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Abstract 

Chapter 1: Does lead pollution increase crime? We perform the first meta-

analysis of the effect of lead on crime, pooling 542 estimates from 24 studies. 

The effect of lead is overstated in the literature due to publication bias. Our 

main estimates of the mean effect sizes are a partial correlation of 0.16, and 

an elasticity of 0.09. Our estimates suggest the abatement of lead pollution 

may be responsible for 7–28% of the fall in homicide in the US. Given the 

historically higher urban lead levels, reduced lead pollution accounted for 6–

20% of the convergence in US urban and rural crime rates. Lead increases 

crime, but does not explain the majority of the fall in crime observed in some 

countries in the 20th century. Additional explanations are needed. 

Chapter 2: How does lead pollution affect birth outcomes? Does a mother’s 

lead exposure increase the risk of child death? Does it lower the infant’s 

birthweight (a proxy for later health outcomes)? We test these hypotheses by 

examining an intervention in the Scottish water supply, which reduced water 

lead levels and blood lead levels in Scotland’s largest two cities. In our main 

estimates, we use a staggered difference-in-differences design estimated with 

two-way Mundlak pooled OLS. We do not find the lead reduction 

interventions reduced birthweights. However, we do find that they may have 

had a large effect on infant deaths. Our main estimates suggest lead reduction 

accounts for 0.3-0.1 percentage points decrease in deaths in Glasgow and a 

0.7-0.1 percentage points decrease in deaths in the Alnwickhill water plant 

supplied area of Edinburgh. However, these results are not robust to 

alternative specifications, and therefore can only be taken as weak evidence 

of an effect.  

Chapter 3: Does lead pollution harm educational achievement? And are the 

marginal effects greater at low or high levels of lead? We use exogenous 

variation in lead pollution from water treatment in Glasgow, Scotland, 
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combined with within-household sibling differences, to estimate the effect of 

lead on education. We compare pre- and post-treatment sibling differences 

between treated and control areas with difference-in-differences estimation. 

We find a clear dose-response relationship. Treated areas with low 

prevalence of lead piping show no change compared to a control group. In 

contrast, high lead pipe prevalence areas show improvement in educational 

outcomes. Our findings indicate that countries and areas with very high 

levels of lead can expect large educational gains from even small amounts of 

lead abatement, while those with already low levels of lead can expect much 

lower marginal improvements. 
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Introduction 

Pollutants often remain in use even after their harmful effects are known. It 

follows that they must either be providing benefit to some parties, or the cost 

of not using them is viewed as too great. Therefore, although pollution is a 

complex, multifaceted, and inter-disciplinary problem, economic methods 

offer value in quantifying and evaluating the extent of these costs and 

benefits. They can also assess the distributional effects of pollution. Pollution 

is not just an economic issue, but it is an economic issue. 

Lead pollution has been known to be harmful, at least to some, since 

antiquity. Classical texts show the Greeks Hippocrates and Nicander, and the 

Romans Pliny and Vitruvius warning of the dangers of lead poisoning 2000 

years ago (Waldron, 2012). In 1696 the Duke of Württemberg banned putting 

lead in wine on pain of death (Eisinger, 1982). As we shall see in chapters 1-

3, there has been a further acceleration in knowledge of the harms of lead in 

the last hundred years. Yet lead is still found in clothing, food, spices, 

batteries, ceramics, electronics, water pipes, paint, and, although now phased 

out of road vehicle gasoline, is still used for light air fuel (UNICEF, 2020). As 

many as 800 million children globally may have elevated levels of lead (GBD, 

2019).  

There are a number of economic concepts that may explain why widespread 

lead pollution continues: 

1. Imperfect information 

2. Asymmetric information 

3. Benefits outweigh costs, for some social welfare function 

4. Externalities and Distributional Conflict 

I explain the potential contribution of my thesis to each of these in turn.  
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1. Imperfect information 

Vague knowledge that lead causes harm may not be enough to make 

decisions to undertake remediation measures. Lead abatement is costly. For 

example, the US environmental protection agency estimates removing each 

water pipeline made of lead could cost $1200-$12,300 per pipeline, for a 

total cost of $28-$47 billion (EPA, 2019). Estimates for removing all lead 

paint from US housing range from $32 billion to $442 billion (Ryan, 2013). It 

is, as yet, unknown how widespread the lead contamination of spices such as 

turmeric and saffron is in south Asia, or the costs of removal (GiveWell, 

2021). There likely remains hundreds of thousands of homes in Scotland 

with lead piping (Robertson et al., 2020), but it is unknown which houses 

have them, and would be costly to find out, let alone replace.  

Given these costs, combined with competing demands on fiscal and 

household budgets, especially in low- and middle-income countries, concrete 

quantification of lead pollution’s damages may be required for action to 

occur. Uncertainty about these costs (and therefore the benefits of 

remediation) may contribute to a lack of action. My thesis increases the 

knowledge about the extent of harms caused by lead and helps quantify these 

costs. 

 

2. Asymmetric information 

 

Asymmetric information is when either a buyer or seller of a good or service 

has more information than the counterparty. For example, when leaded 

gasoline began to be produced and used the harms of lead were known not 

just to the companies making it, but to the US Surgeon General (The Nation, 

2000). The FTC in 1936 issued an order that disallowed any criticism of 

leaded gasoline by competitors (The Nation, 2000). The public, despite the 
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attempts of some scientists, was thus unaware of the full costs while being 

told of the benefits.  

 

Such information asymmetries still exist. Companies that produce lead 

tainted spices and clothing know they are doing so, yet it takes research and 

investigation to find out this is the case1. Many consumers may not know 

about the lead pollution in their goods. While water companies, both private 

and public, are well aware of the presence of lead piping, many consumers 

are not. A survey for Scottish Water found that more than 50% of Scottish 

Households were unaware that some old water service pipes may be made of 

lead, and 47% didn’t know if there was any health risk from lead (Scottish 

Water, 2018).  Research that contributes to the extent and presence of lead’s 

harms, especially if well-disseminated, can help reduce these asymmetries. 

The papers contained in this dissertation contribute towards this. 

 

 

3. Benefits outweigh costs, for some social welfare function 

 

The environmental Kuznets curve (EKC) is firstly an empirical hypothesis 

that many types of pollution follow an inverted U shape with respect to 

income growth (Grossman and Krueger, 1995). That is, pollution is low when 

economic activity is low, then it increases as industrialisation and modern 

economic growth takes hold, until finally it decreases again as structural 

transformation, new technology, and income effects leading to calls for 

remediation happen. Secondly, it has been shown theoretically, under some 

assumptions, with some social welfare functions, the EKC can be optimal 

behaviour (e.g. Dinda, 2005, and Pasten, 2012). 

 

 
1 See, for example, this CBC investigation https://www.cbc.ca/news/business/marketplace-
fast-fashion-chemicals-1.6193385  

https://www.cbc.ca/news/business/marketplace-fast-fashion-chemicals-1.6193385
https://www.cbc.ca/news/business/marketplace-fast-fashion-chemicals-1.6193385
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There is disagreement on the extent to which the EKC is empirically true for 

different pollutants, and, similarly, different theoretical models, with 

different assumptions, show it can be sub-optimal even if it exists (see the 

early criticism by Arrow et al., 1995 and also Carson, 2010 for a review of 

papers).    

 

Nevertheless, under some assumed social welfare functions, with some 

measures of costs and benefits, and updating information, deciding when to 

expend marginal resources on pollution reduction can mean delaying 

pollution abatement.  For example, given lead water piping is now a sunk cost 

with high removal costs, the best use of marginal resources at current income 

levels may be on other activities or investments (such as improving 

education or transfers to low-income families). Whether in a rich country 

with relatively low levels of lead, or a low- to middle-income country with 

higher levels of lead, lead remediation must compete with other worthy uses 

of productive capacity.   

 

Quantification of lead pollution damages allows both individuals and 

governments to optimise when to take action. Although the optimal decision 

depends both on information, individual utility functions, and the social 

welfare function. My thesis contributes to a deeper understanding of these 

trade-offs by helping citizens and policy makers to make informed cost-

benefit decisions by determining the optimal allocation of marginal resources 

for lead remediation efforts. 

 

4. Externalities and Distributional Conflict 

Finally, even if there were no information problems with lead pollution, and 

the social costs of abatement were less than the benefits, distributional 

conflict could mean lead is not abated. Pollution from lead could bring private 

benefits to producers but inflict costs on others. If those receiving the costs 
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are not politically powerful, or are unorganised, they may not be able to force 

abatement. Such issues are, unfortunately, beyond the scope of this thesis.  

However, evidence can aid both regulators and activists in raising awareness 

and gathering support for their cause2.  

 

Structure of the Thesis 

The chapters of this thesis are organised as self-contained papers and 

appendices are collected at the end of the thesis. 

Chapter 1 is the first meta-analysis of the effect of lead pollution on crime. 

The lead pollution theory of crime states that lead pollution exposure when 

young increases the propensity to commit crimes when older. The 

mechanisms being either due to the brain and nerve damage lowering self-

control, and increasing aggressiveness, or that lead pollution lowers an 

individual’s ability to invest in human capital and therefore reduces outside 

options. This theory has been held by some to account for 90% of the rise and 

fall in crime seen in the 20th century in some countries (Nevin 2000, 2007). 

While others have called it a statistical artifact (Lauritsen et al., 2016) 

responsible for none of the decrease. A variety of studies have quantitatively 

tested this hypothesis since the 1980s. For the first time, we gather all these 

studies and conduct a meta-analysis. We use cutting-edge publication bias 

techniques and find evidence for significant publication bias in favour of a 

positive link between lead and crime. We then carry out over a million 

different meta-regressions, with differing specifications, to investigate the 

effect of observable between-study heterogeneity on the lead-crime average 

effect. We find, after accounting for publication bias and between-study 

heterogeneity, that there is an effect of lead on crime on average, but this is 

 
2 Clair Cameron Patterson is widely credited with hastening the end of leaded gasoline: 
https://www.mentalfloss.com/article/94569/clair-patterson-scientist-who-determined-
age-earth-and-then-saved-it  

https://www.mentalfloss.com/article/94569/clair-patterson-scientist-who-determined-age-earth-and-then-saved-it
https://www.mentalfloss.com/article/94569/clair-patterson-scientist-who-determined-age-earth-and-then-saved-it
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much smaller than is found in most studies alone. Our main estimates imply 

an elasticity of 0.06-0.12 between lead and crime (i.e. a 10% reduction in lead 

blood levels leads, on average, to a 0.6-1.2% decrease in crime levels). This 

further implies around 7-28% of the fall in US homicide was due to lead. Lead 

pollution does increase crime, but, contrary to the Nevin (2000, 2007) view, 

it is not responsible for the majority of the 20th century crime decline seen in 

some high-income countries.  

Chapter 2 considers the impact of lead in drinking water on human health. It 

examines the case of water treatment in Scotland’s two largest cities 

(Glasgow and Edinburgh) in the 1970s-1990s that lead to large falls in water 

lead levels in households. First in the 70s and 80s the water pH was raised, 

which made lead pipes less likely to leech their lead into the water supply. 

Then in the 80s and 90s, orthophosphate was added which again made lead 

less likely to leech from pipes into the household water out of the tap. Given 

lead exposure is correlated with income, race and education, some plausibly 

exogenous variation is needed to identify the effects of lead pollution. The 

sequence of water treatment events allows us to identify the effect of water-

lead pollution on certain birth outcomes.  The two outcomes we examine are 

birthweights and under-5 mortality. The various water plants in our sample 

were treated at different times. We therefore use a staggered difference-in-

differences design to compare the separate treatment cohorts with each 

other and with the control group, which did not have treated water until 

much later. We do not find evidence for an effect of lead on birthweights. 

However, we do find evidence that lead pollution may have caused 23-186 

infant deaths in Edinburgh and 216-867 in Glasgow, over the full 25 years of 

the sample, but this finding is not robust to several alternative specifications.  

Chapter 3 examines the effect of lead pollution when born on education 

outcomes 15-16 years later in Glasgow. For this paper, due to data 

availability, we look at only the later 1989 water treatment in Glasgow, 

where the water department added orthophosphate in the water supply. This 
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orthophosphate treatment reduced water lead levels and is associated with 

reduced blood lead levels found in Glasgow. The richness of the data allows 

us to look at the difference between siblings born before and after this 

treatment, compared to the difference between siblings born before and after 

the same date in non-treated areas (i.e. the rest of Scotland). This allows us to 

control for the household fixed effects, including whether lead piping was in 

that house. We use a difference-in-difference design and find that younger 

siblings born in the treatment area, i.e. those exposed to lower levels of lead, 

performed relatively better compared to the control group of younger 

siblings born elsewhere in Scotland. Crucially, however, we find there is only 

a robust effect in areas with very high concentration of lead piping, i.e., areas 

with high levels of lead contamination before the intervention. Previous 

studies have suggested that even very low levels of lead could have a 

profound effect on education results. We do not find this to be the case in 

Glasgow. Lead pollution certainly lowered test scores, but only in areas with 

known high levels of lead piping. This suggests the worst marginal harms of 

lead may be at higher levels rather than at low levels of pollution 

concentration.   

In summary, my thesis presents evidence that broad-based reductions of lead 

exposure in the 20th century have lowered the harms of lead. The extent of 

the damages may have been over-stated in previous literature (see Chapter 

1), but are, nevertheless, real. Future research on lead exposure should 

explore potential mediating effects which lower the harms of lead (see 

discussion in chapter 2) and on mapping out the precise dose-response 

relationship for different outcomes (see discussion chapter 3). Finally, almost 

all the non-health related quantitative research on lead pollution is focused 

on rich countries – this needs remedied. For example, only one of the studies 

in the chapter 1 meta-analysis used data from Africa, while over 70% used 

data from North America. Given the vast majority of high blood lead levels 
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today are found in low- and middle-income countries, this is where new 

knowledge production should be prioritised.  
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Analysisa
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1.1. Introduction 

Homicide rates spiked and then fell in a consistent pattern across many western 

countries in the 20th century (figure 1.1). In the US alone the homicide rate has 

halved since the 1980s, when it was as high as the road fatality rate is today. In other 

countries the falls are not so great in magnitude, but still amount to many lives 

saved. If the causes of this fall were known, many more deaths and trauma could be 

prevented.  

Figure 1.1 Homicide Rate per 100,000 by Country 

      

Sources: New Zealand Police (2018); Buonanno et al. (2011), UK Home Office (2019); Uniform Crime Reports 

for the United States (2019); Falck, Von Hofer & Storgaard (2003); Statistics Canada (2019); Birkel and Dern 

(2012). 
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Is lead pollution responsible? Lead is a toxic metal linked to harmful health and 

behavioural outcomes (see section 1.2). Studies have pointed to falling lead levels in 

the environment as a cause of the falls in homicide, and as a factor in reducing crime 

rates in general. Some have claimed that lead emissions account for as much as 90% 

of the fall in violent crime (Nevin, 2000, 2007). The reduction in lead pollution over 

time is largely due to falling emissions from leaded gasoline (figure 1.2), but also due 

to less lead pollution from water pipes, paint, food, and soil.  

Figure 1.2 Lead Emissions by Country (1000 kg Y^(-1) ) 

 

Source: Dore et al. (2006), Schwikowski et al. (2004), Kristensen (2015), Statistical Abstract of the United 

States (2009).  

Crucially, this reduction in exposure to lead pollution over time has been spatially 

uneven. Pollution tends to be more concentrated within urban areas (Carrozzi and 
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Roth, 2020; Borck and Schrauth, 2021) and lead is no exception. The lead burden is 

likely to be higher in urban areas for several reasons (Levin et al., 2021, O’Flaherty 

and Sethi, 2015). Urban road traffic is higher, and urban residents often live closer 

to congested roads, a risk factor before the phase out of leaded gasoline in most 

countries. Urban dwellers tend to live in closer proximity to lead working sites. 

Urban areas also have less turnover in soil, which therefore accumulates a larger 

concentration of lead.  

Figure 1.3 shows that blood lead levels were generally higher in urban areas than 

rural areas. Similarly, the left-hand chart in figure 1.4 shows that blood lead levels 

were elevated for children under 5 years of age in the US, at least in the period before 

the phase out of leaded gasoline. In the 1970s and 80s, blood lead levels in 

Metropolitan Statistical Areas (MSAs) with populations greater than 1 million were 

15% higher than levels in other parts of the country.  The chart also illustrates the 

swift convergence in blood lead levels across rural and urban areas in the 1990s. We 

see a similar pattern in the US crime trends in the right-hand chart of figure 1.4. The 

urban crime rate, as measured by the National Crime and Victimisation Survey 

(NCVS) was 70% higher than the rural rate in the early 1990s. There then followed 

a convergence in crime rates in the 21st century, although the urban rate remains 

somewhat higher. 

These trends indicate lead could explain a large part of the observed variation in 

crime, both over time and between urban and rural areas.  However, the rise and fall 

pattern in figure 1.1 is by no means uniform. Furthermore, Buonanno et al. (2011) 

show that while total crime has behaved similarly to homicide in the US, it has not 

in Europe (figure 1.5). Similarly, outside the US, population density is associated 

with lower rather than higher crime rates. Ahlfeldt and Pietrostefani (2019), 

synthetising the literature on the economic effects of density, estimate that a log-

point increase in density is associated with a decline in crime of 0.085 log-points. In 

the US they find the opposite, density is associated with higher crime.  
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Figure 1.3 Urban and Rural Blood Lead Levels (µg/dl) 

 

Source: Mahaffey et al. (1982), Lim et al. (1985), Strömberg Shütz and Skerfving (1995), and Aelion and Davis 

(2019). 

 

Figure 1.4 Urban/Rural Blood Lead Levels and Violent Crime in the US 

 

Source: Egan et al. (2021) and Bureau of Justice Statistics (2022) 
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Figure 1.5 Total Recorded Crime Rate per 100,000 in USA and Seven European 
Countries 

  

Source: Buonanno et al. (2011). The countries are: Austria, France, Germany, Italy, The Netherlands, Spain, and 

the UK.  

 

Alternative hypotheses for the observed fall in crime in some countries range from 

falling poverty levels (Rosenfeld and Fornango, 2007, and Messner, Raffalovich, and 

Mcmillan, 2001), to demographic transition, where an ageing population is less 

likely to be victimised by or engage in crime (Fox, 2005, chap. 9; Baumer, Rosenfeld, 

and Wolff, 2012), increased/better policing or incarceration (Levitt, 1996, 1997, 

2004; Marvell and Moody, 1996; and Corman and Mocan, 2000), to more 

controversial hypothesis such as legalized abortion reducing the number of children 

born into “adverse home environments” (Donohue and Levitt, 2001, 2019; 

Buonanno et al., 2011). Tcherni-Buzzeo (2019) provides a recent summary of 

potential causes. 

Against this background, our paper conducts the first meta-analysis of the effect of 

lead on crime. We systematically review the literature and construct a dataset 

containing 542 estimates from a total of 24 studies. We convert these estimates to 

comparable effect sizes. For this full sample we use partial correlation coefficients. 

We also convert estimates to elasticities, where it is possible to do so, and analyse 

this subsample of 312 estimates from 11 papers. Throughout the paper we account 

for the importance of the research design in identifying credible treatment effects 

by running separate analyses on the subsample of papers that address sorting or 

endogeneity bias of lead and crime explicitly. They do this by examining natural 

experiments where there is plausibly exogenous variation in lead exposure. These 
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studies estimate effects using research designs such as difference-in-difference or 

instrumental variables. For simplicity, we label this subsample as the “addressing 

endogeneity” sample. This subsample consists of 7 studies and 220 estimates when 

using partial correlation coefficients. The sample declines to 5 studies and 211 

estimates when we compute elasticities instead. 

We perform tests for publication bias and find that the effect of lead on crime is 

overstated in the literature due to this bias. Furthermore, we find substantial 

between-study heterogeneity in our sample. We therefore use meta-regression to 

estimate an average effect size accounting for both publication bias and the 

observable between-study heterogeneity. We take into account model uncertainty 

by estimating over 1 million meta-regression specifications, using every 

combination of our covariates on both the full sample, the elasticity subsample, and 

several subsamples which exhibit less between-study heterogeneity. We plot the 

distributions of the estimated average effect size of lead on crime and calculate its 

mean. 

Our main finding is that the estimated mean effect size, evaluated at sample 

averages, is a partial correlation of 0.16 in the full sample, and an elasticity of 0.09 

in the subsample. We also find there are differences between the average effect size 

when we use the full sample, and when we use only study designs that address 

endogeneity with quasi-experimental methods. The mean partial correlation 

coefficient for the “addressing endogeneity” sample is only 0.01, far smaller than the 

full sample estimate. However, when we use the smaller sample of studies which 

address endogeneity and have elasticity estimates the mean elasticity range is 0.05-

0.17.  

We also distinguish between studies in which estimates are based on regional or 

area-level (e.g., US states) from individual-level data. The sample of studies that use 

crime in an area as the focus of analysis have a larger mean effect size compared to 

those of studies which focus on individual behaviour. Conversely, we do not find 

evidence of differences for the effect of lead on different types of crime when we use 

homicide, violent, and non-violent crime samples.  
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Finally, we examine the share of the fall in crime in the late 20th century that lead 

pollution accounts for. Using the example of homicide in the US, our range of 

elasticity estimates suggests the fall in blood lead levels is responsible for 4-15-

percentage points of the 54% fall in homicide from its peak, with our main estimate 

being 8. This would mean lead explains around 7-28%15% of the fall in crime, 

leaving 93-72% unaccounted for. When we estimate the share of US urban/rural 

volent crime convergence explained by falling lead levels, we obtain a figure of 6-

20%, with our main estimate being 11% Our findings suggest that, while the effect 

of lead pollution on crime is positive, it is not responsible for the majority of the fall 

in crime observed in some countries in the 20th century, or the majority of the 

urban/rural crime convergence. Therefore, other explanations require further 

investigation.  

 

1.2 Lead and Crime 

Lead has long been part of the human environment. It was used in cosmetics, paint, 

and as coinage in ancient China (Schafer, 1956). Similar uses were recorded in 

ancient Egypt, India, and across the Bronze Age world (Needleman, 1992). The 

sweet taste of lead acetate meant that the Roman Empire, and later medieval 

Europe, used lead to sweeten wine, cider, and food (Lessler, 1988). The Romans had 

many other uses for lead, using it for cooking utensils, pottery, and water pipes 

(Hernberg, 2000). Indeed, Roman use of lead was prodigious, with estimates from 

Greenland artic ice cores putting the increase in atmospheric lead pollution at 

around 4000 metric tons a year at its peak 2000 years ago (Hong et al. 1994). This 

is equivalent to the UK’s lead pollution emissions in the mid-1980s, when leaded 

gasoline had not yet been phased out.  

Lead is a useful but toxic metal. At high levels of exposure even adults will 

experience lead poisoning. Acute lead poisoning is rare but can kill quickly. Chronic 

poisoning can still kill and is associated with abdominal pain, organ failure, tumours, 

and exhaustion, amongst other symptoms (WHO, 2010a). Although chronic lead 

poisoning in adults still happens, and appears to affect behaviour, it is primarily the 

long-term lead exposure of children that is thought to influence crime rates. 
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Children are especially vulnerable to lead pollution. Children not only absorb more 

lead per unit body weight than adults, but, as the brain and nervous system are still 

developing, lead has more harmful long-term effects even at low levels (WHO, 

2010b). Lead is chemically similar to calcium. Calcium is important for cell growth, 

and synaptic functioning, as well as a myriad of other body processes (Sanders et al., 

2010). Therefore, lead is particularly harmful to the developing brain and nervous 

system, and thus in the womb and early infancy are the worst time to be exposed to 

lead (WHO, 2010b).  

The extent to which children have been exposed to lead pollution has varied 

substantially, both over time and spatially. As detailed in the introduction, for many 

OECD countries lead air pollution rose sharply in the mid-20th century before 

peaking in the 70s and 80s (figure 1.2).  Children in urban areas tended to have 

higher blood lead levels during this period (figures 1.3 and 1.4). The highest average 

blood lead levels for children today are in low and middle income countries, with 

one estimate putting the share of children with elevated blood levels (above 

5µg/dL) at one third (GBD, 2019). 

Yet even today, in countries that have reduced blood lead levels, there remain 

pockets with higher pollution. Cities with low pH water supplies tend to have higher 

lead levels if they also have lead pipes, because the water reacts more strongly upon 

the lead piping. Feigenbaum and Muller (2016), using distance to a lead refinery as 

an instrument, find these cities to have higher homicide rates in the early 20th 

century.  Aizer and Currie (2019) find that blood lead levels are higher for those 

living near a road, but this only applies in the period before the phasing out of leaded 

gasoline. Tanaka et al., (2022) show that pollution around lead-acid battery 

recycling plants in the US sharply reduced after an air-quality law was introduced in 

2009, but this led to offshoring of lead battery recycling to Mexico. Infants living 

near the Mexican plants began to experience worse health outcomes as a result.  

Highly concentrated lead pollution, and higher blood lead levels, have also been 

found near airports (Zahran et al., 2017), lead smelters (Stromberg et al., 1995) and 

NASCAR racetracks (Hollingsworth and Rudik, 2021). This inequality in lead 

exposure means that any effect of lead on crime will also be spatially uneven. 
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The causal chain of lead to crime starts with the biological changes it induces at this 

young age. The mechanism for these changes is laid out in Sanders et al. (2010), and 

there is an array of evidence for lead’s negative effects. These include impaired 

nerve conduction (Sindhu and Sutherling, 2015), damaged myelination in the nerve 

system (Brubaker et al., 2009), impeded brain development (Lanphear, 2015), and 

reduced brain matter (Cecil et al., 2008).  

The next link in the chain is from biological change to behavioural change in later 

life. Meta-analyses have found that lead exposure is associated with aggressiveness 

and other conduct problems (Marcus, Fulton, & Clarke, 2010), lower IQ (Schwartz, 

1994), and impaired cognitive functioning (Vlasak et al., 2019, and Seeber et al, 

2002).  

The final link is from behavioural changes to an increased propensity to commit 

crime. There are several possible mechanisms. Needleman pioneered research on 

lead exposure and aggressiveness (1996), suggesting it is linked to violent crime in 

particular. In contrast, Denno (1990) and Fergusson, Boden and Horwood (2008) 

argue that the link is through lower education outcomes, leading to worse life 

outcomes, which causes increased criminality. This mechanism is consistent with 

Becker’s (1968) economic theory of crime, where lower opportunity cost makes 

crime relatively more attractive, and suggests lead would show a stronger link to 

property crime than violent crime. A third mechanism was proposed by Gottfredson 

and Hirschi (1990), where lack of self-control, combined with opportunity, causes 

higher crime rates. Lead has been associated with increases in impulsivity (Winter 

and Sampson, 2017), and so may cause an increase in crime through this process. If 

this mechanism were true we might expect increases in violent crime, non-violent 

crime, or both. Separating the different types of crime may help identify which, if 

any, mechanism lead acts through. However, whilst a range of mechanisms have 

been laid out linking lead in the environment to the propensity to commit crime, the 

strength of this link is a matter of empirical enquiry. The main objective of this paper 

is to quantify the strength of this link from the range of empirical work reported to 

date. To do this, we use meta-analysis. 

 



 
 

32 
 

 

1.3 Data 

Meta-analysis data collection begins by specifying the criteria which studies must 

fulfil to be accepted into the analysis.  

 

The criteria we chose were: 

1. The explanatory variable must be some quantitative measure of lead 

exposure. 

2. Outcome variable must measure crime in some way (i.e. not other types of 

behaviour such as aggressiveness or depression). 

3. Must have original estimates, i.e. no review papers. 

4. Must have estimates that can be combined into a meta-analysis. 

5. Be published before December 2019. 

6. Study must be available in English. 

We then undertook a systematic literature review for papers on Web of Science, 

PubMed, and Google Scholar in 2019. We also searched on NBER and REPEC for 

working papers to include as much “grey” literature as possible. The keyword 

combinations used were: 

“lead”, or “lead” AND “pollution”, or “lead” AND “poisoning”, or “lead” AND 

“exposure”, or “lead” AND “blood”, or “lead” AND “air”, or “lead” AND “paint”, or 

“lead” AND “water” 

Combined with: 

“crime” or “conviction” or “arrest” or “jail” or “prison” 

After searching, papers were screened to see if they fulfilled the criteria, as laid out 

in the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-

Analyses) flow diagram (figure 1.6). A review and description of the studies included 

is given in appendix A. 
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Figure 1.6 PRISMA Flow Diagram of Studies Selection Process 

 

 

The vast majority of the studies identified in the literature review did not fulfil 

criteria one or two and therefore did not estimate the lead-crime relationship. These 

were then filtered out at the screening stage. 31 papers did estimate the lead-crime 

relationship, but 7 of these could not be converted into comparable effect sizes, 

failing criterion four. Criterion four is needed because estimates must be combined 

in a meta-analysis. Estimates are made comparable by converting into a common 

metric, such as the partial correlation coefficient (PCC), or an elasticity. Most 

regression coefficients and simple correlations can be converted into PCCs easily. 

Odds ratios and standardised mean differences can also be converted into PCCs. 

However, five papers used risk ratios (Boutwell et al., 2016; Boutwell et al., 2016; 

Haynes et al., 2011; Stretesky and Lynch, 2001; and Write et al., 2008). Risk ratios 

can be converted into odds ratios, which can then be converted to PCCs, but need a 

base rate risk to do so. It was not possible to infer a base rate risk from the data 
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available in the papers. Therefore, these papers were excluded at the eligibility 

stage. One other paper (Masters and Coplan, 1999) contained charts but not enough 

information to make PCCs and was excluded. Similarly, Denno (1990) did not have 

enough information to use the estimates. No papers were excluded based on criteria 

six, but search terms were only in English. This left 24 papers in the final meta-

analysis dataset. 

We organised accepted papers into a dataset following the guidelines for meta-

analysis in economics in Havránek et al. (2020). Every paper gave multiple estimates 

for the effect of lead on crime. Meta-analyses tend to either select one estimate from 

each study as a “representative” estimate; or take all estimates and account for the 

potential clustering of estimates from the same study. Both are defensible. Taking 

all estimates means more information available for the meta-analysis. 

Representative estimates, on the other hand, may be less biased. For example, a 

researcher may show a simple OLS estimate before giving reasons for why it will be 

biased. They then go on to use their preferred method of estimation, which 

attenuates this bias. In most of our analysis we use all estimates from the studies, 

but as a robustness check we also test our results by using one representative 

estimate from each study in appendix E. The results are similar.  

In the full sample, there are 542 estimates from the 24 studies. The dataset forms an 

unbalanced panel, with each estimate being an observation and observations 

grouped by study. The studies included span across a variety of disciplines including 

economics, sociology, medicine, epidemiology, and criminology.  

Study effect sizes were then converted to the common effect size. Conversion is 

necessary because both lead and crime are measured in different ways in each 

paper, and therefore must be converted to be comparable. All studies in the full 

sample could be converted to PCCs. See appendix B for more details of how PCCs 

and the PCC standard errors are calculated.  

PCCs measure the correlation between two variables holding other variables in the 

model constant. Their sizes are not intuitive. They have no unit and cannot be 

interpreted quantitively in a meta-analysis with varied measurements of outcome 

(Doucouliagos, 2011). However, as they are bounded from -1 to 1, they do offer a 
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sense of the magnitude and direction of an effect. In a survey of economic effect sizes 

Doucouliagos (2011) offers the following rough guidelines: 0.07-0.17 is a small 

effect size, 0.18-0.33 is a moderate one, and above 0.33 a large one. For most of the 

paper, we follow this taxonomy, but a small effect combined with a large absolute 

change in a variable can still mean it is significant for welfare.  

We were also able to convert some study estimates into elasticities. The elasticities 

measure the percent change in some measure of crime, given a percent change in 

some measure of lead pollution. They provide a better measure of the real effect 

rather than the measure of statistical strength the PCCs provide. The trade-off is that 

the sample is smaller and therefore may be less representative of the literature. 

There are 11 studies and 312 estimations in what we label for simplicity the 

“elasticity subsample”.  

Table 1.1 presents the mean, median and weighted average PCC for each study (with 

weights being equal to the precision, 1/standard error of the PCC). It also includes 

some information on the characteristics of each study. We do the same for the 

elasticity sample in table 1.2.  
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Table 1.1 Partial Correlation Coefficients from the Studies Used in Full Sample 
Meta-analysis 

Study & Year Median Mean 

Weighted 

Average Type of Crime 

Individual or 

Area-level 

Addresses 

Endogeneity 

Aizer & Currie (2019) 0.027 0.019 0.019 Violent and non-violent  Individual Yes 

Barrett (2017) 0.556 0.556 0.589 Violent  Area No 

Beckley et al. (2018) 0.065 0.061 0.063 Violent and non-violent  Individual No 

Billings & Schnepel (2018) 0.122 0.113 0.103 Violent and non-violent  Individual Yes 

Curci & Masera (2018) 0.027 0.043 0.029 Violent  Area Yes 

Dills, Miron & Summers (2008) 0.022 0.021 0.021 Violent and non-violent Area No 

Feigenbaum & Muller (2016) 0.054 0.056 0.053 Only Homicide Area Yes 

Fergusson et al. (2008) 0.080 0.079 0.080 Violent and non-violent  Individual No 

Grönqvist, Nilsson and Robling (2019) 0.002 0.003 0.003 Violent and non-violent  Individual Yes 

Lauritsen et al. (2016) 0.740 0.495 0.742 Violent and non-violent  Area No 

Lersch & Hart (2014) 0.043 0.043 0.043 Violent and non-violent  Area No 

Manduca & Sampson (2019) 0.087 0.087 0.087 Violent and non-violent  Individual No 

Masters et al. (1998) 0.051 0.061 0.061 Violent and non-violent  Area No 

McCall & Land (2004) -0.017 -0.017 -0.017 Only Homicide Individual No 

Mielke & Zahran (2012) 0.526 0.497 0.515 Violent  Area No 

Needleman et al. (2002) 0.336 0.307 0.324 Non-violent  Individual No 

Nevin (2000) 0.914 0.912 0.937 Violent  Area No 

Nevin (2007) 0.808 0.710 0.874 Violent and non-violent  Area No 

Nkomo et al. (2017) 0.004 0.052 0.088 Violent  Individual No 

Reyes (2007) 0.059 0.053 0.053 Violent and non-violent  Area Yes 

Reyes (2015) 0.026 0.036 0.029 Violent and non-violent  Individual Yes 

Sampson and Winter (2018) -0.065 -0.046 -0.046 Violent and non-violent  Individual No 

Stretesky & Lynch (2004) 0.396 0.352 0.331 Violent and non-violent  Area No 

Taylor et al. (2018) 0.371 0.377 0.429 Violent  Area No 

       

 

Notes. Table shows median and mean partial correlation coefficient (PCC) estimates from each study of the effect 

of lead on crime. These averages are computed from 542 estimates from 24 studies used for the full sample 

meta-analysis. It also shows an average where estimates are combined in a weighted average with the weights 

equal to one divided by the standard error. Table also shows what type of crime was used as dependent variable 

in each study, whether the study unit of interest was an individual or a geographic area, and whether any 

estimates in the study used a design that attempted to account for endogeneity. All coding is done at an estimate 

level, so a study may include both “addresses endogeneity” and “correlational” estimates, violent and non-

violent estimates etc. 
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Table 1.2 Estimated Elasticities in Studies Used in Elasticity Subsample Meta-

analysis 

Study & Year Median Mean Weighted 

Average 

Type of Crime Individual or 

Area-level 

Addresses 

Endogeneity 

 

Barrett (2017) 0.68 0.68 0.61 Violent  Area No  

Curci & Masera (2018) 0.20 0.22 0.12 Violent  Area Yes  

Feigenbaum & Muller (2016) 0.72 0.73 0.32 Only Homicide Area Yes  

Fergusson et al. (2008) 2.45 2.14 0.94 Violent and non-violent  Individual No  

Grönqvist, Nilsson and Robling (2019) 0.04 0.06 0.07 Violent and non-violent  Individual Yes  

Mielke & Zahran (2012) 0.53 0.53 0.48 Violent  Area No  

Reyes (2007) 0.74 0.61 0.29 Violent and non-violent  Area Yes  

Reyes (2015) 0.50 0.64 0.40 Violent and non-violent  Individual Yes  

Sampson and Winter (2018) -0.22 -0.29 -0.12 Violent and non-violent  Individual No  

Stretesky & Lynch (2004) 0.15 0.15 0.15 Violent and non-violent  Area No  

Taylor et al. (2018) 0.24 0.25 0.26 Violent  Area No  

        

        

 

Notes. Table shows median and mean elasticity estimates from each study of the effect of lead on crime. These 

averages are computed from 312 estimates from 11 studies used for the “elasticity” subsample. It also shows an 

average where estimates are combined in a weighted average with the weights equal to one divided by the 

standard error. Table also shows what type of crime was used as dependent variable in each study, whether the 

study unit of interest was an individual or a geographic area, and whether any estimates in the study used a 

design that attempted to account for endogeneity. All coding is done at an estimate level, so a study may include 

both “addresses endogeneity” and “correlational” estimates, violent and non-violent estimates etc.  

 

1.4 Methods and Results 

1.4.1 General Approach4 

Let 𝜃𝑗  be an effect size of interest in study j. Study j uses some method to estimate 

𝜃𝑗  and these we denote as 𝜃𝑖𝑗 , for estimate i of study j. Researchers are often 

interested in both how close 𝜃𝑖𝑗  is to 𝜃𝑗  (internal validity), and in how useful 𝜃𝑗  

would be in predicting results from a similar event or study. This can be 

interpreted as the degree of external validity of a study.  

 
4This section owes much to the excellent expositions in Meager (2019), Rubin (1981), and Röver (2018). Much 
of their explanation deals with Bayesian methods but works equally well for non-Bayesian methods up to the 
point we arrive at.  
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If 𝜃𝑗  is a draw from some distribution with a likelihood function 𝜓(⋅ |Θ) such 

that 𝜃𝑗 ~ 𝜓(⋅ |Θ) ∀ 𝑗 , then there exists some parameter(s) Θ which can give 

information about a new draw 𝜃𝑗 +1 from that distribution. It is the parameters 

contained in Θ that are estimated in a meta-analysis. There may be several 

parameters of interest, but in practice meta-analyses usually estimate two: 𝜃 , the 

mean of the distribution, and the variance 𝜏2. This is because meta-analyses tend 

to impose the assumption 𝜃𝑗 ~ 𝑁(𝜃, 𝜏2) ∀ 𝑗 in the interests of efficient estimation. 

Even if this is not the true shape of the distribution McCulloch and Neuhaus (2011) 

show, both in theory and simulation, that maximum likelihood estimates are 

robust to different distributions of 𝜃𝑗  around 𝜃. If we also assume, as the individual 

studies themselves usually do, that 𝜃𝑖𝑗  follows a normal distribution with mean 𝜃𝑗  

and variance 𝜎𝑖𝑗
2  , then this leads to the normal-normal hierarchical model of Rubin 

(1981): 

 

(1)     𝜃𝑗  ~ 𝑁(𝜃, 𝜏2) ∀ 𝑗 

(2)     𝜃𝑖𝑗~ 𝑁(𝜃𝑗 , 𝜎𝑖𝑗
2  ) ∀ 𝑖 and ∀ 𝑗 

(3)    𝜃𝑖𝑗  | 𝜃, 𝜎𝑖𝑗
2 , 𝜏2 ~ 𝑁(𝜃, 𝜎𝑖𝑗

2   +  𝜏2) ∀ 𝑖 and ∀ 𝑗 

 

where the last expression follows from the previous two but is expressed in 

marginal form, as in Röver (2018). This marginal form can be further extended to 

be conditional on observable variables, common across the 𝜃𝑖𝑗 ’s, as we do in our 

meta-regression analysis.  

The variance of the effect size distribution 𝜏2is a crucial measure of how useful 

aggregation of estimates will be. If 𝜏2 is zero, then all studies are estimating the 

exact same effect and it is only the study variances that affect how well they can 

predict 𝜃𝑗 +1. This we call the common effect model following the Rice, Higgins, and 

Lumley (2018) terminology. As 𝜏2 grows larger, aggregation becomes less useful. 

𝜏2 → ∞ represents an “apples and oranges” comparison where meta-analysis 

should never be undertaken.  
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1.4.2 Between-Study Heterogeneity 

We begin investigating between-study heterogeneity in effect sizes by plotting 

each study’s weighted average PCC along with their 95% confidence intervals in 

figure 1.7 and doing the same with the elasticities in figure 1.8.  

 

Figure 1.7 Forest Plot, Partial Correlations 

 

Notes. Chart shows weighted average partial correlation coefficients (PCCs) of each study’s effect size along with 

corresponding 95% confidence intervals. The weighted averages are calculated by first normalizing the PCCs so 

that confidence intervals can be constructed, then the fixed effects average is calculated, finally the estimates 

are converted back to PCCs (see appendix B for details). Bottom of table shows common effects and random 

effects estimates for all studies combined (see appendix C for details). Numbers on right are the point estimates 

and the 95% confidence intervals.  

 

We show the common and random effects estimates at the bottom of each figure. 

Both estimates are weighted averages, where more precise estimates get more 

weight. However, the random effects estimate will give more equal weight to each 



 
 

40 
 

study the larger the estimate of between-study heterogeneity. See appendix C for 

more details on the calculations. The PCC common effects point estimate is 0.01 

and the random effects 0.17, while the elasticity common effects estimate is 0.13, 

and the random effects is 0.19. The difference between the common and random 

effects estimates indicates that between-study heterogeneity is important, as the 

lower the estimated heterogeneity between studies, the closer the random effects 

estimate will be to the common effects. 

Figure 1.8 Forest Plot, Elasticities 

 

Notes. Chart shows weighted average of each study’s effect sizes converted to elasticities along with 

corresponding 95% confidence intervals. Bottom of table shows common effects and random effects estimates 

for all studies combined (see appendix C for details). Numbers on right are the point estimates and the 95% 

confidence intervals. 

 

It is unlikely that the only source of this heterogeneity is the random, unobservable 

variances 𝜎𝑖𝑗
2  and 𝜏2. Distribution (3) can be extended to be conditional on a 1 × 𝐾 

vector of variables 𝒙𝑖𝑗. In this case the study specific estimates 𝜃𝑗  are a function of 

this variation in 𝒙 and we have the conditional distribution: 

(4)    𝜃𝑖𝑗  | 𝜎𝑖𝑗
2 , 𝜏2, 𝒙𝒊𝒋 , 𝜷 ~ 𝑁(𝒙𝒊𝑗

′ 𝜷,  𝜎𝑖𝑗
2   +  𝜏2) ∀ 𝑖 and ∀ 𝑗 

If these variables are observable, we can include them in our estimation. To 

investigate sources of observable between-study heterogeneity, table 1.3 splits the 

data into further sub-samples, based on common characteristics. These 
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characteristics are also used as covariates in the meta-regression analysis and 

described fully in section 1.4.4. We then compare three measures of between-study 

heterogeneity for each sample, �̂�2, 𝐼2 , and �̂�2. For each of these measures, the 

higher they are, the higher the estimated between-study heterogeneity. 

 �̂�2 is an estimate of the variance of the effect size distribution in (3) using the 

DerSimonian-Laird (1986) method. It is measured in the same units as the effect 

sizes, which is either PCCs or elasticities in our analysis. The larger is �̂�2 then the 

greater the dispersion of the “true” effect sizes each study is attempting to 

estimate.  

𝐼2 is an estimate of the proportion of observed variance between effect sizes that is 

due to effect size heterogeneity, as opposed to sampling variation. It is a figure 

between 0% and 100%. If 100%, it means all the observed variation is due to 

between-study effect size heterogeneity. If 0% it means the effect being estimated 

is homogeneous between studies, and all observed variation is due to sampling 

error.  

�̂�2 is more complicated to interpret. It is the residual standard deviation from 

regressing the t-statistic of each effect size on its precision.  �̂�2 of 1 means that all 

studies are estimating the exact same effect. The larger �̂�2 is, the greater the 

between-study effect size variation.  

�̂�2 and 𝐼2 are sensitive to the number of estimates and the variation in the 

standard error of those estimates. 𝐼2 tends to 100 as the number of estimates 

included increases. �̂�2  is less sensitive to the number of studies used in the 

analysis compared to 𝐼2 and �̂�2, but it does not give a sense of how important 

between-study heterogeneity is compared to within-study sampling variation. 
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Table 1.3 Random Effects and Heterogeneity Estimates by Subsample 

Sample RE Estimate SE �̂�𝟐 �̂�𝟐 �̂�𝟐 Studies  Estimates (N) 

Full Sample 0.166 0.002 0.002 99 108 24 542 

Addressing Endogeneity 0.014 0.001 0.000 90 10 7 220 

Correlational 0.505 0.014 0.059 99 159 20 322 

Individual-level 0.008 0.001 0.000 95 20 11 125 

Area-level 0.388 0.010 0.033 99 123 13 417 

Homicide 0.172 0.012 0.010 94 18 8 103 

Violent Crime 0.261 0.008 0.016 99 72 18 339 

Non-Violent Crime 0.492 0.040 0.120 99 145 15 82 

Total Crime 0.077 0.003 0.001 99 152 11 119 

North America 0.217 0.006 0.011 98 58 19 386 

Europe 0.069 0.003 0.001 100 201 2 85 

Direct Lead Measure = TRUE 0.092 0.026 0.031 95 19 9 54 

Direct Lead Measure = FALSE 0.171 0.002 0.002 99 118 15 488 

Representative Estimate = TRUE 0.186 0.020 0.006 98 54 24 24 

Representative Estimate = FALSE 0.167 0.002 0.002 99 111 24 518 

Control Gender = TRUE 0.007 0.001 0.000 95 20 8 103 

Control Gender = FALSE 0.355 0.007 0.017 99 123 18 439 

Control Race = TRUE 0.084 0.008 0.005 97 29 13 114 

Control Race = FALSE 0.190 0.003 0.002 99 128 14 428 

Control Income = TRUE 0.028 0.002 0.000 97 31 13 174 

Control Income = FALSE 0.399 0.008 0.016 99 139 16 368 

Control Education = TRUE 0.006 0.001 0.000 95 19 11 106 

Control Education = FALSE 0.345 0.007 0.015 99 124 17 436 

Elasticity Sample* 0.189 0.008 0.010 91 12 11 312 

Elasticity Sample (Addressing 

Endogeneity)* 

0.198 0.012 0.016 88 8 5 211 

        

Notes. RE Estimate is a random effects, meta-analysis estimate computed using DerSimonian-Laird (1986) 
method. All in PCCs except for the elasticity sample. SE is the standard error of the RE estimate. τ2, 𝐼2, and �̂�2 
are estimates of between-study heterogeneity. See section 1.4.2 for more details. *values are in elasticities, not 
PCCs.  

 

Looking at table 1.3 we can see which variables seem important for heterogeneity 

and the different estimated average effect sizes. The subsample of studies which 

control for endogeneity has a lower estimated heterogeneity and a smaller effect 

size compared to the correlational sample. Endogeneity can arise from unobserved 

variables correlated with both crime and lead. These could bias upwards the 

estimate of the effect of lead on crime. We cannot rule out that these variables may 

cause individuals both to commit more crime and be more exposed to lead, rather 

than lead being the cause. Therefore, the difference between the “addressing 
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endogeneity” sample and the full sample could be related to these factors. The 

elasticity subsample also shows lower heterogeneity than the full sample. 

 

Studies that look at individual-level data on the propensity to commit crime have 

lower estimated heterogeneity and estimated effect size compared to studies that 

look at crime committed within a geographic area. Studies which use homicide as 

the dependent variable appear to have less heterogeneity and find a smaller effect 

size. This reduction in heterogeneity may be due to lower measurement error in 

homicide data compared to other types of crime, combined with more similar 

classification of this crime across countries, and therefore less noise in the data. 

Finally, when race, gender, education, and income covariates are included in an 

estimation, these tend to lower the effect size. These subsamples also show less 

between-study heterogeneity than those which do not include these covariates. 

The estimated differences in effect size and heterogeneity between subsamples 

indicates observable variation is important and must be considered when we 

estimate an average effect. We incorporate the observable variation indicated in 

table 1.3 into our meta-regression analysis in section 1.4.4.  

A further, and common source of heterogeneity in effect sizes in meta regression 

analysis comes from publication bias. We investigate this in the next section. 

 

1.4.3 Publication bias 

Publication bias is a well-known problem across disciplines (see for example: 

DeLong and Lang, 1992; Ioannidis, 2005; Ioannidis, Stanley and Doucouliagos, 

2014; and Ferraro and Shukla, 2020). Papers which contain statistically significant 

effect sizes are more likely to be published than those which show no effects, or 

those which contain counter-intuitive results (also known as the bottom-drawer 

problem). It is standard practice to test for the presence of publication bias in 

meta-analysis.  
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Figure 1.9 Funnel Charts

 

Notes. PCC = Partial Correlation Coefficient. Precision is one divided by the standard error.  “Significant” means 

statistically significant at the 95% confidence level using two-sided critical values of a normal distribution. 

 

The first and most common step is to simply chart the data and visually inspect for 

bias, using a funnel plot. Figure 1.9 plots effect sizes against their precision. The 

upper funnel shows the PCCs for the full sample, and the lower the elasticities for 

that subsample. A funnel with no bias should be symmetrical around central 

tendencies. The estimates will tend to spread out as the precision decreases, but 

they should do so symmetrically if this is only due to sampling noise. Figure 1.9 

shows a pronounced asymmetry in the estimates, suggesting there may be a 

positive bias. There appears to be less asymmetry in the elasticity panel. This 

suggests these studies may be more similar, and/or have less bias. Some of the 

studies with the largest effect sizes did not report enough information for 
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elasticities to be calculated, which may be the reason for this. Although there is 

asymmetry in both panels, suggesting publication bias, it is also possible this is due 

to heterogeneity within the sample. We explore this possibility in section 1.4.4. 

More formal testing of publication bias is also possible. There are many tests for 

publication bias. We use seven methods, which we split into linear and non-linear 

methods. Linear tests involve regressions of a measure of sampling uncertainty on 

the estimated effect. A linear relationship between the estimate and its standard 

error, as figure 1.9 implies, would indicate the presence of publication bias (see 

appendix D). This naturally leads to the estimating equation (5). 

(5)  𝜃𝑖𝑗 = 𝜃 +  𝛽𝐹�̂�𝑖𝑗 + 𝑢𝑗 + 𝜖𝑖𝑗; where 𝜖𝑖𝑗  ~ 𝑁(0, 𝜎𝑖𝑗
2  ) and 𝑢𝑗  ~ 𝑁(0, 𝜏2 )  

This is the combined Funnel Asymmetry Test (FAT) and Precision Effect Test 

(PET). Here the FAT is 𝛽𝐹, and is an estimate of the size and sign of publication 

bias. It is a function of the inverse Mills’ ratio. If positive then estimates that are 

positive are more likely to be published than negative ones. This test also gives an 

estimate of 𝜃 that takes into account this bias, called the PET. Equation (5) nests 

the common effects model where 𝜏2 is zero. 

The test in (5) would be subject to heteroskedasticity, as can be observed from 

figure 1.9. We have estimates of the heteroskedasticity in �̂�𝑖𝑗. These can therefore 

be used to weight the regression and we estimate the test with weighted least 

squares following Stanley (2008). 

(6)  �̂�𝑖𝑗 = 𝜃
1

�̂�𝑖𝑗
+ 𝛽𝐹 + 𝑣𝑗 + 𝑒𝑖𝑗 

Here the dependent variable �̂�𝑖𝑗  is now the t-ratio, rather than the estimate alone. 

The intercept of the regression is the FAT and the coefficient on 
1

�̂�𝑖𝑗
 is the PET.  

We estimate four variations of linear publication bias tests. First with OLS and 

clustered standard errors by study, but no study fixed effects; second, a variation 

of this where we regress on the variance rather than the standard error (Stanley 

and Doucouligas, 2014); third a full hierarchical FAT-PET with study fixed effects. 
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We estimate this with restricted maximum likelihood (REML), as Monte Carlo 

simulations suggest REML performs well for unbalanced panels (Baltagi, Song and 

Jung, 2000). Finally, we use the square root of the sample size as an instrumental 

variable for the precision. This last method allows for the fact some estimation 

techniques may be less efficient but lead to unbiased estimates. 

We also run three non-linear methods. The Weighted Average of Adequately 

Powered Estimates (WAAP) of Stanley, Doucouliagos, and Ioannidis (2017) 

estimates which studies are post-hoc “adequately powered” and only uses these to 

calculate an average effect size. The Trim and Fill (TF) method (Duval & Tweedie, 

2000) adds imputed studies on the sparse side of the funnel before calculating an 

average effect. The Andrews and Kasy (2019) method reweights all observations 

by estimated relative publication probabilities and calculates an average effect size 

after reweighting. See appendix D for a full discussion of all methods.  

Table 1.4 shows the results of all tests. We estimate the tests with four different 

samples. Panel A is the full sample using PCCs, panel B is all studies which address 

endogeneity (PCCs), Panel C is only studies with elasticity estimates available, and 

panel D is studies which both address endogeneity and have elasticities. Linear 

methods allow for not only an effect beyond bias estimate but an indication of the 

strength of bias in the FAT coefficient. In all four panels every estimate of 

publication bias is positive, indicating positive estimates are more likely to be 

published. Only the FAT-PEESE estimate in panel B, and the IV estimate in panel C, 

have 95% intervals that cover zero. In every panel, the effect beyond bias 

estimates are all smaller than the random effects estimate of table 1.3, indicating 

the effect size is overstated due to publication bias. 
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Table 1.4 Effect Beyond Bias and Publication Bias Estimates 

 FAT-PET 
FAT-

PEESE 
Multi-

level FP 
IV WAAP TF AK 

 
Panel A – Full Sample, PCCs 
 

       

Effect Beyond Bias 

 

-0.003 

(0.002) 

0.005 

(0.002) 

0.006 

(0.004) 

-0.004 

(0.002) 

0.005 

(0.002) 

0.008 

(0.018) 

-0.773 

(0.438) 

Publication bias 5.026 

(1.283) 

32.227 

(8.638) 

3.502 

(0.885) 

5.062 

(1.297) 

. . . 

Groups 24 24 24 24 . . 24 

Observations 542 542 542 542 362 542 542 

        

 
Panel B – Only Addressing 
Endogeneity Sample, PCCs 
 

       

Effect Beyond Bias 

 

0.001 

(0.001) 

0.004 

(0.001) 

0.001 

(0.001) 

0.001 

(0.001) 

0.003 

(0.000) 

0.007 

(0.002) 

0.001 

(0.002) 

Publication bias 2.159 

(0.431) 

11.305 

(10.186) 

1.982 

(0.434) 

2.159 

(0.430) 

. . . 

Groups 7 7 7 7 . . 7 

Observations 220 220 220 220 55 220 220 

        

 
Panel C – Only Elasticity Sample* 
 

       

Effect Beyond Bias 

 

0.110 

(0.029) 

0.128 

(0.021) 

0.107 

(0.010) 

-0.056 

(0.087) 

0.126 

(0.022) 

0.145 

(0.018) 

0.025 

(0.069) 

Publication bias 1.202 

(0.545) 

3.355 

(0.805) 

1.966 

(0.681) 

4.579 

(2.935) 

. . . 

Groups 11 11 11 11 . . 11 

Observations 312 312 312 312 122 312 312 

        

        

Panel D –Only Elasticity and 
Addressing Endogeneity Sample* 
 

       

Effect Beyond Bias 

 

0.040 

(0.007) 

0.084 

(0.019) 

0.084 

(0.016) 

0.013 

(0.014) 

0.116 

(0.028) 

0.081 

(0.015) 

0.018 

(0.021) 

Publication bias 1.801 

(0.440) 

4.371 

(1.127) 

1.392 

(0.619) 

2.186 

(0.514) 

. . . 

Groups 5 5 5 5 . . 5 

Observations 211 211 211 211 70 211 211 

        

Notes. *Indicates effects are elasticities rather than PCCs. Estimates are presented with their standard errors in 

brackets. FAT-PET is Funnel Asymmetry test and Precision Effect Test (Stanley and Doucouliagos, 2014). FAT-

PEESE is Funnel Asymmetry Test and Precision Effect Estimate with Standard Error. The multi-level FP is a 

FAT-PET multi-level model with fixed effects for each study. IV is a FAT-PET regression with square root of 

sample size used as an instrumental variable for the precision using two stage least squares. WAAP (Stanley, 

Doucouliagos, & Ioannidis, 2017) is the Weighted Average of Adequately Powered Estimates, where studies 

below a certain estimated power are removed before calculating the effect. TF is Trim and fill (Duval & 

Tweedie, 2000), which removes outlier studies and then adds imputed studies before calculation an average 

effect. AK is the Andrews-Kasy method (Andrews & Kasy, 2019), which is a step function selection model 

which reweights the observed sample with estimated publication probabilities. See Appendix D for full 

explanation of each method.  
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The estimates for the full sample and addressing endogeneity sample (panels A 

and B) are all close to zero, save the full sample Andrews-Kasy estimate which is -

0.77. However, the 95% confidence interval covers zero, and this estimate is the 

outlier.  For the elasticity sample (panel C) they vary from 0.15 to -0.06, but most 

estimates are around 0.11. For elasticity estimates that address endogeneity, the 

estimates range from 0.01-0.08. As a robustness check, we also estimate all 

methods using only representative estimates in appendix E and the results are 

similar. 

All tests suggest publication bias is present in the sample. This should not be a 

surprise as Stanley and Doucouliagos (2013) show that bodies of literature with 

theoretically implausible signs or sizes tend to exhibit more publication bias. It is, 

of course, theoretically implausible that an increase in lead pollution would cause a 

decrease in crime, and therefore it may be researchers do not write up papers 

showing such findings. Nevertheless, we should expect negative estimates due to 

sampling noise. This may explain the finding of publication bias in all tests and the 

asymmetry in the funnel plots.  

The tests also suggest the true mean effect size of lead on crime may be close to 

zero, but this could be due to the relatively small sample, or to characteristics of 

the studies. These characteristics can be investigated more thoroughly with meta-

regression analysis.  

 

1.4.4 Meta-Regression Analysis 

Meta-regression analysis (MRA) follows from (4) where we include common 

observable variation in our estimation. Given all tests suggest the presence of 

publication bias we include the FAT in all regressions. We also weight all regression 

covariates by the standard errors as in (6). Therefore, the specification is the same 

as in (6) except we now also regress on a vector of observable covariates, 𝒙𝒊𝒋, 

weighted by the standard errors of the estimate. This includes the precision, and the 

coefficient on the precision is now only an estimate of the average effect size when 

all other covariates are set to zero. The meta-regression is shown in (7). 
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(7)  �̂�𝑖𝑗 =  𝛽𝐹 +  𝒛𝒊𝑗
′ 𝜷 + 𝑣𝑗 + 𝑒𝑖𝑗 

Where 𝒛𝒊𝒋 is a 1 × 𝐾 vector of weighted observable covariates.  

The covariates included are based on common characteristics of the studies that are 

suggested by the literature. Their descriptive statistics are included in table 1.5. The 

majority are dummy variables indicating whether that characteristic is present for 

that estimate. All variables are coded at estimate level, not at study level. That is, 

different estimates from the same study may have different characteristics, and 

therefore have different values for the covariates. There is a dummy variable that 

equals one when an estimate comes from a quasi-experimental study design that 

attempts to deal with endogeneity concerns. There is a dummy variable which is one 

when an estimate is of crime in an area, and zero when it is at the individual level. 

There are four dummy variables which indicate whether specific controls were 

included in the estimation. Lead exposure is correlated with poverty (Baghurst e al. 

1999) and race (Sampson and Winter, 2016), may have different effects on men and 

women (Denno, 1990), and may have a relationship with educational outcomes 

(Fergusson, Boden and Horwood, 2008). Therefore, when an estimation includes 

these variables we might expect it to influence the estimate. The interpretation of 

the effect of these variables depends on where they are in the causal chain. If these 

variables are confounders, causing changes in lead and changes in crime, then 

omitting them will tend to overstate the effect of lead on crime (given they change 

both in same direction). If they are mediators, changed by lead and then changing 

crime, then conditioning on them can lead to understating the effect of lead on crime. 

This is especially important when study designs do not use some method to deal 

with endogeneity issues. Of course, there are other variables that may be important 

controls, but these were not found to be common enough across studies to include. 

Next there are three dummy variable that describe what type of crime was used as 

the dependent variable (homicide, violent, and non-violent), with a reference group 

of total crime. This allows us to test whether the different mechanisms proposed in 

section 1.2 matter. The violent crime category nests homicide within it. They are 

separate categories because homicide data is thought to be the best quality crime 

data, and thus less likely to suffer from bias (Fox and Zatz, 2000). We next have two 

dummy variables representing possible estimation effects. One for if simple OLS was 
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used, another for if maximum likelihood was used. The reference group is any other 

estimation such as GMM or mean differences. We have two dummy variables for 

further estimation effects. One for if panel data were used, and another for if the 

results are reported as odds ratios.  

 

Table 1.5 Descriptive Statistics of Covariates used in the Meta-Regression Analysis 

Variable Mean Median Standard Deviation 

Control_gender 0.19 0 0.39 

Control_race 0.21 0 0.41 

Control_income 0.32 0 0.47 

Control_education 0.20 0 0.40 

Homicide 0.19 0 0.39 

Violent 0.63 1 0.48 

Non_Violent 0.15 0 0.36 

Both 0.22 0 0.41 

Area 0.77 1 0.42 

OLS 0.39 0 0.49 

ML 0.13 0 0.34 

Odds_Ratio 0.03 0 0.17 

Panel 0.67 1 0.47 

Addressing Endogeneity 0.41 0 0.49 

North America 0.71 1 0.45 

Europe 0.16 0 0.36 

Direct Lead Measure 0.10 0 0.30 

Publication Year* 2013 2015 6 

Number of Covariates*† 445 13 802 

Sample Size* 64478 901 186,709 

    

Notes:*Indicates variables have been standardised.   

†Includes fixed effects for degrees of freedom adjustment 

 

A further two dummy variables are geographic dummies that equal one when an 

estimate come from a either North America or Europe, with the rest of the world as 

the reference group. 70% of estimates use data from North America. The final 

dummy variable equals one when a direct measure of lead, from either blood, bone, 

or dentine samples, is used in the estimation and zero when a proxy measure or 

estimate, such as leaded gasoline use in an area, is used. This allows us to test 
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whether there is a systematic difference in effect sizes found when lead levels are 

taken directly from subjects, which we might expect to give a more accurate 

measure of the true effect, rather than proxied. The final three covariates are the 

publication year, sample size, and the number of covariates included in the 

estimation. These variables have been standardised to aid the restricted maximum 

likelihood convergence.  

We estimate many specifications due to model uncertainty. Our sample is relatively 

small and coefficient estimation varies significantly in alternative specifications. The 

number of different covariate combinations is 2𝐾  where 𝐾 is the total number of 

covariates. It is common in the meta-analysis literature to employ some method of 

model averaging or shrinkage to deal with model uncertainty. However, with this 

many covariates and modern computational power it is possible to estimate all 2𝐾  

specifications5. In addition, table 1.3 showed that some subsamples have 

substantially less heterogeneity than the full sample. It may be that these sub-

samples suit aggregation better than the full sample. For example, we might expect 

studies with individuals as the unit of analysis to share much more common 

information than those that have a geographic area as the unit of interest. We 

therefore also estimate all covariate specifications for these subsamples. It is not 

possible to estimate every combination as some dummy variables no longer have 

any variation in the subsamples, leading to collinearity. This can also lead to other 

variables being excluded as they become the new base case (for example if there are 

no studies from outside Europe or North America in a subsample, then Europe 

becomes the base case). A full list of the covariates included for each subsample is 

in table 1.6. We estimate every possible combination of covariates for the full sample 

and the subsamples. We include the FAT, the estimate of publication bias. We 

estimate with REML and include study fixed effects.  

We do not interpret the coefficients on the covariates following best practice (see 

Westreich and Greenland, 2013 and Stevenson and Elwert, 2020), as they are not 

identified. Instead, we use the information from each meta-regression specification 

to construct a distribution of estimates of the average effect of lead on crime. We are 

 
5 As a robustness check we perform Bayesian Model Averaging in appendix F. The posterior mean PCC using 
the full sample and evaluated at the sample averages is 0.09, lower than the method we use here. The elasticity 
posterior mean is also lower at 0.07. 
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now estimating an average effect conditional on the observable heterogeneity in our 

specifications. In practice, meta-analysis tends to do this in two ways, either by using 

the sample averages or by taking some “ideal” specification. We do both. That is, for 

each specification we generate a predicted estimate of the effect of lead on crime, 

using both the sample averages, or by using an ideal specification, and not including 

the FAT in the predicted value (i.e. removing the publication bias).  

Table 1.6 Variables Used in Combinations For Each Sample Estimation 

Sample Variables Used 

Full Sample Control gender, Control race, Control income, Control education, 
Homicide, Violent, Non-Violent, Area dummy, OLS, ML, Odds Ratio, 
Panel dummy, Addressing Endogeneity, North America, Europe, 
Direct Lead Measure, Publication Year, Covariates, Sample Size 
 

Addressing Endogeneity Sample Control gender, Control race, Control income, Homicide, Violent, 
Non-Violent, Area dummy, OLS, Panel dummy, Publication Year, 
Covariates, Sample Size 
 

Correlational Sample Control gender, Control race, Control income, Control education, 
Homicide, Violent, Non-Violent, Area dummy, OLS, ML, Odds Ratio, 
Panel dummy, North America, Direct Lead Measure, Publication 
Year, Covariates, Sample Size 
 

Area-level Sample Control race, Control income, Control education, Homicide, Violent, 
Non-Violent, OLS, ML, Panel dummy, Addressing Endogeneity, 
Direct Lead Measure, Publication Year, Covariates, Sample Size 
 

Individual-level Sample Control gender, Control race, Control income, Control education, 
Violent, Non-Violent, OLS, ML, Odds Ratio, Panel dummy, 
Addressing Endogeneity, Direct Lead Measure, Publication Year, 
Covariates, Sample Size 
 

Homicide Sample Control race, Control income, OLS, Panel dummy, Addressing 
Endogeneity, Publication Year, Covariates, Sample Size 
 

Violent Crime Sample Control gender, Control race, Control income, Control education, 
Area dummy, OLS, ML, Panel dummy, Addressing Endogeneity, 
North America, Direct Lead Measure, Publication Year, Covariates, 
Sample Size 
 

Non-Violent Crime Sample Control gender, Control race, Control income, Control education, 
Area dummy, OLS, ML, Odds ratio, Panel dummy, Addressing 
Endogeneity, North America, Direct Lead Measure, Publication 
Year, Covariates, Sample Size 
 

Elasticity Sample Control gender, Control race, Control income, Control education, 
Homicide, Violent, Non-Violent, Area dummy, OLS, ML, Panel 
dummy, Addressing Endogeneity, North America, Direct Lead 
Measure, Publication Year, Covariates, Sample Size 
 

Elasticity and Addressing Endogeneity Sample Control gender, Control race, Control income, Homicide, Violent, 
Non-Violent, Area dummy, Publication Year, Covariates, Sample 
Size 
 
 

Notes. Table shows which covariates were included for each sub-sample estimation. Inclusion depended on 

whether there was variation in the covariate for that subsample. 

The ideal specification we use is one that includes controls for race, education, 

income and gender, that uses individual data, directly measured lead levels, controls 

for endogeneity, uses panel data, is estimated without just using simple OLS or ML, 

uses total crime as the dependent variable, uses North American data (as most of 
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our sample is from there), and uses the sample averages for the publication year, 

sample size, and number of covariates. This ideal specification is chosen to represent 

a robust and high-quality estimation, and as such we would expect it be generally 

lower than the sample averages estimates. 

The means, medians, and standard deviations of the full sample and subsample 

estimates are presented in table 1.7. The top panel shows the estimates effect sizes 

evaluated at the sample averages, while the bottom shows effect sizes evaluated at 

the “ideal” specification. The table also shows the number of specifications for each 

sample. The final column shows the how many of the estimates fell outside of the 

feasible interval of the PCC [-1,1]. This indicates whether there may be a 

misspecification issue with that particular sample estimation. 

The distribution of coefficient sizes for the full sample estimation is in plotted in 

figure 1.10, panel A. The left figure shows effect sizes evaluated at the sample 

averages, while the right shows effect sizes evaluated at the “ideal” specification In 

each there is a distribution of 524,288 estimated effect sizes. The mean and median 

PCC for the sample averages distribution are 0.16 and 0.18 respectively, which is 

“moderately positive” according to the Doucouliagos (2011) taxonomy. The 

distribution appears to be bimodal with one peak close to zero and the other around 

0.2. The distribution of the ideal specification is not bimodal and is roughly 

symmetrical. The mean and median are 0.13 and 0.09 respectively. As expected the 

ideal specification is lower than the sample averages. 

We next restrict the sample to only the studies that estimate a causal effect with 

quasi-experimental methods rather than an association: our “addressing 

endogeneity” sub-sample. This consists of seven studies and 220 estimates. It is 

common in meta-analysis to exclude correlational studies altogether (e.g., Kraft, 

Blazer and Hogan, 2018). Although we have not excluded those studies in this meta-

analysis, we now examine what a meta-analysis estimate with only causal studies 

would be. We saw in table 1.3 that the addressing endogeneity subsample has lower 

between-study heterogeneity than the full sample, so aggregation may yield 

comparatively more information. 
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We plot the sub-sample average specification and ideal specification in figure X, 

panel B (excluding those variables that cannot be included in the estimation, see 

table 1.6). The distribution of the sample average predicated values is tight around 

zero with a mean and median of 0.01, and a sample standard deviation of 0.01. The 

“ideal” specification also has a mean and median of 0.01. The results suggest there 

is a systematic difference between the “addressing endogeneity” studies and the rest 

of the sample.  

In figure 1.11, we carry out the same exercise except only for those studies that have 

elasticity estimates available. The elasticity effect sizes in panel A, figure 1.11 are for 

the full elasticity sample. The mean and median effect size, evaluated at the sample 

averages, are both an elasticity of 0.09. Evaluated at the “ideal” specification they 

are 0.09 and 0.05 respectively. The “ideal” distribution shows more heterogeneity 

and is bimodal. The standard deviation is 0.2, much higher than the 0.03 evaluated 

at the sample averages. 

Panel B of figure 1.10, the addressing endogeneity and elasticity subsample, is very 

similar to panel A. The mean is 0.10 and the median elasticity is 0.09 when evaluated 

at the sample averages.  When evaluated at the “ideal” specification the addressing 

endogeneity, elasticity sample mean is 0.17 and the median is 0.16 These are 

considerably larger than when evaluated at the sample averages, or when looking at 

the “ideal” specification for the full elasticity sample. In both panel A and B the 

“ideal” specification distributions have a larger variance than the sample average 

distributions. 40% of the “ideal” specifications yield a negative elasticity when using 

the full elasticity sample, and 15% are negative when using the addressing 

endogeneity, elasticity sample. In contrast almost no estimates are negative when 

evaluated at the sample averages in panel A or B. This suggests the “ideal” 

specification is much more sensitive to model changes than when we evaluate at the 

sample averages.  

 

 

 

 



 
 

55 
 

Table 1.7 Meta-Analysis Average Estimates for The Full Sample and Each 
Subsample 

Sample averages     

Sample Mean Median SD N % < −𝟏 𝒐𝒓 > 𝟏 

Full Sample 0.16 0.18 0.07 524288 0% 

Addressing Endogeneity Sample 0.01 0.01 0.01 4096 0% 

Correlational Sample 0.29 0.29 0.10 131072 0% 

Area-level Sample 0.25 0.26 0.06 16384 0% 

Individual-level Sample 0.03 0.03 0.01 65536 0% 

Homicide Sample 0.58 0.54 0.22 256 0% 

Violent Crime Sample 0.39 0.39 0.22 16384 0% 

Non-violent Crime Sample 0.75 0.71 0.24 32768 14% 

Elasticity Sample* 0.09 0.09 0.03 131072 . 

Elasticity and Addressing Endogeneity 

Sample* 

0.10 0.09 0.04 1024 . 

      

 

“Ideal” specification 

Sample Mean Median SD N % < −𝟏  𝒐𝒓  > 𝟏 

Full Sample 0.13 0.09 0.25 524288 0% 

Addressing Endogeneity Sample 0.01 0.01 0.02 4096 0% 

Correlational Sample 0.49 0.37 0.6 131072 15% 

Area-level Sample 0.23 0.20 0.22 16384 0% 

Individual-level Sample 0.02 0.02 0.04 65536 0% 

Homicide Sample 0.28 0.27 0.17 256 0% 

Violent Crime Sample 0.57 0.14 1.29 16384 36% 

Non-violent Crime Sample 1.26 0.58 3.50 32768 64% 

Elasticity Sample* 0.09 0.05 0.20 131072 . 

Elasticity and Addressing Endogeneity 

Sample* 

0.17 0.16 0.16 1024 . 

      

Notes. *Indicates values are elasticities rather than PCCs. Table shows results from combining multiple meta-

regression estimates, each using different specifications. All regressions carried out by restricted maximum 

likelihood. This is done for the full sample and subsamples. N is the number of regressions carried out, each a 

different specification. The mean and median are the summary statistics of the average effect size from these 

regressions, given in Partial Correlation Coefficients (PCCs) or elasticities. PCCs are bounded between -1 and 1. 

The last column gives the percent of effects which fall outside this range.  
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Figure 1.10 Density of Meta-Analysis Average Effect Size Estimates from Full 
Sample 

Panel A – Full Sample (PCCs) 

 

Sample averages        “Ideal” specification 

 

 

Panel B – Addressing Endogeneity Sample (PCCs) 

 

Sample averages        “Ideal” specification 

 

Notes. Chart shows densities for the distribution of meta-regression estimated average effect sizes. Chart 

on left shows estimated average effect for each specification evaluated at the sample averages. Chart on 

right shows estimated average effect for each specification evaluated at an “ideal” specification. X axis 

truncated at feasible interval of a PCC, [-1,1].  
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Figure 1.11 Density of Meta-Analysis Average Effect Estimates for Elasticity 
Subsample 

Panel A – Full Elasticity Sample 

 

Sample averages            “Ideal” specification 

 

 

Panel B –Elasticity and Addressing Endogeneity Sample 

 

Sample averages            “Ideal” specification 

 
Notes. Chart shows densities for the distribution of meta-regression estimated average effect sizes for the 

addressing elasticity sub-sample.. Chart on left shows estimated average effect for each specification 

evaluated at the sample averages. Chart on right shows estimated average effect for each specification 

evaluated at an “ideal” specification.  
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We next plot several other subsample distributions of interest in figure 1.12. The 

difference between the area and individual sample is striking. The area sample 

means and medians are much larger than the individual sample for both the sample 

average specification and the ideal specification. The individual sample mean and 

median PCCs are small and the distributions are tight around the means compared 

to the area sample. This suggests that covariates matter less for the individual 

sample effect sizes compared to the area sample. Similar to the area-individual 

comparison, the correlational sample has much higher means and medians than the 

addressing endogeneity sample.  

Comparing homicide, violent, and non-violent crime samples we can see they all 

have large mean and median PCCs, but the non-violent and violent subsamples have 

a portion of the distribution outside [-1,1], suggesting misspecification and that the 

results may not be reliable. The standard deviations for these tend to be much larger 

as well. Furthermore, due to the lack of homicide estimates, only 256 specifications 

could be run without convergence issues. Overall, the results suggest that lead 

affects all types of crime, but we cannot say if it has a bigger effect on some types 

than others. We cautiously suggest that if lead does have an effect on crime it is 

across all categories of crime. 
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Figure 1.12 Densities of Meta-Analysis Average Effect Estimates From Subsamples 

Sample averages    

 

 “Ideal” specification 

 

Notes. Chart shows densities for the meta-regression estimated average effect sizes for a number of 

subsamples. Top chart shows estimated average effect for each specification evaluated at the sample 

average for each subsample. Bottom chart shows estimated average effect for each specification evaluated 

at an “ideal” specification. X axes truncated at feasible interval of a PCC, [-1,1]
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1.4.5 Explaining the 20th Century Crime Decline 

Our calculated elasticities allow us to estimate how much of the fall in crime 

observed in the second half of the 20th century was caused by lead. We first use 

the dramatic fall in homicide in the US as an example. The median blood lead 

level in children in the US fell 88% from 1976-2009. Given our main elasticity 

estimate of 0.09 for the full elasticity sample evaluated at the sample 

averages(with standard deviation of 0.03), this implies a fall in homicide of 5-

11% with the point estimate being 8%. The US homicide rate fell 54% from its 

peak in 1989 to 2014. This would mean that lead accounts for 8 of those 

percentage points, i.e. around 15% of the decrease in homicide. If we use the 

full range of elasticity mean estimates in table 1.7 we have values from 0.05-

0.17. These would imply 4-15 percentage points of the 54% fall were 

accounted for by lead. This would mean 7-28% of the fall in homicide was due 

to falling lead levels. 

Our estimates imply lead pollution is an important factor in reducing 

homicides, and lead abatement has saved lives, but it does not account for the 

majority of the fall. Depending on the specification, we conclude that 93%-

73% of the fall in homicide in the US is unaccounted for.  

We next carry out estimates of how much of the urban/rural violent crime 

convergence in figure 1.4 can be explained by the relatively higher blood lead 

levels in urban areas in the 1970s. Average blood lead levels in under 5s 

(geometric mean) declined by 15µg/dL in large population MSAs from 1976 to 

2011, and by 12.7 in smaller MSAs and rural areas over the same period. The 

difference in the violent victimization rate per 1,000 people between urban 

and rural areas, as measured by the NCVS, was 41 in 1993, and 7 in 2015. Given 

the lag in time between childhood lead exposure to adult criminal acts, we 

believe these differing periods give enough time for the lead change to take 

effect. The gap in victimizations declined by 34 per 1,000 people in this period. 

Using an elasticity of 0.09, we estimate the relative change in blood lead levels 
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would account for around  of these victimizations. That is, the difference in 

lead levels accounts for 11% of the convergence in the victimization rate. Using 

the 0.05-0.17 range of elasticity estimates in table 1.7, means that lead 

accounts for between 2 and 7 of the victimisation gap difference. This would 

explain 6%-20% of the convergence in violent victimisation rates. While not 

negligible, this leaves a large part of the convergence in urban/rural crime 

rates unexplained as well. 

 

1.5 Discussion and Conclusion 

Changes to the amount of lead in the environment have been put forward as 

one of the main causes of the decrease in crime, especially homicide, in many 

western countries. We performed the first meta-analysis of the effect of lead 

on crime. We find there is publication bias in the lead-crime literature, and that 

meta-analysis estimates that do not control for this will overstate the effect of 

lead on crime. Using meta-regression, taking into account publication bias and 

between-study heterogeneity, our main estimates are an average effect size of 

0.16 as a partial correlation, or 0.09 as an elasticity. When using the larger PCC 

sample, we find that the average meta-analysis estimate for studies that 

address endogeneity is much smaller than for the full sample, or for the 

correlational sample. Similarly, the average effect size estimate for studies that 

have individuals as the unit of interest is much smaller than for the sample of 

studies that have a geographic area as the unit of interest. When we examined 

the differences between lead’s effect on homicide, violent and non-violent 

crime, we could not confidently state there was any difference between them. 

When using the elasticity sample, the average meta-analysis estimate for 

studies that address endogeneity tended to be similar to the full elasticity 

sample, except when evaluated at the “ideal” specification, in which case it was 

larger.  
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Finally, we performed calculations to estimate the share of the decline in crime 

in the US that is accounted for by reductions in blood lead levels. We estimate 

that of the total 54% fall in homicides observed in the US in 1976-2009, 

reduced blood lead levels accounted for 4-15 percentage points. A substantial 

decrease. However, this was only a 7-28% share of the total fall, leaving 93-

72% unaccounted for. Similarly, we find that the relative changes in blood lead 

levels account for 6-20% of the convergence in urban and rural violent crime 

rates observed in the US.  

Overall, the results suggest that declines in lead pollution reduce crime but are 

not the cause of the majority of the fall in crime observed in many western 

countries. We are unable to provide estimates on the size of other causes here 

but hope our results can provide a rough benchmark for relative importance 

in future meta-analysis. It is possible that the large differences in our samples 

can be reconciled. For example, the large difference between the individual 

and area samples may be because crime has fallen at the extensive margin 

rather than the intensive margin. Tcherni-Buzzeo (2019) observe that around 

5% of the population are responsible for 50% of crime, and that the fall in 

crime in the US is likely due to falls in this high-crime population, rather than 

less crimes per individual in that population. If less lead pollution only meant 

less probability of committing crime for this small slice in the population, it 

might nevertheless lead to a large fall in crime at the area level. A second 

possibility is that relatively small effects of lead at the individual level can be 

exacerbated by peer effects from other lead affected individuals6. Recent work 

has found these peer effects can even affect those without elevated blood lead 

levels (Gazze, et al., 2021). In areas with high levels of lead, the individual 

effects of lead may be compounded by peers also having high levels of lead, 

leading to a much larger impact at the area level.   

 
6 We thank an anonymous reviewer for this suggestion. 
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There are several limitations to our analysis. Most importantly, the sample size 

is not large. We have 24 studies and 542 estimates, this is not unusual for a 

meta-analysis but, particularly for our subsample estimates, this could play a 

part in the differences. It may explain why so much of the distribution for the 

different types of crime in table 1.7 were outside the feasible PCC interval of [-

1,1]. We attempt to mitigate this by using various tests for publication bias, 

and estimating many different specifications, but we cannot rule out that the 

results are due to small sample effects. Secondly, the between-study 

heterogeneity is large in our sample. This calls into question how comparable 

the studies are. This is to be expected as studies use different concepts and 

measures of crime and lead, different units of interest, and different estimation 

techniques. We try to mitigate this by converting to PCCs or elasticities, using 

different sub-samples that have lower between-study heterogeneity, and 

using meta-regression with covariates. However, even with these mitigations, 

it may be that the literature is not comparable and therefore meta-analysis 

estimates will be noise. In this case it casts doubt on the external validity of the 

studies examining the lead-crime hypothesis. The solution would be far more 

studies that estimate elasticities using comparable measures of lead and crime.  

For policymakers, our results are a warning against assuming the large crime 

levels in past decades cannot return now that lead pollution is much lower. 

The results are not a signal that lead abatement is fruitless. As outlined in 

section 1.2, the evidence of harmful biological and health changes due to lead 

is overwhelming. There is no known safe level of lead. Even if outcomes higher 

up the causal chain, such as crime, are not as affected by lead, the evidence still 

shows lead abatement will increase health outcomes, especially for the very 

young.  

For future research, we have two main suggestions. The first is that there are 

enough low sample size, correlational studies in the lead-crime literature. 

What is needed now is high power, high-quality causal estimates of the effect 

of lead on crime. The value added of such studies would be increased by testing 
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the effect on different types of crime, and the possible interaction of lead with 

other potential causes. The second is that more high-quality causal estimates 

of the elasticity of other causes of crime are needed. Our results suggest lead 

is not responsible for the majority of the fall in crime since the 80s and 

therefore leaves open room for other explanations. These explanations must 

account for the fact homicide has fallen across many (but not all!) western 

countries at roughly the same time. They must also account for the fact that 

total crime has risen in Europe and fallen in the US, while the homicide rate 

has fallen in both. Further comparison of the relative shares of responsibility 

for the fall in crime, as well as the interaction between causes, may also be 

fruitful and we suggest further meta-analyses, using modern methods, would 

be helpful in this area.  
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2.1 Introduction  

 

An estimated 2.4 million children die within their first year of life globally 

(UN IGME 2021). A further estimated 2 million are stillborn (UNICEF 2022a). 

Great strides have been made in reducing these infant deaths in recent 

decades (figure 2.1) thanks to improved disease and hygiene practices, as 

well as nutrition (WHO 2010). However, death rates remain above the level 

needed to meet the 2030 Sustainable Development Goals (UN IGME 2021). 

With an estimated 1-in-3 children having elevated levels of lead in their 

systems (GBD, 2019), and the global burden of lead estimated to be 

responsible for as many as 900,000 deaths a year (UNICEF, 2020), reducing 

lead pollution may be one route to prevent infant death and morbidity.  

Figure 2.1 World Estimated Neonatal Death Rate, per 1000 Births 

Source: UNICEF (2022b) 
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How does lead pollution affect birth outcomes? How big a risk factor is lead 

pollution for early deaths and stillbirths? What priority should reducing lead 

pollution be compared to other mortality reducing interventions, such as 

improving nutrition or medical access? Ideally, all such risk factors would be 

dealt with, but with political economy constraints, this is never the case. 

Policy makers and concerned citizens need to know how much of their time 

and resources lead reduction should receive compared to other mortality 

reducing interventions. 

We follow Troesken (2006) in examining the impact of lead water pollution 

on health outcomes. Lead can contaminate drinking water through chemical 

reactions in plumbing materials containing lead. This causes the metal to 

dissolve or erode away from lead pipes and fixtures into the water supply. 

This reaction is particularly severe when the water has low mineral content 

or high acidity, and it is said to be highly plumbosolvent. Troesken (2006) 

provides an historical overview of how lead exposure has continually 

occurred through water pipes and tanks.  Troesken further expanded on this 

in Clay et al. (2014) where they use the historical incidence of lead pipes and 

water pH levels and find a large effect of lead on early 20th century infant 

mortality. We provide a fuller description of the research on lead and birth 

outcomes in section 2.2.1. This research shows mixed findings on 

birthweights, a correlate of infant morbidity and later life outcomes, and on 

under-5 mortality, with most studies relying on correlational estimates of the 

relationship between lead pollution and birth outcomes. 

Our contribution is to examine these questions using rich administrative data 

containing all births in Scotland’s two largest cities – Glasgow and Edinburgh 

– and the surrounding areas from 1975-2000. We link this data with home 

address at time of birth, mother’s characteristics, and with infant health 

outcomes up to 5 years later.  
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We combine this administrative data with plausibly exogenous variation in 

lead exposure from separate interventions in the Glasgow and Edinburgh 

water supplies. This combination allows us to credibly identify the effect of 

lead on birth outcomes such as birthweight, and under-5 mortality. The 

water intervention we examine reduced water lead levels and blood lead 

levels in both cities.  

Linking the data to home address allows us to capture if a mother and child 

lived in an area subject to the lead reduction treatment at the time of birth. 

Our research design, based on a difference-in-differences approach, improves 

upon most of the previous literature which is based on selection on 

observables as an identification strategy, which can result in biased 

estimates, as lead pollution is correlated with socio-economic factors. 

Additionally, many of the studies have small sample sizes, which may be 

under-powered. We also employ methods that, under the assumptions in 

section 2.3, are unbiased in the presence of staggered treatment 

interventions, and allow separate treatment effects to be calculated for each 

treated area. In particular, we discuss and employ the two-way Mundlak 

regression proposed by Wooldridge (2021). 

The case studies of Glasgow and Edinburgh are noteworthy as these are 

areas with historically high levels of lead before the reduction. Edinburgh and 

Glasgow were characterised by acidic soft water which made them especially 

plumbosolvent. In 1975, 33% of households in Scotland had water lead levels 

above 50μg/l, compared to only 10% in England. Glasgow was particularly 

affected, with 50% of households surveyed having water lead levels above 

100μg/l (Quinn, 1985; Potter, 1997; Richards and Moore, 1984). We rely 

extensively on the long-running Glasgow (Watt et al. 1996a) and Edinburgh 

(Macintyre et al. 1998) lead studies, which meticulously detailed and 

researched the reductions in the water and blood lead levels over the 80s and 

90s.  
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Scotland has seen greatly reduced infant deaths since 1900 (figure 2.2). 

Starting in the 1970s, interventions to reduce the amount of lead in the water 

began in Edinburgh and Glasgow, and were improved upon in the 80s and 

90s. This was after infant deaths and stillbirths had already sharply reduced, 

thanks to improved nutrition, hygiene, and health practices.  

Therefore, this is a setting where the relatively easy gains had already been 

exhausted, and lead might be thought to account for a larger share of the 

remaining deaths and pregnancy complications.  

Figure 2.2 Scotland, Deaths Within First Year of Life, per 1000 Births 

Source: National Records of Scotland (2022) 

Contrary to much of the literature, we do not find consistent evidence for an 

effect of lead on birthweights. For under-5 mortality, we find weak evidence 

that lead reduction may have led to a maximum 0.3-0.1 percentage point 

decrease in deaths in Glasgow and a 0.7-0.1 percentage point decrease in 
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deaths in the east-side of Edinburgh, which is supplied by the Alnwickhill 

water plant (tap water in Edinburgh is supplied by two water plants serving 

the east and west of the city as we will explained more in detail in section 

2.2.2) That is, given the average death rate of 1% in both areas, between 70% 

and 10% of the infant deaths in Alnwickhill and 30% to 10% of the infant 

deaths in Glasgow during our sample years would be due to lead pollution.  

This translates into 23-186 saved lives in Alnwickhill and 216-648 in 

Glasgow, over the full 25 years of the sample. This is somewhat similar to the 

Clay et al. (2014) estimate where they estimate an increase in pH for a city 

using lead pipes would reduce deaths by 7%-33%. Similarly, Edwards (2014) 

found that the fetal death rate increased 32−63% in the first year after lead 

levels spiked in Washington D.C, and Grossman and Slusky (2019) find the 

change in water supply in Flint, and subsequent lead water increase, 

responsible for a 12% decrease in the fertility rate, which they believe is due 

to miscarriages and fetal deaths. However, even though our main 

specification is in line with the literature, our results are not robust to 

different specifications/robustness checks. 

 

2.2 Background 

 

2.2.1  Lead Pollution and Birth Outcomes 

 

A child is first exposed to lead pollution through the placenta (Dorea and 

Donangelo, 2006). A mother’s current exposure to lead can in turn expose a 

foetus to lead through this route. Furthermore, due to increased bone 

remodelling, previous maternal lead pollution can affect the foetus, as both 

lead and calcium (chemically similar) are released from the bones at an 

increased rate during pregnancy (Yurdakök, 2012). Maternal and infant lead 
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levels are of similar magnitudes and highly correlated (Al-Saleh et al., 1995), 

but the relationship between exposure and absorption of lead is complex. For 

example, it is mitigated by maternal calcium intake (Dorea and Donangelo, 

2006). Therefore, there are mediators between lead exposure and the 

damage it may cause. 

A large literature has found diverse impacts of lead pollution. Biological 

harms include damaged nerve system and brain development when young 

(Cecil et al., 2008, Brubaker et al., 2009), and at higher levels abdominal pain, 

headaches, and seizures (WHO, 2010). Behavioural harms include 

aggressiveness (Marcus et al., 2010), worse memory, and lower attention 

span (Vlasak et al., 2019). The wider socio-economic impacts resulting from 

these include increased propensity to commit crime (Higney et al., 2022), 

lower educational attainment (Hollingsworth et al, 2022, Zheng, 2021), and 

possibly lower productivity due to health damage (He and Ji, 2021). 

Exposure to lead pollution can have significant negative impacts on the 

development of children, both before and after birth. In severe cases, it can 

even result in stillbirth or death. Numerous studies have been conducted to 

determine the extent of these damages as well as other adverse effects of lead 

on children's health. 

In this paper we focus on the effect of lead pollution on birthweight and 

under-5 mortality7. We use birthweight because it is a generally accepted 

proxy for baby developmental health. It is associated with a wide range of 

health outcomes such as higher cardiovascular and cancer deaths, diabetes, 

and obesity, as well as more immediate health outcomes such as infant 

mortality and morbidity (Law, 2002, Wilcox, 2001). Chatterji et al. (2014) 

find birthweight is associated with lower adult educational attainment. 

Behrman and Rosenzweig (2004) use a sample of identical twins and 

 
7 This is the standard cut-off for infant mortality, as used in the Sustainable Development Goal (SDG) 
target 3.2. 
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compare birthweight with later life outcomes, finding higher birthweight is 

associated with greater height and educational outcomes. Royer (2006) 

likewise uses a sample of twins and finds that a mother’s own low 

birthweight is associated with them having pregnancy complications in later 

life, and having lower birthweight children, suggesting low birthweight has 

an effect for generations. However, it is generally not thought to be low 

birthweight itself that causes these harms, rather it is a proxy for underlying 

biological conditions, such as low nutrient ingestion in the womb or 

premature birth (Wilcox, 2001). 

A number of studies estimate the relationship between lead exposure and 

birthweight. Xie et al. (2013) find a negative correlation between maternal or 

cord lead levels and birthweight in 252 infants. Similarly, Bornschein, R.L. et 

al. (1989) find a negative link between maternal blood lead levels and 

birthweight in 202 inner city infants. Taylor et al. (2014) find that 12% of 

infants whose mothers have elevated levels of lead (>5μg/dl) have low 

birthweight compared to 10% when lead levels are lower. In contrast, Azayo 

et al. (2009) find no association between maternal blood lead levels and 

birthweight in 150 women in Tanzania, but the average lead levels were 

below 5μg/dl, which is the threshold used by the WHO guidelines (WHO, 

2021). Golmohammadi et al. (2007) use a sample with much higher average 

lead levels but also find no association in their sample of 89 infants in Iran.  

McMichael et al. (1986) found no association with birthweight for 749 

mothers in Australia, although they do find an association with other 

outcomes such as spontaneous abortion.  

In summary, the findings on birthweight are somewhat mixed. Both 

disagreeing on the presence of an effect, and on the level of lead at which an 

effect is found. Bellinger (2005) conducted a review concluding that there 

likely was an effect of both paternal and maternal blood lead levels on 

birthweight.  
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One main issue with the previous papers is that they all rely on selection on 

observables as an identification strategy. This likely leads to biased 

estimates, as lead is confounded by poverty, race, and education. Many of the 

studies also have low sample sizes, which may be inadequately powered. 

Recently, studies with better identification strategies have examined the 

relationship between lead and birthweights. Grossman and Slusky (2019) 

studied the effects of the change in Flint, Michigan's water supply on 

birthweight. In 2014, the city switched its water source from Lake Huron to 

the Flint River, causing the water distribution pipes to corrode and leach lead 

into the drinking water. The researchers used a difference-in-differences 

design and found that the change in the water supply resulted in higher lead 

levels, but the effect on birthweight was small and not statistically significant. 

This may be due to a higher number of stillbirths after the water change, 

which could have resulted in selection bias in the measurement of 

birthweight. Dave and Yang (2022) look at a similar setting, where the pH on 

one side of the water supply in Newark fell sharply, and therefore began 

leeching lead from pipes again, while it remained steady on the other side of 

the city.  They found a small effect on birthweight, that becomes smaller and 

insignificant the more post treatment years are added. They rationalise this 

as showing the effects of mitigation strategies by mothers, such as moving to 

bottled water, once the increased lead levels were widely known.  

For spontaneous abortion (before 28 weeks) and stillbirths (after 28 weeks) 

high levels of lead have long been known to have an effect. So much so, that 

lead oxide was described as being used as an abortifacient by working-class 

women in the 1800s and early 1900s (Hall and Ransom, 1906). In some 

cases, the amounts of lead ingested were strong enough to cause lead 

poisoning in the mother (Ransom, 1900). There are many papers which have 

examined the effects on spontaneous abortions, stillbirths and their 

correlates. Falcon et al (2003) find that premature births and pregnancy 

anomalies tended to have higher levels of lead in the placentas of 83 births 
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(although they find no association with birthweight). Wibberly et al (1977) 

found that lead levels were higher in placentas where a neonatal death 

occurred in Birmingham. In contrast, McMichael et al. (1986) do not find any 

difference in pre-pregnancy maternal blood lead levels for neonatal deaths 

and other births. Angell and Lavery (1982) collected cord blood lead levels in 

635 cases and found no relationship with lead levels and pregnancy 

complications that might lead to death such as preterm delivery or 

premature membrane rupture, although they did not look at spontaneous 

abortions/stillbirths directly. Vinceti et al. (2001) examine historical birth 

anomalies in a heavily lead polluted area of northern Italy. They find 

increased oral clefts and other disabilities but no increase in neural tube 

defects.  

Looking specifically at water lead exposure and studies which use natural 

experiments, Clay et al. (2014) use the differences in city water pH levels as 

an instrument for lead exposure, because lower pH water leeches more lead 

from pipes. They find, in 1900-1920, a decline in exposure equivalent to an 

increase in pH from 6.675 (25th percentile) to 7.3 (50th percentile) in cities 

with lead-only pipes would have been associated with a decrease in infant 

mortality of 7 to 33 percent or at least 12 fewer infant deaths per 1,000 live 

births. Edwards (2014) finds that a short-term spike in lead water pollution 

in Washington DC (due to a change in the chemical treatment) resulted in an 

increase of the fetal death rate. Grossman and Slusky (2019) find live births 

fell 12% in Flint, Michigan during the water crisis and attribute this to an 

increase in fetal death rates. 
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2.2.2 Lead Plumbing and Water Treatment in Glasgow and 

Edinburgh 

 

Lead piping was widely used in Scotland before being banned for new work 

in 1968 (Richards et al., 1980). Lead is malleable, relatively cheap, and has an 

extremely long life as infrastructure (Feigenbaum and Muller, 2014, and 

Krebs, 2019). Lead piping began to be phased out from the 70s in Scotland, 

but still, in the 90s, as many as 589,000 homes in Scotland were estimated to 

contain lead pipes (Potter, 1997), around 30% of the total. This was slightly 

lower than the 34% in England and Wales. There were also as many as 

60,000 water storage tanks made of lead, mostly in Glasgow and Edinburgh 

(Krebs, 2019). These were used because water service was still intermittent 

in the first half of the 20th century. They allowed households to store and use 

water during any non-flowing periods.  

The reason lead water pipes have not been replaced are twofold: 1) It is 

expensive, and 2) Homeowners do not know they have lead pipes and that 

they are responsible for their replacement. Figure 2.3 shows the different 

parts of the water supply chain. Communication pipes are owned by the 

water supplier and those made of lead have now all been replaced 

(Akoumianaki, 2017). Internal lead piping still exists in many households but 

has also been gradually replaced and is estimated to only account for 20-30% 

of the remaining lead pollution in home water supplies in the UK 

(Akoumianaki, 2017). The main pollution burden is thought to come from the 

lead supply pipes (also called service pipes). These are the responsibility of 

the property owner to replace, but are underground, and therefore difficult 

to see. An added complication is that property owners may not know they 

have the responsibility to obtain replacement, even though grants are 

available. Today there are estimated to be 273,751 homes out of 2.6 million 

in Scotland with lead piping (Robertson et al., 2020). Watt et al. (2000) 
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estimated as many as 160,000 households out of 300,000 in Glasgow alone 

had a lead service pipe in 2000.  

 

Figure 2.3 Water Infrastructure around the Home 

 

Source: Scottish Water (2021) 

The dangerous combination of certain water chemistry and lead water pipes 

began to be taken seriously in Europe in the 1970s. The WHO issued 

guideline for drinking water in 1970 with a limit of 100μg/l (WHO, 1970). 

Along with other European countries, the UK’s Department for the 

Environment carried out a series of surveys of blood lead levels in the 70s 

and 80s. The findings of the UK survey were that “The highest blood lead 

concentrations were related to plumbosolvent water” (Quinn, 1985). The 

acidic soft water in Scotland’s two largest cities made them especially 

plumbosolvent. In 1975 surveys found 33% of households in Scotland had 

water lead levels above 50μg/l, compared to 10% in England (Potter 1997). 

Glasgow was especially viewed as a problem, with 50% of household 

surveyed having water lead levels above 100μg/l (Richards and Moore, 

1984). 
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Experiments with the Glasgow water supply in 1973 showed that lime dosing 

would raise the pH effectively and lower plumbosolvency (Richards et al., 

1980). Following this, in both Glasgow and Edinburgh, an investment in an 

automatic lime-dosing system was considered worthwhile. These began 

operation in 1978. In Glasgow, which is supplied by Loch Katrine water, the 

pH was raised from 6.3 to 7.8 after this dosing.  The Loch Katrine water 

supply area at this time is mapped in figure 2.4. This map also shows 

postcodes where there was a higher prevalence of lead piping in the house 

(Watt et al. 1996a). We exploit the difference in high and low lead prevalence 

areas in Glasgow as a robustness check in section 2.2.6. 

In Edinburgh, the city is supplied with water from diverse sources (see figure 

2.5). The north-east of the city was supplied from Alnwickhill, and the south-

west supplied from Fairmilehead. The centre was supplied from both 

sources. Both bodies of water were fairly soft, with a pH of around 7 before 

dosing. In Fairmilehead, the dosing was successful, and raised the pH to 

above 8. In Alnwickhill the dosing was not successful due to technical 

difficulties and was delayed until 1985. The pH remained below 8 until after 

1985, when it eventually rose to around 8.5. The mixed area in Edinburgh, 

supplied jointly by Alnwickhill and Fairmilehead, therefore received a partial 

treatment, but when measured in 1985 its pH was above 8 and closer to the 

Fairmilehead level. The measured pH levels before and after the lime dosing 

for each water supply area are given in figure 2.6. 
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Figure 2.4 Historical Loch Katrine Water Supply Area with High and Low 

Lead Piping Prevalence 

 

Figure 2.5 Historical Water Supply Areas in Edinburgh 
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Figure 2.6 pH Levels in Each Water Supply Area 

Sources: Macintyre et al., (1998), Richards et al., (1980) and Watt et al., 1996. 

 

Although partially successful in reducing plumbosolvency, high lead levels 

continued to be present in some houses, especially in Glasgow (Watt et al, 

1996a). Standards also continued to strengthen, with the EU reducing the 

maximum allowed lead-water levels to 50μg/l in 1980, eventually reaching 

10μg/l in 2000 (Watt et al., 2000). This led to the addition of orthophosphate 

into the Glasgow water supply in 1989. Orthophosphate dosing reduces the 

solubility, and therefore bioavailability, of lead in the water supply (Comber 

et al, 2011). This is a different mechanism for reducing lead pollution, 

compared to lime treatment which raises the pH. This dosing successfully 

reduced blood lead levels even further (figure 2.7). 

In Edinburgh, after the successful experiments in Glasgow, orthophosphate 

was added to both Fairmilehead and Alnwickhill supplies in 1991. This 
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further reduced blood lead and water lead levels in both areas (Figure 2.8). 

The lowering of lead-water levels in Scotland’s largest cities was a success. As 

the UK government brought in stricter lead-water maximum levels, other 

areas followed. For example, water supplies across Wales began to be 

orthophosphate dosed in 1995. Eventually, in the 2000s, 95% of the UK’s 

water would be treated with orthophosphate (Hayes and Hydes, 2012). 

However, still in the 1990s, it was debated in the UK Parliament whether 

water treatment was enough, with one MP saying that only full lead pipe 

replacement would suffice (Hansard, 1990).  

This paper exploits these interventions as natural experiments given the 

somewhat arbitrary assignment of water treatment to certain areas of 

Glasgow and Edinburgh (treatment groups) while leaving adjacent areas 

untouched (control group). In particular, the plausibly exogenous variation 

we rely on to identify treatment effects of lead on birth outcomes is first, the 

raising of the pH with lime dosing in both Glasgow (Katrine) and Edinburgh 

(Fairmilehead in the south-west of the city and Alnwickhill in the north-east) 

which did not occur in the surrounding areas of these cities, and secondly, the 

later dosing with orthophosphate in both cities which similarly was not 

carried out in neighbouring areas until much later. A full timeline of the 

treatments is given in figure 2.9.  
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Figure 2.7 Blood and Water Lead Levels in Glasgow 

 

 

Source: Watt et al., (1996a) and Moore (1998) 
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Figure 2.8 Blood and Water Lead Levels in Edinburgh 

 

 

Source: Macintyre et al., (1998) 
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Figure 2.9 Timeline of Water Treatment 

 

Note: Katrine is the name of the water supply in the city of Glasgow. Farmilehead is the name of the 

water plant supplying the south-west of Edinburgh. Alnwickhill is the water plant supplying the north-

east of Edinburgh. Central Edinburgh is served by both water supplies. 

 

2.3 Data 

 

We use health data from Public Health Scotland (PHS). The data covers all the 

pregnancy outcomes in Glasgow, Edinburgh, and the surrounding postcode 

areas of each city for the period 1975 to 2000. This data is from the Scottish 

Morbidity Records (SMR) and the Death, Birth and Stillbirths Registrations 

(NRS) Furthermore, from the NRS records, we link live births records with 

death registrations to identify if a child died before age 

five8.                                                                                                                                                                                                              

Data are matched to the Scottish Water Supply area maps for the relevant 

areas by using maternal postcode for the relevant period. That is, the address 

 
8 We would like to thank the Electronic Data Research and Innovation Service (eDRIS) of Scotland for 
their help with data handling and access. 
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of the house at the time of pregnancy is assigned to the postcode and coded 

as the relevant treatment/control group. The map of water supply areas, and 

the various treatment groups are included in figures 2.4 and 2.5. Figure 2.4 

shows the Loch Katrine water supply area during the period the data cover. 

There is a further split in the Loch Katrine supply area between postcode 

sectors with relatively high levels of lead piping compared to those with 

relatively low levels of lead piping, as given in Watt et al. (1996a). In high 

lead areas, 19% reported lead piping, while in low lead areas it was 9%. 

Figure 2.5 shows the water supply areas in Edinburgh during the period the 

data cover. The Fairmilehead source supplied mostly the west of Edinburgh, 

while Alnwickhill the east. The “Joint” area is supplied by both water sources 

during this period. As explained in the methods section, the first treatment of 

calcium carbonate was effective in 1978 in Farimilehead areas, but not 

effective till 1985 in Alnwickhill areas. We therefore treat the “joint” area 

served by both sources as being treated at the same time as Fairmilehead in 

1978 but exclude it as a robustness check in section 2.6.1.  

Our two main outcomes are birthweight and under-5 mortality. We use only 

single births. Twins, and other multiple births are excluded as their outcomes 

tend to be very different, with lower birthweights in comparison to single 

births, as well as different probabilities of complications. However, multiple 

births are only around 1.5% of all births. Death episodes are used for all 

deaths and non-viable pregnancies, including stillbirths and spontaneous 

abortions. We also link the data with Scottish Morbidity Records so that it 

includes any deaths up to age 5. Under-5 mortality is the commonly used 

definition of child mortality and is the indicator used in Sustainable 

Development Goal (SDG) target 3.2: “Newborn and child mortality: By 2030, 

end preventable deaths of newborns and children under 5 years of age, with 

all countries aiming to reduce neonatal mortality and under‐5 mortality”9. 

 
9 See the SDG targets and indicators here: https://sdgs.un.org/.  

https://sdgs.un.org/
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Additional data used as controls at the individual level include the biological 

sex of the baby, and a series of mother's characteristics such as age, height, 

and previous obstetric history, such as the number of previous spontaneous 

abortions, and number of previous pregnancies. 

At the postcode level, the data is linked to Carstairs scores10, which are 

material deprivation indices that rank different areas by using information 

from the 1981 census about car ownership, male unemployment, 

overcrowding and low social class. If a postcode is in the bottom two deciles, 

we code that postcode with an indicator variable as being in a deprived area. 

Table 2.1 includes descriptive statistics of the variables used. 

 

 

Table 2.1 Descriptive Statistics 

Variable Group Mean Median Std Dev Obs 

Birthweight (grams)      

 Control 3318 3360 594 353,643 

 Edinburgh 3320 3360 595 76,498 

 Alnwickhill 3310 3350 603 26,172 

 Fairmilehead 3372 3410 567 8,315 

 Joint 3317 3360 595 42,011 

 Glasgow 3257 3300 591 216,771 

 High 3305 3340 589 31,337 

 Low 3248 3283 591 185,434 

Death Indicator Variable      

 Control 0.01 0 0.09 353,643 

 Edinburgh 0.01 0 0.09 76,498 

 Alnwickhill 0.01 0 0.10 26,172 

 Fairmilehead 0.01 0 0.09 8,315 

 Joint 0.01 0 0.09 42,011 

 Glasgow 0.01 0 0.09 216,771 

 High 0.01 0 0.09 31,337 

 Low 0.01 0 0.09 185,434 

 
10 These are rankings of areas by material deprivation. The variable takes into account material good 
ownership, such as car ownership, self-reported class, and unemployment amongst other variables to 
make an index. The Cairstairs scores were originally developed by Carstairs and Morris (1991) and are 
regularly generated and published by the MRC/CSO Social and Public Health Sciences Unit, the 
University of Glasgow 
(https://www.gla.ac.uk/schools/healthwellbeing/research/mrccsosocialandpublichealthsciencesunit/
programmes/inequalities/healthinequalities/determinantsofhealthandhealthinequalitiesinscotland/ca
rstairsscores/). 
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Proportion Living in 
Deprived Areas (Carstairs 
Index)      

 Control 0.11 0 0.32 353,643 

 Edinburgh 0.13 0 0.34 76,498 

 Alnwickhill 0.06 0 0.23 26,172 

 Fairmilehead 0.04 0 0.19 8,315 

 Joint 0.20 0 0.40 42,011 

 Glasgow 0.59 1 0.49 216,771 

 High 0.04 0 0.20 31,337 

 Low 0.69 1 0.46 185,434 

Total Previous Pregnancies      

 Control 1.18 1 1.28 353,643 

 Edinburgh 1.12 1 1.29 76,498 

 Alnwickhill 1.07 1 1.24 26,172 

 Fairmilehead 1.15 1 1.27 8,315 

 Joint 1.15 1 1.31 42,011 

 Glasgow 1.24 1 1.41 216,771 

 High 1.20 1 1.38 31,337 

 Low 1.24 1 1.41 185,434 

Mother's Age      

 Control 27.72 28 5.29 353,643 

 Edinburgh 28.43 29 5.46 76,498 

 Alnwickhill 28.25 28 5.32 26,172 

 Fairmilehead 29.93 30 5.24 8,315 

 Joint 28.25 28 5.54 42,011 

 Glasgow 26.90 27 5.58 216,771 

 High 28.56 29 5.36 31,337 

 Low 26.62 26 5.57 185,434 

Number of Previous 
Spontaneous Abortions      

 Control 0.22 0 0.57 353,643 

 Edinburgh 0.23 0 0.59 76,498 

 Alnwickhill 0.23 0 0.57 26,172 

 Fairmilehead 0.24 0 0.61 8,315 

 Joint 0.23 0 0.59 42,011 

 Glasgow 0.23 0 0.59 216,771 

 High 0.24 0 0.60 31,337 

 Low 0.23 0 0.59 185,434 
Male Infant Indicator 
Variable      

 Control 0.51  0.50 353,643 

 Edinburgh 0.51  0.50 76,498 

 Alnwickhill 0.51  0.50 26,172 

 Fairmilehead 0.52  0.50 8,315 

 Joint 0.51  0.50 42,011 

 Glasgow 0.51  0.50 216,771 

 High 0.51  0.50 31,337 

 Low 0.51  0.50 185,434 
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2.4 Methods 

 

We use the plausibly exogenous change in water treatments, at different 

points in time, to identify the effect of lead-water pollution on birth and early 

life health outcomes. Our main specifications use a difference-in-differences 

design. We further discuss the estimands, assumptions necessary, and 

specifications below. The following section is largely based on the excellent 

expositions in Athey and Imbens (2022), Wooldridge (2021), and Wooldridge 

(2010). 

 

2.4.1 Estimands 

Our main results focus on two estimands. First, the average effect of water 

treatment (and therefore lead reduction) at time 𝑡 on the group which began 

treatment at time 𝑟.  

We write this 𝜏𝑟𝑡 and define it formally below. 

(1) 𝜏𝑟𝑡 =   𝐸[ 𝑦𝑖𝑡(𝑟) −  𝑦𝑖𝑡(0) ∣∣  𝑑𝑖𝑟 = 1 ], 𝑟 = 𝑞, … , 𝑇;  𝑡 = 𝑟, … , 𝑇. 

Where 𝑦𝑖𝑡(𝑟) is the outcome for child 𝑖 at time 𝑡 given their water supply 

began treatment at time 𝑟, and 𝑟 ≤ 𝑡, and 𝑦𝑖𝑡(0) is the unobserved 

counterfactual outcome for child 𝑖 at time 𝑡 where they have not yet received 

treatment, 𝑞 is the first period where any cohort is treated, and 𝑑𝑖𝑟 is a cohort 

indicator which equals 1 if individual 𝑖 is in treatment group 𝑟. Simply, 𝜏𝑟𝑡 is 

the average effect of treatment on the treated (ATT) for that treatment cohort 

in that year. 

Our second main estimand is the average 𝜏𝑟𝑡 for all the years of treatment in 

our data.  
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(2) 𝜏�̅� =   𝐸[𝜏𝑟𝑡] , 𝑟 = 𝑞, … , 𝑇; 𝑡 = 𝑟, … , 𝑇. 

Which we estimate as: 

(3) 𝜏̅̂𝑟 =  
∑ �̂�𝑟𝑡

𝑇
𝑡=𝑟

(𝑇−𝑟+1)
 

With each 𝜏𝑟𝑡 defined in the specifications below.  

 

2.4.2 Difference-in-Differences Design Models 

Our main results are from models relying on difference-in-differences 

designs. In the baseline, reduced form model, lead levels, given by the 

variable 𝐿𝑒𝑎𝑑𝑖𝑡, are assumed to affect the birth outcome as shown in (4). 

With the treatment effect of lead given by T .  

(4) 𝑦𝑖𝑡 =   𝑐𝑗 + 𝑔𝑡 +  𝒙𝒊𝛃 + (T × 𝐿𝑒𝑎𝑑𝑖𝑡) +  𝑢𝑖𝑡  

Where 𝑦𝑖𝑗𝑡 is the outcome for individual 𝑖, at time 𝑡. There is a time-invariant 

postcode-level effect, 𝑐𝑗 , a time trend in outcome, 𝑔𝑡, and a vector of other 

variables that affect the outcome, 𝒙𝒊, which vary by individual.  The final term 

𝑢𝑖𝑡 is the error term.  

This model cannot be estimated for a number of reasons, not least because 

lead exposure of each individual at each time is unknown. Even if known, 

other variables may covary with lead and the outcome, leading to biased 

estimates due to endogeneity. We could estimate a two-way fixed effects 

model using a 𝑝𝑜𝑠𝑡 × 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 indicator but, given the staggered timing of 

the intervention between Glasgow, Fairmilehead, and Alnwickhill, this could 

lead to the effect not being identified, due to the “forbidden comparisons” 

problem. This is where the two-way fixed effects estimate is a weighted 

combination of all possible comparisons of each treatment and control group.  

Comparing two treated groups can lead to negative weighting of some of 
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these comparisons, and therefore not identify the ATT (Goodman-Bacon, 

2021, and Calloway and Sant’Anna, 2021). 

However, given the plausibly exogenous change in lead exposure outlined in 

section 2.2.2, we can identify the effect of the lead reduction for each separate 

treatment group, with the estimands (1) and (2), if we are willing to accept 

certain assumptions. Following Wooldridge (2021), these are: 

Conditional No Anticipation, Staggered Treatment (CNAS) 

Following Athey and Imbens (2022) and Wooldridge (2021), we define the 

outcome for the never-treated group as 𝑦𝑖𝑡(∞). Given this, we formally state 

the CNAS assumption as: 

(5) 𝐸[ 𝑦𝑖𝑡(𝑟) − 𝑦𝑖𝑡(∞) ∣∣ 𝑑𝑖𝑟 = 1, 𝒙𝒊 ] = 0, 𝑟 = 𝑞, … , 𝑇;  𝑡 <  𝑟. 

This states that before treatment, in each treatment cohort, the average 

difference between the treatment cohort’s outcome and the never-treated 

cohort’s, after conditioning on covariates, is 0. That is, once we have 

accounted for time trends, time-invariant fixed effects (such as cohort and 

area fixed effects), and other covariates we have no difference on average 

between treated and untreated before treatment. This assumption is testable, 

and we test it in section 2.5. 

Conditional Common Trends, Staggered Treatment (CCTS) 

(6) 𝐸[ 𝑦𝑖𝑡(∞) − 𝑦𝑖1(∞) ∣∣ 𝑑𝑖𝑟 , 𝒙𝒊𝒋 ] =  𝐸[ 𝑦𝑖𝑡(∞) − 𝑦𝑖1(∞) ∣∣  𝒙𝒊𝒋 ],  

𝑟 = 𝑞, … , 𝑇; 𝑡 = 2, … , 𝑇. 

This states that for every cohort the trend in outcome if never-treated is 

unrelated to being in any treatment cohort, after conditioning on the 

covariates. This can also be tested to a degree. See section 2.5.  

Linear in Parameters, Staggered Treatment (LINS) 

(7) 𝐸[ 𝑦𝑖1(∞) ∣∣  𝑑𝑖𝑟 , 𝒙𝒊𝒋 ] = 𝜂 + 𝒙𝒊𝜿 + ∑ 𝜆𝑟𝑑𝑖𝑟
𝑇
𝑟=𝑞 + ∑ 𝜁𝑟(𝑑𝑖𝑟  × 𝒙𝒊)

𝑇
𝑟=𝑞 , 
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 𝑟 = 𝑞, … , 𝑇. 

 

(8) 𝐸[ 𝑔𝑡(∞) ∣∣  𝒙𝒊 ] =  ∑ θs𝑓𝑠𝑡
𝑇
𝑠=2 +  ∑ (𝑓𝑠𝑡  × 𝒙𝒊)𝝅𝒕

𝑇
𝑠=2 , 𝑡 = 2 … , 𝑇. 

 

(9) 𝜏𝑟𝑡(𝒙) = 𝜏𝑟𝑡 + (𝒙𝒊 − 𝐸[𝒙𝒊|𝑑𝑖𝑟 = 1])𝝆𝒓𝒕 =  𝜏𝑟𝑡 + �̇�𝒊𝒓𝝆𝒓𝒕, 𝑟 = 𝑞, … , 𝑇; 𝑡 =

𝑟, … , 𝑇. 

 

Where 𝜂 is the intercept and 𝑓𝑠𝑡 are indicators for every time period that 

equal 1 when 𝑠 = 𝑡. Next, 𝑝𝑖𝑟𝑡 is a post-treatment indicator. It equals 1 for 

every period after that group first received treatment. Formally, 𝑝𝑖𝑟𝑡  =

1 ∀ 𝑡 > 𝑞𝑟 − 1, where 𝑞𝑟 is the period which the group first received 

treatment. For example, given 𝑡 = 1,2,3 and group 1 was first treated in 

period 2, then 𝑞1 = 2. If group 2 first received treatment in period 3 then 𝑞2 = 

3. Finally, �̇�𝒊𝒓 is the deviation from the cohort average for individual i.  

Equation (7) is the average outcome if never treated in period 1. Equation (8) 

is the time trend, which allows for both a common trend component and 

heterogenous trend effects based on the predetermined covariates. Equation 

(9) is the treatment effect for those treated, which again allows for a common 

treatment effect component which is different for each cohort, and a 

heterogenous treatment effect for each individual based on the 

predetermined covariates. 

Putting these together we have: 

(10) 𝐸[ 𝑦𝑖𝑡 ∣∣  𝑑𝑖𝑟 , 𝒙𝒊 ] = 𝜂 +, 𝒙𝒊𝜿 + ∑ 𝜆𝑟𝑑𝑖𝑟
𝑇
𝑟=𝑞 + ∑ 𝜁𝑟(𝑑𝑖𝑟  ×, 𝒙𝒊)

𝑇
𝑟=𝑞 +

 ∑ θs𝑓𝑠𝑡
𝑇
𝑠=2 +  ∑ (𝑓𝑠𝑡  × 𝒙𝒊)𝝅𝒕

𝑇
𝑠=2 +  ∑ ∑ 𝜏𝑟𝑡(𝑑𝑖𝑟  × 𝑝𝑖𝑟𝑡 × 𝑓𝑠𝑡) +𝑇

𝑠=𝑟
𝑇
𝑟=𝑞  

∑ ∑(𝑑𝑖𝑟  × 𝑝𝑖𝑟𝑡 × 𝑓𝑠𝑡 × �̇�𝒊𝒓)𝝆𝒓𝒕

𝑇

𝑠=𝑟

𝑇

𝑟=𝑞

 

If these assumptions hold, we can identify the effect of the lead reduction, 𝜏𝑟𝑡, 

for each group 𝑟, at time 𝑡, with the following model, using difference-in-
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differences design with a two-way Mundlak regression of Wooldridge 

(2021): 

(11) 𝑦𝑖𝑡 = 𝜂 +, 𝒙𝒊𝜿 + ∑ 𝜆𝑟𝑑𝑖𝑟
𝑇
𝑟=𝑞 + ∑ 𝜁𝑟(𝑑𝑖𝑟  ×, 𝒙𝒊)

𝑇
𝑟=𝑞 +  ∑ θs𝑓𝑠𝑡

𝑇
𝑠=2 +

               ∑ (𝑓𝑠𝑡  × 𝒙𝒊)𝝅𝒕
𝑇
𝑠=2 +  ∑ ∑ 𝜏𝑟𝑡(𝑑𝑖𝑟  × 𝑝𝑖𝑟𝑡 × 𝑓𝑠𝑡) +𝑇

𝑠=𝑟
𝑇
𝑟=𝑞  

∑ ∑(𝑑𝑖𝑟  × 𝑝𝑖𝑟𝑡 × 𝑓𝑠𝑡 × �̇�𝒊𝒓)𝝆𝒓𝒕

𝑇

𝑠=𝑟

𝑇

𝑟=𝑞

+ 𝑢𝑖𝑡 

 

We use the two-way Mundlak over other staggered difference-in-difference 

estimators, such as Calloway and Sant’Anna (2021), because it is the most 

efficient if the above assumptions hold. The control group in the two-way 

Mundlak uses all the information for never-treated, and all the information 

until treatment for the later treated cohorts. Calloway and Sant’Anna (2021) 

estimation uses only the information from these groups in the period before 

treatment. Likewise, other estimators do not use the whole of the pre-

treatment information and so throw away information.  

If we wish to allow for more heterogeneity in time trends, we can model the 

time trend as simply 𝑑𝑖𝑟  × 𝑡. This allows for heterogeneity in time trends and 

also allows us to test the common trends assumption with a Wald test jointly 

on all the coefficients of 𝑑𝑖𝑟  × 𝑡.  

2.4.3 Non-linear Difference-in-Differences Model 

Equation (11) allows us to estimate the effect on birthweights, but, unless we 

adopt a Linear Probability Model, it is not suitable for infant deaths. These 

are binary outcomes. It is likely the LINS and CCTS assumptions are violated.   

In this case we replace the CCTS assumption with an assumption of parallel 

relative trends.  
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Conditional Parallel Relative Trends, Staggered Treatment (CPRTS) 

(12)   
𝐸[ 𝑦𝑖𝑡(∞)∣∣𝑑𝑖𝑟 , 𝒙𝒊 ] 

𝐸[ 𝑦𝑖1(∞)∣∣𝑑𝑖𝑟 , 𝒙𝒊 ] 
=    

𝐸[ 𝑦𝑖𝑡(∞)∣∣𝒙𝒊 ] 

𝐸[ 𝑦𝑖1(∞)∣∣ 𝒙𝒊 ] 
 , 𝑡 = 2, … , 𝑇, 𝑟 = 𝑞, … , 𝑇 

 

Equation (12) states that the ratio of average outcome if never-treated at 

time t compared to the first period average outcome only depends on the 

covariates. There is no selection into or out of treatment.  

We replace the linear in parameters assumption with a pooled quasi-

maximum likelihood logistic model. 

(13) 𝐸[ 𝑦𝑖𝑡 ∣∣  𝑑𝑖𝑟 , 𝒙𝒊 ] = 𝚲 [ 𝜂 +, 𝒙𝒊𝜿 + ∑ 𝜆𝑟𝑑𝑖𝑟
𝑇
𝑟=𝑞 + ∑ 𝜁𝑟(𝑑𝑖𝑟  ×, 𝒙𝒊)

𝑇
𝑟=𝑞 +

 ∑ θs𝑓𝑠𝑡
𝑇
𝑠=2 +  ∑ (𝑓𝑠𝑡  × 𝒙𝒊)𝝅𝒕

𝑇
𝑠=2 +  ∑ ∑ 𝜏𝑟𝑡(𝑑𝑖𝑟  × 𝑝𝑖𝑟𝑡 × 𝑓𝑠𝑡) +𝑇

𝑠=𝑟
𝑇
𝑟=𝑞  

∑ ∑ (𝑑𝑖𝑟  × 𝑝𝑖𝑟𝑡 × 𝑓𝑠𝑡 × �̇�𝒊𝒓)𝝆𝒓𝒕
𝑇
𝑠=𝑟

𝑇
𝑟=𝑞  ]  

Where 𝚲 represents the logistic function. Equation (13), once again is 

estimated by two-way Mundlak, allows us to estimate the treatment effect on 

deaths. The treatment effect estimated is an average partial effect (APE) of 

being treated. That is, we estimate the model and then take the coefficients 

applicable for a particular year and cohort. We then get the expected value of 

the values with the treatment variable minus the values without including 

the treatment variable. We obtain standard errors for the APE with 

bootstrapping. 

 

2.5  Results 

We first plot the mean birthweight for Glasgow, Edinburgh and the control 

group in figure 2.10. In all groups there is a clear upward trend. The 

Edinburgh average tracks closely with the control group, while the Glasgow 

average remains below both at all times, and there is no convergence even 

after the 1978 and 1989 treatment. Both the Edinburgh and Glasgow 
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averages are more volatile than the control group. The trends appear similar 

for all groups. There is no clear treatment effect to be seen in the raw 

averages, but this may be due to differences in group characteristics that 

affect the treatment effect. We explore this in section 2.5 where we regress 

on covariates with a two-way Mundlak that controls for time-invariant fixed 

effects and time varying common effects.  

Similarly, in figure 2.11 we plot the percentage of pregnancies that result in 

death for each group. As stated in section 2.3, the deaths variable includes 

stillbirths, neonatal deaths, spontaneous abortions, and all infant deaths up 

to age 5. The trends are again similar, but the percentage for Glasgow and 

Edinburgh is more volatile. No clear treatment effect is visible in the raw  

Figure 2.10 Average Birthweight by Treatment Cohort, Grams 

Notes: Chart shows the mean birthweight in grams of each birth in Edinburgh, Glasgow and the control 

group.  

 

 

 



 
 

103 
 

Figure 2.11 Under-5 Mortality rate by Treatment Cohort 

Notes: Chart shows the total stillbirths, neonatal and under-5 death rates for all births in each birth in 

Edinburgh, Glasgow and the control group. 

data, but once again this may be due to heterogeneity in group characteristics 

and therefore selection bias. We move on now to the difference-in-

differences estimation. 

 

2.5.1  Two-Way Mundlak Regressions 

In table 2.2, we show the results for two-way Mundlak regressions as in 

equation (10) but excluding covariates 𝒙𝒊, and all the interactions with 𝒙𝒊. 

The dependent variable being birthweights and we use the full 1975-2000 

sample. The columns show the estimated cohort treatment effects for each 

year, estimand (1), with the final row showing the average for all the years, 

estimand (2). The coefficients and 95% confidence intervals are also plotted 

in figure 2.12. The first column shows the estimated treatment effect for 

Glasgow, i.e. from the treatment on the Loch Katrine water supply. The 

majority of point-estimate coefficients are negative, which would imply the 
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treatment was harmful and reduced birthweights. However, almost all are 

not significant at the 5% confidence level. The overall average is significant 

and implies the average effect of treatment on the treated Glasgow group 

actually reduced birthweights by 13g-5g. This is, at most, 0.03 of a standard 

deviation and we submit that this is not socially significant. The second 

column shows the treatment effects for the combined Fairmilehead and the 

jointly supplied water areas in Edinburgh. Again the 95% intervals and point 

estimates are in figure 2.12. Only the effect in year 13 is statistically 

significant, and neither is there a clear trend in treatment effect. The overall 

average, however, is positive and statistically significant at the 5% level. It 

implies the treatment had an overall effect of increasing average 

birthweights by 23g-4g. Again, we would submit this as not being socially 

significant. Finally, the third column shows the same results for Alnwickhill. 

Notice there are fewer year treatment effects because Alnwickhill pH was not 

raised successfully until 1985. The two-way Mundlak regression method 

allows us to estimate the treatment effect for staggered treatments such as 

this. Looking at figure 2.12, we can see there is no clear effect. Although most 

point estimates are positive, the 95% intervals are wide and most cover zero. 

The average effect in table 2.2 is statistically significant at the 5% level and 

implies an average treatment effect of raising birthweights by 25g-3g. Similar 

to the effect in the Fairmilehead cohort. 

 We test the assumptions of common trends and no anticipation by including 

a cohort indicator interacted with a continuous time variable in the 

regression, as suggested in Wooldridge (2021). We carry out a Wald test of 

joint null effects on each cohort and time interaction. We reject the 

hypothesis of no anticipation or no common trends if the Wald test fails and 

finds the coefficients to be jointly statistically significant. The p-value for the 

test is 0.01, so we reject the hypotheses of no anticipation or common trends. 

It is possible these assumptions are too strong, and the data would be better 

described by conditional no anticipation and conditional common trends 
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assumptions, as described in section 2.4. Therefore, we next estimate the 

two-way Mundlak regression with a suit of covariates as in equation (10). 

The covariates are described in section 2.3.  

The results of the two-way Mundlak with covariates are in table 2.3 and 

plotted in figure 2.13. Again, column 1 shows the Glasgow cohort treatment 

effects. There is no clear trend in the treatment. Most point estimates are 

negative but not significant. The overall average is negative and implies the 

treatment reduced birthweights by 25g-13g. Once again, although 

statistically significant we do not consider this to be socially significant. The 

second column show the Fairmilehead and joint treatment cohort. All the 

individual treatment estimates are small and not significant, as is the overall 

average. The third column is Alnwickhill treatment effects. The individual 

treatment effects show much the same pattern as the rest of the regressions, 

varying around zero with intervals that cover zero. The overall average is 

positive, but neither socially or statistically significant. We also perform a 

Wald test on the regressions by including the cohort and time variables. The 

p-value is 0.17, and therefore we do not reject the hypothesis of conditional 

no anticipation, or conditional common trends. 

 

 

 

 

 

 

 

 



 
 

106 
 

Table 2.2 Average Effect of Treatment-on-the-Treated on Birthweights in 

Grams, No Covariates 

Year Glasgow Std Error Fairmilehead Std Error Alnwickhill  Std Error 

       

1978 -17.1 (11.8) -15.2 (25.2) - - 

1979 0.5 (11.2) -14.8 (15.4) - - 

1980 -24.1 (10.6) 18.0 (21.4) - - 

1981 -7.2 (11.7) -16.3 (21.9) - - 

1982 -9.2 (12.8) 42.9 (25.1) - - 

1983 -1.5 (12.8) -12.2 (21.9) - - 

1984 -24.7 (13.1) 10.3 (33.6) - - 

1985 -0.2 (13.2) 25.8 (21.) 35.7 (15.9) 

1986 4.8 (11.5) -7.3 (22.9) -5.6 (28.7) 

1987 10.3 (13.) 11.7 (30.4) 31.3 (15.9) 

1988 0.0 (13.2) 35.0 (24.9) 31.5 (18.4) 

1989 -14.6 (14.1) -1.4 (22.4) -7.0 (17.5) 

1990 -9.7 (12.8) 46.5 (22.8) 17.7 (22.8) 

1991 -4.1 (13.3) 39.7 (20.7) 27.0 (23.6) 

1992 -19.5 (13.3) 9.9 (26.2) 4.6 (25.8) 

1993 2.7 (14.1) -23.3 (21.3) -47.2 (23.5) 

1994 -12.1 (15.4) -4.0 (27.4) 11.9 (28.3) 

1995 -24.1 (15.1) 30.5 (23.9) -3.8 (19.7) 

1996 -18.9 (15.5) 46.2 (21.7) 37.3 (25.1) 

1997 -10.5 (14.9) 11.1 (24.8) 20.0 (25.6) 

1998 -17.8 (14.7) 4.5 (25.1) 43.8 (24.1) 

1999 7.3 (14.6) 24.3 (24.5) 4.7 (23.3) 

2000 -21.8 (16.9) 47.3 (30.8) 17.1 (32.4) 

       

Average -9.2 (2.2) 13.5 (4.8) 13.7 (5.7) 

 

Notes: Table shows cohort specific treatment effects from two-way Mundlak regressions without 

covariates. Each year has an estimated treatment effect, and the bottom row is the mean of these. 

Robust standard errors, clustered by postcode sector, are in brackets.  
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Figure 2.12 Average Effect of Treatment-on-the-Treated on Birthweights, No 

Covariates 

Glasgow 

Fairmilehead
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Alnwickhill 

 

Notes: Figure shows each cohort’s specific average treatment-on-the-treated effects for every post-

treatment year (i.e. there are no leads in these charts) from two-way Mundlak regressions without 

covariates. The dotted lines represent the start of either lime dosing or orthophosphate dosing in the 

water supply. Each circle is the point estimate of treatment and has associated 95% confidence 

intervals calculated with robust standard errors, clustered by postcode sector.  
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Table 2.3 Average Effect of Treatment-on-the-Treated on Birthweights, 

Covariates Included 

Year Glasgow Std Error Fairmilehead Std Error Alnwickhill  Std Error 

       

1978 -15.5 (13.9) -13.6 (22.9) - - 

1979 -7.7 (12.3) -5.2 (15.5) - - 

1980 -8.7 (13.9) 12.6 (22.6) - - 

1981 -16.0 (14.9) -24.4 (22.) - - 

1982 -31.5 (12.7) 33.3 (24.3) - - 

1983 -9.1 (17.1) -28.0 (22.7) - - 

1984 -26.0 (14.7) -11.5 (29.4) - - 

1985 -33.4 (15.4) 11.3 (21.2) 44.9 (17) 

1986 -4.0 (16.1) -26.7 (19.) -5.1 (26) 

1987 -1.3 (18.2) -2.9 (21.9) 22.7 (15.5) 

1988 -16.2 (18.8) 16.8 (18.3) 33.9 (16.4) 

1989 -40.9 (16.7) -20.2 (19.) -6.0 (18.3) 

1990 4.2 (15.5) 32.8 (23.6) 21.3 (17.9) 

1991 -9.0 (26.9) 27.0 (20.7) 23.0 (24.9) 

1992 -33.6 (16.5) -20.1 (24.6) -0.8 (25.6) 

1993 8.2 (22.3) -34.8 (21.7) -43.2 (21.5) 

1994 -18.7 (18.2) -28.3 (29.6) 7.8 (29.8) 

1995 -41.9 (19.3) -9.0 (22.9) -17.3 (21.9) 

1996 -37.4 (19.) 15.4 (22.) 25.1 (25.8) 

1997 -17.5 (15.4) -14.0 (25.9) 7.6 (27.6) 

1998 -19.7 (23.9) -28.6 (26.9) 44.5 (23.1) 

1999 -19.6 (19.4) -3.3 (19.5) -10.5 (23.6) 

2000 -45.5 (18.) 12.7 (32.1) 16.6 (31.9) 

       

Average -19.2 (3.1) -4.7 (4.4) 10.3 (5.9) 

 

Notes: Table shows cohort specific treatment effects from two-way Mundlak regressions with 

covariates included in the regression. Each year has an estimated treatment effect, and the bottom row 

is the mean of these. Robust standard errors, clustered by postcode sector, are in brackets.  
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Figure 2.13 Average Effect of Treatment-on-the-Treated on Birthweights, 

Covariates Included 

Glasgow

 

Fairmilehead
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Alnwickhill

 

Notes: Figure shows each cohort’s specific average treatment-on-the-treated effects for every post-

treatment year (i.e. there are no leads in these charts) from two-way Mundlak regressions with 

covariates. The dotted lines represent the start of either lime dosing or orthophosphate dosing in the 

water supply. Each circle is the point estimate of treatment and has associated 95% confidence 

intervals calculated with robust standard errors, clustered by postcode sector.  

 

Overall, the results imply no socially significant effect of the various water 

treatments on birthweights, for any cohort. We next look at the child deaths 

outcome. 

Table 2.4 and figure 2.14 present the results from two-way Mundlak 

regression on mortality without any 𝒙𝒊 covariates. All standard errors are 

bootstrapped to account for sampling heterogeneity in the APE. In the 

Glasgow results we can see a clear negative treatment average partial effect. 

The effect is much stronger in the earlier years before fading out. The overall 

APE is also negative and statistically significant. It implies the treatment 

lowered deaths by between 0.3 and 0.1 percentage points. Given that the 
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highest percent of pregnancies that result in death in Glasgow observed in 

our sample was around 1.25%, this is a substantial and socially significant 

effect. However, when we examine the Fairmilehead cohort, the majority of 

point estimates of the APE are positive, although not statistically significant. 

The overall APE is positive but not statistically significant at the 5% level 

(figures in table are rounded). A similar pattern is shown in the Alnwickhill 

cohort, where the overall APE is neither significant statistically nor socially 

significant. A Wald test using heterogeneous cohort trend variables as before 

does not reject the joint nullity of these variables, with the p-value being 0.72. 

We therefore do not reject the No Anticipation and Common Trends 

assumptions. 

Next, we test the APE for the full two-way Mundlak with covariates as in 

equation (13). For Glasgow, the majority of year treatment effects are 

negative. The average estimated APE implies a smaller effect than without 

covariates. The estimate of the APE ranges from a large 0.4 percentage point 

decrease in deaths to a 0.01 increase in deaths. For the Fairmilehead cohort 

there is no clear pattern in the individual cohort-year treatment effects, but 

the overall average is negative, as we would expect, but neither not 

statistically significant, and much smaller than the Glasgow average 

treatment effect. For the Alnwickhill cohort, now almost all the cohort-year 

treatment point estimates are negative. The overall average is negative and 

implies the treatment led to a reduction in deaths of 0.7-0.1 percentage 

points.  A substantial decrease. Once again, a Wald test does not reject the 

nullity of the heterogeneous cohort time trend variables, and we therefore do 

not reject the No Anticipation, Conditional assumption or the Common 

Trends, Conditional assumption (p-value 0.26).  

Overall, our main results imply no evidence of a treatment effect for 

birthweights, but we do find evidence for a possibly strong effect on 

mortality reduction, at least for Glasgow and the Alnwickhill supplied area of 



 
 

113 
 

Edinburgh. Evidence for an effect on lower deaths in the Fairmilehead 

supplied area of Edinburgh is more ambiguous.  

  

Table 2.4 Average Partial Effect of Treatment on Deaths before Age 5, No 
Covariates 

Year Glasgow Std Error Fairmilehead Std Error Alnwickhill  Std Error 

       

1978 -0.003 (0.002) 0.004 (0.003) - - 

1979 -0.005 (0.002) 0.002 (0.003) - - 

1980 -0.005 (0.002) -0.002 (0.003) - - 

1981 -0.007 (0.002) 0.004 (0.003) - - 

1982 -0.006 (0.002) -0.003 (0.002) - - 

1983 -0.005 (0.002) 0.002 (0.002) - - 

1984 -0.007 (0.002) 0.007 (0.003) - - 

1985 -0.008 (0.002) 0.000 (0.003) -0.003 (0.003) 

1986 -0.004 (0.002) 0.002 (0.003) -0.006 (0.002) 

1987 -0.004 (0.002) 0.006 (0.003) -0.003 (0.003) 

1988 -0.001 (0.002) -0.001 (0.002) -0.003 (0.003) 

1989 -0.004 (0.002) -0.001 (0.003) -0.002 (0.003) 

1990 -0.001 (0.002) 0.004 (0.003) 0.001 (0.003) 

1991 -0.002 (0.002) 0.003 (0.003) -0.001 (0.003) 

1992 -0.002 (0.002) 0.005 (0.003) 0.006 (0.004) 

1993 -0.003 (0.002) 0.001 (0.002) -0.002 (0.003) 

1994 0.001 (0.002) 0.007 (0.003) 0.003 (0.003) 

1995 -0.003 (0.002) 0.002 (0.003) 0.001 (0.003) 

1996 0.000 (0.002) 0.000 (0.002) 0.004 (0.003) 

1997 -0.003 (0.002) 0.001 (0.002) -0.002 (0.002) 

1998 -0.001 (0.002) 0.005 (0.003) -0.003 (0.002) 

1999 -0.003 (0.001) 0.007 (0.002) 0.006 (0.003) 

2000 -0.001 (0.002) 0.003 (0.002) 0.002 (0.003) 

       

Average 

APE 

-0.003 (0.001) 0.003 (0.001) 0.000 (0.001) 

 

Notes: Table shows cohort specific Average Partial Effects (APE). These are calculated from logistic 

pooled quasi-maximum likelihood regressions using the two-way Mundlak method without covariates. 

The relevant cohort and year indicators are set to 1, and the difference with and without the cohort 

specific treatment indicator is taken. Each year has an estimated APE, and the bottom row is the mean 

of these. Standard errors of the APEs are bootstrapped.  



 
 

114 
 

Figure 2.14 Average Partial Effect of Treatment on Deaths before Age 5, No 

Covariates 

Glasgow

 

Fairmilehead
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Alnwickhill

 

Notes: Figure shows each cohort’s specific average partial effect (APE) for every post-treatment year 

(i.e. there are no leads in these charts). These are calculated from logistic pooled quasi-maximum 

likelihood regressions using the two-way Mundlak method without covariates. The dotted lines 

represent the start of either lime dosing or orthophosphate dosing in the water supply. Each circle is 

the point estimate of the APE and has associated 95% confidence intervals calculated with 

bootstrapped standard errors. 
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Table 2.5 Average Partial Effect of Treatment on Deaths before Age 5, 

Covariates Included 

Year Glasgow Std Error Fairmilehead Std Error Alnwickhill  Std Error 

       

1978 -0.001 (0.003) 0.002 (0.003) - - 

1979 -0.002 (0.002) -0.001 (0.002) - - 

1980 -0.006 (0.003) -0.005 (0.002) - - 

1981 -0.001 (0.002) 0.003 (0.004) - - 

1982 -0.001 (0.002) -0.006 (0.001) - - 

1983 -0.006 (0.002) 0.001 (0.002) - - 

1984 -0.004 (0.002) -0.006 (0.001) - - 

1985 -0.005 (0.002) -0.006 (0.002) -0.008 (0.003) 

1986 -0.002 (0.004) -0.005 (0.001) -0.008 (0.002) 

1987 -0.003 (0.003) 0.000 (0.003) -0.005 (0.003) 

1988 0.003 (0.002) -0.001 (0.002) -0.005 (0.004) 

1989 -0.001 (0.001) -0.001 (0.002) -0.008 (0.003) 

1990 -0.004 (0.002) 0.002 (0.003) -0.008 (0.002) 

1991 -0.004 (0.003) 0.002 (0.002) -0.005 (0.003) 

1992 -0.001 (0.003) 0.005 (0.003) 0.005 (0.004) 

1993 -0.003 (0.004) -0.001 (0.002) -0.006 (0.003) 

1994 0.000 (0.003) 0.005 (0.005) -0.008 (0.002) 

1995 0.000 (0.002) -0.002 (0.002) -0.003 (0.004) 

1996 0.001 (0.003) -0.004 (0.001) 0.003 (0.004) 

1997 0.001 (0.002) 0.001 (0.002) -0.003 (0.002) 

1998 -0.003 (0.002) 0.004 (0.002) -0.005 (0.002) 

1999 -0.001 (0.002) 0.003 (0.003) 0.000 (0.002) 

2000 0.001 (0.001) 0.002 (0.003) 0.000 (0.004) 

       

Average 

APE 

-0.002 (0.002) 0.000 (0.001) -0.004 (0.001) 

 

Notes: Table shows cohort specific Average Partial Effects (APE). These are calculated from logistic 

pooled quasi-maximum likelihood regressions using the two-way Mundlak method and including 

covariates. The relevant cohort and year indicators are set to 1, the relevant covariates indicators are 

set to1, continuous covariate variables are set to the cohort mean value for that covariate, and the 

difference with and without the cohort specific treatment indicator is taken. Each year has an 

estimated APE, and the bottom row is the mean of these. Standard errors of the APEs are bootstrapped.  
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Figure 2.15 Average Partial Effect of Treatment on Deaths before Age 5, 

Covariates Included 

Glasgow

 

Fairmilehead
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Alnwickhill

 

Notes: Figure shows each cohort’s specific average partial effect (APE) for every post-treatment year 

(i.e. there are no leads in these charts). These are calculated from logistic pooled quasi-maximum 

likelihood regressions using the two-way Mundlak method with covariates. The dotted lines represent 

the start of either lime dosing or orthophosphate dosing in the water supply. Each circle is the point 

estimate of the APE and has associated 95% confidence intervals calculated with bootstrapped 

standard errors. 

 

2.6 Robustness checks 

We carry out a number of robustness checks on our results. 

2.6.1  Two-Way Mundlak Robustness Checks 

 

In our main results the area in Edinburgh served with water by both the 

Alnwickhill and Fairmilehead plants, i.e. the “joint” area in figure 2.5, is 

included in the Fairmilehead cohort. This is due to households in the area 

having an average water pH above 8, much closer to the Fairmilehead pH, in  
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Table 2.6 Fairmilehead Birthweight Results Excluding Joint Water Supply 

Area, Average Treatment on the Treated 

Year Birthweight, 

No Covariates 

Std Error Birthweight, 

Covariates 

Std Error 

     

1978 12.4 (33) 42.8 (25.3) 

1979 10.6 (25.1) -6.1 (18.2) 

1980 3.9 (36.8) -31.3 (25.7) 

1981 -26.8 (32.1) -60.4 (24) 

1982 30.5 (49.8) -37.9 (38.2) 

1983 -62.5 (19.2) -68.8 (19.4) 

1984 -25.6 (39.7) -20.0 (32.2) 

1985 -7.9 (46.2) -75.7 (44.) 

1986 -25.6 (20.6) -79.6 (11.5) 

1987 -69.3 (47.7) -123.4 (45.1) 

1988 31.8 (28.8) -4.2 (15.4) 

1989 -9.2 (30.6) -51.2 (19.1) 

1990 36.8 (50.1) 1.5 (34.6) 

1991 23.1 (50.5) -42.5 (26.6) 

1992 -8.9 (50.9) -113.5 (17.1) 

1993 -66.4 (23.6) -78.8 (22.2) 

1994 -5.9 (48.5) 17.4 (45.5) 

1995 26.0 (38.6) -46.2 (21.9) 

1996 84.7 (30.4) 54.1 (15.8) 

1997 -21.8 (41.1) -90.7 (18.5) 

1998 -66.1 (41) -104.0 (47.6) 

1999 11.8 (36.1) 11.5 (29.2) 

2000 18.8 (58.5) -27.0 (49) 

     

Average -4.6 (8) -40.6 (10.1) 

 

Notes: Table shows cohort specific treatment effects from two-way Mundlak regressions with and 

without covariates included in the regression. Sample is set to exclude all observations jointly served 

water by the Fairmilehead and Alnwickhill plant. Each year has an estimated treatment effect, and the 

bottom row is the mean of these. Robust standard errors, clustered by postcode sector, are in brackets.  
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Table 2.7 Fairmilehead Deaths Before Age 5 Results Excluding Joint Water 

Supply Area, Average Partial Effect 

Year Deaths, No 

Covariates 

Std Error Deaths, 

Covariates 

Std Error 

     

1978 0.003 (0.007) 0.000 (0.000) 

1979 0.002 (0.004) 0.000 (0.000) 

1980 -0.006 (0.002) 0.000 (0.000) 

1981 0.008 (0.007) 0.000 (0.000) 

1982 -0.005 (0.002) 0.000 (0.000) 

1983 0.006 (0.008) 0.000 (0.000) 

1984 0.013 (0.01) 0.000 (0.000) 

1985 -0.006 (0.002) 0.000 (0.000) 

1986 0.013 (0.006) 0.000 (0.000) 

1987 0.014 (0.011) 0.000 (0.000) 

1988 0.003 (0.004) 0.000 (0.000) 

1989 -0.001 (0.005) 0.001 (0.002) 

1990 -0.002 (0.002) 0.000 (0.000) 

1991 0.005 (0.004) 0.000 (0.000) 

1992 0.003 (0.004) 0.002 (0.002) 

1993 0.007 (0.006) 0.000 (0.000) 

1994 -0.005 (0.002) 0.000 (0.000) 

1995 0.000 (0.006) 0.000 (0.000) 

1996 -0.001 (0.003) 0.000 (0.000) 

1997 -0.001 (0.004) 0.000 (0.000) 

1998 0.007 (0.007) 0.000 (0.000) 

1999 0.009 (0.005) 0.000 (0.000) 

2000 0.003 (0.004) 0.000 (0.000) 

     

Average 

APE 0.003 (0.002) 0.000 (0.000) 

 

Notes: Table shows cohort specific Average Partial Effects (APE). Sample is set to exclude all 

observations jointly served water by the Fairmilehead and Alnwickhill plant. These are calculated from 

logistic pooled quasi-maximum likelihood regressions using the two-way Mundlak method, with and 

without covariates. The relevant cohort and year indicators are set to 1, the relevant covariates 

indicators are set to1, continuous covariate variables are set to the cohort mean value for that 

covariate, and the difference with and without the cohort specific treatment indicator is taken. Each 

year has an estimated APE, and the bottom row is the mean of these. Standard errors of the APEs are 

bootstrapped.  
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1985 (see figure 2.6). However, including this group may mean our 

Fairmilehead results are not identified, as they do not receive identical 

treatments. We therefore exclude them from the two-way Mundlak 

regressions to see the effect on the results.  These are shown in table 2.6 and 

table 2.7. 

Table 2.6 shows the effect on birthweight with and without covariates. Both 

averages are small and negative. Implying the treatment reduced 

birthweights. Table 2.7 shows the results for deaths. Without covariates they 

show a small increase in deaths after treatment, but this is not statistically 

significant. With covariates we obtain a precise null effect for all years. These 

results are qualitatively similar to those when we include the joint water 

treatment area. In summary, we believe this shows it is not the inclusion of 

the joint treatment area in the Fairmilehead cohort that leads to no effect 

being found for Fairmilehead. 

Next we examine the Orthophosphate intervention in isolation. That is, we 

only regress on outcomes that happen after all pH interventions are over. 

This means the treatment baseline is when all treated units have their pH 

raised to acceptable levels (after 1985). Therefore, the treatment of 

orthophosphate can be examined independently of the pH level increases.  

The Edinburgh group can be treated as one cohort as they all receive 

orthophosphate treatment at the same time, and the pH treatments have 

already happened.  

Table 2.8 and 2.9, and figures 2.15 and 2.16 examine the regressions when 

we only look at the years 1986-2000, and therefore only at the 

orthophosphate treatment, for the birthweight outcome with and without 

covariates. Table 2.8, column 1 shows the treatment effects for Glasgow. The 

overall average is positive, but small and not significant. The biggest effects 

seem to be towards the end of the sample, but the 95% confidence intervals 

also cover zero. Table 2.9, column 1 shows the effect for Glasgow with 
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covariates. The results are much the same with the overall average positive 

but small and not significant. Column 2 shows the results for Edinburgh. 

Table 2.8, without covariates, shows an overall average that is negative, but 

small and not significant. Table 2.9 is qualitatively similar, with a small and 

insignificant average treatment effect.   

 

Table 2.8 Average Effect of Treatment-on-the-Treated on Birthweights 

Orthophosphate Treatment Only, No Covariates 

Year Glasgow Std Error Edinburgh Std Error 

     

1989 -2.4 (12) - - 

1990 -3.4 (12.5) - - 

1991 8.4 (11.3) 15.7 (19.1) 

1992 -8.5 (13.2) -9.0 (19.7) 

1993 14.8 (11.6) -52.1 (13.8) 

1994 -8.4 (13.9) -18.1 (24.7) 

1995 -4.7 (14.6) 2.8 (16.9) 

1996 -6.7 (15.) 26.0 (18.2) 

1997 6.3 (13.3) -3.3 (20.) 

1998 13.2 (13.5) 4.6 (20.4) 

1999 20.5 (13.9) -4.1 (20.1) 

2000 15.8 (14.2) 23.8 (23.2) 

     

Average  3.7 (3.1) -1.4 (7.2) 

 

Notes: Table shows cohort specific treatment effects from two-way Mundlak regressions without 

covariates included in the regression. Sample is restricted to 1985-2000. Each year has an estimated 

treatment effect, and the bottom row is the mean of these. Robust standard errors, clustered by 

postcode sector, are in brackets.  
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Table 2.9 Average Effect of Treatment-on-the-Treated on Birthweights 

Orthophosphate Treatment Only, Covariates Included 

Year Glasgow Std Error Edinburgh Std Error 

     

1989 -10.3 (12) - - 

1990 10.1 (13.3) - - 

1991 11.2 (12.9) 13.6 (17.1) 

1992 -7.5 (12.7) -21.4 (18.1) 

1993 14.9 (12.1) -50.8 (14.3) 

1994 -10.0 (14.4) -24.7 (26.4) 

1995 -3.4 (13.8) -17.7 (17) 

1996 -9.0 (15.8) 10.6 (17.5) 

1997 6.2 (13.3) -16.8 (19.7) 

1998 17.8 (14.8) -9.5 (19.8) 

1999 3.1 (15.5) -16.4 (20.) 

2000 9.8 (14.5) 10.7 (23.5) 

     

Average  2.7 (3) -12.3 (6.2) 

     

Notes: Table shows cohort specific treatment effects from two-way Mundlak regressions with 

covariates included in the regression. Sample is restricted to 1985-2000. Each year has an estimated 

treatment effect, and the bottom row is the mean of these. Robust standard errors, clustered by 

postcode sector, are in brackets.  
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Figure 2.16 Average Effect of Treatment-on-the-Treated on Birthweights 

Orthophosphate Treatment Only, No Covariates 

Glasgow 

Edinburgh 

Notes: Figure shows each cohort’s specific average treatment-on-the-treated effects for every post-

treatment year (i.e. there are no leads in these charts) from two-way Mundlak regressions without 

covariates. Sample is restricted to 1985-2000. The dotted lines represent the start of either lime dosing 

or orthophosphate dosing in the water supply. Each circle is the point estimate of treatment and has 

associated 95% confidence intervals calculated with robust standard errors, clustered by postcode 

sector.  
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Figure 2.17 Average Effect of Treatment-on-the-Treated on Birthweights 

Orthophosphate Treatment Only, Covariates Included 

Glasgow 

Edinburgh 

Notes: Figure shows each cohort’s specific average treatment-on-the-treated effects for every post-

treatment year (i.e. there are no leads in these charts) from two-way Mundlak regressions with 

covariates. Sample is restricted to 1985-2000. The dotted lines represent the start of either lime dosing 

or orthophosphate dosing in the water supply. Each circle is the point estimate of treatment and has 

associated 95% confidence intervals calculated with robust standard errors, clustered by postcode 

sector.  
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We repeat the logistic regression on deaths for Edinburgh and Glasgow using 

only the 1986-2000 sample in figure 2.17 and table 2.9, with and without 

covariates. Column 1 shows the APEs for the Glasgow orthophosphate 

treatment without covariates in the regression. Most point estimate APEs are 

negative as expected, the overall average point estimate is negative but close 

to zero. The 95% interval implies an effect from decreasing deaths by 0.1 

percentage points to increasing them by 0.06 percentage points. When we 

include covariates, the overall APE becomes larger in magnitude and with a 

more precise interval, implying the orthophosphate treatment reduced 

deaths by 0.1-0.03 percentage points. For Edinburgh, the two point estimate 

overall APEs have the opposite sign from expected, implying treatment 

increased deaths. Without covariates it implies an increase from 0.3-0.06 

percentage points. However, when covariates are includes this is no longer 

statistically significant, with the 95% range being from decreasing deaths by 

0.02 to increasing deaths by 0.03 percentage points. In summary, when 

examining only the orthophosphate treatment, we find no evidence for an 

effect on birthweights, and any effect on deaths is confined to the Glasgow 

sample.  
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Table 2.10 Average Partial Effect of Treatment on Deaths before Age 5, 

Orthophosphate Treatment Only, No Covariates 

Year Glasgow Std Error Edinburgh Std Error 

     

1989 -0.001 (0.002) - - 

1990 0.000 (0.001) - - 

1991 -0.001 (0.001) 0.001 (0.002) 

1992 0.002 (0.002) 0.005 (0.002) 

1993 -0.003 (0.002) -0.001 (0.002) 

1994 0.005 (0.002) 0.005 (0.001) 

1995 -0.002 (0.001) 0.001 (0.002) 

1996 0.000 (0.002) 0.000 (0.002) 

1997 -0.004 (0.001) -0.001 (0.001) 

1998 -0.001 (0.002) 0.001 (0.001) 

1999 -0.001 (0.002) 0.007 (0.001) 

2000 0.000 (0.002) 0.002 (0.001) 

     

Average  0.000 (0.000) 0.002 (0.001) 

 

Notes: Table shows cohort specific Average Partial Effects (APE). Sample is restricted to 1985-2000. 

These are calculated from logistic pooled quasi-maximum likelihood regressions using the two-way 

Mundlak method, without covariates. The relevant cohort and year indicators are set to 1, and the 

difference with and without the cohort specific treatment indicator is taken. Each year has an 

estimated APE, and the bottom row is the mean of these. Standard errors of the APEs are bootstrapped.  
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Table 2.11 Average Partial Effect of Treatment on Deaths before Age 5, 

Orthophosphate Treatment Only, Covariates Included 

Year Glasgow Std Error Edinburgh Std Error 

     

1989 -0.005 (0.002) - - 

1990 -0.003 (0.002) - - 

1991 -0.003 (0.002) 0.000 (0.002) 

1992 0.003 (0.002) 0.005 (0.002) 

1993 -0.003 (0.002) -0.002 (0.003) 

1994 0.003 (0.002) 0.002 (0.004) 

1995 -0.002 (0.002) -0.004 (0.001) 

1996 0.000 (0.002) 0.000 (0.002) 

1997 -0.004 (0.001) -0.001 (0.001) 

1998 -0.002 (0.002) 0.001 (0.002) 

1999 0.000 (0.001) 0.004 (0.002) 

2000 0.001 (0.001) 0.000 (0.002) 

     

Average  -0.001 (0.001) 0.000 (0.001) 

 

Notes: Table shows cohort specific Average Partial Effects (APE). Sample is restricted to 1985-2000.  

These are calculated from logistic pooled quasi-maximum likelihood regressions using the two-way 

Mundlak method and including covariates. The relevant cohort and year indicators are set to 1, the 

relevant covariates indicators are set to1, continuous covariate variables are set to the cohort mean 

value for that covariate, and the difference with and without the cohort specific treatment indicator is 

taken. Each year has an estimated APE, and the bottom row is the mean of these. Standard errors of the 

APEs are bootstrapped.  

 

 

 

 

 

 

 



 
 

129 
 

Figure 2.18 Average Partial Effect of Treatment on Deaths before Age 5, 

Orthophosphate Treatment Only, No Covariates 

Glasgow 

Edinburgh

 

Notes: Figure shows each cohort’s specific average partial effect (APE) for every post-treatment year 

(i.e. there are no leads in these charts). These are calculated from logistic pooled quasi-maximum 

likelihood regressions using the two-way Mundlak method without covariates. Sample is restricted to 

1985-2000.  The dotted lines represent the start of either lime dosing or orthophosphate dosing in the 

water supply. Each circle is the point estimate of the APE and has associated 95% confidence intervals 

calculated with bootstrapped standard errors. 
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Figure 2.19 Average Partial Effect of Treatment on Deaths before Age 5, 

Orthophosphate Treatment Only, Covariates Included 

Glasgow 

Edinburgh

 

Notes: Figure shows each cohort’s specific average partial effect (APE) for every post-treatment year 

(i.e. there are no leads in these charts). These are calculated from logistic pooled quasi-maximum 

likelihood regressions using the two-way Mundlak method with covariates. Sample is restricted to 

1985-2000.  The dotted lines represent the start of either lime dosing or orthophosphate dosing in the 

water supply. Each circle is the point estimate of the APE and has associated 95% confidence intervals 

calculated with bootstrapped standard errors. 
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Next, we examine if the prevalence of lead piping in Glasgow affected the 

strength of the relationship with our outcomes and the lead reducing 

treatment. Different treatment dosage levels, such as we have when some 

areas have high lead pipe prevalence, and others have low lead pipe 

prevalence, can lead the treatment effect estimates being biased if there is 

selection into or out of the different dosage groups (see Callaway et al., 

2021). To remove this threat to identification, Callaway et al., (2021) suggest 

regressing on each dosage group separately. 

Therefore, we perform separate two-way Mundlak regressions, first 

removing the low lead pipe prevalence areas from the sample, then removing 

the high lead pipe areas (see figure 2.4). One issue is that there are far fewer 

births in the high lead areas, and especially few death occurrences, with only 

1 or 2 in some years. Nevertheless, we include the estimation here as a 

robustness check.  

The results for birthweights are in table 2.12. They are similar to our main 

results for both the high and low lead areas, with small negative effects for 

both areas. The under-5 mortality results are in table 2.13. For high lead 

areas, we see the majority of years have negative APEs, but the effects are 

relatively small and the overall APE is a precise null. For low lead areas, the 

year estimates of the APE are predominately negative. The overall APE is also 

negative and statistically significant.  
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Table 2.12 Glasgow High and Low Lead Areas Only, Average Effect of 

Treatment-on-the-Treated on Birthweights, Covariates Included 

Year High Lead 

Areas 

Std Error Low Lead 

Areas 

Std Error 

     

1978 -63.4 (26.5) -10.6 12 

1979 -46.5 (21.9) 7.1 11.7 

1980 -90.3 (30.5) -14.2 10.3 

1981 -12.3 (24.0) -5.9 12.3 

1982 -17.9 (34.5) -7.4 13 

1983 -32.3 (32.5) 2.8 13.1 

1984 -60.7 (32.6) -19.3 13.5 

1985 -50.0 (41.4) 6.9 12.5 

1986 -30.5 (22.9) 9.7 11.9 

1987 -10.2 (24.7) 13.2 13.5 

1988 -37.5 (29.2) 5 13.7 

1989 -60.5 (31.7) -8.4 14.8 

1990 -10.4 (23.9) -11.1 13.6 

1991 -25.1 (36.5) -1.5 13.4 

1992 -39.6 (32.9) -17.9 13.6 

1993 12.7 (26.6) -0.6 14.8 

1994 -55.3 (46.4) -6.8 14.7 

1995 -66.6 (31.2) -19.2 15.8 

1996 -70.9 (31.5) -12.2 16.1 

1997 -28.6 (28.1) -10.8 15.6 

1998 -87.5 (28.5) -7.9 14.8 

1999 -50.7 (19.8) 14.7 15.5 

2000 -82.1 (33.3) -14.0 17.2 

     

Average -44.2 (5.6) -4.7 (2.2) 

 

Notes: Table shows cohort specific treatment effects from two-way Mundlak regressions with 

covariates included in the regression. Column 1 and 3 are separate regressions, columns 2 and 4 are 

the standard errors. Column 1 is a regression excluding the areas with low prevalence of lead piping in 

Glasgow.  Column 3 excludes the areas of high lead pipe prevalence in Glasgow. Each year has an 

estimated treatment effect, and the bottom row is the mean of these. Robust standard errors, clustered 

by postcode sector, are in brackets.  
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Table 2.13 Glasgow High and Low Lead Areas Only, Average Partial Effect of 

Treatment on Deaths before Age 5, Orthophosphate Treatment Only, 
Covariates Included 

Year High Lead 

Areas 

Std Error Low Lead 

Areas 

Std Error 

     

1978 -0.004 (0.001) -0.003 (0.002) 

1979 0.002 (0.003) -0.006 (0.000) 

1980 -0.002 (0.005) -0.006 (0.004) 

1981 0.004 (0.000) -0.008 (0.003) 

1982 0.000 (0.001) -0.006 (0.002) 

1983 -0.006 (0.001) -0.004 (0.002) 

1984 0.000 (0.004) -0.008 (0.001) 

1985 -0.005 (0.001) -0.009 (0.002) 

1986 -0.006 (0.000) -0.003 (0.001) 

1987 0.002 (0.001) -0.005 (0.002) 

1988 -0.001 (0.001) -0.001 (0.004) 

1989 -0.005 (0.000) -0.004 (0.002) 

1990 -0.001 (0.003) -0.001 (0.003) 

1991 0.001 (0.001) -0.002 (0.003) 

1992 0.002 (0.004) -0.003 (0.002) 

1993 0.001 (0.002) -0.003 (0.004) 

1994 0.005 (0.000) 0.001 (0.000) 

1995 0.001 (0.001) -0.004 (0.001) 

1996 0.001 (0.002) 0.000 (0.000) 

1997 -0.004 (0.002) -0.002 (0.002) 

1998 0.008 (0.002) -0.002 (0.002) 

1999 0.001 (0.002) -0.003 (0.001) 

2000 -0.001 (0.001) -0.001 (0.002) 

     

Average 0.000 (0.001) -0.004 (0.002) 

 

Notes: Table shows cohort specific Average Partial Effects (APE). These are calculated from logistic 

pooled quasi-maximum likelihood regressions using the two-way Mundlak method and including 

covariates. The relevant cohort and year indicators are set to 1, the relevant covariates indicators are 

set to1, continuous covariate variables are set to the cohort mean value for that covariate, and the 

difference with and without the cohort specific treatment indicator is taken. Each year has an 

estimated APE, and the bottom row is the mean of these. Standard errors of the APEs are bootstrapped. 

Columns 1 and 3 are separate regressions, columns 2 and 4 are the standard errors. Column 1 is a 

regression excluding the areas with low prevalence of lead piping in Glasgow.  Column 3 excludes the 

areas of high lead pipe prevalence in Glasgow.  
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2.6.2 Regression Discontinuity Design 

 

As an alternative identification strategy, we use a sharp regression 

discontinuity design (RDD). Here we separate the cohorts and regress each 

individual’s outcome on the date of birth with the cut-off being the treatment 

date. We use local linear regressions with a triangular kernel. We also use the 

optimal non-parametric bandwidth selection method with the robust bias 

corrected intervals of Calonico et al. (2020). This means that it is only a direct 

before and after treatment comparison, within each cohort. We no longer 

need to rely on the assumptions in section 2.4. Instead, we assume the 

expected value of the outcome is continuous in the neighbourhood of the 

treatment cut-off for both treated and untreated units. That is, mothers 

cannot perfectly manipulate birth dates so as to be one side of the treatment 

cut-off.  This would be violated if mothers knew about the upcoming water 

treatment and decided to delay birth until after treatment. Given there is 

always some randomness in birth dates (as many mothers will attest), we 

believe this is a reasonable assumption. See Cattaneo and Titiunik (2022) for 

a recent review of regression discontinuity design and its assumptions.  

Given this assumption holding, we estimate the effect of treatment for 

individual pregnancies near the treatment cut-off. We do not use this as our 

main estimation strategy for two reasons, the actual difference in lead 

exposure near the cut-off may be miniscule. Therefore, the estimate may be 

too noisy to find an effect. Secondly if the assumptions in section 2.4 hold, the 

RDD is less efficient because we are discarding so much of the variation.  

Table 2.14 and table 2.15 shows the results for the various RDD estimations. 

We use each cohort and we show both the pH raising treatment and the 

orthophosphate treatment. We also examine both outcomes, birthweights 

and deaths. For Glasgow, we see that none of the results are significant at the 

5% level. For birthweights, both the 1978 and 1989 treatment estimates are 
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small in magnitude, and the 1978 is positive, while the 1989 is negative. For 

deaths, both the 1978 and 1989 treatment estimates imply lowered deaths 

due to treatment, but neither is statistically significant at the 5% level.  

 

Table 2.14 Local Average Treatment Effect on Birthweights, Regression 

Discontinuity Design Results 

Group Coefficient Std Error Observations Bandwidth 

(days) 

     

Glasgow 1978 -3.5 (14.5) 216,556 1701 

Fairmilehead 1978  -10.2 (33.2) 50,291 1488 

Alnwickhill 1985 -108.0 (46.1) 26,151 1310 

   
  

   
  

Glasgow 1989 8.8 (14.1) 216,556 1416 

Edinburgh 1991 7.2 (28.4) 76,442 1461 

Notes: This table reports the local average treatment effect from separate sharp regression 

discontinuity designs on birthweights. Robust, bias corrected standard errors are reported in brackets.  

 

Table 2.15 Local Average Treatment Effect on Deaths Before Age 5, 

Regression Discontinuity Design Results 

Group Coefficient Std Error Observations Bandwidth 

(days) 

     

Glasgow 1978 0.000 (0.002) 216,771 1230 

Fairmilehead 

1978 

0.003 (0.006) 50,326 1303 

Alnwickhill 1985 -0.003 (0.005) 26,172 1781 
   

  
   

  

Glasgow 1989 -0.002 (0.002) 216,771 1722 

Edinburgh 1991 -0.002 (0.004) 76,498 1757 

Notes: This table reports the local average treatment effect from separate sharp regression 

discontinuity designs on deaths. Robust, bias corrected standard errors are reported in brackets.  
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For Fairmilehead and the 1978 treatment, both results are the opposite sign 

from expected, implying treatment lowered birthweights and raised deaths, 

but neither is statistically significant. In Alnwickhill for the 1985 treatment, 

the point estimates imply it lowered birthweights and lowered deaths. The 

birthweights estimate is large and statistically significant at the 5% level. The 

deaths estimate is not significant. When we look at Edinburgh as a whole for 

the 1991 orthophosphate treatment, both estimates are of the expected sign. 

The point estimate implies birthweights increased and deaths decreased, but 

neither is statistically significant.  

Overall, the RDD results are consistent with our main results. They show at 

best small effects on birthweights, but there is some possible effect on deaths, 

in Glasgow and in Edinburgh, but no effect in the Fairmilehead supplied area. 

Again, all estimates are relatively imprecise.  

2.6.3 Separating Treatment Groups 

As a final robustness check, we run two-way fixed effects regressions for each 

treatment group separately, against only the surrounding areas as a control 

group. This means that units treated at different times are not included in the 

regression, i.e. there is no staggered treatment to account for. Instead, only 

the surrounding never-treated areas are used as controls. The results are in 

table 2.16. Here the results suggest birthweights are increased by treatment 

in both Edinburgh groups but are not in Glasgow. For all death estimates we 

obtain precise nulls.  
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Table 2.16 Separate Two-Way Fixed Effects For Each Treatment Group 

 

Area Birthweights 

(ATT) 

Std Error Deaths (APE) Std Error  

      

      

Glasgow 1978 

 

-0.002 (0.001) 0.000 (0.000)  

Fairmilehead 

1978 

 

28.96 (5.05) 0.000 (0.000)  

Alnwickhill 

1985 

21.37 (3.89) 0.001 (0.001)  

      

Notes: This table shows results from three sperate regressions where each treated group is combined 

only with the never treated surrounding areas as the control group. Then We estimate two-way fixed 

effects for each group separately. Standard errors are clustered at postcode level for the Birthweights 

outcome, and are bootstrapped for the deaths outcome. 

 

2.7  Discussion and conclusion 

We examined the effect of lead reduction, through water treatment, on 

pregnancy outcomes in Glasgow and Edinburgh in the 20th century. We use a 

setting with plausibly exogenous staggered treatment and therefore use a 

difference-in-differences design that accounts for the staggered nature of the 

treatment. Across a variety of specifications, and with robustness checks, we 

do not find evidence for an effect of lead water pollution on birthweights, but 

we do find some evidence for a large effect on deaths, especially within the 

Glasgow area. Our main specification estimates that lead reduction accounts 

for a maximum 0.3-0.1 percentage point decrease in under-5 mortality in 

Glasgow and a 0.7-0.1 percentage point decrease in the Alnwickhill water 

plant supplied area of Edinburgh. This accounts for between 70% and 10% of 

the average death rate in Alnwickhill and 40% to 10% in Glasgow. This 

translates into 23-186 saved lives in Alnwickhill and 216-648 in Glasgow, 
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over the full 25 years of the sample. These findings are of a similar magnitude 

Clay et al. (2014) who find increasing water pH reduced deaths by 7%-33%, 

Edwards (2014) who finds lead in water increases the fetal death rate 

32−63%, and Grossman and Slusky (2019) who find increased lead in the 

water responsible for a 12% decrease in the fertility rate. However, although 

the effect is potentially very large, it is not robust to alternative 

specifications. 

These findings somewhat contradict the existing literature on the impact of 

lead and birthweights. However, while a number of studies have found a link 

between lead exposure and birthweights, there is still a body of literature 

that does not find an effect. Similarly, while a majority of studies in the 

literature find that lead exposure is linked to increased mortality, there are 

still some studies that have found no such relationship. Nevertheless, we 

must explain our findings in light of the plausible mechanisms laid out in 

section 2.2 and in light of previous findings. 

The results on birthweights may be explained by a selection mechanism. It is 

possible that an increase in infant survival rates could also result in lower 

average birthweights. This is because a decrease in stillbirths and 

spontaneous abortions may lead to more infants born with lower 

birthweights surviving to birth (Goldenberg and Culhane, 2007). In this case 

it might be expected that the effect o treatment on average birthweights 

would be negative, as most of our specifications find.  

As stated above, our main specification finds a positive effect of lead pollution 

on child mortality, but this is not robust. Hence it can be considered weak 

evidence at best. We propose three possible explanations for this finding. 

The first is that an effect on deaths does exist, but the sample size and the low 

number of child deaths annually – often less than 1 percent – may not be 

sufficient to detect it with precision. Related to this is the possibility that 

there is an effect, but not at the levels of lead in our sample. We find it very 
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hard to believe that there is no effect of lead, no matter the level of dosage, 

given the quantity of scientific literature on this (see section 2.2.1, and 

chapter 1 and chapter 3). However, it may be the level of exposure in our 

sample was simply too low to have a detectable average effect. Lead pollution 

at high levels causes very obvious and extreme health problems, but at lower 

levels it is much harder to see acute lead poisoning symptoms. However, the 

water and blood lead levels in our sample, especially for Glasgow, are much 

larger than in many other studies which find an effect.  

A second possibility is that the literature on lead and child mortality may be 

affected by publication bias. Many of the studies reviewed in section 2.2.1 

have small sample sizes, or do not employ robust methods for identifying 

causal relationships, potentially leading to biased findings. There do remain a 

few studies that are better identified. In particular Clay et al. (2014), Edwards 

(2013) and Grossman and Slusky (2019). Nevertheless, as shown in chapter 

1, the lead pollution literature suffers from publication bias. Even if every 

paper estimated an unbiased causal effect, in the presence of publication bias 

we would still be left with a bias in the literature. It is beyond the scope of 

this paper to estimate if there is publication bias for the lead pollution and 

birth outcomes literature, but it is a problem across empirical science and 

cannot be ruled out here. 

Thirdly, it is possible that lead exposure would typically have an effect on 

child mortality, but a mitigating factor specific to Scotland during the period 

of interest may have reduced its impact. One potential factor is nutrition, 

specifically high milk intake.  The UK and Northern Europe has some of the 

highest milk consumption rates in the world (FAO, 2022), more than two and 

a half times the global average (FAO, 2022). In the 1930s, the National Milk 

Scheme in Scotland promoted milk consumption and provided targeted 

subsidies for mothers of children under five years old. This, along with the 

provision of free milk in schools for much of the 20th century (Krebs, 2019), 

led to a significant increase in milk consumption. Studies have shown that 
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high milk intake is associated with lower blood lead levels (Chuang et al., 

2004). Thus, it is possible that better nutrition, particularly high milk 

consumption, may have played a role in reducing the impact of lead on infant 

mortality in Scotland.   

This study has several limitations. Firstly, the treatment variation is at a 

postcode level rather than an individual level and we also observe most of 

our sample only once. This means that our confidence intervals are less 

precise than if the treatment was exogenously applied at an individual level. 

However, this is common in the literature that examines the effect of lead 

with quasi-experiments because lead cannot be ethically given as part of a 

randomised control trial. We therefore must rely on coarser treatment 

variation. Secondly, our estimates of the average treatment on the treated 

mean that the effects we observe may only apply to larger urban areas. 

Perhaps there is something systematically different about rural areas that 

would mean a stronger effect. Parker and Wilby (2013) find that domestic 

water use per capita is much higher in rural areas compared to urban areas.  

Our study has several implications. Failure to find a robust effect on infant 

outcomes does not mean lead remediation is pointless. Lead has been shown 

to affect a large variety of outcomes (see section 2.2). Although the effect on 

deaths we found was not always statistically significant, several point 

estimates imply lead reduction saved many infant lives. However, for policy 

makers and citizens, it may change the weighting of lead remediation 

compared to other actions, such as improved nutrition or neonatal 

healthcare. Our study also suggests there may be powerful mediating factors 

between lead pollution and health outcomes, and these should be 

investigated. 
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3 Chapter 3 
 

The Impact of Lead Pollution on 

Human Capital Formation: Size of Dose 

Matters11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
11 We would like to thank Tanya Wilson, Hector Rufrancos, participants at the European Association of 

Environmental and Resource Economists (EAERE) conference 2022, at the Scottish Economic Society 

(SES) conference 2022, and at the Economics of Housing (EcHo) workshop at Royal Holloway 2022 for 

their comments.  
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Note on Chapter 3 

Unfortunately, data access to the Scottish Qualification Authority 

data was lost during the pandemic. Their organisation brought in 

new rules subsequently that has meant we have not been able to 

get access to matched sibling data as we had when the analysis in 

this paper was done. Therefore, this paper does not have the same 

level of robustness checks as the chapters 1 and 2. Nor will it be 

possible to get access to the data again to perform more analysis 

for the foreseeable future.  
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3.1  Introduction 

Recent estimates indicate 1 in 3 children suffer from high blood lead levels 

(GBD, 2019). The short-term health consequences of lead pollution on 

children are well known, but in recent decades studies have shown it may 

also have a variety of long-term, higher order outcomes, from anti-social 

behaviour and crime to lowering educational attainment (see, e.g., Aizer and 

Currie, 2019; Aizer et al 2018; Reyes, 2007). Given there are potentially 800 

million children worldwide with high lead levels, this implies huge future 

costs we are imposing now, and consequently large returns on investment in 

abatement. 

But lead is not the only pollutant, nor the only long-term cause of harm to 

children. Given production and political-economy constraints, lead 

abatement must compete against other policy needs, such as poverty 

reducing transfers, or greenhouse gas abatement. Balancing the long-term 

gains from lead abatement with other concerns requires knowledge of what 

long-term harm it does and, crucially, the relationship between that harm 

and the level of lead. This is called the dose-response relationship. 

Understanding the dose-response relationship is crucial for cost-benefit 

analysis and for understanding the trade-offs society faces when choosing 

lead abatement over other initiatives. If lead causes higher marginal damage 

at lower levels, such as those observed in high income countries today 

(typically below 5µg/dl), then reducing lead levels may not be as beneficial 

for low- and middle-income countries, as even high-income countries can 

struggle to reduce levels below this threshold. High income countries, on the 

other hand, will still see large gains from further reducing remaining lead 

pollution, even though lead has already fallen greatly from levels seen in the 

20th century. The reverse is true if the does-response relationship goes the 

other way. When marginal harms are larger at high levels of lead, then even 

small lead reduction measures may be attractive to lower income countries, 
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whereas high income countries may see more value in targeting the 

remaining pockets of high exposure, rather than in broad-based attempts to 

eliminate exposure.  

In this paper, we focus on the dose-response impact of lead pollution when 

born on children’s academic achievement 15-16 years later, exploiting a 

natural experiment in 1989 in Scotland. Previous studies have found infant 

lead exposure to be associated with long-term harmful outcomes, but there is 

disagreement in the literature on the dose-response relationship.  Grönqvist, 

Nilsson and Robling (2019) find a threshold effect when investigating the 

impact of pollution from leaded gasoline on children school’s achievements 

using local moss lead levels as an instrument for blood lead in Sweden. In 

particular, they find that the effects of early childhood exposure on the 

chances of graduating, or on the grade point average, are minimal or non-

existent until blood lead levels reach around 5µg/dl. Somewhat similarly, 

Sampson and Winter (2018) show no effect of lead on anti-social behaviour 

when blood lead is below 5µg/dl and increasing marginal effects at higher 

levels. Reyes (2007) finds that for some crime outcomes the effects of lead 

are 20 times as large for the 4th quartile of lead exposure than they are for 

the 1st quartile.  Gazze, Persico, and Spirovska (2021) find pre-school blood 

lead is linearly associated with worse education outcomes at the individual 

level, but also find large spill over effects from having peers with high lead 

levels. This potentially means spiralling adverse consequences once 

individual and networks effects are combined. In contrast, Evens et al., 

(2015) find higher marginal effects of lead on reading ability at lower levels 

of lead than at higher levels. Mielke and Zahran (2012) find the relationship 

between lagged air lead concentration levels and assault rates to be linear. 

Hollingsworth et al., (2022) similarly find a linear dose-response 

relationship, with lead lowering test scores. Miranda et al., (2007) find the 

relationship between blood lead and reading and mathematics ability to be 

linear, while Canfield et al., (2003) find that marginal effects on lead on IQ are 
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greater below 5µg/dl blood lead levels. Reyes (2015), using differences in 

state allowances of lead levels in gasoline as an instrument, finds higher 

elasticities of blood lead on behavioural problems at 5µg/dl blood lead than 

at >10µg/dl.  

We use rich administrative data showing exam results for every state school 

pupil in Scotland from 2000-2009. Uniquely, we link the data by name and 

address to enable us to identify siblings within the same household. Our 

identification strategy uses the plausibly exogenous variation resulting from 

a treatment of the water supply in Glasgow, Scotland in November 1989 to 

estimate the effects of infant lead water ingestion at different doses on long-

term education outcomes. Glasgow had elevated levels of lead in its water 

supply since the mid-19th century, due to a change in the water source used 

by the city (Troesken, 2006). Before treatment, Glasgow had water lead 

levels far in excess of those of Flint, Michigan in 2015, and the highest 

average blood lead levels of any city surveyed in the UK (Quinn, 1985). After 

treatment, the percentage of households with lead-water levels greater than 

50μg/l fell from 13% to 2% (Watt et al., 1996a) and the blood lead level of 

mothers from Glasgow decreased from 11.9μg/dl to 3.7μg/dl (Watt et al., 

1996a).  

To investigate the dose-response relationship, we split our sample into high, 

low, or control group doses based on the prevalence of lead piping in the 

local area and the water lead levels observed. We used a detailed map that 

distinguished between high and low lead prevalence that was constructed by 

researchers working on the Glasgow lead study between the end of the 1980s 

and beginning of the 1990s (Watt et al., 1996a). Residential sorting across 

locations is not random, and we deal with potential biases arising from 

correlated unobservable characteristics in a variety of ways. Our main 

identification strategy uses the difference between siblings within the same 

household born either side of treatment (i.e., before and after 1989), with 

difference-in-differences estimated between the dosage groups. This enables 
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us to control for family and housing fixed effects, such as the amount of lead 

piping in the household. Treated areas (high and low) are compared with the 

rest of Scotland, and with each other separately. This follows the Callaway, 

Goodman-Bacon, and Sant’Anna (2021) approach on comparing different 

doses with difference-in-differences.  

As a robustness check, our second strategy also uses a difference-in-

differences between dosage groups but with outcomes averaged at the school 

level, and using all pupil outcomes, not just those for siblings.  

Across econometric strategies, specifications and datasets, we find little 

evidence of an adverse lead effect on educational achievement for the low 

dosage group, but we do find evidence of socially significant effects for the 

high dosage group.  

Our findings are in contrast to the literature stating lead pollution has the 

highest marginal effects on human capital formation when it is at low levels 

(see above discussion).  

Our results contribute to the growing literature on the non-health effects of 

pollution (see e.g., Aguilar Gomez et al., 2022). Our paper uses a clean natural 

experiment to identify treatment groups in a place, Glasgow, which in the 

1980s suffered from health problems and inequalities that are comparable to 

some of today’s cities in middle-income countries. Much of the existing 

literature focuses on contemporaneous effects using cross-sections or, when 

looking at the long-run effects, by focusing on individual’s outcomes over 

time. Our paper improves upon this, because our rich administrative data 

enables us to control for family fixed effects by computing siblings 

differences across areas before and after the water treatment. Family 

background and resulting unobserved investments may be an important and 

often overlooked confounder in previous studies.  
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Our main contribution is to show that the marginal effects on education 

outcomes are not greater at low levels of lead, instead it is at the high levels 

where the greatest marginal effects can be found. The implications are that 

countries with low average lead levels cannot expect large gains in 

educational attainment from lead abatement, except in targeted programmes 

aimed at the highest lead polluted areas. However, countries and areas with 

high infant lead ingestion such as India, where as many as 60% of its 470m 

children may have lead levels greater than 5µg/dL, can expect huge future 

educational gains from lead abatement policies.   

 

3.2  Background 

3.2.1 Lead Pollution and Human Capital 

Lead has been recognised as harmful for thousands of years (see Needleman, 

1992), but the long-term effects of infant lead ingestion on educational 

outcomes have only been investigated in recent decades. Lead water 

pollution when young is thought to be especially harmful for three reasons: 

firstly, children absorb up to 50% of ingested lead compared to 10% in adults 

(WHO, 2010); secondly, the blood-brain barrier is the main defence against 

large, water-soluble molecules, and this is not fully developed until after the 

first year of life, with in utero absorption being the most dangerous period 

(Goldstein, 1990); thirdly, a much higher share of infant diet tends to come 

from water, either through breast milk and their mother’s water lead 

ingestion (Ettinger et al., 2004), or, more directly, from bottles of milk 

formula mixed with water (Baum and Shannon, 1997). In a 1993 survey, 84% 

of infants in Glasgow were bottle-fed (Watt et al., 1996b). 

Lead impairs nerve conduction (Sindhu and Sutherling, 2015), damages 

myelination in the nerve system (Brubaker et al., 2009), and can impede 

brain development (Lanphear, 2015). This may affect educational outcomes 
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directly, through nerve and brain injury.  Lead has been associated with 

impaired cognitive functioning (Vlasak et al., 2019) and lower IQ scores 

(Schwartz, 1994). A second possible mechanism is through behavioural 

changes. Blood lead levels are associated with aggressiveness, anti-social 

behaviour, and delinquency (Thomson et al., 1989, Needleman, 1996, and 

Reyes, 2015). These behaviours may have spill over effects on peers, so that 

even children with low-lead levels may experience worse educational 

outcomes due to peer behaviour (Gazze, Persico, and Spirovska, 2021).  

Given the likely strong relationship between infant lead levels and water 

lead, due to bottle feeding, water lead may be particularly harmful during 

early development, yet few studies look primarily at water lead levels and 

human capital. Zheng (2021) uses an instrumental variable estimation and 

finds increases in water lead levels reduce both mathematics and reading 

scores. Ferrie, Rolf, and Troesken (2012) find childhood water lead exposure 

lowers intelligence scores in US army enlistees. 

3.2.2 The Glasgow Water Treatment 

Glasgow’s population grew from around 90,000 citizens in 1801, to 300,000 

in 1841 (University of Portsmouth, 2022). Even in 1801, the water supply of 

30 wells was inadequate being “impregnated with sewage and other 

deleterious matter” (Burnet, 1869). The Council and several private 

companies in turn attempted to improve matters, by taking water from the 

Clyde River and water to the south. 

The Clyde water was pumped without being filtered and, due to the industrial 

use of the water, it was considered of poor quality, while the water supplied 

to the south of the city by the Gorbals Gravitation Water Company was of 

better quality. Even combined, however, these waterworks were not 

sufficient to keep the city supplied, especially not with water of good quality, 

so the Council eventually decided upon a new water supply: Loch Katrine. 

Katrine, a large and picturesque mountain lake, was considered more than 
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adequate to supply Glasgow’s growing population with good quality water. 

Indeed, the quality of the water was much remarked upon. A report to the 

council from a chemist, one Dr Smith, reported that the water “was almost 

absolutely pure, clear to the utmost and without colour…[and] needs no 

purification”. He then recommended this water to the council over any other 

option saying, “no town will have an equal abundance of such remarkably 

pure water” (Burnet, 1869). 

The water is very soft and pure. Soft water lacks the mineral content found in 

harder waters and this means it has a low pH. Low pH water reacts with lead 

pipes (high plumbosolvency), dissolving the metal into the water supply 

(Kim et al., 2011). This was known at the time, due to the experiments of 

Robert Christison (1844). In 1854 one chemist, a Professor Penny, found that 

Loch Katrine water, after travelling through lead pipes, was “highly charged 

with lead”, and believed it would be hazardous to supply such water to 

Glasgow (Burnet, 1869). The city council collected statement from various 

professors, engineers, and inhabitants of cities with soft water, before 

deciding there was no health risk. Glasgow has been supplied with Loch 

Katrine water ever since. 

Professor Penny’s worries over the Glasgow water lead levels would not be 

returned to until the mid-20th century. UK blood lead monitoring surveys in 

the 1970s found that Glasgow had the highest geometric mean blood lead 

level in any city surveyed (Quinn, 1985) at 18μg/dl. Six separate lead 

working sites were monitored in the same survey, and the Glasgow mean 

blood-lead level was higher than the mean of people living near those sites in 

all but one case. It was higher than the mean level of the lead workers 

themselves in 4 out of 6 sites (Quinn, 1985). Using these monitoring results, 

Quinn (1985) found that local plumbosolvency was much more closely 

related to local blood lead levels than distance to a road, and that lead-water 

intake was likely the biggest factor in the UK. 
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Figure 3.1 Water Lead and Blood Lead Levels in Glasgow 

 

 

Source: Watt et al., 1996a. 



 
 

157 
 

By this time, the health impacts of “moderate” levels of lead were being taken 

seriously, and an EU directive in 1980 set the maximum water supply 

concentration of lead to 50μg/l from the previous 100μg/l (Watt et al., 2000). 

The Glasgow water supply was treated in 1978 with lime (Calcium 

hydroxide) to raise the pH and reduce plumbosolvency. This raised the pH 

from 6.3 to 7.8, and reduced the water lead levels (Moore et al., 1981).  

However, in the late 1980s, the remaining levels of lead were deemed to still 

be too high. Surveys of water lead levels in residences found that in 1981, 

after the initial treatments, 13% of Glasgow households had water lead levels 

greater than 50μg/l (Moore et al, 1998), and 5% of homes had lead-water 

levels greater than 100μg/l (Moore et al., 1982). For comparison, the 90th 

percentile of lead-water samples in Flint, Michigan in 2015 was 31μg/l 

(Pieper et al., 2018). 

Therefore, a second treatment of adding orthophosphate to the water was 

begun in November 1989 (Watt et al., 1996a). Correspondence with the 

engineering team involved with the project indicate the treatment was 

successful within a few weeks (author correspondence, 202012), and lead-

water levels fell. The percentage of households with lead-water levels greater 

than 50μg/l fell from 13% to 2% (Watt et al., 1996a). A long-term survey of 

mothers giving birth from Glasgow shows a decline in geometric mean blood 

lead levels from 11.9μg/dl in 1981 to 3.7μg/dl in 1993 (Watt et al., 1996a). 

Figure 3.1 shows these declines. Although the water reduction can be mostly 

attributed to the water treatments, the blood lead level reduction was 

coterminous with reductions in leaded gasoline in the UK. Therefore, 

additional methods are needed to identify the effect of the water treatment, 

and reduction in lead. 

We use the plausibly exogenous reduction in lead intake resulting from the 

1989 water treatment to identify the effect of lead on education outcomes. 

 
12 We would like to thank Stuart Robertson for his time and efforts. 
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However, we also distinguish between areas with a high lead pipe prevalence 

and areas with a low lead pipe prevalence withing Glasgow.  

In Glasgow at this time there were estimated to be 160,000 housing units 

with some lead piping out of the 300,000 in the city (Watt et al., 1996a), but 

this was not equally concentrated. Far more of the older housing units had 

lead piping, either as service pipes under the ground, internal piping, or lead 

water tanks. Surveys of the population in Glasgow showed that 19% in the 

high lead areas said they had lead piping compared to 9% in the other areas 

of Glasgow (Watt et al., 1996a). They also had far higher concentrations of 

lead in their water supply even after the 1989 treatment (table 3.1). 

Crucially, table 3.1 shows that “low lead” does not mean “no lead”. Even after 

treatment, around 13% of households in low lead areas had water lead levels 

above the modern UK limit of 10μg/l (Drinking Water Inspectorate, 2021). 

Around 46% had lead levels greater than 2μg/l, which would indicate even 

higher lead levels were present before treatment. McDonell, Campbell, and 

Stone (2000) found that the reduction in neural tube defects in the years 

after treatment was much greater in the high lead areas than in the low lead 

areas (table 3.2). These facts indicate a dose response relationship, where the 

effect of treatment will be higher in areas with higher lead-water levels. We 

therefore divide our sample into “High Lead” and “Low Lead” for our main 

estimates.  
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Table 3.1 Water Lead Concentrations in High and Low Lead Pipe Prevalence 

Areas, Glasgow, 1993 

   
 Percent of Households 

μg/l High Lead Areas Low Lead Areas 
   
<2 37.4 53.8 
2-9 35.5 31.8 
10-24 17.7 8.3 
25-49 5.6 3.9 
≥50 3.7 1.5 
   
Observations 785 941 
   

Notes: Data from table 5 in Watt et al. (1996a).  

 

 

Table 3.2 Pregnancy prevalence of neural tube defects for each 1000 live 

births, Glasgow 

 1983-95 1990-95 

High Lead Area 2.1 0.69 
   
Low Lead Area 2.4 1.8 
   

Notes: Data from table 2 in McDonell, Campbell, and Stone (2000). Neural tube defects are early stage 

in utero damage to the brain, spine, or spinal cord.  

 

 

3.3  Data 

Our education data, sourced from the Scottish Qualifications Authority (SQA), 

includes crucial information such as the date of birth and postcodes of each 

schoolchild who sat exams during the period of interest. This data is essential 

for determining which pupils were affected by the water treatment and 

distinguishing between treatment and control areas. The SQA data also 

includes the education outcomes for every pupil in Scotland (97% are 15-16 

years old on year of test), the year of examination, and the centre they 

attended (usually a school or college). The datasets include pupils born 
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between 1984 and 1993. We only have data for state schools, not for private 

schools or academies13. However, 96% of pupils in Scotland use state 

schools14. We exclude schools in Edinburgh from our sample, as they 

underwent a similar treatment in 1991, partly due to the findings of the 

Glasgow lead monitoring studies. SQA also provide matching indicators for 

siblings, where children are matched to the same family by surname, 

postcode and first line of address, but with different ages and first names. 

Finally, they provide the Scottish Index of Multiple Deprivation (SIMD) 2009 

quintile for each child’s postcode. The SIMD is a ranked index of deprivation 

on multiple dimensions (Income, Health, Education, Housing etc). The index 

is recalculated every 3 years. Although the ranking of each postcode moves 

around somewhat, the quintiles are relatively stable. We also use youth 

unemployment data for each year at the local authority level. 

All children in Scotland during this period sit exams in their fourth year of 

secondary school at Standard Grade. 97% are 15 or 16 years old when they 

sit their exams. They sit exams in several subjects. We observe exam results 

from the years 2000-2009. The passing grades for these exams go from 1, the 

highest, to 7, a fail. A grade of 1 or 2 is called a “Credit” grade and allows one 

to go on to study the next level in the following year (called a “Higher”). 

Points are also awarded for each grade in each subject, and these are used as 

a marker for progressing to tertiary level education. The better the marks 

received, the higher the number of points. We only include the first 

examination year where a child sits Standard Grades in our sample (i.e., we 

do not include resits or repeated years).  

We consider three outcome variables. The first is the total Standard Grade 

points achieved in that examination year. More points are better, but some 

 
13 Academies are state funded schools, but they are not controlled by the local council. 
Instead, they are usually controlled by an independent non-profit organisation.  
14 Scottish Council of Independent Schools census: https://www.scis.org.uk/facts-and-
figures/#:~:text=SCIS%20uses%20the%20information%20collected,4%25%20of%20pupil
s%20in%20Scotland  

https://www.scis.org.uk/facts-and-figures/#:~:text=SCIS%20uses%20the%20information%20collected,4%25%20of%20pupils%20in%20Scotland
https://www.scis.org.uk/facts-and-figures/#:~:text=SCIS%20uses%20the%20information%20collected,4%25%20of%20pupils%20in%20Scotland
https://www.scis.org.uk/facts-and-figures/#:~:text=SCIS%20uses%20the%20information%20collected,4%25%20of%20pupils%20in%20Scotland
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subjects, such as Physics or Chemistry, are considered harder, but 

nevertheless taken as they are a prerequisite for some university courses 

(e.g., medicine often requires at least two science subjects). Some other 

subjects may be chosen instead if they are believed to be easier to get a Credit 

grade in, and the child does not wish to study medicine or engineering for 

example. Therefore, we consider two other outcomes: whether a child 

achieves a Credit grade in Mathematics, or in English. These are two subjects 

every child must sit, and therefore may give a better indication of change in 

ability rather than tastes in subjects. We use a Credit grade because this is the 

level needed to progress to “Highers” (a more difficult level of study, and a 

prerequisite for university) in the following year. 

We sort each child into the “High Lead”, “Low Lead” or “Control” based on 

their 1993 school postcode, using the plan of Loch Katrine supplied 

households, and high and low leaded pipe prevalence used in the map of Watt 

et al. (1996a). See figures 3.2 and 3.3 for a map of the schools and the high 

and low lead areas. Postcodes are UK government administrative boundaries 

used for a variety of purposes including the sorting of mail. Almost all 

postcodes have no more than 100 addresses, with the average being 1515. In 

urban areas they tend to be smaller than in rural areas. Although the 

matching is done based on household postcodes and then siblings were 

marked in the data for us, we were not given the household postcodes 

themselves. Therefore, children are sorted into treatment areas based on the 

school postcode. This means that children are assumed to be in the treatment 

area if their school is in the treatment area. In some cases, this will not be 

correct. For example, a “High Lead” school catchment area may include some 

areas that are “Low Lead”. However, state school catchment areas are based 

on the postcodes surrounding the school so we expect most child postcodes 

to be nearby, especially in urban areas. There may also be placing requests. 

 
15 See https://www.ons.gov.uk/methodology/geography/ukgeographies/postalgeography.  

https://www.ons.gov.uk/methodology/geography/ukgeographies/postalgeography


 
 

162 
 

These are requests by parents to have a child attend a certain school even 

though they are not in the school catchment area. Placing requests are 

generally a very small percentage of total pupil numbers but the combination 

of placing requests and school treatment not matching household treatment 

area means there will be some measurement error. The sign of the bias is 

difficult to know a priori. Schools perceived as “good schools” will likely have 

more placing requests, and therefore more pupils from outside their 

treatment area. Population changes in postcodes surrounding the schools can 

affect how many in a school are from the same treatment area as the school 

postcode.  

If the treatment increases schooling outcomes, then pupils from “Low Lead” 

or “Control” areas going to “High Lead” schools, or “Control” to “Low Lead” 

would bias treatment estimates downwards, as would “High Lead” moving to 

the other areas. However, this may not be the only selection bias effect. For 

other kinds of bias to affect our estimated, it would require a violation of the 

parallel trends assumption in section 3.4. For example, if, over time, the 

pupils from “Control” areas tending to move to treatment areas were higher 

quality than before, this could lead to positive bias in the treatment effect. 

This is somewhat testable with event studies, which we carry out in section 

3.5.2. 

Summary statistics for our data are included in table 3.3. 

 

 

 

 

 

 

 



 
 

163 
 

Table 3.3 Descriptive Statistics 

    

Panel A - Full Sample    

Variable N Mean Std Dev 

Outcomes    

Standard Grade Points 522661 163.106 80.269 
Mathematics Credit Pass (=1 if passed with credit 
score) 468490 0.307 0.461 

English Credit Pass (=1 if passed with credit score) 490212 0.425 0.494 

    

Covariates    

Child SIMD quintile 1 544041 0.213 0.41 

Child SIMD quintile 2 544041 0.204 0.403 

Child SIMD quintile 3 544041 0.201 0.401 

Child SIMD quintile 4 544041 0.198 0.399 

Sex (1 = Male) 558379 0.505 0.5 

Year of Birth 558379 1988.526 2.839 

Area Youth Unemployment (%) 558379 62.625 6.33 

    

Panel B - High Lead Areas Sample    

Variable N Mean Std Dev 

Outcomes    

Standard Grade Points 18248 155.499 74.628 
Mathematics Credit Pass (=1 if passed with credit 
score) 17004 0.259 0.438 

English Credit Pass (=1 if passed with credit score) 17650 0.337 0.437 

    

Covariates    

Child SIMD quintile 1 17763 0.41 0.492 

Child SIMD quintile 2 17763 0.234 0.423 

Child SIMD quintile 3 17763 0.155 0.362 

Child SIMD quintile 4 17763 0.117 0.322 

Sex (1 = Male) 18616 0.518 0.5 

Year of Birth 18616 1988.436 2.852 

Area Youth Unemployment (%) 18616 52.079 3.034 

    

Panel C - Low Lead Areas Sample    

Variable N Mean Std Dev 

Outcomes    

Standard Grade Points 35012 144.936 75.292 
Mathematics Credit Pass (=1 if passed with credit 
score) 31039 0.233 0.423 

English Credit Pass (=1 if passed with credit score) 33628 0.335 0.472 
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Covariates    

Child SIMD quintile 1 35153 0.564 0.496 

Child SIMD quintile 2 35153 0.145 0.352 

Child SIMD quintile 3 35153 0.1 0.301 

Child SIMD quintile 4 35153 0.093 0.29 

Sex (1 = Male) 37144 0.48 0.5 

Year of Birth 37144 1988.535 2.841 

Area Youth Unemployment (%) 37144 54.563 6.016 

    

Panel D - Control Sample    

Variable N Mean Std Dev 

Outcomes    

Standard Grade Points 469401 164.757 80.655 
Mathematics Credit Pass (=1 if passed with credit 
score) 420447 0.315 0.464 

English Credit Pass (=1 if passed with credit score) 438934 0.435 0.496 

    

Covariates    

Child SIMD quintile 1 491125 0.181 0.385 

Child SIMD quintile 2 491125 0.207 0.405 

Child SIMD quintile 3 491125 0.21 0.407 

Child SIMD quintile 4 491125 0.209 0.407 

Sex (1 = Male) 502619 0.506 0.5 

Year of Birth 502619 1988.529 2.838 

Area Youth Unemployment (%) 502619 63.646 5.616 
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Figure 3.2 Distribution of Schools in Scotland 

 

Notes: Dots represent school locations. Due to travel distances and sparse population several markings 

for “Schools” on the islands may represent the same nominal school but are given different IDs in the 

data. 
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Figure 3.3 Distribution of Schools, High and Low Lead Areas in Loch Katrine 

Water Supply Area 

 

Notes: shaded area is the Loch Katrine water supply area. Darker shading indicates a high prevalence of 

lead piping. Lines represent different postcode sectors. Dots represent school locations. 

 

3.4  Empirical Strategy  

Our identification strategy relies on the plausibly exogenous variation in lead 

ingestion, in the womb and in childhood, resulting from the orthophosphate 

treatment of the Loch Katrine water supply to Glasgow in November 1989. As 

lead ingestion has been shown to be particularly harmful in the womb, our 

treatment start date is for children conceived after treatment. Of course, we 

do not have data on when our sample was conceived, only the date of birth. 
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We take as our start date 1st of September 1990. That is, given the treatment 

would be effective by end of November (author correspondence, 2020), we 

take as the treatment group children born 9 months after this. The 

distribution of birth time from conception for term births is unimodal and 

symmetrical within the 10th-90th percentiles (Jukic et al., 2013). We believe 

there will only be minor classical measurement error resulting from this, but 

it may attenuate our estimates. Therefore, our estimates, if unbiased, may be 

a lower bound of the effect. 

Our main identifying assumption is that the water treatment in November 

1989 is exogenous variation in the lead intake of children conceived within 

the Loch Katrine supply area in Glasgow. Therefore, we assume that this 

treatment has an effect on education outcomes and is not associated with any 

confounding variables. We estimate our main results with a variety of 

difference-in-differences specifications. Our estimand is the Average Effect of 

Treatment on the Treated (ATT). This requires an assumption of parallel 

trends, the change in outcomes would be the same for treated and untreated 

without treatment. Given Glasgow is an urban area, with much higher 

concentrations of poverty than the Scottish average, we therefore also 

condition on a variety of covariates so that we assume parallel trends 

conditional on these covariates in some specifications.  

As we have only one treatment period, that is common to all treated units, 

and a control group that is always untreated, we do not have to consider 

potential negative weighting arising from comparing earlier treated to later 

treated groups. Therefore, certain elements of the modern difference-in-

difference literature, such as Goodman-Bacon decomposition (Goodman-

Bacon, 2021) or reweighting of estimates (Calloway and Sant’Anna, 2021), do 

not apply. However, we do need to factor in another facet of the recent 

difference-in-difference literature: continuous treatment. 
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Different treatment doses combined into one treatment group can mean 

biased estimates of the ATT. Callaway, Goodman-Bacon, and Sant’Anna 

(2021) show that when you combine different doses you need stronger 

assumptions than with standard two-way fixed effects. The common 

identifying assumption with standard two-way fixed effects difference-in-

differences is parallel trends (or conditional parallel trends). With 

continuous treatment (i.e. different dosages) combined, this assumption will 

be violated if there is selection into different dosage units. For example, if 

people within the treatment area begin to move to housing that has more 

lead piping, due to the water now being safer. With combined dosage 

difference-in-differences, we require stronger assumptions of either no 

selection into different dosage areas on average, or homogenous treatment 

effects. 

These stronger assumptions can be relaxed back to standard parallel trends 

if, following the advice in Callaway, Goodman-Bacon, and Sant’Anna (2021), 

we separate the dosage units and compare them individually with the never-

treated groups. Now all that is required is parallel trends between each 

dosage level separately with the control group. This is analogous to the 

traditional parallel trends assumption and can be made conditional on 

covariates. Callaway, Goodman-Bacon, and Sant’Anna (2021) show that this 

approach recovers an unbiased estimate of the ATT for that group and dose, 

but we sacrifice some efficiency by excluding some of the sample. 

Our best proxies for treatment dosage are the high and low lead areas of 

Glasgow as described in section 3.2. Following the advice in Callaway, 

Goodman-Bacon, and Sant’Anna (2021), we compare each separate dose 

group to the never treated group in separate regressions.  

In our first approach, we use the matched sibling-household data and carry 

out a simple difference-in-differences estimation. Given matched siblings live 

in the same household, with the same lead piping exposure before and after 



 
 

169 
 

treatment, household and area characteristics will be the same between 

siblings, and we should be able to recover the ATT with this approach, given 

our assumptions. 

First we exclude households without siblings either side of the treatment 

divide. That is, we only consider households which have at least one older 

sibling born before 1st of September 1990, and at least one younger sibling 

born after this date. We take the difference between the siblings’ outcomes 

within the household. If there are more than one sibling on one side of the 

treatment divide we average their outcomes as shown in below: 

(1)   𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑_𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒ℎ =  
∑ 𝑌ℎ𝑗

𝐽
𝑗=1

𝑛ℎ1
−  

∑ 𝑌ℎ𝑖
𝐼
𝑖=1

𝑛ℎ0
 

Where the Y is one of three outcomes outlined in the data section, h is the 

household identifier, and j is the individual identifier of a sibling born before 

treatment, and i for an individual born after treatment, 𝑛ℎ0 is the number of 

siblings in household h born before treatment and 𝑛ℎ1 the number born after. 

We expect this to be negative on average, as older siblings tend to 

outperform younger ones (see Keller, Troesch, and Grob, 2015; Lehmann, 

Nuevo-Chiquero, and Vidal-Fernandez, 2016; or Havari and Savegnago, 

2022). 

We then average these household differences for the Control sample, the Low 

Lead sample, and the High Lead sample for all three outcomes. Finally, we 

take the difference-in-differences using these means. 

(2) θ̂ =  
∑ 𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑_𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒ℎℎ ∈𝐺1

𝑁𝐺1

− 
∑ 𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑_𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒ℎℎ ∈𝐺2

𝑁𝐺2

 

 

Where θ̂ is our difference-in-differences estimate of the ATT, G is the sample 

group (Control, Low Lead, or High Lead), and 𝑁𝐺  the number of households in 

that group. One potential source of confounding is family size. If family size 
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changes differentially both over time and in different treatment groups, this 

may lead to biased estimates. For example, if control areas tended to have 

larger families after the treatment, given younger sibling tend to perform 

worse than older ones, this could lead to positively biased estimates. We 

therefore use a second approach, that does not rely on sibling differences.  

Our second approach uses the whole sample, but as we only observe each 

child once we must average outcomes at the school level. The baseline two-

way fixed effects difference-in-difference specification is in (3).  

(3) 𝑌𝑠𝑡 = 𝛼 + θ 𝑇𝑟𝑒𝑎𝑡𝑠 × 𝑃𝑜𝑠𝑡 + 𝑿𝑠𝑡𝛃 +  γs + 𝜆𝑃𝑜𝑠𝑡 + 𝜖𝑠𝑡  

Where 𝛼 is an intercept term,  𝑇𝑟𝑒𝑎𝑡 is an indicator variable for if a school 

lies within the Loch Katrine water supply area, 𝑃𝑜𝑠𝑡 is an indicator for the 

time periods after 1st of September 1990, 𝑿𝑠𝑡  is a vector of school level 

characteristics, γs are school fixed effects, and 𝜖𝑠𝑡 is the error term. We 

cluster our estimated errors by school. The variable of interest is θ , the 

coefficient on the interaction 𝑇𝑟𝑒𝑎𝑡𝑠 × 𝑃𝑜𝑠𝑡. This is also an estimate of the 

ATT, but at the school level. 

Given the different dosage groups, we also split the school treated areas into 

High Lead and Low Lead. For example, the estimate of the causal effect on the 

High Lead group can be recovered from (4). 

(4) 𝑌𝑠𝑡 = 𝛼 + θ 𝐻𝑖𝑔ℎ𝑠 × 𝑃𝑜𝑠𝑡𝑠𝑡 + 𝑿𝑠𝑡𝛃 +  γs + 𝜆𝑃𝑜𝑠𝑡 + 𝜖𝑠𝑡  

Where the 𝑇𝑟𝑒𝑎𝑡 variable has been replaced with an indicator for if a school 

is in the High Lead area. (4) is estimated by excluding the Low Lead sample. 

Similarly, we can estimate the casual effect of Low Lead dosage by excluding 

the High Lead sample and estimating (4) but using an indicator for if a school 

is in a Low Lead area.  

We also use an event study specification, to see the placebo effects of 𝑇𝑟𝑒𝑎𝑡 

interacted with years before the treatment, and to see if the effect is 

monotonic after treatment. This specification is outlined in below. 
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(5)  𝑌𝑠𝑡 = 𝛼 + 𝜆𝑡 + ∑  𝛿𝑡
−1
𝜏=−𝑞 𝑇𝑟𝑒𝑎𝑡𝑠𝑡  +  ∑ 𝜃𝑡  𝑚

𝜏=0 𝑇𝑟𝑒𝑎𝑡𝑠𝑡 + 𝑿𝑠𝑡𝛃 + γs + 𝜖𝑠𝑡  

 

Where m and q are the leads and lags. To check the effects of different 

dosages we exclude either High or Low Lead groups as before and check the 

event studies individually compared to the control group. 

 

3.5  Results 

3.5.1 Matched Sibling Difference-in-Differences 

Table 3.4 panel A shows the average difference between siblings within a 

household, pre and post treatment for each dose group, as calculated in (1). 

Figure 3.4 also shows the same figures. As expected, older siblings tend to 

perform better than their younger siblings, within the same household across 

all outcomes, as can be seen by the negative signs. However, younger siblings 

in the High Lead area, which has a higher prevalence of lead piping and lead-

water levels, appear to perform better than their peers in the other dosage 

groups across all three outcomes after treatment. In contrast, the Low lead 

dosage group does not appear to perform better than the control group in 

Standard Grade points, and performs worse for the English credit outcome, 

but is better in the Mathematics Credit outcome. 

In panel B of table 3.4 we calculate the difference-in-differences as in (2). The 

difference-in-differences point estimates, and their associated 95%, 

Bonferroni corrected, intervals are in figure 3.5. In the first column we 

compare the Low Lead sibling differences to the control group sibling 

differences. Wide standard errors mean that Bonferroni corrected 95% 

confidence intervals cover zero for all outcomes except the Mathematics 

Credit outcome, where the effect of treatment on the Low Lead group is 



 
 

172 
 

estimated to have increased the probability of achieving a Mathematics credit 

pass by 3.6 percentage points.  

Table 3.4 Differences Between Siblings in Same Housing, Pre and Post-

Treatment 

    
Panel A – Mean Sibling Differences 

 Control Low Lead High Lead 

Standard Grade Points    

Mean Sibling Difference -31 -27 -15 
Standard Deviation (83) (76) (70) 
Observations 37302 2228 1232 

Mathematics Credit    

Mean Sibling Difference -0.083 -0.047 -0.040 
Standard Deviation (0.518) (0.516) (0.510) 
Observations 35361 2123 1222 

English Credit    

   Mean Sibling Difference                       -0.069      -0.074          -0.030 
Standard Deviation (0.546) (0.560) (0.550) 
Observations 36314 2202 1229 

 

   

 
Panel B – Difference in Differences 

 Low - Control High - Control High - Low 

Standard Grade Points    

Difference-in-Differences 4 17 12 
Standard Error (2) (2) (3) 

Mathematics Credit    

Difference-in-Differences 0.036 0.043 0.007 
Standard Error (0.012) (0.015) (0.018) 

English Credit    

Difference-in-Differences -0.005 0.038 0.043 
Standard Error (0.012) (0.016) (0.02) 

    
Notes: Panel A shows difference between siblings born before treatment and siblings born after, 

averaged by dosage group. Panel B shows the difference-in-differences estimate between the averaged 

differences in panel A.  
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Figure 3.4 Average Sibling Differences, Before and After Treatment Date 

  

Notes: Figure shows the average within-household difference between siblings born before the 

treatment date and siblings born after the treatment date. High refers to households living within 

treated areas that had a high prevalence of lead piping. Low refers to households living within treated 

areas that had a low prevalence of lead piping. Control refers to non-treated areas in Scotland. 

 

Figure 3.5 Average Treatment on the Treated, Difference-in-Differences 

Estimates 

 

Notes: Figure shows point estimates as circles with associated 95% Bonferroni corrected confidence 

intervals. High refers to households living within treated areas that had a high prevalence of lead 

piping. Low refers to households living within treated areas that had a low prevalence of lead piping. 

Control refers to non-treated areas in Scotland. 
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In the second column we take estimate difference-in-differences for the High 

Lead minus the control group sibling difference. Here the results are clearer. 

The treatment is estimated to increase the Standard Grade achieved by 17 

points, and the probability of achieve a mathematics credit pass by 4.3 

percentage points. The point estimate for the increase in probability of an 

English credit pass is 3.8 percentage points, but Bonferroni corrected 95% 

confidence intervals cover zero for this outcome. 

In the third column we compare High and Low lead treatment areas. Here, 

the point estimates are all positive, suggesting dosage does make a difference 

and younger siblings in High Lead areas perform relatively better after the 

treatment than those in Low Lead areas. However, Bonferroni corrected 95% 

confidence intervals cover zero for all but the Standard Grade points 

outcome. 

The sibling difference results in table 3.4 suggest it is only in High Lead areas 

that there is a socially significant difference in education outcomes after 

treatment. We next move on to the school level difference-in-differences. 

 

3.5.2 School Level Difference-in-Differences 

In table 3.5 we present the two-way fixed effect estimates for the full 

treatment and control sample. We present estimates for all three outcome 

variables, with and without school level covariates. All the point estimates 

are positive, suggesting the lower lead resulting from the water treatment 

may have had an effect, but Bonferroni corrected 95% confidence intervals 

cover zero for all estimates. 

In table 3.6 we present the two-way fixed effect estimates for only the High 

Lead and Control schools, excluding those in the Low Lead zone of the Loch 

Katrine water supply area. This decreases the potential bias and lowers the 

identification risk resulting from differential treatment dosage as shown in 
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Callaway, Goodman-Bacon, and Sant’Anna (2021). In all cases the point 

estimates are higher than in table 3.5, where we use the whole of the Loch 

Katrine water supply area. The estimates in Panel A suggest that the 

treatment increased by 18 points the average Standard Grade points 

achieved in High Lead area schools. This is approximately the difference 

between getting an A instead of a B in one of the, typically eight, subjects 

taken at standard grade. Bonferroni corrected 95% confidence intervals do 

not cover zero in either case. The estimates in panel B suggest the treatment 

increase the proportion of pupils achieving a credit pass in mathematics by 

around 5 percentage points. Bonferroni corrected 95% confidence intervals 

do not cover zero for the estimate without school level covariates but do 

when these covariates are added. Panel C suggests the treatment increases 

the proportion of students achieving a credit pass in English by around 1-2 

percentage points, but the Bonferroni corrected 95% confidence intervals 

cover zero in both cases. 

In table 3.7, we show the same results but comparing the Low Lead areas to 

control areas, excluding the High Lead area schools. Here again all points 

estimates are positive, but Bonferroni corrected 95% confidence intervals 

cover zero in all cases. The point estimates are lower than for the High Lead 

sample for Standard Grade points and for Mathematics Credit passes, but 

higher for English Credit passes.  
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Table 3.5 Total Loch Katrine Water Supply Area, School Level Difference-in-

Differences 

   
 (1) (2) 

Panel A – Standard Grade Points   

Treatment × Post 11.029 10.505 
 (5.72) (5.818) 

Observations 727 663 
Unit Level Covariates No Yes 
   
Panel B – Mathematics Credit Pass Share   

Treatment × Post 0.049 0.048 
 (0.022) (0.023) 

Observations 718 654 
Unit Level Covariates No Yes 
   
Panel C – English Credit Pass Share   

Treatment × Post 0.007 0.008 
 (0.017) (0.019) 

Observations 722 658 
Unit Level Covariates No Yes 
   

Notes: Table shows difference-in-differences estimation of school level average outcomes between 

treated schools and control schools. Standard errors are clustered by school and presented in brackets. 

Column (1) is estimate without school level covariates, and column (2) with. Covariates include index 

of multiple deprivation quintile, share of boys in school, and the local youth unemployment rate.  
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Table 3.6 High Lead Areas, School Level Difference-in-Differences 

   
 (1) (2) 

Panel A – Standard Grade Points   

Treatment × Post 18.662 18.204 
 (4.931) (4.936) 

Observations 680 616 
Unit Level Covariates No Yes 
   
Panel B – Mathematics Credit Pass Share   

Treatment × Post 0.056 0.054 
 (0.019) (0.022) 

Observations 671 607 
Unit Level Covariates No Yes 
   
Panel C – English Credit Pass Share   

Treatment × Post 0.016 0.017 
 (0.014) (0.016) 

Observations 675 611 
Unit Level Covariates No Yes 
   

Notes: Table shows difference-in-differences estimation of school level average outcomes between High 

Lead area treated schools and control schools. Standard errors are clustered by school and presented 

in brackets. Column (1) is estimate without school level covariates, and column (2) with. Covariates 

include index of multiple deprivation quintile, share of boys in school, and the local youth 

unemployment rate.  
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Table 3.7 Low Lead Areas, School Level Difference-in-Differences 

   

 (1) (2) 

Panel A – Standard Grade Points   

Treatment × Post 8.373 7.854 

 (7.007) (7.085) 

Observations 711 647 

Unit Level Covariates No Yes 

   

Panel B – Mathematics Credit Pass Share   

Treatment × Post 0.047 0.045 

 (0.027) (0.028) 

Observations 702 638 

Unit Level Covariates No Yes 

   

Panel C – English Credit Pass Share   

Treatment × Post 0.004 0.005 

 (0.022) (0.023) 

Observations 706 642 

Unit Level Covariates No Yes 

   

Notes: Table shows difference-in-differences estimation of school level average outcomes between Low 

Lead area treated schools and control schools. Standard errors are clustered by school and presented 

in brackets. Column (1) is estimate without school level covariates, and column (2) with. Covariates 

include index of multiple deprivation quintile, share of boys in school, and the local youth 

unemployment rate.  

 

As explained in section 3.4, the identifying assumption with difference-in-

difference and continuous treatment when comparing each dose level 

individually with the control is parallel trends between the control group and 

the group that has a given dose level. This is analogous to the traditional 

parallel trends assumption and can be made conditional on covariates. When 

regressing with all dosages, stronger assumptions are required of either no 

selection into different does areas on average, or homogenous treatment 

effects.  
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In this section we show the school-level average means for each dose group, 

and event studies for each outcome and group, estimates using (5). Figure 3.6 

shows the school-level mean outcomes over time. The Treatment group 

means are more volatile as they have far lower sample sizes.  For the High 

Lead group, starting from a lower base, there is convergence in outcome 

post-treatment with the control group. The High Lead group has a higher 

mean standard grade points achieved, and mean Mathematics Credit passes 

achieved by the end of the period but remains lower for English. There is less 

convergence for the Low Lead group, and this group appears to match the 

patterns on the control group before and after treatment.  

To test the conditional parallel trends and no-anticipation assumptions in our 

two-way fixed effects, we perform event studies. These show the coefficient 

on treatment interacted with each year of our sample. Figure 3.7 shows the 

results for the full sample. There does appear to be some increase in 

coefficient size after treatment, but the confidence intervals are wide.  

Figure 3.8 shows the event study for High Lead compared to control. Here we 

see larger increases in the coefficient after treatment than in figure 3.7 for 

Standard grade points and Mathematics credit passes, but not for English 

Credit passes. The confidence intervals are also tighter, widening at the end 

as we get further from the reference year (1989), as is standard with event 

studies. Figure 3.9 presents the same results for the Low Lead sample. Here 

there is some upturn in the coefficients after treatment year, but the effects 

are more muted than for the high lead sample and the confidence intervals 

are extremely wide throughout.  
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Figure 3.6 Mean School Outcomes per Dose Group
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Figure 3.7 Event Studies, All Treatment Areas 

 

 

Notes: Charts show event study estimations of an indicator variable for treatment interacted with the 

year of birth. The outcome variable is the school level-average indicated in each chart heading. 

Outcomes are averaged by school, and then dosage group. Errors are clustered at school level. 
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Figure 3.8 Event Studies, High Lead Areas 

 

Notes: Charts show event study estimations of an indicator variable for treatment interacted with the 

year of birth, but Low Lead areas of the treatment group are excluded from the estimation. The 

outcome variable is the school level-average indicated in each chart heading. Outcomes are averaged 

by school, and then dosage group. Errors are clustered at school level. 
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Figure 3.9 Event Studies, Low Lead Areas 

 

Notes: Charts show event study estimations of an indicator variable for treatment interacted with the 

year of birth, but High Lead areas of the treatment group are excluded from the estimation. The 

outcome variable is the school level-average indicated in each chart heading. Outcomes are averaged 

by school, and then dosage group. Errors are clustered at school level. 
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3.6  Discussion and Conclusion 

We estimated the impact of reduced lead consumption in drinking water 

among children on their later educational outcomes by using the exogenous 

variation from a 1989 water treatment program in Glasgow, Scotland as a 

natural experiment. Our results suggest that lower lead ingestion from water 

when an infant, and lower maternal lead ingestion when a child is in the 

womb, leads to better grades at ages 15-16. However, our results show that 

the positive effects are concentrated within the areas of high lead pipe 

prevalence, and therefore higher lead-water levels. The levels of lead in the 

water in Glasgow before the 1989 treatment were generally higher than 

those seen in Flint, Michigan in 2015. Even after treatment, the distribution 

of lead-water levels in the High Lead area was similar to that of Flint in 2015 

(Table 3.1).  This implies that socially significant improvements in education 

outcomes will only be seen when the reduction in lead pollution is large.  

This is in line with the literature on lead outcomes that shows the does-

response effects are non-linear.  Grönqvist, Nilsson and Robling (2019), show 

that the effects of lead are low until a threshold of around 5 µg/dl blood lead 

levels. Reyes (2007) shows that effects are far stronger for the 4th quartile of 

lead exposure, in some cases 20 times as large as for the 1st quartile. Sampson 

and Winter (2018) show a clear non-linear increasing relationship between 

infant blood lead levels and anti-social behaviour in teenagers, with no effect 

below 5 µg/dl. Our results are in contrast to those arguing the marginal 

effects are higher at low levels of lead, or that the effects of lead are linear.  

There are a number of limitations to this study. Firstly, the treatment group is 

concentrated in one urban centre, with treatment at one point in time. This 

potentially limits the external validity of our results. Glasgow notoriously has 

a number of unexplained poor health outcomes (known as the “Glasgow 

Effect”) and although we estimate the ATT, this tells us little about the effects 

of treatment on the control group. Secondly, although there is a reasonably 
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large sample at the individual-sibling level differences in table 3.4, at the 

school level averages the sample is very limited. It may be that our failure to 

find larger effects for the low leads sample is related to the small number of 

schools within Glasgow, and the measurement error in assigning High or Low 

lead to children within a school’s catchment area. A third limitation is that 

education is a high-order outcome, with many contributing factors. Our 

results say nothing about other, more direct effects, such as those on health, 

which may have a different dose-response relationship.  

The implications of our findings are that the gains from lead abatement on 

education are non-linear. Therefore, lead abatement programmes and 

infrastructure spending should first be targeted at those with the highest 

levels of lead ingestion when this is possible. This is especially important in 

low and middle-income countries, where the average blood lead levels are far 

higher (GBD, 2019). By some estimates 1 in 3 children have blood lead levels 

above 5 µg/dL, and 280 million in India alone (GBD, 2019). Therefore, while 

lead abatement in low lead areas may have some benefit, when discretion is 

possible, resources should be targeted at areas and countries with much 

higher blood lead levels. We recommend future research on the effect of lead 

on higher order outcomes, like education, not only test whether an effect is 

socially significant, but also attempt to map the shape of the dose-response 

relationship.  
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Chapter 1 Appendices 
 

The Lead-Crime Hypothesis: A Meta-

Analysis16 

      

 

 
16 Data and code available at https://anthonychigney.github.io/home/Research/  

https://anthonychigney.github.io/home/Research/
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A. Review of literature used in meta-analysis 

 

There are 24 total studies included in this meta-analysis. The studies use 

different methods to examine the lead-crime relationship. Longitudinal 

studies, which track the same people over time, are common. Fergusson, 

Boden and Horwood (2008) use a longitudinal sample and find a positive 

association between dentine lead levels at 6-9 years of age and later offending 

while including race and family socioeconomic status covariates. However, the 

effect was smaller once variation in education grades was added. They 

reasoned that the effect of lead was in reducing education outcomes, leading 

to more crime. Overall, they find that lead only explains 1% of the variation in 

crime. Nkomo et al. (2017) used a longitudinal sample in South Africa and 

found a positive association between blood lead levels at age 13 and violent 

crime in later life. Beckley et al. (2018) find only a small positive effect of 

childhood lead levels and both violent and non-violent crime in their 

longitudinal sample of New Zealand residents. They conclude other factors are 

much more important for determining crime rates. Finally, Sampson and 

Winter (2018) follow a longitudinal sample in Chicago and find school age lead 

levels are not associated with an increase in arrests in later life. Overall, 

longitudinal studies show a mixed picture, both on whether there is an effect 

and whether it is a strong one. 

A different strand of research looks at the correlation of lead levels and crime 

across time and areas, rather than at an individual level. Three studies look at 

time series of lagged lead levels and crime for the US. Nevin (2000) finds a 

positive effect, but McCall and Land (2004) find no effect on the age cohorts 

most affected in youth by the increase in leaded gasoline. They reason that 

increased lead levels at one time should only affect the crime rates of that 

cohort, not earlier cohorts, and so only look at crime rates for those certain age 

ranges. Lauritsen, Rezey, and Heimer (2016) look at two different data series 
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of crime: the National Crime Victimization Survey (NCVS) and the Uniform 

Crime Reports (UCR). They find that lead is positively correlated with violent 

crime in the UCR but not the NCVS, which they consider a better measure of 

violent crime. However, they consider both data sources equally valid for 

property crime. Stretesky and Lynch (2004) find a strong effect when looking 

across US countries for both property and violent crime using the UCR. Mielke 

and Zahran (2012) find a strong effect across six US cities, Lersch and Hart 

(2014) find the same looking at Florida census tracts. Both Barrett (2017) and 

Manduca and Sampson (2019) find a strong positive relationship in census 

tracts in Chicago using different methods. Looking outside the US, Taylor et al. 

(2018) find positive results for violent crime in Australia, and across six 

suburbs in New South Wales. Nevin (2007) estimates the relationship for 

many OECD countries and finds pre-school blood levels are strongly 

associated with a whole range of violent and non-violent crime. On the whole, 

studies which look at geographic areas as the unit of interest tend to find the 

strongest positive associations between lead and crime.  

The final strand of the literature are those studies that attempt to identify a 

casual effect while accounting for endogeneity from unobserved variables 

correlated with both crime and lead. These could bias the estimate of the effect 

of lead on crime. Lead exposure is correlated with poverty (Baghurst e al. 

1999) and race (Sampson and Winter, 2016) and likely with other, 

unobservable, variables. We cannot rule out that these variables may cause 

individuals to commit more crime and be more exposed to lead, rather than 

lead being the cause. Even panel data designs with controls may not account 

for this endogeneity. The endogeneity threat has led to some, more recent, 

studies using quasi-experimental methods. Needleman (2002) carried out a 

“case control” study where young offenders were matched to a “control” group 

chosen for similar observable characteristics. The offender group was found 

to have higher bone lead levels. Although this this is an improvement beyond 
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looking at correlation alone, the likelihood of unobservable group differences 

means that the problem of endogeneity was not adequately resolved.  

Reyes (2007) is the first study to use quasi-experimental methods to derive a 

causal estimate. She uses the different grades and concentration of lead in 

gasoline in US states as an instrumental variable for lead levels. She finds an 

effect of lead on violent crime but not property crime. In a later paper (2015) 

she uses a similar identification strategy with individual-level data. Here she 

finds a positive effect on both property and violent crime. Feigenbaum and 

Muller (2016) also use an instrumental variable strategy. They instrument for 

the presence of lead water pipes in US cities using the distance to the nearest 

lead refinery in 1899, a period in which thousands of US cities built their water 

supplies. They find a positive causal effect on homicides in 1921-1936. Aizer 

and Currie (2018) use nearby traffic volume interacted with year of birth as an 

instrument for lead and include sibling fixed effects. They find a positive 

relationship between lead and incarceration. Curci and Masera (2018) also 

find a positive association when they look across 300 US cities. Most of the 

estimates from this paper do not fall under the “addressing endogeneity” 

category, but in one chart of estimates they use soil quality as an instrument 

for lead. Grönqvist et al. (2019) use a sample of 800,000 Swedish children 

grouped by neighbourhoods and cohorts. They instrument for blood lead 

levels by the lead measured in moss in the areas. The estimates are mixed but 

tend to show a small positive effect on crime. Finally, Billings and Schnepel 

(2018) match a treatment group of children who had blood lead levels above 

a 10μg/dL threshold in two tests, with a control group of children who were 

above the threshold in the first test and just below in the second test, thus 

failing to qualify for treatment. This, close to randomised control trial, study 

finds a positive effect of lead on crime, with a stronger effect on property crime 

than violent crime. Overall, the few studies that use quasi-experimental 

methods all find a positive effect on crime, but they tend to find a smaller effect 

than the studies that look at correlations across geographic areas.  
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B. Converting to common estimates 

  

To conduct a meta-analysis all estimates must be converted to a common 

metric. We use both elasticities and partial correlation coefficients (PCCs). 

We calculate the PCC as shown in equation (I): 

(I) 𝑃𝐶𝐶𝑖𝑗 =
𝑡𝑖𝑗

√𝑡𝑖𝑗+𝑑𝑓𝑖𝑗
2

 

Where 𝑡𝑖𝑗  is the t-ratio for estimate i of study j, and 𝑑𝑓𝑖𝑗  is the degrees of 

freedom. The standard error of each PCC is calculated according to equation 

(II): 

(II)  𝑆𝐸𝑖𝑗 =
𝑃𝐶𝐶𝑖𝑗

𝑡𝑖𝑗
 

Some papers reported odds ratios rather than correlation coefficients. 

Following Polanin and Snilstveit (2016), we converted these to PCCs. 

(III)  𝑃𝐶𝐶𝑖𝑗 =  
𝑙𝑛(𝑂𝑅𝑖𝑗)×(

√3

𝜋
)

√(ln(𝑂𝑅𝑖𝑗)×(
√3

𝜋
))

2

+ 𝑎𝑖𝑗 

 

Where 𝑂𝑅𝑖𝑗  is the odds ratio i for study j and 𝑎𝑖𝑗 =
(𝑛𝑖𝑗1+𝑛𝑖𝑗2)

2

𝑛𝑖𝑗1𝑛𝑖𝑗2
. Here 𝑎𝑖𝑗 is a 

correction factor which depends on the sample size in the control and 

treatment groups (𝑛𝑖𝑗1 and 𝑛𝑖𝑗2). If the sample sizes are unknown, or there 

are no treatment and control groups, we follow Borenstein et al. (2009) and 

set them to be equal, which gives 𝑎 = 4.  
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In a similar way we calculate standard error equivalents for odds ratio 

estimates. Following the Cochrane Handbook (Higgins and Green, 2011), first 

we convert the 95% confidence intervals to odds ratio standard errors 

(ORSE). 

(IV) 𝑂𝑅𝑆𝐸𝑖𝑗 =  
(ln(𝐶𝐼̅̅ ̅)− ln(𝐶𝐼))

3.92
 

Where 𝐶𝐼̅̅̅ is the upper confidence interval limit and 𝐶𝐼 is the lower 

confidence interval limit. I then convert this into partial correlation 

coefficient standard errors. 

(V) 𝑆𝐸𝑖𝑗 =
√

(𝑎2×𝑂𝑅𝑆𝐸𝑖𝑗
2 ×(

3

𝜋2)

((log(𝑂𝑅𝑖𝑗)×(
√3

𝜋
))

2

+ 𝑎)

3 

Only one study (Billings and Schnepel, 2018) has estimates which are similar 

to randomised control trial estimates, with a mean difference shown between 

control and treatment groups. These can also be converted to PCCs. For these 

we follow Borenstein et al. (2009) and first compute the within-groups 

standard deviation 𝑆𝐷𝑖𝑗for estimate i of study j, as shown in (VI). 

(VI) 𝑆𝐷𝑖𝑗 = √
(𝑛𝑖𝑗1−1)×𝑆𝑖𝑗1

2 +(𝑛𝑖𝑗2−1)×𝑆𝑖𝑗2
2

𝑛𝑖𝑗1+𝑛𝑖𝑗2−2 
 

Here, 𝑛𝑖𝑗1 is the sample size for the control group for i of study j, 𝑆𝑖𝑗1 is the 

standard deviation for the control group, while 𝑛𝑖𝑗2 and 𝑆𝑖𝑗2 are the same 

from the treatment group. 

We use this to calculate Cohen’s D: 

(VII) 𝐷𝑖𝑗  =  
�̅�𝑖𝑗1− �̅�𝑖𝑗2

𝑆𝐷𝑖𝑗
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Where �̅�𝑖𝑗1 is the sample mean for the control group and �̅�𝑖𝑗2 for the 

treatment group. Finally, we convert Cohen’s D to a PCC by equation (VIII). 

(VIII) 𝑃𝐶𝐶𝑖𝑗 =
𝐷𝑖𝑗

√𝐷𝑖𝑗
2 +𝑎𝑖𝑗

 

Here 𝑎𝑖𝑗 is the same as that for equation (III) except we have the sample sizes 

for each group so we do not set it to equal 4. The variance for Cohen’s D is 

calculated as in (IX). 

(IX) 𝐷𝑉𝑎𝑟𝑖𝑗 =  
𝑛𝑖𝑗1+𝑛𝑖𝑗2

𝑛𝑖𝑗1×𝑛𝑖𝑗2
+  

𝐷𝑖𝑗
2

2(𝑛𝑖𝑗1+𝑛𝑖𝑗2)
 

This is then used to calculate the standard error of the PCC. 

(X) 𝑆𝐸𝑖𝑗 = √
𝑎𝑖𝑗

2 ×𝐷𝑉𝑎𝑟𝑖𝑗

(𝐷𝑖𝑗
2 +𝑎𝑖𝑗)

3  

One further study only uses simple correlations (Lauritsen et al., 2016). The 

standard errors for these must be approximated. We use the approximation 

of one divided by n-3 for the correlation standard errors, as n is the same for 

all estimates, the standard errors are the same for all these estimates. 
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C. Common effects and random effects meta-

analysis  

C.1 Common and Random Effects Weighted Averages 

This section explains how common and random effects meta-analysis 

estimates are calculated.  

Before calculating commom or random effects estimates, first we convert all 

PCCs to normalised estimates with equation (XI), so that correct confidence 

intervals can be calculated. 

(XI) 𝑍𝑖𝑗 = 0.5 𝑙𝑛 (
1+𝑃𝐶𝐶𝑖𝑗

1−𝑃𝐶𝐶𝑖𝑗
)  

Where 𝑍𝑖𝑗  is the normalised effect size of a PCC. The process is that first PCCs 

are converted to normalised estimates, we estimate using either common 

effects or random effects, then the estimates are converted back to a PCC 

with equation (XII). 

(XII) 𝑃𝐶𝐶 =
𝑒2𝑧−1

𝑒2𝑧+1
  

Where in this case the PCC is the meta-analysis estimate as a correlation 

coefficient, and Z is the estimate obtained from the normalised PCCs. 

To calculate the common effects averages we weight each estimate by the 

inverse of the variance, and then divide the sum of these weighted estimates 

by the sum of the weights as shown in following two equations: 

(XIII) 𝑊𝑖𝑗 =
1

𝑉𝑖𝑗
 

(XIV) 𝐹𝐸 =
∑ 𝑊𝑖𝑗𝑍𝑖𝑗

𝑁
𝑖=1

∑ 𝑊𝑖𝑗
𝑁
𝑖=1
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Where 𝑉𝑖𝑗 is the variance of estimate 𝑖 of study 𝑗 , 𝐹𝐸 is the fixed effects 

average, and 𝑍𝑖𝑗  is normalised PCC. This average is converted back into a PCC 

by equation (XII). Along with the averages I calculate 95% confidence 

intervals, first by obtaining the standard errors of 𝐹𝐸. 

(XV) 𝑆𝐸𝐹𝐸 = √
1

∑ 𝑊𝑖𝑗
𝑘
𝑖=1

 

Then obtaining lower and upper limits in the normal fashion. The fixed effect 

averages and standard error can be used to calculate Z-scores for hypothesis 

testing as normal. 

Random effects estimates are estimated in the same way as fixed effects, 

except we replace 𝑉𝑖𝑗 in equation (XIII) with 𝑉𝑖𝑗
∗ . Where 𝑉𝑖𝑗

∗ =  𝑉𝑖𝑗 + 𝑇2, and 𝑇2 

is an estimate of the between-study variation. There are different methods of 

estimating 𝑇2, we use the DerSimonian-Laird (1986) method.  

C.2 Estimating Heterogeneity  

We use three measures of heterogeneity in our meta-analysis 𝐻2, 𝐼2, and 𝜏2. 

Each attempts to quantify the heterogeneity in study effect sizes. Estimating 

these is inference on the dispersion of 𝜃𝑗 , as outlined in the main text.  

These methods all use Cochran’s Q statistic in their calculations. The Q 

statistic is a estimate of the variation in the true effect sizes 𝜃𝑗 , compared to 

the sampling variation. It is calculated as below: 

(XV) 𝑄 =  ∑ 𝑊𝑖𝑗𝑍𝑖𝑗
2𝑁

𝑖=1  −  
(∑ 𝑊𝑖𝑗𝑍𝑖𝑗

𝑁
𝑖=1 )

2

∑ 𝑊𝑖𝑗
𝑁
𝑖=1

         

If Q is large, it means that a relatively larger share of the variation in 

observed effect sizes is due to differences in each study’s true effect size 𝜃𝑗 , 

rather than due to sampling variation. Under the null hypothesis of no 
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difference in 𝜃𝑗  the Q statistic will be Chi-square distributed with N-1 degrees 

of freedom. 

Simply testing for completely homogeneous effects is extreme, given we 

assume effect size heterogeneity throughout the analysis (see section 3.4). 

Therefore we move on to testing how heterogeneous the effects are with the 

three statistics we use. 

𝜏2 is an estimate of variance of  𝜃𝑗 , the “true” effect size distribution. It is 

calculated as: 

(XVI) 𝜏2 =
𝑄−𝑑𝑓

𝐶
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Where df is the degrees of freedom and C, a variable that transforms the Q 

statistic back into the original units of analysis (either PCCs or elasticities in 

our case). It is calculated as: 

(XVII) 𝐶 =  ∑ 𝑊𝑖𝑗
𝑁
𝑖=1  −   

(∑ 𝑊𝑖𝑗
𝑁
𝑖=1 )

2

∑ 𝑊𝑖𝑗
𝑁
𝑖=1

         

The larger 𝜏2 is, the larger the estimated variance in “true” effect sizes 

between studies. 

𝐼2 attempts to quantify what proportion of the observed variance is due to 

sampling errors, against the proportion due to study effect size 

heterogeneity. It is a figure between 0% and 100%. Very high 𝐼2 means that 

most of the observed variation is due to effect size variation between studies. 

𝐼2 is calculated as: 

(XVIII)  𝐼2 = (
𝑄−𝑑𝑓

𝑄
) × 100% 

Finally, 𝐻2 is: 

(XIX) 𝐻2 =
𝑄

𝑑𝑓
 

If 𝐻2 = 1 then there is no variation in study effect sizes. It has no upper 

bound, and the greater it is the larger the between-study heterogeneity.   

D. Publication bias adjustment  

We use seven methods to obtain an estimate of the average effect after 

adjusting for publication bias. This section describes those methods in more 

detail. 

All publication bias methods either test or assume that the observed sample 

distribution is a truncated version of the underling population distribution. 
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We have no details about the missing values (i.e. this is not a censored 

distribution). Therefore, selection models using observations (such as in 

Heckman, 1976) are not possible.  

The publication bias methods rely on assumptions about the truncation 

process that generates the selection bias which causes the observed 

distribution to differ from the population distribution. The observed sample 

and the selection bias assumptions are combined in some estimation 

procedure, and this produces an estimate which is adjusted for the 

publication bias, if it is found to be present. In some cases when tests reject 

publication bias there is no adjustment, and the estimate collapses into either 

the common or random effects estimate. 

Linear Methods 

The first four methods are all linear regressions based on the PET-PEESE 

method. The PET-PEESE is itself an extension of the Egger (1997) test. The 

Egger test is a simple regression of the effect size on the standard error. A t-

test on the standard error coefficient is a test of publication bias where H0 = 

no publication bias, and H1 = there is publication bias.  

Stanley and Doucouliagos (2014) note the heteroskedasticity in the Egger 

test, as more precise effect sizes (assuming a shared effect size distribution 

and that estimates also have sampling error) will tend to be closer together. 

Therefore, they extend the Egger test by using weighted least squares, with 

the weights being the inverse of the standard errors themselves, which are an 

estimate of this heteroskedasticity. The coefficient on the precision (1/SE) is 

the Funnel Asymmetry Test (FAT). The intercept in this model becomes the 

Precision Effect Test (PET). The FAT is an estimate of the bias, the sign of 

which indicates the direction of the bias. The PET is an estimate of the 
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average effect size when publication bias is zero, i.e., the effect size 

population mean.  

The coefficient on the FAT approximates the inverse Mills’ ratio. However, 

this is not a constant, it varies with the standard error. Therefore, Stanley and 

Doucouliagos (2014) propose using a Taylor expansion around the standard 

error to better approximate the inverse Mills’ ratio. In theory, any number of 

additional polynomials could be included in the regression, but sample size 

restrictions in meta-analysis, and the decreasing returns on including more 

polynomials, mean that few meta-analyses go beyond a cubic term. Stanley 

and Doucouliagos (2014) propose constraining the linear term on the 

standard error to be zero and using a squared term. This is the Precision 

Effect Estimate with Standard Error (PEESE) test. They find in simulations 

that this performs better than the FAT-PET when the “true” mean of the 

population of estimates is not equal to zero. This is the second method we 

use. 

The third method is simply the FAT-PET but including study fixed effects. 

This is more efficient than the standard the FAT-PET, assuming the common 

effects model is not true for the population. This is estimated with restricted 

maximum likelihood, which adjusts the degrees of freedom downward for 

each study fixed effect, without which the variance of the error is biased 

downwards.  

The fourth method we use is the FAT-PET with an instrumental variable. 

There are other reasons beyond publication bias why the effect size might be 

correlated with the standard error. For example, regression discontinuity 

designs (although there are none in our sample) converge at a rate at least as 

slow as the cubed root of the sample size. Whereas OLS converges at a rate of 

the root of the sample size. A regression discontinuity with the same sample 

size will tend to have larger standard errors than the simple OLS regression. 
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The effect size will also be different, perhaps because they estimate different 

estimands, or perhaps because the bias is larger in the OLS sample. Similarly, 

two stage least squares will tend to have larger errors even if it is estimating 

the same estimand as OLS. Therefore, the coefficient on the standard error 

may not be a good approximation of the inverse Mills’ ratio.  

An alternative strategy is to use the inverse of the square root of the sample 

size as an instrumental variable for the standard error. The sample size is 

correlated with the standard error. Assuming no relationship between 

sample size and the effect size beyond its relationship to the standard error 

(the exclusion restriction), then it will give a better estimate of publication 

bias and therefore a better PET estimate. 

Non-linear methods 

The weighted average of adequately powered estimates (WAAP) developed 

by Stanley, Doucouliagos, and Ioannidis (2016) estimates a common effects 

weighted average using only high-powered studies. Studies are discarded if 

they do not meet some power threshold given by: 

(D.1)    
�̂�𝑤

2.8
  

Where �̂�𝑤 is some estimate of the average effect, and the 2.8 denominator 

comes from the sum of two t-distributed test standard deviations, 𝑡1−
𝛼

2
+

𝑡(1−𝛽). Following convention, the critical value of the test of the null is set as 

𝛼 = 0.05, and the power of the test is set as 80%, so that 𝛽 = 20%. This gives 

a sum of 1.96 + 0.84 = 2.8. Stanley, Doucouliagos, and Ioannidis (2016) 

suggest using the common effects estimate as the value �̂�𝑤 . Given the very 

small common effects estimate in our sample this would only leave only one 

study, that of Grönqvist, Nilsson and Robling (2019). This would mean the 

WAAP collapses into the weighted average estimate in table 1. To be more 
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generous to the Lead-Crime hypothesis, we instead use the larger random 

effects estimate as �̂�𝑤. The studies and number of estimates from each 

considered to be adequately powered under this method is given in table D.1. 

Table D.1 – Studies and estimates used in WAAP 

  

Study Estimates 

Aizer & Currie (2019) 6 

Beckley et al. (2018) 10 

Billings & Schnepel (2018) 3 

Curci & Masera (2018) 97 

Feigenbaum & Muller (2016) 43 

Fergusson et al. (2008) 6 

Grönqvist, Nilsson and Robling (2019) 54 

Lersch & Hart (2014) 2 

Manduca & Sampson (2019) 2 

Masters et al. (1998) 3 

Mielke & Zahran (2012) 1 

Nevin (2000) 1 

Nevin (2007) 26 

Nkomo et al. (2017) 10 

Reyes (2007) 65 

Reyes (2015) 13 

Stretesky & Lynch (2004) 20 

  

 

Trim and Fill first ranks studies by the absolute value of their effect sizes, 

then estimates how many effect sizes are missing from either the positive or 

negative side of the distribution (the negative side in our case). Importantly, 

these studies are assumed to be not observed with probability one. This 

contrasts with other methods which estimate the publication probabilities 

over certain intervals (such as Andrews-Kasy). The trim-and-fill method then 

uses an iterative algorithm to obtain an average effect estimate.  
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1. First obtain the random effects estimate from the full sample, use this 

to estimate the number of missing studies (they propose three 

different estimators for this).  

2. Using the estimate for number of missing studies on the negative side, 

an equal number of studies are “trimmed” from the sample on the 

positive side, starting with the largest and moving down.  

3. Now obtain another random effects estimate from the trimmed 

sample and use this to again estimate a number of missing studies. 

4. Continue until the random effects estimate of iteration j is equal to the 

estimate of iteration j – 1. 

5. Now add the “fill”, where imputed values are added to the negative 

side of the distribution, using the estimates obtained in the last 

iteration and the most positive values in the sample left after 

“trimming” (see section 5 in their paper). 

6. Finally, obtain a new random effects estimate using the full initial 

sample, plus the imputed “filled” values. 

This method adds 226 estimates to the full sample trim and fill, 82 to the 

elasticity sample, and 11 to the representative estimates sample.  

In the Andrews and Kasy (2019) method, they use a step function to estimate 

the probability of observing an effect over various intervals of the 

distribution. This contrasts with the trim and fill, where some observations 

are assumed missing with probability one, and the FAT-PET, which uses an 

approximation of the inverse Mills’ ratio to deal with the truncation.  

They observe, however, that the publication probabilities can only be 

identified up to scale. That is, we cannot know that absolute probability of 

publication over any one interval. Therefore, we must estimate relative 

publication probabilities. We do this by setting one publication probability as 

the reference probability, and then identifying the others up to scale, i.e., 
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relative to this one. In our case the reference probability is the probability of 

observing a positive effect size that is significant at the 5% level. This 

probability is set at some arbitrary value (one in our case) and the other 

probabilities estimated relative to this. If the estimated probabilities are less 

than one, then they are less likely to be observed than positive values 

significant at the 5% level, and vice versa. 

With relative probabilities estimated, the distribution is reweighted using the 

relative probabilities to reconstruct the true untruncated distribution. We 

can use this to get an estimate of the population mean, adjusting for the 

publication bias. We use the maximum likelihood approach and algorithm in 

Hedges (1992) as recommended by Andrews and Kasy (2019) to do this. In 

the case of only using representative estimates, we did not achieve 

convergence.  

The estimates publication probabilities over different z-score intervals are 

shown below for the full sample and the elasticity sample. 
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Figure D.1 – Estimated relative publication probabilities, partial 

correlations 

 

Figure D.2 – Estimated relative publication probabilities, 

elasticities 
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E. Analysis using only representative estimates 

 

In most of our analysis we use all estimates. As a robustness check, here we 

use only one representative estimate from each paper. There was not always 

a clear representative estimate from each study. Therefore, choosing the 

estimates involves some subjective judgement. We tried to choose results 

mentioned in the abstract or as the main result. In general, we chose 

representative estimates which were less specific (i.e., totals preferred to 

subsample male/female, white/black results etc.), and estimates obtained 

using more covariates for correlational results. 

In section 1.4.3 we test for publication bias using all estimates. In table E.1 we 

repeat the exercise using only the representative estimates. However, we 

cannot estimate the hierarchical model, or cluster errors as we only have one 

estimate per study. Furthermore the Andrews-Kasy method, using maximum 

likelihood, did not converge. 

 

Table E.1 – Effect beyond bias and publication bias estimates using 
representative estimates, partial correlations 

 FAT-PET 
FAT-

PEESE 
IV WAAP TF 

 
Full Sample, PCCs 
 

     

Effect Beyond Bias 

 

-0.001 

(0.002) 

0.007 

(0.004) 

-0.001 

(0.002) 

0.007 

(0.004) 

0.015 

(0.059) 

Publication bias 3.717 

(0.894) 

12.152 

(6.998) 

3.733 

(0.880) 

. . 

Groups 24 24 24 . . 

      

Notes. Estimates are PCCs presented with their standard errors in brackets. FAT-PET is Funnel 

Asymmetry test and Precision Effect Test (Stanley and Doucouliagos, 2014). FAT-PEESE is Funnel 

Asymmetry Test and Precision Effect Estimate with Standard Error. The multi-level FAT-PET is a mixed 

effects-multi-level model with a different slope coefficient for each study. IV is a FAT-PET regression 

with square root of sample size used as an instrumental variable for the precision using two stage least 

squares. WAAP (Stanley, Doucouliagos, & Ioannidis, 2017) is the Weighted Average of Adequately 



 
 

208 
 

Powered Estimates, where studies below a certain estimated power are removed before calculating the 

effect. Trim and fill (Duval & Tweedie, 2000), removes outlier studies and then adds imputed studies 

before calculation an average effect. The Andrews-Kasy (Andrews & Kasy,2019) method is a step 

function selection model which reweights the observed sample with estimated publication 

probabilities. See Online appendix D for full explanation of each method.  

 

F.  Bayesian Model Averaging (BMA) 

We carry out two forms of Bayesian model averaging: 1) we obtain an 

ensemble estimate of the effect beyond bias, using both linear and non-linear 

publication bias correction models, 2) we take model averages over all 

covariates used in the meta-regressions. 

Table F.1 presents Bayesian model averages of publication bias correction 

models. We use the RoBMA R package of Bartoš et al. (2021).  

 

Table F.1 – Effect beyond bias, Bayesian model averages 

      

 Full Sample, 

PCCS 

Endogeneity 

Sample, PCCS 

Representative 

Estimates, PCCs 

Elasticities 

 

Elasticities, 

Endogeneity 

sample only 

 

Effect Beyond 

Bias 

 

-0.17 

(-0.288,0.000) 

0.001 

(0.000,0.006) 

-0.091 

(-0.667, 0.000) 

0.087 

(0.059, 

0.114) 

0.003 

(0.000,0.037) 

      

Observations 542 220 24 312 

 

211 

Notes. Table shows Bayesian model average estimates from various publication bias models. Upper and 

lower bounds of 95% credibility estimates presented in brackets.  

We also carry out Bayesian model averaging with all variables used in our 

meta-regression analysis. We estimate a normal-gamma conjugate model 



 
 

209 
 

with a uniform model prior and unit information g-prior. These are the same 

as in Bajzik et al. (2019), see there for more information. The results are 

given below in table F.2. 

Table F.2 – Posterior results from Bayesian model averaging, PCC 

Variable Posterior 

Mean 

Posterior Standard 

Deviation 

Posterior Inclusion 

Probability 

Precision 0.35 0.03 1.00 

Control gender 0.04 0.03 0.71 

Control race 0.00 0.01 0.09 

Control income -0.04 0.03 0.70 

Control education 0.00 0.00 0.05 

Homicide -0.03 0.03 0.54 

Violent 0.00 0.02 0.14 

Non_Violent -0.01 0.03 0.34 

Area 0.24 0.03 1.00 

OLS 0.03 0.03 0.55 

ML 0.04 0.03 0.81 

Odds_Ratio -0.04 0.07 0.35 

Panel dummy -0.17 0.02 1.00 

Addressing 

Endogeneity 0.00 0.00 0.05 

North_America -0.41 0.03 1.00 

Europe 0.00 0.02 0.07 

Direct Lead Measure -0.39 0.04 1.00 

Publication Year 0.00 0.01 0.08 

Covariates -0.07 0.01 1.00 

Sample size 

 0.00 0.00 0.09 

FAT 3.40 NA 1.00 

    

Observations 542   
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We evaluate the posterior means at the sample averages for each variable 

(excluding the FAT as normal). This gives a point estimate PCC of 0.09. 

We do the same for the elasticity sample in table F.3.  

Table F.3 – Posterior results from Bayesian model averaging, 

elasticity 

Variable Posterior 

Mean 

Posterior Standard 

Deviation 

Posterior Inclusion 

Probability 

Precision 0.24 0.07 1.00 

Control gender -0.14 0.09 0.83 

Control race 0.00 0.00 0.05 

Control income 0.00 0.00 0.05 

Control education -0.01 0.09 0.24 

Homicide 0.00 0.01 0.05 

Violent 0.06 0.01 1.00 

Non_Violent 0.00 0.00 0.05 

Area 0.00 0.03 0.07 

OLS 0.00 0.02 0.10 

ML 0.00 0.02 0.08 

Panel dummy -0.22 0.09 0.98 

Addressing 

Endogeneity 

0.00 0.01 0.07 

North_America -0.01 0.04 0.18 

Direct Lead Measure -0.01 0.08 0.08 

Publication Year 0.06 0.04 0.77 

Covariates 0.00 0.01 0.06 

Sample size 

 

0.03 0.01 0.94 

FAT 1.66 NA NA 

    

Observations 312   
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Again, we evaluate the posterior means at the sample averages for each 

variable (excluding the FAT as normal). This gives a point estimate elasticity 

of 0.07. 

G. Alternative elasticity estimates  

Our full sample includes studies that we could not obtain elasticity estimates 

from. However, it is a larger and possibly more representative sample of the 

literature. In this section we therefore convert the PCC estimates from the full 

sample into plausible elasticities. The PCC and the elasticity are related, but 

not in a straightforward manner. This forces us to make some strong 

assumptions in the interests of welfare analysis.  

Given a PCC and the change in a given measure of crime for a given measure of 

lead, 
𝛿𝐶𝑟𝑖𝑚𝑒

𝛿𝐿𝑒𝑎𝑑
, then the relationship between the two is given in (7). 

(8) 𝑃𝐶𝐶 =  
𝛿𝐶𝑟𝑖𝑚𝑒

𝛿𝐿𝑒𝑎𝑑

𝑠𝑑(𝐿𝑒𝑎𝑑)

𝑠𝑑(𝐶𝑟𝑖𝑚𝑒)

𝑠𝑑(𝐿𝑒𝑎�̃�− �̃�′𝛾1)

𝑠𝑑(𝐶𝑟𝑖𝑚𝑒̃ −�̃�′𝛾2)
 

Where 𝑠𝑑(. ) means the standard deviation. 𝐿𝑒𝑎�̃� −  �̃�𝛾1 are the residuals from 

a regression of Lead on 𝒛, a vector of variables related to lead and crime, where 

both lead and 𝒛 have been standardised. Similarly, 𝐶𝑟𝑖𝑚𝑒̃ − �̃�𝛾2 are the 

residuals from a regression of Crime on 𝒛, where both have been standardised. 

If we wish to attach a causal interpretation to the elasticity, we can think of 𝒛, 

following Peters, Bühlmann, and Meinshausen (2016), as the minimum set of 

variables under which the distribution of Crime is invariant when conditioned 

on both 𝒛 and Lead.  

It can be seen that a PCC will always share the same sign as 
𝛿𝐶𝑟𝑖𝑚𝑒

𝛿𝐿𝑒𝑎𝑑
 but will be 

inflated or deflated according to the relative size of the standard deviations in 

(7). 
𝛿𝐶𝑟𝑖𝑚𝑒

𝛿𝐿𝑒𝑎𝑑

𝑠𝑑(𝐿𝑒𝑎𝑑)

𝑠𝑑(𝐶𝑟𝑖𝑚𝑒)
 is equivalent to a standardised coefficient. The intuition for 

the last ratio is as follows: the greater the variation in Lead that is not 

explained by 𝒛, the larger the PCC, because the overlapping variation between 
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the independent effect of Lead and Crime is relatively greater. The PCC is also 

greater the larger the amount of variation in Crime explained by 𝒛. This is 

because the share of unexplained variation in Crime becomes smaller, so the 

share of variation jointly explained by Lead and 𝒛 increases. As more of the 

variation in Crime is explained by both Lead and 𝒛, their PCCs will tend to 1 or 

-1. 

To evaluate an elasticity at the sample means we multiply both sides by 
𝐿𝑒𝑎𝑑

𝐶𝑟𝑖𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅

̅̅ ̅̅ ̅̅ ̅
, 

where the bar indicates the mean. We can then rearrange (7) to put it in terms 

of the elasticity η. 

(9) η =  
𝐿𝑒𝑎𝑑

𝐶𝑟𝑖𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅

̅̅ ̅̅ ̅̅ ̅ 𝑠𝑑(𝐶𝑟𝑖𝑚𝑒)

𝑠𝑑(𝐿𝑒𝑎𝑑)

𝑠𝑑(𝐶𝑟𝑖𝑚𝑒̃ −�̃�′𝛾2)

𝑠𝑑(𝐿𝑒𝑎�̃�− �̃�′𝛾1)
𝑃𝐶𝐶 

We can see that the size of the PCC relative to the elasticity depends on three 

ratios. The first two, the relative means and standard deviations, depend on 

the measures of crime and lead. We use homicide and blood lead data from the 

US as an illustrative example to examine plausible elasticities, given the fall in 

both violent and non-violent crime was particularly pronounced there. The 

means, standard deviations, and sources are given in table IX. Given these, the 

relative size of the PCC to the elasticity depends upon the third ratio of residual 

standard deviations. This ratio could theoretically take any value between zero 

and infinity, and therefore so could the elasticity (assuming the PCC is 

positive). We therefore look at what are plausible values for this ratio and what 

is the range of the elasticity given these values. 

The maximum value the numerator 𝑠𝑑(𝐶𝑟𝑖𝑚𝑒̃ − �̃�′𝛾2) can take is one, 

representing no common variation between 𝒛 and Crime. We hold it at one, to 

inflate the PCC as much as possible. The final element of the equation is 

𝑠𝑑(𝐿𝑒𝑎�̃� − �̃�′𝛾1). This is the residual variation in Lead not explained by 𝒛. The 

lower this is, the more the PCC will be inflated, and therefore the greater the 

elasticity. The elasticity is convex in 𝑠𝑑(𝐿𝑒𝑎�̃� −  �̃�′𝛾1), decreasing at a 

decreasing rate.  
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Figure F.1 plots the relationship between the elasticity and 𝑠𝑑(𝐿𝑒𝑎�̃� −  �̃�′𝛾1), 

given the estimated mean PCCs, the values in table IX, and holding 

𝑠𝑑(𝐶𝑟𝑖𝑚𝑒̃ − �̃�′𝛾2) constant at the maximum value of one. The elasticities drop 

sharply with an increase in the denominator 𝑠𝑑(𝐶𝑟𝑖𝑚𝑒̃ − �̃�′𝛾2), with the 

elasticity for the addressing endogeneity sample approaching close to zero 

almost immediately. The elasticity for the full sample slopes down more gently 

but even so does not suggest a large elasticity except at extremely small values 

of 𝑠𝑑(𝐶𝑟𝑖𝑚𝑒̃ − �̃�′𝛾2).  

We can now propose a range of plausible values for the elasticity. Given the 

uncertainties around the ratio of unexplained variations in (9), this is 

somewhat arbitrary, but we hope, given the discussion above, not 

unreasonably so. There is no compelling reason to suppose 𝒛 would explain 

more of the variation in Lead than in Crime. Nevertheless, if we take as a lower 

bound that 𝑠𝑑(𝐿𝑒𝑎�̃� −  �̃�′𝛾1) is ten times as large as 𝑠𝑑(𝐶𝑟𝑖𝑚𝑒̃ − �̃�′𝛾2) , and as 

a conservative upper bound that they are equal, then we can give a range of 

values based on our estimated PCCs. For the full sample PCC, this gives an 

elasticity of 0.32-0.03. For the addressing endogeneity sample PCC, the range 

is 0.03-0.00, to two decimal places. The median blood lead level in children fell 

88% from 1976-2009. The full sample elasticity estimates therefore would 

suggest the fall in lead has decreased homicide in the US by between 28% and 

3%. The equivalent decrease for the addressing endogeneity sample is 

between 3% and 0%. The US homicide rate fell 54% from its peak in 1989 to 

2014. This would mean that lead accounts for between 52% and 6% of the 

decrease in homicide using the full sample elasticity, and 5%-0% using the 

addressing endogeneity elasticity. Our generous assumptions of the lower 

bound on the ratio of residual variation in (8) imply that lead may be the most 

important factor in the fall in homicide. Our upper bound on that same ratio 

implies lead accounts for very little of the fall in crime.  
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Figure G.1 – Estimated Elasticity of on lead on crime 

 

Notes. Chart shows how η, the calculated elasticity of lead on crime, varies with changes in 𝑠𝑑(𝐿𝑒𝑎�̃� −

 �̃�′𝛾1), the standard deviation of the residual in a regression of a set of standardised variables �̃�, and the 

standardised measure of lead 𝐿𝑒𝑎�̃�.  

 

Table G.1 – Descriptive statistics of data used for elasticity 

estimation 

 

 

Variable 

 

Mean 

 

Standard Deviation 

   

Median blood lead level for children ages 1-5 in US 3.39 4.42 

US Homicide rate 6.98 1.81 

   

 

Sources. NHANES data for blood lead and FBI uniform crime reports for the homicide data. 

 

η  

 𝑠𝑑(𝐿𝑒𝑎�̃� −  �̃�′𝛾1) 
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