
Koon Leai Larry Tan and Kenneth J. Turner. Orchestrating Grid Services using BPEL and Globus Toolkit 4.
In Madjid Merabti, Rubem Pereira, Carol Oliver and OmarAbuelma'atti, editors, Proc. 7th PGNet Symposium, pages 31-36,
ISBN 1-902560-13-9, School of Computing, Liverpool John Moores University, Liverpool, UK, June 2006.

Orchestrating Grid Services
using BPEL and Globus Toolkit 4

Koon Leai Larry Tan, Kenneth J. Turner, University of Stirling

Abstract—Grid services exploit an emerging distributed

computing technology that offers possibilities for distributed
resource sharing and collaboration. The standards for WSRF
(Web Service Resource Framework) have allowed grid services
to converge more closely on web services. Composing web
services has attracted significant effort and commercial interest.
This has resulted in BPEL (Business Process Execution Logic) as
a standard way of orchestrating web services. Because of the
similarities with web services, there is a natural question of
whether grid services can be orchestrated in like manner. It is
explained how CRESS (Chisel Representation Employing
Systematic Specification) has been extended to describe grid
service composition. It will be seen how BPEL has been adapted
for this purpose, using ActiveBPEL as the orchestration engine
and Globus Toolkit 4 as the grid service container. The problems
arising with orchestrating grid services are discussed, along with
possible workarounds.

Index Terms— BPEL (Business Process Execution Logic),
CRESS (Chisel Representation Employing Systematic
Specification), Grid Service, Service Orchestration, WSRF (Web
Service Resource Framework)

I. INTRODUCTION
HIS paper deals with several aspects: distributed
computing, service orchestration and occupational data in

social science. Grid computing has recently emerged as the
leading form of distributed computing that paves a way to
share resources such as computational power, data storage and
services amongst different organizations. Based on the
service-oriented architecture, it is then possible to combine
existing grid services and hence derive new and complex
services. The composition of services is known as service
orchestration. Many social scientists often collaborate and
perform analyses on large datasets such as occupational data
surveys. There has not been much emphasis on creating
infrastructures to improve data access, sharing and
collaboration in a distributed manner.

The paper discusses the investigations conducted to
achieve orchestration of a collection of grid services using

Globus Toolkit 4 and ActiveBPEL.

Manuscript received May 2, 2006.
K. L. L. Tan is with the University of Stirling, Stirling FK9 4LA

SCOTLAND (phone: +44 1786 467421; fax: +44 1786 464551; e-mail:
klt@cs.stir.ac.uk).

Kenneth J. Turner, is with University of Stirling, Stirling FK9 4LA
SCOTLAND (e-mail: kjt@cs.stir.ac.uk).

A. Grid Computing
Grid computing is analogous to an electrical power grid. As

electric power resources are linked together into a universal
grid and provided with standard sockets, so computational
resources can be linked into a computational grid and
accessed via standard protocols. A computational grid is
defined as a system that coordinates resources that are not
subject to centralized control, using standard protocols and
interfaces to deliver non-trivial qualities of service [1]. Grid
computing offers a number of distinctive advantages that
include:

• resource virtualization, where standard interfaces are
used to access resources in a heterogeneous environment

• creation of virtual communities that can span multiple
organizations for collaboration and resource sharing

• resource discovery, whereby queries can be made to
locate resources to work with

• resource management, whereby resource owners can
impose policies on different users in the virtual
organization

• security, including flexible mechanisms for delegating
credentials to third parties to act on behalf of the user

• single sign-on, whereby a user once authenticated can
access authorized resources within the virtual
organization

• distributed and parallel computing.
OGSA (Open Grid Services Architecture [2]) is being

developed by the GGF (Global Grid Forum [3]) to define a
common, standard and open architecture for grid-based
applications. The goal of OGSA is to standardize the services
that are commonly required in a grid system (job management
services, resource management services, security services,
etc.) by specifying a set of standard interfaces for these
services.

Web services were chosen as the underlying technology for
grid services because they are open-standard and do not
require particular platforms or language implementations.
However OGSA needs the underlying middleware to be able
to manage state. This is a requirement that web services have
not defined a standard for, though in principle it can be
achieved. During early development work, OGSI (Open Grid
Services Infrastructure) was implemented to meet the
requirement of “stateful” services. For this reason, grid

T

services were incompatible with web services although in
principle using the same technology.

As grid computing evolved, WSRF (Web Services
Resource Framework) replaced OGSI as a specification that is
compatible with web service architecture. It provides the
stateful services that OGSA requires. WSRF 1.2 has recently
been accepted as an OASIS standard [4]. GT4 (Globus
Toolkit 4) is one of the available software toolkits that
implements WSRF. It was developed by the Globus Alliance
[5] and is widely used to create grid services.

B. Service Orchestration
The trend of distributed computing is towards a service-

oriented architecture that represents computing functions as
services. This opens up the possibilities create new services by
combining existing services. As a result there is reusability of
current resources, and new operations can come into effect
quicker.

Service orchestration (or composition) has attracted
significant interests from both industrial and academic
organizations. This is achieved by a defining ‘business
process’ that captures the logic of how individual services are
combined.

In the context of web services, a major advance came from
the development of BPEL4WS (Business Process Execution
Logic for Web Services) as a result of the combined efforts of
many companies. This specification is being standardized as
WS-BPEL (Web Service Business Process Execution
Language), which is now established as the way to compose
web services. Though compatible with web service
architecture, limited attention has been given to composing
grid services using BPEL. This paper is an effort to use the
ActiveBPEL execution environment to orchestrate grid
services deployed with GT4.

C. Occupational Data
Census data is often used in many social analyses. The

results help to identify trends in society and provide valuable
inputs to social planning and policy making. Many of the
analyses involve data with occupational information variables
which then are required to be linked to occupation
classifications. There are numerous occupational
classifications that have their distinct characteristics and
advantages targeted at certain form of analysis.

Datasets in social science are often incompatible (differing
in file and content formats) and lack good documentation.
They can be very large and subject to tight security measures
for access. There are no current standards to govern formats,
data access and sharing. Analyses performed on social science
datasets can be computationally intensive. All these factors
contribute to the difficulties of achieving effective and
productive collaborations amongst social science researchers.

Grid computing offers features that are very beneficial in
occupational data analysis. The authors are working on the
GEODE project (Grid-Enabled Occupational Data
Environment, www.geode.stir.ac.uk). GEODE is creating a

grid environment to specifically address the challenges faced
by social scientists using occupational data. GEODE has been
the source of the research challenges addressed in this paper.
Occupationally-related services are used as illustrative
examples.

D. CRESS
CRESS (Chisel Representation Employing Structured

Specification) was developed as a general-purpose graphical
notation for services. Essentially, CRESS describes the flow
of actions in a service. It thus lends itself to describing flows
that combine grid services. CRESS has been used to specify
and analyze voice services from the Intelligent Network,
Internet Telephony, Interactive Voice Response, and web
services [7]. For the work reported here, CRESS was extended
to deal with composition of grid services.

Service descriptions in CRESS are graphical and accessible
to non-specialists. A major advantage of CRESS descriptions
is that they are automatically translated into formal languages
for analysis, as well as into implementation languages for
deployment. CRESS offers benefits of comprehensibility,
portability, rigorous analysis and automated implementation.

CRESS is extensible, with plug-in modules for each
application domain and each target language. Although
support for web services had already been developed, it has
been necessary to extend this significantly for use with grid
services. In addition, grid services have specialized
characteristics that require corresponding support in CRESS.

E. Related Work
There are several tools available for describing web service

composition in the style of BPEL. CRESS differs in being a
multi-purpose approach that works with many different kinds
of services and with many different target languages.

JOpera [6] defines a visual notation for composing grid
services and provides a kernel to run and monitor the services
in operations. However it does not use a standard language
such as BPEL for service composition. CRESS translates
descriptions of grid service composition into BPEL and
performs rigorous analysis prior to automated deployment.

Several efforts are using BPEL as the means of composing
grid services [8,9]. [8] differs in that the focus is on
programming solutions. [9] is different in that it manipulates
message headers to achieve communication between a grid
service and its associated resources (known as WS-Resource,
or Web Service Resource).

The current paper is complementary to [10], which is
focused on the formal aspects of grid service composition.

II. DESCRIBING COMPOSITE GRID SERVICES WITH CRESS
Figure 1 shows the subset of CRESS constructs needed in

this paper for grid services.

A. CRESS Notation for Grid Services
External services are considered to be partners. They offer

their services at ports where operations may be performed.

2

In

as
pa
be
m

fo
be
w
fo
en
an
pr

pa
fa

va
Si
C

Certificate (a digital security certificate), Name (a qualified
name) and Reference (an endpoint reference that characterises
a service instance and its associated resources). Though the
example uses Certificate, grid security is not currently used
as explained in the next section.

Structured types can also be defined, using ‘[...]’ for arrays
and ‘{...}’ for records. For example, the following defines two
variables hits and misses. Their type is an array of elements
with type jobCount. This in turn is a record with string job and
natural count as fields.

[{ String job Natural count } jobCount] hits, misses
Since array elements are accessed by index rather than by

element type, a typical value might be hits[3].count.
The CRESS descriptions are mapped naturally to relevant

BPEL functions and syntax. Once analysed, the CRESS
descriptions are automatically translated into BPEL/WSDL.

B. Occupational Data Analysis using Grid Services
The example illustrated here typifies the kinds of services

being developed for occupational analysis in the GEODE
project. The scenario for the example is the following:

• data is collected in an occupational survey that records
job, address, age and gender

• data is often in different formats, and has to be
normalised and represented as a resource (using a
converter grid service)

• data security is required (emulated in this example)
• a conditional frequency analysis (using a statistics grid

service) can be performed on the on the data. An
example of a condition is ‘age>50’

C. CRESS Description of The Analyser Service
CRESS Meaning

Catch fault A handler for the specified fault. A fault with
name and value requires a matching Catch
name and variable type. A fault with a value
only requires a matching Catch variable type.
A fault is considered by the current scope and
progressively higher-level scopes until a
matching handler is found.

Compensate scope? Called after a fault to undo work. Giving no
scope means compensation handlers execute
in reverse order of being enabled.

Compensate A handler that defines how to undo work after
a fault. A compensation handler is enabled
only once the corresponding activity
completes successfully. When executed, it
expects to see the same process state as when
it was enabled.

Empty No action, used as a place-holder.

Fork strictness? Used to introduce parallel paths; further forks
may be nested to any depth. Normally, failure
to complete parallel paths as expected leads to
a fault. This is strict parallelism (strict, the
default). Matched by Join.

Join condition? Ends parallel paths. An explicit join condition
may be defined over the termination status of
parallel activities. This gives the node
numbers of immediately prior activities, e.g.
1&&2 means these (and the prior ones) must
succeed.

Invoke operation output
(input faults*)?

An asynchronous (one-way) invocation for
output only, or a synchronous (two-way)
invocation for output-input with a partner
service. Potential faults are declared statically,
though their occurrence is dynamic.

Receive operation input Typically used at the start to receive a request
for service. An initial Receive creates a new
instance, usually matching a Reply for the
same operation.

Reply operation output |
fault

Typically used at the end to provide an output
response. Alternatively, a fault may be
thrown.

Terminate Ends a business process abruptly.
While condition Loops as long as the condition is true.
voking a service may give rise to a fault.
A CRESS diagram shows the flow among activities, drawn
 ellipses. Each activity has a number, an action and some
rameters. Arcs between ellipses shown the flow of
haviour. Note that CRESS defines flows and not a state
achine; state is implicit.
Normally a branch means an alternative choice, but
llowing a fork activity it means a parallel path. An arc may
 labelled with a value guard or an event guard to control
hether it is traversed. If a value guard holds, behaviour may
llow that path. An event guard defines a possible path that is
abled only once the corresponding event occurs. Activities
d guards may have associated assignments. These are
efixed by ‘/’ and written in the form variable <− value.
In CRESS, operation names have the form
rtner.port.operation. Fault names have the form
ult.variable, the fault name or variable being optional.
A CRESS rule-box, drawn as a rounded rectangle, defines
riables and subsidiary diagrams (among other things).
mple variables have types like Natural n or String s.
RESS also supports grid computing types such as

The analyser service is an auxiliary service that supports the
main application. Its CRESS description appears in figure 2.
The rule-box on the left of the figure defines types and
variables. The raw data is analysisData: the requester’s
certificate, the analysis criterion, and a reference to data to be
analysed. The result is an analysis: a list of job-count pairs.

Fig. 2. CRESS Description of The Analyser Service

3

For example, it might be determined that there are 60
plumbers, 40 electricians, etc. that meet the criterion (e.g.
gender = male or age<20).

Initially the analyser receives a request to perform a count
operation on the analysis data (node 1). The requester’s
certificate and a reference to the data are copied for checking
authorisation (arc to node 2). The converter is then asked to
authorise use of this data (node 2). If permitted, the
information for the statistics service is set up. This defines the
field to be counted (‘job’), the analysis criterion, and a
reference to the data.

The statistics operation count is then invoked to make a
conditional frequency analysis (node 3). Normally, this will
return an analysis to the requester (node 4). However if the
statistics service faults (name statisticsError, value reason),
this is caught (arc to node 5) and returned as a fault by the
analyser (node 5).

If the converter does not authorise access, the fault reason
‘unauthorised’ is set (Else arc to node 6). The analyser then
returns a fault to the requester (node 6).

D. CRESS Description of The Splitter Service
The splitter offers the primary service to the user. Its

CRESS description appears in figure 3. The rule-box on the

left of the figure defines types and variables. The raw data is
splitData: the requester’s certificate, an analysis criterion, and
a list of entries giving job, address, age and gender. The
analysis yields hits (entries that match the given criterion) and
misses (those that do not). The final entry in the rule-box,
‘/ANALYSER’ indicates that the splitter depends on the
analyser service.

Initially the splitter receives a request to perform the count
operation on splitData (node 1). The converter service is
invoked to normalise and store this data, returning a store
reference to it (node 2). Now the splitter follows two parallel
paths (node 3). On each path, the certificate, analysis criterion
and store reference are set. The path leading to node 4 is for
the given criterion (hitData), while that leading to node 5 is
for its inverse (missData). A criterion is negated by prefixing
it with ‘~’. The analyser service is executed in parallel with
both sets of parameters (nodes 4 and 5), resulting in hits and
misses for these paths. These paths join at node 6, where it is
required that both paths have led to a successful result
(4&&5).

Now the results of the two analyses have to be combined.
The splitter loops through the data (node 7). For each value in
hits and misses, their relative percentage is calculated (node

Fig. 3. CRESS Description of The Splitter Service
4

8): Percent is just a CRESS convenience function to make the
intention clearer. Suppose the splitter was called to analyse the
male percentage for jobs. If there are 60 male plumbers and 20
female plumbers in the survey, hits will be set to 60 / (60+20)
or 75% as a percentage. This is repeated for every distinct job
in the data.

At the end of the loop, the converted data has served its
purpose and is deleted (node 9). Finally, job percentages are
returned as the result of the analysis (node 10). The splitter
has to take into account that its external partners may fault due
to some error. For example, the converter service might fault
because the data is improperly formatted. The analyser service
might fault because access to the data is unauthorised or
because an invalid criterion has been given. The service
designer must carefully consider the consequences of faults.
In particular, any changes that arose during execution of the
service must be undone. In this example, any data created and
stored by the converter must be deleted.

Faults caught by the splitter have a reason value (Catch
prior to node 12). This invokes compensation to undo any
actions that have been taken (node 12). The splitter then
reports the fault to the requester (node 13) and terminates
abruptly (node 14). Compensation may be needed after
invoking an external partner, as this is where work often needs
to be undone after a fault. The converter invocation to store
data (node 2) has associated compensation. A fault leading to
compensation will call this compensation handler (node 11).
This deletes the associated data and returns.

As has been seen, the splitter service orchestrates the
actions of two partner services: converter and analyser. In
turn, the analyser service orchestrates the converter and
statistics services. Although four services now have to
cooperate, the user of the splitter service sees it as a whole.
This is a major advantage, because the detailed design of the
service does not then need to be visible. The major issue is
whether the services work together smoothly, or whether there
are interoperability problems. Even though this is a
comparatively small example, it will be appreciated that there
are many possibilities for error. It is very easy to make a
mistake when calling a service, for example supplying a
double where an integer is expected. Deadlocks are also a risk.
Many more subtle problems can arise from semantic
incompatibilities among the services. For these reasons,
formalization and rigorous analysis are highly desirable.

III. USING ACTIVEBPEL TO ORCHESTRATE GRID SERVICES
CRESS mainly uses ActiveBPEL as the orchestration

engine for web services [11]. ActiveBPEL has also been used
in the work reported here for grid service orchestration.

Many issues have arisen during the practical development
of orchestrated grid services. Not all issues are currently
resolved, but a majority of them have been addressed to
achieve the goal of grid service orchestration.

A. Deployment of ActiveBPEL and GT4
Both ActiveBPEL and GT4 can be deployed to run within a

container that uses AXIS (the Apache SOAP engine). Both
are independently shipped with AXIS libraries (web services
libraries) and scripts that can be deployed into an Apache
Tomcat container and run immediately. In principle,
ActiveBPEL and GT4 can be deployed within the same
Tomcat container. In practice, this is not feasible with the
current versions. GT4 uses an older version of AXIS that is
incompatible with that used by ActiveBPEL. This means they
cannot both be used within Tomcat if they are to start up and
function correctly.

The right solution is for the ActiveBPEL and GT4
developers to converge on the same AXIS version. In the
meantime, the authors deployed ActiveBPEL and GT4 in
separate Tomcat containers. This is not unreasonable since
BPEL can coordinate grid services running on different
locations. This is very likely anyway in a realistic deployment,
e.g. the occupational data analysis described in this paper.

The drawback of not being able run both within the same
container is that the GSI (Grid Security Infrastructure)
provided by GT4 cannot used for more comprehensive
security. This is further discussed in the following sub-section

B. Using Grid Security
GSI [13], developed by the Globus Alliance [5], provides

well-defined security mechanisms for operations and
collaborations in a grid. It uses public-key cryptography for
authentication, authorization and message exchanges. It thus
establishes trust among entities within a computing grid. A
distinct feature is single sign-on whereby, through delegation
of credentials, a user need authenticate to the grid only once to
use authorized resources in a virtual organization that may be
owned by different entities. Credential delegation is made
possible by the standard for WS-SecureConversation, which
will not be elaborated here.

It is desirable in this research to illustrate the use of
credential delegation. However, the current GT4
implementation requires the authentication service
(AuthenticationService) to be in the same container as the
destination service to establish a security context. This is
currently not possible as ActiveBPEL and GT4 must be
deployed in separate containers due to AXIS incompatibilities.
Credential delegation requires a security context to be
established first, hence it is currently not used.

C. Web Service Resource Addressing
This issue was already identified prior to commencing the

research. In WSRF, identification of a WS-Resource pair
(service + state) is achieved by an endpoint reference that
specifies the service address and the resource key. This is
done implicitly, meaning that the ports in use are already
bound to a service and a resource. BPEL and Web Services do
not interpret or use resource identifications, though they use
endpoint references. Furthermore, in BPEL the service
addresses for grid services are explicitly and statically defined
at deployment time. There is no way to tell the BPEL engine
(ActiveBPEL) to use endpoint reference implicitly to retrieve

5

a grid service’s ports. There has to be a way to tell grid
services (analyser, splitter) which WS-Resource are to be
used. One way is to have ActiveBPEL explicitly forward the
endpoint reference passed by the client to the grid services as
an operation parameter. The grid services then have to identify
the resource using the endpoint reference received in the
operation call. In principle, this is feasible and can be
achieved. GT4 uses the WS-Addressing implementation by
Apache [11] for endpoint references.

Endpoint references need the WS-Addressing schema. It
was discovered that the schemas used by ActiveBPEL and
GT4 are incompatible, although the XML namespaces are
identical. The BPEL processes (analyser, splitter) yield errors
when they receive endpoint reference created by the WS-
Addressing implementation in GT4. It was also found that the
endpoint references generated by WS-Addressing in by GT4
do not conform to their own XML schema definition! In
addition, ActiveBPEL imposes custom requirements on
endpoint references received: the sub-elements must contain
valid values, which is not required in GT4. The workaround is
to define a corresponding WS-Addressing schema that
matches the endpoint reference definition in the Apache
approach (used by ActiveBPEL). Valid dummy values must
be set by clients in endpoint references prior to invoking
BPEL processes.

This successfully orchestrates grid services using GT4 and
ActiveBPEL, although not currently using WS-Resource in
the preferred manner. It is hoped that ActiveBPEL can be
extended to handle endpoint reference implicitly.

IV. CONCLUSION
It has been seen how BPEL can be used to support

orchestration of grid services. Issues that cause obstacles for
grid service orchestration have been identified, and
workaround solutions have been implemented where feasible.
CRESS features and support for description of composite grid
services have contributed largely to the achievement of
efficient grid service orchestration.

It has been demonstrated that BPEL can also orchestrate
grid services in addition to web services. The issues identified
can serve as useful research references for relevant and future
work with respect to orchestrating grid services using BPEL.

ACKNOWLEDGMENT
The authors thank their co-workers on GEODE for their

insights, especially Paul Lambert (Stirling) and Richard
Sinnott (Glasgow). Larry Tan was responsible for creating and
realising grid service orchestration, while Ken Turner
undertook the CRESS developments. Larry Tan’s work on
GEODE was supported by the UK Economic and Social
Research Council under grant RES-149-25-1015.

REFERENCES
[1] I. Foster, “What is the Grid? A Three Point Checklist”, GRIDToday,

July 20, 2002.

[2] I. Foster et al.., “Grid services for distributed system integration”,
Supercomputer Applications, 35(6), 2002.

[3] Global Grid Forum (GGF). http://www.ggf.org/, Apr. 2006.
[4] OASIS. WSRF specification, http://docs.oasis-open.org/wsrf/wsrf-

ws_resource-1.2-spec-os.pdf , Apr. 2006.
[5] The Globus Alliance. http://www.globus.org/, Apr. 2006.
[6] C. Pautasso. JOpera: An agile environment for web service composition

with visual unit testing and refactoring. In Proc. Symposium on Visual
Languages and Human Centric Computing. IEEE Press, New York,
USA, Nov. 2005.

[7] K. J. Turner. Formalising web services. In F. Wang, editor, Proc.
Formal Techniques for Networked and Distributed Systems, LNCS
3731, pages 473–488. Springer, Oct. 2005.

[8] K.-M. Chao et al.. Analysis of grid service composition with BPEL4ws.
In Y. Shibata and J. Ma, editors, Proc. 18th. Advanced Information
Networking and Applications, volume 1, pages 284–289. IEEE Press,
New York, 2004.

[9] Matthew Zager, Business Process Orchestration with BPEL: BPEL
supports time-critical decision making, SOA/Web Services,
http://webservices.sys-con.com/read/155631_1.htm, Dec. 2005.

[10] K. J. Turner, K. L. L. Tan, A formal basis for orchestrating grid services,
FORTE'06, Apr. 2006. Under review.

[11] K. J. Turner. Representing and analysing web services. Network and
Computer Applications, Mar. 2006. In press.

[12] Apache Addressing. http://ws.apache.org/addressing/, Apr. 2006
[13] The Globus Alliance. Grid Security Infrastructure,

http://www.globus.org/toolkit/docs/4.0/security/key-index.html, Apr.
2006.

[14] World Wide Web Consortium. WS-Secure Conversation,
http://specs.xmlsoap.org/ws/2005/02/sc/WS-SecureConversation.pdf,
Apr. 2006.

6

	INTRODUCTION
	Grid Computing
	Service Orchestration
	Occupational Data
	CRESS
	Related Work

	Describing Composite Grid Services with CRESS
	CRESS Notation for Grid Services
	Occupational Data Analysis using Grid Services
	CRESS Description of The Analyser Service
	CRESS Description of The Splitter Service

	Using ActiveBPEL to Orchestrate Grid Services
	Deployment of ActiveBPEL and GT4
	Using Grid Security
	Web Service Resource Addressing

	Conclusion

