Although EEG 

produce useful data at a low cost, it is a method that requires tens of small 

sensors to be attached to a subject’s scalp by a trained technician and requires 

a trained specialist to interpret the results. Therefore, EEG is a time-consuming 

method, cumbersome, and very impractical to test regularly high-performance 

athletes. 

Faster reaction to sound compared to light may seem somewhat counterintuitive 

to most people. It may appear more logical to expect visual perception to result 

in shorter RTs considering that light travels, roughly, one million times faster than 

sound. However, the variance in speed for the brain to process different sensory 

information reflects the difference in how such information is received and 

processed by the CNS, which has no relevance to the difference in how fast light 

and sound can travel through the air. 

Although there is a wealth of studies that report RTs from a plethora of different 

methods none provide us with results that are relevant to elite judoka. We can 

use data from auditory reaction tests to shape our understanding of the 

magnitude of speed possible in human reactions, but such knowledge is of limited 

use in Judo. The reaction to sound has little, if any, relevance within the context 

of Judo competition; judoka do not need to possess the short RT to sound 
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sprinters exhibit. Even reaction to images is of limited importance in sports where 

somatosensory feedback is the dominant source of sensory input; judoka, 

wrestlers, and grapplers use their sense of touch to identify their opponents’ joints 

or position to then decide their own move. The dominance of somatosensory 

feedback in Judo is revealed by cases such as the Georgian judoka, Zvian 

Gogotchuri a well-known visually impaired judoka who has competed, 

successfully, against World class non-visually impaired judoka. With the above 

in mind, it becomes obvious that we need to turn our attention to reaction tests 

that utilise the sense of touch.  

1.6.4 Tactile sense 

Humans can react very quickly to somatosensory (tactile) input as demonstrated 

by the reflex arc. A reflex arc is an automatic and involuntary response where 

some stimulus from a sensory receptor excites a nerve pathway that loops 

through a sensory neuron to the spine and back through a motor neuron to the 

effector (Podivinský et al., 1992). For example, when a person touches a hot 

surface with their hand, unknowingly and unintentionally, they are most likely to 

pull their hand away from the heat source rapidly and before they consciously 

decide to do so. Another type of involuntary reaction is the myotatic reflex, which 

constantly monitors, and corrects, a muscle’s length and tension by producing a 

muscle contraction in the agonist muscle whilst allowing the antagonist muscle 

to relax. The myotatic reflex is crucial to controlled movement, to averting forceful 

stretching of a muscle beyond its passive range, and in supporting upright 

posture (Dolbow & Throckmorton, 2020). Such reflexes, as described previously, 

are essentially the product of automatic responses and it is possible that they 

result in faster RTs compared to conscious reactions as the response they 

produce can bypass the brain. Considering that a reflex refers to an involuntary 

movement and not the product of conscious effort, investigating RTs in 

somatosensory reflex in judoka or other athletes has no practical application. In 

contrast, RTs that result from conscious and voluntary completion of reaction 

tasks could potentially lead to a better understanding of the variability that may 

exist in information-processing speed and accuracy in judoka.  
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There is little research published on RTs to tactile stimuli and this lack of 

information exposes a knowledge gap for sports where the dominant sensory 

input comes from touch. In one study 25 out of 69 female and male participants 

11-60 years old took part in an experiment where they had to wear a vibrating 

device on their right wrist or right leg near their ankle. With their hand resting on 

a keypad the participants had to press a specific key as soon as they felt a 

vibration (Ng & Chan, 2012). After 500 responses the mean RT for this simple 

haptic reaction test was 385 (71) msec. The mean RT reported by Ng & Chan 

(2012) seems rather slow for a simple reaction task. It has long been known that 

RT is inversely influenced by the intensity of the stimulus (Lele et al., 1954; 

Nissen, 1977), so it is possible that the investigators did not take into account the 

optimum vibration frequency for the devices they used for their experiment, which 

is believed to be at around 250 Hz for the surface of the palm (Cholewiak & 

Collins, 1991; Scheibert et al., 2009).  

In a different study, eight participants (mean age: 28 years old) took part in a 

simple reaction test where they had to grasp a pen-like tool and push it along a 

straight path until either an audio or tactile stimulus was presented to them at 

which point, they had to withdraw the tool as soon as possible (Peon & 

Prattichizzo, 2013). The mean RT to a vibrating alert was 205 msec, which was 

faster than the mean RT recorded for the same task with audio and visual alerts 

at 245 msec and 268 msec, respectively. But in this study the investigators also 

looked at RTs between different signal intensities and found that a vibrating alert 

of lower frequency resulted in longer mean RT compared to the higher frequency 

(250 Hz) vibration. And the exact same result was repeated with the audio alerts: 

the louder signal resulted in shorter RT than the quieter alert.  

Early work in mental chronometry has revealed that the response to a haptic 

stimulus can be quick and reliable (Lele et al., 1954) and that it can be even faster 

in the absence of visual cues (Jordan, 1972). In his 1972 study, Timothy Jordan, 

used a cohort of inexperienced fencers and had a group of them practice 

blindfolded a fencing-specific skill where their blade was in contact with a 

mechanical foil. The same skill was practiced by two other groups but with no 

blindfold and Jordan was able to demonstrate that the deliberate blindfolded 
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practice of a proprioceptive fencing skill (the feedback came through the contact 

of the blades) resulted in faster responses to the same fencing-specific task. It 

was argued that the increase in tactile reaction speed when vision was blocked 

exposed a competition between sensory inputs, with visual perception being 

dominant in its demand for attention. In a more recent study, the hypothesis of 

an impact on RT by the senses ‘competing’ for attention was supported when it 

was shown that the mean RT to a visual cue in athletes with hearing impairment 

was shorter compared to a group of athletes without a hearing impairment (Soto-

Rey et al., 2014).  

Considering that a multisensory interplay takes place in the brain from the various 

senses constantly receiving input from a stream of information from their 

environment (Driver & Noesselt, 2008) it is reasonable to argue against the notion 

of examining a sensory modality in isolation. But the counter argument to such 

position could be that, in comparison to tactile stimuli, the ability of a judoka to 

react quickly to audio or visual stimuli is likely to have limited relevance. 

Moreover, according to Jordan (1972) there is a potential performance benefit in 

proprioceptive dependent motor skills from practicing in the absence of other 

deliberate sensory input. Therefore, experienced judoka may have an advantage 

in haptic tasks compared to athletes in sports where visual or audio perception is 

dominant (boxing, racquet sports, team sports etc.). In fact, it has been 

suggested that judoka should be expected to achieve superior reactions in 

laboratory tests with tactile stimuli than athletes in combat sports whose 

performance is dependent on visual stimuli (Supiński et al., 2014).  
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1.7 Haptic Technology 

Perhaps a reason we do not see a wealth of studies in tactile RT that matches 

the abundance of studies investigating RTs with acoustic or visual tests is the 

limitations researchers have had in earlier decades on proper choices for haptic 

devices that can produce a controlled and reliable tactile signal. A growing 

commercial interest in exploring ways to improve interaction between users and 

electronic devices has led to the development of haptic technology and with it the 

availability of affordable and easy to use components that can generate a tactile 

stimulus.  

Most people are familiar with the use of haptics because haptic technology is 

widely used in mobile phone devices (the vibration function on alerts) and 

computer game controls. Haptic technology is increasingly utilised, or tested for 

future use, in a wide variety of applications such as: operator controlled 

monitoring systems (Calhoun et al., 2003), car safety systems (Katzourakis et al., 

2014), haptic communication to replace verbal navigational instructions (Moll & 

Sallnäs, 2009), audio-tactile methods to assist interaction of blind people with 

virtual environments (Miao et al., 2009), haptic systems for blind members of a 

dance audience to enhance their experience of the choreography beyond what 

is possible from audio description alone (Lycouris, 2012), and haptic feedback 

systems incorporated in musical instruments to help musicians learn correct 

movements and posture (Grosshauser & Hermann, 2009). 

There are several arguments in support of our research work presented in this 

thesis that was the product of our intention to investigate reactions in experienced 

judoka using haptic technology: 

1. As it stands, the body of evidence in scientific literature on the limits of RT 

following tactile cues remains insufficient to draw firm conclusions about 

cognitive performance parameters relevant to elite judoka (e.g. How fast 

can they react to tactile prompts? How consistent can their RT be over a 

sequence of haptic choice reaction tasks? How accurately can they 

respond?).  



Reaction Tests; Review and Testing Modalities 

32 
 

2. RT results from earlier studies where haptic tasks were used are most 

likely inappropriate in helping us determine sensible margins of 

expectations on baseline RT for elite judoka. We have already explained 

that direct comparisons of test results between studies that have used the 

same sensory mode is often impossible due to the variability in the design 

methods used, the quality of the cohorts recruited, the type of objectives 

in each study, the sensory route used, and other factors. A good 

illustration of the above argument is the difference in mean RT results 

reported by Ng & Chan (2012) and Peon & Prattichizzo (2013). In both 

cases experimental methods were devised to test simple RT to tactile 

stimuli, yet the eventual mean RTs reported were vastly different: 385 

msec for the former and 205 msec for the latter study.  

3. A more sport-specific method to assess cognitive performance in Judo is 

needed. During a typical Judo bout judoka need to remain vigilant for four 

minutes. Any lapse in concentration from a judoka at any point within that 

timeframe may lead to a missed opportunity to score or allow a scoring 

opportunity to their opponent. By designing an experimental method to 

investigate cognitive performance in experienced judoka we will have 

developed a method to examine sustained attention. 

4. Ultimately, the availability of affordable components to produce a bespoke 

haptic reaction testing device has removed the limiting factor that has 

probably stood in the way of earlier investigators who may have wanted 

to study RTs to tactile stimuli in Judo or other sports. 
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1.8 Structure of Thesis 

The structure of this thesis is as follows: 

In Chapter 2 we outline some of the statistical methods for the inferential 

analyses we have carried out and the rationale behind our choices. 

In Chapter 3 we describe some of the technological and physiological 

mechanisms involved in haptic technology. We show how we have integrated 

haptic technology in a Judo-specific reaction test device built to obtain accurate 

and reliable data on choice RT in a group of experienced judoka. Furthermore, 

we outline the components that we have used to put together this novel, low cost, 

and practical Haptic Reaction Test device, we explain the advantages of our 

device over other reaction tests already available, and we describe the objectives 

we had in mind in its design.  

In Chapter 4 we explain the rationale for having built a Judo specific haptic 

reaction test device and we present the study we carried out with a group of 

volunteers at the University of Stirling to determine the validity and reliability of 

our device.  

In Chapter 5 we present the typical haptic choice mean RT and accuracy in a 

cohort of elite judoka. To the best of our knowledge, the study in this chapter is 

the first in academic literature to report typical mean RT and accuracy from a 

haptic choice reaction test specifically designed for Judo. 

In Chapter 6 we present the method we employed to motivate the cohort of elite 

judoka to fully engage in the testing process. We outline factors that may 

influence the decline of focused attention and we show how we used 

competitiveness to determine the most probable baseline parameter values in 

the haptic choice reaction test.  

In Chapter 7 we present the effect exercise can have at different intensity levels 

on elite Judoka’s haptic mean RT and accuracy compared to baseline values. 

We demonstrate that mean RT can improve by a considerable margin after a 
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typical judo specific warm up session. But under conditions of extreme physical 

effort mean RT is comparable to that at baseline whilst accuracy deteriorates.  

In Chapter 8 we discuss some points related to the earlier chapters and we put 

forward some recommendations for future research.   
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1.9 Summary 

Reaction tests have historically been used by psychologists as a window to one 

aspect of people’s cognitive abilities. In Judo and in any other open skill sport 

where athletes must make quick decisions, fast reactions and the ability to 

process information quickly are critical for success. 

Tactile perception is processed differently in the brain compared to visual or 

auditory information. Proprioceptive based reactions and reactions to tactile input 

may improve in the absence of visual cues, which could potentially make 

experienced judoka better at responding to tactile stimuli as opposed to any other 

sensory modality. As touch and proprioception are the predominant sensory 

routes in Judo, we must give preference to haptic stimuli as the testing mode for 

any reaction tasks we may want to use to investigate RT parameter values in 

experienced judoka.  

At this stage, it is unclear what would be considered a typical baseline RT to 

complex tasks and the associated error rate by experienced judoka hence we 

have no way of knowing to what extent, if at all, can cognitive performance be 

affected under different conditions. Therefore, it is important to develop a reliable 

haptic choice reaction test to help us carry out the necessary investigations and 

establish the typical baseline range in RT and accuracy in elite judoka. With such 

a testing method in place we can investigate how varying conditions of training, 

‘weight cutting’, and competition may impact on elite judoka’s baseline ability for 

fast, consistent, and accurate reactions.  
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2.1 Participants 

The data for the Judo specific chapters (see Chapters 5-7) were collected from a 

cohort of ten healthy judoka who compete at international level and participate at 

World ranking tournaments. The judoka were approached at a training session 

at the Scottish Judo centre, in the presence of their coaches, and were explained 

the purpose of the study. All judoka were given the opportunity on a later date to 

try the haptic test on the device and then they had at least two days to consider 

their decision to take part in this project. Any subsequent testing was carried out 

only after written consent was obtained. The study was approved by the School 

of Sports Research Ethics Committee of the University of Stirling (SSREC 757). 

Originally there were 15 judoka who had volunteered for this project and gave 

written consent. However, during the early stages of our study three judoka 

retired from the Scottish Judo Performance programme while two others 

relocated to different Performance programmes and were not available for 

regular testing. All participants knew that they could withdraw from the study at 

any point if they wished to do so without having to provide any explanation. 

All 10 judoka who eventually participated and completed our tests (four females 

aged 21.3 ± 2.2 years; weighing 62.3 ± 8.5 Kg; and six males aged 21.2 ± 1.6 

years; weighing 72.2 ± 8.3 Kg) were healthy, they had no injuries, and trained 

daily. All judoka who took part had experience in International competitions 

including events where they competed for the British or the Scottish Judo 

National Teams. We considered these athletes as elite judoka due to their 

experience in competitions and because of their status as members of the 

National Judo High Performance programme based at the Scottish Judo centre 

at Ratho near the city of Edinburgh. 

2.2 Haptic Choice Reaction Test 

After the validity and reliability study of the novel haptic device, presented in 

Chapter 4, all of the other tests for the studies described in Chapters 5-7 were 

carried out using exclusively the haptic choice reaction test. A single haptic 

choice RT test session involved a fixed number of 20 reaction episodes, and it 

took just under two minutes to complete. When considering that a Judo match 

lasts for four minutes we thought that a reaction test of near two minutes was a 
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good compromise between getting enough data for analysis and not turning the 

test into a tedious task for the judokas.  

Each reaction episode was a response to a haptic signal (vibration) that was 

generated from one out of the four available actuators (vibration motors) housed 

in specially designed handle grips (see Chapter 3 for details). The judoka where 

instructed to apply a judo grip with their hands on the handle in the same way 

they grip the sleeve of their opponent’s Judo jacket (judogi). Within each of the 

two grips, there were two actuators nested in opposite sides from each other and 

at a long enough distance to allow the user to distinguish which of the two 

actuators produced the haptic signal in either hand grip. The signal from the 

actuator higher in the grip was felt by the user’s thumb whilst the opposite 

actuator’s signal was felt by the user’s small finger and palm, over the hypothenar 

muscles. In order to prevent successful anticipation of the next haptic signal 

(vibration) a signal was produced at random by one of the four actuators and the 

time between signals (inter-stimulus time) was randomised within 1000 to 3000 

msec. The frequency of each vibration from the actuators was 122Hz and such 

intensity was found at a pilot study to be sufficient for the users to detect the 

vibration source when holding the handle grips. 

The reaction task required the user to respond to the haptic signal with a short 

and quick displacement of the device in the direction they felt the vibration to 

have originated from and return it to the start position. As a visual representation 

of the reaction task, we instructed participants to imagine Saint Andrew’s cross 

on the Scottish flag with the device placed on the centre. From the imaginary 

centre on the cross the device was to be moved sharply, with both arms, towards 

one of the ends of the cross in response to the signal given by the corresponding 

actuator, and then returned to the start point. For example, if the vibration came 

from the top right actuator, then the device had to be displaced sharply towards 

the top right edge of the imaginary cross and back. This direction would be 

equivalent to a North East direction if the participant was facing North. Any 

displacement was always done with both hands holding the device. The reason 

a fast displacement was required was to activate the accelerometer installed 

within the device, which in turn stopped the high precision timer.   
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2.3 Statistics 

In Chapters 4-7 we have used a variety of statistical tools to carry out the 

necessary statistical analyses. We did not use a consistent approach for our 

analyses across the three chapters as our objectives were different and our 

choice of statistical methods for each chapter reflects our decision as to which 

method we considered more appropriate for the analysis and reporting of the 

data collected.  

In Chapter 4 the test-retest reliability of our haptic device was computed through 

the Intraclass Correlation Coefficient (ICC), which is the most popular method for 

assessing the reliability of clinical instruments measuring continuous variables 

(Zaki et al., 2013). From the various models of ICC available we chose the single 

rater measurement, absolute-agreement, two-way mixed-effects model (ICC 

[2,1]), which is considered the best approach for test-retest reliability studies (Koo 

& Li, 2016). Following the test-retest analysis the ICC results produced were 

interpreted based on the description by Koo & Li (2016) so that ICC values <0.5 

indicated poor reliability, values between 0.5 - 0.75 indicated moderate reliability, 

values between 0.75 - 0.9 indicated good reliability, and values > 0.9 indicated 

excellent reliability. 

In Chapter 5 we have used descriptive statistics to summarise the data that 

describe our cohort’s Baseline levels and we have made no inferences based on 

that data. For the subsequent two chapters though (Chapters 6 and 7) we have 

opted for Bayesian statistics and we have avoided the use of the more traditional 

and widely used frequentist statistics. 
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2.3.1 Bayesian Statistics 

What we know today as Bayesian statistics stems from the work of Thomas 

Bayes, Richard Price, and Pierre Simon Laplace during the 18th century, even 

though we appear to only credit the former for the mathematical formula we now 

call the Bayes Theorem (Lambert, 2018). In essence, Bayes Theorem is a 

mathematical formula of conditional probability where the probability of an event 

(posterior probability) is based on prior knowledge we have from relevant 

information. The mathematical representation of Bayes theorem is: 

p(B|A) =
p(A|B) p(B)

p(A)
 

Where p indicates a probability distribution, p(A|B) is called the likelihood, p(B) is 

called the prior distribution, p(A) is called the normalising factor, and p(B|A) is 

called the posterior probability. The posterior distribution is the aim of Bayesian 

inference. In practical terms, the Bayesian model allows us to utilise evidence in 

new data to update our beliefs [for a detailed description of Bayesian inference 

see (J. K. Kruschke & Liddell, 2018; Lambert, 2018)], hence a common phrase 

amongst Bayesians: “Yesterday’s posterior is today’s prior”.  

Bayesian inference has been described by Kruschke (2018) as “…reallocation of 

credibility across possibilities, according to the mathematics of conditional 

probability”. We use Bayesian inference to reallocate probability from the prior 

distribution over some parameter to the posterior distribution according to 

evidence in the data (J. K. Kruschke, 2018). The use of integrals and sampling 

procedures required to achieve the “reallocation of credibility across possibilities” 

has been a technical limitation of Bayesian statistics due to computational power 

complexities, which made the methods we now take for granted unusable in most 

research analyses. However, with the rapid progress in computer technology 

there has been a renewed interest in Bayesian statistics in the past 30 years. 

Increased computational power and algorithm advances now allow us to take 

advantage of the Bayes' theorem (Kass & Raftery, 1995) in various applications. 

A classic approach in scientific research is to use a test of statistical significance 

to help us decide whether a hypothesis is likely to be ‘true’ or not. Historically, the 

frequentist paradigm has dominated the methods used to infer an effect in 
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scientific studies. This paradigm is based on large number of exact repeats of the 

study. The expected proportion of these repeats is calculated under the 

assumption that there is no effect. This proportion is termed the p-value. If the p-

value falls below a certain cut-off the result is said to be statistically significant. 

Conventionally, an arbitrary cut-off point for the p-value is decided, known as 

alpha level (most commonly α = 0.05 but α = 0.01 and α = 0.001 are used as 

well). This alpha level is the expected rate of false positive conclusions (assuming 

that there really is no effect). If the p-value is smaller than the alpha level, then 

the null hypothesis (i.e. no difference or no effect) is rejected in favour of the 

alternative hypothesis and the result is declared ‘statistically significant’. 

However, the arbitrary choice of alpha level and the reliance on the p-value as a 

border between ‘important’ and ‘unimportant’ results is thought to contribute to 

non-reproducibility of scientific studies (Sapra & Nundy, 2018).  

For a more detailed discussion on the advantages of Bayesian statistics see (J. 

Kruschke & Liddell, 2016) but one crucial point is that the frequentist approach 

considers a long run of studies (that usually have not happened) whilst the 

Bayesian approach considers only the data at hand and what we ‘knew’ before 

we collected that data. One clear benefit of the Bayesian paradigm is that the 

results from Bayesian inference are more intuitive, especially to a non-

statistician. The generation of the posterior distribution means we can make 

direct probability statements about the study without having to consider a large 

number of exact repeats. Being able to give direct probability statements is 

particularly useful as we want our results to be reported to and understood by 

coaches in the Judo high performance programme, none of whom should be 

expected to understand statistical concepts.  

2.3.2 Bayes Factor  

There is increasing support for the use of the Bayesian equivalent to hypothesis 

testing: the Bayes Factor (Valen, 2013). With the Bayes factor (BF) the null 

hypothesis and the alternative hypothesis are considered in a more balanced 

way and it is possible to quantify the relative support in the data for one 

hypothesis over the other (Liao et al., 2019). 
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Simply put, BF is a ratio between the likelihoods, or marginal likelihoods in the 

case of continuous data, of the observed data from two competing hypotheses 

(H0:H1) – typically a hypothesis in support of a null effect and a hypothesis that 

rejects a null effect. Unlike a frequentist approach, where we would fix a 

probability cut-off point to declare whether we accept or reject the null hypothesis, 

the BF result is a probability value that gives us a measure of the odds between 

the two competing hypotheses, or put a different way, it quantifies the strength of 

the evidence in favour of the null, and the generic formula is:  

BF=
p(Data | H1)

p(Data | H0)
 

In order to provide a guide for the interpretation of the BF result, a scale of BF 

ranges together with descriptive statements for each one was proposed by 

Jeffreys in 1961 (Table 2-1) but was revised almost 30 years later with a warning 

that context affects interpretation e.g. forensic evidence in criminal trials should 

be supported by BF values greater than 1000 to be decisive instead of greater 

than 100 (Kass & Raftery, 1995). 

BF(H1:H0)     

Jeffreys 

Evidence against H0 BF(H1:H0)              

Kass & Raftery 

Evidence against H0 

1 to 3.2 Not worth a mention 1 to 3 Not worth a mention 

3.2 to 10 Substantial 3 to 20 Positive 

10 to 100 Strong 20 to 150 Strong 

>100 Decisive > 150 Very strong 

Table 2-1. Interpretation guide of Bayes Factor result. 

Next to each range is the description given for it by the authors. Note that Kass 

& Raftery (1995) chose different terms and higher BF ranges for the evidence 

against the null hypothesis than Jeffreys (1961). 

We have used Bayes Factors (BF) to compare two paired means and we have 

assumed the data to be a random sample from a normal population. The 

assumption of normality is satisfied by the ‘Central Limit Theorem’, which states 



Chapter 2 

50 
 

that the sampling distribution of the sample means approaches a normal 

distribution as the sample size is above about 20 (Lambert, 2018).  

We wanted to test the difference μ between the mean values in two conditions of 

interest so that: μ = μ1 – μ2, which allows us to develop two hypotheses: 

1) Null hypothesis: There is no difference in the mean values 

 H0: μ1 = μ2 ⇔ μ = 0 

 

2) Alternative hypothesis: There is a difference in the mean values  

H1: μ1 ≠ μ2 ⇔ μ ≠ 0 

The key steps in BF computation include the following:  

1) Use integration over the prior distributions for each hypothesis so that  

 

BF[H0:H1] =∬p(data∣μ, σ2) p(μ∣σ2) p(σ2∣H1) dμdσ2 

 

2) Use the Jeffrey’s prior (Jeffreys, 1946) on the variance  

(σ2): p(σ2)=
1

σ2
 

 
3) Use the Cauchy prior for μ: μ ~ C(0, 1*σ), which resolves the Lindley's 

paradox when the BF and t-statistic give contradicting results for certain 

choices of the prior distribution  

All of the above formulas are included in the BayesFactor package (Morey & 

Rouder, 2018), which is used for inference and testing for normal means. Also, 

in the same function the use of the Jeffrey’s prior on σ2 alongside the Cauchy 

prior on μ under H0 is called the Jeffrey-Zellener-Siow (JZS) prior and it is the 

default setting for the prior family options available in the software 

2.3.3 Markov Chain Monte Carlo 

Prior to the advent of modern computing power, calculation of the denominator 

in Bayes formula was often difficult if not impossible due to the mathematic 

integration required. Even with modern computers the integration is impossible. 

However the development of algorithms to simulate the posterior distribution has 
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made Bayesian analysis accessible. The most frequently used algorithm is 

Markov Chain Monte Carlo (MCMC) sampling (Morey et al., 2011).  

A Markov chain is created through a ‘random walk’, a process where the previous 

sample value is used to randomly generate the next sample value, hence the 

Monte Carlo part of the MCMC (J. K. Kruschke, 2011). MCMC simulates draws 

directly from the posterior distribution of the parameter of interest by random 

sampling of representative points that converge in distribution to the target 

distribution (Lambert, 2018; Madigan et al., 1995). And if we sample enough 

points, we can then determine the posterior distribution. Some MCMC algorithms 

commonly used include the Random Walk Metropolis, Gibbs sampler, and 

Hamiltonian Monte Carlo (for more details see Lambert 2018 and Kruschke 

2011).  

There are various open source MCMC software options available based on 

probabilistic programming languages like Stan, ‘Bayesian Inference Using Gibbs 

Sampling’ (BUGGS), and ‘Just Another Gibbs Sampler’ (JAGS), all of which 

interface with widely used data analysis languages like R or Python and are easy 

to access alongside helpful tutorials (van Ravenzwaaij et al., 2018). 

2.3.4 Credible Intervals 

Bayesian methods allow us to make directly interpretable probability statements. 

We can use the posterior density to calculate Credible Intervals (CI) and we can 

use CI to report the range within which 95% of the posterior probability is situated 

(Lambert, 2018). A statement such as: “There is a 95% probability a value x is 

within x1 and x2” allows us to be clear about the range of likely values. Such clarity 

is not always afforded in the frequentist equivalent to the Credible Interval: the 

Confidence Interval. What a Confidence Interval truly tells us is that “95% of 

similarly constructed intervals will contain the true mean”, or in other words, if we 

were to repeat a study under the exact same conditions a large number of times 

then the true mean would be found 95% of the time within such intervals 

(Greenland et al., 2016). The practical purpose of the CI in the context of Bayes 

Factors is to help us interpret the posterior probability result: if the CI does not 

include zero then the alternative hypothesis, i.e. the mean difference being 

different from 0, is more likely than the means being the same. 
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2.3.5 HDI + ROPE Decision Rule 

When we make comparisons between mean values it is possible to get statistical 

significance for small differences regardless of how meaningful they are in real 

world applications. Thus, as well as being satisfied that differences are unlikely 

to arise by chance, we also need to define a change that has practical 

significance. Such concerns about the magnitudes and uncertainties of the 

parameters are not addressed by either the p-value or BF.  

Kruschke uses the term ‘Highest Density Interval’ (HDI) to describe the range of 

most credible values in a distribution and the term ‘Region Of Practical 

Equivalence’ (ROPE) to describe the range of values that are equivalent to the 

null value for practical purposes (J. K. Kruschke, 2011, 2018). Kruschke 

proposes combining HDI and ROPE to create a rule that accounts for real world 

practicality when producing probability statements about the parameters rather 

than relying on p-values and significance levels (J. K. Kruschke, 2013). More 

specifically, if the HDI range lies entirely within the ROPE limits then we should 

accept the null value, on the other hand, if the HDI range lies completely out with 

the ROPE limits then we should reject the null value, and for any other scenario 

the outcome should be “undecided” as some, but not all, of the HDI values are 

practically equivalent to the null value. In essence, Kruschke proposes a rule that 

accounts for real world practicality when producing probability statements about 

the parameters, rather than relying on p-values and significance levels 

(Kruschke, 2013). 

Kruschke (2011) suggested we use the HDI and ROPE to create decision rules 

but we need to consider how to set the ROPE limits. At what distance from the 

null value should the credible values lie to reject the null value? How close is 

close enough and how far is far enough? ROPE limits can be set by either 

empirical evidence (expert knowledge) or mathematical calculations (e.g. null +/- 

typical error of a test). In our case, we did not have sufficient data to empirically 

determine the change necessary in the means of the parameter values to declare 

‘practical significance’. Therefore, we opted for a mathematical approach 

however we are confident that in the future, as more data accumulate, a more 

direct approach will be possible. There are alternative methods that can work as 
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decision rules. For example, the Minimal Detectable Difference (MDD) is used in 

clinical research as a tool to establish the minimum magnitude by which an 

outcome has to change to be noticeable (Hill et al., 2019). However, the simplicity 

and practicality of the HDI + ROPE decision rule make it a straightforward method 

to apply and interpret. 

Kruschke (2018) suggests that when specific knowledge on appropriate ROPE 

limits is lacking then the ROPE can be calculated as the product of the 

standardised population value (σ) times half of a small Cohen’s effect size (d). 

For example, if we have σ = 30, then the ROPE = σ x d = 30 x (± 0.1) = ±3. 

However, because we are interested in values that may be equivalent to a small 

effect or higher, we have used the same approach as outlined above only we set 

the d value to ± 0.2 to reflect the conservative approach we need to take in what 

is new research and with no prior studies on similar cohorts to draw 

recommendations from. Hence, the ROPE formula we have used to set its limits:          

ROPE = σ x d = σ x (± 0.2) 

2.3.6 Effect Size 

The effect size (d) was developed by Joseph Cohen to allow comparison of 

effects in different studies (Cohen, 1988). There are various ‘effect sizes’ and 

Cohen’s d is used to examine mean differences. Cohen’s d is known to have an 

estimation bias when sample sizes are small. Therefore, a correction factor is 

used for sample sizes below 50 (see equation 2 below): 

Cohen's Equation (1)                            d =
ME - MC

SD pooled
 

 

Corrected Cohen's Equation (2)      d (corrected) = d × (
N - 3

N - 2.25
)  × √

(N - 2)

2
 

 

Pooled Standard Deviation Equation (3)   SD pooled =√
(SDE

2 + SDC
2)

2
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In the above equations N refers to the total sample size; M is the mean, where 

the subscripts E and C refer to the experiment and control group respectively, 

SD is the standard deviation (Durlak, 2009) 

Typically, d values are reported within two decimal places and where a positive 

value exists it suggests a positive effect for the intervention group whilst a 

negative d suggests a negative effect. Of course, a positive d does not mean a 

superior or successful outcome e.g. if we were studying the effect size of an 

intervention on levels of depression then a negative d would be superior. In our 

case, when we compare the mean RT between two conditions then a positive d 

would indicate faster responses for the second condition. On the other hand, 

when we compare mean accuracy rate between two conditions then a positive d 

would indicate more errors for the second condition. 

We use the conventional interpretation of the ES d results (Cohen, 1988): 

• Small effect = 0.2  

• Medium Effect = 0.5  

• Large Effect = 0.8 

But we understand that the cut-off points outlined above were suggested by 

Cohen as a ‘rule of thumb’. Ultimately the onus is on the investigators to decide 

how to evaluate the importance of their findings in the wider context of their 

research (Durlak, 2009).   
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3.1 Haptics 

Since the time of the Greek philosopher Aristotle (384–322 B.C.) and until almost 

the modern era it was believed that humans only had five senses: hearing, vision, 

taste, smell, and touch, with a sixth sense being considered as one of a 

somewhat supernatural dimension. This fallacy still prevails in modern popular 

culture even though many diverse types of sensory receptors in the human body 

have been discovered including: baroreceptors (blood pressure), 

chemoreceptors, mechanoreceptors, nociceptors (pain), proprioceptors (body 

position), thermoreceptors (temperature), and others. 

Necessary information from an electric or electronic device to its user is conveyed 

mostly through the senses of vision and hearing. Whether the light emitting diode 

(LED) on a computer, to indicate when it is on, or the high pitch audio alert from 

the rear side sensors, when reversing a car that is approaching an obstacle, the 

use of audible and visual alerts has been dominant in most products. There are 

situations though where audio or visual alerts are unsuitable. A sound alert in a 

very noisy environment may be ineffective. Visual alerts displayed out-with the 

visual field of the person who needs to be alerted to some action or danger can 

be futile. For example, an image alert to an imminent engine failure on a car’s 

dashboard can be missed by a driver who is concentrated on the motorway traffic 

ahead. In the turn of the 21st century, and following a much better understanding 

of human physiology, haptic technology has allowed for an alternative route of 

communication between a device and its user via vibration signals that can be 

detected by the human body’s mechanoreceptors.  

The word ‘Haptic’ originates from the ancient Greek ‘ἁπτικός’: relating to touch 

or sensitive to touch. Haptic technology makes use of tactile sensors, in particular 

the mechanoreceptors found in the fingertips and palms, to establish an 

interaction between the user and a device. In this study when we refer to haptic 

technology, we specifically mean the generation of vibrations by a device that are 

experienced by a user to deliver a signal or message of some kind.  

There are various sensory receptors located in glabrous skin (i.e. skin devoid of 

hair follicles such as over the palms and soles of the feet). There are four major 

types of mechanoreceptors that can relay information to the central nervous 
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system about touch, pressure, vibration, and cutaneous tension (Figure 3-1). 

These mechanoreceptors are: the Pacinian corpuscles (sensitive to vibration), 

the Meissner's corpuscles (sensitive to light touch), the Merkel cells (grip control), 

and the Ruffini corpuscles (sensitive to skin stretch). With the discovery of 

cutaneous mechanoreceptors and the subsequent understanding of their 

properties (Johnson, 2001) the field of haptic technology and communication has 

developed considerably. It has been shown that the Pacinian corpuscles can 

respond to a vibration amplitude as low as 10 μm and frequency as low as 40 Hz 

(Brisben et al., 1999; Skedung et al., 2013), with the maximum sensitivity 

achieved at around 250 Hz (Scheibert et al., 2009). This level of sensitivity of 

mechanoreceptors in the glabrous skin means that vibration signals that can 

exceed detection threshold can be produced by small, specialised components 

(actuators) in electronic devices with low energy demands and at a low cost. 

The use of haptic feedback is now widespread with notable examples being the 

feedback from touch screens when pressing tactile switches, or onscreen 

keyboards, and haptic perception in virtual reality systems in some video games. 

In fact, most people experience haptic technology daily through the vibration alert 

that they may receive from their mobile phones, game controls or other devices.  
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Figure 3-1. Mechanoreceptors within human glabrous and thin skin.  

Notice the wider range and greater density of tactile receptors in glabrous skin 
(thick skin) including Meissner corpuscle (2), Merkel cell (3), Ruffini corpuscle 
(4), and Pacinian corpuscle (5).  

Image copied from:  

https://commons.wikimedia.org/wiki/File:06_Hegasy_Skin_Layers_Receptors_
Wiki_EN_CCBYSA.png  

Under the Creative Commons Attribution-Share Alike 4.0 International license.  

https://commons.wikimedia.org/wiki/File:06_Hegasy_Skin_Layers_Receptors_Wiki_EN_CCBYSA.png
https://commons.wikimedia.org/wiki/File:06_Hegasy_Skin_Layers_Receptors_Wiki_EN_CCBYSA.png
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3.2 Vibration 

Vibration is a mechanical oscillating motion, characterised by the rapid and 

repetitive movement to and from an equilibrium point (i.e. the neutral point). A 

repetitive oscillation can be represented by a sinusoidal wave (Figure 3-2). A 

familiar example of an oscillating motion is the swing movement of a pendulum. 

Vibrations can be linear, circular, periodic or non-periodic, and they can be the 

intended outcome of a design e.g. vibration feedback from the steering wheel in 

virtual reality car racing games, or the indication of some damage e.g. vibration 

feedback from the steering wheel when driving at speed in a real car and the front 

tyres are unbalanced.  

Linear vibration is achieved by a linear resonant actuator (LRA), a type of 

vibration actuator that has a small internal mass attached to a spring, which 

moves linearly up and down when driven. LRAs were widely used in earlier 

designs of force plates found in gyms but they are now used a lot more in 

telecommunications and wearable products where a vibration functionality is 

desired. LRAs provide faster response time and longer lifetime compared to the 

alternative type of vibration method: the eccentric rotating mass (ERM) motor. 

Pager motors are an example of ERM motors used in early haptic technology. 

ERM motors produce vibrations by rapidly spinning a shaft with an off-centre 

load. The uneven mass distribution around the axis of rotation creates an uneven 

centripetal force which in combination with the speed at which the shaft spins the 

unbalanced load results in vibrations. The lack of shaft allows ERM actuators to 

be exceedingly small, typically 10 mm in diameter and 2 mm in height and easy 

to mount on the desired surface. Both LRA and ERM vibration motors are 

controlled by a haptic driver chip and driven by an electronic circuit where a 

microcontroller dictates the timing and pattern of the vibration.  

Vibration can be characterised by amplitude and frequency: 

• Vibration amplitude is the magnitude of an oscillating motion over a 

reference point, or in other words, the severity of the vibration. Vibration 

amplitude is usually expressed as the peak velocity highlighted by the line 

‘a’ in Figure 3-2 or as the peak-to-peak value highlighted by the line ‘b’. An 

alternative, but less used, definition of vibration amplitude considers the 
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root mean square (RMS) of the velocity amplitude. RMS includes the time 

of the vibration wave’s cycle and gives an amplitude value that is related 

to the energy content of the vibration. 

• Vibration frequency is the number of cyclical occurrences per unit of time, 

more specifically, the number of motion cycles achieved in one second 

and is thus expressed in cycles per second or hertz (Hz). Often, 

manufacturers of ERM actuators only report the motor’s revolution per 

minute (RPM). In such cases the vibration frequency can be calculated by 

dividing the RPM over 60 seconds i.e. Hz = RPM/60.  

 

 

Figure 3-2. A graph of a typical oscillating movement time domain.  

A sinusoidal wave represents the time period of a complete cycle (f) and can be 
described by the mathematical formula V(t) = A * sin(2π f t  + Φ), where t = time, 
A = amplitude, f = frequency (cycles), 2π f  = angular frequency, Φ = phase of 
the oscillation.  
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3.3 A haptic reaction test device for Judo 

Advances in haptic technology mean that it is now possible to create a low cost, 

practical, and reliable electronic device to test reactions to a haptic prompt: the 

stimulus that utilises the same sensory modality used by experienced judoka in 

training or competition. To the best of our knowledge such a device has never 

been designed before for Judo or other sports. The device we describe in this 

chapter is the prototype design we have used in our research in Judo. We have 

used this device to complete multiple series of data collection from haptic reaction 

tests. 

By integrating haptic technology in a purpose-built reaction testing device (Figure 

3-3) we aim to obtain accurate, reliable, and meaningful data on reaction time 

(RT) and accuracy (percentage of correct responses over the total of responses) 

in a haptic choice reaction test carried out by experienced judokas. Beyond judo, 

other applications for this device may include use for tests in visually impaired 

athletes in any sport or for other research projects unrelated to sports 

performance where reaction data on haptic stimulus can be of importance. 

 

Figure 3-3. The haptic reaction testing device. 

The device is connected to a laptop via USB to transfer raw data after reaction 
tests were completed. Each grip on the sides has two actuators located in the 
upper part of the grip (A) and the lower part of the grip (B). The mini joystick (C) 
is located next to the Liquid Crystal Display screen. 
  



Chapter 3 

64 
 

3.4 Design objectives and outcomes 

The haptic reaction test device was developed in conjunction with the technician 

of our research laboratory who provided the expertise and time to design the 

hardware and develop the source code used to run the tests. The chief 

investigator gave feedback to the technician at various stages of the device’s 

development to help improve the user-friendliness of the device and the quality 

of the data collected. Further improvements to the device were carried out 

following feedback from volunteers who took part in the pilot study described in 

section 3.7.2. Below, we outline the objectives we had in mind when we set out 

to design, and produce, the haptic device to test choice RT and accuracy in 

judokas.  

Budget 

Perhaps the most common limitation when building a prototype device is 

available budget. In our case we wanted to build a useful device that could be 

reproduced, used, and maintained by other researchers or coaches at a low cost. 

It is reasonable to assume that more people are likely to replicate the device and 

use it in research or training if it is not expensive to reproduce. We were able to 

produce a fully functional device for under £100 in 2017.  

Low maintenance and running costs 

This device has been designed so that it can be easily reproduced, run, and 

maintained. Other than the inside part of the ERM actuators (where the vibration 

is generated) there are no moving parts within the device, which makes it more 

likely to resist wear and tear over time. All of the components are robust designs 

and are not subject to mandatory upgrades to continue functioning. The device 

runs on a 5V battery that gives enough power to run multiple tests and can be 

recharged via a mini-USB cable.  

Dynamic test protocols 

It is important to have a testing device that can meet the specific requirements of 

different research projects. Our device can be programmed to allow changes to 

the number of people tested, the number of reaction episodes per test, the inter-
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stimulus interval time (the time period between reaction cues), the type of 

reaction test (simple or choice), the test modality (haptic or visual), the sequence 

of the tests carried out and other functions. These changes are accessible via 

simple computer coding. 

Test methods variety 

We wanted to validate our device against already established RT methods. Thus, 

it was important that we included alternative test modalities, such as visual 

reaction tests, in the device alongside haptic tests. We therefore created a device 

that can offer simple reaction and choice reaction tests in visual and haptic mode. 

Unobtrusive 

For athletes to integrate a test into a training session or competition, the test 

needs to be quick to set up through a device that is user friendly to avoid undue 

inconvenience or disruption to their usual routine. If the test is not perceived as 

a hindrance, then it is more likely that the athletes will engage in the testing 

process. It takes just under two minutes to: 1) start up the device, 2) select a 

username, and 3) complete a test with 20 reaction episodes, with the time taken 

for the first two steps being several seconds long. There is an option for the 

investigator to add a step where the user can also select the test mode but the 

type of test is most likely going to be predetermined and therefore, already set 

up for the user in most situations.  

Sport specific 

We can have more confidence in the ecological validity of reaction data collected 

if the reaction prompt is compatible with the dominant sensory route used. In the 

case of judoka this route is through the mechanoreceptors in the skin of their 

fingertips and palms. In addition, the response task should allow enough freedom 

of movement to be able to replicate sport specific actions. For our specific project 

the device was designed to be held with both hands to simulate the typical judo 

grip judoka perform when holding their opponent’s sleeve. In fact, the grip on 

either side of the device was dressed in the same material the official competition 

judogi is made of to enhance the sense of familiarity on the grip. Also, the device 

does not impose the typical task, or location, restrictions seen in other tests that 
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can only be carried out in laboratories or with impractical equipment. By its 

nature, the device allows for a test to be carried out at any training or competition 

environment the judoka may be and allows freedom to decide the starting 

position and the task movement. For our project with judoka this consideration 

was an important one for a successful test. Of course, the freedom of task 

movement is subject to the condition that both arms move sharply in the correct 

direction for a fraction of a second when movement is initiated and on the same 

plane with the starting point. For example, if in the start position the user holds 

the device parallel to the ground then the initial sharp displacement of the device 

should be towards the direction indicated by the location of the actuator that has 

been activated in the device but still parallel to the ground. The device only 

records the time it takes to initiate locomotion and the direction chosen, which 

allows the user freedom to execute sport-specific movements of their choice after 

the initial movement. 

Portable but robust 

We wanted a device that was portable, light, and could be used at the dojo 

(training area for Judo) or at any competition around the World but also to be 

robust enough during travel and during use by athletes like judoka who tend to 

have extraordinarily strong grips. Our prototype device weighs under 240g, is 

small (length = 10 cm, width = 20 cm, height = 4.5 cm), and is robust. Aside from 

the four ERM motors the device has no moving parts and the electronic 

components are protected within a durable casing. Our device is light and durable 

enough to be used without causing physical fatigue or getting damaged during 

use or transport in hand luggage. 

Data 

Another important objective was to have a device that can record and store highly 

accurate data that can be easily transferred to another platform for further 

analysis. Our device records each response to every reaction stimulus in 

microseconds (μsec = 10-6 of a second) and stores the data in plain text format. 

Study investigators can transfer the stored data via USB to a computer where a 

serial port terminal programme (HT Comm) has been installed. The HT Comm is 

a free software (https://www.hobbytronics.co.uk/ht-comm) that allows text strings 
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to be sent via a serial connection to an attached device. Subsequently, the data 

transferred to the computer can be saved in different ways but CSV is the 

preferred format as it allows for data to be transferred to and used by any other 

software for statistical analysis. 

Hygiene 

Hygiene considerations were important because we wanted our device to be 

handheld and to be used by many different judoka in their training environment. 

We used materials that are easy to clean so that with a little effort in cleaning, the 

device is unlikely to be a hygiene hazard. More specifically, the cloth around the 

grips can be removed to be washed and the device’s casing can be cleaned with 

antibacterial wipes.  
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3.5 Alternative methods for reaction tests 

Even though there are some straightforward ways to turn any modern computer 

into a reliable reaction test device (Dalrymple-Alford, 1992; Voss et al., 2007), to 

date several commercial and open-source software packages have been 

developed that offer an array of reaction tests used in cognitive research such as 

CANTAB (Cambridge Cognition Inc., UK), DLRT (The University of Edinburgh, 

UK), E-Prime (Psychology Software Tools Inc., USA), Experiment Builder (SR 

Research Ltd., Canada), Presentation (Neurobehavioral Systems Inc., USA), 

and Psykinematrix (Kybervision, LLC, Japan).  

• The Deary-Liewald Reaction Task (DLRT), developed by Ian Deary and 

David Liewald (Deary et al., 2011) is one example of a validated computer-

based reaction test. It is a simple test to administer, and the software is 

freely available via the DataShare webpage of the University of Edinburgh 

(https://datashare.is.ed.ac.uk/handle/10283/2085).  

• The Cambridge Neuropsychological Tests Automated Battery (CANTAB) 

is a computer-based test that was developed by Trevor Robbins and 

Barbara Sahakian at the University of Cambridge. CANTAB is now a 

commercial product of Cambridge Cognition who proclaim it to be the ‘Gold 

standard’ in cognitive research (https://www.cambridgecognition.com/what-

we-do/gold-standard-cognitive-research/). However, some researchers 

have recommended caution as CANTAB has been shown to be 

moderately associated with traditional neuropsychological tests (Smith et 

al., 2013). Furthermore, CANTAB has considerable cost implications 

despite the availability of much cheaper, or even free, software products 

that offer similar functionality.  

• PsychoPy, is an open-source programme (Peirce et al., 2019) written in 

the programming language Python. PsychoPy allows users to set up 

reaction experiments on a computer to desired specification including 

parameters such as test stimulus (either visual or auditory), inter-stimulus 

intervals, response modality etc.  

Whilst the tasks involved in the tests from these software packages can be user 

friendly neither is particularly practical as they require a laptop or tablet computer 

https://datashare.is.ed.ac.uk/handle/10283/2085
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to run their programmes, and neither had haptic tests available at the time of our 

investigations. 

Perhaps the best known but low technology reaction test is the ruler drop. This 

test is arguably the cheapest and most rudimentary reaction test requiring only a 

standard ruler and the help of an assistant. For the test, a ruler is dropped for the 

participant to catch with the dominant arm’s index finger and thumb (for a detailed 

description of the ruler drop test see Eckner et al. 2010). Due to its low cost and 

practicality, this test has been used as an alternative field test to computer tests 

when assessing athletes’ fitness to return to play e.g. after sport related 

concussion (Eckner et al., 2010; MacDonald et al., 2015). Another advantage of 

this specific test is that unlike computer-based tests there is no technical latency 

involved as there are no peripheral components through which a signal needs to 

be relayed; the time estimated is purely the response time. However, the ruler 

drop test was overly simple for our purposes and did not have ecological validity 

for Judo specific stimuli. Also, the response time is not measured directly but 

rather estimated by observing values on the ruler and then using the following 

formula: 

𝑡 = √
2𝑑

𝑔
 

Where t = time in seconds, d = the distance the ruler dropped in meters, and g = 

the standard gravity of 9.806 m/sec2. Hence, there are several sources for 

potential error that can impact on the desired level of accuracy and precision. 

Sources of error may include the parallax from the observer’s chosen viewpoint 

from which the ruler value is read, typing errors when entering values to the 

formula, or erroneous calculations.   
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3.6 Design 

3.6.1 Electronic components 

A range of electronic components were necessary to build the haptic reaction 

testing device to meet the desired objectives outlined earlier in this chapter. Each 

item is described below along with the manufacturer part number (MPN) where 

applicable. 

• Microcontroller 

o The reaction test protocols were run via the Arduino Mega2560 

microcontroller (Figure 3-4) Arduino produces open-source boards 

allowing custom source code to be written and uploaded so the 

board can control specific components. Arduino code was written 

by the research team technician to run reaction test protocols as 

required for the study. The board includes 54x digital I/O pins, 16 

analogue inputs, 4x hardware serial ports, 256 KB flash memory, 

and 16 MHz clock speed. The board is user friendly and can be 

powered by battery. 

 

Figure 3-4. Arduino Mega2560 microcontroller 
 

• Accelerometer 

o The ADXL335 Accelerometer (Figure 3-5) from Seeed Studio 

(MPN: 101020051) is a small, thin, low power, 3-axis accelerometer 

with signal conditioned voltage outputs that measures the static 

acceleration of gravity in tilt-sensing applications as well as 

dynamic acceleration resulting from motion, shock, or vibration. 
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Figure 3-5. 3-axis accelerometer 
 

• Real Time Clock (RTC) 

o The Adafruit DS3231 (Figure 3-6) Precision RTC (MPN: 3013) is a 

highly precise breakout board with the timing crystal inside the chip. 

There is a temperature sensor right next to the integrated crystal so 

that clock ticks can be added or removed to maintain accuracy even 

when temperature changes. A CR1220 coin cell can keep the clock 

running for years. 

 

Figure 3-6. Precision real time clock 
 

• Coin vibration motor 

o The tactile stimuli were delivered via coin ERM actuators (Figure 

3-7) from Precision Microdrives (MPN: 310-004) with 1.5V 

operating voltage, 7300 RPM vibration speed, and approximately 

122 Hz frequency. This product is a shaftless ERM vibration motor 

enclosed in a metal coin shape case 10 mm in diameter and 3.4 

mm in height (for more information see Appendix A). A pair of 

motors were placed on each grip and each pair was mounted 

approximately 80 mm apart, as measured from each motors centre. 

This arrangement of the actuators allowed to create two distinct 

vibration sources on each handle grip of the reaction testing device. 

Thus, vibrations could be localised in the upper part of the user’s 
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grip (through the skin surface of the pollex, or thumb) or in the lower 

part of the grip (through the skin surface of the digitus minimus 

manus, or little finger, and palm area over the hypothenar muscles). 

 

Figure 3-7. Coin vibration motor 
 

• NPN Transistor 

o A transistor is a current-controlled three-terminal device used as an 

amplifier. NPN transistors are semiconductors, and they have a 

positive layer ‘P’, also known as ‘base’, fixed between two negative 

layers ‘N’: the ‘emitter’ and the ‘collector’. A device such as the octal 

Darlington driver (MPN: ULN2803A), with a 500 mA transistor array 

of eight NPN Darlington pairs (Figure 3-8), can increase the current 

gain in a circuit further because each pair of transistors results in a 

current gain that is equal to the product of their individual current 

gains. This specific transistor was used as an open collector output 

i.e. a collector that is not attached to anything but rather acts like a 

switch that turns on to allow a higher current to flow when sufficient 

power reaches the base of the transistor. 

 

Figure 3-8. NPN transistors 
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• PNP Transistor 

o PNP transistors have a negative layer ‘N’ fixed between two 

positive layers ‘P’. The TO92 30V by CDIL (MPN: BC559C) is a 

general purpose PNP transistor (Figure 3-9) suitable for signal 

processing, switch and amplification applications and in this project 

it was used to operate as an ON/OFF type solid state switch. 

 

Figure 3-9. PNP transistor 
 

• Electrolytic Capacitor 

o A capacitor is a two terminal component made up by two 

conductive plates separated by an insulate material, which can 

temporarily store electrical charge. Compared to conventional 

batteries, capacitors can store a lot less energy but can charge and 

discharge at a much faster rate, which makes them useful 

components when a burst of energy is required in the integrated 

circuit. In contrast to ceramic capacitors, electrolytic capacitors are 

polarised and can only be connected in a specific direction so that 

the longer lead is used as the positive terminal (cathode) and the 

shorter lead as the negative terminal (anode). In this project, an 

electrolytic capacitor was used to maintain a power supply in the 

electronic components of the device and prevent the loss of data 

while the device was unplugged from a power source and without 

a battery for a short time. The capacitor used was the micro 

miniature radial aluminium electrolytic capacitor (Figure 3-10) by 

Forever (MPN: 7MM MICROMIN10U16V) that has 10 μF 

capacitance with 20% tolerance and can withstand up to 16 Volts. 
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Figure 3-10. Electrolytic capacitor 
 

• Signal Diode 

o Diodes are simple semiconductor components that allow current to 

flow through them in one direction only, like a one way valve. They 

are often used to prevent reversal of polarity. The semiconductor 

signal diode (Figure 3-11) by Fairchild (MPN: 1N4148TR) is a 

standard high speed switching diode with 200mA forward current. 

 

Figure 3-11. Semiconductor signal diode 
 

• Liquid Crystal Display (LCD) screen 

o The Arduino colour thin film transistor (TFT) LCD screen (MPN: 

A000096) is a backlit screen (Figure 3-12), 45mm diagonal length, 

with a micro SD card slot in the back that allows for the drawing of 

images and shapes in 160 x 128 pixels screen resolution. 

 

Figure 3-12. Liquid Crystal Display (LCD) screen 
 

• Mini Joystick  
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o A 5-Way tactile switch breakout board module (Figure 3-13) 

compatible with Raspberry Pi Arduino for a joystick-like interface. 

 

 

Figure 3-13. Mini joystick 
 

• Micro-USB Breakout Board 

o Breakout boards take pins from an integrated circuit and break out 

each conductor to a terminal giving easy access to the integrated 

circuit. This Adafruit USB micro-B breakout board (Figure 3-14) by 

Adafruit (MPN: 1833) was used to establish a socket through which 

communication with the microcontroller is enabled and 5V of Direct 

Current (DC) power can be supplied. 

 

Figure 3-14. Micro-USB breakout board 
 

• Power Supply Charger 

o The Adafruit PowerBoost 1000C (MPN: 2465) is a power supply for 

5V portable projects (Figure 3-15). It has a low battery detection 

facility, more than 90% efficiency, and 700 KHz high-frequency 

operation. The built-in battery charger has load-sharing that 

automatically switches over to the USB power when available 
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Figure 3-15. Power supply charger 
 

• Lithium Cell Batteries 

o CR2450 lithium coin cell batteries (Figure 3-16) by Energizer 

CR2450 (MPN: 638179) with 620mAh capacity. 

 

Figure 3-16. Lithium coin cell batteries 
 

• Stripboard  

o This 95 x 127mm strip-board (Figure 3-17) by Rapid (MPN: 34-

0515) was used as a prototyping board to build the device’s circuit. 

 

Figure 3-17. Stripboard   
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3.6.2 Shell and Handles 

The casing for the device was made using a 3D printer (FlashForge 3D Printer 

Creator Pro) using acrylonitrile butadiene styrene (ABS) plastic, which is 100% 

recyclable. On the left and right sides of the device we created a handle grip that 

the user can use to simulate a typical Judo grip. Each handle was also dressed 

in judogi material to enhance the sense of familiarity by the judoka who use the 

device. Another advantage of using this specific type of fabric is that it is durable 

material designed for heavy duty and can be removed and replaced with ease as 

needed for cleaning (Figure 3-18). The entire device can be easily cleaned with 

a simple antibacterial wipe. Attention to hygiene is important for using a device 

that is most likely going to be passed around many different hands with no 

guarantee that all hands will be clean enough and without sweat.  

 

Figure 3-18. The casing of the reaction device. 

The judogi material used to cover the grips (top), the ABS plastic casing that 
housed the integrated circuit (centre), and the reactions device fully assembled 
before its handle grips are covered with the judogi material (bottom).  
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3.6.3 Arduino software 

Arduino is an open-source hardware, software, and content platform with a 

worldwide community of over 30 million active users (https://www.arduino.cc/). 

Any Arduino microcontroller can be connected via USB to a computer where it 

can be programmed using Arduino code via the open source Arduino Integrated 

Development Environment (IDE). Arduino code will function on any of the three 

major operating systems i.e. Windows, Mac OS X, and Linux. Code is easily 

uploaded to the microcontroller via USB and this code is then executed allowing 

interaction with inputs and outputs as programmed.  

A distinctive advantage of using Arduino code is that it is easy to alter and upload 

to the Arduino microcontroller whenever a change in functionality to the project 

is required. Additionally, there is a dedicated support network of experienced 

Arduino users online and a wealth of useful online resources. Arduino code has 

several built-in libraries, a common feature of most programming platforms, 

which provide basic functionality. There is also capacity to import other libraries 

that can expand the Arduino microcontroller capabilities and features. Arduino 

projects can be designed online through Circuito (Figure 3-19), an application 

where users can visualise their integrated circuit design, view costs of materials, 

and test code (https://www.circuito.io/). 

Creating code for an Arduino project and maintaining it is free. And although the 

Arduino language is based on C/C++ there is no need for prior knowledge in 

programming languages as tutorials for complete beginners are available online. 

There is also a programming environment available called ArduBlock that is 

designed for beginners in Arduino projects. In ArduBlock the user can take 

advantage of a list of code blocks to visually set up a code instead of using a 

proper programming language making Arduino projects accessible to more 

people who do not have any technical expertise in programming languages. 

https://www.arduino.cc/
https://www.circuito.io/
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Figure 3-19. A high-level integrated circuit schematic of the reaction device. 

Note this is an example of an integrated circuit schematic as viewed on Circuito 
(https://www.circuito.io/). In this example the Arduino Mega2560 microcontroller 
(A) is connected to some of the electronic components listed in this chapter: 
precision timer (B), ERM actuators (C), mini joystick (D), 3-axis accelerometer 
(E), and LCD screen (F). 
  

https://www.circuito.io/
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3.7 Testing 

3.7.1 Latency 

An electrical current is needed to provide energy to the ERM coin vibration motor 

for it to reach its peak RPM, which means that it takes time for the motor to 

achieve the necessary acceleration to change its RPM from 0 to its maximum 

value. Hence, we had to investigate the typical latency magnitude of the ERM 

actuators between the start of the current flow (start of a reaction test episode) 

and the change in the ERM’s amplitude and frequency. We used a standard 

oscilloscope to run repeated tests on the ERM motors to ascertain their mean 

latency value (Figure 3-20). After 20 tests the median latency was 60 msec with 

a 2% coefficient of variation (CV). With such low CV we were confident that 60 

msec was a fair representation of the true latency value for any reaction test 

carried out with these specific ERM motors. 

 

Figure 3-20. Latency of Actuator’ vibration activation. 

A graph showing 5 Volt power supplied to the motor (orange line) for 100 msec 
and the ERM motor’s response with an acceleration that takes approximately 60 
msec to show a distinct change in the amplitude of oscillation (blue line). The 
peak amplitude values continue to increase up to the point the current flow is 
stopped at 100 msec after which point the amplitude returns to its resting value 
within the following 120 msec.  



Development of a Novel Haptic Reaction Test Device 

 

81 
 

3.7.2 Pilot data  

Once the prototype device was put together, we examined how easy it was for 

the device to be operated by a new user and how convenient it was to carry out 

a test protocol. We asked six volunteers to test the device for functionality. The 

test itself was informal and carried out at the University of Stirling by 

undergraduate students. No information other than usability of the device was 

collected from these volunteers.  

Before each participant started the test a demonstration was carried out 

explaining how to hold the device, how to turn it on, and how to perform a visual 

choice reaction test and a haptic choice reaction test (for details on the test 

procedures see Chapter 4). A trial run on each test was allowed and the 

participants were free to start the tests when they felt ready to do so. The device 

was set up in such way that when the user switched it on they just needed to 

select ‘start’ on the screen by depressing the mini joystick. Once the test was 

started the user had to carry out 10 responses in the choice reaction mode with 

a visual cue displayed on the screen (a white arrow against a black background). 

After a short break, another 10 choice responses followed but the prompt would 

come from a haptic signal (vibration) instead. 

Following the conclusion of the tests all participants reported that they found the 

device easy to use, comfortable to hold, and light. However, the participants also 

reported that they could not always differentiate between which one of the two 

ERM motors in each handle grip was producing the vibration signal. For example, 

if one of the two actuators in the left handle was activated the participants could 

sense the haptic signal in their left hand but not the exact location it originated 

from. After examining the data collected it was immediately apparent that there 

was an issue with the haptic signal. The error rate for the visual choice reaction 

test was 0% whilst the error rate for the haptic equivalent test was 63%.  

One explanation for the lack of clarity in the vibration signal, and the subsequent 

extremely high error rate in the results, is that in the original design the actuators 

were attached on the layer of stripboard that was used to base the rest of the 

materials on. Thus, when a vibration motor was activated the vibration signal 

most likely spread across the stripboard area making it very difficult for the user 
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to pinpoint which one of the motors was producing the vibration signal. To remedy 

this issue small holes were created on the strip-board in each area where 

previously an actuator was attached (Figure 3-21).  

This modification allowed each ERM coin vibration motor to fit in place without 

being in contact with the stripboard. Instead, the motors were attached to a thin 

plastic membrane layer underneath. This small adjustment to the internal design 

of the reaction device led to an improvement in the haptic signal quality. In follow 

up pilot tests we found that the error rate during a choice reaction haptic test 

dropped from 63% to around 15%. The participants in this test confirmed that 

when they made a choice error they were aware that they had done so, which 

demonstrated their awareness of where exactly the signal came from.  

 

Figure 3-21. Correction of haptic signal from the device.  

A hole was made on the stripboard on each area where an ERM vibration 
motor was placed. Notice that each motor is attached to a thin plastic 
membrane (green) and has no contact with the thicker and harder stripboard. 
This small change in the design improved the quality of the vibration signal and 
made it easier to pinpoint the direction of the haptic stimulus. 
 

From the data collected we were also able to confirm that the intra-stimulus 

intervals between reaction prompts were at random as was the choice of actuator 

activation (from the four actuators that could be activated). Thus, we are certain 

that the likelihood of a user guessing the start of a signal and the correct response 

in choice reaction tests is practically impossible. 

  



Development of a Novel Haptic Reaction Test Device 

 

83 
 

3.8 Conclusion 

Reaction tests are widely used to assess information processing ability in people. 

In performance sports where quick and correct decisions are important for 

success reaction tests may be used to monitor improvement in execution of tasks 

(e.g. sprint starts) or to help assess readiness for return to play after concussion 

in contact sports. Historically, all reaction testing methods developed have been 

based on visual perception or audio perception. In a sport like Judo, where the 

dominant sensory input is tactile it is sensible to utilise reaction tests based on a 

more ecologically valid sensory modality such as a haptic signal.  

We have produced a novel, judo-grip specific reaction testing device where the 

reaction stimulus is a haptic signal. The device is portable, light, robust, and 

inexpensive. This device is easy to reproduce by any electronics enthusiast and 

it has minimal maintenance and running costs. The RT data are saved in a plain 

text file and can be transferred with ease to a computer for statistical analysis. 

Another important advantage of the device’s design is that it allows testing to be 

carried out within a brief time period and wherever the judoka train or compete 

without disturbing their routines.   
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3.10 Appendix A 

3.10.1 Coin vibration motor 

Product Dimensional Specification 

Typical Vibration Motor Performance Characteristics 

 

Exploded view of a Coin Vibration Monitor 

 

Source: https://www.precisionmicrodrives.com/vibration-motors/coin-vibration-

motors/ 

https://www.precisionmicrodrives.com/vibration-motors/coin-vibration-motors/
https://www.precisionmicrodrives.com/vibration-motors/coin-vibration-motors/
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4.1 Introduction 

In Chapter 3 we described the development of a haptic choice reaction test 

device, the components we used to put it together, and the design objectives. In 

this chapter we describe the battery of reaction time (RT) tests carried out by a 

cohort of volunteers against a criterion method to examine the reliability and 

validity of our novel device.  

Cognitive performance as manifested by the ability to react rapidly to an 

opponent’s move, or to any scoring opportunity, is necessary in many sports. 

Fast reactions are not just advantageous for the performance result but can also 

help prevent or minimise injuries through better anticipation (Honda et al., 2018). 

Hence, from racket sports and ball games to sprint races and combat sports, 

improving RT has become an integral part of most athletes’ training regimens. 

With the increase in interest in collecting RT data came the need to develop 

practical, valid, and cost-effective reaction tests that can be carried outside a 

laboratory and can help assess more accurately competitors’ RT (Eckner et al., 

2010; MacDonald et al., 2015).  

Beyond the performance driven monitoring of RT, other uses of reaction tests 

can have a more clinical purpose. For example, RT as well as other cognitive 

function parameters can be negatively affected following a concussion (Harmon 

et al., 2013). Changes in RT from baseline can aid in figuring out the necessary 

time to clinical recovery (Lau et al., 2009). The potential of RT values as a 

diagnostic tool has led to a growing interest in reaction tests that can be used as 

part of routine pre-season physical examination in sports with concussion risk 

(Broglio et al., 2007; Eckner et al., 2011). In some cases, field tests have been 

developed that are merely a variation of the classic ‘drop and catch’ ruler test 

(Eckner et al., 2009). These tests appear to be sensitive enough to identify 

athletes with a concussion in cases where pre-concussion RT results are known 

(Eckner et al., 2010). Judo is a full contact combat sport and the risk for 

concussion, although not as common as in sports like rugby or American football 

(Bakhos et al., 2010), is still a concern. Arguably, by having a judoka’s baseline 

reaction data from a reliable and ecologically valid test, then if that judoka 

suffered a concussion the clinical and support staff could have another piece of 
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useful information when trying to reach a conclusion about the progress of 

recovery and the safe return to training. 

In earlier chapters (see Chapters 1 and 3) we have argued that when trying to 

assess athletes’ RT it is better to choose a method where the type of stimulus 

used to initiate a reaction is compatible with the dominant sensory modality used 

in the chosen sport. For example, in athletes who race the 100 m sprint event in 

athletics, it is preferable to know how quickly they can react to an audio cue given 

that the start signal is the sound of a gunshot. In the case of boxers, it would be 

better to know how quickly they can respond to a visual prompt given that boxers 

have to react to their opponent’s attacks through visual stimuli. In a team sport 

like basketball, it is perhaps more relevant to understand how quickly the players 

can capture and process a high volume of visual information given that they have 

to take a glance during fast play on the court and identify the position of their 

teammates and the openings available in the opposition’s defence that can be 

exploited to create a scoring opportunity. In Judo, any studies carried out to 

investigate RT have not been sport specific in their sensory modality having used 

images or sounds as the reaction task prompts instead of tactile stimuli 

(Cojocariu & Abalasei, 2014; Javier et al., 2013; Lima et al., 2004; Supiński et al., 

2014; Zukowski, 1989).  

4.1.1 A new reactions test paradigm 

Judo’s limited demand on visual cues is aptly demonstrated by judoka such as 

Zvian Gogotchuri, a well-known Georgian judoka who is visually impaired but has 

competed, successfully, against World class non-visually impaired judokas. 

Similarly, British judoka Sam Ingram is another highly accomplished Paralympian 

with visual impairment who has competed at major events against top ranked 

judoka with no disability. Judoka like Gogotchuri and Ingram demonstrate why 

the use of a haptic stimulus to test RT in judoka should be of interest; a haptic 

test will assess RT through the type of sensory stimulus that is more compatible 

with the dominant sensory input judoka experience when in training and 

competition. 

We need a reliable RT testing method with a sensory modality that is appropriate 

for judoka and it is practical enough to carry out at a training venue. We should 
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move away from computer-based methods that test RT in response to visual or 

aural stimuli as such tests do not satisfy a requirement for a tactile stimulus. 

Furthermore, computer-based tests can result in higher variability in the data due 

to the latency from the system delays that are inherent in the technology (Kim et 

al., 2020). We have tried to address the issues described above by designing 

and manufacturing a reaction testing device that includes haptic technology (see 

Chapter 3). Although the device was designed specifically to assess RT in Judo 

it could potentially also be used for the same assessment on any visually 

impaired athletes or in any other sports where somatosensory perception may 

be important for performance. 
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4.2 Methods 

4.2.1 Device 

The design, manufacture, and operating characteristics of the haptic device used 

throughout the rest of this project is described in Chapter 3. For the haptic tests, 

a signal (i.e. a vibration) was produced by one of the four actuators at random 

and to prevent successful anticipation of the next signal the time between signals 

(i.e. inter-stimulus time) was randomised within 1000 to 3000 msec. The 

frequency of each vibration from the vibration motors used was 122Hz, which 

we tested in a pilot study and found it to be sufficient for the users to detect the 

source of the vibration when holding the handle grips. 

4.2.2 Participants 

We recruited 10 healthy, fully mobile, and physically active volunteers, three 

females and seven males, with an average age of 27.6 ± 6.5 years (Table 4-1). 

The study was approved by the School of Sports Research Ethics Committee of 

the University of Stirling (NICR 16/17) and all participants gave written informed 

consent prior to taking part in the study. Data from each participant was 

associated with a code generated at the time of recruitment to ensure anonymity. 

Four of the participants were students who trained regularly and were competitive 

in Judo and the rest were fulltime staff from the Scottish Institute of Sport who 

trained and competed in sports such as cycling, running, football, and 

Taekwondo.  

Cohort Female Male Age (SD) BMI (SD) Judo Non-Judo 

10 3 7 27.6 years 

(6.5) 

22.6 Kg/m2 

(1.9) 

4 6 

SD = Standard Deviation, BMI = Body Mass Index 

Table 4-1. Reliability Study Participants. 

There were four exclusion criteria for the study:  

• Being under 18 or over 40 years old. 

• Engaging in habitual physical exercise less than once weekly. 
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• Being clinically obese (defined as having Body Mass Index > 30 Kg/m2 

and waist circumference >= 88cm and >= 102 cm for females and males 

respectively). 

• Being pregnant or suspecting pregnancy.  

4.2.3 Overall procedure  

Each participant was asked to attend the Exercise Physiology laboratory at the 

University of Stirling on five occasions: one visit prior to testing plus four visits to 

perform the reaction tests. At the initial visit, each participant was asked to 

complete a confidential health questionnaire and was then given detailed 

information about the study. At the same visit, they were also given the 

opportunity to familiarise themselves with the RT tests on the prototype device 

and two validated RT tests on a laptop computer. Following the conclusion of 

their initial visit, all participants had at least two days to consider their decision to 

take part in this project. Any subsequent testing was carried out only after written 

consent was obtained. Testing was completed over four morning visits at the 

Exercise Physiology laboratory within a two-week period. 

4.2.4 Experimental condition 

In order to increase our confidence in the validity of our novel method we 

repeated the measurements (i.e. A Vs B) under two conditions of hydration status 

(i.e. No dehydration Vs Dehydration). It is not uncommon for judoka to 

purposefully dehydrate prior to a competition in order to enter a lower weight 

class (Artioli et al., 2010). We opted for a mild level of dehydration (2-3%) for the 

experimental condition because we thought this magnitude of dehydration could 

be achieved by all our participants without having to overexert themselves. If the 

criterion method was sensitive enough to detect a difference in RTs between the 

two conditions, then we would expect our method to be equally sensitive.  

4.2.5 Experimental procedure 

A battery of tests was carried out using the prototype device and the Deary-

Liewald Reaction Time Tester (DLRT) software running on a laptop computer. 

The DLRT software and testing procedure details have been described 
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elsewhere (Deary et al., 2011). In total there were six reaction tests for the 

participants to complete at each visit: 

• A simple reaction test with a visual cue (laptop) 

• A simple reaction test with a visual cue (device)  

• A simple reaction test with a haptic cue (device) 

• A choice reaction test with a visual cue out of four choices (laptop) 

• A choice reaction test with a visual cue out of four choices (device) 

• A choice reaction test with a haptic cue out of four choices (device) 

The test which we were interested in evaluating was the haptic choice reaction 

test. We used the validated DLRT method (see section 4.2.7) as benchmark and 

we added the simple reaction tests in the experimental procedure to allow a more 

extensive analysis of the device’s performance.  

Each one of the six tests was carried out by every participant in a random 

sequence within the same session, under two different conditions (Dehydrated 

and Not dehydrated) and on four separate occasions to replicate the ‘test-retest’ 

model (session A and session B). The order of the four testing conditions i.e. 

Dehydrated session A and session B, and Not-dehydrated session A and session 

B, was also randomised to minimise any learning effect. Before the start of the 

tests on every visit at the laboratory participants were allowed a practice run on 

each test to ensure that they felt fully familiar with the details of each testing 

procedure. Once the participant indicated they were ready to begin the tests then 

10 reaction episodes were recorded for each test. In the choice reaction tests the 

number of reaction episodes was fixed irrespective of the number of errors 

committed. 

As part of the preparation procedure for the tests, all participants were asked to 

have their dinner before 8 pm on the night preceding the test and to have no 

further food or drink beyond that time prior each visit to the laboratory on the 

following morning. Participants who were taking part in the ‘No dehydration’ 

protocol were told to continue having non-caloric fluids to thirst. The participants 

were also instructed to record their nude body mass before going to bed and to 

make sure that they had emptied their bladder and opened their bowels before 
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stepping on the scales. A set of calibrated digital scales was loaned to each 

participant for this purpose. The participants were also asked to refrain from 

eating anything on the morning of each test until the end of the testing 

procedures. Those who were on the ‘Dehydration’ protocol were also asked to 

avoid taking any fluids until the end of the tests. Those who were on the ‘No 

dehydration’ protocol were advised to consume fluid to thirst, or more if they 

wanted, in order to stay hydrated.  

Upon arrival at the laboratory participants were weighed and those who were 

assigned to the ‘Dehydration’ condition (mild dehydration of 2-3% body weight) 

would begin the dehydration protocol for the amount of time necessary. Those 

who were assigned to the ‘No dehydration’ condition would seek to replace the 

weight lost overnight with flavoured water before starting the tests.  

Upon completion of the tests participants were offered a selection of cereal bars, 

porridge, bananas, mineral water, and hypotonic drinks. 

4.2.6 Dehydration protocol 

For the dehydration protocol participants were told that they would need to drop 

their body mass by 2-3% compared to the weight recorded the evening before. 

Some exercise of moderate intensity on either a treadmill or a static bike were 

the options available to the participants to use for this purpose. We expected that 

all participants should be able to reach the body mass target within less than 60 

minutes of easy to moderate intensity exercise. 

All participants chose running on a treadmill as the exercise mode to lose the 

required amount of weight. The room temperature in the laboratory was set at 

23o Celsius and participants run with long sleeves and trousers on to induce more 

sweat. All participants run regularly as part of their fitness training or sport, so 

they had more than adequate fitness to complete a low intensity run on a treadmill 

of less than 60 minutes duration. The running pace was dictated by each 

participant’s perception of an ‘easy’ run. The investigator was by their side 

controlling the speed of the treadmill and maintaining the speed at a point where 

each participant could still have a conversation without any heavy breathing. All 

participants were told that they could stop the exercise if they felt uncomfortable.  
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4.2.7 Reaction tests protocol 

There were four reaction tests set up on our handheld device: 

1. Simple Reaction Haptic (SRH) test 

2. Simple Reaction Visual (SRV) test 

3. Choice Reaction Haptic (ChRH) test 

4. Choice Reaction Visual (ChRV) test 

In the SRV test, the participant had to hold the device with both hands so that the 

device’s liquid crystal display (LCD) screen was facing up and the mini joystick, 

which was located next to the screen, was directly under and in contact with their 

right thumb (see Figure 3-3 for an image of the device). A large white solid circle 

against a black background would appear at random intervals on the screen. The 

participant was instructed to depress the mini joystick as soon as the white circle 

appeared on the screen (Figure 4-1). The RT was recorded and stored in the 

device’s mini Secure Digital (SD) card. The time unit used to record all RTs on 

the device was microseconds (μsec, 10-6 of a second) and converted to 

milliseconds (msec, 10-3 of a second) for later analysis. 

 

A black screen at the start of each trial (left) and a white dot on black 
background serving as the visual cue (right). 

Figure 4-1. Screenshot of the visual simple reaction task on the device. 
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In the ChRV test, the participant had to hold the device in the same way as in the 

SRV test; with both hands so that the LCD screen was facing up and the mini 

joystick was directly under, and in contact, with their right thumb. A large white 

solid arrow against a black background would appear at random intervals 

pointing either Up, Down, Left, or Right (Figure 4-2) and the mini joystick had to 

be pushed in the direction indicated by the arrow on the screen. The random 

inter-stimulus intervals and arrow direction made it practically impossible to 

guess the timing and the direction of the arrow. 

A black screen at the start of each trial (left) and a white arrow on black 
background serving as the visual cue (right). In this example the participant 
would have been expected to shift the mini joystick towards their body. 

In the SRH test, the participant had to hold the device with both hands so that the 

LCD screen was facing up and the mini joystick was directly under, and in 

contact, with their thumb. However, with their left hand, the participant held the 

left handle grip of the device so to be able to detect the haptic signal from the 

actuators housed in the handle. The participant was instructed to depress the 

joystick with their right thumb as soon as they felt the haptic signal from the 

vibration motors in the left handle.  

In the ChRH test, the participant had to hold the device using the handle grips so 

that the LCD screen was facing up with the mini joystick most proximal to the 

right hand. It did not matter at which plane, in relation to the coronal or transverse 

planes, the participant moved the device during the test as long as they tried to 

keep the movements on the same plane. By keeping the movements closer to 

two dimensional parameters, instead of three dimensions, we removed any 

potential uncertainty about the direction in which the participant chose to initiate 

Figure 4-2. Screenshot of the visual choice reaction test on the device. 
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movement at each response. During the ChRH test each signal was relayed in a 

randomised order from one of the four actuators housed in the handles of the 

device. The participant was instructed to push or pull the device sharply in the 

direction they thought the vibration came from and return it to the start position. 

In the interest of clarity we suggested to each participant they consider the front 

of the device pointing an imaginary North and the device placed in the 

intersection of the North-South and West-East line. The response to the top left 

actuator would be a move in Northwest direction, bottom left in Southwest 

direction, bottom right in Southeast direction, and the top right in Northeast 

direction. As in the ChRV test, the sequence and the timing of the vibration motor 

triggered was randomised making it practically impossible to successfully guess 

the timing and correct location of the haptic signal during the test. 

All the test results on the handheld device were automatically recorded on the 

mini SD card within the device and subsequently transferred to a computer via 

USB for storage and later analysis. The data from each test included: test 

performed, date of test, participant’s name, reaction order (from the total of 

reaction episodes), and reaction time. For the choice reaction tests the 

information generated also included: the direction expected at each trial, the 

actual direction the participant moved the device to, and whether each trial was 

a success i.e. the actual direction of the device movement matched the 

expected one. 

We used the Deary-Liewald Reaction Time task (DLRT) as a validated, open-

source computer-based test (https://www.ccace.ed.ac.uk/news-events/latest/reaction-

time-task-new) to collect RT data and to compare with the data from our novel 

reaction testing device. To ensure consistency in the testing process the software 

was downloaded to a Dell Latitude E6430 laptop computer (Intel Core i5 3210M 

2.5 GHz Processor, 8 GB RAM, Windows 10 64-bit Operating System) with a 

screen vertical refresh rate of 60 Hz. The same laptop was used to collect data 

from all participants for all the computer-based tests. Also, every response in the 

DLRT tasks was carried out using the laptop’s integrated keyboard (QWERTY 

configuration for English language) thus minimising the potential variability in 

latency from using different peripheral devices e.g. external keyboard or mouse. 
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There were two visual reaction tests in the DLRT:  

• Simple Reaction Visual Deary-Liewald (SRV-DL) test  

• Choice Reaction Visual Deary-Liewald (ChRV-DL) test  

In the SRV-DL test, participants were instructed to get into a comfortable position 

standing or sitting with the laptop resting on a solid base (e.g. table) and their 

hands resting on the laptop. Their preferred finger or thumb was to be positioned 

directly over and in contact with the keyboard space bar. During the test, the 

laptop screen displayed a white square fixed in position approximately in the 

centre of the screen and against a blue background. The participants were 

instructed to depress the space bar as soon as a diagonal cross appeared within 

the white square (see left panel in Figure 4-3). The time unit used to record, 

analyse and report all data was in milliseconds (msec).The inter-stimulus time 

was randomised between 1000 and 3000 msec, which was the same range we 

set for the prototype device. All RTs were automatically recorded to a file on the 

laptop’s hard drive alongside the inter-stimulus interval for each trial.  

In the ChRV-DL test, participants were instructed to repeat the setup as 

described above for the SRV-DL test procedure except that four fingers had to 

be in contact with specific keys on the keyboard. The index and middle fingers 

on the left hand were in contact with the keys ‘Z’ and ‘X’ respectively. And the 

index and middle fingers on the right hand were in contact with the keys ‘,’ and ‘.’ 

respectively. During the test, the laptop screen displayed four white squares in a 

row with equidistant spaces between them and fixed in position approximately in 

the middle of the screen and against a blue background (see right panel in Figure 

4-3). The sequence of the squares corresponded to the sequence of the keys 

programmed for the test so that the far most left square corresponded to the key 

‘Z’, the next square to the key ‘X’, the following one to the key ‘,’ and the far most 

right square to the key ‘.’. The participants were instructed to depress the 

appropriate key that corresponded to the white square within which a diagonal 

cross appeared as soon as that cross appeared. Again, the inter-stimulus time 

was randomised between a range of 1000 and 3000 msec. And as was the case 

with the SRV-DL test procedure the RTs were automatically recorded to a file 
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alongside the inter-stimulus intervals between trials, the key pressed, and 

whether the trial was a success i.e. the correct key was pressed. 

 

The simple reaction time task (left panel) and the choice reaction time 
task (right panel). During the simple reaction test an X would appear in a blank 
white box at which point the participant had to press the keyboard’s space bar. 
During the choice reaction test an X would appear in one of the four blank white 
boxes at a random sequence at which point the participant had to press the 
correct key. 

  

Figure 4-3. Screenshots of the Deary-Liewald task. 
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4.3 Statistical analyses 

All raw data from the haptic reaction testing device were transferred to a laptop 

computer via USB and stored as comma separated values (CSV). Data 

processing (data wrangling) was carried out in R, version 3.6.1 (R Core Team, 

2019) using the tidyverse package, version 1.2.1 (Wickham, 2017), and all the 

plots were designed with the ggplot2 package, version 3.2.1 (Wickham, 2016). 

Descriptive statistics and Pearson’s product moment correlation coefficient were 

computed using the stats package included in R. Test-retest reliability was 

assessed by the intraclass correlation coefficient (ICC) with functions from the 

psych package, version 1.8.10 (Revelle, 2018). Bland-Altman plots were used to 

assess method agreement between tests, and they were produced with the 

BlandAltmanLeh package, version 0.3.1 (Lehnert, 2015). 

We have used the ChRV-DL test as the validated benchmark against which to 

determine the validity of the novel ChRH test. A fourfold process was followed: 

1) a visual comparison of the mean RT and Standard Error of the Mean (SEM) 

for each one of the four testing sessions, 2) a comparison of the overall coefficient 

of variation (CV) between the two tests, 3) a computation of the Pearson’s 

product-moment correlation coefficient (r) of the data between the two tests, and 

4) an examination of the level of agreement between the data from the same two 

tests on a Bland-Altman plot. 

In order to complete the latter two steps, we grouped the RT values from the 

ChRH test (the haptic choice reaction test under investigation) and the ChRV-DL 

test (the validated visual choice reaction test) by participant, test, condition, and 

order of testing and paired the counterpart values in ascending order. Any RT 

value from one test that could not be paired with the equivalent value from the 

other test was omitted.  

We have used the ICC to examine the test-retest reliability of the ChRH test and 

the ChRV-DL test. The reason for examining the test-retest reliability of the latter 

was to determine the level of reliability we should deem acceptable for the former 

method. To complete the test-retest analysis we paired the RT values each 

participant registered in the first session with the equivalent RT values in the 

follow up session for the same method and under the same condition (e.g. ChRH 
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test ‘Not dehydrated’ session A Vs ChRH test ‘Not dehydrated’ session B). As 

described in Chapter 2, the specific ICC model we chose was the single rater 

measurement, absolute-agreement, two-way mixed-effects model (ICC [2, 1]). 

Following the test-retest analysis the ICC results were interpreted based on the 

description by Koo & Li (2016): ICC values <0.5 indicate poor reliability, values 

between 0.5 - 0.75 indicate moderate reliability, values between 0.75 - 0.9 

indicate good reliability, and values > 0.9 excellent reliability. 

4.4 Data inclusion range  

In total, 2400 reaction responses were collected from the 10 participants who 

carried out the battery of six reaction tasks. Each test had 10 reaction episodes 

(trials) carried out on two separate occasions (i.e. A and B) under conditions of 

no dehydration and two separate occasions under conditions of mild dehydration 

(i.e. ‘Not dehydrated’ A and B, ‘Dehydrated’ A and B), which resulted in 600 

observations over six tests for each one of the four conditions.  

We sorted the RT values in descending order, and we were able to identify ten 

results (78 msec and 1422 to 224158 msec) that we considered unrealistic and 

unlikely to be genuine RTs. Most of these RTs were likely the result of machine 

error or malfunction. Seven out of the nine invalid responses were generated by 

the haptic device in the simple reaction test mode supporting our suspicion of a 

machine malfunction. These observations made up 0.4% of the original data pool 

and were discarded prior to further analysis. 

A density plot of the RT values was created (Figure 4-4) to expose the effect a 

few rogue values could have in the overall distribution of the data. Figure 4-4 

(upper panel) demonstrates the considerable influence of the extreme values on 

the overall distribution of the data. However, even after removing the extreme 

values a positive skew remained (lower panel) and indicated atypically long 

responses were present, potentially influencing the measurements of central 

tendency.  
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Figure 4-4. Density plot of all reaction time values. 

The responses are grouped by simple reaction and choice reaction tests, 
before any filters were applied (upper panel) and when only values under 1400 
msec were accepted (lower panel). The solid vertical black lines (lower panel) 
indicate the mean RT of all simple reaction tests (SRT) and all choice reaction 
tests (ChRT). The black dashed vertical lines before each solid black vertical 
line displays the median RT for the same sets of data. Note the bimodal nature 
of the SRT distribution, which is due to the differences in RT results between 
the three different simple reaction testing methods. 

After we removed the obvious invalid RT values we used the median absolute 

deviation (MAD) with a very conservative factor of 3. Filtering on MAD is a robust 

statistics’ method to eliminate outliers that could bias the comparisons between 

test conditions and test mode (Leys et al., 2013). Our acceptable range for data 

inclusion was determined as the median ± 3 x MAD and this filter was applied to 

sets of data grouped by participant, test, and condition. This filter removed 

another 141 values before further analysis. In total, nearly 6% of the remaining 

2391 observations were trimmed off. More specifically, 101 from simple reaction 

tests (SRH = 36, SRV DLT = 28, SRV = 37) and 40 from choice reaction tests 

(ChRH = 8, ChRV DLT = 13, ChRV = 19). Analysis of density plots for each test 

revealed distributions that were still somewhat positively skewed but were more 

likely to reflect the true RT parameters (Figure 4-5). 
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Figure 4-5. Density plot of reaction time values with MAD filters applied. 

RT values within MAD limits for each test performed (ChRH T = Choice 
Reaction Haptic Test, ChRV DLT = Choice Reaction Visual Deary-Liewald 
Test, ChRV T = Choice Reaction Visual Test (handheld device), SRH T = 
Simple Reaction Haptic Test, SRV DLT = Simple Reaction Visual Deary-
Liewald Test, SRV T = Simple Reaction Visual Test (handheld device).  

After application of filtering we then proceeded to correct the recorded RT values 

for any known latency that was included in the original data. A fixed value of 60 

msec was subtracted from all data points that were recorded with the haptic 

device for the latency of vibration feedback (for more details see section 3.7.1). 

A fixed value of 17 msec was subtracted from all DLT trials recorded on the laptop 

for the latency of the screen refresh rate (60 Hz). There were no known latencies 

for which to adjust the data from the visual tests on the handheld device.  
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4.5 Results 

4.5.1 Participants 

All 10 participants who volunteered for the study completed successfully all trials. 

None of the participants needed to perform a lengthy run on the Dehydration 

condition as they had already lost considerable weight overnight and were closer 

to the expected 2-3% body mass loss. Typically, most participants, only had to 

drop around 1% or less of their body mass with some moderate physical effort, 

which typically lasted no longer than 30 minutes before they reached the 

expected body mass loss for the test. 

On average, in the ‘No dehydration’ condition, the participants’ body mass was 

approximately 0.3% lower, on the morning of the tests, when compared to their 

body mass recorded the day before. On the other hand, when on the 

‘Dehydration’ condition the participants’ body mass was 2.3% lower by the start 

of the reaction tasks compared to the previous day (Figure 4-6).  

 

Figure 4-6. Participants’ body mass difference. 

Percentage body mass difference from previous day to the morning of tests in 
the ‘No dehydration’ condition (left side of the chart) and ‘Dehydration’ condition 
(right side of the chart). Each boxplot and corresponding data points represent 
one of the two visits (A and B) to the laboratory under each test condition (i.e. 
‘Not dehydrated’ and ‘Dehydrated’). 
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4.5.2 Visual reaction tests 

In the SRV-DL test, the validated simple reaction test on the laptop, we collected 

data from 400 trials but after filtering out values outside the MAD borders 

approximately 7% of the variables were discarded and 372 observations 

remained. The overall mean value and standard error of the mean (SEM) were 

281 (8) msec.  

In the SRV test, the visual simple reaction test on the handheld device, we 

collected data from 400 trials, but one value (1518 msec) was discarded as 

unlikely to reflect a true response to the simple reaction task. Following the 

application of the MAD limits around 9% of the data were filtered out and 362 

observations remained with an overall mean (SEM) of 224 (10) msec. 

In the ChRV-DL test, the validated choice reaction test on the laptop, about 3% 

of the data were discarded, 387 out of 400 observations remained following the 

application of the MAD filter. The mean (SEM) value was 409 (22) msec. There 

is an additional parameter of interest in choice reaction tests over simple 

reactions tests and that is the accuracy achieved as expressed by the number of 

correct responses over the total number of trials. In the ChRV DLT the 

participants achieved mean (SEM) accuracy of 93 (1.04) %.  

In the ChRV test, the visual choice reaction test on the handheld device, 381 

observations remained after approximately 5% of the 400 trials beyond the MAD 

limits were removed. Overall, the mean RT (SEM), was 390 (22) msec and the 

accuracy of the responses was 97 (1.30) %.  

Summary statistics of the means across each test, grouped by participant and 

test mode, is available on Table 4-2. 
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Test Test Type Mean (SEM) Accuracy (SEM) 

ChRH Choice reaction 386 (23) msec 85 (1.76) % 

ChRV DL Choice reaction 409 (22) msec 93 (1.04) % 

ChRV Choice reaction 390 (22) msec 97 (1.30) % 

SRH Simple reaction 183 (12) msec NA 

SRV DL Simple reaction 281 (8) msec NA 

SRV Simple reaction 224 (10) msec NA 

ChRH= Choice Reaction Haptic, ChRV DL= Choice Reaction Visual Deary-

Liewald, ChRV= Choice Reaction Visual, SRH= Simple Reaction Haptic, SRV 

DL= Simple Reaction Visual Deary-Liewald, SRV= Simple Reaction Visual, 

SEM= Standard Error of the Mean, NA = not applicable. 

Table 4-2. Mean (SEM) reaction time per test method. 
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4.5.3 Haptic reaction tests 

In the SRH test, the device based haptic simple reaction test, we collected data 

from 400 trials but seven values (78, 1422, 1646, 2561, 2940, 3088, and 4195 

msec) were ignored as unrealistic or machine errors. After the invalid responses 

were cleared almost 9% of the remaining data were found outside the MAD 

parameters and were filtered out. The mean (SEM) value was 183 (12) msec. 

In the ChRH test, the device based haptic choice reaction test, we collected data 

from 400 trials, but two responses (1454 and 224158 msec) were believed to be 

the result of machine malfunction and were discarded. Only 2% of the remaining 

398 observation were out with the MAD boundaries leaving 390 responses 

available for further analysis. In this test the mean (SEM) was 386 (23) msec and 

the average accuracy was 86%.  

 

Figure 4-7. Mean reaction time per testing method. 

Mean and standard error of the mean (error bars) of all reaction times across 
each test. The three choice reaction tests are shown in the first half of the x axis 
and the three simple reaction tests in the latter half. Note that all three simple 
reaction tests have produced lower mean RT values and narrower SEM 
intervals to those of any of the three choice reaction tests. 

Figure 4-7 displays of the overall mean RT and SEM data from each reaction test 

method listed in Table 4-2. In the Deary-Liewald tasks the choice reaction 

resulted in higher mean RT and wider SEM intervals than the simple reaction 
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task. The same pattern was replicated between the simple reaction tests and the 

choice reactions tests of the prototype handheld device. 

4.5.4 Validity 

The mean RT and standard error of the mean (SEM) collected from the ChRV-

DL test revealed some faster responses under the ‘Dehydration’ condition when 

compared to the condition of ‘No dehydration’ (Figure 4-8). This pattern of slightly 

faster mean RT under the condition of dehydration was repeated by the results 

obtained from the ChRH test. We also see that the SEM for each one of the four 

ChRV-DL tests were of comparable size to each other indicating a degree of 

agreement between them in relation to the extent of uncertainty about the value 

of the true mean. This pattern of similarity between the SEM values from each 

one of the four test results was repeated in the case of the ChRH test. It is clear 

from Figure 4-8 that the SEM values from the four ChRH test results were 

consistently higher than the SEM values from the ChRV-DL test, which indicates 

a higher degree of uncertainty about the value of the true mean from our haptic 

derived RT values compared to that from the Deary-Liewald results. A further 

noteworthy observation is that the slopes of the lines i.e. the difference between 

the means of the repeated tests (A and B) were similar between the two tests 

modes in respect to the absolute value of the difference (not the direction), which 

indicates a similar amount of variability (‘noise’) in the data between test and 

retest sessions. In fact, the overall CV for the ChRV-DL test was computed to be 

6.7%, which was almost identical to the 6.3% CV for the ChRH test. 
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Figure 4-8. Deary-Liewald Vs Haptic choice reaction test. 

Mean and standard error of the mean of participants’ reaction times in Deary-
Liewald choice reaction test (left panel) and the novel haptic choice reaction 
test (right panel) at all four testing sessions (i.e. Not dehydrated A and B, and 
Dehydrated A and B). 

We computed the Pearson’s product-moment correlation coefficient (r) with the 

level of statistical significance at α = 0.05 (Table 4-3) and found the RT results 

from the DLRT and Haptic choice tasks to be moderately and positively 

correlated r = 0.68, at a statistically significant level (p < 0.001). 

Visual Haptic Pearson’s 

correlation (r) 

95% Confidence 

Interval Limits 

t stat. Sign. 

Deary-

Liewald 

Haptic 

device 
0.68 0.62 0.73 18.05 p < 0.001 

t stat= t statistic, Sign = Significance  

Table 4-3. Pearson’s correlation of Deary-Liewald test and Haptic test. 
Correlation between the validated visual choice reaction test (ChRV-DL) and 
the haptic choice reaction test (ChRH) using a two-way random effect, mean of 
k measurements of absolute agreement. 

After we paired each RT value from the ChRH test against the equivalent value 

from the ChRV-DL test we plotted the data on a Bland-Altman plot (Figure 4-9). 

The mean difference between the two methods was 28 msec and the limits of 
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their agreement were found to be between -108 and 164 msec (critical difference 

= 136 msec). The line of equality on the Bland-Altman plot was not within the 

confidence interval of the mean difference, indicating significant bias: the 

responses recorded with the handheld haptic device were more likely to yield 

lower RT values compared to responses using the Deary-Liewald choice reaction 

task.  

When we looked at the RTs grouped by participants who practice Judo and those 

who train in other sports, we noted a more consistent performance by the 

judokas. Indeed, we found that on average judoka’s responses in the haptic 

choice reaction task were consistently faster under both conditions when 

compared to non-judokas’ responses (Figure 4-10). In the case of the Deary-

Liewald choice task the difference in mean RT was not as clear between the two 

groups. The judoka’s ability to respond faster to a haptic stimulus was supported 

further by the yet again consistently faster mean RT they produced compared to 

non-judokas in the simple reaction haptic task (Figure 4-11).  

 

Figure 4-9. Bland-Altman plot of method agreement. 

Examination of agreement between the Deary-Liewald visual choice reaction 
task (ChRV DLT) and the haptic choice reaction test (ChRH T). Note that 
judoka’s results (black dots) appear more consistent than the results of non-
judokas (squares). 
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Figure 4-10. Visual and Haptic choice reaction time; judoka vs non-judokas. 

Participants’ mean reaction times in the Deary-Liewald choice reaction test (left 
panel) and the novel haptic choice reaction test (right panel) at all four testing 
sessions (i.e. Not dehydrated A and B, and Dehydrated A and B) grouped by 
sport (i.e. judoka Vs non-judoka). Note that on average judoka (black dots) 
were consistently faster in the haptic mode than non-judokas (squares), with no 
clear difference between them in the visual mode. 

 

Figure 4-11. Visual and Haptic simple reaction time; judoka vs non-judokas. 

Participants’ mean reaction times in Deary-Liewald simple reaction test (left 
panel) and the novel haptic simple reaction test (right panel) at all four testing 
sessions (i.e. Not dehydrated A and B, and Dehydrated A and B) grouped by 
sport (i.e. judoka Vs non-judoka). Note that on average judoka (black dots) 
were consistently faster in the haptic mode and consistently slower in the visual 
model than non-judokas (squares). 
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4.5.5 Test retest reliability 

We computed the ICC between the first and second testing sessions under each 

condition and for each test (Table 4-4). The ICC of the validated ChRV DLT 

method under the ‘No dehydration’ condition was 0.82 with the 95% Confidence 

Interval between 0.80 - 0.90. Based on the ICC result the reliability of this method 

is ‘good’ (Koo & Li, 2016). The ICC of the same method under the ‘Dehydration’ 

condition was 0.76, with the 95% Confidence Interval between 0.64 - 0.84 

indicating ‘moderate’ to ‘good’ reliability. 

The ICC of the ChRH T method, under the ‘No dehydration’ condition was 0.79 

with the 95% Confidence Interval between 0.71 - 0.86 indicating that the reliability 

of this method is ‘moderate’ to ‘good’. The ICC of the novel haptic choice reaction 

method under the ‘Dehydration’ condition was 0.77 with the 95% Confidence 

Interval between 0.55 - 0.87 indicating the reliability is ‘moderate’ to ‘good’. 

Test Order Condition ICC 95% CI limits F stat. Sign. 

ChRV-

DL 

A Vs B Not 

Dehydrated 

0.82 0.80 0.90 14 p <0.001 

ChRV-

DL 

A Vs B Dehydrated 0.76 0.64 0.84 7.7  p <0.001 

ChRH A Vs B Not 

Dehydrated 

0.79 0.71 0.86 8.7  p <0.001 

ChRH A Vs B Dehydrated 0.77 0.55 0.87 9.9  p <0.001 

ChRH = Choice Reaction Haptic, ChRV-DL = Choice Reaction Visual Deary-

Liewald, A Vs B = test-retest data, ICC = Intraclass Correlation Coefficient, CI 

= Credible Interval, F stat = F statistic, Sign = Significance. 

Table 4-4. ICC for visual and haptic choice tasks. 

Intraclass correlation coefficients (ICC) among the test-retest conditions of the 
visual choice (ChRV-DL) and haptic choice (ChRH) reaction time tasks using a 
two-way fixed effect, mean of k measurements of consistency. 
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4.6 Discussion 

In this study we set out to examine the validity and test-retest reliability of a novel 

haptic choice reaction device. Following from the data analysis we are confident 

that our device’s performance is comparable to that of a validated reaction test, 

and it does produce reliable results. 

One fundamental difference expected between the types of tests carried out is 

that the mean RT from a simple reaction task should be shorter to that of a choice 

reactions task (Hick, 1952). Our device would have failed its validity assessment 

if the results from a simple haptic reaction could not be distinguished from the 

results recorded from a choice haptic reaction. Our first reassurance about the 

quality of the handheld device’s performance comes from the fact that, after 

invalid data were removed, outliers filtered out, and response times were 

adjusted for the relevant latency the descriptive statistics on the remaining 

observations revealed the mean RTs of the simple reaction tests on our device 

to be shorter than the choice reaction ones (Figure 4-7).  

An important observation from Figure 4-7 is that from the two Deary-Liewald 

tasks (i.e. simple reaction vs choice reaction) the choice reaction test has not 

only produced higher mean RT but also wider SEM intervals, which makes sense 

considering that there are fewer variables at play in a simple reaction task. Again, 

this same pattern of higher mean RT and wider SEM intervals when comparing 

choice and simple reaction tests was replicated in the results gathered from our 

device.  

Another interesting point from Figure 4-7 is that the simple reaction version of the 

Deary-Liewald task produced a higher mean RT than the device based visual 

simple reaction test. This observation was somewhat surprising as one would 

expect two tests of the same type, same reaction stimulus, and similar task to 

have produced near identical results. One explanation for the difference in the 

mean RT values between these tests is the difference between them in the digits 

used to respond. It is possible that response times in keyboard-based reaction 

tasks can be affected by participants who may had simply used different fingers 

or hands (Hayes & Halpin, 1978) between test sessions. When the participants 

carried out SRV-DL test they were instructed to use their preferred finger or 
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thumb to hit the space bar and were encouraged to keep their initial choice of 

finger or thumb throughout the experiments. However, no record was kept of their 

initial choice, so it is possible that there was an inconsistency in the digit or hand 

side chosen at each session the SRV-DL test was carried out. In contrast, in the 

simple reaction task on the haptic device only the right thumb could be used to 

depress the mini joystick on either the visual simple reaction test or the haptic 

reaction test. Another point is that although we have tried to make the 

comparisons between tests fair by cutting known latency values, we were not 

able to check the latency between depressing the space bar on the computer 

keyboard and registering a response. 

It has been argued that humans react faster to an audio stimulus compared to a 

visual one (Diederich & Colonius, 2004; Jain et al., 2015; Shelton & Kumar, 2010) 

and response times to tactile stimuli have also been found to be shorter than 

responses to visual prompts (Forster et al., 2002). The above suggested order 

though has been challenged by Diederich & Colonius (2004) who in their study 

of RT tasks reported the rank order of the sensory stimulus that can produce the 

fastest mean RT to be: audio first, then visual, and then tactile. However, the 

visual stimulus used in their study was a flash (250 lux) projected onto a screen 

whilst the tactile stimulus was delivered by an oscillation exciter (vibration). Unlike 

flashlights, a latency exists in all oscillators from when an electrical current is 

supplied to the point when the stated frequency is reached (see ‘Latency’ in 

Chapter 3). In their paper Diederich & Colonius make no suggestion that they 

made the necessary adjustments to the raw data from haptic tasks in order to 

correct for the latency of the vibration machine used in their study. Forster et al. 

(2002) on the other hand, in their study of RTs, found responses from tactile 

reaction tasks to be consistently quicker to ones measured in visual tasks. A 

major difference in the latter study design is that the tactile stimuli were produced 

by non-noxious electrical pulses with a device that is commonly used by clinicians 

in the management of chronic pain (Johnson, 2007). Unlike haptic technology, 

the device used by Forster et al. does not involve a noteworthy latency factor. 

Others have argued that in fact it is through tactile tasks that the quickest 

responses can be observed, not just when compared to visual tasks but even 

when compared directly with similar aural reaction tests (Godlove et al., 2014; 
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Ng & Chan, 2012; Zbigniew, 2008). Our findings agree with most earlier studies 

that have found responses to be faster to a haptic stimulus than a visual one.  

Although the difference in accuracy between the two visual choice reaction tests 

was small (Table 4-2) it is still worth noting that the highest accuracy came with 

the test that needed the least coordination of movement. It is perhaps self-evident 

that the ChRV test should result in higher accuracy when we consider the slightly 

higher complexity of the computer-based ChRV-DL test. The latter method 

required participants to use two fingers from each hand on a keyboard as 

opposed to the ChRV test set up where the right thumb was required to control 

a mini joystick as per the direction of the arrow displayed on the screen. In the 

same vein, as the complexity of the response task increased further with the 

ChRH task, where the participants had to determine the source of the signal and 

then coordinate both hands in the correct direction, a further drop in accuracy 

was noted.  

The drop in accuracy from the Deary-Liewald task to the haptic task was double 

the drop in accuracy from the device based visual task to the Deary-Liewald task 

(8% Vs 4% respectively). We remain unsure whether the differences in the task 

complexity between the haptic and visual tests can account for a twofold 

difference in accuracy loss compared to the accuracy lost from one visual test to 

another. One argument to explain the considerably lower accuracy in the haptic 

test might be that the vibration was not intense enough to deliver a clear signal. 

It has been shown that the intensity of a stimulus can affect the rate of information 

processing in the sensory pathway (Brown et al., 2008; Nissen, 1977). Our 

concern of a possible weak haptic signal was addressed in a pilot study were we 

wanted to establish that the device was user friendly, and the haptic prompt was 

detectable (see Chapter 3). By the end of the pilot study, we were confident that 

the haptic signal of the device was powerful enough to be detected. Evidence of 

the quality of the haptic signal comes from the fact that both in the pilot study and 

the study presented here the users of the device knew when they moved the 

device in the wrong direction. A blunted signal would have not allowed for the 

user to be able to distinguish the exact location of the signal and know that they 

had moved the device in the wrong direction. We consider the positive correlation 
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observed between lower accuracy and higher task complexity as an indication 

towards the validity of our method. 

We used the Pearson’s product-moment correlation coefficient to evaluate the 

criterion validity of our haptic choice reaction method with the Deary-Liewald 

choice reaction task. We found that the correlations between RTs from the two 

subsets of data revealed a positive and moderate relationship that was 

statistically significant. Further analysis with the Bland-Altman plot revealed that 

the haptic task was likely to produce faster RTs and that the limits of agreement 

were too high to make the two reactions test methods equivalent. However, 

considering that these two tests are completely different in sensory modality and 

task requirements a wide range in the limits of agreement is not surprising.  

One observation worth highlighting from the Bland-Altman plot (Figure 4-9) is that 

when we split the data by Judo participants versus other sport participants, we 

found the variability across the data was more consistent for the judokas. This 

outcome encouraged us to compare RT results based on the participants’ sport 

and we found that, on average, judoka appeared to respond faster to the haptic 

signal in both choice reaction (Figure 4-10) and simple reaction (Figure 4-11) 

tests when compared to non-judokas. These results were consistent with our 

expectation of judoka being more conditioned to tactile feedback. We also found 

that on average, judoka responded consistently slower than non-judokas in the 

visual simple reaction task (Figure 4-11). In a different study judoka were 

reported to respond slower than boxers in a visual simple reaction task (Badau 

et al., 2018). Perhaps, the above observations support the ecological validity of 

our device but at this stage the participants and the data are not enough for us 

to make firm conclusions on this suggestion. However, we anticipate the overall 

variability of the results and the test-retest reliability to improve if the haptic tests 

were carried out by a cohort of judoka or other athletes who regularly challenge 

their tactile sensory routes.  

We used the ICC to determine the test-retest reliability of our haptic choice 

reaction method. We found the ICC results to consistently indicate a ‘moderate’ 

to ‘good’ reliability that was statistically significant and in agreement with the ICC 

results obtained from the already validated Deary-Liewald choice reaction task. 
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Thus, we have shown that the test-retest reliability of our device is on par with 

that of the criterion method. We believe that we have demonstrated reasonable 

evidence to accept our novel haptic choice reaction device as a valid and reliable 

method to collect haptic RT data. But before we close this chapter, we feel it is 

important to describe the rationale and methods we used to rid the raw data from 

unrealistic values. 

On our first step of the raw data processing, we tried to eliminate unrealistic 

values from the choice RT datasets so that any RT values over 1400 msec were 

removed. Arguably, the upper cut-off point that we set for true responses could 

have been lower than 1400 msec. But, when the 2400 reaction times were put in 

ascending order a clear pattern emerged where every next value on the list was 

0-30 msec higher than the value before. That pattern was interrupted abruptly 

towards the end of the list where a near 400 msec jump was found between two 

neighbouring values (from 1050 to 1422 msec). This atypical gap, and at such a 

high reaction time, was either a machine error or the result of an operator 

mishandling the device. Indicative of a technical error was a single recorded RT 

of nearly four minutes. These rogue values made a very small proportion of the 

raw data and filtering them out was unlikely to have compromised the size of the 

remaining data pool but most likely has enhanced the quality of the statistical 

analyses that followed.  

Unlike simple RT to audio prompts, there is no universally accepted minimum 

limit that can serve as a cut-off point for unrealistic choice RT values. In a study 

carried out to establish the fastest response possible to an auditory simple 

reaction task it was shown that young adults can react in as fast as 85 msec 

following an audio cue (Komi, 2009; Pain & Hibbs, 2007). We could not find 

studies that have determined humans’ limits for the lowest RT possible to a visual 

or haptic signal. As a result, we have accepted the value suggested by Pain & 

Hibbs (2007) as the lower cut-off value for our data. This minimum limit set for 

realistic responses filtered out only one simple reaction value and had no effect 

on choice reaction data, as the lowest value recorded was 178 msec. This value 

is clearly very low for a choice RT when compared to the mean but we still do not 

have enough evidence to exclude it as an impossible true response. 
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Another approach often used in chronometry research is to set fixed cut-off points 

so that any values over a predetermined threshold, usually over 1000 msec, are 

ignored. Such approach would have been unsuitable in our study considering 

that we collected reaction values from six testing methods with different types of 

reaction (simple reaction and choice reaction), with different sensory modalities 

(visual and haptic), with different tasks (keyboard strikes and mini joystick 

control), and with 10 different people taking part. We were not in position to 

predetermine a suitable fixed cut-off value and had we done so we would have 

introduced strong biases that could have resulted in spurious conclusions. For 

example, as shown on the density plots in Figure 4-5 the RT values from simple 

reaction tests concentrate in a narrower range on the x axis and closer to zero 

compared to the RT values from choice reaction tests, which tend to have a much 

wider spread on the x axis. Thus, the reliance on a fixed cut-off value to eliminate 

outlier values would have been inappropriate. 

With the above in mind, we used the robust statistical approach of filtering on a 

multiple of the median absolute deviation (MAD), in the same way the more 

common method of standard deviation around the mean has been used (Leys et 

al., 2013). We applied a conservative MAD multiple of three as described by Leys 

et al (2013) and filtered data that were perhaps not representative of true 

responses but could bias comparisons between test conditions and test modes. 

With the MAD limits in place, we were able to preserve nearly 94% of the raw 

data, which is an acceptable level of raw data retention following filtering as 

recommended by Ratcliffe (1993). 

Finally, in order to make the comparison between laptop based and device-based 

methods fair we had to take the technical latency of the equipment used into 

consideration. Latency is a factor that is often not measured in mental 

chronometry studies, yet it can influence the variability of the results, especially 

when different electronic devices are used (Kim et al., 2020). We have already 

described in Chapter 3 how we determined that it would take 60 msec for the 

user of the haptic device to sense the vibration signal generated from one of the 

ERM motors in the handles. A fixed value of 60 msec was deducted from every 

RT registered on a haptic test. Similarly, 17 msec was deducted from every RT 

value recorded in the laptop based tests to account for the latency of the 
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computer’s screen refresh rate. In the haptic device the refresh rate of the screen 

was not a factor as the dot, or arrow in the case of the choice reaction test, was 

drawn by the software on a blacked out screen before the screen was lit to reveal 

the shape. (Figure 4-1 and Figure 4-2).  
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4.7 Conclusion 

It is well understood that fast reactions and quick information processing are 

important qualities for most elite athletes. It is also understood that different 

sports have different demands on the sensory modality for response yet most 

methods available to assess reactions tend to be computer-based and make use 

of visual or audio prompts. We argue that athletes in sports with stronger 

kinaesthetic elements like Judo should have access to haptic based reaction 

tests to match the sensory route they utilise the most during performance. 

We have built a novel handheld device to test haptic choice reactions and to the 

best of our knowledge there is no similar device already available to make a direct 

comparison with. Therefore, our first step was to test the performance of the 

device comparing responses against a reference standard and to then determine 

its test-retest reliability. We used the validated Deary-Liewald reaction task as 

the benchmark method to compare between simple and choice reaction data. We 

have shown that the level of performance of our novel haptic reaction testing 

device is comparable to that of the criterion method. We are satisfied from our 

device’s validity and reliability results.  

We are confident that our device can be utilised for research in Judo or other 

tactile sports and could become a meaningful tool to assess cognitive 

performance parameters around training and competition.  
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5.1 Introduction 

In Chapter 4 we demonstrated that our novel haptic reaction device can record 

reliable and valid data. In the study described in this chapter our aim was to 

determine the typical baseline cognitive performance parameters, such as mean 

reaction time (RT) and accuracy (the number of correct responses over the total 

number of responses) to an ecologically valid stimulus (tactile) in a group of elite 

judokas.  

In order for Judo competitors (judokas) to excel at Judo they need to achieve 

high standards in lean body composition and muscular physique (Quintero et al., 

2019) and to have the necessary physiological attributes such as strength, 

power, flexibility, and good aerobic capacity (Franchini et al., 2011), technical 

skills (Ishii et al., 2018), tactical skills (Bianca et al., 2012), mental resilience 

(Masashi et al., 2017), and quick reactions (Zukowski, 1989).  

It is self-evident that the ability to react fast is a particularly important quality for 

judokas. It is generally accepted that athletes can react faster than non-athletes 

(Bańkosz et al., 2013; Christenson & Winkelstein, 1988; Vera et al., 2017; 

Youngen, 1959), possibly due to the brain’s plasticity and the long term 

perceptual and motor training in sports that lead to the necessary adaptations 

(Nakata et al., 2010). These adaptations include modulations in neural function 

as well as in grey and white matter structure (Draganski et al., 2004; Driemeyer 

et al., 2008; Huelsduenker et al., 2018). Even within a cohort of athletes from the 

same sport, experts may perform better in sport specific reaction tasks compared 

to novices as the former are more likely to have developed better attention and 

anticipation capacity than the latter (Fontani et al., 2006; Savelsbergh et al., 

2002). 

In Judo research attempts have been made to understand the relationship 

between competitive performance and RT. In one study it was reported that 

judoka responded slower to a visual reaction test compared to Kung-Fu and 

Taekwondo fighters (Javier et al., 2013). In another study, when compared to 

boxers, judoka were found again to respond slower in a visual simple reaction 

test (Badau et al., 2018). In the same study by Badau et al. (2018) judoka 

performed better than boxers in a choice reaction test, but the method was 
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designed to measure cognitive flexibility (figuring out the correct pairing of items 

on a screen) as opposed to responding rapidly to a prompt. In a different battery 

of visual simple reaction and choice reaction tests no difference was found in 

response times between a group of judoka and a group of Physical Education 

students from a variety of other sports (Cojocariu & Abalasei, 2014).  

It has been argued that amongst judo competitors those who are more successful 

are also the ones who can respond the fastest in simple and choice reaction tests 

with visual or audio stimuli (Lech et al., 2011; Zukowski, 1989). Interestingly, in a 

study of motor abilities between different age groups, cadet judoka (age 15-16 

years) performed better than senior judoka (age 20-23 years) in audio and visual 

reaction tasks (Sterkowicz et al., 2012). However, the outcome in this study may 

reflect the standard of judoka tested as in a different study, with more 

experienced judokas, it was shown that National team level judoka with the 

longest training history achieved faster responses and higher accuracy in visual 

choice reaction tests compared to other judoka with less experience who took 

part (Supiński et al., 2014).  

The effect of rapid weight loss, as seen typically prior to tournaments (Artioli et 

al., 2010), on RT in experienced judoka has also been examined. The method 

used was based on visual choice reaction tests and the results suggested that 

rapid weight loss leads to slower responses compared to progressive weight loss 

(Morales et al., 2018).  

In a more competition-specific study it was shown that under conditions that raise 

blood lactate concentrations and thus simulate the physiological conditions of an 

intense Judo bout, judoka can maintain their reaction speed in a visual choice 

reaction test but at an increased error rate (Lima et al., 2004). 

The main criticism that can be levelled against the studies described here is that 

the chosen reaction stimuli for each test conducted were either audio or visual. 

Judo is mostly a kinaesthetic sport and judoka receive most of the sensory input 

through their hands when they grip their opponents. In support of this view, one 

study concluded that reaction tests with visual stimuli have no relevance in Judo 

practice and performance in such tests does not improve with Judo either 

(Cojocariu & Abalasei, 2014). Elite judoka usually spend years conditioning their 
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somatosensory system by learning to respond to tactile cues from interaction with 

their opponents to force them off balance. It is undeniable that knowing how fast 

sprinters react to an audio signal is more relevant to them than knowing how fast 

they react to a visual signal, yet in the case of judoka their primary sensory input 

has been ignored in current research. Our novel haptic choice reaction test 

utilises the dominant sensory route in competitive Judo.  

By trying to determine the typical baseline cognitive performance parameters a 

group of elite judoka is capable of in a haptic choice reaction test, we can 

contribute useful information to the academic literature, and we could provide 

coaches and the wider support team of sports science practitioners a yardstick 

against which to measure deviations in cognitive performance under different 

conditions (e.g. after high volume training blocks or following extreme weight 

making efforts prior tournaments). 
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5.2 Methods 

5.2.1 Participants 

The study was approved by the School of Sports Research Ethics Committee of 

the University of Stirling. Ten healthy judoka (Table 5-1) who compete at 

international level and participate at World ranking tournaments volunteered for 

this project and gave written consent after the purpose and details of the study 

were explained to them (see section 2.1 in Chapter 2 for further details). All 

participants knew that they could withdraw from the study at any point if they 

wished to do so without having to provide any explanation.  

Judokas Total Age (SD) Mass (SD) 

All 10 21.2 (1.8) years 68.2 (9.7) Kg 

Female 4 21.3 (2.2) years 62.3 (8.5) Kg 

Male 6 21.2 (1.6) years 72.2 (8.3) Kg 

SD = Standard Deviation 

Table 5-1. Judo haptic reactions study participants. 

5.2.2 Test 

We asked each participant to carry out a series of haptic reaction tests over a 

period of nine weeks using a novel bespoke handheld haptic reaction testing 

device (for details see Chapter 3). During the weeks when reaction tests were 

carried out there were no competitions scheduled for the judoka involved in this 

project. By not including a period with major tournaments we were able to avoid 

any impact on cognitive performance from dehydration or other weight 

management techniques typically used in weight controlled sports when athletes 

try to drop their weight for competition (Artioli et al., 2010).  

All the tests were carried out on the Judo mats at the Performance Centre of 

Scottish Judo and took place just before the judoka started warm up and on 

training sessions where they practiced randori (Judo sparring). We had four 

identical devices built and available for use. Every judoka had multiple 

opportunities to use one of the haptic devices during a familiarisation period to 
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acquaint themselves with the overall process of the haptic choice reaction test 

and with the operation of the device prior to the period of the baseline tests. 

Furthermore, because we recognised that reaction tests can be monotonous and 

tedious, we introduced a competition (a weekly league table for best RT and 

accuracy) in an attempt to make the tests more interesting and enjoyable for the 

participants and to help motivate them to sustain their attention (for details see 

Chapter 6). A single test involved 20 reaction episodes and it took just under two 

minutes to complete. Each reaction episode assessed the reaction to a haptic 

signal (vibration) that was generated from one out of four available actuators 

housed in specially designed handles that allowed judoka to apply a judo grip on 

the handles in the same way they grip the sleeve of their opponent’s Judo jacket 

(for details on the haptic choice reaction test see Chapter 3).  

5.2.3 Statistical Analyses 

Upon completion of the tests, all raw data were transferred from each device’s 

memory card into a password protected Comma Separated Values (CSV) file for 

subsequent analysis. All the data processing (data wrangling) and data analyses 

were carried out in R, version 3.6.1 (R Core Team, 2019) using the tidyverse 

package, version 1.2.1 (Wickham, 2017) and all the plots were designed with the 

ggplot2 package, version 3.2.1 (Wickham, 2016). 

We have used descriptive statistics for the data analysis in this chapter as we 

were interested in summarising the data that describe our cohort’s baseline levels 

and we have made no inferences based on these data. For some of the data 

visualisation we used the local polynomial regression model to fit a smooth curve 

between the variables of interest, a procedure that was developed in the late 

1970s for scatterplot smoothing (Cleveland, 1979). In R, this method of data 

visualisation is available through ggplot2, a data visualization package included 

in the collection of packages in tidyverse. We used the LOESS (LOcally 

Estimated Scatterplot Smoothing) method to compute the regression analysis 

and produce the smooth line for the figures.  
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5.2.4 Data filtering 

We excluded RT values above 1000 msec because: 1) it is a common threshold 

in RT studies that can improve the power of analysis of variance (Ratcliff, 1993), 

and 2) from our data presented in Chapter 4 we found that after we filtered 

unrealistic values all choice RTs were under 1000 msec. We did not set a filter 

for short RTs because unlike simple reaction tasks where minimum response 

time can be determined empirically or mathematically (Hsu, 2005; Pain & Hibbs, 

2007) the same is not true for choice reaction tasks. Although we can be certain 

that the minimum choice RT cannot be shorter than, or as short as, the minimum 

simple RT (see section 1.5.1) we remain unsure as to the exact lower cut-off 

value we should set. This uncertainty stems from the fact that the minimum 

latency between a signal presentation and the initiation of a response in a choice 

reaction task is conditional on more variables such as cognitive processing of the 

information input (e.g. signal differentiation) and task complexity (e.g. number of 

available options and method design). We removed one RT value of 1 msec that 

we considered impossible and most likely a machine error. In fact, such low RT 

would even be a stretch for the calanoid copepod, a planktonic aquatic 

invertebrate known to have a RT between 1.5-3 msec (Lenz & Hartline, 1999). 

The next shortest RT for a correct response was 195 msec, which we considered 

acceptable. It was important that we filter out unrealistic data because it only 

takes a few extreme values, which may be the product of factors unrelated to the 

testing procedure (e.g. a distraction of sorts), to have a disproportionate influence 

on the results (Harald Baayen & Milin, 2010; Miller, 1991; Ratcliff, 1993).  
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5.3 Results 

On average, each judoka completed approximately nine tests over a time period 

of nine weeks. A total of 1780 responses were collected from 89 tests, but 88 

data points were discarded because they were registered as ‘technical error’ by 

the software indicating a machine malfunction. Together with one more response 

that was considered a technical error too due to its extremely low value (1 msec), 

5% of the raw data were removed as machine errors. From the 1691 data points 

that were left, another 36 values (2%) were discarded because they were over 

1000 msec and were considered too slow to be true reactions to the haptic signal. 

Overall, 7% of the raw data were removed from further analysis. 

From the remaining 1655 responses, the judoka reacted correctly to 1287 of 

them. The overall mean accuracy and standard error of the mean (SEM) was 78 

(3.66) % and the mean RT (SEM) of the correct responses across the group was 

359 (18) msec. Between the sexes, a small difference in mean choice RT was 

observed with the female judoka’s mean RT at 362 (46) msec compared to the 

male judoka’s mean RT of 357 (11) msec. The shortest RTs recorded came from 

a female judoka whose mean RT at 244 msec was nearly 70 msec lower than 

the shortest mean RT recorded by male judoka (Figure 5-1).  

While the overall mean accuracy from our cohort was 78 (3.66) %, the female 

judoka’s mean accuracy was around 74 (8.11) % and the male judoka’s mean 

accuracy (SEM) was around 81 (3.15) % (Figure 5-2). For the judoka with the 

lowest mean RT a low mean accuracy rate was noted as well, approximately 

63%, which ranked second lowest and was around 15% lower than the group 

mean accuracy. 
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Figure 5-1. Mean reaction time of female and male judokas. 

The mean reaction time of correct responses for each judoka is represented by 
the dots and squares. The overall group mean reaction time is represented by 
the black line parallel to the x axis. The group mean RT of the female and male 
judoka is represented by the black triangles. 

 

 

Figure 5-2. Mean accuracy of female and male judokas. 

The mean accuracy rate across all choice reaction tests for each judoka is 
represented by the dots and squares. The overall group mean accuracy is 
represented by the black line. The group mean accuracy of female judoka and 
male judoka are represented by the black triangles. 
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We examined the group’s distribution of RT and accuracy across each of the 20 

reaction episodes in the haptic choice reaction test. A smooth local regression 

model (LOESS) fitted over all the data points revealed that the average response 

time for correct responses across the sequence of the 20 reaction episodes was 

consistently faster than the average response time for erroneous responses 

(Figure 5-3), with no difference in this pattern found between the sexes. 

 

Figure 5-3. Reaction time pattern across all 20 episodes; group. 

A LOESS smooth curve (local polynomial regression) revealed that the judoka’s 
mean reaction time of correct responses (black line in left panel) at each episode 
in the testing sequence in all the haptic choice reaction tests was faster and more 
consistent compared to the mean reaction time of erroneous responses (grey line 
on right panel). The shaded grey area above and beneath the lines denotes the 
standard error of the measurements. 

We fitted the LOESS model over all the data points recorded from the judoka who 

had the lowest mean RT and we found that the average response time for correct 

responses across the sequence of the 20 reaction episodes was consistently 

slower than the average response time for erroneous responses (Figure 5-4). 
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Figure 5-4. Reaction time pattern across all 20 episodes; fastest judoka. 

A LOESS smooth curve (local polynomial regression) revealed that for the judoka 
with the lowest response times the mean reaction time of correct responses (left 
panel) at each episode in the testing sequence of the haptic tests was slower 
when compared to the mean reaction time of erroneous responses (right panel). 
The shaded grey area above and beneath the lines denotes the standard error 
of the measurements. 

The LOESS curve was also used to visualise the distribution of the group’s mean 

error rates at each one of the 20 reaction episodes of the haptic choice reaction 

test (Figure 5-5). It appears that both female and male judoka displayed a 

bimodal pattern in their error rate distribution over the duration of the tests. In 

both cases the error rate appears to have increased progressively to its first peak 

followed by a fluctuation for the most part of the test and then followed by an 

improvement by the end. 
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Figure 5-5. Error rate pattern across all 20 episodes; group. 

A LOESS smooth curve (local polynomial regression) revealed that the female 
judoka’s mean error rate (black line on left panel) at each episode in the testing 
sequence of all the haptic choice reaction tests was somewhat higher but of a 
similar pattern to the male judoka’s error rate (grey line on right panel). 

With the use of simple data visualisation methods, we can identify the best RT 

performers within our cohort of elite judoka (Figure 5-6). Using a vertical black 

line on the x axis to denote the group mean RT, a horizontal black line on the y 

axis to denote the cohort mean accuracy value, and with the proper scale on the 

two axes we partitioned the data into four quadrants. From the bottom left 

quadrant (where the x and y axes are nearest to zero) and moving clockwise we 

considered each quadrant representing an area in the chart as follows: 

• First quadrant; faster reactions and lower accuracy. 

• Second quadrant; faster reactions and higher accuracy. 

• Third quadrant; slower reactions and higher accuracy. 

• Fourth quadrant; slower reactions and lower accuracy. 

Four judokas, including three males and one female, appeared to have clustered 

in what would be considered the ideal quadrant: the top left quadrant of the chart 

with the faster responses and higher accuracy.  
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Figure 5-6. Mean accuracy over mean reaction. 

The vertical black line on the x axis is placed at the point of the group mean 
reaction time. Responses on the right side of the line are slower than the 
group’s average while those on the left are faster. Equally, the horizontal black 
line on the y axis is placed at the point of the group mean accuracy. Results 
below the horizontal line indicate more errors than the group average while 
those above indicate fewer errors. The dots and triangles represent the position 
of each judoka on the chart based on their individual reaction time and mean 
accuracy. The size of each shape represents the standard deviation of the 
responses by each judoka. 

To compare RT data between left hand and right hand side signals we computed 

the mean RT and SEM from correct responses to haptic signals generated from 

the two vibration motors housed in the left handle and the two actuators housed 

in the right handle of the haptic device (Figure 5-7). We found that the haptic 

signals from the right hand side handle led to overall shorter mean RT (SEM) of 

346 (17) msec compared to the mean RT following haptic signals from the left 

hand side handle, 369 (19) msec. The mean RT was shorter for both the higher 

and lower placed actuators in the right handle when compared to either of the 

two placed in the left handle.  
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Figure 5-7. Mean reaction time and SEM by hand side. 

The mean reaction time of correct responses for each one of the four directions 
in the haptic choice reaction test is represented by the dots. The standard error 
of the mean (SEM) is represented by the error bars on each dot. The mean 
reaction time on the right hand side was consistently shorter than that on the left 
hand side. 
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5.4 Discussion 

This study is the first to report mean RT of correct responses and mean accuracy 

for a haptic choice reaction test from a group of elite judokas. We have excluded 

RTs from erroneous responses for two reasons: 1) The RT a judoka is capable 

of is only relevant if the choice of action is correct i.e. we are not interested in 

how fast elite judoka can make erroneous decisions but rather how fast they can 

make correct decisions after processing relevant information, and 2) The 

inclusion of RT values from erroneous responses would likely dilute the true 

mean RT as it could potentially add data influenced by factors other than what 

was being measured e.g. lapse of concentration.  

Earlier results reported from other mental chronometry studies in Judo have 

involved vastly different methods that make any meaningful comparison with our 

study difficult. For example, Morales et al. (2018) reported mean baseline RT 

(SD) of 380 (40) msec for a group of judokas. Although this result does not appear 

much different to the mean RT reported here, Morales et al. (2018) have used a 

visual simple reaction model. In their test the participants had to step forward 20 

cm from a standing stance onto a contact platform in response to a light signal. 

This set up explains the rather long RT for a simple reaction test as it includes 

the time necessary for a participant to move their preferred foot 20 cm forward. 

In another example, Cojocariu & Abalasei (2014) reported mean RT (SEM) of 

404 (11) msec for the dominant hand in a cohort of judoka who used a computer-

based choice reaction test in which they had to press one of four keys on a 

computer keyboard corresponding to one of four dots lighting up on the computer 

monitor. Although both the computer-based test and ours had four available 

options, and both were set up in a way to minimise necessary movement to 

register a reaction (thus minimising the degree of motor learning required to 

complete the task successfully), the mean RT we have reported is considerably 

lower than the mean RT reported by Cojocariu & Abalasei, most likely due to the 

different test method and the different sensory modality used. In one study the 

judoka’s reported mean RT in a choice reaction test was practically identical (362 

msec) to the one we have reported here (Lech et al., 2011). However, Lech et al. 

(2011) provide no details on the actual test procedure, they do not clarify whether 

the stimulus for the complex reaction task was visual or auditory, and they do not 
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indicate whether they computed the mean RT from all responses or from correct 

ones only. 

We did not use haptic simple reaction tests in this study as it can be argued that 

simple reaction tasks lack practical relevance for an open skill sport like Judo 

where the need to defend, or the opportunity to score, against an opponent does 

not have a predetermined pattern. Multiple cues to defend or attack can be 

presented to a judoka concurrently or consecutively in rapid succession. Rapid 

presentation of different reaction stimuli can result in a phenomenon known as 

psychological refractory period (PRP). In brief, PRP occurs when two reaction 

stimuli are presented in rapid succession; as the interval between the stimuli is 

reduced the response time to the second stimulus lengthens (Pashler, 1994). It 

is not within the scope of this study to investigate PRP in judoka but its existence 

highlights the complexity behind real life reaction choices in a combat sport and 

the importance of understanding elite judoka’s capacity for processing 

information rapidly. In a simple reaction test a person’s ability for quick decision 

making is not challenged as the input information stream and response task are 

fixed (e.g. the sprinter who only needs to push off the starting block at the sound 

of the start gun). Hence a choice reaction test, albeit more intricate than a simple 

reaction test, is more relevant to elite judoka’s cognitive performance.  

To the best of our knowledge, this study is the first to investigate the response-

by-response RT and accuracy pattern across the temporal sequence of reaction 

episodes in a choice reaction test in a group of elite judoka (Figure 5-3 & Figure 

5-5). Humans cannot fix their response time or accuracy to a specific level and 

have to make conscious efforts to sustain their attention on a task over periods 

of time (Smilek et al., 2010). Moment-to-moment fluctuations in sustained 

attention was explored in a different study where a specially designed continuous 

performance task with visual prompts was used (Esterman et al., 2013). In their 

study Esterman et al. (2013) had participants watch pictures of mountain or city 

scenes transitioning every 800 msec for eight minutes and instructed the 

participants to press a button for each city scene but ignore any mountain scenes. 

The results showed that the participants gradually made more erroneous choices 

across the eight-minute run and that their correct responses became slower. 

Esterman et al. (2013) used an innovative analysis procedure to reveal two 
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attentional states: a less error prone state with lower variability in RT or “in the 

zone,” and a more error prone state with higher variability, or “out of the zone.” 

Our method was quite different to that reported by Esterman et al. (2013), and 

with different objectives. And although we would not expect a similarity in the 

response-by-response data pattern (due to the differences in the study design) it 

is worth highlighting that our results too revealed the variability in RT to be lower 

for correct responses than incorrect ones (Figure 5-3).  

As shown from the smooth curves in Figure 5-3 the response-by-response mean 

RT over the sequence of 20 reaction episodes was shorter when the judoka 

made correct decisions. This finding suggests that quick responses were not 

achieved by sacrificing accuracy. It could be argued that the slower responses 

when the choices were wrong is evidence of some degree of lapse in 

concentration, which led to the errors. In Figure 5-4 we presented the response-

by-response mean RT from a judoka who reacted consistently faster than any 

other in the group but whose superior RT was achieved at the expense of 

accuracy. In this case, unlike the trend we saw by the group, the variability in RTs 

was higher for correct responses. Perhaps the lower variability of inaccurate RTs 

compared to accurate ones reflects persistent attempts from this judoka to guess 

the correct response in order to register shorter RTs. 

We also see a downward trend of the smooth curves for the first five reaction 

episodes (Figure 5-3). It is as if the judoka were ‘easing into’ the test. In 

competitive Judo the pace can be intense from the very first few seconds and a 

match can be lost or won on the first exchange of moves between judokas. It 

follows then that elite judoka must be able to begin a fight with the necessary 

levels of cognitive arousal from the opening seconds and for the duration of the 

match. It is conceivable though that this seemingly slow start would not have 

been present if the judoka had completed some exercise prior the tests to raise 

their levels of physiological and psychological arousal. 

It has been suggested that it is best to test judoka’s RT after a warm up as their 

RT reduces post warm up (Zukowski, 1989). Indeed, studies outside Judo, 

support the idea that an improvement in RT can be realised after exercise (Draper 

et al., 2010; Rattray & Smee, 2013). Acute exercise has been shown to have a 
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stimulating effect on the central nervous system (Oberste et al., 2019), which 

might result in enhancing performance in the haptic choice reaction test. 

However, we were interested in exploring elite judoka’s limits on a haptic choice 

reaction test at rest (baseline) and without the potential influence of any cognitive 

stimulation by physical exercise. One example of how baseline parameter values 

in cognitive performance could potentially be used is in the event of a head injury. 

Medical staff could use baseline RT results to consider a judoka’s readiness to 

return to training or competition following a concussion (Eckner et al., 2009). 

Hence, we remain confident that the baseline for mean RT and accuracy in elite 

judoka should be determined at rest and without the potentially stimulating effect 

of acute exercise on the central nervous system. 

Our cohort of participants was almost equally split between male and female 

(60% male judoka and 40% female judokas) and we found the mean RT from 

these two subgroups to have been nearly identical. As shown in Figure 5-1, the 

individual mean RT of the male judoka appears clustered tightly around the 

overall group mean RT while in the case of the female judoka we see two extreme 

points away from the centre and at opposite directions. It would seem that in this 

subgroup we have managed to get the judoka with the fastest and slowest mean 

RT in the group. In true serendipity though these two extreme values have not 

affected the overall mean value as they cancelled each other out. Indeed, when 

we recalculated the mean RT from our cohort with these two extreme values 

excluded there was no difference in the result. 

Several well conducted studies have shown that, on average, females tend to 

have slower responses than males (Der & Deary, 2006; Engel et al., 1972; 

Fozard et al., 1994; Noble et al., 1964). Data from sprint events in athletics too 

appear to support the belief that female competitors have slower response time 

to the firing of the starter’s gun than male competitors (Babic & Delalija, 2009; 

Paradisis, 2013). However, data showing male sprinters post faster RTs than 

female sprinters have been put to question. It has been argued that female and 

male sprinters’ RT to the starter’s gun at the 2008 Beijing Olympic Games would 

have been similar if the force threshold on the starting blocks was lowered by 

22% for female sprinters, which would have accounted for their lower weight and 

strength (Lipps et al., 2011). The idea that there is some innate difference 
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between females and males in their ability to react fast has been challenged with 

three main arguments (Silverman, 2006): 1) The participation of females in sport 

only started to increase a few decades ago, 2) Since participation in sport can 

reduce RT it follows that the mean RT of females in the general population should 

drop too, and 3) Many studies in reaction performance include a higher number 

of male participants, a greater proportion of whom are more likely to regularly 

take part in sport and consequently skew the results. 

Athletes can react faster than non-athletes (Bańkosz et al., 2013; Christenson & 

Winkelstein, 1988; Vera et al., 2017; Youngen, 1959) and RT can improve with 

practice (Ando et al., 2002; Taniguchi, 1999). Therefore, there is validity in the 

argument that past data showing females to be slower in their responses 

compared to males may be partly explained by the fact that historically fewer 

women regularly engaged in activities that challenged their reactions e.g. 

competitive sports or driving.  

There are no major studies in Judo research to have examined the difference in 

mean RT between female and male judokas. In a recent study investigating the 

effects of rapid weight loss on RT in a group of female and male elite judoka the 

results were reported without considering differences by sex (Morales et al., 

2018). Perhaps such approach to the reporting of the results by authors indicates 

that if any difference in RT between sexes existed, they were of no practical 

significance or consequence. Our cohort was too small to allow us to draw firm 

conclusions but the evidence we have obtained suggests no reason to assume 

that elite female judoka could not match the mean RT typical of elite male 

judokas.  

It has been argued that the most successful and most experienced judoka are 

also likely to respond faster in simple and choice reaction tests compared to less 

successful and less experienced judoka (Lech et al., 2011; Zukowski, 1989). But 

no explanation has been offered as to how judoka with better skill levels can 

outperform less skilled judoka in tests that are not Judo specific i.e. computer-

based tests with audio and visual cues. We compared the overall cognitive 

performance (RT and accuracy) of each judoka against the rest of the group 

(Figure 5-6). We split the chart area in Figure 5-6 into four quadrants based on 
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faster or slower RT (x axis) and higher or lower accuracy (y axis). Interestingly, 

the female judoka in the top left quadrant (faster RT and higher accuracy) was 

the most competitively successful amongst the females in the group and two out 

of the three male judoka in that same quadrant were the most competitively 

successful amongst the male judokas. However, our cohort is too small for us to 

reject the possibility that any positive correlation that may exist between the 

participants’ cognitive performance in the haptic test and competition success is 

purely coincidental. 

When we examined the RT data based on which side the haptic signal was 

generated from, we found that the mean RT from the right hand side was shorter 

than the mean RT from the left hand side (Figure 5-7). In a study where 

differences in RT between left and right hand responses were studied across a 

variety of computer-based visual tests in a group of judokas, the authors found 

responses to be consistently faster with the dominant hand although at not a 

statistically significant level (Cojocariu & Abalasei, 2014). In each one of our 

devices all four actuators housed in the handle grips were identical in design, 

they produced the same vibration frequency, and they were placed at 

symmetrical points to each other and from the centre of the device. 

Consequently, the design of the haptic device cannot explain the discrepancy 

between the left side and right side responses. Most people have a manual 

asymmetry and the vast majority favour their right hand for manual tasks that 

require dexterity or simply for most of their daily tasks (Buckingham & Carey, 

2015). In the reaction task every single response recorded by the judoka was 

done with them holding the device with both hands and moving their hands in 

unison whenever they displaced the device in response to the haptic cue, which 

does not explain the difference in mean RT based on their manual asymmetry 

alone. A more likely explanation for the difference is attentional bias. According 

to the attentional bias hypothesis, attention is biased toward the right hand, in 

right hand dominant people (Buckingham & Carey, 2015). Our cohort was made 

of judoka all of whom were right hand dominant. We had no way of testing 

whether left hand dominant judoka can respond in an equivalent way as none 

were available in our study.  
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In future studies it would be useful to repeat the haptic choice reaction tests on a 

larger cohort of elite judoka and perhaps, over time, develop a clear 

understanding of the true cognitive performance standards for this population of 

athletes and whether a correlation exists between judoka who perform well in the 

haptic test and judoka who perform well in Judo competition. It would also be 

interesting to use the haptic choice reaction test to determine whether athletes 

from sports where the primary sensory input is from tactile feedback (e.g. Judo, 

Olympic Wrestling, and Brazilian Jiu-Jitsu) have an advantage to such sensory 

modality against athletes from sports where tactile feedback is minimal or non-

existent (e.g. Boxing, Clay Pigeon Shooting, and Sprint).  
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5.5 Conclusion 

We have reported the mean RT and mean accuracy in a novel haptic choice 

reaction test from a cohort of elite judoka who are active at international standard 

competitions. In addition, the device used to collect data from choice reaction 

tests has arguably a much stronger ecological validity compared to other 

methods reported previously in the literature as it has allowed for the collection 

of haptic reaction data within real life Judo training conditions. 

To the best of our knowledge this is the first study to report typical mean response 

times and mean accuracy rate from a haptic choice reaction test in Judo. It is also 

the first study to show a response-by-response pattern in the variability of mean 

RT and accuracy in a choice reaction task carried out by a group of elite judokas. 
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6.1 Introduction 

In Chapter 5 we described the typical baseline cognitive performance 

parameters, such as mean reaction time (RT) and accuracy to a haptic choice 

reaction test in a group of elite judokas. Due to fact that the haptic tests were 

carried out on multiple occasions we considered it important to minimise the 

potential ‘noise’ in the data from factors unrelated to the test e.g. boredom. In this 

chapter we describe how we used competitiveness to make the testing procedure 

more interesting for the judoka and motivate them to engage fully in the tests. 

We describe people’s innate inability to sustain attention and other factors such 

as motivation and distraction, which can influence a person’s ability to stay 

focused on a task. We also show how the competitiveness element to the testing 

procedure affected some of the judoka’s responses. 

There are thousands of studies carried out in sports science looking at a plethora 

of distinct factors that can affect the performance of athletes during competition. 

But most of these studies, including ones on Judo, are observational or 

intervention studies carried out within controlled environments such as University 

laboratory facilities (Cojocariu & Abalasei, 2014; Javier et al., 2013; Lima et al., 

2004; Lopes-Silva et al., 2014). Often, researchers may opt for tests in their 

studies that do not necessarily reflect the actual demands of the sport e.g. 

designing a reaction test with visual prompts for sports where most of the sensory 

input is tactile. Thus in sports like Judo there is a gap in knowledge relating to the 

specific somatosensory demands of the sport. To address this knowledge gap in 

Judo we have designed a bespoke reaction testing device (see Chapter 2). One 

aim in developing this novel device was to establish baseline measurements to 

determine a reliable estimate of the typical reaction time (RT) and accuracy of 

response to a haptic signal in a group of elite judokas. 

During the initial stages of the haptic reaction data collection, acute 

improvements in measurement values can be observed as participants acquaint 

themselves (learning effect) with the process of the new task (Raglin, 1992), 

which can confound baseline measurement. Familiarisation is therefore an 

important phase before we attempt to estimate baseline parameter values. But 

even once all participants are fully accustomed to how the device works, and 
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comfortable with the task, the data collected may still not reflect accurately the 

true values. The demands of the test on participants’ attentional resources may 

exceed their motivation to use their best efforts if they perceive the reaction test 

as too monotonous or boring. In fact, it has been shown that during a sustained 

attention task less motivated participants were more likely to get distracted (Seli 

et al., 2015). Hence, there is a risk of participants disengaging from a test 

procedure which, in our case, is fundamentally important to elucidate the typical 

cognitive performance parameter values in a group of elite judokas. 

It is fair to assume that athletes in high performance sport are more physically 

robust and more motivated (Keegan et al., 2010) to push their limits than the 

average person: they have to be if they are to compete at high level. But even 

elite athletes need to find ways to maintain their motivation to regularly complete 

extreme physical efforts outside competition, whether in training or during 

physiological testing (Laukka & Quick, 2013), unless a motivational component 

or variable is introduced such as: the promise of training adaptations that will 

enhance performance in competition, the achievement of a qualification standard 

for a major event, or the promise of some other desirable reward.  

In our project we had no monetary awards to entice people to apply their best 

efforts during the test nor could we promise them any immediate gains from the 

study. There can be many different factors that motivate people (Deci & Ryan, 

2000) however, a strong driver for motivation in high performance athletes is their 

competitiveness (Tusak, 2000). Of course, competitiveness is not exclusive to 

sporting arenas. In a workplace experiment, researchers demonstrated an 

improvement in employees' performance over time when employers introduced 

competition incentives by systematically rewarding workers who outperformed 

their co-workers (Benndorf & Rau, 2012). It has been suggested that competition 

is an effective way to increase motivation and interest in physical education 

classes participation among University students (Ivanova & Korostelev, 2019).  

We believe that the best way to motivate our cohort during the tests is to introduce 

a competition element to the test. In the following sections we describe in more 

detail attention and motivation within the context of cognitive performance.   



Chapter 6 

 

152 
 

6.2 Sustained attention  

Attention is believed to be a collection of mechanisms used by the brain to 

process selective information from the environment and prevent the potential 

sensory overload from all the information that can be received simultaneously 

(Fiebelkorn et al., 2018). Attention of course is critical for performance in any 

reaction task but studies on spatial attention have revealed that attention is not 

the product of some continuous process, instead, there are neural oscillations 

that cause rhythmic cycles in attention, which in turn lead to an increase or a 

decrease in perceptual sensitivity (Fiebelkorn et al., 2018). In essence, humans 

have an inherent inability to sustain attention. 

Human inability to sustain attention during prolonged tasks has been studied 

since the Second World War when the Royal Air Force tried to determine the 

maximum length of time airborne radar operators could stay on submarine watch 

before their detection accuracy deteriorated (Mackworth, 1948). Mackworth 

found that after 30 minutes of continuous observation radar operators detection 

accuracy could drop by up to 15%. Mackworth’s was the first study to 

unequivocally show that over time, during a repetitive task, there is an increasing 

degree of ‘vigilance decrement’, which means that sustained attention weakens. 

The same findings have been confirmed in similar studies since (Fortenbaugh et 

al., 2017).  

Sustained attention has been defined as: “…the ability to self-sustain mindful, 

conscious processing of stimuli whose repetitive, non-arousing qualities would 

otherwise lead to habituation and distraction to other stimuli.” (Robertson et al., 

1997). In essence, sustained attention is a person’s capacity to focused attention 

on a task and is arguably the main limiting factor in cognitively demanding tasks 

such as lengthy choice reaction tests, which do tend to have “non-arousing 

qualities”, simply put: they can be boring. Of course, a task does not need to be 

lengthy to lead to a decline in sustained attention. There have been various 

methods developed to capture and quantify the magnitude of sustained attention 

decrement.  

Robertson et al. (1997) developed a reaction test, the Sustained Attention to 

Response Task (SART), which was designed to measure the ability to sustain 
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attention to a dull but demanding task. In this computer-based test, which was 

just over four minutes long, subjects were instructed to press a key on the 

computer’s numeric keypad every time a digit appeared on the computer screen 

but to withhold response when a pre-specified digit was displayed. It was 

theorised that such a test would demand subjects to sustain their attention and 

that the test would expose any lapse in concentration without taxing other 

cognitive processes e.g. memory, planning, and overall cognitive effort. SART is 

used in psychology practice as a validated behavioural index of sustained 

attention in patients with traumatic brain injury (TBI), people with attention deficit 

hyperactivity disorder (ADHD), or other neuropsychological conditions (Smilek et 

al., 2010). However, whether the SART method can adequately challenge 

sustained attention in healthy individuals has been questioned (Esterman et al., 

2013).  

More recently, Esterman et al. (2013) developed an alternative reaction test to 

study sustained attention: the Gradual Onset Continuous Performance Task 

(gradCPT). In a gradCPT study, subjects were placed in a magnetic resonance 

imaging (MRI) scanner and they were shown grayscale photographs of mountain 

scenes and city scenes at aperiodic intervals through a goggle system. The 

images gradually transitioned from one to the next and the subjects were 

instructed to press a button for each city scene but withhold responses to 

mountain scenes. By having subjects carry out the gradCPT in an MRI scanner 

the researchers were able to observe the activity of two important brain networks: 

1) the dorsal frontoparietal attention network (DAN), which shows more activity 

during goal oriented attention, and 2) the default mode network (DMN), which 

appears more active at rest rather than during task performance. Esterman’s 

research team did not favour one brain network over the other and they pointed 

to the lack of agreement in studies carried out to find out whether higher activity 

of DAN or DMN is preferable. Instead, they argued that optimal performance may 

be the product of the balance between the DAN and DMN activities. With the help 

of the MRI data this research group were able to show the existence of two 

attentional states: 1) a less error prone state, which they described as ‘in the 

zone’ state, and 2) a more error prone state, which they described as ‘out of the 

zone’ state. The authors concluded that in tasks that may be perceived as easy 
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and potentially performed more automatically errors follow elevated DMN activity. 

In contrast, in tasks that may require more effort any errors may be due to 

incomplete activation of the DAN region.  

It is clear then that achieving consistent results in a reaction test is very difficult 

as the mind has a tendency to wander over time. Humans cannot fix their 

attention to a constant level and variability in moment-to-moment responses 

always exists (Esterman & Rothlein, 2019; Fiebelkorn et al., 2018). People’s 

inability to prevent mind wandering during a task has been known since antiquity 

and philosophical schools of thought such as Stoicism and Buddhism are known 

for meditation methods that encourage their followers to control mind wandering 

(Davis & Sharpe, 2013).  

We know that during a cognitive task the quality of sustained attention declines 

over time and such deterioration manifests in slower detections of reaction 

signals and lower accuracy (Parasuraman et al., 1987) thus increasing the 

probability of attentional failure or errors. It is easy for most of us to recollect 

examples of attentional failures with a varying degree of consequences, from 

quite innocuous to disastrous slips of action such as: forgetting that pair of red 

shocks in the white wash, filling up the car with the wrong fuel (according to the 

British Insurance Brokers’ Association (BIBA, 2007), every year as many as 

150,000 drivers in the UK accidently put wrong fuel in their cars), or distracted 

motorists who cause traffic incidents with human fatalities. Beyond the obvious 

consequence from lapse of attention during a task i.e. making mistakes, the 

ability to sustain attention is considered critical for academic readiness (Isbell et 

al., 2018) and it has been a topic of research investigation for decades 

(Fortenbaugh et al., 2017). It has been estimated that people’s minds wander 

47% of the time during waking hours (Killingsworth & Gilbert, 2010). But it is 

believed that there may be an advantage to mind wandering as it is conducive to 

planning for events in the future or problem solving. However, at the same time 

the cost of mind wandering is high [for a review see (Mooneyham & Schooler, 

2013)].  
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6.3 Motivation 

One common concern in mental chronometry research is that participants may 

be too eager to perform well in reaction tests. Indeed, often the underlying 

hypothesis may not be revealed to test volunteers at the start so that they do not 

produce false positives as they try to be ‘good’ participants (Seli et al., 2015). In 

our study we made clear to the participants from the start that our intention was 

to find out how fast and how accurately they could respond each time they 

performed the haptic reaction test. Given the above relating to sustained attention 

our concern was not whether the judoka would be overzealous but whether they 

would be motivated enough to concentrate on the test as well as they could and 

do so on multiple occasions.  

It has been long recognised that for a person to complete a task and apply their 

best efforts on that task their motivation is a crucial factor (Ericsson et al., 1993). 

Indeed, self-motivation has been repeatedly highlighted as an important quality 

of high achievers in academia and other fields (Button, 2011). Such is the 

importance of motivation for training and competition in high performance sport 

that it has been argued that when talented athletes are identified at the early 

stages of their sporting careers as having the potential to excel, then the ones 

selected should be those who appear to be the most motivated to carry out 

deliberate practice (Hodges & Baker, 2011). In mental chronometry research it 

has been shown that motivated participants are less likely to engage in task 

unrelated thoughts (i.e. mind wandering) during a response task compared to 

less motivated participants (Seli et al., 2015). Thus, a motivational constraint 

exists that directly impacts on execution of a task and it would be unwise to 

assume that the participants in our study would be motivated enough to do well 

in the response task whenever we handed them over one of the haptic reaction 

devices.  

Obviously, we cannot expect or even assume that our participants will have the 

necessary motivation to complete the RT tasks in our research to the best of their 

abilities when there are no tangible benefits to them for doing so. When we 

consider that the tests need to be repeated on multiple occasions it becomes 

clear that we need to introduce some factor in the testing process that will 
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motivate our judoka to maximise their engagement and attention, so that we can 

have more confidence that the data collected are a true reflection of what our 

cohort of judoka is capable of. It would be impractical to find out, and impossible 

to satisfy, all the intrinsic and extrinsic factors that may maximise each 

participant’s motivation (Deci & Ryan, 2000) to deliver their best efforts at each 

test episode but we are perhaps able to identify a common denominator. 

Before we move on to consider ways to motivate our cohort to fully engage in the 

reaction tests we should outline other conditions necessary to optimise the level 

of performance by each individual at each test. Ericsson et al. (1993) have 

argued that, besides motivation, the task we expect individuals to learn and 

perform should take into account:  

1) Prior knowledge of that task. Participants who are not familiar with the 

testing protocol should be given the appropriate instruction and as many 

times as may be necessary to ensure their correct understanding of what 

is expected of them. Although all of the participants were familiar with the 

concept of ‘Reaction Test’ none had the opportunity to experience the use, 

or see, our novel haptic choice reaction test device before it was shown to 

them by us. If a judoka’s perceived ability to meet the demands of the task 

was low only because they had not been explained the task adequately 

then their self-efficacy could have been low and lead to anxiety 

(Panayiotou & Vrana, 2004). However, we believe that the set up and use 

of the device for the test and the testing procedure itself are both 

straightforward and easy enough for people to understand and execute 

correctly. With an easy testing procedure in place we can be more 

confident that the quality of the data we obtain is not subject to having 

participants with high self-efficacy. In fact, it could be argued that the 

combination of the repeated practice runs of the tests and the simplicity of 

the test are likely to promote a level of mastery of the task that can only 

enhance any participant’s sense of self-efficacy and confidence to 

complete the test well (Bandura, 1978). 

2) Feedback to the individuals on their performance. It has been shown that 

positive feedback can improve motivation and performance (García et al., 

2019). Our reaction devices were not set up to give feedback immediately 
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after each response or even at the end of the test run. However, following 

the completion of each test the data were automatically saved in the 

device’s memory and collated at a later point on the day of the test. The 

data collected were used to update individualised graphs that where 

shared with each participant on the following week and before their next 

reaction test. In the chart, the participants could see how their overall 

performance compared to that of the group and how their most recent 

results compared with their own previous results. This information was 

shown to the participants as a point of reference and way of 

encouragement, and not as a qualitative outcome i.e. there were no ‘good’ 

or ‘bad’ results. 

3) Repeated practice of the task. ‘Deliberate practice’ is a common term used 

in high performance sport to describe the practice of specific activities 

executed by experts on a regular basis and with purpose, with the main 

objective being to improve competition performance (Mascarenhas & 

Smith, 2011). Our cohort of elite judoka were fully aware of the importance 

of practice on the device in order to fully acquaint themselves with the way 

they needed to respond to the device’s reaction cues. All judoka were 

offered a practice run of the test before starting the actual test, but they all 

felt that the task was simple enough to not require any practice before 

testing.  

Ericsson et al. (1993) have stated that when the above conditions are in place 

then it is highly likely to see the accuracy and speed of performance improve on 

cognitive, perceptual, and motor tasks. 

Another variable that can influence an individual’s motivation to maximise their 

commitment to repeated efforts in a given task is self-investment. In other words, 

people are more likely to ‘buy in’ if they believe that there is a personal gain to be 

had from their effort. In an attempt to maximise the ‘buy in’ factor, when we first 

described the study to the participants we also explained to them the purpose of 

the tests as well as the potential longer term benefits they may get out of it e.g. 

use data to establish baselines that can later help identify cognitive fatigue and 

inform coaching decisions that in turn may help maximise the learning effect or 

training adaptations from each training session.  
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6.4 Distraction 

It can be argued that even well motivated judoka who are determined to achieve 

perfect results in the haptic reaction task can still make mistakes or execute 

slower responses due to some source of distraction. It has been shown that 

distractions such as low intensity background noise can lead to slower response 

times (Trimmel & Poelzl, 2006) and it has been claimed that perceived stress too 

may in itself be a source of distraction as it can degrade judgment and decision 

making skills (Staal, 2004). On the other hand, it has been said that distractions 

can be resisted by highly focused individuals (Folk et al., 1992), which may 

explain to some extent why judoka do not appear to get distracted by the loud 

noises around them during a competition. Of course, judoka are better placed to 

resist the potential distractions specific to a typical competition environment as 

those are primarily sound related yet the response queues between two judoka 

during their match are by and large kinaesthetic; it would be inconceivable for a 

100 m sprinter to be expected to react fast to the sound of the start gun if at the 

same time there were loud noises made by the crowd watching the event. 

It is because of the above we opted to take the haptic reactions test device to the 

judokas, in their usual training environment, and ask them to complete the 

reaction task with no intervention against the typical sources of distraction that 

may had been present (i.e. other judoka chatting or loud music in the 

background). Arguably, in spite of the potential sources of distraction, a reaction 

task carried out in the judoka’s actual training environment can enhance the 

ecological validity of the method. 
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6.5 Challenge Point Framework 

One potential issue with any novel method that requires participants to execute 

a motor task is that the same task can be perceived as an easier or a more 

difficult challenge amongst performers with different abilities (Guadagnoli & Lee, 

2004). According to Guadagnoli & Lee (2004) there are three areas that can 

influence the potential of an individual to learn a motor task including: the 

environment within which the motor task is executed, the skill level the individual 

possesses, and the complexity of the motor task.  

All judoka performed the tests in their familiar environment of the Scottish Judo 

centre with all the usual distractions they encounter during a typical training 

session. We made no attempt to alter the environment within which the tests took 

place. Our cohort of elite judoka was fairly homogenous in their skill level and 

competition experience. It is implausible that any of these highly skilled 

individuals have found the haptic task (see Chapter 2) difficult to learn. 

Regardless of how simple the haptic reaction task was, we would still anticipate 

our participants to demonstrate notable improvement in their RT results within 

the first few tests, as is typically the case during task acquisition (Raglin, 1992). 

Besides, it is well accepted that practice is important to improve any skill (Salmoni 

et al., 1984). It could be argued however that after having learnt the motor task, 

and due to its rudimentary nature, the task may had been perceived as too easy 

by the judoka and could have allowed their attention to shift away from the task.  

The signal intensity of the ERM actuators we used was 122 Hz and not at the 

optimum vibration sensitivity for the surface of the palm, which is thought to be 

at around 250 Hz (Cholewiak & Collins, 1991; Scheibert et al., 2009). At 

practically half of the optimum frequency the haptic signal generated was not as 

easy to detect accurately but still clearly detectable with focused attention. A 

deliberate approach to make the tests more interesting for the judoka and 

motivate them to sustain their attention was the competition we introduced in the 

testing procedure.  
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6.6 Competition 

One would expect a group of young elite judoka who aspire to a place in the 

Olympic Games and the top levels of the World rankings to have a competitive 

nature in common. With assumed competitiveness as the common denominator 

in our cohort we expected a higher level of engagement from them in a method 

that is more likely to pique their interest compared to a task they may think of as 

dull. Therefore, in order to entice the participants to engage in the testing process 

and commit to delivering credible performances we decided to introduce a 

competition element in the testing process. 

We created four ‘events’ and awarded points to the top five individuals with the:  

1) Quickest correct response 

2) Lowest mean RT on correct choices 

3) Most consistent RT on correct choices (i.e. the lowest standard deviation) 

4) Highest accuracy rate (i.e. number of correct responses over the sum of 

responses) 

The top performer in each category was awarded 10 points followed by 7, 5, 3, 

and 1 point awarded to the judoka placed from 2nd to 5th respectively. A league 

table was generated and each week, once the results were collated, the league 

table was updated and the ‘Leaders’ in each category were announced. 

An alternative approach to investigating the haptic choice reaction performance 

could have been to collect data for a few weeks, without a competition element 

in the process, and then analyse the data points to reveal the learning effect and 

find the area beyond which the overall RT showed no further improvement. In our 

study though we wanted to repeat the tests on multiple occasions with the same 

cohort of elite judoka before trying to determine their baseline mean RT and 

mean accuracy in a haptic choice reaction test. Without external factors to 

motivate people to perform their best e.g. payment, we decided that the 

introduction of competition to the test would probably place the results closer to 

the true parameter values. One consequence of competition though is that it can 

cause a level of anxiety that can be beneficial to performance or destructive. 
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6.7 Performance anxiety 

The purpose of introducing competition to the testing procedure was to motivate 

the judoka to apply their best efforts in every test and minimise the risk of 

collecting data from disengaged participants. However, we cannot assume that 

the added expectation to outperform others can be purely facilitative and only 

associated with positive outcomes. In fact, competition increases the importance 

of performing well and leads to added pressure, and performance under pressure 

may result in ‘choking’ – a performance decrement under pressure (Baumeister, 

1984), as perceived stress can degrade judgment and decision making skills 

(Staal, 2004). 

Performance anxiety is thought to be one of the most important factors in the 

outcome of a sporting event (Palazzolo, 2020) and it has been described as: “an 

unpleasant psychological state in reaction to perceived threat concerning the 

performance of a task under pressure” (Cheng et al., 2009). There is no 

consensus within the scientific community on a single model to describe 

accurately the relationship between anxiety and performance (Palazzolo, 2020). 

Cheng et al. (2009) acknowledged that anxiety is complex and not always 

correlated with negative effects. These authors have proposed a conceptual 

framework of three main dimensions of anxiety (cognitive e.g. worry and self-

focused attention, physiological e.g. autonomous hyperactivity and somatic 

tension, and regulatory e.g. perception of one’s capacities to be able to cope and 

attain goals under stress) that they believe better reflects the complexity of 

anxiety (for more details see Cheng et al. 2009). 

It is not within the scope of our method or that of the wider study to examine the 

performance–stress dynamics or to disentangle the factors behind the 

inconsistent results of the research carried out in this area. Our intention with this 

specific section is to highlight that performance anxiety affects different athletes 

in different ways (Palazzolo, 2020). By having introduced competition we may 

have potentially made the testing procedure more fun and interesting for most 

judoka but not for all. Crucially, if the competition element of our method has led 

to some degree of pressure on judoka to perform better then, we could argue 

that such approach has added to the ecological validity of our method.   
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6.8 Methods 

6.8.1 Participants 

This study was approved by the School of Sports Research Ethics Committee of 

the University of Stirling. Ten healthy, elite level judoka (Four females aged 21.3 

± 2.2 years; weighing 62.3 ± 8.5 Kg; and six males aged 21.2 ± 1.6 years; 

weighing 72.2 ± 8.3 Kg) who compete at international level and participate at 

World ranking tournaments volunteered for this project and gave written consent 

after the purpose and details of the study were explained to them. All participants 

knew that they could withdraw from the study at any point if they wished to do so 

without having to provide any explanation (see section 2.1 in Chapter 2 for further 

details). 

6.8.2 Pre Testing 

With the need to address factors beyond the mediating variable of motivation in 

mind, we carried out the following actions before trying to establish a baseline for 

our cohort’s abilities in the haptic choice reaction test:  

1) We explained to the judoka the testing protocol and demonstrated how to 

use the handheld device before letting them have one or two runs of the 

test without recording any data. 

2) We made sure that individualised reports of each judoka’s results were 

generated, the data individually shared and explained to each one so that 

they could monitor their own progress and be encouraged to continue to 

seek improvement.  

3) We made sure to keep the time length of the test short (just under 120 

seconds) to encourage participation and to minimise loss of concentration.  

4) We reminded each judoka before the start of every test episode that they 

could have a practice run of the test prior to recording any data if they 

wanted to do so. 

5) We encouraged repeated tests under similar conditions in order to 

increase our confidence that any learning effect has been eliminated and 

could not influence the results that were eventually used to establish 

baseline values in choice RT and accuracy. 
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6.8.3 Study Design 

The data collection to establish the baseline cognitive performance of elite judoka 

in a haptic choice reaction test took place nearly over four months and outside 

their competition season. Not including major tournaments within the study time 

period meant that we were able to avoid any impact on cognitive performance 

from dehydration or other weight management techniques typically used by 

judoka and other athletes who try to make weight for competition (Artioli et al., 

2010). Each test was carried out on repeated occasions during regular training 

hours at the High Performance centre of Judo Scotland. We selected two distinct 

periods for data collection: 

• For the ‘Familiarisation’ measurements the data were collected over a 

period of nearly two months and just before the start of the judoka’s warm 

up on sessions. Prior the test, feedback was given to each judoka 

regarding their results from the previous test (i.e. shortest RT, mean RT 

of correct choices, and accuracy rate). In the Familiarisation condition our 

intention was to provide sufficient time for our cohort to get familiar with 

the test protocol and the use of the haptic device. These tests also served 

as an opportunity for the investigators to identify any potential issues with 

the testing procedure or the devices used.  

• For the ‘Baseline’ measurements the data were collected over a period of 

almost two months and under the exact same conditions as with 

‘Familiarisation’. However, the extra step in this case was that the results 

from each test were used to award ranking points and update the weekly 

leader board, which was displayed on the noticeboard of the dojo and 

showed the top five performers in each category (see section 6.6).  

6.8.4 Statistical Analyses 

In this chapter we have used Bayesian inference for the statistical analyses. We 

have used Bayes Factors (BF) to compare paired means from the two conditions 

of interest i.e. Familiarisation and Baseline. We have used Cohen’s effect size 

(d) calculation to report the magnitude of the mean difference between the groups 

(see section 2.3 in Chapter 2 for the principles and rationale behind Bayesian 

Statistics and Bayesian analysis tools such as BF and Credible Intervals). 
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Cohen’s effect size (d) was used with its conventional interpretation (Cohen, 

1988): 

• Small effect = 0.2  

• Medium Effect = 0.5  

• Large Effect = 0.8 

Data filtering was carried out as described in section 5.2.4. All data processing 

(data wrangling) was carried out in R, version 3.6.1 (R Core Team, 2019) using 

the tidyverse package, version 1.2.1 (Wickham, 2017). Bayes factors were used 

for hypothesis testing and to run the correct models and simulations we used the 

statistical functions available in BayesFactor package, version 0.9.12-4.2 (Morey 

& Rouder, 2018) and more specifically the bayes_inference( ) function from the 

statsr library. All the plots were designed with the ggplot2 package, version 3.2.1 

(Wickham, 2016).   
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6.9 Results 

6.9.1 Learning effect 

We examined the data from the Familiarisation period and were able to reveal a 

learning effect as indicated by the steady reduction in the group’s RTs over the 

number of tests completed (Figure 6-1). From the second haptic reaction test 

onwards there was an increase in faster responses and a reduction in variance 

of the data. Fewer outlier values were present by the fourth test indicating that by 

that point the judoka had worked out how to achieve faster and more consistent 

results than what they were able to achieve at their first test (Figure 6-1).  

 

Figure 6-1. Individual responses in Familiarisation tests. 

Boxplot of correct individual responses to haptic choice in sequential test order 
with raw data overlaid as points.  

A second approach to examine the learning effect during the Familiarisation 

process was to split the data recorded from each judoka into two sections. In the 

first section we included data from the first half of the participant’s total number 

of test sessions (Familiarisation 1st Half). Whereas the second section was 

comprised of data from the latter half of the total number of test sessions 

completed by each participant (Familiarisation 2nd Half).  

The mean RT and standard error of the mean (SEM) was 425 (24) msec and 373 

(20) msec for the Familiarisation 1st and 2nd half respectively (Table 2-1). 



Chapter 6 

 

166 
 

Test Condition Mean RT (SEM) Accuracy (SEM) 

Familiarisation 1st Half 425 (24) msec 82.2 (4.1)% 

Familiarisation 2nd Half 373 (20) msec 81.4 (3.3)% 

Familiarisation all data 397 (19) msec 82.1 (2.5)% 

Baseline 359 (18) msec 78.4 (3.7)% 

RT= Reaction Time, SEM= Standard Error of the Mean 

Table 6-1. Mean reaction and accuracy; Familiarisation & Baseline. 
Descriptive statistics of the group’s mean reaction time and accuracy at 

Familiarisation and Baseline. Note that the Familiarisation data were split into 

first half and the second half. 

The BFH1/H0 result (Table 6-2) provides strong evidence that the alternative 

hypothesis (μdiff ≠ 0) was almost 34 times more likely than the null hypothesis (μdiff 

= 0). The 95% Credible Interval (CI) suggests that true mean difference in RT 

between the first half and the second half of the Familiarisation data was between 

22-73 msec, which supports a belief that the mean RT in the second half of the 

Familiarisation period was shorter than the mean RT in the first half (Figure 6-2). 

The effect size (d) was 0.64, which suggests a medium effect of time (learning 

effect). 

Hypothesis 

(H) 

Prior 

(H) 

Posterior Probability 

(H|data) 

BFH1/H0 95% Credible 

Interval on μdiff 

μdiff = 0 (H0) 0.5 0.03 33.62 21.7 – 73.1 

μdiff  0 (H1) 0.5 0.97 

Table 6-2. BF analysis of RT; 1st Vs 2nd half of Familiarisation. 

Bayes factor analysis for the hypothesis that the mean reaction time over the 
first versus the second half Familiarisation is different from zero. 
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Figure 6-2. Mean RT difference 95% CI; 1st Vs 2nd half of Familiarisation. 

The 95% Credible Interval for the mean reaction time difference between the first 
half and the second half of the Familiarisation data.  

After the initial analysis of the RTs, we then turned our attention to the accuracy 

rates between the two same split conditions of Familiarisation. Accuracy values 

were calculated as the number of correct responses over the total number of 

responses for each individual. For the first half and the second half of the 

Familiarisation condition we found that the mean accuracy (SEM) was 82.2 (4.1) 

% and 81.4 (3.3) % respectively.  

Hypothesis 

(H) 

Prior 

(H) 

Posterior Probability 

(H|data) 

BFH0/H1 95% Credible 

Interval on μdiff 

μdiff = 0 (H0) 0.5 0.80 3.90 -13.01 – 8.68 

μdiff  0 (H1) 0.5 0.20 

Table 6-3. BF analysis of accuracy; 1st Vs 2nd half of Familiarisation. 

Bayes factor analysis for the hypothesis that the mean accuracy rate over the 

first versus the second half Familiarisation is different from zero. 

The BFH0/H1 was 3.9 (Table 6-3) providing support for the hypothesis of no 

difference in mean accuracy rate between the first half and the second half of the 

Familiarisation period. There was 95% probability that the true mean difference 
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in accuracy between the first half and the second half of the Familiarisation data 

was within -13% and 9%, supporting a belief that the mean difference is not 

different from zero (Figure 6-3). The 95% CI was nearly balanced around 0 and 

it suggests the lack of bias in the result. Further confirmation comes from the 

effect size (d) result that was calculated to be -0.06 indicating a trivial effect of 

time on accuracy. 

 

Figure 6-3. Mean accuracy difference 95% CI; 1st Vs 2nd half of Familiarisation. 

The 95% Credible Interval for the mean accuracy difference between the first half 
and the second half of the Familiarisation data. 
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6.9.2 Familiarisation Vs Baseline 

We continued with the same Bayesian model to examine the effect on correct 

responses of Familiarisation versus Baseline conditions. In this context Baseline 

indicates the introduction of a competitive element to the RT testing (see section 

6.6). The mean RT (SEM) for the Familiarisation and Baseline conditions were 

397 (19) msec and 359 (18) msec respectively.  

Hypothesis 

(H) 

Prior 

(H) 

Posterior Probability 

(H|data) 

BFH1/H0 95% Credible 

Interval on μdiff 

μdiff = 0 (H0) 0.5 0.04 20.09 14.10 – 55.15 

μdiff  0 (H1) 0.5 0.96 

Table 6-4. BF analysis of RT; Familiarisation Vs Baseline. 

Bayes factor analysis for the hypothesis that the mean reaction time over 

Familiarisation versus Baseline is different from zero. 

The BFH1/H0 result (Table 6-4) provides strong evidence to support the alternative 

hypothesis (μdiff ≠ 0), which is 20 times more likely than the null hypothesis (μdiff 

= 0). The 95% CI for the true mean difference in RT between the Familiarisation 

and Baseline data was within 14-55 msec, supporting a belief that the mean 

difference was not zero. In particular, the evidence suggests that the Baseline 

mean RT was shorter than the Familiarisation mean RT (Figure 6-4). The effect 

size (d) was 0.52, suggesting a moderate effect of competition leading to an 

improvement in mean RT. 
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Figure 6-4. Mean RT difference 95% CI; Familiarisation Vs Baseline. 

The 95% Credible Interval for the mean reaction time difference between the 
Familiarisation and Baseline conditions. 

The mean accuracy rate (SEM) in the Familiarisation and Baseline conditions 

was 82.1 (2.5%) and 78.4% (3.7%) respectively.  

Hypothesis 

(H) 

Prior 

(H) 

Posterior Probability 

(H|data) 

BFH0/H1 95% Credible 

Interval on μdiff 

μdiff = 0 (H0) 0.5 0.75 3.02 -5.19 – 11.85 

μdiff  0 (H1) 0.5 0.25 

Table 6-5. BF analysis of accuracy; Familiarisation Vs Baseline. 

Bayes factor analysis for the hypothesis that the mean accuracy rate over 
Familiarisation versus Baseline is different from zero. 

The BFH0/H1 was 3.02 (Table 6-5), supporting the hypothesis of no difference in 

mean accuracy rate between Familiarisation and Baseline. The 95% CI for a true 

mean difference in accuracy between Familiarisation and Baseline was within -

5% and 12%, which supports the belief that the mean difference was not different 

from zero (Figure 6-5). The effect size (d) was calculated at approximately 0.31, 

suggesting a weak effect of competition on accuracy. 
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Figure 6-5. Mean accuracy difference 95% CI; Familiarisation Vs Baseline. 

The 95% Credible Interval for the mean accuracy difference between 
Familiarisation and Baseline. 
  



Chapter 6 

 

172 
 

6.9.3 Familiarisation (second half data set) Vs Baseline 

We were interested in the effect of competition on the haptic choice RT 

parameters but the comparison of Baseline against the full Familiarisation data 

set reported earlier is unfair because, as reported in section 6.9.1, the 

Familiarisation data set contains significant changes in RT secondary to a 

learning effect. We have removed the first half of the Familiarisation data, where 

most of the learning effect was seen, to make the comparison between 

Familiarisation and Baseline fairer.  

Hypothesis 

(H) 

Prior 

(H) 

Posterior Probability 

(H|data) 

BFH0/H1 95% Credible 

Interval on μdiff 

μdiff = 0 (H0) 0.5 0.71 2.45 -12.6 – 37.4 

μdiff  0 (H1) 0.5 0.29 

Table 6-6. BF analysis of RT; Familiarisation 2nd half Vs Baseline. 

Bayes factor analysis for the hypothesis that the mean reaction time over the 
latter half Familiarisation versus Baseline is different from zero. 

The BFH0/H1 was 2.4 (Table 6-6) giving weak support for no difference between 

Familiarisation and Baseline mean RT once we exclude data from the early half 

of Familiarisation. The 95% CI was between -13 to 37 msec (Figure 6-6). This 

95% CI suggests a small but not significant bias in favour of a lower mean RT 

Baseline (competition) conditions. The effect size d was calculated at 

approximately 0.34 and is consistent with the evidence showing a weak effect of 

competition on RT once we account for a learning effect in the Familiarisation 

data. 
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Figure 6-6. Mean RT difference 95% CI; Familiarisation 2nd half Vs Baseline. 

The 95% Credible Interval for the mean reaction time difference between the 
latter half of Familiarisation and Baseline. 

Hypothesis 

(H) 

Prior 

(H) 

Posterior Probability 

(H|data) 

BFH0/H1 95% Credible 

Interval on μdiff 

μdiff = 0 (H0) 0.5 0.73 2.68 -4.99 – 13.26 

μdiff  0 (H1) 0.5 0.27 

Table 6-7. BF analysis of accuracy; Familiarisation 2nd half Vs Baseline. 

Bayes factor analysis for the hypothesis that the mean accuracy rate over the 
latter half Familiarisation versus Baseline is different from zero. 

The BFH0/H1 was 2.7 (Table 6-7) giving weak support for the null hypothesis of no 

difference between Familiarisation and Baseline mean accuracy once we 

exclude data from the early half of Familiarisation. The 95% CI of -5% to 13% 

(Figure 6-7) suggests a small but not significant bias in favour of a drop in mean 

accuracy rate under competition conditions. The effect size of 0.36 is consistent 

with a weak effect of competition on accuracy rate. 
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Figure 6-7. Mean accuracy difference 95% CI; Familiarisation 2nd half Vs 
Baseline. 

The 95% Credible Interval for the mean accuracy difference between the latter 
half of Familiarisation and Baseline.  

In summary, the results presented here suggest that there is a learning effect in 

the Familiarisation data for mean RT but not for accuracy. A moderate effect of 

competition, with an improvement in mean RT, was noted between 

Familiarisation and Baseline but not for accuracy. The effect of competition on 

RT became weaker once we accounted for a learning effect in the Familiarisation 

data with no significant difference in accuracy. 
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6.9.4 Individual differences 

We examined how individual judoka’s mean RT and accuracy changed from 

Familiarisation to Baseline (Figure 6-8). A closer inspection of the data in each 

condition revealed that one of the individuals appeared to have become slower 

and less accurate when the haptic reaction tests were performed under the 

competitive conditions at Baseline (dotted line in Figure 6-8, both panels; RT 

increases, accuracy drops steeply). In contrast, we also identified an individual 

who improved their RT despite already being faster than anyone else in the group 

(long dashed line Figure 6-8, left panel). However, this improvement came at the 

cost of a drastic drop in accuracy: from around 80% to just over 60% (long dashed 

line Figure 6-8, right panel). All of the remaining eight judoka managed to improve 

their RT with half of them improving their accuracy too and the other half showing 

lower accuracy. 

 

Figure 6-8. Individual changes in RT and accuracy. 

Changes in reaction time (left panel) and accuracy (right panel) between 
Familiarisation and Baseline conditions. Individual differences in mean RT are 
represented by the black lines. The dotted line highlights the person who was 
slower in the post Familiarisation test. The long dashed line represents the 
person who registered the shortest reaction times.  
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6.10 Discussion 

We used our novel haptic choice reaction test device to collect RT data from a 

group of elite judoka under real life training conditions. To enhance the 

engagement from each judoka in the testing procedures we introduced a 

competition amongst the participants on the haptic reaction task. We believe that 

by introducing a competition element to the tests we have been able to: 1) 

motivate the judoka’s to perform well during the choice reaction tests, and 2) add 

to the ecological validity of the haptic task by providing a source of stress during 

the test that may be a closer match to real life Judo competition conditions (e.g. 

competition pressure). 

It is typical during task acquisition to observe a remarkable improvement in the 

early stages of learning a task followed by a decline to that rate of learning, to the 

point where no further improvement is made (Raglin, 1992). We compared the 

mean RT and accuracy between the first half and second half of the 

Familiarisation period and found a learning effect in the Familiarisation data for 

mean RT but not for accuracy. We expected to observe similar evidence for a 

difference between the full set of Familiarisation and Baseline. Indeed, we found 

96% probability that the mean RT values were different between the two 

conditions (Table 6-4). But most of the difference in the means was mostly due 

to the early tests in the first half of the Familiarisation sessions. This conclusion 

was reached by examining the difference of the means in RT between the second 

half of the Familiarisation sessions and Baseline where we found nearly 30% 

probability that the mean difference was not zero (Table 6-6). Although we did 

not find a substantive difference in the latter comparison, we did note a marginal 

drop in mean RT and a small effect of competition on RT as suggested by the 

effect size d (0.34). Hence, we can be more confident in the baseline values we 

have gathered and use them as a yardstick against which we can examine 

deviations in our cohort’s performance under other conditions of interest (e.g. 

mean RT and accuracy after moderate intensity exercise and after severe 

intensity exercise). 

One interesting observation regarding the competitiveness element in the RT 

tests is that not all participants appeared to have responded positively to the 
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challenge of carrying out the reaction task under competitive conditions. Anxiety 

is not an uncommon psychological response to competition in competitive judoka 

(Ziv & Lidor, 2013) and it is accepted that high levels of anxiety can lead to a 

dramatic drop in performance (Hardy, 1996), although not all athletes perceive 

competition anxiety as detrimental to their performance (Raglin, 1992). Perceived 

stress however can potentially degrade judgment and decision making skills 

(Staal, 2004) [see Staal (2004) for an in-depth review on stress, cognition, and 

human performance].  

In Figure 6-8 there is evidence of only one judoka (dotted line) whose 

performance in the RT test showed a deterioration both in RT and accuracy from 

Familiarisation to Baseline. This person’s accuracy dropped from second best at 

Familiarisation to second worst at Baseline. The testing conditions between 

Familiarisation and Baseline were practically identical with the only difference 

being that the results in the latter condition counted for a place in the weekly 

league table. It is reasonable then to conclude that this judoka was overwhelmed 

by the pressure of competition. Further investigation revealed a history of 

performance-sapping competition anxiety for this individual that has led to 

underperformance at important tournaments. We believe that this set of results 

is further evidence for the ecological validity of our reaction test. 

There was another interesting case from a judoka (long dashed line, Figure 6-8) 

whose mean RT at Familiarisation was a lot lower than anyone else’s whilst the 

mean accuracy was very close to the overall group average. However, under the 

competitiveness conditions of Baseline a small improvement in mean RT appears 

to have been coupled with a remarkable loss in accuracy. This finding suggests 

that perhaps this judoka was overzealous in maintaining low RTs even at the 

expense of accuracy. Further investigation revealed that this judoka was error 

prone at important tournaments and especially in ‘sudden death’ rounds. Judo is 

a sport where being able to react faster than the opponent can only be an 

advantage if the correct decision is made. An erroneous rapid response in 

competitive Judo will at best lead to a missed scoring opportunity and at worst to 

defeat or injury.  
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We have highlighted and discussed two cases of judoka whose RT data showed 

a very different pattern to the rest of the group. These were also two cases whose 

results were consistent with real life performance issues they were experiencing. 

However, we have not removed their data from the statistical analyses as at this 

stage we are only speculating what might have happened to the two participants. 

Ultimately, we want to reveal our cohort’s true parameters of their baseline mean 

values in RT and accuracy. Therefore, we have to assume that the above 

examples of performances in the haptic task are within the variability that 

investigators may encounter in a typical group of elite judokas. 

To the best of our knowledge this study is the first in mental chronometry research 

were competition between study participants was introduced as a way to sustain 

attention and enhance the quality of RT data collected. Competition in RT tasks 

is by no means a new concept. The Competitive Reaction Time Task (CRTT) has 

been utilised under various versions in Psychology research since the 1960s as 

a laboratory based tool to measure aggressive behaviours (Elson et al., 2014). 

In brief, in the original CRTT the participants were told that they would compete 

against another person in a reaction game. The winner would be able to punish 

the loser with an electric shock of varying intensities. The researchers would use 

the intensity level of the shock chosen as the measure for a participant’s 

aggressiveness. In reality though, there was never an actual opponent. Of 

course, in our study the use of electric shocks was not an option we would ever 

consider – instead, participants were competing purely for ‘bragging rights’.  

A crucial factor to sustaining attention on a task is motivation. Different people 

can be motivated by different reasons to carry out a task (Vansteenkiste et al. 

2009). There may be intrinsic factors that drive motivation e.g. a genuine interest 

to learn about something or taking pride in the knowledge of having accomplished 

something worthwhile. But there may also be extrinsic factors that can push 

motivation e.g. prizes or praise from peers. Since our cohort of elite judoka was 

made up of people who were devoted to near daily Judo practice over a period 

of more than 10 years, it is reasonable to assume that these people are already 

well self-motivated individuals with a strong drive to achieve success in their 

sporting careers. It is possible that in an Olympic sport like Judo, where high 

monetary rewards are rare, the main factor that fuels their impetus to be 
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successful is enjoyment of Judo competition. Indeed, enjoyment of the sport has 

been shown to have the strongest effect amongst junior tennis players’ 

commitment to their training practice and competition (Weiss et al., 2001). Fun is 

a motivating force, and one that was realistic for us to utilise to motivate our 

cohort to sustain their concentration. Our haptic reaction test, although interesting 

(novelty factor) and not monotonous (inherent variability of choice reactions and 

short timescale) is unlikely to be perceived as a fun task in itself. In an attempt to 

improve motivation we therefore added a competitive element to the testing 

process. 

Sustaining attention during a cognitive task can be mentally strenuous and 

stressful (Warm et al., 2008). Without the required focus on the task the mind can 

drift off during a test either due to boredom or fatigue. Studies in human RTs have 

shown repeatedly that the coefficient of variation of response times increases 

secondary to mind wandering (Hawkins et al., 2019). We have used 

competitiveness as a way to limit mind wandering during the haptic reaction task 

in hope to reduce the extent of variability in the results.  

Using a league table to maintain motivation in a long series of reaction tests is a 

rather unusual approach in mental chronometry research. Nonetheless, it was 

evident to those present during the sessions that all but one of the judoka who 

took part enjoyed competing against their peers and they were genuinely trying 

to outperform them every time. We do not believe that such level of engagement 

in all the tests performed could have been possible without having turned the 

data collection into an enjoyable experience with a fun competition. In a future 

study it would be interesting to investigate to what extent competition among 

participants can reduce variability in a reaction task over repeated tests. 

One potential criticism of our method is that we carried out all the tests at the 

Judo performance centre during and around real training sessions where each 

judoka was subjected to many potential distractions. We could have performed 

all of the reaction tests in a laboratory and away from distractions. This approach 

may have resulted in less variability in the data. However, real life Judo is 

performed in an environment with many potential distractions. Typically, during a 

bout, a judoka must filter or prioritise informational cues that may come from 
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many diverse sources: the opponent makes a move, the referee intervenes, the 

coach shouts instructions, the crowd cheers, the stadium speakers play loud 

announcements or music. We therefore believe that our data collection during 

practice sessions had greater ecological validity for judoka than a similar test 

carried out in a quiet room.  
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6.11 Conclusion 

Data collected from reaction tests can include values that are likely influenced by 

factors not related to the testing itself i.e. distraction. We set out to explore the 

typical mean RT and accuracy of elite judoka in a haptic choice reaction test 

facing the challenge of securing results that represented an accurate picture of 

what these judoka were capable of. 

In our method we have used competition during a haptic reaction task to motivate 

judoka to limit mind wandering and stay focused during each reaction test. We 

opted for a test with the appropriate sensory modality, and we collected reaction 

data in the judoka’s training environment where many real life sources of 

distraction exist. Having added a competition during these tests we have likely 

added to the ecological validity of our method. As a result, we can be more 

confident that the range of mean RT and accuracy we have reported here from 

a cohort of elite judoka is closer to the true parameter values.  
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7.1 Introduction 

In Chapter 6 we showed how competitiveness was used to enhance the quality 

of the data gathered but also how it contributed to the ecological validity of our 

test method. In this chapter we demonstrate the impact different levels of 

exercise intensity had on our cohort’s performance in the haptic reaction test. 

Technically a Judo bout is four minutes long, but it can be a lot shorter as an 

ippon (Judo’s equivalent to a knock out) can be scored at any point before the 

end of the allotted time. On the other hand, a bout can last longer if the two 

opponents’ score is tied by the end of the four minutes. In the latter case the fight 

goes immediately to extra time (there is no break between the rounds) and the 

first judoka who gets any score wins, hence the extra time is also known as 

‘sudden death’ round. Crucially, there is no time limit to how long the decisive 

round can keep going on. Only a minority of Judo matches at any major 

tournament go on to be decided on the ‘sudden death’ round, but these bouts 

can be prolonged by several seconds or many more minutes. The practical 

significance of the potentially wide variability in match duration is that an elite 

judoka with superior tactical and technical skills may go through fights in a 

tournament without having needed to overly exert themselves – but equally, they 

need to be prepared to cope with the physical and mental demands of an 

extended high intensity fight. In either case the ability to make fast and correct 

decisions under any degree of physical stress and emotional pressure remains 

essential in competitive Judo. 

It has been shown that moderate intensity aerobic exercise improves cognitive 

function (Rattray & Smee, 2013) whilst hard intensity exercise decreases 

cognitive performance (Draper et al., 2010). It can be argued that elite judoka 

have years of training experience and are accustomed to physically demanding 

conditions where intense physical exertion is coupled with the requirement to 

make tactical choices and execute highly technical skills. It is reasonable to 

wonder whether elite judoka’s cognitive performance may deteriorate under 

conditions of highly intense physical exertion. It is prudent then to investigate the 

effect of extreme physiological arousal, as typically experienced by elite level 

Judokas, on cognitive performance.  
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Judo is mostly a kinaesthetic sport therefore we have developed a haptic choice 

reaction test using a purpose built device (for details see Chapter 3) that can 

provide information on judoka’s reaction time (RT) and accuracy under different 

exercise intensity conditions.  
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7.2 Arousal Model 

It has been argued that a sub-maximal level of physical exertion can enhance 

cognitive performance but as the exercise intensity increases over time then the 

beneficial effect of exercise on cognitive performance is lost. Thus, an inverted 

‘U’ relationship exists between cognitive performance and physical exertion 

(Davey, 1973). The implicit assumption from the previous point is that 

physiological responses from exercise correspond to certain states of arousal.  

The inverted-U hypothesis was first put forward in 1908 by Yerkes & Dodson 

following experiments where they used mild electric shocks on mice and found 

that the mice could learn a discrimination task faster. In contrast, when the 

electric shocks got stronger the mice performance on the same task worsened. 

The ‘Yerkes-Dodson law’ was once the leading paradigm of the arousal-

performance relationship in Psychology. However, these experiments on mice 

examined the relationship between task acquisition and stimulus intensity rather 

than arousal (Raglin, 1992). Beyond Yerkes & Dodson’s theory, later researchers 

found that when physical arousal increases cognitive performance can improve 

up to a point beyond which it starts to decline as physical arousal continues to 

increase (Tomporowski & Ellis, 1986). In essence, there is an inverted-U 

hypothesis to support the idea that cognitive performance is optimal with 

moderate intensity exercise, and sub optimal with exercise of low or high 

intensities.  

Optimal physiological arousal is critical for attention and it has been suggested 

that in the central nervous system a major contributor to arousal is the locus 

coeruleus (LC) noradrenergic system (Aston-Jones & Cohen, 2005). The LC is 

located in the pons of the brainstem and it is where most of the brain synthesis 

of noradrenaline takes place, hence the LC plays a role in the stress response. 

Together, the LC and the areas of the body that receive and respond to the 

noradrenaline produced are known as the LC noradrenergic system. Brain 

studies in primates by Aston-Jones & Cohen (2005) revealed performance 

patterns consistent with an inverted-U relationship between arousal and 

performance. Aston-Jones & Cohen created a visual cue task for a group of 

monkeys that were required to release a lever only when a specific cue was 
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presented to them and to ignore any alternative visual cues displayed. When the 

monkeys responded correctly, they were rewarded with a small quantity of fruit 

juice but were penalised with a brief time out when they made a mistake. The 

accuracy with which the monkeys performed this task was over 90% and the 

researchers showed that the monkeys’ performance parameters were poor when 

the LC tonic discharge (LC baseline activity) was low i.e. drowsy and non-alert 

monkeys, whilst their performance was best during moderate LC tonic activity 

following goal-relevant stimuli, and finally, the monkeys’ performance variables 

were poor again at elevated levels of tonic LC activity.  

Despite specific mechanisms that potentially influence the quality of performance 

in cognitive tasks it is noteworthy that, across studies carried out since the early 

20th century, researchers have found exercise to be either beneficial or 

detrimental to cognitive performance (Wohlwend et al., 2017) and this 

contradiction is likely due to the inconsistency in the testing methods used, the 

conditions during tests, the fitness levels of the cohorts studied, the exercise 

mode, the exercise intensity levels chosen, and the duration of exercise 

(Brisswalter et al., 2002). However, some clarity from the studies published in 

recent decades was achieved through a meta-analysis (Lambourne & 

Tomporowski, 2010) where it was shown that the effect size of exercise on 

cognitive performance was influenced by the duration, mode, and type of 

exercise. More specifically: 

• Effect size was dependent on the duration of the continuous exercise 

carried out prior to when the cognitive tasks were performed, with 

negative effect sizes in the first 20 minutes and positive effects after the 

first 20 minutes of exercise. 

• Effect size was larger and negative in testing protocols that used running 

compared to studies that used cycling where the effect size was smaller 

and positive. 

• Effect size was positive during steady-state exercise but negative in 

studies where the exercise protocol was designed to evaluate the effects 

of the inverted-U hypothesis. 
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As highlighted earlier, Judo bouts can be highly challenging both in terms of 

physical and cognitive demands. Crucially, the intensity and duration of a single 

bout experienced by a competitive judoka at any tournament can vary 

considerably. Collectively, the above information confirms the need to investigate 

the impact of different exercise intensities on elite judoka’s cognitive 

performance.  
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7.3 Methods 

Judokas must make consistently quick and correct choices during randori (Judo 

sparring) so it seems proper that we investigate the change in the mean RT, 

accuracy, and their consistency in a haptic reaction task at various levels of 

exercise intensity. But in this comparison, we are not simply interested in knowing 

whether a difference exists in the mean parameter values between Baseline and 

either of the two other conditions i.e. ‘Moderate Intensity’ and ‘Severe Intensity’. 

We also want to know the magnitude of the difference and our uncertainty about 

this magnitude estimate. This approach can allow us to determine how much the 

distinct levels of exercise intensity affect the cognitive performance parameters 

we have tested with our reaction device and how much confidence we should 

have in our findings. 

From the data presented in Chapter 5 we determined the range within which lies 

the Baseline mean RT and the mean accuracy for the cohort of elite judoka in a 

haptic reaction task. We now want to use the Baseline parameters as the 

yardstick against which we can compare the same parameter values under two 

different conditions: 1) after the end of a generic and judo specific warm up, which 

we called ‘Moderate Intensity’, and 2) immediately after the completion of an all-

out effort in one of the judoka’s routine physiological tests, which we called 

‘Severe Intensity’.  

7.3.1 Participants 

The study was approved by the School of Sports Research Ethics Committee of 

the University of Stirling. Ten healthy, elite level judoka (Four females aged 21.3 

± 2.2 years; weighing 62.3 ± 8.5 Kg; and six males aged 21.2 ± 1.6 years; 

weighing 72.2 ± 8.3 Kg) who compete at World ranking tournaments volunteered 

for this study and gave written consent after the purpose and details of the study 

were explained to them (for details see Chapter 2). All participants knew that they 

could withdraw from the study at any point if they wished to do so without having 

to provide any explanation.  

Every participant was given multiple opportunities to familiarise with the haptic 

reaction device to control for any learning effect. Subsequently, a baseline 
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standard was established for the group haptic choice RT and accuracy (for details 

see Chapter 6).  

7.3.2 Study Design 

The data collection to investigate the cognitive performance of elite judoka under 

different levels of exercise intensity took place over a period close to six months 

and outside the competition season. Not including major tournaments within the 

study time period meant that we were able to avoid any impact on cognitive 

performance from dehydration or other weight management techniques typically 

used by judoka and other athletes trying to make weight for competition (Artioli 

et al., 2010). Each test was carried out on repeated occasions during regular 

training hours at the High Performance centre of Judo Scotland. We selected 

three distinct conditions for data collection: 

• For the ‘Baseline’ measurements the data were collected over a period of 

about two months and prior to the start of the judoka’s warm up at 

sessions where they had randori practice.  

• For the ‘Moderate Exercise’ measurements the data were collected over 

a period of just over one month, approximately 40-50 minutes from the 

start of the judoka’s randori session. During this time period the judoka 

would complete a general warm up routine followed by some more Judo 

specific warm up drills that were in turn followed by several short rounds 

of randori. At the end of the specific warm up the judoka were given 10 

minutes to prepare for the main randori practice and during that time the 

judoka in our cohort would carry out the haptic reaction test. It took under 

two minutes for a haptic choice reaction test to be completed and because 

we had four devices available we were able to collect data from all 10 

participants within six minutes. We were confident that our data collection 

process was not perceived as being intrusive or disruptive by either the 

coaches or any of the judokas, but we were still mindful not to repeat the 

tests more times than necessary. Even though the structure of each 

training session and the drills carried out were not prescribed they 

followed the same overall process and exercises, which made the 

sessions, and the data collected, comparable to each other. 
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• For the ‘Severe Intensity’ measurements the data were collected on four 

dates when the judoka had their fitness tests. There was never any 

randori practice, or any other type of training on test days as judoka were 

encouraged to be rested and available for the ‘all out’ efforts expected of 

them during the fitness tests. The main test was performed on a rowing 

ergometer where judoka were asked to maintain the highest power output 

they could manage for a fixed distance of two kilometres. Not too long into 

the test it was obvious that the judoka were doing their best to maintain 

their very high power outputs and by the end they were visibly exhausted. 

Each haptic choice reaction test took place immediately after the 

completion of their effort on the ergometer. In this ‘Severe Intensity’ 

condition the sessions followed a very strict and consistent protocol of 

what was carried out on the rowing ergometer, which gave us confidence 

that the measurements we collected from all sessions were comparable 

and from truly ‘all out’ efforts. 

The haptic choice reaction test itself involved 20 reaction episodes with the haptic 

device (for a description of the test see section 5.2.2 in Chapter 5).  
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7.4 Statistical Analyses 

In this chapter we have used Bayesian inference for the statistical analyses. More 

specifically, we have used Bayesian techniques such as the Highest Density 

Interval (HDI) and the Region Of Practical Equivalence (ROPE) to compare 

paired means from a level of exercise intensity (i.e. Moderate or Severe) against 

Baseline values (see section 2.3 in Chapter 2 for the principles and rationale 

behind Bayesian Statistics and Bayesian analysis tools such as Bayes Factors, 

HDI + ROPE, Markov Chain Monte Carlo, and Credible Intervals). Cohen’s effect 

size (d) was used with its conventional interpretation (Cohen, 1988): 

• Small effect = 0.2  

• Medium Effect = 0.5  

• Large Effect = 0.8 

Data filtering was carried out as described in section 5.2.4. All data processing 

(data wrangling) was carried out in R, version 3.6.1 (R Core Team, 2019) using 

the tidyverse package, version 1.2.1 (Wickham, 2017). For the statistical 

analyses we have used the BayesFactor package, version 0.9.12-4.2 (Morey & 

Rouder, 2018) and the BEST package, version 0.5.1 (Kruschke & Meredith, 

2018) and its BESTmcmc function to compare the means of two groups by 

generating posterior distributions with Markov Chain Monte Carlo (MCMC) 

sampling from the two groups’ RT values (for details see Chapter 7 of Kruschke, 

2011). The HDI limits were computed from the MCMC chain using the method 

explained in section 23.3 of Kruschke (2011) and with an effective sample size 

that exceeded 10,000; the higher the number the higher the resolution of the 

posterior distribution (Kruschke, 2013). Plots were generated using the BEST 

library and the ggplot2 package, version 3.2.1 (Wickham, 2016).  
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7.5 Results 

The mean RT (SEM) at Baseline, Moderate Intensity, and Severe Intensity 

conditions were 359 (18) msec, 319 (13) msec, and 357 (10) msec respectively 

(Table 7-1). 

Test Condition Mean RT (SEM) Accuracy (SEM) 

Baseline 359 (18) msec 78.4 (3.7)% 

Moderate Intensity 319 (13) msec 75.5 (4.1)% 

Severe Intensity 357 (10) msec 65 (5.4)% 

RT= Reaction Time, SEM= Standard Error of the Mean 

Table 7-1. Mean RT and accuracy at different intensity levels.  
Descriptive statistics of the group’s mean reaction time and accuracy rate under 
Baseline, Moderate Intensity, and Severe Intensity Conditions.  

 

Figure 7-1. Mean RT at different intensity levels. 

Individual judoka’s mean reaction times (points) and the group’s robust 
descriptive statistics (boxplots) for each of the three exercise intensities: 
Baseline (at rest), Moderate Intensity, and Severe Intensity.  

Figure 7-1 shows each participant’s mean RT in the haptic choice reaction test, 

as well as the group’s robust statistics for each of the three exercise intensities: 

Baseline (tests at rest: before exercise started), Moderate Intensity (tests 40-50 

minutes into randori training), and Severe Intensity (tests immediately after ‘all 
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out’ work). There is a well-defined improvement in the RT mean values from 

Baseline to Moderate Intensity whereas there does not appear to be as much of 

a difference in the RT mean values from Baseline to Severe Intensity. 

We have also plotted the judoka’s RTs against accuracy under each condition in 

order to display any shifts in accuracy at different exercise intensities (Figure 

7-2). We can see three panels in Figure 7-2 with each having the RT on the y 

axis and accuracy percentage on the x axis: the left panel shows Baseline data, 

the middle panel shows Moderate Intensity data, and the right panel shows 

Severe Intensity data. Also, on each panel we have superimposed a red vertical 

line at a fixed point on the x axis to denote the group’s accuracy rate at Baseline 

and to help us visualise how the heat spots shift in relation to the red line 

(Baseline accuracy) under each condition.  

 

Figure 7-2. Heat map of RT over accuracy at different intensity levels. 

A density map with judoka’s individual responses that allows us to view the 
concentration (heat spots) of data. The red vertical line signifies the group’s 
accuracy rate at Baseline. Note the shift of the heat spot in the far right panel, 
under Severe Intensity, to the left side of the red line, which indicates a 
remarkable drop in the group’s accuracy rate compared to what they were able 
to achieve at rest. 

In the middle panel (Moderate Intensity) of Figure 7-2 the heat spot is lower on 

the y axis when compared to the first (left) panel, which indicates an improvement 

in RT from Baseline – and it is consistent with Figure 7-1 where we first showed 
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the improvement in mean RT values from Baseline to Moderate Intensity. But the 

heat spot on the same panel appears to have stayed at a similar position on the 

x axis, which indicates that there has been no remarkable difference in the 

accuracy rate between the two conditions. In the third (right) panel the heat spot 

does not appear to have shifted on the y axis when compared to the position of 

the heat spot on the first panel, which indicates no difference in RT between 

Baseline and Severe Intensity. However, there is a noticeable shift of the heat 

spot on the x axis to the left side of the red line, which indicates a remarkable 

drop in the group’s accuracy rate at Severe Intensity compared to what they were 

able to achieve at rest. 

We can see that, overall, an improvement in response time was noted in the 

second condition, when judoka had spent some time exercising but that 

improvement was diminished at the extreme condition, which also resulted in a 

remarkable loss of accuracy. 

 

Figure 7-3. Error rate pattern across all 20 episodes per exercise intensity. 

A LOESS smooth curve (local polynomial regression) revealed the pattern of 
mean accuracy across the 20 reaction episodes under each condition. Note the 
much wider proportion of erroneous responses at Severe Intensity (right panel). 

A LOESS curve (see section 5.2.3 in Chapter 5) was used to visualise the 

distribution of the group’s mean error rates at each one of the 20 reaction 

episodes of the haptic choice responses at every exercise intensity level (Figure 

7-3). In both Baseline and Moderate Intensity conditions the mean error rate 
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fluctuated within a similar range. However, in the Severe Intensity condition the 

mean error rate trajectory fluctuated at much higher values and within a much 

wider range compared to the other two conditions.  
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7.5.1 Baseline Vs Moderate Intensity (Reaction Time) 

We used the BEST package in R to estimate the posterior probability density for 

the difference of the means. We set the effective sample size at 15000 (to 

increase the resolution of the posterior probability). With no previous studies to 

draw knowledge from we used the standard deviation of all raw data at Baseline 

(101 msec) multiplied by a small effect size d (0.2) to compute the ROPE (for 

details see section 2.3.5 in Chapter 2). Therefore, ROPE = σ x d = 101 msec x 

(± 0.2) = ± 20 msec.  

The estimation of the difference between the mean RT in Baseline and the mean 

RT in Moderate intensity shows that 95% of the most credible values (i.e. HDI) is 

between 35 and 46 msec (Figure 7-4). The HDI does not include zero and it also 

falls completely outside the ROPE. Thus, as per the HDI + ROPE rule we declare 

that the null value, no difference in the mean values, is rejected for practical 

purposes. Also, because the mean difference is positive, we can deduce that the 

Moderate Intensity mean RT is shorter than the Baseline RT. 

 

Figure 7-4. HDI of mean RT difference; Baseline Vs Moderate. 

The mean reaction time difference between Baseline and Moderate Intensity. 
The histogram shows the posterior distribution for the mean difference between 
Baseline and Moderate Intensity conditions. The 95% HDI for the mean 
difference is represented by the black horizontal line and it is 100% outside the 
ROPE limits. The ROPE limits of ± 20 msec are denoted by the vertical dotted 
lines. 
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The HDI for Cohen’s effect size d on RT from Baseline to Moderate Intensity 

exercise was entirely outwith the ROPE limits (Figure 7-5). The HDI range of 0.69 

to 0.94 indicates a moderate to strong positive effect of Moderate Intensity 

exercise on RT  

 

Figure 7-5. HDI of d on mean RT difference; Baseline Vs Moderate. 

The Cohen’s effect size (d) on mean difference in reaction time between 
Baseline and Moderate Intensity conditions. The density curve shows the 
posterior distribution for the effect size. The 95% HDI for the Cohen’s d is 
represented by the black horizontal line and it is 100% outside the ROPE limits. 
The ROPE limits of ± 0.2 are denoted by the black vertical dotted lines. 
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7.5.2 Baseline Vs Severe Intensity (Reaction Time) 

The estimation of the difference between the mean RT at Baseline and the mean 

RT at Severe Intensity shows that the 95% HDI is between 3 and 16 msec (Figure 

7-6). The HDI does not include zero but it falls completely inside the ROPE. Thus, 

as per the HDI + ROPE rule, we accept that there is no difference in RT between 

the Baseline and Severe Intensity conditions. 

 

Figure 7-6. HDI of mean RT difference; Baseline Vs Severe. 

The mean RT difference between Baseline and Severe Intensity. The histogram 
shows the posterior distribution for the mean RT difference between Baseline 
and Severe Intensity conditions. The 95% HDI for the mean difference 
represented by the black horizontal line and it is 100% inside the ROPE limits. 
The ROPE limits of ± 20 msec are denoted by the vertical dotted lines. 

The 95% HDI for Cohen’s effect size on RT from Baseline to Severe Intensity 

exercise is between 0.05 and 0.3. With 57% of the HDI inside the ROPE we 

remain undecided on the magnitude of the effect Severe Intensity exercise has 

on mean RT (Figure 7-7). 
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Figure 7-7. HDI of d on mean RT difference; Baseline Vs Severe. 

The Cohen’s effect size (d) on mean difference in reaction time between 
Baseline and Severe Intensity conditions. The density curve shows the 
posterior distribution for the effect size. The 95% HDI for the Cohen’s d is 
represented by the black horizontal line. The ROPE limits of ± 0.2 are denoted 
by the black vertical dotted lines. 
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7.5.3 Baseline Vs Moderate Intensity (Accuracy Rate) 

We have used Bayes Factors (BF) to compare paired means of accuracy rate 

between Baseline and Moderate Intensity. We have assigned an equal ratio of 

prior probabilities on the two hypotheses i.e. there is a 50% chance that no 

difference exists between the two conditions and 50% chance that a difference 

does exist, and the Bayes Factor is the posterior odds.  

Hypothesis 

(H) 

Prior 

(H) 

Posterior Probability 

(H|data) 

BFH0/H1 95% Credible 

Interval on μdiff 

μdiff = 0 (H0) 0.5 0.76 3.15 -4.3 – 9.3 

μdiff  0 (H1) 0.5 0.24 

Table 7-2. BF analysis of accuracy; Baseline Vs Moderate. 

Bayes factor analysis for the hypothesis that the mean accuracy over Baseline 

versus Moderate Intensity is different from zero. 

The BFH0/H1 was 3.15 (Table 7-2) providing support for the hypothesis of no 

difference in mean accuracy rate between the Baseline mean accuracy and the 

Moderate Intensity mean accuracy. There is 95% probability that the true mean 

difference in accuracy between the two conditions is within -4%, 9% and as this 

includes zero then it is likely that the mean difference is not different from zero 

(Figure 7-8). The 95% CI suggests a small bias in favour of a higher mean 

accuracy rate at Baseline. The effect size d was calculated to be 0.20 and is 

consistent with the evidence so far that shows a weak effect of Moderate Intensity 

on mean accuracy. 
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Figure 7-8. Mean accuracy difference 95% CI; Baseline Vs Moderate. 

The 95% Credible Interval (CI) for the mean difference in accuracy between 
Baseline and Moderate Intensity conditions. The 95% CI is indicated by the 
shaded region. 
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7.5.4 Baseline Vs Severe Intensity (Accuracy Rate) 

Hypothesis 

(H) 

Prior 

(H) 

Posterior Probability 

(H|data) 

BFH1/H0 95% Credible 

Interval on μdiff 

μdiff = 0 (H0) 0.5 0.13 6.94 3.36 – 20.87 

μdiff  0 (H1) 0.5 0.87 

Table 7-3. BF analysis of accuracy; Baseline Vs Severe. 

Bayes factor analysis for the hypothesis that the mean accuracy over Baseline 

versus Severe Intensity is different from zero. 

From the BF analysis in Table 7-3 we can see that the BFH1/H0 result indicates 

that the alternative hypothesis (μdiff ≠ 0) is almost 7 times more likely than the null 

hypothesis (μdiff = 0) for the difference between the Baseline mean accuracy and 

the Severe Intensity mean accuracy. There is 95% probability that the true mean 

difference in accuracy between the two conditions lies within 3% and 21%, which 

supports a higher mean accuracy at Baseline than at Severe Intensity (Figure 

7-9). The effect size d was calculated to be 0.83, which suggests a strong effect 

of Severe Intensity exercise on mean accuracy. 
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Figure 7-9. Mean accuracy difference 95% CI; Baseline Vs Severe. 

The 95% Credible Interval (CI) for the mean difference in accuracy between 
Baseline and Severe Intensity conditions. The 95% CI is indicated by the shaded 
region. 
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7.6 Discussion 

We have estimated the mean RT and mean accuracy in a haptic choice reaction 

test in a group of elite judoka under different exercise intensities. To the best of 

our knowledge this study is the first to show how haptic choice RT and accuracy 

can vary in a group of elite judoka’s under various levels of physical exertion i.e. 

rest vs post warm up vs post maximum sustained effort. Collectively, this study 

has revealed a substantive effect of Moderate Intensity exercise on mean RT but 

with no evidence of change in mean accuracy. Specifically, the mean RT appears 

to reduce after generic and Judo specific warm up without any measurable 

change in mean accuracy rate. The comparison between Baseline and Severe 

Intensity yielded the opposite result showing no difference in the mean RT but 

strong evidence for a drop in mean accuracy rate. Our results agree with earlier 

studies where it was demonstrated that moderate intensity exercise can improve 

performance in a cognitive task (Rattray & Smee, 2013) but accuracy decreases 

during severe exercise (Wohlwend et al., 2017).  

According to a review by Lambourne & Tomporowski (2010) the effect of 

exercise-induced arousal on cognitive tasks that involve rapid decisions is 

positive after the first 20 minutes of exercise. But exercise longer than one hour 

is likely associated with symptoms of fatigue (Brisswalter et al., 2002). Our result 

on the mean RT at Moderate Intensity is consistent with the findings of 

Lambourne & Tomporowksi (2010) as we demonstrated a clear improvement in 

the mean RT in all judoka after 40-50 minutes of warm up and Judo specific 

exercises. The same authors reported that “regardless of the type of physical 

activity performed, participants' cognitive performance improved when tested 

after exercise”. Our findings could not support such comment for RT. In the case 

of the Severe Intensity condition there was no practically significant improvement 

in mean RT compared to Baseline. 

The mean difference between Baseline and Moderate Intensity was around 40 

msec, which equates to around 11% improvement on mean RT from Baseline to 

Moderate Intensity. This finding strengthens the importance of proper ‘warm up’ 

routines prior a main performance as a way to prime cognitive performance and 

facilitate faster and accurate responses. Studies have already shown the positive 
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effects of appropriate warm up routines on various sporting actions such as judo 

throws (Lum, 2019), jumping (Pagaduan et al., 2012), golf drive (Langdown et 

al., 2019), running (Zourdos et al., 2017), or even as a strategy for injury 

prevention (Mayo et al., 2014). Warm up routines are perhaps effective because 

they lead to an increase in body temperature, increase in muscle metabolism, 

increase in muscle contractile activity, VO2 kinetics, and psychological arousal 

(McGowan et al., 2015). We add to this body of work by showing that a judo 

specific warm up routine as typically performed in Judo training prior to randori 

practice can improve cognitive performance parameters in a group of elite 

judokas. This finding is in agreement with an earlier study where the authors 

concluded: “Where activities require a performer to respond quickly to a stimulus 

amongst alternatives, our results suggest that exercise at moderate to heavy 

intensity prior to task engagement is facilitative” (Draper et al., 2010). We believe 

that such finding is of practical significance for the Judo community considering 

that it is not uncommon to find judoka at competitions who do not spend enough 

time, if any at all, on their warm up prior bouts. In fact, the coaches we talked to 

from the Scottish Judo programme reported cases of judoka who tend to avoid 

warm up at tournaments because, in their own words: “…they try to conserve 

energy”. 

We found no significant difference in mean RT between Baseline and Severe 

Intensity. But then, if we accept that the mean RT can improve by almost 11% 

from Baseline after warm up and that mean RT after sustained extreme effort 

matches that at Baseline then in reality mean RT has deteriorated by almost 11% 

as a direct result of the Severe Intensity condition.  

There was no practical difference in the mean accuracy between Baseline and 

Moderate Intensity conditions but the mean accuracy between Baseline and 

Severe intensity conditions was lower by over 13%. In other words, in a test of 

20 reaction episodes a judoka was likely to commit, on average, 2-3 more errors 

under Severe Intensity conditions compared to Baseline. In a study where a 

group of experienced male judoka performed Judo bout simulations at three 

different duration levels (1.5 minutes, 3 minutes, and 5 minutes) and at high 

enough intensities to force blood lactate concentration above 10 mmol/L (an 

indicator of exhaustive anaerobic exercise) the authors did not find a significant 
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change in mean RT from rest. But they did find a significant increase in error rate, 

which was attributed to the high physical intensity involved (Lima et al., 2004). 

Our findings are consistent with the conclusion of Lima et al. (2004).  

The practical implication of these findings, in the context of Judo competition, is 

that we can expect a judoka’s mean RT to increase and their accuracy to 

deteriorate to some extent after a point during an intense bout. We do not have 

sufficient data to know whether or not the magnitude of the potential deterioration 

in mean RT and mean accuracy can have tangible impact on the outcome of a 

bout. We can be more confident though in speculating that a judoka who can 

minimise unforced errors stands a better chance winning a fight than a judoka 

who commits more errors when fatigued. 

We have already highlighted in Chapter 6 that humans cannot fix their RT or 

accuracy to a specific level and have to make conscious efforts to sustain their 

attention over repeated tasks (Smilek et al., 2010). Under Severe Intensity the 

variability of the response-by-response mean error rate across the 20 reaction 

episodes increased sharply compared to Baseline and Moderate Intensity 

(Figure 7-3) exposing a remarkable inability to sustain attention. It has been 

shown that during exercise of high intensity and long duration attention focus is 

dominated by the awareness of the extreme physiological discomfort 

(Hutchinson & Tenenbaum, 2007). It is unknown though if the notable 

inconsistency in accuracy under Severe Intensity is limited to: 1) the inability to 

sustain attention secondary to acute fatigue (i.e. overwhelming physiological 

sensations), or 2) the lack of habituation on having to perform a demanding 

mental task whilst in severe physical discomfort from the ‘all out’ effort. 

At any major tournament it is often impossible for a judoka to avoid extreme 

physical intensity during a fight if their opponent chooses to increase the pace 

and intensity of their actions. In Judo it can only take one wrong decision to lose 

a match, so it is in the best interest of any elite judoka to maintain the necessary 

focus and prevent loss of accuracy even under conditions of extreme physical 

intensity. We have shown that in a cohort of elite judoka the likelihood of 

erroneous choices increases under conditions of extreme physical effort. There 

are a couple of practical suggestions for Judo coaches based on the data 
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presented here. Firstly, we would encourage judokas, assuming they have a high 

level of fitness, to keep the intensity of randori at high pace during tournaments 

as this way they may force their opponent to a higher error rate. Secondly, our 

haptic test can serve as an important training tool to either help identify judoka 

with low accuracy under conditions of severe intensity or assess progress in 

those who work to improve accuracy under extreme pressure. We should make 

it clear that we do not expect an elite judoka who responds accurately in a haptic 

test to also be able to make consistently correct decisions in randori too. 

However, we believe that if someone is capable of processing information rapidly 

and accurately under pressure (evidence for which can be gathered through the 

novel haptic task) then it is reasonable to expect that person to be capable of the 

same trait under Judo competition conditions as well.  

One of the suggestions to explain the diversity of results from studies looking at 

the effect of physical exertion on cognitive performance has been not having 

controlled for the participants’ physical fitness (Brisswalter et al., 2002). For 

example, it is thought that physically fit individuals can outperform less physically 

fit individuals in cognitive tasks during exercise (Tomporowski & Ellis, 1986). In 

our study, we did not carry out a fitness assessment of our volunteers. But whilst 

we are not able to provide information on each judoka’s estimated VO2max 

(aerobic capacity), or on their anaerobic capacity, we are confident in our 

assumption that all of our elite judoka are fit and athletic. The cohort of elite 

judoka had at least 10 years of regular Judo training and they all had to achieve 

satisfactory results at National Championships and international competitions to 

gain, and to maintain, a place in the National High Performance Judo programme 

where they are expected to maintain a regular attendance to highly demanding 

training sessions and physical tests both on the judo mats and in the gym. In 

other words, our judoka’s presence in Scotland’s Judo High Performance 

programme suggests that they are fit enough for the demands of elite level Judo 

and that they should be considered as athletes with a high level of physical 

fitness. 

A potential criticism of this study is that we used a rowing test, and not a Judo 

specific activity, to simulate the Severe Intensity condition under which we 

examined cognitive performance. The rowing test has been used by the Judo 
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squad for several years as the coaches and the exercise physiologists in the Judo 

High Performance Programme believe that the metabolic demands of a 

prolonged ‘all out’ rowing exercise are comparable to the metabolic demands of 

an intense judo bout. It was not in the scope of this study to prove or disprove the 

above assumption. Regardless of the true equivalence in metabolic demands 

between an ‘all out’ rowing effort and an intense judo match there are some 

important similarities that cannot be ignored: they both force blood lactate to rise 

to high levels, they both need a critical level of muscle coordination and 

movement timing to be maintained throughout, they both use all the major muscle 

groups, and they both need a high degree of mental resilience to sustain the 

severe intensity despite the inordinate discomfort experienced as a direct result 

of such extreme physical effort. It may be argued that rowing is a weight 

supported activity unlike Judo where competitors fight on their feet, but this 

statement is not necessarily true. The reader only has to look at any Judo 

competition to see that most bouts quickly develop into a fight on the ground (ne 

waza). Ultimately, all judoka were familiar with the rowing test protocol that could 

push them to their limits in a specific and predictable way, which is unlike a 

randori match where the intensity is subject to many more variables e.g. the 

difference in the two opponents’ skill levels and size, their fitness and strength 

levels, and their motivation levels to engage in a bout against a given opponent. 

A strength of this study is the ecological validity of the method used. We carried 

out the tests in an actual Judo training environment, with a cohort of elite judokas, 

around and during their regular training sessions and tests. None of the 

participants had to alter their training schedule or Judo drills during training to 

accommodate the execution of the haptic tests. By allowing judoka to follow their 

usual training methods and routines, and simply collect data when it was 

convenient with a method that was not invasive, time consuming, or arduous we 

were able to collect data on multiple occasions and achieve 100% compliance 

with our 10 elite judokas. We used a RT device with tactile prompts, which is 

consistent to the main sensory modality experienced by judokas. Also, we 

investigated choice RT, rather than simple RT, an important difference for an 

open sport like Judo where competitors are faced with constant choices on how 

to create and how to respond to scoring opportunities. In contrast, a simple RT 
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task would have been suitable if we had investigated a closed skill sport with a 

predetermined action in response to a specified stimulus e.g. a sprinter who 

powers off the starting block at the sound of the starting gun.  

It may be argued that the strength of the study was also its limitation. By not 

having the tests carried out in a laboratory and under strict conditions prior and 

during the completion of haptic choice reaction tests we have not been able to 

control for potential confounding factors such as fitness, hydration, diet, and 

fatigue. However, we remain confident that the results obtained in this study are 

more likely to reflect the true parameter values that can be expected under real 

life Judo training than results obtained in the clinical conditions of a laboratory. 

Furthermore, it is reasonable to assume that we would only have been able to 

collect a fraction of the data we have managed to collect if the judoka were 

expected to travel to the Exercise Physiology laboratory at the University of 

Stirling to complete the haptic reaction tests.  

We believe that the results from our study could be relevant to other judoka at 

High Performance Judo programmes around the World. Our elite judoka 

participate at competitions and training camps on most continents and their 

training methods and routines are influenced by, and in line with, training 

methods elite judoka use in other countries with excellent Judo programmes, 

most notably Japan, Korea, and France. We hope that more Judo performance 

programmes will collect data using our method to expand on what has been 

presented in this and the rest of the chapters. 
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7.7 Conclusion 

The results from this study have provided us with a valuable insight on the effects 

of varying intensities of exercise on the cognitive performance in a cohort of elite 

judoka as measured by a novel haptic choice reaction device.  

We have shown that the mean RT can improve by a considerable margin in a 

group of elite judoka after they have completed a typical judo specific warm up 

session. No significant difference was found between the mean RT at Baseline 

and at Severe Intensity, which can be seen as a deterioration in response time 

when compared to the same test results after warm up (Moderate Intensity). We 

have also shown that immediately after sustained ‘all out’ efforts there is a greater 

likelihood that a judoka will make erroneous decisions.  

The practical implications of our findings highlight the importance for elite judoka 

to engage in proper warm up routines. And for the coaches to consider coaching 

interventions that challenge, and tools that evaluate, cognitive performance in 

elite judoka under conditions of extreme physical intensity, as typically 

experienced during high pace and high intensity randori. Although the focus of 

this research has been on elite judokas, the findings presented are potentially 

applicable to other judoka and to other open skill sports where athletes must 

make quick and correct decisions under intense physical effort.  
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8.1 General Discussion 

Our original intention when we started this research was to investigate the effect 

acute dehydration can have on cognitive performance in elite judokas. However, 

initial research findings revealed that there had not been an ecologically valid 

assessment of reaction time (RT) in elite judoka nor was an ecologically valid 

assessment tool available. We therefore had to address that knowledge gap. 

Hence, we embarked on a journey to design a reaction test method that reflects 

the dominant sensory modality judoka are exposed to when in practice and 

competition.  

We have developed a novel reaction test method that can provide an assessment 

of a judoka’s ability to process tactile cues quickly and accurately. Our method 

takes into account factors that can influence reaction time and accuracy to a 

tactile stimulus such as: complexity of information received (i.e. choice reaction 

test), the sensory route (i.e. haptic response), the magnitude of the stimulus 

intensity (i.e. vibration frequency), participants’ motivation to complete a test, and 

participants’ ability to sustain attention during each test (both of which we have 

attempted to enhance by asking the participants to compete against each other 

for the best results in the tests). This low-cost haptic reaction test device allows 

for the process of data collection to be efficient and minimally disruptive to the 

judoka’s training. We believe that the simplicity and efficiency of the testing was 

instrumental for the compliance of our participants during the multiple testing 

sessions.  

One potential criticism against the haptic reaction task we employed for our 

method is that although the device handles were designed to allow for a Judo 

specific grip, the task itself was not a simulation of a Judo movement. Had we 

opted for Judo movements as the reaction task then we would have increased 

the variables involved and most likely the variability of the results too. In addition, 

we would not have been able to keep the response tasks consistent across 

individuals as we would have had to account for many more factors such as: 

hand laterality, skill level, degree of familiarisation, and even individual 

preferences for any given Judo specific task. As already described in Chapter 5, 

the overall response time is the sum of reaction time and movement time. The 
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inclusion of a Judo movement in the reaction task would have prolonged the 

overall response time and would have added more uncertainty about the true 

limits of our cohort’s typical RT to a haptic stimulus. For example, in a visual 

simple reaction model the mean RT (380 msec) of the judoka who participated in 

the study was quite slow for a simple reaction test (Morales et al., 2018). The 

reaction task of that study required the participants to step forward 20 cm from a 

standing stance onto a contact platform in response to a light signal. This set up 

increased considerably the contribution of movement time to the overall response 

time. In the method we have developed we have tried to assess elite judoka’s 

ability to process information quickly and make correct decisions in response to 

a tactile prompt. In our method the task requires minimal contribution of 

movement time in the overall response time. But at the same time our method 

does allow for flexibility in the response task chosen; it is conceivable that future 

studies could utilise the device in some way that incorporates Judo specific 

movements.  

Another potential criticism could be against our decision to build a bespoke haptic 

reaction device when we could have produced an online haptic reaction test 

instead. It is true that it is possible to develop an application to turn personal 

computers, laptops, smartphones and tablets into a haptic reaction testing device 

(assuming integrated haptic technology in the electronic device chosen). An 

online reaction test application may sound like an appealing proposition as a lot 

more people could access the test instantly and at no cost whenever they 

decided to do so. However, allowing the test on multiple devices, especially ones 

for which we have no knowledge of their technical latency, would have introduced 

an unacceptable level of uncertainty in our results. There is evidence that the 

visual reaction tests commonly used by online cognitive assessment tools are 

very inaccurate (Kim et al., 2020). In fact, the impact on the variability of RTs by 

the inherent latencies of hardware (computer monitor and mouse) and software 

(operating system) raises a question about the reliability of any online cognitive 

assessment tools (Holden et al., 2019). Results from a haptic reaction test 

application downloaded on mobile phones would have presented the 

investigators with an insurmountable challenge as the variation in (the mostly 

unknown) technical latency across the myriad of smartphone options would have 
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been a confounding factor. Therefore, we remain confident in our decision to 

build a bespoke device for which we have a clear understanding of its latency 

and evidence of its reliability and validity. 

Our data presented in Chapter 5 contribute to the limited evidence available in 

academic literature regarding the temporal pattern of attention. Moment-to-

moment fluctuations in attention are normal and perhaps they account for some 

proportion of unforced errors or missed scoring opportunities from elite judoka 

during competition. One question that comes out of this work is whether some 

intervention could help elite judoka improve their capacity for sustained attention 

e.g. can purposeful focused practice reduce the variability of RT in choice 

reaction task similar in duration to a Judo bout? Our haptic method has the 

potential to be a useful tool in the assessment and evaluation of any intervention 

aimed at improving attention. 

Our work has been well received by the Judo coaches in the High Performance 

programme. When the graphs in Chapter 5 were presented to the Judo coaches 

they described them as “helpful” because they enabled them: 1) to realise that 

attention cannot be sustained even in a task just under two minutes long, and 2) 

to consider applications of our method that may help them identify judoka who 

struggle to sustain their attention so that they can adjust coaching interventions 

accordingly e.g. shorter randori practice rounds.  

In Chapter 6 we highlighted the case of a judoka who did not appear to cope well 

under the pressure of competition. ‘Chocking under pressure’ is not uncommon 

in competition (Baumeister, 1984) but we did not expect that through our method 

we would be able to identify an individual in our cohort who suffered from 

performance-sapping competition anxiety. Such outcome has added to the 

evidence of ecological validity of our method and suggests that there may be 

some scope for its application beyond what we have designed it for. Indeed, the 

Sports Psychologist who works in this performance programme was open to 

exploring the possibility of our method having some place in their work with 

judoka who may present with levels of competition anxiety disruptive to their 

progress and success. Such discussions are still informal and at an early stage 

so it is yet unknown how and to what extent can our haptic test be used, and 
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what can be pragmatically achieved. However, we note the interest our findings 

have generated for other support staff. 

Our results presented in Chapter 7 contribute to the evidence in the academic 

literature showing that moderate exercise can improve RT. There can hardly be 

any argument against proper warm up (McGowan, Pyne, Thompson, & Rattray, 

2015) but we have demonstrated that a Judo specific warm up routine can 

improve cognitive performance parameters in a group of elite judoka when 

compared to baseline. This finding agrees with earlier studies where it was shown 

that exercise can facilitate faster responses (Draper et al., 2010). It was very 

rewarding to see that our data from the Moderate Intensity condition: 1) were 

used by the Judo coaches and other support staff to highlight to judoka the 

importance of a thorough warm up prior to a bout, 2) encouraged further 

investigation of best warm up protocols that was led by the Exercise Physiologist, 

and 3) encouraged the coaches to ask the judoka to develop and implement an 

appropriate warm up routine for competition that included reaction drills, as it was 

recognised that some way of challenging cognitive performance should be an 

integral part of the competition day warm up. 

Another contribution to the body of academic research from Chapter 7 is the 

evidence showing the negative impact extreme physiological efforts can have on 

response accuracy. We have shown the detrimental effect extreme physical effort 

had on our cohort’s accuracy in agreement with the results reported by Lima et 

al. (2004) from a different cohort of judokas. Experienced athletes are likely to 

demonstrate faster responses compared to less experienced athletes (Lee et al., 

1999) due to neurological adaptations from repeated practice and learning thus 

reducing cognitive burden and allowing for better attention (Bengtsson et al., 

2005; Reis et al., 2009). It could be argued that one reason for the deterioration 

of accuracy under extreme efforts is the lack of purposeful cognitive practice 

under such conditions. In fact, the coaches and all other support staff 

acknowledged that historically all maximal physiological tests were carried out 

without consideration of cognitive load i.e. judoka were not required to process 

information and make decision during an ‘all out’ effort. Following our findings, 

the coaches and the support staff have expressed their interest to include haptic 

choice RT tests alongside the already established maximal conditioning tests as 



Chapter 8 

222 
 

a way to evaluate judoka’s ability to process tactile information accurately under 

conditions of extreme physical effort. 

A lot of emphasis has been placed in this study on estimating the baseline mean 

RT and mean accuracy from a cohort of elite judokas. We do not imply that judoka 

who are shown from our method to be capable of consistently processing tactile 

information quickly and accurately can also be guaranteed success in Judo 

competition. Even though we found that the judoka who combined high accuracy 

and fast reactions (see Figure 5-6) were also some of the most successful 

competitors in the group, we make no claim of any correlation between the results 

in the haptic test and performance in Judo competition, or the quality of execution 

of Judo skills. The correct, efficient, effective, and quick execution of Judo 

movements is subject to several factors out with the scope of this study and 

beyond cognitive performance e.g. neuromuscular coordination, muscle fibre 

physiology, somatotype, training history, and many others. Moreover, during a 

Judo match, judoka have to perform highly advanced motor skills and at the same 

time focus their attention on a multitude of areas such as: 1) awareness and 

evaluation of the situation, 2) Judo technique, 3) strategy and tactics, 4) 

psychological state, and 5) peripheral attention (Bahmani et al., 2019). What is 

more, the processing of information and the quality of skill execution can be 

enhanced or hindered by performance anxiety (Raglin, 1992).  

We understand that attention is complex and dynamic and its importance in our 

method is recognised by having a condition (i.e. competition) specifically to 

motivate judoka to sustain their attention. It is not unreasonable to expect a 

judoka who does not exhibit the cognitive capacity to process information quickly 

and accurately in our haptic test to be less likely to possess the cognitive capacity 

to process the much more complex information load of a competitive Judo match. 

Following the results we presented in Chapter 5 (Figure 5-6) it may be appealing 

to think that performance in the haptic test may be correlated with Judo-

competition-specific qualities, but of course such hypothesis should be put to the 

test in future studies. 

Our Judo specific studies were carried out with 10 elite judokas. We understand 

that more data will need to be collected from more judoka so that we can confirm 
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or adjust the results reported in chapters 5-7. As more data accumulate, we will 

eventually be in position to determine more accurately the typical values for mean 

RT and mean accuracy amongst elite judoka at rest and under different 

conditions (e.g. after warm up, under extreme physical effort, and following 

intentional dehydration to ‘make weight’ for competition). Potentially, over time 

not only can we increase our confidence for the true mean RT and mean 

accuracy rate in elite judoka but also determine how such parameter values may 

vary at different standards of competition (e.g. club level vs World class) and at 

different stages of development (e.g. cadet level vs youth level vs adults), and 

more importantly, whether changes in cognitive performance parameters 

correlate with performance in Judo competition. 

We have contributed to the body of academic research with our novel haptic 

choice reaction method, which we believe has higher ecological validity as a 

reaction test for judoka compared to using a visual or acoustic choice reaction 

test instead. Our findings have influenced Judo coaches’ interventions as well as 

the work of other practitioners in the support team. As a result, through our work 

we have been able to effect coaching interventions, testing protocols, and warm 

up routines in a High Performance Judo programme. 

Although many interesting findings with practical applications have come out of 

our study there are several limitations that we should address: 

• We have used a small cohort of 10 judoka and caution should be 

exercised on the interpretation of the results and on any inferences we 

may consider making over the wider population of elite judokas. However, 

we cannot ignore that this cohort is made up of highly specialised 

individuals who are outstanding in their sport and as such are best 

equipped to help us understand how some cognitive performance 

parameters may fluctuate in this group under different conditions. 

• RT tests were not carried out within the controlled conditions of an 

exercise laboratory. All the RT data we gathered from the judoka were at 

their training venue (dojo) and around sessions that were part of their 

normal training schedule. Hence, during every test session each volunteer 

was subject to all sorts of potential distractions. However, we would argue 
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that such conditions added to the ecological validity of the testing method 

as any distractions were identical to the ones the judoka experience 

already in training. 

• The haptic signal intensity is a factor in how fast a person can react to that 

signal. Although from our pilot studies we were satisfied that the haptic 

signal in our reaction device was strong enough, the frequency produced 

from the vibration motors was less than the maximum frequency 

perceivable to humans. It is conceivable that future studies may show 

further improvement in mean RT and mean accuracy by the same or 

similar cohort if we were to replace the motors in our device with ones of 

higher frequency. Arguably though, by not having used the maximum 

frequency we have created a testing method that gives an advantage to 

judoka or other athletes in sports with strong tactile feedback who are 

likely better conditioned to detect weaker haptic signals. 

• It is possible that we were biased to the device’s performance as we were 

also the ones behind the inception of the device and its production – we 

cannot deny our invested interest to see the device work. Nonetheless, 

the statistical approach we chose with Bayesian techniques to derive a 

posterior distribution for the parameters of interest is likely to have 

mitigated the risk of observer bias. 

• We have developed a completely new test method to collect RT data. 

Since there are no previous studies where an approach like ours was 

followed, we have no way of ‘sense checking’ the data from our novel 

method against similar data.  
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8.1.1 Future Research 

Research on coaching interventions and nutritional strategies to augment elite 

judoka’s cognitive performance or to minimise its deterioration under conditions 

of extreme physical effort has been limited. Similarly, although the negative 

impact of acute dehydration methods on RT has been recognised, it remains 

unknown how well elite judoka can recover by the morning of their competition 

day following a period of acute weight management to ‘make weight’ for the 

weigh-in the day prior. Therefore, future studies should utilise the haptic choice 

reaction test we have developed to answer some important questions:  

• Judokas may use extreme dehydration methods to reduce their body mass to 

within the allowed weight range for the weight division they want to compete 

in. If judoka can achieve acute weight loss safely, can they match their own 

baseline cognitive performance standards immediately after they have 

weighed in successfully? 

• In all major tournaments judoka are expected to weigh-in the day before the 

competition, which likely encourages more extreme weight making efforts as 

more time to recover is available. If judoka have shown evidence of cognitive 

performance decrement after weigh-in, can they recover fully by the following 

day of competition or are they more prone to erroneous decisions?  

• We have shown that directly following an extreme physical effort elite judoka’s 

error rate increases remarkably. Can a period of extreme conditioning 

combined with decision making tests lead to an improvement in cognitive 

performance under highly intense physical efforts as seen in closely 

contested matches? 

• Are there nutritional interventions that could minimise the deterioration 

typically seen under conditions of extreme physical effort e.g. caffeine 

supplementation? 

• Some high performance Judo programmes use metrics to predict the fatigue 

levels of their athletes. Is there a correlation between cognitive performance 

parameters and metrics that indicate physiological fatigue? 

• Can our test be used as part of a toolkit practitioners use when they try to 

assess ‘return to play’ in athletes who are recovering from concussion? 
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8.2 General Conclusion 

We set out to determine the typical range of haptic choice reaction parameters in 

a group of elite judoka as a measure of cognitive performance and to determine 

how they can be influenced by different levels of physical effort. In trying to fulfil 

the above we have created an affordable, reliable, easy to use, and portable 

haptic reaction testing device with evidence of ecological validity. Furthermore, 

our novel test method allows for the collection or RT data from elite judoka at 

their training or competition environment without disrupting the training session 

or warm up routines.  

We have been able to contribute new knowledge by having determined the 

typical baseline RT and accuracy range in a group of elite judoka in a haptic 

reaction task. We were also able to demonstrate how different levels of exercise 

intensity can influence cognitive performance. With our results we have 

demonstrated for the first time that elite judoka’s attention fluctuates even during 

a period as short as two minutes. With our method the coaches and support staff 

have a tool they can use to identify judoka’s ability to achieve sustained focus 

over a set number of reaction episodes, or over a fixed time period, under 

different states of physical exertion.  

With a baseline of relevant parameter values determined and a method with 

ecological validity available, further research is now possible to help coaches and 

support staff reveal elite judoka’s limiting factors to sustained attention or factors 

that may have a negative impact on cognitive performance (e.g. typical weight 

making strategies).  

We have been fortunate to witness the coaches in the High Performance 

programme show a great deal of interest in our data. We have contributed to the 

body of academic research with results from a novel and ecologically valid 

method. Our findings have already been disseminated to Judo coaches who have 

not hesitated to inform their coaching decisions based on the data reported in 

this thesis. It was our ambition to see our academic work influence front line 

practice and we have already been able to effect coaching interventions, testing 

protocols, and warm up routines in a High Performance Judo programme.  
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