Ahmed F. Layouni, Luigi Logrippo and Kenneth J. Turner. Conflict Detection in Call Control
using First-Order Logic Model Checking, in Lydie du Bousquet and Jean-Luc Richier
(eds.), Proc. 9th Int. Conf. on Feature Interactions in Software and Communications
Systems, pp. 66-82, I0S Press, Amsterdam, May 2008.

Conflict Detection in Call Control
Using First-Order Logic M odel Checking

Ahmed F. Layourlj Luigi Logrippd, Kenneth J. Turnér

Université du Québec en Outaouais, Départemenfodimatique et ingénierie,
Gatineau, QC, Canada J8X 3¥&mail: layaO1 | luigi @ugo.ca)
2University of Stirling, Department of Computing 8ete and Mathematics
Stirling FK9 4LA, Scotland, UKEmail: kjt@cs.stir.ac.uk)

Abstract. Feature interaction detection methods, whethemenbr offline,
depend on previous knowledge of conflicts betwéenaictions executed by the
features. This knowledge is usually assumed to ibengin the application
domain. A method is proposed for identifying poigntonflicts in call control
actions, based on analysis of their pre/post-camdit First of all, pre/post-
conditions for call processing actions are definEden, conflicts among the
pre/post-conditions are defined. Finally, actiomftiots are identified as a
result of these conflicts. These cover several ipiisies where the actions
could be simultaneous or sequential. A first-orldgic model-checking tool is
used for automated conflict detection. As a casdystthe ApPeL call control
language is used to illustrate the approach, withAlloy tool serving as the
model checker for automated conflict detection.sTboase study focuses on
pre/post-conditions describing call control state anedia state. The results of
the method are evaluated by a domain expert wilgrpatic understanding of
the system’s behavior. The method, although contjpuily expensive, is
fairly general and can be used to study conflictsther domains.

Keywords: Call control, conflict detection, feature interactj policy, APPEL
Alloy, logic model checking.

1 Introduction

1.1 Featuresand Paliciesfor Call Control

Feature interactions have been discussed with cegpemany types of systems,
although a good part of the literature has coneggdron call processing systems. A
survey of the literature on the subject can be dounr2].

Feature interaction is a complex phenomenon andeamalyzed from different
points of view. Much research in the area has esipbd the behavioral aspect of the
phenomenon. In this perspective, feature interasti@re often seen as the result of
complex behavior interleaving for the state machitieat represent the features. In
two feature interaction contests [10,12] the cdatgs were given what essentially
were state machines for features. These had tohgased, and their composition
had to be modeled and evaluated. The goal wasrw agp with behavioral traces

showing that, for example, one feature was notwadtb to run to completion due to
the intervention of another feature.

In the world of VolP, users are allowed to progrémir own features. However,
most users do not program them from scratch usiollp acilities directly. Rather,
each VolP system offers a set of basic featuresdduia be combined by users and
enterprises, by using specifically designed langaatp implement different policies.
CPL (Call Processing Language [15]) is a well-knpearly embodiment of this idea.
Other policy languages with different purposesl#&8S [22,23] and APEL[20, 21].

In these approaches, users can specify policiels aac ‘if a call arrives from
Alice during work hours, treat it as urgent’, ‘calto Bob should be tried at all
addresses where Bob normally works’. The familiénigger, condition, actions>
paradigm is at the heart of these systems, andowjeature that it will continue to be
used. This paradigm is essentially identical toER, or <event, condition, actions>
paradigm that has been applied extensively in aseels as reactive databases, agent
systems, access control systems and the semairtic we

Generally speaking, a rule is enabled when iggéi occurs and its condition
holds. Note the difference between trigger and itmmd The trigger can be an
external or internal event. A trigger can conveyapaeters for use in conditions and
actions. Conditions can check database or ‘contafdrmation, such as the time of
day or the role of the user in an enterprise ogtpl@dpplication of the rule leads to
one or more actions. This apparently simple paradifjows many variations, and is
a good match to the many requirements of call obn#&k policy can expand in a
number of such rules.

By means of policies and rules one can define tireespondent of traditional
features, though policies can be higher-level,-osiented and more declarative.

Several actions can be proposed simultaneouslyefample when one rule
defines multiple actions or multiple rules are eatied by the same trigger. When this
happens, the different actions can direct the sy$tedo incompatible things. Actions
may also set conditions that can block other astitirat should follow. Conflicts
between actions imply potential conflicts betwelea policies that invoke the actions
and are the main manifestationfe&ture interactionsn policy systems. In this paper
the terms conflict and incompatibility will be synonyms, and conflicts and
incompatibilities will be seen as the consequenéésgical inconsistencies

In policy systems there are resolution methodsnguee that only one action for
each event is executed. For example, this is tatsin for firewalls. Here, the rule
file is typically scanned top-down and only thesfiapplicable rule is used. This leads
to just one action that accepts or rejects the ggeg access. Some policy languages
allow the user to include meta-rules for resolvoases where several actions may
become simultaneously enabled. Often these meta-are based on priorities. The
situation is complicated by the fact that for certavents, several actions may be
needed.

Nonetheless, for the validation of a policy set, rales and actions that can
become enabled for a given trigger and conditionukh be examined without
considering resolution methods. Indeed, severasa$interest can be found in this
way. For example, an important policy might be thtvaed’ by a more general but
contradictory policy, or a specific case might h&veen added in contradiction to an
important general policy. This can happen becawssgsuin these systems may be

allowed to add and delete rules when they seedbkd for them. When they do this,
they may not have a global view of all the conseges of the changes. Such
situations could lead to unwanted system behagigen though it may be technically
correct. Users should be notified with a requesiti g@ossibly suggestions, for
resolution.

1.2 Related Work

Several authors have suggested that many undesifalture interactions can be
understood as the result of inconsistency in spetibns. Perhaps the earliest and
clearest statements in this sense can be foun8, 8 where feature interactions are
modeled as inconsistencies among temporal logicifsgegtions. According to this
work, features A and B conflict if and only if aggram realizing their joint
specification A”B does not exist. The detection hmet uses the model-checker
Cospan. A similar view is given a theoretical fficéition in [1]. But already the first
classical paper on this subject [2] lists ‘conftigt assumptions’ as one of the main
causes of feature interaction. Among others, [513), are based on the idea that
feature interactions are the result of conflictamgions becoming enabled. But how to
tell that actions can conflict? [22, 23] push thwlgsis to higher granularity by
considering the pre/post-conditions of actions. Eaemple, two actions having
incompatible post-conditions can cause a featurgerantion if they are
simultaneously enabled, or two actions for whicé finst falsifies the pre-condition
of the second can cause a feature interactioreif Hre enabled one after the other.
Conflicts of pre/post-conditions in systems of E@Aes have also been studied in
[18].

We extend the conflict identification method of [223] to the language FPEL
[20, 21], as well we refine some of the definitiarsed in these papers. We automate
the conflict detection method using the first-ord@mal language Alloy [11]. The
associated Alloy tool is used to identify the cand.

A pragmatic approach to handling conflicts impkL is described in [19]. This
work provides run-time support assuming that thefleis have already been
identified in some independent way. Another vergerd contribution for the same
language [16] provides a denotational semantiandraork for APPEL, as well as a
method to address feature interactibof again assuming that conflicts between
actions have already been identified. The methadritzed in this paper can be used
in conjunction with the techniques proposed in ¢hego other papers to provide the
information that they need, concerning the corfflexisting between specific actions.
This method is a contribution towards a formal setica for APPEL, as well as to
feature interaction handling inPREL

In a related paper [4], a technique has been dpedlfor filtering conflicts in the
same APEL language. This other approach is founded on thgtire notion that
actions may conflict if they share a common efféatcontrast, the work reported
here has a higher degree of precision. Pre/posiiions are considered, as well as
the ordering of actions. This leads to a formal elddat allows semantically-based
inferences to be drawn about the compatibility aifams. Still, because of our level of
precision, the high-level analysis possible in\wguld be difficult with our method,
as well several aspects that can be consideredthathmethod would be difficult to

consider with ours. For the time being, we mustsader these two methods as both
useful and complementary. Future research will haveleal with the problem of
reconciling and integrating them.

2 Ordering and conflicts between actions

In this method, the mutual consistency of actiangatermined on the basis of their
pre/post-conditions. We consider a system statdetocharacterized by a set of
variables and their values. Pre/postconditions @medicates that describe these
values. The pre-condition of an action describesstate(s) in which the system must
be in order for the action to execute. The posddan of an action describes the
state(s) that can result from its execution. Wel stee below that pre/postconditions
can be consistent or inconsistent, leading to nhuwtaasistency or inconsistency of
states

The following timing relationships can apply betwesetions:

e simultaneougxecution: one action starts executing at a tirhenathe other

action has not completed.

e sequentialexecution: one action starts executing after ttheeroaction has

completed, i.e. one action stricfhyecedesnother.

If two actions start from or lead to mutually insistent system states, they are
incompatible and should not be simultaneously etegtlEven the case in which such
actions are sequentially executed could be suspmmtause the second action
contradicts the results of the first (although thlisnormal in the evolution of a
system). If an action establishes a post-conditibith contradicts the pre-condition
of another action, then the second action cannotddiately follow the first.

More in detail, the following relations are of intst between the pre/post-
conditions of two actions A and B (this is not mietanbe an exhaustive list):

1. Relationship between the pre-conditions of A arepte-conditions of B:

(a) The conjunction of the pre -conditions of #héso actions is always
true. The two actions can thus be executed simediasly always. This is
perhaps a rare situation.

(b) The conjunction is satisfiable. In certain syststates, A and B can
both be executed.

(c) The pre-conditions of the two actions are naonudtaneously
satisfiable. There are no system states for whichind B can be executed
simultaneously. For example, they both might regufre same device or
they can be executed only in different connectiates.

2. Relationship between the post-conditions of A amel pre-conditions of B

(or vice versa). The cases are similar

(a) The conjunction is always true: then the secactibn can always
start after the first.

(b) The post-conditions of A are simultaneouslyssatle with the pre-
conditions of B. B can follow A in the case of sitameous truth. (A more
general case of these two situations is the cagiich the post-condition of
A implies the pre-condition of B.)

(c) The post-condition of A is not simultaneoushgtisfiable with the
pre-condition of B. In other words, B cannot folldwor A ‘disables’ B. For

example, A might free a device that B needs to fieserved, or A might
leave the system in a connection state that isrdift from the one B
requires.
Relationship between the post-conditions of A and B

(a) Simultaneous truth: no problem for concurestgcution.

(b) The post-conditions of A and B are simultan&psatisfiable. This
means that the results of A and B can be compatible

(c) The post-conditions of A and B are not simuttausly satisfiable.
This means that the results of A and B are incoiblgatn principle. For
example, one of them disconnects the call while dtiger continues it.
Simultaneously executing the two actions would éedle system in an
inconsistent, i.e. impossible state.

Doing a thorough analysis of all the cases abowveldvbe rather complicated, and
to our knowledge this has never been done forstgatall control systems.

In thi

s work, we are interested about a partialysis of conflicts, and we identify

three situations of conflict between actions (Fegly:

concurrency conflictstwo actions have inconsistent pre-conditions,
cannot be executed in the same system state

disabling conflicts an action leaves the system in a state wherecande
action cannot be executed

results conflicts two actions would leave the system in an incdasis
(impossible) state, and thus cannot be executedltsineously.

Further, the two aspects of pre/post-conditionsea@onsidered are the connection

state an

Concur

d the media state.

rency conflict Disabling conflict Results conflict

Call State > Call State > Call State >

pre | Acti on1 | post | , pre [Action | post |
\ : pre|Act|0n1 postl : \
[pre | Acti on2 | post | [Pre | Acti on2 [post | pre | Acti on2 | post
N . i
phasel E phase3 phasel phase2 phase3 |iphasel phase2 | phase3
Figure 1. Three types of conflicts
Conflicts among pre/post-conditions of more thaw t@&ctions are also possible.

However this kind of analysis is rarely performezthuse it becomes complex and
very few concrete examples (where three actiongean conflict without any two of
them being in conflict) are known. In addition, aase study will be on #eEL and
run-time conflict handling for APEL is designed so that only pairwise combinations
of actions need be considered.

3 TheAPPEL Policy Language

APPEL (ACCENT Project Policy Environment/Language) is a genptapose
language for expressing policies. The languagesiimed in [20], and its use for call
control is described in [21]. #PEL conforms to the ECA model for policy rules.
APPEL is supported by a policy system that interfacesdime system under control
(e.g. a SIP server). When a trigger is receivegl teere is an incoming call or a new
party is being added to the call), the policy semetrieves all policies that apply.
These are typically policies of the caller and ¢chélee, but higher-level policies may
also be retrieved (e.g. of the user’s organizajioR®licies are then checked for
applicability. Apart from explicit policy conditia other factors that determine
applicability include the profile of a policy ant$ iperiod of validity. The result is a
set of actions. Triggers, conditions and actiony @b be composite. Triggers and
conditions may be combined by logical operators] aations may be conditional,
sequential or concurrent.

Although APPEL resembles a number of other policy languagesijffierd in a
number of important respects. It was specificalierted towards the need for call
control, as other approaches do not relate wethi® application. For example, the
Ponder policy language [6] assumes that the sulajedttarget of a policy can be
identified. However, in call control and other apgtions these concepts do not have
clear interpretation.

APPELwas designed so that ordinary end users can fatmpblicies, unlike other
languages that require a high degree of technigpértise. Since APEL is XML-
based, policies cannot be defined directly by atechnical user. APEL is therefore
supported by a user-friendly policy wizard thabel$ creation and editing of policies
using near-natural language.

Although ApPEL was originally developed for call control, it isf avider
applicability. For example, it has also been usedpolicy-based management of
home care and sensor networks. This wide rang@mifcations is possibleecause
APPEL has a core language that is supplemented by despaitific extensions. This
is reflected in the language schemas and alsodrmottiologies that define domain
vocabularies.

APPEL was designed with conflict handling in mind. Assdebed in [19], the
actions resulting from a trigger are filtered foongpatibility. Special resolution
policies are used to detect and to resolve cosflithese policies resemble regular
policies, but the trigger of a resolution policytie action of a regular policy. Since
resolutions are defined rather than being builo ithe policy system, there is
considerable flexibility in how conflicts are haadl Generic resolutions choose
among the conflicting actions, while specific resgimins propose domain-specific
actions (that may differ from the conflicting onesJthough the approach supports
automated run-time resolution of conflicts, it eslion resolution policies having been
already defined. That is, as mentioned, the apjpr@dependent on already knowing
what the conflicts are. In previous work, conflistere determined manually — a
tedious and error-prone task. The new work repohtece provides a systematic,
automated and semantically-based way of discoverimglicts that can then be used
to define resolution policies.

4 APPEL Actionsand Their Conflicts

41 APPEL Actions

Although our approach could be used withPALin other domains, for concreteness
and familiarity we use call control as the applimatdomain. The call control actions
in APPEL are defined by [20]. Some of these depend onqudati communications
protocols (e.g. H.323) and on particular parametéfs choose to abstract the key
call control actions as follows:

e connect_tdnitiates a new and independent call

e reject_callrejects a call, i.e. prevents it from completing

o forward_tochanges the destination of the call

o fork_toadds an alternative leg to the call

e add_partyadds a new party to an existing call

e remove_partyemoves a party from the call
add_mediunadds a new medium to the call
remove_mediuremoves a medium from the call
remove_defaultemoves the default medium from the call
disconnectisconnects the call

This list of actions provides an abstract viewha tall processing cycle inPREL
an initial connection action can be followed byertj forward or fork. During the
call, parties can be added or removed. Media caadbled or removed. The call can
then be disconnected. Note that ‘disconnect’ is amtaction in RPEL at present,
however our analysis has led to the conclusionittstould be added.

The actionremove_defaultdeserves mention, especially since there isatht
default Certain actions, such asnnect_toimplicitly reserve the default medium for
the call (usually audio). Although theemove_defaulaction also does not exist in
APPEL it is implicit. We have made it explicit because will see later that it is
useful to consider the availability of the defaddivice in the pre/post-conditions.

All these actions have parameters, which can thiemesecause interactions.
However the treatment of parameters would add densble complexity to our
analysis. We have abstracted away from parametersriinitial analysis of conflicts.
We have also omitted actions that do not diredlgte to call control (e.g. those that
log or send messages). Our method can be applibeno, but this has not been done
here because it would have complicated the pretsemtaf the approach with little
additional insight. For one thing, our tables wolite had to be much larger.

4.2 Pre/Post-Conditionsfor APPEL Actions

Like all real-life distributed systems, call prosig systems are complex and the
conditions involved are correspondingly complexptactical terms, analysis must be
limited to a few important characteristics. Follogithe example of [22, 23], we have
decided to concentrate our analysis on two aspeotsnection (or call) state and
media state. We therefore characterize stede of a systemas a pair <connection
state, media state>.

Table 1 shows the table of pre/post-conditions teg developed for this study. It
represents a simplified and abstract view of cedcpssing in RPEL Setting up this
table is a delicate task which determines the tesdiithe analysis.

Call processing progresses through three mutuadblusive connection states:
NoCall, CallSetup MidCall. Note that Table 1 does not describe a state mache.
transitions and associated actions from stateatie.sEor example, there is no action
that leads fronCallSetupto MidCall. It is assumed that this state transition willwcc
as a consequence of events that are not showneirtatile. That is, the table
intentionally does not describe how the real systewks ‘behind the scenes’.

The table identifies two categories of media: teéadlt medium (e.g. audio) and
media in general (e.g. video, messaging). It iSuide make this distinction because
a call is always initiated with a default mediumhi§ may later be augmented or
replaced by something else (e.g. video may be adutetthe call may be reduced to
messaging only).

The analysis presented in the following sectiomiifies six cases of conflict, in
the three major categories we have identified:
1. Concurrency or Pre-Condition - Connection State

2: Concurrency or Pre-Condition - Media State
3: Disabling - Connection State

4: Disabling - Media State

5: Result or Post-Condition - Connection State
6: Result or Post-Condition - Media State

Action Pre-conditions Post-conditions
Connection State Media State Connection State Media State
connect_to NoCall DefaultAvailable] CallSetup DéfReserved
reject_call CallSetup DefaultReserved NocCall Defavdilable
forward_to CallSetup DefaultReserveq CallForwarded | DefaultAvailable
fork_to CallSetup DefaultReserved CallForked DiReserved
add_party MidCall DefaultAvailable E’A?drt():/,;cljdedToCall, DefaultReserved
remove_party MidCall, DefaultReserved MidCall DefaultAvailable
— PartyAddedToCall

add_medium MidCall MediumAvailable MidCall Medium&eved
remove_medium MidCall MediumReserved MidCall MedAwmilable
remove_default MidCall DefaultReserved MidCall DdfAvailable
disconnect MidCall DefaultReserved NocCall Defaulkfable

Table 1. Pre/post-conditions for #PELactions

Connection State 1 Connection State 2
NoCall MidCall

NocCall CallSetup
CallSetup MidCall
CallSetup NoCall

MidCall NoCall

MidCall CallSetup

Table 2.Connection State incompatibilities

4.3 Concurrency Conflicts

As mentioned, in this case, the question is whether actions can be executed
starting from the same system state. This willaply if they require states that are
incompatible. For example, acti@onnect_tocannot be concurrent with any other
action, since it is the only action that can becexed before a call exists. Similarly,
add_partyrequires the system to be in a state where treutlahedium is available,

while remove_partyinstead requires the default medium to have beserved. Note

that this does not mean that the two actions atessarily incompatible. Our analysis

Action
Pair

connect_to
~| reject_call
=1 forward_to
=| fork_to

disconnect

connect_to

reject_call

forward_to

=l = P el add_party
=l Pl Pl | remove party

= P Pl | add_medium
| ~| »| =| remove medium
=| r| ~| | remove default

Pl R R e

fork_to

add_party

remove_party

add_medium

remove_medium

remove_default

disconnect

Table 3. Pre-condition conflicts for Connection State (cise

is not sufficiently detailed for such certitudedé&ed in every method reported in the
literature, feature interaction detection only sesjg the possibility of an interaction,
which must be confirmed by domain experts, in obastion also of specific
contexts.

The approach requires incompatibilities in statéeodefined. Table 2 shows the
incompatibilities between connection states thathaee used. Essentially, the table
says that the three connection states are mutinaynpatible.

As a consequence of this, we obtain the resultswshin Table 3 for
incompatibilities among connection states. We cee kere thatreject_call and
add_partyare incompatible because each requires the systémin a different state
than the other. Two differemonnect_tcactions are not incompatible for this reason,
although they will be incompatible for other critersee below. Obviously the table is
symmetric.

The other aspect to be considered is media stdte. tible of media state
incompatibilities is not shown here because itather simple. It indicates potential
conflicts if the actions require some medium (idhg the default) to be both
reserved and available. Here again, the necessapyification should be understood.

A call system will have a variety of selectable imednd default media. To be
complete and precise, one would have to considesplecific media and defaults in
the system under consideration, as well as spempigrations that reserve and release
them. This type of detail is possible in practiget is irrelevant for the purpose of this
paper, which is illustrating the method.

4.4 Disabling Conflicts

As mentioned, it is possible for an action to lethe system in a state where another
action is impossible. This can be determined byckimg post-conditions against pre-
conditions. Concerning the connection state, thermpatibilities to be considered are
the same as earlier: the three states are incdohpalihus, an action that must find
the system in stat®lidCall cannot immediately follow an action that leavee th
system in stat&€allSetup Similarly for media state, an action that regsidefault
media to be reserved cannot follow an action tht default media available, and so
on.

Table 4 shows the result obtained with respect donection state. It is not
symmetric because the disable relation is not sytnicne

Action
Pair

remove party

reject_call
forward_to
fork_to
add_party
add_medium
remove_medium
remove_default
disconnect

w| connect_to

connect_to

reject_call

w| w

forward_to

fork_to

3 3 3 add_party

remove_party
3 3 3 add_medium

remove_medium

3 3 3 remove_default
3 3 3 3 3 3 | Disconnect

Table 4.Disabling conflicts for connection state (case 3)

45 Result Conflicts

Two actions are also incompatible if they leadnimoimpatible post-conditions. Again,

these can refer to connection state or to media.dtathe case of connection state, if
an action leads to a certain connection state hanaompatible action must lead to
either the same state or to the next state. Asiomad, the cycle of states is as
follows: NoCall leads toCallSetupwhich leads toMidCall, which leads again to

NocCall. An action which leads to one of these statesgsmpatible with an action

which jumps one link in the sequence. As an examplect_callleads toNoCall,

while add_mediunteads tavlidCall. Clearly a link is skipped here, since between the
two we need an operation that establisBaSetup Hence the incompatibility. The
complete incompatibility table between connectidates will not be given for
brevity, since essentially it reflects this reasgniNote that this definition of state
incompatibility is perhaps disputable, but this slaet affect the validity of the
method, which can be adapted to other definitiohable 5 shows conflicts according
to this criterion.

E | =
> = >
& T
o = o > 8 g é B = .
o - = 9|3 e 8 Action
8| 5|8 a el e| & ¢ € Pair
c 3] = « <] | <] o g
S|lo|5|5|3|8 3|55 2
o put — .— @ put © put pul e}
5 5 connect_to
5 5 5 5 5 5 reject_call
5 5 forward_to
fork_to
5 add_party
5 remove_party
5 add_medium
5 remove_medium
5 remove_default
5 5 5 5 5 5 disconnect

Table 5. Post-condition conflicts for connection state éc&¥

For media state, the incompatibilities are agaipke. If the actions lead to some
media being availableand reserved, or the default media being availahie
reserved, there is a post-condition incompatibitigcause of media. To save space,
the results of this analysis are given in Tablthé,recapitulative table.

4.6 Oveall Reaults

Table 6 shows the complete results for the sixgygfeconflicts we have discussed.

We have also analyzed other situations, for exartipde case where an action
enables or sets the pre-conditions, of another action].[14 this case, the
postcondition of the first action implies the prediion of the second one. These
situations cannot be discussed for lack of space.

4.7 Assessment

How would a domain expert in call control (oP®EL) view these results? An expert
is guided by a pragmatic understanding of the systéehavior, while the approach
of this paper is formal and systematic, at a higrel of abstraction. As mentioned,
the parameters of actions are disregarded, astheelView of system state is much
simplified, and this means it is not said, for exéan which specific party or medium

is being added or removed. As a consequence, thiothediscussed here is
intentionally pessimistic. However, since the golthe work is to identify action
pairs that require closer study because of potemiflicts, the approach is
successful.

E| =
> = =}
o _ ° - & % _g % - Action
J1 812 | §| 2| o | & Pair
8 I B = S > 1S > > c
c *g S -« o | o o g
& T 5 5 3 5 3|5 5
3 pd L o S e @ e b 5
34 1,256 126 | 1,2 14 126/ 1 1 1,26 1,2/5¢bnnect_to
126 |4 45 4,6 12356 1,345 1,35 1,85 153(4,3,4 | reect_call
126 |45 4 4,6 1236 134 13 13 134 13}4fbrward_to
124 |3,6 3,6 3 124 1,6 1 1 1,6 1,6 | fork_to
145 (1,236 1,236 123| 4 2,6 2,6 2,6 | add_party
125614 14 146 | 2,6 4 4 4 remove_party
15 1,3 1,3 13 4 2,6 add_medium
15 13 1,3 13 26| 4 remove_medium
1256(134 | 134 | 134p 2,6 4 4 4 remove_default
126 |14 145 | 146| 2356] 345 3% 35 34/54 3 | disconnect

Table 6. Summary of conflicts

5 Detecting Conflictsin APPEL with Alloy

The method described in the previous sections cbeldmplemented in different

programming languages. Instead of using a conwveaitiprogramming language, we
decided to experiment with the model checker Allblis decision was taken for two

reasons: Alloy allows high-level, conceptual modglof systems architectures and
their properties. Further, it has the capabilitychécking logical models, and thus is
open to the possibility of extending our methodagically more complex pre/post-

conditions.

5.1 Alloy language and tool

Alloy [11] is a formal method that includes a logiclanguage, and a tool. The logic
is primarily a relational logic. The language pars a user-friendly representation
for the logic. It supports several specificatioples$, calledpredicate calculus styje
relational styleand navigational style(the last one being the most expressive and
most commonly used). It includes a type systemraadhanisms to favor reusability.
The tool is essentially a first-order logic modbakcking tool, based on the use of off-
the-shelf satisfaction algorithms. Alloy allows otedescribe a system model, and
will check it for consistency. It is also able theck whether certain properties are
true for the system. However the user of Alloyaguired to specify a finite size for
the model by the execution system, meaning thainisistencies not found for the
size specified could, at least in theory, appeadiiferent sizes.

Signaturesare used in Alloy to define types, e.g.

abstract sig Rules {
trigger : one OBtrigger, /1 there is one trigger
condition : |one OBcondition, /1l zero or nore conditions
action : some OBaction // the set of acts is non-enpty

#action = 2

defines arule, and at the same time states that we are interesgenerating exactly
two objects of typection (for which there can be severabme, since we consider
only conflicts between pairs of actions. Inheriwrrelationships can exist between
signatures.

Factsconstitute a data base of facts that are knowhdrsystem, e.g. the pre/post-
conditions of the actions (see Table 1):

fact {
connect _to. PreConnState = NoCal |
connect _to. PreMedi aStat e Def aul t Avai | abl e
reject_call.PreConnState = Cal | Setup
reject_call.PreMedi aState = Defaul t Reserved

}
Or the fact that connection states are pairwisenmpatible (encoding Table 2).

fact AC {
I ncompSet . ConcConflict_I nconp_ConnState =
M dCal |l -> NoCall +
MdCall -> Call Setup +
NoCal |l -> MdcCall +
NoCal | -> Call Setup +
Cal | Setup -> MdCall +
Cal | Setup -> NoCall

}

Predicatesare properties that can be true or fakgsertionsare properties that can
be checkedby the tool, and for which the tool will try tonfi a counterexample. For
example, the following predicate is true if twoians are in concurrency conflict
because of the connection state in their pre-comdit

pred Conc_Conflict_ConnState (al : OBaction, a2 : OBaction) {

some v : al.PreConnState, w: a2.PreConnState |
(v ->w) in InconpSet. ConcConflict_I|nconp_ConnState

C12 assertsthat predicateConc_Confl_ConnStateis true for the two objects
connect_taandreject_call

assert Cl2 {
Conc_Confl _ConnState (connect_to, reject_call)
The Alloy tool is asked toheckthis assertion with:

check Cl12

The result is that there is no counterexample & predicate, thus the assertion is
valid and the two actions conflict in their pre-ditions, making them unsuitable for
concurrent execution.

The core specification of this problem is abouagegs of Alloy code. A further 22
pages are required for theheck and assert statements needed to determine the
presence of conflicts in all cases of interest.

5.2 Alloy Execution

In its internals, the Alloy tool expresses the dwats in terms of Boolean
expressions and then tries to solve these by imgpkif-the-shelf SAT solvers. This
problem is of exponential complexity. However, SAblvers are improving in
efficiency and many non-trivial problems can beatee. Current solvers can handle
thousands of Boolean variables and hundreds oessgms, although of course much
depends on the type of the expressions [11]. Tthes, Alloy user must find a
judicious compromise between detail and abstractisnwell as size of model to be
checked. Too many details or too large a model galise the tool to run out of
memory or time.

The Alloy tool provides a number of useful graphiepresentations of its results:
graphical, tree, XML.

Alloy models can be checked in one of two ways:

e With the functionVerifActionswhich will check the whole model, but will
find at most one (arbitrarily chosen) conflict fogach execution.
Unfortunately Alloy cannot be asked to continualiitg solutions, as Prolog
can.

e By systematically checking assertions. To consalecases for our model
requires 600 executions (10 actions x 10 actionst>predicates). Each
assertion takes about 2.5 minutes to check, fotah of around 25 hours.

The analysis was performed on a Pentium with @80GHz CPUs and 1GB of
main memory. We used Alloy version 3. Version 4edfimprovements in usability,
but it became available late in the progress af Work.

We are looking forward to improvements in the Altopl to simplify and expedite
its use in a case like ours, where several hundredssertions have to be checked.

It should be underlined that our algorithm would eich more efficient if
implemented in a procedural programming languageyelver we wanted to work
with a formal technique which allows a view that étose to the problem
specification.

6 Conclusons

We have described and justified a method for figdiconflicts between call
processing actions in a VolP context, extendingasdan the work of [22,23] and
others. We have demonstrated the effective apjicatf this method to the actions
of APPEL Verification was undertaken using Alloy for fistder model checking.
We have focused onp®ELand Alloy mainly because we are familiar with thaie
plan experimentation and comparison with other iappbns, other policy languages
and other formal tools. In another case study, ntethod was used to check the

results of [23] with regard to LESS, and happily were able to confirm them, as
well as to complete them with the detection ofva &lditional conflicts [14].

The contributions of this work are as follows:

e The approach allows potential conflicts among pedido be determined
through analyzing the pre/post-conditions of thaations. This is a
general idea that is not restricted to call conth@lPELor Alloy.

e As has been seen withPAEL the method is successful in identifying
genuine conflicts that need to be resolved by aalomxpert.

e The approach provides a (partial) model of policyicams by defining
their pre/post-conditions. In the context of thigppr, this gives more
precise meaning to #PEL

Note that the usefulness of this method is nottéthito static feature interaction
filtering. Understanding which actions conflict amtly is useful in a number of areas
of feature interaction research. This informatien useful for feature interaction
avoidance, for feature interaction detection, aod féature interaction resolution.
Most of the methods that have been proposed irethesas assume that it has been
previously determined by some other method thatireactions conflict. Neither is
the method limited to single user interactionscaim principle conflicting actions
can be in different users’ policies [17]. Our meathoan be integrated in other
methods, i.e. the merge algorithm used in LESS.

More detailed presentation of these results cdioded in [14].

Future work will deal with various generalizatiomgntioned in the paper. A more
complete model should be developed farPAL and the pre/post-conditions of its
actions. In particular, action parameters and ncoraplete state descriptions should
be taken into consideration. We plan to extendafiyigoach to other policy languages,
as well as to investigate other tool support besiloy.

Acknowledgments

This work was funded in part by the Natural Sciesnead Engineering Research
Council of Canada, the UK Royal Society, and thgdk&ociety of Edinburgh. The
authors thank Gemma Campbell (University of Styjinfor discussions about
detecting conflicts in APEL, and Xiaotao Wu for discussion about his method.

References

1. Aiguier, M., Berkani, K. and Le Gall, P: Featureesjfication and static analysis for
interaction resolutionProc. Formal Methods’06LNCS 4085, 364—379, 2006.

2. Calder, M., Kolberg, M., Magill, E. H. and Reiff-Mganiec, S.: Feature interaction: A
critical review and considered forecasgmputer Networke11:115-141, Jan. 2003.

3. Cameron, E. J., Griffeth, N. D., Lin, Y.-J., Nilsad. E., Schnure, W. K. and Velthuijsen,

H.: A feature-interaction benchmark for IN and begod EEE Communications Magazine

31(8):18-23, Aug. 1993.

Campbell, G. Turner, K.J. Policy calling filterifigr call control. These proceedings.

Crespo, R.G., Carvalho, M., Logrippo, L.: Distribdtresolution of feature interactions for

internet applications. Computer Networks 51 (2R-387, Feb. 2007.

6. Damianou, N., Dulay, N., Lupu, E. Sloman, M.: TRender specification language.
Workshop on Policies for Distributed Systems antindeks (Policy2001), Jan. 2001.

ok

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Felty, A.P., Namjoshi: Feature specification antbenatic conflict detectiorin Calder, M.
and Magill, E. H. (eds.)Proc 6". Feature Interactions in Telecommunications and
Software System&79-192, I0OS Press, May 2000.

Felty, A.P., Namjoshi: Feature specification antbeated conflict detectiodACM Trans.
on Software Engineering and Methodolp§g(1):3—27, Jan. 2003.

Gorse, N., Logrippo, L., Sincennes, J.: Formal ct&ia of feature interactions with logic
programming and &Ttos Software and System Modelin§(2):121-134, (mistakenly
published aPetecting feature interactions in CRLJun. 2006.

Griffeth, N.D., Blumenthal, R., Gregoire, J.-C., t@hT.: Feature interaction detection
contest of the fifth international workshop on feat interactionsComputer Networks
32(4):487-510, April 2000.

Jackson, D.Software Abstractions: Logic, Language, AnalyBi$T Press, 2006.

Kolberg, M., Magill, E., Marples, D., Reiff, S.: &nd feature interaction context. In: M.
Calder, E. Magill (Eds.[Feature Interactions in Telecommunications andvéaf Systems
VI. 10S Press, 2000.

Kolberg, M., Magill, E.H. and Wilson, M E.: Comphility issues between services
supporting networked appliancéEEE Communications Magaziné1(11):136-147, Nov.
2003.

Layouni, A.F.:Méthode formelle pour la détection d’interactions fbnctionnalités dans
les systemes de politiqueBiémoire de maitrise, Université du Québec en Quass,
Département d'informatique et ingénierie, 2007 ttfooming).

Lennox J, Wu X. and Schulzrinne HCPL: A language for user control of Internet
telephony service®RFC 3880, Internet Engineering Task Force, Qad42

Montangero, C., Reiff-Marganiec, S. and Semini,lagic—based detection of conflicts in
APPEL policies, Proc. Symposium on Fundamentals of Software EnginedfSEN'07),
Feb. 2007.

Nakamura, M., Leelaprute, P., Matsumoto, K, Kikumo,On detecting feature interactions
in the programmable service environment of Intetalephony Computer Networkd5(5):
605-624 (2004).

Shankar, C., Ranganathan, A., Campbell, R.: An ECpelicy-based framework for
managing ubiquitous computing environmeMsbiquitous 2005July 2005.

Turner, K. J., Blair, L.: Policies and conflicts icall control, Computer Networks
51(2):496-514, Feb. 2007.

Turner, K. J., Reiff-Marganiec, S. and Blair, LAPPEL The ACCENT project policy
environment/languagé& echnical Report CSM-161, University of Stirlirigk, Dec. 2005.
Turner, K. J., Reiff-Marganiec, S., Blair L., Parly, Gray, T., Perry, P. and Ireland, J.:
Policy support for call controComputer Standards and Interfac@8(6):635-649, 2006.
Wu, X. and Schulzrinne, H.: Handling feature intti@ns in the Language for End System
Servicesjn Reiff-Marganiec, S. and Ryan, M. D. (ed®)oc. 8th. Feature Interactions in
Telecommunications and Software Systéai6—287, IOS Press, 2005.

Wu, X. and Schulzrinne, H.: Handling Feature Intéoms in the Language for End System
ServicesComputer NetworkS1 (2), 515-535, 2007.

