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1. Introduction 

Cooperation in transboundary pollution has proved, and still proves, difficult. Despite 

cooperation among nations could raise global welfare because of multilateral negative 

externalities, and could benefit all nations if accompanied by fair sharing arrangements, strong 

free-rider incentives prevail. Curbing greenhouse gases illustrates the problems of cooperation 

vividly. International response to global warming is often traced back to 1988 when the 

Intergovernmental Panel on Climate Change (IPCC) was founded – an international body 

initiated by the World Meteorological Organisation (WMO) and the United Nations 

Environment Programme (UNEP) that gathers and summarizes current world-wide scientific 

evidence on climate change. In 1992, at the Earth Summit held in Rio de Janeiro, the United 

Nations Framework Convention on Climate Change (UNFCCC) was established with the aim to 

promote international action to stabilise greenhouse gas (GHG) concentrations in the 

atmosphere, at levels that “avoid dangerous anthropogenic climate change”. However, it was not 

until 1997 when 38 countries agreed to specific emission ceilings under the Kyoto Protocol to be 

met in the “commitment period” 2008-2012. Again, it was not before 2002 when this treaty was 

ratified. This did not happen before several concessions had been granted to various participants 

and after the USA had declared to withdraw from the treaty.  

Currently, in the light of the Stern report (Stern 2006) and the most recent IPCC report (IPCC 

2007), a follow-up “Post-Kyoto” agreement is being negotiated that should set emission ceilings 

for the period after 2012. The aim is to reduce emissions further and to encourage participation 

of the major polluter USA, as well as the new emerging polluters China and India.  

Parallel to this political development, the interest in economics to analyze the reasons and 

possible remedies for the problem of international environmental cooperation emerged. One 

strand of literature focused on the game theoretic analysis of international environmental 

agreements (IEAs) which can be traced back to Barrett (1994), Chander and Tulkens (1992), 
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Carraro and Siniscalco (1993) and Hoel (1991). Later papers focused on various designs and 

measures that could mitigate the free-rider problem. Due to the many papers, we refer the reader 

to the surveys by Barrett (2003) and Finus (2003, 2008). Other contributions departed from the 

assumption of a static payoff structure of the initial papers and captured the dynamic nature of 

the stock pollutants “greenhouse gases”. This is also the starting point of the second strand of 

literature that ignored coalition formation but modeled optimal policy responses in integrated 

assessment models that capture the dynamic interaction between the economy and the 

environment and which was pioneered by Nordhaus (1994). This initiated many other papers 

which are surveyed for instance in Böhringer and Löschel (2006). Naturally, there have also been 

attempts to combine both strands as for instance Bosello et al. (2003), Eyckmans and Tulkens 

(2003), Eyckmans and Finus (2006) and Weikard et al. (2006). On the one hand, this adds more 

realism to the analysis; on the other hand, this is the only way to derive results in richer game 

theoretic frameworks where analytical solutions are impossible to obtain.  

This paper is in the tradition of a combined approach: it links a game theoretic module of 

coalition formation to an integrated assessment numerical simulation module. The empirical 

module is based on the CLIMNEG World Simulation Model (CWSM) as for instance used in 

Eyckmans and Tulkens (2003), Eyckmans and Finus (2006), though we use the updated version 

1.2. Different from these papers but also different from many theoretical contributions on the 

formation and stability of IEAs, our game theoretic module looks at two new aspects.  

First, we do not model coalition formation as a simultaneous but as a sequential decision process. 

This is motivated by the observation that usually some countries take the initiative of forming 

IEAs. Others join later or decide not to follow suit. The evolvement of membership in 

international agreements is a typical feature of many IEAs and is reported for instance in Finus 

(2003) for many environmental treaties.  
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Second, despite we follow the mainstream of the literature, assuming that there is no global 

authority that can enforce cooperation, we consider the possibility of a third party which aims at 

coordinating actions, thereby improving upon the disappointing record of cooperation. The 

analysis of a moderator, as we call it, is based on two arguments. The first argument takes a 

positive view. There are many international organizations that directly or indirectly influence the 

outcome of negotiations. For instance, the IPCC provides scientific evidence on climate change 

of which the most important in our context is evidence on damages caused by climate change 

and the costs associated with curbing greenhouse gases. Also the United Nations, in particular 

the Environmental Programme (UNEP) advices parties and tries to spur action. The World Bank 

administers some of the climate funds that have been set up to provide incentive of participation 

for developing and least developed countries. It also plays an active role to oversee the Clean 

Development Mechanism, one of the flexible instruments under the Kyoto Protocol to keep 

abatement costs down. The second argument takes a normative view. It simply asks if and how a 

moderator can improve upon the efforts of cooperation through coordinating actions among 

nations.  

With respect to both aspects this paper takes first steps, hoping to initiate more research. As we 

spell out in more detail in subsequent sections, both aspects pose many conceptual problems that 

require more research. It appears to us that the closest connections to recent research are the 

papers by Germain et al. (2003), Rubio and Ulph (2007), Ulph (2004) and De Zeeuw (2007). We 

view coalition formation as a two-stage game. In the first stage players decide upon membership 

and in the second stage they decide upon their economic strategies, which are abatement 

strategies and in richer models also investment in capital and research. The game is solved 

backward: equilibrium economic strategies determine the payoff of players and are the basis to 

decide upon membership. Stability of membership is analyzed along the entire time path. In 

Germain et al. (2003) this is done in the tradition of cooperative games by invoking the concept 

of core stability for the membership game. In Rubio and Ulph (2007) and Ulph (2004) this is 
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analyzed by invoking the concept of internal and external stability with a stronger flavor of non-

cooperative game theory. All of these papers ignore the role of a coordinator and assume a 

simultaneous decision about membership at each time t . Moreover, Rubio and Ulph (2007) and 

Ulph (2004) assume symmetric players for analytical tractability. In contrast, we consider 

heterogeneous players, a sequential membership game, the role of a moderator, though in a 

simplistic way, but assume that membership decisions are based on discounted payoffs of a 

differential climate game. This limitation already suggests an avenue for future research, which we 

spell out in more detail in the last section of this paper. Nevertheless, we believe that our paper is 

an important step for the further development of modeling the negotiation and formation 

process of cooperative arrangements in international pollution control. 

2. Overview of the Model 

Following Bloch (2003), we view the coalition formation process as a two-stage game. In the first 

stage, players, i I {1,...,n }∈ = , which are world regions in our empirical context, decide upon 

their membership in coalitions, which are climate agreements in our context. This stage is 

modeled along the lines of the sequential move unanimity game (SMUG) proposed by Bloch 

(1995). In this game, an initiator proposes a coalition. Prospective members of this coalition are 

sequentially asked for acceptance. If all potential members accept, the coalition is formed. If the 

proposed coalition is not the grand coalition, a new initiator among the remaining players can 

make a new proposal. If a player rejects a proposal, he can make a new proposal. The formation 

process continues until all players have agreed to be either a member of a (non-trivial) coalition 

or decided to remain a singleton.1 The first stage of the game is described in more detail in 

section 4. The decision process in the first stage leads to some coalition structure 1 mc { c ,...,c }=  

                                                 
1  A non-trivial coalition is a coalition with at least two members. 



 5

where ∈c C  is a partition of players in disjoint non-empty sets, kc ∩ cA =∅ ∀ ≠k A  and 

c I=A
A
∪ .2 

In the second stage, players choose their economic strategies, which are abatement and 

investment strategies in the CLIMNEG world simulation model (CWSM), version 1.2, based on 

the economic implications as predicted by this model. For a given coalition structure c , this 

implies a payoff vector 1 nv( c ) ( v ( c ),...., v ( c ))= . That is, a coalition structure ∈c C  is mapped 

into a vector of individual payoffs ∈v( c ) V( C )  called valuations. In case a transfer scheme is 

implemented, this leads to “modified valuations” = +T
i i iv ( c ) v ( c ) Ψ  where >i 0Ψ  implies to 

receive a transfer and <i 0Ψ  to pay a transfer with the understanding that transfers are only paid 

among coalition members and that transfers balance, i.e. 
∈

=∑ ii c
0Ψ

A
 lc c∀ ∈ .  

The entire game is solved by backward induction. For the second stage, we follow the standard 

assumption in the literature on coalition formation and solve for the coalitional Nash equilibrium in 

economic strategies.3 That is, members of coalition cA  in coalition structure c  choose their 

economic strategies such as to maximize the aggregate payoff to their coalition, taking the 

strategies of outsiders as given. In CWSM this payoff is the net present value of a payoff stream, 

accounting for the fact that climate change is a stock pollution problem. The details of the 

second stage are described in section 3. 

For the first stage, which consists of many sub-stages due to the sequential coalition formation 

process, we solve for the subgame-perfect equilibrium in membership strategies. That is, each 

player, either in the role of an initiator or in the role of a player who is asked for acceptance 

                                                 
2  For instance, in the case of three players, C  comprises five different coalition structures: 

1c {{1},{ 2 },{ 3 }}= , 2c {{1,2 },{ 3 }}= , 3c {{1,3 },{ 2 }}= , 4c {{1},{ 2,3 }}=  and 5c {{1,2,3 }}= . 

3  For a summary of this literature in the general context, see Bloch (2003) and in the context of IEAs, 
see Finus (2003). Sometimes a coalitional Nash equilibrium is also called a coalitional equilibrium 
(Ichiishi 1981) or a partial Nash equilibrium between coalitions (Chander and Tulkens 1997).  
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should choose her best reply at each point in time for the rest of the game, given the strategies of 

the other players. The details of the first stage are explained in section 4. 

3. Second Stage of Coalition Formation 

3.1 Data and Computations 

The CWSM is an integrated assessment, economy-climate model capturing the endogenous 

feedback of climate change damages on production and consumption. As the seminal RICE 

model by Nordhaus and Yang (1996), CWSM is a dynamic, long-term, perfect foresight, Ramsey-

type optimal growth model with a global climate externality. Since an extensive exposition of the 

model, including the procedure of computing valuations, is provided in Eyckmans and Tulkens 

(2003) and Eyckmans and Finus (2006 and 2009), we describe here only its main features. A brief 

description of the main equations and parameters is provided in Appendix 1. 

In CWSM, the world is divided into six regions: USA, JPN (Japan), EU (European Union), CHN 

(China), FSU (Former Soviet Union) and ROW (Rest of the World). In every region, and in every 

time period, output is allocated to consumption, investment, emission abatement expenditures 

and climate change damages. Output is modeled as a Cobb-Douglas production function with 

capital and labor input. Capital is built up through investment and depreciates at a fixed rate. 

Labour supply is assumed to be inelastic. Therefore, investment is the only endogenous 

production input and constitutes the first choice variable in the model. Abatement expenditures 

are expressed as output losses and are a function of relative emission reduction compared to the 

business-as-usual (BAU) scenario without any abatement policy. Climate change damages are also 

expressed as output losses and are a function of temperature change compared to pre-industrial 

times. Temperature change depends on the stock of greenhouse gases, which in turn depends on 

emissions that accumulate in the atmosphere. Finally, emissions are proportional to production, 

but can be reduced by abatement activities. The rate of emission abatement compared to the 

BAU scenario constitutes the second choice variable in this model.  
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Both choice variables (investment and abatement) affect output, abatement costs, damage costs 

and therefore also consumption domestically but also abroad. With respect to abatement this is 

obvious since remaining emissions (after abatement) increases the stock of greenhouse gases, 

which affects environmental damages in every country. However, this is also true for investment 

since capital is an input in the production process and emissions are proportional to production. 

Technological progress is captured in the CWSM in an exogenous fashion. It increases the 

production potential and decreases the emission-output ratio (i.e. increases energy effiency) over 

time. Finally, welfare is measured as total lifetime discounted consumption.  

An economic strategy vector is denoted by *s ( c )  and consists in CWSM of a time path of 35 

decades for emission abatement and investment for all six regions, hence its length is 2 x 35 x 6 = 

420. Valuations without transfers 1 nv( c ) ( v ( c ),...,v ( c ))=  for coalition structure ∈c C  are 

defined as = *
i iv ( c ) : W ( s ( c ))  where *s ( c )  is the coalitional Nash equilibrium economic 

strategy vector which is defined as: 

(1) ∀ ∈c cA : * * *
i c s i c c ci c i c

W ( s ( c ),s ( c )) W ( s ( c ),s ( s ) ) s ( c )− −∈ ∈
≥ ∀∑ ∑A A A A AA A

 

where iW ( )  is the discounted pyaoff of player i , cs ( c )
A

 is the economic strategy vector of 

coalition cA , −cs ( c )
A

 the vector of all other regions not belonging to cA  and an asterisk denotes 

equilibrium strategies. Determing *s ( c )  for every coalition structure ∈c C  (noting 

= *
i iv ( c ) : W ( s ( c )) ), gives the set of valuations V( C ) . 

Computationally, the coalitional Nash equilibria are computed by means of a standard iterative 

algorithm assuming that all members of coalition ∈c cA  jointly maximize the aggregate payoff to 

their coalition 
∈∑ ii c

W ( s )
A

 with respect to cs ( c )
A

, while taking the strategies of outsiders 

−cs ( c )
A

 as given. Repeating this optimization problem for each strategic player (coalition or 

singleton) and iterating until strategy vectors do not change more than some prespecified 
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tolerance level, gives *s ( c )  which is substituted into iW  in order to derive 

= 1 nv( c ) ( v ( c ),...,v ( c )) . Since the CWSM comprises six regions, vector v( c )  has six entries. 

For each coalition structure, the equilibrium economic strategy has to be computed in order to 

derive the set of valuations V(C). Because six regions imply 203 different coalition structures, the 

set of valuations is a matrix of dimension 203x6. The set of coalition structures comprises the 

coalition structures with only singletons (no cooperation), the coalition structure with only one 

coalition, namely the grand coalition (full cooperation), 56 coalition structures with only one non-

trivial coalition and some singletons (partial single cooperation), and 145 coalition structures with 

at least two non-trivial coalitions (partial multiple cooperation). Thus, the dimension of our set of 

valuations is larger than in Eyckmans and Tulkens (2003) because we also consider multiple 

coalition structures as in Eyckmans and Finus (2006). 

Strategically, this means members that belong to the same coalition behave cooperatively towards 

their fellow members (otherwise cooperation would not be worthwhile analyzing), but non-

cooperatively towards outsiders. Economically, this means strategies are group efficient within 

coalition cA  but not globally efficient as long as the grand coalition does not form. It also means 

that the equilibrium economic strategy vector *s ( c )  corresponds to the classical “social or global 

optimum” if c  is the coalition structure with the grand coalition, and corresponds to the classical 

“Nash equilibrium” if c  is the coalition structure with only singletons. Hence, any inefficiency, 

i.e. global welfare loss of partial single or partial multiple cooperation compared to the global 

optimum stems from the fact that the grand coalition does not form (as this may not be an 

equilibrium coalition as analyzed in the first stage of coalition formation). 

Valuations with transfers are defined as = +T
i i iv ( c ) v ( c ) Ψ  where the transfer iΨ  is paid 

( <i 0Ψ ) or received ( >i 0Ψ ) in a lump-sum fashion (expressed in discounted consumption at 

time =t 0 ) and hence does not affect equilibrium economic strategies in the CWSM as proved in 
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Eyckmans and Tulkens (2003). This implies a TU-framework and the transfer scheme proposed 

by these authors leads to valuations 

(2) T N N
i i i j jj c

v ( c ) v ( c ) ( v ( c ) v ( c )) i c , c cλ
∈

⎡ ⎤= + − ∀ ∈ ∀ ∈⎣ ⎦∑
A

A A . 

That is, every region i  in coalition ∈c cA  receives its payoff in the coalition structure with only 

singletons which is denoted by Nc  (first term on the R.H.S. in (2); Nc {{1},...,{ n }}= ), and 

additionally a share ≥i 0λ , 
∈

=∑ ii c
1λ

A
, from the total coalitional surplus of cooperation when 

moving from coalition structure Nc  with no cooperation to some other coalition structure c  

(term in square brackets on the R.H.S. in (2)). Shares are those proposed by Eyckmans and 

Tulkens (2003) and reflect the relation between individual and global discounted marginal climate 

change damages in coalition structure c . Hence, the second term favors regions with relatively 

high marginal damages since they are entitled to a larger share of the surplus of their coalition. 

The motivation for this transfer scheme is twofold. First, it can be normatively argued that this 

transfer scheme embodies a standard notion of fairness: regions that are hurt more by climate 

change receive a higher share from the gains from cooperation. Second, already Chander and 

Tulkens (1997) but also Eyckmans and Tulkens (2003) have shown that this transfer rule gives 

rise to an allocation in the core in a global emission game, though we employ a different stability 

concept. 

3.2 Properties of Valuations 

Table 1 displays individual valuations, generated by CWSM, with and without transfers for a 

selection of coalition structures.4 The last two columns display aggregate valuations at the World 

level in absolute and relative terms. The relative magnitudes can be interpreted as a “closing the 

                                                 
4  We do not display the ecological implications (i.e. total emissions and concentration) of different 

coalition structures in this paper. For version 1 of CWSM, this is for instance provided in Eyckmans 
and Finus (2006). The complete matrix of valuations is available upon request from the authors. 
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gap index” (abbreviated CGX), measuring how close a coalition structure comes to the global 

optimum where the performance in the grand coalition (full cooperation) is 100 percent and the 

performance in the coalition structure with only singletons (no cooperation) is 0 percent by 

definition (see the legend of Table 1).  

Table 1 about here 

Apart from stressing that both full and partial cooperation make a difference compared to no 

cooperation, Table 1 illustrates that not only the size of a coalition matters for the global success 

of cooperation, but also the identity of its members. Put differently, the commonly hold view 

that a high participation automatically indicates the success of an IEA may be wrong. For 

instance, coalition structure No. 152 including the five members USA, JPN, EU, CHN and FSU 

ranks lower than many coalition structures comprising smaller coalitions as for instance coalition 

structure No. 150 and No. 151.  

As a general tendency, the importance of particular regions for global welfare decreases along the 

following sequence: ROW, CHN, USA, EU, FSU and JPN. ROW´s and CHN´s important role 

stems from the fact that they can provide cheap abatement. Similarly, JPN´s lesser importance is 

due to her steep marginal abatement cost curve. However, there is also an additional dimension 

related to environmental damages. Because optimal economic strategies are derived from 

coalitions maximizing the joint welfare of its members, the higher the marginal damages of 

coalition members are, the higher joint abatement efforts will be, everything else being equal. 

This has not only a positive spillover effect on fellow coalition members but also on outsiders. 

(See more on this below.) This explains the importance of EU for cooperation.  

Table 1 is also useful to illustrate five properties of our two sets of valuations, with and without 

transfers, V( C )  and TV ( C ) , respectively. These properties turn out to be useful when analyzing 

the incentives of coalition formation and stability in section 4.  
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The first property is called superadditivity (SAD) and means that the aggregate valuation of 

coalition kc  and coalition cA  (that may be trivial or non-trivial coalitions) increases if they merge. 

Property 1: Superadditivity 

A coalition game is superadditive if and only if for all kc , c c∈A , ∪ ∈k ˆc c cA  and ˆc, c C∈ : 

k k
i i ii c c i c i c

ˆv ( c ) v ( c ) v ( c )
∈ ∪ ∈ ∈

≥ +∑ ∑ ∑
A A

 where ĉ  is derived from c by merging two coalitions in c.  

That is, there is “coalitional gain” from cooperation and hence cooperation is “group rational” or 

“coalitionally rational”. Hence, SAD provides a general incentive for cooperation. For instance, 

in coalition structure No. 195 {{USA},{JPN, EU, FSU},{CHN},{ROW}}, the total payoff of 

USA, JPN, EU and FSU is 496,243.2 bln$ US whereas if they merge, leading to coalition 

structure No. 173 {{USA, JPN, EU, FSU},{CHN},{ROW}} the total payoff to these four 

players increases to 496,428.6 bln$ US.  

The intuition behind this property, which has been put forward, is: “if two coalitions merge, they 

always have the option of behaving as they did when they were separate, and so their total payoff 

should not fall” (Maskin 2003, p. 9). However, this intuition might be false in our context. A 

sufficient condition for SAD to hold is to assume that if coalitions merge, outsiders’ equilibrium 

economic strategies remain unchanged. In other words, there is no externality across coalitions. 

However, this assumption does not hold in the case of the CWSM. For instance, an enlargement 

of a coalition leads to a new coalitional equilibrium with higher total abatement of those players 

involved in this move but lower abatement of other players. In the climate context this has been 

called leakage-effect. Hence, the fact that SAD still holds in CWSM means that the leakage-effect 

is sufficiently small not to contradict the good intentions of the enlarged coalition.  

The second property is called positive externality (PEX), meaning that the valuation of region j  

increases if coalition kc  and coalition cA  merge where j  is not involved in this merger (i.e. does 

neither belong to kc  nor to cA ). 
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Property 2: Positive Externality 

A coalition game exhibits a positive externality if and only if for all kc , c c∈A , ∪ ∈k ˆc c cA , ˆc, c C∈  and 

∉ ∪ki c cA : i iˆv ( c ) v ( c )≥  where ĉ  is derived from c by merging two coalitions in c.  

In contrast to SAD, which may be seen as a positive internal spillover to those players increasing 

the degree of cooperation (through the merger of coalitions), PEX implies a positive spillover to 

outsiders. Hence, PEX makes free-riding attractive and works in the opposite direction than SAD 

in terms of the incentives for cooperation.5 

The driving force behind this property can be decomposed into two effects, which are closely 

related to our explanation above, why SAD could, in principle, fail to hold. First, global 

abatement will increase after the merger as the new coalition will increase abatement efforts. 

Although outsiders will respond to the coalition’s increase of abatement by reducing their own 

abatement efforts, this response is less than proportional (i.e. incomplete leakage). The resulting 

net increase of global abatement is beneficial to all players because it reduces climate change 

damages. Second, outsiders to the merger incur lower abatement costs due to reduced abatement 

efforts. 

The property PEX is evident for instance in Table 1 by comparing again coalition structures No. 

195 and No. 173. In No. 195, the singleton players CHN and ROW receive a payoff of 299,267.3 

bln$ US and 345,276 bln$ US, respectively, whereas in No. 173, after the USA has joined the 

coalition {JPN, EU, FSU}, their payoffs are given by 300,001.6 bln$ US and 346,569.3 bln$ US, 

respectively.  

Table 1 also illustrates that PEX usually makes it most attractive from a single region´s point of 

view that all players cooperate, except the region itself, irrespective whether transfers are 

                                                 
5  From the recent literature on coalition theory it appears that many economic problems either belong 

to positive or negative externality games for which some general results can be derived. See for 
instance Bloch (2003) and Yi (2003).  
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assumed. The only exceptions are ROW in case of no transfers and ROW and JPN in case of 

transfers. The highest valuation from a region’s point of view are indicated bold in Table 1.  

It is evident that superadditivity and positive externality are sufficient (though not necessary) 

conditions that aggregate welfare across all players increases through cooperation. That is, given a 

coalition structure c , whenever single regions or non-trivial coalitions merge, global welfare is 

raised. That is, cooperation is globally rational - a central property that provides a strong 

normative motivation for the analysis of self-enforcing agreements in the presence of free-rider 

incentives in global pollution control. 

The third property is called individual rationality (IR) and means that a region receives a (weakly) 

higher valuation than in the coalition structure with only singletons. 

Property 3: Individual Rationality 

A coalition structure ∈c C  with associated valuation ∈v( c ) V( C )  is individually rational if and only if for 

all  ∈i N : ≥ N
i iv ( c ) v ( c )  where  Nc {{1},...,{ n }}=  is the coalition structure with only singletons. 

Individual rationality is a necessary condition for the participation of a region in a non-trivial 

coalition because by remaining a singleton a region receives at least its valuation in the coalition 

structure with only singletons due to positive externalities. In the case of no transfers, it is evident 

from Table 1 that some coalition structures are not individually rational to all parties. Examples 

include the grand coalition with rank No. 1 and the coalition structure No. 2 which are not 

individually rational for FSU, provided there are no transfers.  

The reason for the lack of individual rationality is that joint welfare maximization may imply an 

asymmetric distribution of the gains from cooperation. For instance, in CWSM, FSU benefits 

little from cooperation because of her flat marginal damage cost function. Moreover, due to her 

flat marginal abatement cost function she has to contribute much to cooperative efforts to curb 

emissions. However, with transfers, all valuations T Tv ( c ) V ( C )∈  are IR. Due to SAD, the term 
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in square brackets in our transfer formula (2) is always positive and hence ≥T N
i iv ( c ) v ( c )  for all 

regions that are members of a non-trivial coalition. As observed above, for all singletons 

= ≥T N
i i iv ( c ) v ( c ) v ( c )  holds anyway because of PEX. Note that the set of IR coalition 

structures is never empty because the coalition structure with only singletons is IR by 

Definition 3. 

The fourth property is called Pareto-optimality (PO). A coalition structure is PO if there is no 

other coalition structure where at least one region is better off and no other region is worse off.  

Property 4: Pareto-optimality 

A coalition structure ∈c C  with associated valuations ∈v( c ) V( C )  is Pareto-optimal with respect to V( C )  

if there is no other coalition structure ∈c C�  with ∈v( c ) V( C )�  such that ≥i iv ( c ) v ( c )�  ∀ i∈I ∧ ∃ j∈I: 

>j jv ( c ) v ( c )� . 

This definition is the well-known definition of Pareto-optimality applied to the context of 

coalition formation. Note that PO relates only to a particular set of valuations, i.e. in our context 

either to V( C )  without transfers or to TV ( C )  with transfers. Though PO coalition structures 

are not indicated in Table 1, it easily checked that coalition structure No. 152 is Pareto-dominated 

by the grand coalition with rank No. 1 and coalition structures No. 173, 195 and 203 are Pareto-

dominated by coalition structure No. 3 where this holds with and without transfers. Obviously, 

the grand coalition is always a PO - regardless whether we consider V( C )  or TV ( C )  - because 

it generates the (strictly) highest global welfare. It is also evident that the singleton coalition 

structure can never be a PO if a transfer scheme guarantees individual rationality as applies to 

TV ( C )  as argued above.  
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Property 5: Strict Individual Preferences 

Players have strict individual preferences over coalition structures if and only if for every pair of distinct coalition 

structures ∈c C  and ∈c C�  with c c≠ �  it holds that: ∀ i∈I: i iv ( c ) v ( c )>�  or i iv ( c ) v ( c )<� .  

Our last property is called strict individual preferences (SIP). It implies that every player can rank 

coalition structures according to his valuations in the entire set of coalition structures. In other 

words, players are never indifferent between two different coalition structures. SIP is mainly a 

technical property which holds for CWSM and eases the determination of equilibrium coalition 

structures. 

4. First Stage of Coalition Formation 

4.1 Original Game 

Based on valuations, either on valuations with or without transfers, V(C)  or TV (C) , derived in 

the second stage of coalition formation, players decide upon participation in coalitions in a 

sequential process. The process is modeled based on the sequential move unanimity game 

(SMUG) of Bloch (1995), though for our purposes some changes are necessary which we discuss 

below. This game is in the spirit of Rubinstein´s (1982) two-player alternating offers bargaining 

game and is a generalization of Chatterjee et al.´s (1993) extension to an n-player bargaining 

game. The SMUG assumes that players are ordered according to some rule. The player with the 

lowest index (initiator), say, player 1, starts by announcing a list of coalition members including 

himself. Every member on the list is asked whether he or she accepts the proposal. The player 

with the lowest index on this list is asked first, then the player with the second lowest index and 

so forth. If all players on the list agree, the coalition, say, 1c , is formed and coalitions among the 

remaining players 1I \ c  may form. The player with the lowest index among 1I \ c  becomes the 

new initiator. If a player rejects a proposal, he can make a new proposal.  
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Thus, a coalition only forms by unanimous agreement. Because a player can always reject a 

proposal, participation in a non-trivial coalition is voluntary. Both features are well in line with 

the institutional setting of international environmental agreements. It is also evident that players 

whose proposals have been turned down are still part of the formation process. They may 

become members of other coalitions than those they have proposed. Also players that have 

turned down a proposal are still part of the game since they can propose a new coalition. Only if 

n-1 players have already formed a coalition, the last remaining player will have no other choice 

than to become a singleton. When the negotiation process terminates, all players receive their 

payoffs. 

For simplification, Bloch (1995, 1996) assumes no discounting of valuations during this process. 

He also assumes that players who cannot agree on a coalition receive a payoff which is Pareto-

dominated by payoffs in every coalition structure. Thus, the solution to the game becomes 

“finite”. Moreover, he only considers stationary perfect equilibrium strategies in order to reduce 

the amount of possible equilibria. That is, strategies only depend on the current state (and not on 

the entire history of the game) in the negotiation process of which there are basically three: 

1) There is an ongoing proposal which the player who moves may accept or reject. 

2) A player has rejected a proposal and makes a proposal himself. 

3) A coalition has formed and a player becomes the new initiator.  

Therefore, the payoff relevant part of the history at some stage is the set of players who have left 

the game already, the partition they have formed and the current offer. A sequence of proposals 

is a perfect equilibrium if proposals and reactions to proposals are mutually best replies for each 

possible state in the remaining game.  
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To the best of our knowledge, until now, Bloch´s game has only be applied to economic 

problems with the assumption that all players have the same payoff function.6 For ex-ante 

symmetric players as this assumption has been termed in the literature, Bloch (1996) has shown 

that things simplify substantially since the identity of players does not matter and – in most 

economic examples of interest - payoffs to a player only depend on the sizes of his own and the 

remaining coalitions in a given coalition structure c .7 Hence, the sequence in which players make 

proposals and counter-proposals, as well as the sequence according to which players are asked for 

acceptance does not matter for the outcome of coalition formation. Moreover, a proposal means 

to announce the size of a coalition to which the proposer wants to belong and hence the entire 

game reduces to a “size announcement game” in which the interests of the proposer and the 

members of the coalition that she proposes always coincide.  

Clearly, some simplifications would not be appropriate in our context, in particular as we have 

not only ex-post but also ex-ante different players. Therefore, we discuss in the next section some 

problems related to the implementation and solution of the SMUG and the valuations derived 

from the CWSM. 

4.2 Issues of Implementation 

There are three issues that have to be discussed for the implementation and the solution of the 

SMUG in our empirical context.  

                                                 
6  See Bloch (2003) for an overview. Bloch’s game has been applied for instance by Finus and 

Rundshagen (2006a) and Ray and Vohra (2001) in the context of the provision of public goods; both 
applications assuming symmetric players. 

7  For instance, in a global emission abatement game with a static payoff function Finus and 
Rundshagen (2003) have shown that, in a given coalition structure, members of larger coalitions 
receive a lower valuation than members of smaller coalitions because all players receive the same 
benefits from global abatement but members of larger coalitions choose higher individual abatement 
levels and therefore have higher abatement costs. 
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Sequence of Proposals 

Bloch assumes that players are indexed according to some exogenous rule. Though for ex-ante 

symmetric players this sequence has no effect on the outcome, it will be crucial for asymmetric 

players. The sequence is an essential element in the strategic considerations of players and affects 

for instance decision whom an initiator approaches first. However, the crucial question arises 

how the first initiator is determined and who will be the subsequent initiator if a coalition has 

formed? Intuitively, one may want to endogenize this sequence, making it part of the bargaining 

game itself.  

It could be argued for instance that the first initiator is the player who gains most from 

cooperation. However, then the question arises how this gain is computed? One reference point 

could be the valuation without any cooperation but the second reference point is anything else 

than obvious. Is it the valuation that a player receives on average from cooperation if he is a 

member of a coalition and is the gain measured in absolute or relative terms? However, the 

average is also not convincing because this would include valuations of coalition structures that 

may never emerge as an equilibrium. But also the average of valuations over all equilibrium 

coalition structures for all possible index sequences is not an innocuous selection criterion for 

several reasons but in particular not because equilibria depend on the sequence itself and hence 

there is a feedback relation that seems difficult to solve.  

We will not pursue this discussion here, noting that this issue might be an important topic for 

future research, though beyond the scope of this paper. Instead, we stick to the original proposal 

of Bloch. We solve for the equilibrium coalition structure for every possible index sequence of 

which there are 720 in the case of six players. The analysis of our results in section 5 will focus on 

the effect of different sequences on the outcome of coalition formation. Important questions will 

be for instance: which regions should be among the initiators in order to induce successful 

cooperation from a global point of view? Is it an advantage to be an initiator or is a wait-and-see-

strategy more promising for individual regions? Moreover, in section 5, we will analyze whether a 
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moderator, though without enforcement power, can influence the outcome by coordinating the 

sequence in the negotiations. 

Cycles of Proposals 

Generally, the bargaining game may have an infinite horizon and therefore may have no solution. 

Suppose players have very different preferences about their most preferred outcome. Then if all 

players insist on their most preferred outcome, this may lead to an infinite number of proposals 

and rejections. As mentioned, a simple way of avoiding those cycles is to assume that if players 

do not agree in finite time, they will end up with a Pareto-inferior outcome compared to the 

valuations of all possible coalition structures. Though this may seem an elegant solution in a 

theoretical setting, we think it is not appropriate in our empirical setting for two reasons.  

First, viewing the coalition structure with only singletons as the starting point of negotiations, 

there seems to be no plausible reason why regions should not receive at least this payoff if 

negotiations fail. One way out of the dilemma of cycles could be discounting. Apart from the 

question which discount rates are appropriate and which discount rates avoid cycles, this would 

raise some other conceptual questions. For instance, does time elapse after a player has been 

asked for acceptance or after a player has rejected a proposal? Moreover, given that in our 

context valuations are derived from a dynamic integrated assessment model, it would not be 

consistent to discount valuations only. Instead, this required that also equilibrium economic 

strategies would have to be revised if time passes by. It is evident that this would be an interesting 

and certainly fruitful approach of modeling negotiations over climate policy but is beyond the 

scope of this paper.  

We follow a pragmatic approach that is inspired by software programs modeling chess and other 

games. At the time of an ongoing proposal and as long as no additional coalition has formed, the 

same player cannot make a second proposal if her first proposal has been turned down. It is 

important to note that this rule only applies if the game does not proceed. If a coalition has 
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eventually formed at stage t , this player can again make a proposal at +t 1  (provided she has not 

accepted already another proposal). 

Second, solving the game with an algorithm requires a well defined amount of finite branches. 

Our pragmatic solution ensures this whereas this would not be true for many other possible 

assumptions, like discounting. The strategic implications are illustrated with simple examples in 

subsection 4.4. 

Indifference of Proposals 

Generally, valuations of different coalition structures may be identical for some players. Hence, 

the equilibrium path in the SMUG would not be uniquely determined. In a theoretical setting 

with only few players this problem can certainly be ignored by just computing all equilibria. In 

our context of six players, however, this would increase computation time tremendously. 

Fortunately, we can ignore this problem because for our data set all players have a strict 

individual preference overall all valuations, with and without transfers (see section 3.2, property 

5). 

4.3 Description of the Algorithm 

As argued above, we have to modify Bloch’s coalition game SMUG slightly, which we call Finite 

Sequential Move Unanimity Game (FSMUG). As the SMUG has already been described in much 

detail in subsection 4.1, and relevant issues of implementation in subsection 4.2, we only add 

some final definitions and briefly comment on the algorithm that we use for solving for 

equilibrium coalition structures. 

We order players, i.e. regions in CWSM, randomly and then generate all permutations. That is, 

the index number of player i  is ( i )π  with : I Iπ →  denoting the corresponding permutation. 

In the case of n  players, there are n!  permutations. At any node in the game tree, the history th  

contains the following payoff relevant information which describes the state of the game:  
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- a set K̂  of players who have already formed coalitions,  

- a coalition structure ĉ  formed by the players of K̂ , 

- an ongoing proposal (if any) T̂ , 

- a set Â  of players who have already accepted the proposal, 

- the player â  who moves at node t , 

- the initiator î  of the ongoing proposal and 

- the set of players Î  who may become initiators during the formation process of the next 

coalition. 

The last two items distinguish the FSMUG from the original SMUG by Bloch because we 

assume that an initiator can make only one proposal as long as no further coalition has been 

formed. Like in Bloch (1995), the relevant history at time t , th , depends only on the current 

state of the game at time t  (and not on the entire history of the game). Hence, equilibrium 

coalition structures are derived as stationary perfect equilibrium which is a vector of strategies for 

all players such that, after each relevant history of the game, all players choose an optimal action. 

The algorithm is visualized in Appendix 2. It is a backtracking algorithm along the lines for 

instance described in Alho et al. (1987). The algorithm is programmed in Java, version 1.4.2. 

4.4 Properties and Strategies  

We first briefly and informally show that our FSMUG - applied to our valuations V( C )  and 

TV ( C )  derived from CWSM - possesses some essential properties which are important for 

determining equilibrium coalition structures. Then, we illustrate some interesting implications for 

the optimal strategies of players. For this we use simple examples with three players as the driving 

forces would be difficult to trace in our application with six players. 

First note that an equilibrium in the FSMUG always exists and the equilibrium coalition structure 

is unique for given index sequence. This follows from three items: a) the game tree is finite by 
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construction, b) there is perfect information with respect to the history of the game and hence 

every information set consists of only one decision node and c) at every decision node an active 

player is only indifferent between two or more actions if the equilibrium coalition structures of 

the subgame coincide because every player has a strict preference order over all coalition 

structures (i.e. property 5: SIP in section 3.2 holds).  

Second note that all equilibria (e.g. emerging from different index sequences or different sets of 

valuations) will be individually rational. Regardless of the coalition which has formed in the game, 

a player i  can always remain a singleton by proposing coalition { i } , which ensures him at least 

the payoff in the singleton coalition structures due to the positive externality (i.e. property 2: PEX 

in section 3.2 holds). 

Example 1 in Table 2 shall illustrate the interesting phenomenon that a player may intentionally 

put forward a proposal that she knows will be turned down. First note that players 2 and 3 derive 

their highest valuation when the other two players form a coalition and they free-ride. Hence, if 

either player 2 or 3 is the initiator, they propose a single coalition. Since the singleton coalition 

structure 1c  is Pareto-dominated by all other coalition structures, the remaining players will form 

a coalition of two players. Thus, if player 2 is the initiator =3c {{1,3 },{ 2 }}  and if player 3 is the 

initiator, =2c {{1,2 },{ 3 }}  will emerge as the equilibrium coalition structure.  

Example 1: Provoked Non-Acceptance Game 

Coalition Structure 
1v ( c )  2v ( c )  3v ( c )  

=∑3
ii 1

v ( c )  

=1c {{1},{ 2 },{ 3 }}  0 0 0 0 

=2c {{1,2 },{ 3 }}  2 2 8 12 

=3c {{1,3 },{ 2 }}  8 8 2 18 

=4c {{1},{ 2,3 }}  4 4 4 12 

=5c {{1,2,3 }}  7 7 7 21 
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A more interesting strategy is observed when player 1 is the initiator. Her most preferred 

coalition structure is =3c {{1,3 },{ 2 }} . However, suppose she proposed this, then player 3 

would turn down her offer and would simple propose { 3 } . Now, player 1 and 2 would have no 

better option than to agree on forming a coalition together and hence =2c {{1,2 },{ 3 }}  would 

form which is player 1’s second worst option. Thus, player 1 proposes {1,2 }  which she knows 

will not be accepted by player 2. That is, she passes on the right to make a proposal to player 2, 

knowing that he will act in her best interest: player 2 will propose { 2 }  so that player 3 has to 

give in and forms a coalition with player 1. Hence, =3c {{1,3 },{ 2 }}  emerges as the equilibrium. 

In other words, players 1 and 2’s interest are in line and player 1 can only get her way be letting 

player 2 make the first effective move. Hence, =3c {{1,3 },{ 2 }}  is the equilibrium if player 1 is 

the initiator.  

Example 1 also illustrates that the equilibrium outcome depends on the sequence of players. 

Moreover, moving first can be associated with an advantage. Regardless who kicks off the game, 

she can implement her most preferred coalition structure. That this is not always the case will be 

illustrated in example 2 below. 

In example 2 there are only two Pareto-undominated coalition structures, namely 2c  and 5c . 

Coalition structure 2c  is the most preferred outcome of player 1 and 5c  of players 2 and 3. 

Suppose player 1 is the initiator. If he proposed {1,2 } , and player 2 accepted, then 2c  would 

form. However because 2c  is only player 2’s second best option, and player 2 and 3 both prefer 

the grand coalition 5c , player 2 could propose the grand coalition. Given that player 1 cannot 

make a new proposal as long as the game has not proceeded, and the grand coalition Pareto-

dominates the singleton coalition structure 1c , player 1 would have to accept this proposal. 

However, 5c  is only player 1’s third-best alternative. Consequently, player 1, anticipating all this, 

proposes {1}  in equilibrium, knowing that players 2 and 3 prefer to form a coalition together 
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instead of remaining singletons. Thus, the equilibrium coalition structure if player 1 is the initiator 

(regardless how players 2 and 3 are ordered), is coalition structure =4c {{1},{ 2,3 }} .  

Example 2: Pareto-dominated Equilibrium Game 

Coalition Structure 
1v ( c )  2v ( c )  3v ( c )  

=∑3
ii 1

v ( c )  

=1c {{1},{ 2 },{ 3 }}  0 0 0 0 

=2c {{1,2 },{ 3 }}  6 2 4 12 

=3c {{1,3 },{ 2 }}  1 1 1 3 

=4c {{1},{ 2,3 }}  5 1 3 9 

=5c {{1,2,3 }}  3 6 5 14 

 

Since 4c  is Pareto-dominated by 2c , this example illustrates that there are instances where a 

Pareto-dominated equilibrium coalition structure can emerge as an equilibrium due to strategic 

considerations. Moreover, it shows that an initiator cannot always push through her most 

preferred outcome. This is also the case if either player 2 or 3 are the initiators, though in this 

case a Pareto-optimal coalition structure (i.e. 2c ) is the equilibrium outcome. 

If either player 2 or 3 moves first, they anticipate that they cannot enforce their most preferred 

coalition structure 5c  as player 1 will raise objections. Hence, both players try to enforce their 

second-best option which is 2c  and which they know will be accepted by player 1, as it is his 

first-best option. Hence, if player 2 is the initiator, he will propose {1,2 } , which player 1 will 

accept, leaving player 3 as a singleton. If player 3 is the initiator, she proposes { 3 }  and player 1 

and 2 form {1,2 } . 

Thus, if either player 2 or 3 is the initiator, they cannot implement their first choice as an 

equilibrium (as this is the case if player 1 is the initiator). Even more important, they make 

proposals which lead to the most preferred coalition structure of player 1. In other words, from 

player 1’s point of view, there is an advantage not to move first.  



 25

5. Results 

In this section we display and discuss equilibrium coalition structures based on the valuations in 

CWSM. We start with the standard assumption which means that there is no moderator (section 

5.1). We then have a look whether a moderator can change the outcome through coordinating 

actions among regions, though without being equipped with enforcement power (section 5.2). 

5.1 Without Moderator 

Table 2 displays equilibrium coalition structures for the case of no transfers and the case of 

transfers. In the case of no transfers, there are 11 equilibrium coalition structures, in the case of 

transfers, there are only two. Equilibrium coalition structures are sorted according to welfare at 

the world level in descending order. The ranks for different regions within the set of equilibria 

are indicated in the columns under the heading “Ranking”. The first entry in the column “PO” 

indicates whether the coalition structure is Pareto-undominated among the entire set of coalition 

structures of which there are 203. The second entry in this column indicates whether the 

coalition structure is Pareto-undominated among the set of equilibrium coalition structures. The 

frequency of occurrence of a coalition structure among the 720 possible index sequences is 

indicated in the last column.  

Table 2 about here 

We would like to point out four general observations. First, equilibrium coalition structures 

emerge that are not a PO among the set of possible coalition structures. This possibility was 

illustrated in example 2 in section 4.4 and is due to the strategic characteristics of the coalition 

formation game. As in example 2, this even occurs if Pareto-dominance is only checked among 

the set of equilibrium coalition structures. As we will illustrate, this last remark is the motivation 

to analyze the role of a moderator. 
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Second, nearly all equilibrium coalition structures include multiple non-trivial coalitions. Hence, if 

players have not only the option to join an agreement or to remain a singleton, coalition 

structures with multiple coalitions emerge in equilibrium. This observation is in line with 

simulation results for instance in Finus et al. (2009) and Eyckmans and Finus (2006) and the 

theoretical findings in Carraro (2000) and Finus and Runsdhagen (2003), though they assume a 

simultaneous coalition formation process under various membership rules. The relative high 

average CGX is due to the fact that the FSMUG de facto implies that a coalition only forms if 

and only if all players unanimously agree to form exactly this coalition. That is, a high degree of 

unanimity is conducive to the success of coalition formation as spelled out for instance in 

Eyckmans and Finus (2006) and Finus and Rundshagen (2006b). However, the grand coalition is 

not stable. 

Third, transfers lead to a higher average CGX than no transfers. Transfers seem to align interests 

more among heterogeneous players for our data set, as they lead to a more symmetric 

distribution of the gains from cooperation (at least all coalition structures are individually 

rational), which leads to one equilibrium coalition structure in 98 percent of the possible index 

sequences. This is different for no transfers where the index sequence matters much more. 

Nevertheless, also here the first three ranked equilibrium coalition structures (which are Pareto-

undominated) appear with a frequency of 599 all together, amounting to 83 percent of the 

possible index sequences. All together, we confirm the positive effect of transfers for the success 

of coalition formation that has been found for simultaneous coalition formation games. See for 

instance Botteon and Carraro (1997), Carraro et al. (2006), Eyckmans and Finus (2006), Weikart 

et al. (2006) among many others. 

Fourth, irrespective whether we consider no transfers or transfers, there is no equilibrium 

coalition structure which is the most preferred for a particular region among the entire set of 



 27

coalition structures.8 In other words, no region, regardless of the sequence in which they make 

proposals, can enforce its most preferred coalition structure. A similar conclusion, though less 

pronounced emerges from Table 3. 

Table 3 looks at the most preferred and least preferred equilibrium from a region’s point of view 

among the set of equilibrium coalition structures. Percentages indicate the frequency that region 

i  is among the first three in the index sequence when this equilibrium emerges. For instance, 

USA’s most preferred equilibrium for no transfers is the first equilibrium coalition structure 

displayed in Table 2. It occurs 32 times. In 30 instances, the USA is among the first three players 

and hence 30/32=93.8%. Thus, the USA has a first mover advantage when it comes to her most 

preferred equilibrium. Similarly, USA’s worst equilibrium is ranked no. 10 at the world scale (see 

Table 2, no transfers). It occurs 78 times and in 12 instances the USA is among the first three 

players and hence 12/78=15.4%. Put differently, in 84.6% of the cases the USA can not avoid 

the worst outcome because of her late mover position. This relation can be interpreted as a first 

mover advantage to avoid bad outcomes. 

The other entries for other regions in Table 3 are computed in the same way. Hence, in row 

“Best Equilibrium”, a percentage above 50% indicates a first mover advantage (indicated bold) 

and in row “Worst Equilibrium” this is true for a percentage below 50% (indicated bold). Thus, 

only in the case of transfers there seems to be on average a first mover advantage. This is in line 

with our example 2 in section 4.4 which showed that it is not always in the interest of a player to 

move first, i.e. there may be a last or later mover advantage. It appears that – on average - there is 

a first-mover advantage to avoid the worst outcome. 

In the context of the provision of a public good, two incentives can roughly be identified to 

explain this, though incentives are far more complex for the valuations derived from CWSM. On 

the one hand, moving first provides the possibility to free-ride by either proposing to remain a 

                                                 
8  This is evident by comparing Table 1 and 2. 
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singleton or being only a member of a small coalition. This, however, requires that the player can 

expect that others cooperate if he commits to little cooperation. On the other hand, it can also be 

advantageous to move later in the game, hoping that others commit to cooperation. In a simple 

symmetric player context and public good provision Finus and Rundshagen (2006a) have shown 

that only the first incentive is at work.9 Now, in the case of heterogeneous players, obviously, also 

the second incentive seems to be relevant in some instances.  

5.2 With Moderator 

Until now, we assumed that there is no third party that can enforce cooperation. This is in line 

with the institutional setting in which IEAs operate. In the following, we do not give up this 

assumption, but consider that a third party may act as a moderator by coordinating action. Thus, 

the moderator can only make recommendations to the various parties. From a policy perspective, 

analyzing the role of a moderator seems suggestive as many international organizations like the 

World Bank, the United Nations with its environmental program or the International Panel on 

Climate Change (IPCC) are involved in climate negotiations. From a game theoretic point of 

view we have seen that some equilibrium coalition structures are Pareto-dominated, even in the 

set of equilibrium coalition structures. Hence, it seems natural to ask the question whether a 

moderator can improve upon these outcomes. 

In actual negotiations, international organizations perform many and complex tasks. However, in 

our model, we consider this role only in a very stylized and therefore simplistic way. 

Nevertheless, we believe that our analysis highlights the importance of moderators for future 

climate negotiations. Not only from a normative point of view, but also from a positive 

perspective there is a need to explain the existence of international organizations. 

                                                 
9  In example 1 in section 4.4, this free-rider incentive could also be observed if either player 2 or 3 

moves first, though the game is not symmetric. 
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Without moderator and further a priori information, it seems reasonable to expect that each 

index sequence is equally likely to occur. If we let *
iv ( c )  denote the valuation by player i  from 

equilibrium coalition structure *c  (of which there are for instance 11 in the case of no transfers; 

see Table 2), the frequency with which coalition structure *c  emerges among the n!  possible 

permutations of players (i.e. possible index sequences) by *FR( c ) , then the probability that 

equilibrium coalition structure *c  emerges is * *p( c ) FR( c ) / n!=  and the expected valuation of 

player i  in the FSMUG is simply 
* *

*
i i

c C

E( v ) p( c ) v ( c )
∈

= ⋅∑  with *C  the set of equilibrium 

coalition structures. The total expected valuation is n
ii 1

E( v )
=∑ , which can be interpreted as the 

average aggregate welfare. In Table 2 this value was expressed in relative terms as average CGX 

(e.g. ∅ = 77.3 in the case of no transfers).  

Now we assume that the moderator can propose probabilities different from *p( c )  which we 

denote *z( c ) . We assume that the aim of the moderator is to maximize total expected valuation 

subject to the constraint that no player is worse off accepting this proposal.  

(3) ( )
* *

n* *
ii 1

c C

max z( c ) v ( c )
=

∈
∑ ∑  

 s.t. 
* *

* *
i i

c C

z( c )v ( c ) E( v )
∈

≥∑  i {1,...,n }∀ ∈  

        *0 z( c ) 1≤ ≤  * *c C∀ ∈  and  
* *

*

c C

z( c ) 1
∈

=∑  

Since *
iv ( c )  and iE( v )  are constants and the objective function as well as all constraints are 

linear, this is a standard linear programming problem. The solutions *z( c )  will not differ from 

*p( c )  if, as in the case of transfers in Table 2, there are only two coalition structures of which 

none Pareto-dominates the other. However, in the case of no transfers, this is different and the 

moderator can raise expected welfare from CGX 77.3∅ =  to CGX 80.4∅ = . The moderator 
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will attach to all Pareto-dominated equilibrium coalition structures within the set of equilibria, a 

probability of zero. Moreover, all equilibrium structure that are Pareto-dominated by a 

combination of other equilibrium coalition structures also receive probability zero. This implies 

in the case of no transfers that to only two out of 11 equilibrium coalition structures a probability 

*z( c ) 0>  is attached, which are the first two coalition structures listed in Table 2.  

5.3 Sensitivity Analysis 

Since our results have been obtained by simulations, we test the robustness of our conclusions. 

As appears from the discussion in the previous sections, we are not interested in quantitative 

results, but in qualitative conclusions. This seems suggestive given the large uncertainty 

surrounding the calibration of the parameters of integrated assessment models. Among the main 

parameters that enter CWSM, we focus on a variation of the discount rate as there has been 

much debate about the appropriate choice of the discount rate (time preference rate). Hence, we 

consider instead of 0.01δ =  (see Appendix 1) also two other values, 0.02δ =  and 0.03δ = , for 

which we produce tables in the spirit of Tables 2 and 3 and which are available upon request. 

From this sensitivity analysis the following conclusions can be drawn. 

Despite some equilibrium coalition structures differ, all other conclusions are very robust. 

Average success rates measured as average CGX remain very similar. The general observations 

mentioned in section 5.1 also remain true. Equilibrium coalition structures emerge that are not 

Pareto-optimal among the entire set of coalition structures and some are even Pareto-dominated 

by other equilibrium coalition structures, and this happens more frequently in the absence of 

transfers.  

Nearly all equilibrium coalition structures comprise multiple non-trivial coalitions and transfers 

lead to a higher average CGX, at least if a moderator supports negotiations. Regions can never 

push through their most preferred coalition structure regardless of the sequence in the 

negotiations, though there is now one exception: FSU. However, interestingly, when this most 
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preferred coalition structure emerges, the percentage of instances in which FSU is among the first 

three regions in the index sequence is below 50%, suggesting that there is no first but a later 

mover advantage for FSU. Also for other players there is no indication of first-mover advantage 

on average concerning their most preferred outcome, suggesting that a wait-and-see-strategy can 

be attractive to the participants in climate negotiations. 

6. Summary and Conclusions 

We combined two modules, an empirical model on climate change and a game theoretic model of 

coalition formation, to study self-enforcing climate agreements. The empirical model was the 

Climate Change World Simulation Model (CWSM), version 1.2, which is a dynamic optimal 

growth model that captures the feedback between the economy and climate change for six world 

regions. We computed payoffs for all possible partitions of players, called valuations, allowing for 

the possibility of the co-existence of several coalitions. Based on these valuations, we determined 

stable coalition structures. 

We considered two new conceptual issues of coalition formation in the context of IEAs. The 

first issue was the sequential coalition formation process as such. This novelty was motivated by 

the empirical evidence that participation in IEAs have evolved sequentially in the past. We argued 

that the sequential move unanimity game proposed by Bloch (1995) has to be modified for 

practical purposes in order to avoid infinite cyclical proposals. We introduced the assumption 

that a player whose proposal has been turned down, cannot make a second proposal as long as 

the formation process has not proceeded. This allowed us to develop a backtracking algorithm to 

solve for equilibrium coalition structures. The second issue was the analysis of a moderator who 

coordinates the negotiation process but can only make recommendations which are self-

enforcing and Pareto-improving to all parties. This novelty was motivated by positive and 

normative arguments. Among those were the empirical evidence that many international 

organizations play some role in shaping and coordinating IEAs, but the scientific literature could 
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not yet provide a rationale for their existence and their role. Moreover, even if we acknowledge 

the fact that these organizations have no enforcement power, it is important to explore whether 

and how they can foster international cooperation which is desperately needed to address for 

instance the problem of global warming. 

One part of our results illustrated the strategic properties of a sequential coalition formation 

process. For instance, we showed that there is not always a first-mover advantage, but a wait-and-

see-strategy may well pay. Negotiators may even have an incentive to put forward a proposal 

which they know will be turned down in order to benefit from a later mover advantage. Due to 

strategic considerations and strong free-rider incentives, equilibrium coalition structures may not 

be Pareto-optimal. It also clearly emerged that it is very unlikely that single negotiators can push 

through their most preferred outcome, irrespective of the sequence when they move.  

Another part of the results confirmed conclusions derived from a simultaneous coalition 

formation process. Due to large asymmetries across the world in the climate change context in 

terms of the environmental damages and abatement cost, compensation payments are conducive 

to establish effective cooperation. Moreover, if participation is not restricted exogenously to a 

single agreement, multiple coalitions will emerge as equilibrium outcomes. As argued for instance 

in Eyckmans and Finus (2006) and Finus et al. (2009), this may be taken as indication to revise 

previous policy strategies. As long as free-rider incentives do not allow forming a climate 

agreement with full participation, it may be worthwhile to allow for bilateral agreements instead 

of focusing on a single treaty. Finally, we showed that if multiple equilibria exist, a moderator 

may play an important role by helping to avoid bad outcomes.  

From our results two main avenues for future research emerge. First, the role of moderators and 

coordinators for shaping IEAs should be explored further. The aim should be to model this in a 

less stylized way as we did and to explore the possibilities available to international organizations 

to play a constructive role in initiating IEAs, coordinating negotiations and helping to formulate 



 33

ambitious though realistic policy goals as well as implementing and monitoring agreements. 

Second, more conceptual work is needed to capture the dynamic nature of the formation of IEAs 

in terms of participation, policy goals, enforcement and the stock pollutant nature of greenhouse 

gases. This is certainly a non-trivial challenge but would help to base policy recommendations for 

the design of successful future IEAs on a more realistic basis. After all, it is not to be expected 

that problems like climate change, the depletion of the ozone layer or biodiversity will disappear 

in the future. 
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Appendix 1 

Figure A.1 shows the CLIMNEG World Simulation Model10, version 1.2, which consists of two 

main blocks of equations: the economy (left) and the climate module (right). Subindices t denote 

time (in steps of 10 years11) and indices i indicate the region. Exogenous processes are indicated 

by an overbar.  

Figure A.1: Schematic Overview of CLIMNEG World Simulation Model 

at at at uo at
t 1 t 11 t 21 t j,t 0

j N

uo uo at uo lo uo
t 1 t 12 t 22 t 32 t 0

lo lo uo lo lo
t 1 t 23 t 33 t 0

M M M M E M given

M M M M M M given

M M M M M given

+
∈

+

+

= +τ +τ +

= +τ +τ +τ

= +τ +τ

∑at at at uo at
t 1 t 11 t 21 t j,t 0

j N

uo uo at uo lo uo
t 1 t 12 t 22 t 32 t 0

lo lo uo lo lo
t 1 t 23 t 33 t 0

M M M M E M given

M M M M M M given

M M M M M given

+
∈

+

+

= +τ +τ +

= +τ +τ +τ

= +τ +τ

∑

at at
xt 0

t t

4.1 ln(M M )
F F

ln(2)
= +

at at
xt 0

t t

4.1 ln(M M )
F F

ln(2)
= +

o o at o
t t 1 3 t 1 t 1

at at at at o
t t 1 1 t t 1 2 t 1 t 1

at
t

t

T T T T

T T F T T T

T
T

2.50

− − −

− − − −

⎡ ⎤= + τ −⎣ ⎦

⎡ ⎤ ⎡ ⎤= + τ − λ − τ −⎣ ⎦ ⎣ ⎦

Δ =

o o at o
t t 1 3 t 1 t 1

at at at at o
t t 1 1 t t 1 2 t 1 t 1

at
t

t

T T T T

T T F T T T

T
T

2.50

− − −

− − − −

⎡ ⎤= + τ −⎣ ⎦

⎡ ⎤ ⎡ ⎤= + τ − λ − τ −⎣ ⎦ ⎣ ⎦

Δ =

i,t i,t i,t i,tE 1 Y⎡ ⎤= α −μ⎣ ⎦i,t i,t i,t i,tE 1 Y⎡ ⎤= α −μ⎣ ⎦

j,t
j N

E
∈
∑ j,t
j N

E
∈
∑

1
i,t i,t i,t i,tY a K Lγ −γ= 1
i,t i,t i,t i,tY a K Lγ −γ=

[ ]i,t 1 K i,t i,t i,0K 1 K I K given+ = − δ +[ ]i,t 1 K i,t i,t i,0K 1 K I K given+ = − δ +

i,t i,t i,t i,t i i,t i,t i tZ Y I Y C ( ) Y D ( T )= − − μ − Δi,t i,t i,t i,t i i,t i,t i tZ Y I Y C ( ) Y D ( T )= − − μ − Δ

i ,2b
i i,t i,1 i,tC ( ) bμ = μ i ,2b
i i,t i,1 i,tC ( ) bμ = μ

i ,2
i t i,1 tD ( T ) TθΔ = θ Δ i ,2
i t i,1 tD ( T ) TθΔ = θ Δ

global temperature module

carbon cycle

global 
emissions

individual 
emissions

radiative
forcing

production

capital accumulation

consumption

climate change damages

abatement costs

[ ]
i,t

i t
t 0

Z
W

1

Ω

=

=
+ ρ

∑ individual welfare
objective function

 
          ECONOMY  MODULE                                        CLIMATE  MODULE 

                                                 
10  The GAMS code for the simulations is available from the authors upon request, including the entire 

matrix of valuations. 
11  In order to save space, the equations shown in Figure A.1 are simplified to an annual representation 

of the stock variables’ accumulation processes. Using a time step different than one year, alters 
slightly the look of these equations but does not affect the essential aspects of the processes.  
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Table A.1: List of Variables and Functions 

i,tY  production (billion US$2000) 

i,tZ  consumption (billion US$2000) 

i,tI  investment (billion US$2000) 

i,tK  capital stock (billion US$2000) 

i,tE  carbon emissions (billion tons of carbon, btC) 

i,tμ  emission reduction (between zero and one) 

( )i,tC μ  emission reduction cost function (fraction of GDP, between zero and one) 

tTΔ  global mean temperature change (°C) 

( )i tD TΔ  climate change damage function (fraction of GDP, between zero and one) 

iW  welfare measured as aggregated discounted consumption 
at
tM  atmospheric carbon concentration (btC) 
uo
tM  carbon concentration in upper strata ocean (btC) 
lo
tM  carbon concentration in lower strata ocean (btC) 

tF  radiative forcing (Watt per m2) 
at
tT  atmospheric temperature (°C) 
0
tT  lower ocean temperature (°C) 
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Table A.2: Global Parameters 

i,ta  Productivity exogenous  

i,tL  Population exogenous  

i,tα  emission-output rate exogenous  
x
tF  Exogenous radiative forcing exogenous  

Kδ  annual rate of capital depreciation 0.10  
γ  capital productivity parameter 0.25  
ρ  annual rate of time preference 0.01*  
Ω  terminal year 2330  

11τ  parameter carbon cycle -0.033384  

12τ  parameter carbon cycle 0.033384  

21τ  parameter carbon cycle 0.027607  

22τ  parameter carbon cycle -0.039103  

23τ  parameter carbon cycle 0.011496  

32τ  parameter carbon cycle 0.000422  

33τ  parameter carbon cycle -0.000422  

1τ  parameter global temperature module 0.226  

2τ  parameter global temperature module 0.440  

3τ  parameter global temperature module 0.020  
λ  parameter global temperature module 1.410  

at
0M  Initial (=2000) atmospheric carbon concentration 783 btC
uo
0M  Initial (=2000) carbon concentration in upper strata ocean  807 btC
lo
0M  Initial (=2000) carbon concentration in lower strata ocean 19238 btC

at
0T  Initial (=2000) atmospheric temperature 0.622 °C
0
0T  Initial (=2000) lower ocean temperature 0.108 °C

* The sensitivity analysis is conducted for values 0.02 and 0.03. 
Details for the time path of exogenous parameters and calibration of carbon cycle and 
temperature module are available from the authors upon request.  
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Table A.3: Regional Parameters 

 
i,1θ  i,2θ  i,1b  i,2b  

USA 0.01102 2.0 0.07 2.887 
JPN 0.01174 2.0 0.05 2.887 
EU 0.01174 2.0 0.05 2.887 
CHN 0.01523 2.0 0.15 2.887 
FSU 0.00857 2.0 0.15 2.887 
ROW 0.02093 2.0 0.10 2.887 
Source: RICE_96 model by Nordhaus and Yang (1996). 
 
 
Table A.4: Regional Initial (=2000) Data 

 
i,0Y  i,0L  i,0K  i,0E  

USA 7563.810 282.224 19740.689 1.574 
JPN 3387.931 126.87 9753.970 0.330 
EU 8446.901 377.136 22804.477 0.888 
CHN 968.906 1262.645 2686.056 0.947 
FSU 558.436 287.893 1490.038 0.626 
ROW 6633.427 3715.663 14105.209 2.192 
WORLD 27559.411 6052.431 70580.438 6.556 
 billion US$2000 

(market exchange 
rate) 

million 
people 

billion US$2000 billion tons 
carbon btC 

(fossil fuel use) 
Source: World Resources Institute http://www.wri.org (for i,0Y  and i,0E ), UN 
Economic and Social Affairs division (for i,0L ) and own calibration (for i,0K ). 
Details are available from the authors upon request. 
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Table 1: Overview of Selected Coalition Structures and their Welfare Implications* 
Rank Coalition Structure Valuations without Transfers Valuation with Transfers   

  USA JPN EU CHN FSU ROW USA JPN EU CHN FSU ROW World CGX 

1 {USA,JPN,EU,CHN,FSU,ROW} 255882.2 48068.1 179478.3 308069.3 19038.2 359617.9 257401.2 48116.1 179507.6 307220.6 19417.5 358490.8 1170154 100.0 

2 {USA,EU,CHN,FSU,ROW},{JPN} 255793.3 48435.0 179368.4 307762.0 19041.8 359127.1 257267.1 48435 179408.9 306960.3 19408.5 358047.7 1169528 97.9 

3 {USA,JPN,EU,CHN,ROW},{FSU} 255686.8 48029.6 179319.5 307610.7 19622.1 358882.0 257232.0 48085.9 179385.9 306892.3 19622.1 357932.4 1169151 96.7 

4 {USA,EU,CHN,ROW},{JPN,FSU} 255613.6 48393.4 179229.2 307361.9 19603.1 358486.6 257119.4 48448.9 179306.9 306685.0 19547.6 357580.0 1168688 95.1 

5 {USA,EU,CHN,ROW},{JPN},{FSU} 255590.1 48390.2 179212.7 307314.3 19604.3 358409.0 257095.3 48390.2 179289.9 306638.8 19604.3 357502.2 1168521 94.6 

6 {USA,JPN,CHN,FSU,ROW},{EU} 255592.8 47979.2 180526.1 307021.0 19059.2 357931.3 256915.2 48029.0 180526.1 306307.3 19386.1 356945.9 1168110 93.2 

16 {USA},{JPN,EU,CHN,FSU,ROW} 258283.8 47886.3 178712.9 305884.7 19045.5 356069.0 258283.8 47963.2 178896.8 305609.3 19362.1 355767.0 1165882 85.8 

17 {USA,JPN,EU,FSU,ROW},{CHN} 255393.4 47872.6 178657.4 308478.0 19117.0 356225.0 256298.4 47919.5 178721.3 308478.0 19345.0 354980.3 1165743 85.4 

150 {USA},{JPN},{EU},{CHN}, 
{FSU,ROW} 255723.7 47788.2 178265.1 304393.3 19155.1 352360.0 255723.7 47788.2 178265.1 304393.3 19289.5 352225.5 1157685 58.6 

151 {USA},{JPN,ROW},{EU},{CHN}, 
{FSU} 255705.1 47660.4 178251.7 304362.0 19332.1 352195.0 255705.1 47759.9 178251.7 304362.0 19332.1 352095.5 1157506 58.1 

152 {USA,JPN,EU,CHN,FSU},{ROW} 253310.9 47467.0 176958.1 300739.6 19016.4 350146.7 253718.4 47470.1 176907.2 300219.1 19177.1 350146.7 1147639 25.3 

157 
{USA,JPN,CHN,FSU,},{EU}, 
{ROW} 253151.6 47416.4 177134.2 300178.2 19037.5 348238.3 253464.8 47426.3 177134.2 299732.3 19160.4 348238.3 1145156 17.1 

167 
{USA},{JPN,EU,CHN,FSU}, 
{ROW} 253722.2 47376.6 176572.6 299713.5 19038.2 347037.4 253722.2 47405.3 176644.5 299498.8 19152.3 347037.4 1143461 11.5 

173 {USA,JPN,EU,FSU},{CHN},{ROW} 253282 47396.9 176655.7 300001.6 19094.0 346569.3 253283.1 47394.9 176602.3 300001.6 19148.3 346569.3 1142999 9.9 

195 {USA},{JPN,EU,FSU},{CHN},{ROW} 253219.5 47369.1 176534.5 299267.3 19120.0 345276.0 253219.5 47372.5 176511.4 299267.3 19139.7 345276.0 1140787 2.6 

203 {USA},{JPN},{EU},{CHN},{FSU}, 
{ROW} 253104.6 47364.1 176477.5 299040.1 19136.5 344878.6 253104.6 47364.1 176477.5 299040.1 19136.5 344878.6 1140001 0.0 

* Rank: rank of coalition structure in the list of all coalition structures sorted in descending order of global welfare (column “World”); valuations are billion US dollars expressed in 2000 

levels, rounded to the first digit; World: sum of valuations of all six regions (i.e. global welfare); CGX: global welfare expressed in terms of closing the gap index: 

( ) ( )n nN F N
i i i ii 1 i 1

100 (v (c) v (c )) / (v (c ) v (c ))
= =

⋅ − −∑ ∑  where welfare is discounted lifetime consumption integrated over 2000-2300 (see section 3.1), global welfare with full cooperation is denoted 

by 
n F

ii 1
v (c )

=∑  ( Fc =coalition structure No. 1), global welfare with no cooperation is denoted by 
n N

ii 1
v (c )

=∑  ( Nc =coalition structure No. 203) and global welfare in some coalition structure c 

is denoted by 
n

ii 1
v (c)

=∑ ; abbreviation of regions as explained in the text in section 3.1; bold numbers indicate highest valuation of a region among the set of valuations V(C)  and TV (C) , 

respectively. 
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Table 2: Equilibrium Coalition Structures for No Transfers and Transfers* 

No Transfers 
Coalition Structure Ranking  CGX PO FR 

 USA JPN EU CHN FSU ROW World    
{USA,EU,FSU},{JPN},{CHN,ROW} 1 1 1 5 9 1 1 80.7 yes/yes 32 
{USA,JPN,EU},{CHN,ROW},{FSU} 3 3 3 6 1 2 2 80.3 yes/yes 52 
{USA,EU},{JPN},{CHN,ROW},{FSU} 5 2 4 8 2 3 3 78.2 yes/yes 515 
{USA,JPN,FSU},{EU},{CHN,ROW} 2 5 2 9 5 4 4 76.2 yes/yes 1 
{USA},{JPN},{EU,FSU},{CHN,ROW} 4 4 5 10 4 9 5 73.7 no/no 16 
{USA},{JPN,EU},{CHN,ROW},{FSU} 6 6 6 11 3 10 6 73.4 no/no 4 
{USA,ROW},{JPN},{EU,FSU},{CHN} 8 7 7 1 10 5 7 72.2 no/yes 8 
{USA,ROW},{JPN,EU},{CHN},{FSU} 9 10 8 2 6 6 8 71.9 no/yes 10 
{USA,ROW},{JPN,FSU},{EU},{CHN} 10 8 9 3 8 7 9 71.3 no/yes 2 
{USA,ROW},{JPN},{EU},{CHN},{FSU} 11 9 10 4 7 8 10 70.8 no/yes 78 
{USA},{JPN},{EU,ROW},{CHN},{FSU} 7 11 11 7 11 11 11 63.8 no/no 2 
                ∅ = 77.3   

Transfers 
Coalition Structure Ranking  CGX PO FR 

 USA JPN EU CHN FSU ROW World    
{USA,EU,CHN,ROW},{JPN},{FSU} 2 1 1 1 1 1 1 94.6 yes/yes 706 
{USA},{JPN},{EU,FSU},{CHN,ROW} 1 2 2 2 2 2 2 73.7 no/yes 14 
                ∅ = 94.2   
* Ranking: ranking of equilibrium coalition structures in terms of valuations “World” in descending order; CGX: closing the gap 
index as explained in Table 1, ∅ =average welfare over all possible index sequences; PO: first entry = Pareto-optimal coalition 
structure in the set of all coalition structures, second entry = Pareto-optimal coalition structure in the set of equilibria; FR: frequence 
of appearance of coalition structure as an equilibrium out of the total number of index sequences that is 720. 

 
 
 
Table 3: First-Mover Advantage to Enforce Best and to Avoid Worst Equilibrium* 

No Transfers 
 USA JPN EU CHN FSU ROW 
Best Equilibrium 93.8 43.8 18.8 100 73.1 18.8 
Worst Equilibrium 15.4  100 0 50 0 0 

Transfers 
 USA JPN EU CHN FSU ROW 
Best Equilibrium 100 50.4 50.1 49.3 50.1 51 
Worst Equilibrium 49 28.6 42.9 85.7 42.9 0 
* Numbers are percentages of region i having an index number equal or smaller than 3 with respect to the the best and worst 
equilibrium coalition structure from player i’s perspective in Table 2. Bold entries: %>50 for Best Equilibrium and %<50 for Worst 
Equilibrium indicate first-mover advantage. 


