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Abstract: This review describes the subjective experience of visual aura in migraine, outlines the-
oretical models of this phenomenon, and explores how these may be linked to neurochemical,
electrophysiological, and psychophysical differences in sensory processing that have been reported
in migraine with aura. Reaction–diffusion models have been used to model the hallucinations
thought to arise from cortical spreading depolarisation and depression in migraine aura. One aim of
this review is to make the underlying principles of these models accessible to a general readership.
Cortical spreading depolarisation and depression in these models depends on the balance of the
diffusion rate between excitation and inhibition and the occurrence of a large spike in activity to
initiate spontaneous pattern formation. We review experimental evidence, including recordings
of brain activity made during the aura and attack phase, self-reported triggers of migraine, and
psychophysical studies of visual processing in migraine with aura, and how these might relate to
mechanisms of excitability that make some people susceptible to aura. Increased cortical excitability,
increased neural noise, and fluctuations in oscillatory activity across the migraine cycle are all factors
that are likely to contribute to the occurrence of migraine aura. There remain many outstanding
questions relating to the current limitations of both models and experimental evidence. Nevertheless,
reaction–diffusion models, by providing an integrative theoretical framework, support the generation
of testable experimental hypotheses to guide future research.

Keywords: CSD; non-linear dynamic model; EEG/MEG; fMRI; GABA

1. Introduction

Migraine is a debilitating disorder, yet there is little cross-discipline consensus as to
its cause. Migraine is heterogeneous, consisting of several subtypes, the most common of
which is migraine without aura (MO). However, of interest in the current review are those
reporting migraine with aura (MA). These individuals fulfil the International Headache So-
ciety diagnostic criteria for migraine, but additionally experience hallucinations around the
time of the onset of the headache. The majority of those with MA do not experience the hal-
lucinations on every attack—79% of those with MA also experience attacks without aura [1].
Migraine aura is thought to be linked to a spreading wave of hyper-excitation (spreading
depolarisation) across the brain’s surface followed by a period of reduced blood-flow
(hypoperfusion) and suppressed neural activity (spreading depression) [2]. It is important
to note that the wave of increased activity corresponds to the spreading depolarisation,
while the suppressed neural activity corresponds to the spreading depression. Interestingly,
the phenomenology of cortical spreading depolarisation and cortical spreading depression
provides an insight into the probable mechanisms underlying migraine aura.
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This review sets out to match models of migraine aura and the empirical evidence.
However, linking the theoretical models of cortical spreading depolarisation and subse-
quent depression to experimental evidence in humans is challenging. Firstly, it is difficult
to obtain direct electrophysiological recordings in humans during an attack due to their
fleeting, unpredictable nature. Secondly, in order to model activity directly in humans,
extremely invasive procedures would be required in order to capture the activity at the
level of cortical columns and ion channels required by the model parameters. It is, however,
possible to extrapolate from animal models to humans, although there are some important
limitations that need to be born in mind. For example, along with the differences between
human and animal brains, electrophysiological recordings in humans are on a much less
fine-scale than those obtained from animals. Furthermore, while fMRI techniques record
BOLD response, which are indicative of, but not a direct measure of, electrical activity in
the cortex, it may be possible to relate these to the scale of electrophysiological recordings
in humans. Finally, the evidence and knowledge about migraine triggers and behavioural
performance may provide some insight into the level of excitation and inhibition in the
brain. Although this may be on a different level of abstraction to the level of neuro-
transmitters, it could still be related to the parameters of a model that seek to provide
an understanding of migraine aura. While it is currently not possible to draw definitive
conclusions, by combining the weight of evidence for what is known about migraine aura
phenomenology, triggers, and electrophysiological evidence, in this review, we seek to
draw links between theoretical models of migraine aura and the precise physiological
mechanisms to which these models correspond. Effective theoretical models could be used
to help combine diverse experimental findings from reported phenomenology, electrophys-
iology, and behavioural performance and thus better understand migraine aura. However,
the multi-disciplinary nature of the study of migraine means that many models are not
accessible to those working in particular domains. The advantage of using these particular
models is the flexibility to include abstract elements that mirror the attributes of physical
features. These layers of abstraction can, for example be on the level of neurotransmitters
or on the level of oscillatory activity related to measured EEG activity. This means that
the right level of abstraction can lead to testable hypotheses to better demonstrate the
mechanisms in migraine aura.

The aims of this review are (i) to provide an accessible introduction to these models
and demonstrate how they can test hypotheses related to migraine, (ii) to connect how the
experimental evidence may support them in the case of migraine, and (iii) to highlight the
benefits of using these flexible models to obtain insights into the mechanisms of migraine
and migraine-aura.

1.1. Phenomenology of Hallucinations and Visual Aura

A hallucination is said to occur when an observer perceives a sensory event in the
absence of an external stimulus [3]. Migraine aura is a hallucinatory experience that can
occur in any modality. At least 57% of people with migraine aura are thought to experience
this visually, [4], and this may be as much as 98% [5].

Migraine aura consists of hallucinatory experiences that tend to appear shortly before
the onset of the headache itself; the aura symptoms preceding headache onset on average
by around 10 min [1] (see Figure 1). The duration of the migraine aura is variable, typically
lasting between 5 min and 1 h [6], with the average duration being around half an hour [1].
However, there is also the phenomenon of prolonged migraine aura, which can last over
one hour to several days [7]. Hemiplegic migraine aura, which involves weakness of
the body, tends to last for longer than one hour [6]. There have been several studies
documenting the quality of migraine aura hallucinations, although it must be noted that
these vary considerably between individuals [8]. Aura hallucinations are sometimes
unilateral, sometimes bilateral; sometimes on the same side as the headache, and sometimes
not [8]. The most common symptoms of visual migraine aura are the positive symptoms of
flashes of light, “foggy” vision, zig-zag lines, flickering lights, and the negative symptom of
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a scotoma, a temporary blindness in an area of the visual field) [9]. One of the most typical
hallucinations is the “teichopsia”, or “fortification spectrum” which is best described as
a “zig-zag” pattern [10]. Illustrations of fortification spectra have been documented by a
range of authors, e.g., [11–13], and they are an important tool in discriminating migraine
from other disorders. Finally, while there are also more complex hallucinations such as
the perception of people and objects, these tend to be idiosyncratic and less common
than zig-zags patterns, lines, flashing lights and scintillating scotoma [8,9] and are not
considered in the current review.

Interictal
Prodrome

Peri-ictal Period

Preictal Ictal Postictal
Interictal

Aura

Trigger(s)

Attack Recovery

Figure 1. Time course of the stages of migraine.

The individual elements of hallucinations can help discriminate migraine aura from
other disorders, such as the typically reported coloured discs in occipital epilepsy [14,15]
or the shorter duration of hallucinations in visual epilepsy that occur without precipitating
triggers [16]. Isolated attributes of the hallucination alone are not, however, a reliable means
for an accurate differentiation between migraine and other disorders, which requires that
the entire set of hallucinations and the duration of their effects are taken into account [17],
alongside the other defining characteristics of migraine.

The phenomenological qualities of visual hallucinations have been used to generate
theoretical models of the mechanisms of, for example, occipital epilepsy [14,15], Basilar
Artery Migraine (BAM) aura [18], drug-induced hallucinations [19], and hypnagogic
hallucinations [20,21]. Thus, understanding how the specific qualities of the migraine aura
correlate with physiological measures in the brain may give insights into the reasons why
these symptoms occur and thus provide insights into regarding the nature of migraine itself.

The aura can start in either central or peripheral vision [8,22]. One case study reported
on an individual [23] who had recorded their migraine aura for many years. This revealed
that their aura predominantly started in the central visual field but on occasion started in
the periphery. Whilst the aura was on one side, it could start in either hemifield. Migraine
aura is restricted to one or the other visual hemifield in many people, although it can also
be bilateral [8]. fMRI evidence has shown that migraine aura stops at certain boundaries,
corresponding to the sulci [24,25].

1.2. Cortical Spreading Depression as the Proposed Physiological Correlate of Aura

Cortical spreading depolarisation and subsequent depression is proposed to be the
neurobiological mechanism responsible for migraine aura. Cortical spreading depolarisation
is characterised by a massive self-propagating wave of neural activity, informally called a
“brain tsunami” [26], which is followed by a period of suppression of both spontaneous and
evoked activity (depression) that propagates over the cortex. The initial wave of depolarisa-
tion can be many times the amplitude of normal spontaneous activity (shown in Figure 2a)
and travels slowly at a rate of 2–5 mm per minute for 15 s or longer [27]. After this initial
wave, there is a sustained hyperpolarisation of neurons and a reversal of the membrane
polarity [28], which inhibits the generation of synaptic potentials. During this period of
silence (suppressed spontaneous activity and reduced excitability), the cortical spreading
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depression propagates with the depolarisation wave. Recovery can take 5–10 min for
spontaneous activity to begin to reemerge [29], but up to an hour [22] to return to normal
levels. In contrast, evoked activity (e.g., as a response from a stimulus) takes longer, around
15 to 30 min, to recover [30,31].

Figure 2. To visualise the electrical activity found in cortical spreading depression, we present
an excerpt from Dreier et al. [27] (Figure 3: reproduced under the terms of a Creative Commons
Attribution Non-Commercial License) of an intracranial recording of spreading depolarisation and
spreading depression that was recorded in a terminal patient prior to a stroke. (a) DC/AC activity
showing the characteristically large depolarisation spreading across a period of an hour; (b) AC
activity illustrating the depression of spontaneous activity caused by the large depolarisation.

Figure 3. Cortical spreading depolarisation and depression in migraine. Spreading depression and the migraine scotoma
start simultaneously with the onset of the negative potential shift of the deplorisation (brain tsunami).
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The spatial and temporal features of the migraine aura have been shown to closely
resemble those of cortical spreading depression [13,29]. The positive and negative hallu-
cinations experienced in migraine aura are thought to be the result of cortical spreading
depolarisation and depression [32], respectively. Specifically, the zig-zag patterns are
thought to be due to the travelling wavefront of excitatory depolarisation, while the sco-
toma are thought to be the result of the subsequent depression of activity [32,33].

One of the earliest discoveries of cortical spreading depression was by Leao [30], who
identified a reduction in the spontaneous activity after applying electrical stimulation
to the rabbit, pigeon, and cat cortices [30,34]. However, obtaining electrophysiological
recordings for spreading depression in humans requires subdural electrodes, which are
usually only used after a traumatic brain injury (e.g., [35]. Owing to the difficulties and
expense in obtaining human data, direct evidence of spreading depression has not yet
been demonstrated during a migraine aura [28,36]. To date, non-invasive scalp-based EEG
recordings have not captured evidence of spreading depolarisation [34,37], as the spatial
resolution of EEG is not sensitive enough to detect the phenomenon. Evidence of spreading
depression from animal studies has been used to model migraine aura in humans, allowing
for closer examination of the mechanisms of altered cortical and subcortical excitation and
inhibition [38]. The most common elementary hallucinations of migraine aura have been a
starting point for mathematical modelling.

2. Models of Cortical Spreading Depression

There have been several attempts to model cortical spreading depolarisation and the
accompanying hallucinations in general terms (not necessarily specifically for migraine);
for a review, see Billock and Tsou [39]. It is important to note that many authors use the
term “spreading depression” and “spreading depolarisation” interchangeably (e.g., [40]),
as one is considered to follow the other [41]. In animal models reporting recording of the
spreading depression, the authors acknowledge that a silent period follows a wavefront
of strong activity [42]. Some authors explicitly acknowledge that the zig-zag patterns and
other hallucinations are likely to be the result of the depolarisation wave, whereas if models
are aiming to show the spread of the scotoma, then it is likely to be depression that is of
interest [33]. These dynamic models of neural networks are based on reaction–diffusion
equations such as the Wilson-Conwan Equation [43,44]. These models capture many of the
important properties of the migraine aura. Firstly, they model both the positive phenomena,
such as they appearance of zig-zag patterns, and the negative phenomenon of the scotoma,
as waves of excitation and suppression, respectively. Secondly, they model the propagation
of these waves across the visual field. Finally, they are also able to account for the fine-scale
spatial structure of the zig-zag patterns. In this section, we outline reaction–diffusion
models in general terms and how these have been used as models of cortical dynamics
of the visual brain. We then review their role in explaining the hallucinatory experience
of migraine aura and the factors that make networks of neurons more susceptible to
hallucination in migraine with aura.

2.1. Reaction–Diffusion Models

Introduced by Turing [45], reaction–diffusion models take a theoretical approach to
explaining behaviour and pattern formation [46] in biological, geological, and ecologi-
cal phenomena.

For example, one of the more straightforward models, the Gray–Scott Equation [47],
has been used to model pattern formation. This example includes two antagonist reagents,
A and B, in a predator–prey-like relationship, modelled by a pair of linked differential
equations. Here, two units of B could, for example, convert one unit of A into another
unit B (the “reaction”), to model B consuming A. When the levels of A drop, through
consumption, then so will the levels of B.

In addition to this reaction component of the model, both reagents A and B spread out
from areas of high to low concentration (“diffusion”). Importantly, these diffusion processes
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occur at their own independent diffusion gradients, determined by a two-dimensional
Laplacian function. This function represents the spatial spread of the reagents A and B,
from areas of high to low concentration. Examples of the Laplacian can be seen in Figure 4.
An implementation of this kind of reaction–diffusion model can be found at: [48]. Critically,
for the presence of self-emerging patterns, the diffusion rate of the inhibitor (A in this case)
needs to be sufficiently large compared to the activator (B in this case). If this condition is
met, patterns can be formed (Figure 5b). By contrast, the output of the model with equal
diffusion rates of the activator and the inhibitor can be seen in Figure 5c. In this model,
there is no periodic pattern formation. The initial conditions of the activator can be seen in
Figure 5a.

Figure 4. (a) Laplacian function for the initial condition of the activator, showing the direction and rate of the diffu-
sion gradients. (b) Laplacian function for the activator at the end time point, showing the direction and rate of the
diffusion gradients.

Figure 5. (a) The initial conditions of the activator component of the feed/kill rate model. Most of the area is zero, and there
is a central peak seeded at 1, assumed to be due to random fluctuation. (b) The end point of the feed/kill rate model
(5000 simulated seconds, with 4 iterations per second). The diffusion rate of the inhibitor (1) is double that of the activator
(0.5). (c) The end point of the feed/kill rate model (5000 simulated seconds, with 4 iterations per second), when the diffusion
rate of the inhibitor (1) is equal that of the activator (1).

Reaction–diffusion models include additional parameters, dependent on the specific
model. In the Grey–Scott model, there are additional parameters for a “feed rate” for the
introduction of the inhibitor A into the system, and a “kill rate” for the disappearance of
the activator B out of the system. In the simpler versions of reaction–diffusion equations,
these are constants. However, in more complex reaction–diffusion equations, these may be
non-linear functions with multiple components. This tends to be the case in the reaction–
diffusion systems representing brain activity, which have been used to model migraine
aura. An excellent explanation is given in the work of Kondo and Miura [46], summarised
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here to illustrate how patterns can form and propagate through a network of this type.
The activator increases the levels of both the activator and the inhibitor in the short-range,
while the inhibitor reduces the level of the activator in the long-range (see Figure 6). Again
it is important that the diffusion rate of the inhibitor B is sufficiently large in comparison
to A in order for patterns to occur. An implementation of a model of this type, based on
work by Gierer and Meinhardt [49], can be seen in Figure 7. In a particular area of the
network, there is a random fluctuation resulting in slightly raised levels of the activator A
(Figure 7a), which creates a feedback loop further increasing the levels of the activation in
the area. The levels of the activator thus overshoot the original values. The levels of the
inhibitor increase in response to this activation (Figure 7b) and reduce elsewhere through a
process of diffusion and decay over time. The shape of the peak of inhibition is slightly
lower at the edges, and the levels of the activator are reducde more in the centre compared
to the edges of the area, resulting in a shape with a dip in the centre compared to the
surroundings (Figure 7c). The activator enhances its own levels again, as these are higher
in the edges, and this leads to a more pronounced dip in the centre (Figure 7d). The levels
of the inhibitor are also enhanced in the edges compared to the centre. As the levels of the
activator are higher in the centre compared to the surroundings, this shape is replicated by
the inhibitor (Figure 7e), creating two peaks in both reagents with a dip in the centre. This
relative release from inhibition in the centre compared to the surround allows the activator
to increase again in the central region, and thus the cycle begins again and periodic patterns
begin to form Figure 7f. The spatial constraints (Laplacian) and the diffusion rates are
key to the pattern formation. If the diffusion gradients are equal, then the patterns will
not occur. Additionally, the model depends on an initial random fluctuation to begin the
self-emerging pattern formation.

Figure 6. Figure on Activator (E) and Inhibitor (I) reagent levels. The activator E can increase levels
of both itself and the inhibitor I, over the short range. The inhibitor reduces the levels of the activator
over the long range.
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Figure 7. The reaction–diffusion model output for the initial conditions and the first few arbitrary simulated time stages.
In this model, the diffusion rate of the inhibitor is twice that of the activator. (a) shows the initial conditions of the system,
and the inhibitor is set to 1. The activator is initiated to zero, seeded with an area (“spike”) of activity due to random
fluctuation. In this spike, the activator is set to 1. (b) The activator spike has enhanced the inhibitor in that area, so the
inhibitor levels increase to greater than 1 (overshoot) in the region of the activator spike. The inhibitor in other areas is
reduced, due to the decay rate. The inhibitor increase is slightly wider than the activator due to the different diffusion rates.
(c) The effects of inhibition can be seen as the level of the activator reduces. (d) Inhibitor levels have fallen as there is less of
the activator. The activator enhances both itself and the inhibitor, so at a certain point the levels of activator are low enough
that the levels of inhibitor also drop. As the inhibitor has a faster diffusion rate than the activator, this means that the drop
is faster for the inhibitor. As the inhibitor is reduced, the activator levels begin to rise again in response to the reduced
inhibitor levels—note the edges of the peak, where the reduction in inhibitor is more pronounced and so the increase in
activator is beginning to take shape. (e) The activator levels have risen in response to the reduced inhibitor levels, and this
is more pronounced at the edges. Inhibitor levels start to rise again in response. (f) Levels of inhibitor rise again, completing
the cycle, this time spatially extended from the original spike location. This continues to create a periodic pattern, under the
right conditions.

2.2. Reaction–Diffusion Models and the Brain

In the case of the models relevant to the processes of the brain in migraine aura,
the activator and the inhibitor represent the levels of excitation and inhibition at specific
locations in a network of neurons, and the diffusion rates determine the overall speed
of propagation of the travelling wave throughout this network. While these models can
be defined on a relatively abstract level, their components have been linked directly to
populations of neurons and their interactions. For example, Zhaoping and Li [50] has
used a reaction–diffusion based model, called the V1 saliency hypothesis, to replicate
human performance on visual search reaction times and performance on figure/ground
segregation tasks. The V1 saliency hypothesis is based on a leaky integrate-and-fire model,
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a relatively common model of neuronal spiking. Zhaoping and Li [50] explicitly defines
the units as coupled excitatory pyramidal cells and inhibitory interneurons and discusses
the importance of ensuring that self-organising patterns of spontaneous activity, giving
rise to hallucinatory perceptual experiences, do not occur.

One of the earliest models of the occurrence of hallucinations [21] used a pair of
differential equations to represent excitation and inhibition, as a function of location in
the cortex. Excitatory model units increase activity for both local excitatory and inhibitory
units, and inhibitory units can reduce the activity of local excitatory and inhibitory units.
The influence of each unit on the local activity is represented by a Gaussian weight to repre-
sent spatial interactions between cells [21]. The patterns emerge due to the organisation of
the network of excitatory and inhibitory units. Tass [51] expanded the model to include a
control parameter to allow for state switching, for example, to go from below hallucination
threshold to hallucinating.

These models are based on the physiology of the cortex, and the rate of spread of
the hallucinations [39], but they are a general model of hallucinations, not specific to the
typical hallucinations of migraine. The earliest models of spreading depolarisation in
migraine aura actually modelled the extracellular K+ levels (see [40] for a review), which
might be considered to be related to cortical excitability. A later model by Reggia and
Montgomery [52] included an inhibitor term, and this was able to capture the zig-zag
pattern at the spreading depolarisation wavefront.

Later work by Dahlem et al., Dahlem and Chronicle [53,54] was aimed at modelling
the hallucinations specific to migraine. This model was initially based on the assumption
that the cortex is “weakly” excitable, meaning that the excitability levels must be within a
certain range relative to threshold to trigger the attack, not much higher (otherwise there
will be constant attacks) or much lower (in which case attacks will never trigger) [55]. This
susceptibility term is represented in the non-linear function specifying the reaction rate of
the inhibitor, defined in [41].

The models aim to replicate the mechanisms of the hallucinations, and they have
captured some aspects that relate to the perceptual experience. The models incorporate
threshold excitability levels to capture the switching of state of behaviour (bifurcation) from
not having an attack to triggering the attack, as in the work introduced by [51]. General
models of hallucinations have been able to recreate reported patterns, including spirals
and concentric circles [21]. Tass [51] later developed a version able to capture dynamic
hallucinations as well (e.g., “blinking rolls”) [51]. Terms are also included to represent the
propagation boundary conditions in order to capture the behaviour of the travelling wave
of excitation itself, namely whether it collapses in on itself or continues through the cortex.
In the case of migraine, Dahlem and Hadjikhani [41] successfully replicated the scotoma,
and the speed of its propagation over the cortex matched the hallucination expansion.

The activity modelled by reaction–diffusion models depends on the excitatory and
inhibitory connections between nodes in the network, which depend on their spatial
relationship. Since early visual areas in the cortex are retinotopically mapped, there is a
strong connection between the relative spatial positions of neurons and the locations in the
visual fields that they represent. There will thus be a similar correspondence between the
spatial properties of the reaction–diffusion models, defined by the physical locations of
units relative to one another, and spatial position in the image. It is this correspondence
that allows the models to capture the spatio-temporal properties of the aura experience.

Excitatory and inhibitory connections between units in models of the visual cortex also
depend on features beyond the simple location of receptive fields, however. For example,
connections that depend on both the location and orientation of features are central to
association field models of contour integration [56] and models of visual saliency [50]. This
encoding of orientation as well as position is built into the fine-structure of the mapping of
properties across the visual cortex, in which clusters of cells encoding similar orientations
(orientation columns) form a characteristic “pinwheel” pattern of variation in preferred
orientation [57]. This regular organisation of the primary visual cortex for both position and
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orientation has been used to provide an explanation of the zig-zag appearance of the aura
created by the propagation of the wave of depolarisation Dahlem and Chronicle [54]. This
model includes a parameter called the “pinwheel spacing term” to quantify the spacing
between orientation columns. By including this fine-scale architecture of the primary visual
cortex, and taking into account the orientation tuning of neurons, this model provides a
more detailed account of the quality of aura. This is important as it provides a link between
the migraine experience, the known dependence of excitatory and inhibitory connections
on both location and orientation, and the biological implementation of these functional
connections in their spatial mapping in the visual cortex.

This model was able to recreate the zig-zag patterns of the fortification spectra at
the leading edge of the scotoma, which is a hallucination specific to migraine. They were
also able to recreate the reports that migraine aura tends not to engulf the entire cortex
but extends as far as the periphery and then disappears [41]. This is because of the folding
of the gyri in the brain. When the brain is convex, the travelling wave will accelerate. When
the structure is concave, the travelling wave will decelerate. By considering the folded
structure of the human brain, rather than thinking of the space as homogenous or flat, this
aspect can be captured effectively.

While it may seem unintuitive to link abstract levels and the units of excitatory and
inhibitory connections, these models were designed to capture pattern formation in various
natural forms. Their strength lies in their ability to abstract the essential components of the
network dynamics without needing to know the exact underlying mechanisms [46].

2.3. What Do Models Account for?

Reaction–diffusion-based models that are used to model visual hallucinations are dif-
ferent from simple feedforward convolution-type models of visual processing (e.g., [58,59]),
as they do not all rely on an explicit image-forming stimulus input in the same way. Rather,
they self-generate patterns of activity that correspond to visual hallucinations. The patterns
emerge from the initial conditions and the properties of the network parameters, impor-
tantly, the ratio of diffusion rates between the activator and the inhibitor. This makes them
useful in understanding the hallucinations of migraine aura, as in many cases there is no
apparent reliable external trigger, but the aura is elicited when certain internal thresholds
are reached.

The spatial mapping of the models is able to create a travelling wavefront that matches
the speed of the progression of hallucinations across the visual field [53]. More recent mod-
els [41] have included complex susceptibility terms to recreate both the trigger threshold
for the spreading depolarisation and subsequent depression, but also to understand the
reason for the hallucination stopping in the periphery. Some models explicitly define lateral
interactions (coupling) between units [60], whereas others use Laplacian functions to model
these spatial aspects [61]. The Laplacian has been suggested to relate to the connectivity of
the brain, which has been able to predict the spatial patterns and the natural frequencies of
the oscillatory behaviour [61]. This is a relatively computationally efficient way of being
able to model the connectivity for large areas of the brain. Connectivity is something that
can be estimated from electrophysiological recordings, which will be discussed later in the
review in Section 3.

Reaction–diffusion models have been applied to migraine aura and visual process-
ing more generally in various ways. Some models do include a specific input stimulus,
which can recreate the oscillatory response and resulting pattern formation from repetitive
inputs [60], which may be helpful in relating to neural oscillations measured at the scalp.
This will be discussed in more detail in Section 5. It is also possible to relate the behaviour
of certain reaction–diffusion models to human performance on a visual task [62]. Orienta-
tion discrimination performance has been modelled using integrate-and-fire models [63].
Integrate-and-fire models can be considered a simplification of the Hodgkin–Huxley model,
which is a model based on a set of reaction–diffusion equations. Seriès et al. [63] explic-
itly defined coupling between units and defined the spatial distribution using a wavelet
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function. Orientation tuning sharpening was effectively recreated by this model. The rela-
tionship of models to behavioural performance will be discussed in more detail Section 6.

There are multiple different models of migraine aura, as well as reaction–diffusion
models for modelling visual task performance. The difference between those modelling
aura and those modelling performance tends to be the input. The former aim to recreate
the self-emergent patterns arising from the network properties themselves, while the latter
focus on accounting for the response of a complex system to a particular stimulus. In order
to initiate the self-emerging properties, stochastic (noisy) processes are needed to “seed”
the initial reaction. This need not be an external signal; there is the potential for this to
be internal to the system. With so many models and variants, it is important to focus on
the most relevant ones. Dahlem and Hadjikhani’s [33] work on recreating the fortification
patterns specific to migraine is an important step here. This group has successfully devel-
oped models recreating many of the aspects of migraine aura by including appropriate
parameters. The next issue is what the parameters represent in terms of biological systems
in the brain itself. Several suggestions have been made, and this will be covered in the
next section.

3. Linking Models to Physiological Differences in Migraine

The models use terms defining excitation and inhibition, but in order to transition
from the abstract model, these terms must have some physiological basis. Mechanical
and electrical stimulation of the cortex can induce spreading depression in animal models,
as can chemical methods such as introducing KCl and GABA [2], suggesting that the
answer may be a complex interplay of several factors.

3.1. Ion Transfer

One suggestion is that these terms relate to the transfer of ions across the cell mem-
brane. For example, the models of Dahlem et al. [53,54] suggest that their excitation term
could represent the level of extracellular potassium ions (K+). Changes in the levels of
extracellular K+ (both increase and decrease) have been shown to increase the chances of
spreading depression in the chicken retina [64]. Sleep deprivation, a commonly reported
migraine trigger (e.g., [65]), increases the extracellular K+ levels in animal models and also
lowers the spreading depression threshold [66]. Additionally, changing from stationary to
locomotion increases K+ levels [67], and physical activity can aggravate migraine [68].

Increased spike activity increases extracellular K+ [69]. Smith et al. [2] suggested the
rapid increase in K+ following intense neural firing results in the propagation of spreading
depression and that this might be controlled by NDMA [2]. Astrocytes seem to be key in
protecting against the onset of the travelling wave [2,31], and these cells have an important
role in K+ homeostasis [70]. Astrocyte density is lower in the visual areas of the brain,
which might explain why spreading depression is relatively easy to trigger here [31].
However, K+ is not released before the onset of depolarisation of the cells, and glutamate
release follows the K+ release, suggesting that these changes may be secondary to the onset
of the attack [71].

K+ increase is only one aspect of the complex ion changes in spreading depolarisation
and depression. As well as the increase in K+, the levels of Cl-, Ca2+, and Na+ all
decrease [72]. However, K+ is of particular interest as it seems to be the key ion involved in
CSD development—when the K+ threshold is reached, this initiates the CSD. Additionally,
this can be prevented if the glial cells (which control K+ levels) are able to act [72].

A study involving introducing a pathological mutation (knock-in) into mice re-
sulted in increased susceptibility to CSD, and this mutation specifically affected the Ca2+
channels [73]. As the Ca2+ channels have a role in controlling neurotransmitter release, par-
ticularly glutamate [74], this may be the mechanism of CSD. Additionally, these channels
also have an indirect role in the release of the neurotransmitter GABA [75].

Estimating the involvement of specific ions is difficult as the change in concentration
in other ions cannot be easily controlled in investigations of the spreading depression.
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For example, animal models show changes in Cl- concentration (an increase after an initial
decrease) after repetitive stimulation in cat sensorimotor cortex [76]. It has been suggested
that the ion transfer of the different ions are dependent on each other; for example, as
K+ leaves the cells, Na+ ions exchange places, although the exchange with Na+ is not
1:1 [77]. Additionally, there is the issue of electrodiffusion [40]. As the ions are electrically
charged, this will counteract any diffusion gradient unless the other (negatively) charged
ions also move. Taken together, this makes it very difficult to isolate the ion of interest
experimentally, and so although the most likely candidate seems to be K+, this is far
from conclusive.

3.2. GABA

Neurotransmitters such as gamma-aminobutyric acid (GABA) could also be involved
in the level of inhibition. Dahlem and Chronicle [54] suggest that GABA might be deficient
in the cortex of those with migraine, and that extracellular K+ is the triggering factor for
the attack itself. Increasing the level of GABA results in increased extracellular K+ [78].
However, a review of epilepsy suggests that GABA seems to affect Cl−, rather than
extracellular K+ [79].

Using the GABA antagonist Metrazol, which disturbs the action of GABA, to ac-
tivate the cortex in conjunction with 8–10 Hz photic stimulation resulted in spreading
depression [80]. Those with MA taking a GABA agonist (sodium valporate) showed nor-
malised performance on a psychophysical task (metacontrast masking) compared to those
not taking this medication [81]. Sodium valporate also normalises transcranial magnetic
stimulation (TMS) phosphene excitability [82]. Importantly, there are links between be-
havioural performance and GABA levels—in healthy participants, increased GABA levels
relate to increased orientation discrimination specificity [83]. A more detailed discussion
of behavioural tasks thought to rely on GABA concentration in those with migraine specifi-
cally will be discussed in Section 6 below. Spreading depolarisation can be aborted in the
human cortex with the introduction of GABA [84].

In humans, some authors report that GABA concentration does not differ between
migraine and control groups or between those with MA and MO [85,86]. However, others
have shown lower levels of GABA, specifically in those with MA compared to controls [87].
It must be noted that these studies tend to have a relatively limited sample size due to
the expensive methodology. Additionally, other authors reported that increased GABA
was related to increased pain and severity [88], which does not support the idea that a
lack of GABA is the problem in those with migraine. GABA agonists have shown some
benefit in migraine, e.g., [89]; for a review, see [90]. However, according to a Cochrane
Review, gabapentin, which increases GABA levels in the brain [91], does not help much for
migraine prophylaxis [92].

3.3. Glutamate

Glutamate is another neurotransmitter related to migraine pathophysiology. Interictal
glutamate levels in the occipital cortex have been shown to be higher in a mixed group of
migraine with and without aura compared to controls [93]. Many studies estimate levels
of combined glutamate and glutamine (Glx), and this combined measure is also higher in
migraine compared to controls [94]. Interical MA showed higher levels of glutamate com-
pared to controls, but glutamate levels did not correlate with VEP responses [95]. Findings
on this are mixed, as other authors have shown no overall differences in glutamate levels,
but did show a relationship between BOLD activity in response to chequerboard stimula-
tion in those with MA [87]. It could be the case that specifically in MA, and specifically in
the occipital areas, there are differences. Studies of this kind tend to have relatively small
sample sizes due to their expensive nature, which decreases the reliability of statistical
findings. A recent study showed that glutamate and GABA levels can correspond to occipi-
tal activation, but this depends on the current state—GABA correlated with brain activity
under dark conditions, whereas glutamate levels correlated with the brain’s responses to
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chequerboard stimulation [83]. This study could help understand the mixed findings in
previous research into glutamate and GABA in migraine—findings are likely to depend
on the state of the visual brain at the time, whether processing information or resting.
Many studies into the role of glutamate actually estimate the Glx combined measure. Glx
contains both glutamate and glutamine. Glutamine is the precursor to both glutamate and
GABA [96], so results must be interpreted with caution, as it is possible that there is a
simultaneous increase in GABA levels due to the glutamine.

3.4. Electrical Stimulation

Direct electrical stimulation of the cortex has been shown to elicit spreading depres-
sion in animal models [30]. Intercranial strip recordings of migraine aura over the frontal
areas have shown evidence of spreading depression, including a sharp increase in activity,
followed by a “DC shift”. The DC shift indicates a reduction in activity compared to spon-
taneous levels of activity before the aura event [71]. A less invasive method of stimulating
the cortex in human observers is to use transcranial direct current stimulation (tDCS),
transcranial alternating current stimulation (tACS), or transcranial magnetic stimulation
(TMS). Electrical stimulation (tACS) of the cortex can elicit phosphenes [97], but these do
not tend to resemble the fortification spectra commonly reported in migraine [39].

3.5. Links between Models and Biology

Linking the model parameters to biological systems in the brain is not a straight-
forward process. There are several suggestions for what the parameters in the models
might represent, outlined schematically in Figure 8. At this stage, it seems that there is
no agreed-upon answer, due to the complexity of both the models and the neural system,
the expense of experimentally estimating levels of neurotransmitters, and most importantly
the substantial variation between individuals with migraine. In order to gain some insights,
large-scale longitudinal studies may be needed. Whilst these may pose logistical and
expense issues for methods such as spectroscopy, there may be behavioural possibilities
to investigate these differences. For example, Smith et al. [98] showed (indirectly) that it
may be possible to increase levels of GABA through diet, demonstrating an effect on EEG
responses over several sessions and an appropriate washout period. Using spectroscopy
might be the gold standard for measuring neurotransmitter levels, but the cost of longitudi-
nal studies of larger groups (to allow for individual variation) may make this prohibitively
expensive. However, it may be possible to supplement these studies using behavioural
techniques such as Smith et al. [98]. Additionally, the triggers of migraine could also give
some insights into the system before the onset of the migraine attack.
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Figure 8. A schematic diagram of the main model stages and the possible parameters that have been
associated with spreading depression. The initial conditions (prior to the initiating event) represent
the susceptibility of the cortex to spreading depolarisation and subsequent depression. This could
be due to neurotransmitters such as GABA, glutamate, and K+ ion levels. The next stage is the
precipitating event, represented in the model by random fluctuation in activity. It is possible that
random fluctuation is more likely in those with migraine due to increased internal noise in the brain.
The next stage of the model is the self-enhancement of the activator. One of the key points for pattern
formation is the ratio of diffusion rates for the activator and the inhibitor, which feasibly relate to the
coupling strength or connectivity within the brain.

4. Linking Models to Known Migraine Triggers

The factors that can precipitate a migraine attack may be particularly useful for
understanding the onset of the attack and the migraine aura. A survey of 181 individuals
with migraine reported that common triggers are stress, light, emotions, sleep disturbances,
or alcohol useage [65]. A systematic review of migraine triggers, based on self-report in
most studies, found the most commonly reported triggers to be stress (58% migraineurs),
auditory stimuli (56%), fatigue (43%), fasting (44%), hormonal factors (females only, 44%),
sleep disturbances (43%), changes in weather (39%), visual (38%) and olfactory (38%)
factors, and alcohol (27%) [99]. Stress was also the most commonly reported trigger in
several other studies [100–103].
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4.1. Food-Based Triggers

Food is also commonly reported as a trigger for migraine; for example, red wine has
been listed as a migraine trigger [103]. Red wine has anti-seizure effects by inhibiting firing
rate through closing Na+ channels and opening Ca2+ channels [104], which would be
thought to protect against spreading depolarisation and depression. However, given the
complex interplay between ions and neurotransmitters, this may be an oversimplification
of a complex system. Chocolate has also been reported as a trigger [103] by around 19%
of participants [105]; however, studies trying to elicit migraine attacks using chocolate
have failed [106]. Moreover, serotonin and magnesium are relatively high in chocolate,
and these are thought to prevent migraine attacks [106]. Chocolate affects brain oscillations,
increasing alpha and beta, and decreasing theta and delta activity [107]. Garlic oil has been
shown to reduce the amplitude of KCl triggered spreading depression in rats, and this is
possibly due to an effect on astrocytes [108].

There have been questions about the reliability of self-reported triggers—only a few
people (3/27) could precipitate a migraine attack from their self-reported triggers [109]. It
may be the case that reported triggers are not causal, merely correlated with the migraine
attack. Theoretically, it may be more useful to look at triggers that can induce migraine
more reliably; however, there are obvious difficulties with this approach. Visual triggers
have however been successfully demonstrated to be capable of inducing migraine [110].

4.2. Sensory Triggers

Sensory triggers may be more specific to migraine compared to other headache dis-
orders. Stress and lack of sleep were triggers common to both migraine and tension-type
headache, whereas sensory factors such as weather, smell, smoke, and light differentiated
between migraine and tension-type headache [102]. Similarly, both control and migraine
groups commonly reported stress and tiredness as headache triggers; however, 45% of
those with migraine, and only 6% of controls reported visual triggers [103]. Visual stimuli
included flickering lights, striped patterns, and also computer screen use, reading, bright
colours, and optic flow stimuli. Interestingly, light was reported as a trigger in a relatively
high percentage of the younger individuals with migraine (10–19 years) [111].

Flicker has been shown to elicit headache in both migraine and control groups, al-
though those with migraine reported experiencing more severe symptoms. This study used
5 Hz stimulation for 5, 10, 15, 25, and 35 min, with 15 and 25 min of stimulation leading to
the most intense headaches. As the longest period of stimulation did not lead to the most
intense headaches, the author suggests this may indicate habituation to the stimuli [112].

4.3. Modelling Triggers

Migraine triggers vary widely, seem to be idiosyncratic, and are unreliable, making it
difficult to link triggers to models directly. However, there are some more common triggers,
such as stress and sleep deprivation, which may give insights into the state of the brain,
e.g., in terms of K+ levels. It seems that, in general, sensory stimulation is more specific
to those with migraine compared to other types of headache, although this is not a rule.
Repetitive light stimulation has been shown to have an effect on glutamine levels in those
with migraine—baseline levels were elevated in those with migraine compared to controls
and reduced with repetitive photic stimulation in those with migraine only [95]. Lowered
glutamine levels might be expected to decrease excitability, as they are the precursor to
glutamate, so it seems counter-intuitive that there would be a reduction in excitability
to precipitate an attack. However, as previously mentioned, glutamine can also be the
precursor for GABA [96], so the effects of photic stimulation may not only affect excitation,
but also inhibition levels.

In addition to changes in neurotransmitter levels, oscillatory neural responses are
affected by repetitive visual stimulation [113]. This can be a link to both the models, which
have been used to represent oscillatory brain activity and to brain activity during migraine
aura. Due to the spontaneous and fleeting nature of the attack, recordings during the aura
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phase are relatively rare; however, some have been achieved, and the evidence will be
discussed in the next section.

5. Linking Models to Neural Activity during Aura (and Headache)

In order to link theoretical models to migraine in human observers, it would be useful
to use recordings of brain activity, such as electroencephalolgy (EEG) and fMRI. There
are reports of EEG differences in migraine between attacks (interictally), although this is
not sufficient for use as a diagnostic tool [14]. Abnormal interictal EEG is more likely in
those with aura compared to those without, and the most common abnormalities were
slow waves and spike activity [114]. A review of the interictal literature in EEG in migraine
reported that the most commonly reported findings include increased slow wave, theta,
and delta power, although the literature is rather mixed [115]. Some authors found reduced
alpha frequency between migraine and control participants [116,117]. Differences in alpha
power have been reported to be related to migraine history (those with the longest history
of migraine, approximately 5 years in a paediatric sample) [118], and also to fluctuate with
proximity to the attack [119]. There have in addition been reports of asymmetry of alpha
power between the hemispheres [120,121]. There are also reports of interictal increases in
power in beta band (12–20 Hz) oscillations [117]. Interictal EEG shows increased theta band
power compared to controls in a group including both MA and MO participants [122].

Repeated testing at several points during the migraine cycle has also been conducted
using electrophysiological methods. Sand et al. [123] reported increased P1N2 amplitude
before attack in a mixed migraine group, and Sand et al. [124] reported increased N1P1
and P1N2 responses specifically in those with migraine aura, which increased before the
attack compared to interictally. Shibata et al. [125] reported increased N1P1 amplitude
in MA shortly after the attack. Studies investigating habituation of VEP responses found
reduced habituation in migraine interictally, but this seems to normalise by increasing
to more control-like levels immediately before the attack [126,127]. Evidence has shown
that a measure called the “Brain Engagement Index” correlates with the proximity to
the migraine attack, peaking before the attack (preictal stage) and reducing afterwards.
The Brain Engagement Index was identified as the frequency of occurrence of an individual-
specific template of ERP activity in the delta band (1–4 Hz) [128]. This is important as
delta band suppression is the EEG correlate of depolarisations measured using intercranial
recordings in those with traumatic brain injury [35].

In order to understand the aura itself, and to link to models of spreading depolarisation
and depression, recordings are needed during the attack phase (ictal recordings). There are
difficulties in recording brain activity during migraine attacks, due to their unpredictable
and short-lived nature. However, some recordings have been made, generally either
recording those with very frequent or chronic attacks or by inducing an attack.

5.1. Slow Waves

One of the earliest studies into EEG in those with migraine studied 51 participants in
varying phases of the attack—interictal (between attacks) in some, but also some recordings
were made during the aura phase. One such study recorded individuals with basilar-type
migraine (BAM), a less common variant of migraine with aura [129]. BAM originates in
the brainstem of both occipital lobes and is commonly accompanied with vertigo and lack
of co-ordination [130]. Thirty of the 51 were shown to have “abnormal EEG”, although the
record lacks details on the abnormalities. Slow-wave (5–8 Hz) abnormalities were reported,
and these were exaggerated during the aura in some individuals. However, in other
individuals, there were normal resting states and no change in EEG activity reported
during the migraine attack phases. Activity seems to be lowered during the main headache
stage [129].

Other researchers have also reported pronounced slow-wave activity during an at-
tack in the posterior areas of the brain in those with BAM [131], specifically in the theta
band [132]. Soriani et al. [133] reported “diffuse and continuous” reduced alpha, but in-
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creased beta band activity, as well as posterior slow waves. After the onset of the headache,
there increased activity has been shown in the delta/theta bands in children with migraine,
and no abnormalities were found interictally [134]. Other researchers have reported the
band to be lower still, with diffuse slow activity in the delta-subdelta range (0.5–2 Hz)
in children 4 h after the onset of the attack [135]. All of the participants had normal or
improved EEG 4 days after the attack, again suggesting the EEG normalises interictally.
In the case of one paediatric participant who experienced migraine aura without headache,
EEG recording made the day after the attack showed there to be left occipital slow waves.
Additionally, magnetic resonance (MR) perfusion showed hyperperfusion (increased blood
flow) over parietal-occipital areas. These changes returned to normal 3 days after the
attack [136].

Hyperventilation has been used to elicit migraine attacks, and has resulted in changes
to theta and delta band activity; specifically, the delta band changes were bisynchronous
slow waves (2–3 Hz) recorded over frontal electrodes [137]. The authors did not include
details of the photic stimulation used, so it is unclear why this would not have affected
the EEG recording [137]. A PET scan of a spontaneous migraine aura showed there to be
spreading hypoperfusion (reduction in blood flow) with time [138]. Migraine aura has
also been induced by injection of Xenon (Xe) in the carotid artery. This was successful
in 9 out of 13 participants in a study by Lauritzen et al. [139]. Low blood flow was
demonstrated on the same side as the injection, starting in posterior areas and spreading
through the cortex. However, this low blood flow did not cross the sulcus [139], an attribute
of migraine aura that has been modelled successfully as being due to the gyrification of
the cortex [64]. Participants who experienced an attack after the Xe injection showed
hypoperfusion in posterior areas of the brain, including the occipital, posterior parietal,
and posterior temporal areas. Interestingly, rCBF remained unchanged in those who did
not experience an attack after the injection [140]. Hypoxia has been used to trigger migraine
attacks [141], and hypoxia results in K+ and is related to the spreading depression in animal
models [142]. This indirectly links excitability, spreading depolarisation, and depression,
as well as electrophysiological activity.

Lee et al. [143] reported several EEG recordings in a case study of hemiplegic migraine
(which included confusion and motor aphasia). Hyperventilation and photic stimulation
did not affect EEG in this patient, and unusual EEG activity “diffuse slowing” was seen
after sleep deprivation. During the recording of sleep activity, POSTs (positive occipital
sharp transients) were seen. A large review of EEG studies reporting POSTs found these to
be more common in younger individuals and more likely to be accompanied by EEG abnor-
malities (including slowing and epileptiform activity) compared to controls [144]. Future
work investigating POSTs and activity after sleep deprivation may be particularly useful in
understanding migraine; however, there are too few controlled sleep trials involving those
with migraine to form any conclusions on this at present.

Other authors have reported changes to electrophysiological activity during recordings
of visually-induced migraine aura. Bowyer et al. [110] recorded MEG during the migraine
aura either from spontaneous (four individuals) or induced (eight individuals) attacks.
The attack was induced using black and white chequers reversing at 8 Hz. Those with
spontaneous aura showed activation in the right occipital-temporal/parietal region. Those
with induced aura showed activation in the primary visual cortex, left occipital and right
temporal areas. Direct current (DC) shifts were taken as a measure of activation, and DC
shifts were only seen in those with migraine, not in the control group. DC shifts are
an overall increase in the amplitude of the measured response and can be indicative of
0.1 to 0.2 Hz slow potentials [145]. These DC shifts were suggested to be indicative of
extracellular potassium accumulation and the accompanying spreading depolarisation
and subsequent depression [110]. In the cat, negative DC shift is related to membrane
depolarisation, which is linked to pyramidal cell activity [146]. This is important as
pyramidal cells have been suggested to be a possible biological implementation of the
excitatory component of reaction–diffusion models, e.g., [50].
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5.2. Beta Band Oscillations

Kanai et al. [97] showed that electrical brain stimulation in the beta range (14–22 Hz)
makes it easier to elicit flickering phosphenes. How readily phosphenes are elicited
is generally considered a measure of cortical excitability [147,148]. During the interictal
period, after 30 s photic stimulation at frequencies of 2, 4, and 6 Hz, the beta band amplitude
(recorded over temporal areas from channels T3–T5) of those with migraine was found to be
increased compared to controls, whereas in those with epilepsy, the alpha band amplitude
increased with flash stimulation. Unlike those with epilepsy, those with migraine showed
no differences in the power spectral density (PSD) in the absence of flash stimulation [149],
showing that the visual stimulation is needed to see differences in migraine.

5.3. Alpha Band Oscillations

There are reports of reduced alpha activity (7–13 Hz) contralateral to the aura [150].
Hall et al. [151] reported an MEG recording during the spontaneous aura phase of one
individual. This recording showed alpha band desynchronisation (a reduction in alpha
power) in extrastriate and temporal areas during the time when the observer reported
seeing scintillations and lasting approximately 5 min. Afterwards, the MEG showed
gamma band desynchronisation, for the next 16 min, over the inferior temporal lobe.
Investigating the EEG at different stages of the migraine attack, Seri et al. [152] reported
decreased occipital alpha power during an attack in a childhood migraine, which was
contralateral to the aura hemifield. This was followed by an increase in delta power over
bifrontal areas, which spread to the posterior-temporal and occipital areas during the
headache. Finally, EEG was normal when recorded interictally. The decrease in alpha
contralateral to the hemifield may simply be the reduction in alpha that is seen when an
observer views a stimulus—reductions in alpha power have been reported in the case of
hallucinations (for a review, see [153]). The normal EEG recorded interictally is typical,
and a reason why there is no EEG biomarker for migraine. The increase in delta power
seems to be a common theme in EEG recorded during the headache phase of the migraine
attack, and this may have significance—in individuals with traumatic brain injury, there
has been shown to be an EEG correlate, in the delta band, of intercranially measured
spreading depolarisation [35].

5.4. Linking Electrophysiology to Reaction–Diffusion Models—Oscillations

It may be possible to link oscillatory activity recorded at the scalp to models of
migraine aura, in particular for the alpha band. Whilst this was considered the idling
rhythm of the brain for a long time, it is now thought that these oscillations have an
important role in the inhibition of incoming responses [154]. An individual’s alpha band
oscillations are thought to act as a “window of excitability” [155]. An incoming signal that
coincides with the trough of the alpha oscillation is more likely to be perceived compared
to one that coincides with the peak [156]. Alpha band oscillations are thought to be
generated in the LGN, with the activity of bursting neurons being synchronised at gap
junctions. This results in “relay-mode” spiking—one group of neurons spiking at the
peak of the oscillation and the other group at the trough of the oscillation [157]. Finally,
the interneurons provide a cyclic form of suppression to result in alpha band oscillations,
which are transmitted through thalamo-cortical neurons into the later visual areas. It is
thought that the interneurons and GABA in particular have a relationship with alpha band
oscillations, as a recent study showed a positive relationship between alpha band peak
frequency and GABA levels [158].

When flicker is synchronised to an individual’s alpha band oscillations, EEG research
has shown that patterns of activity consistent with travelling waves take 2–5 s to emerge,
compared to 10–15 s for trials that are not synchronised to the alpha band oscillations [159].
These travelling waves translate into visual hallucinations such as circles, spirals, and grid
patterns [159]. There are several reports of visual illusions being elicited by flicker [160].
Illusions are elicited at frequencies specific to the individual, as well as the harmonics
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of the critical frequency [161]. These hallucinations are also able to be elicited with eyes
closed [162], although the strength of the visual stimulus will of course be greatly reduced
by the eyelids. It is thought that because the alpha band oscillations are greater with eyes
closed, the alpha band may be associated with the hallucinations. However, the flicker rate
of the shimmering fortification spectra has been estimated to be around 18 Hz [163], which
is the range of beta band oscillations.

In order to measure the effects of light stimulation without a specific pattern, a
“Ganzfeld” flicker has been used. This essentially incorporates special “glasses” to obscure
the visual scene whilst still allowing light through, similar to putting half a table-tennis
ball over each eye. Ganzfeld flicker stimulation in non-clinical populations results in
radial and spiral hallucinations at lower (5 Hz) and higher (17 Hz peak) frequencies,
respectively [164]. When images of these hallucinations were shown to observers, EEG
amplitude increased at 4–6 Hz for the radial and 11–21 Hz for the spiral patterns, linking
the hallucination and the frequency of stimulation [164]. Hallucinations induced by flicker
in non-clinical populations peaks at 11 Hz, and this has been directly modelled using a
reaction–diffusion-based system of inhibitory and excitatory cell banks (based on the work
of [60], which were then passed through a banks of Gabor filters (an energy model) to
detect motion [165]. These models show the relationship between the stimulation frequency
and the resulting hallucination. In the stable resting state, in the absence of stimulation,
the model displays oscillations at around 13 Hz [60]. This is determined by the set of
parameters chosen, including the spatial spread (diffusion term) of the inhibitor being
greater than the activator. Importantly, in this model, there are also time constants for the
inhibitor and the activator, which determine the period of the whole system’s oscillations.
In this case, the time constant for the inhibitor is two [60] or three times [164] that of the
activator. Lower-frequency stimulation (around 10 Hz) results in hexagonal patterns of
cortical activation, which would correspond to chequered hallucinations. Higher frequency
stimulation (around 15–20 Hz) would result in stripes of cortical activation, which would
result in hallucinations such as radial patterns and spirals [60]. These studies include how
it is possible to model the hallucinations as a result of the systems ongoing oscillations in
combination with a repetitive input.

Repetitive visual stimulation, or photic driving, has been of interest in EEG migraine
research for a long time, most commonly as an attempt to provide a diagnostic tool that does
not rely on self-report. A review of the literature in the 1990s showed that the analysis of
photic driving responses is not sensitive or specific enough to be used as a diagnostic tool in
migraine; however, there was evidence of abnormalities in the photic driving responses in
those with migraine above 16 Hz [166]. Importantly, the authors noted that at the time this
had not been linked to the migraine aura, and more recent work has suggested that there
is no link to migraine aura [167]. A more recent study showed that compared to control
groups, both MA and MO showed increased photic driving response for a 2cpd pattern
flickered at 10 Hz, with MA showing a higher response compared to MO [168]. A 2cpd
stimulus flickering at 7.5 Hz elicited a greater response in MA compared to MO [169].
Curiously, those with MA showed a weaker response to photic stimulation compared to
MO for frequencies of 5, 8, 15, and 20 Hz [170]. The lack of conclusive findings makes
it difficult to draw firm conclusions about the role of photic driving. It is important to
note that repetitive visual stimulation can entrain neural responses [171] or at least evoke
repetitive responses (steady-state visual evoked potentials) [172], and the amplitude of
these may depend on the frequency of the ongoing oscillations. Future work should first
measure the ongoing oscillations, as this is likely to impact the amplitude of the response to
repetitive visual stimuli. However, the question of how exactly photic stimulation relates
to susceptibility to migraine aura is still an open one. Repetitive stimulation can excite the
cortex, and entrain oscillations, so these might be good candidates for possible mechanisms.
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5.5. Linking Electrophysiology to Models—Connectivity

It is especially important to consider the ongoing oscillations as these relate to func-
tional connectivity of the brain. It must be noted that recordings of brain activity (whether
using EEG or fMRI) are not generally on the same scale as the models—models work on
the level of cells, or groups of cells (e.g., [50,63]), whereas EEG recordings do not have the
spatial resolution for this. However, recent work has shown that by using networks of
reaction–diffusion equations, the synchronisation properties of epileptic seizures could be
modelled [173]. The synchronisation properties were dependent on global aspects of the
network, including the strength of the connectivity between regions. This is important as
there is already work available on the effective connectivity in the migraine brain, estimated
using EEG after photic stimulation.

Estimates of functional connectivity after photic stimulation can discriminate MA and
MO. After flash stimulation of 9–27 Hz, the amplitude of the response was higher in MA
and MO compared to controls over the occipital and parietal channels [174]. Additionally,
functional connectivity (Granger causality) in the beta band differentiated between MA,
MO, and controls [174]. Granger causality is estimated by taking the autoregression of a
time series (x) to predict future activity from past activity. This is compared to the autocor-
relation from a second time series (y). The error in the prediction from the two time series
together is compared to the error in the prediction for the time series x alone. Effective
connectivity (based on Granger causality) was higher in MA compared to MO in alpha and
beta bands after 5 and 10 Hz photic stimulation using 0.5 and 2cpd patterns [175]. Specifi-
cally, activity was spread over a larger extent over fronto-central and occipital regions in
MA [175], and information was estimated to be flowing posterior to anterior [176]. Granger
causality increased with laser stimulation (to cause pain) in those with migraine [177],
and Granger causality was increased in migraine in specific areas associated with pain
processing [178]. Overall, there is evidence to suggest that information spreads more read-
ily in migraine from posterior to anterior regions, specifically in alpha and beta bands. This
has implications for the models; those areas with increased responses to visual and painful
stimuli are propagating information to other regions, resulting in increased responses.
It may be possible for models to capture this aspect of rate of information propagation
interictally in the migraine brain, which may relate to susceptibility to travelling waves,
and the susceptibility of the cortex to precipitating factors.

In summary, the migraine aura seems to be characterised by oscillatory differences
including pronounced slow-wave activity, reduced alpha power, and increased beta power.
Factors thought to elicit the migraine attack including hyperventilation, sleep deprivation,
and photic stimulation have been related to oscillatory differences in EEG. In studies with
multiple recordings, it appears to be the case that activity normalises after the attack,
suggesting that these complex changes are indeed linked to the attack itself. Importantly,
recent research has shown fluctuations of oscillatory brain activity (in delta and beta bands)
in proximity to migraine attack [179], linking these oscillations to the attack itself more
convincingly. Reaction–diffusion models can be used to model the oscillatory behaviour
of the system, and in particular, recent work has included a Laplacian function as a
diffusion parameter to represent the functional connectivity of the network [61]. Functional
connectivity can be estimated from EEG and fMRI recordings, so this will help to link the
theoretical models and the oscillatory behaviour shown experimentally.

6. Linking Models to Psychophysical Evidence and Signal Detection Models

Behavioural methods can also be used to give indirect estimates of the state of the brain
and possible susceptibility to aura. Migraine has been identified as primarily a disorder
of sensory processing [28]. As such, some reliable differences in visual perception have
been demonstrated in migraine, particularly migraine with aura [180]. These differences
show that there are some fundamental differences in the operation of visual processing
mechanisms in migraine with aura [180–183], which may be linked to the susceptibility to
cortical spreading depression and the hallucinatory experience of visual aura.
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Basic visual functions have been demonstrated to correlate with GABA levels, for ex-
ample, increased contrast sensitivity with higher GABA levels [184]. Contrast sensitivity
is a measure of the overall sensitivity of the visual system to detect visual targets and is
generally found to be lower interictally in migraine, despite the hyperexcitability associated
with the condition. There is some evidence that sensitivity is at typical or enhanced levels
for small, centrally presented stimuli [182,185–187] when presented without a noise mask,
and the overall reduced sensitivity may be linked to patchy impairments of sensitivity
across the visual field [188].

Orientation discrimination performance has also been shown to relate to GABA
levels [189], measured using magnetic resonance spectroscopy, as well as gamma band
oscillations [190]. Orientation discrimination has been shown to be poorer in migraine
compared to controls [191,192]. The findings are mixed, however, as other research has
shown no impairment in orientation discrimination [193], although these authors did show
some tentative evidence that the number of migraine aura experienced by participants may
relate to orientation discrimination impairments.

The relationship between psychophysical tasks and neurotransmitters is not straight-
forward. For example, surround suppression of motion and binocular rivalry have been
shown to relate to GABA levels measured using magnetic resonance spectroscopy [194].
However, contrast surround suppression of a moving stimulus is increased in migraine [195].
Yazdani et al. [196] assessed two forms of surround suppression, one motion-related, one
contrast-related, and found no correlation. This shows that the two types of surround sup-
pression must have independent mechanisms, and so only one, or neither of them, relate to
GABA levels. It is possible that only the motion-based surround suppression reflects levels
of GABA. A recent study showed no difference between those with migraine and controls
in terms of GABA levels, and no difference in terms of performance on binocular rivalry
performance [94]. There was also no relationship between either combined glutamate and
glutamine or GABA levels and binocular rivalry performance [94].

Glutamate concentration levels can affect visual task performance. Those with higher
levels of Glx show lower motion perception thresholds (more sensitive to motion stimuli)
as well as greater fMRI responses [197]. This is again at odds with the migraine literature—
those with migraine are thought to have higher levels of glutamate [93]; however, a robust
behavioural finding is poorer motion perception performance (see [180] for a review).
The type of illusory motion perception after viewing a moving stimulus depends on the
duration of the priming stimulus as well as individual differences: it could be in either the
same direction (assimilation) or the opposite direction (contrast). Using MR to estimate
glutamate and GABA levels, the switch between motion assimilation and motion contrast
was found to depend on glutamate concentration in the dorsolateral prefrontal cortex.
There was no relationship between type of motion perceived and glutamate or GABA levels
in either V1 or area MT [198]. This suggests glutamate is not involved in the perception of
motion per se, but instead the switching of the percept in the higher-order areas.

Linking the behavioural data to specific neurotransmitters directly is difficult due to
the complexity of the system. However, the behavioural data have been interpreted on a
more abstract level using signal detection models. For example, some of the most reliable
differences in sensory processing in migraine with aura have been found in visual masking.
Studies of global motion and form, in which observers detect a global pattern, distributed
across many stimulus elements, in the presence of noise, has generally been found to be
poorer in migraine [182,183,199]. Tibber et al. [200] showed that poorer performance in
a mixed migraine group points to a deficit in the ability to detect a target signal while
excluding a distracting mask, rather than a more general impairment in the encoding of
visual stimuli. These results have been interpreted using signal detection models of visual
processing, which specify the gain control on the strength of the initial encoding of visual
stimuli and the presence of noise [182,183,200]. This noise may be additive (independent of
the magnitude of the stimulus response) or multiplicative (increasing with the size of the
response to the signal). O’Hare and Hibbard [180] concluded that the best account of the
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hyperexcitation found in migraine, and the psychophysical differences summarised above,
is one in which there is an increase in background noise, combined with an increased gain
in visual encoding. Both of these characteristics will predispose reaction–diffusion models
to the types of hallucinations found in migraine aura, by increasing the likelihood of a
short burst of hyper-excitation that would then trigger the larger wave of depolarisation,
and are consistent with the physiological differences that are associated with cortical
spreading depression.

6.1. Differences in Performance over the Migraine Cycle

In order to understand migraine aura, it is important to expand knowledge into
how performance changes over the course of the migraine cycle. Studies have shown
correlations with visual performance and self-reported time since the last attack, e.g., [201].

Studies investigating just a few time points have also shown differences. Visual field
deficits in those with migraine compared to control groups, although quite consistent across
time, exhibit some local deficits that may be more pronounced one day after attack [202,203].
When there was a longer (on average) delay after the attack itself, no differences in visual
field measures were found, although there were differences in electrophysiology rather
than psychophysical measures; specifically, steady-state visual evoked responses were
higher post-attack compared to interictally [204].

Behavioural studies involving multiple testing sessions have also been conducted.
McKendrick et al. [205] showed that ictal centre-surround suppression (thought to be in-
dicative of cortical inhibition) is stronger in migraine compared to control groups, but this
decreases in the days surrounding the attack. Cycle effects have been reported using after-
images—after-images are shorter in those with migraine compared to controls, but the du-
ration increases through the migraine cycle, peaking on the day of the headache itself [206].
Subjective unpleasantness ratings for visual and odour stimuli were greater in the headache
days compared to interictally, and this was related to increased connectivity in the hypotha-
lamus and brainstem [207].

The gold standard for measuring cycle effects is repeat testing throughout several
migraine cycles, which involves an intensive testing schedule for a long period of time.
Shepherd [208] showed interictal global motion performance was poorer in migraine
compared to control groups and that performance improved in the 2 days before and
the 2 days after the attack itself. There were no differences in orientation discrimination
between groups, and no reliable cycle effects in orientation discrimination performance.

Neither signal detection models nor reaction–diffusion models currently consider the
differences in the migraine cycle. This is an important step for future research in order to
understand the disorder more fully and be able to devise therapy.

6.2. Linking Back to the Models

In order to make links between models of migraine aura and psychophysical behaviour
and signal detection models, it might seem sensible to start with the parameters that make
the network susceptible to spreading depolarisation and subsequent depression. There are
several parameters that affect the susceptibility of reaction–diffusion models to travelling
waves. One of the main ones is the relative diffusion rates for the activator and the inhibitor.
In some of the more complex models, there are non-linear equations for the reaction
component, which can also effect the susceptibility to travelling waves, e.g., [41]. Given the
number of possible neurochemical mechanisms that could possibly be represented by the
different parameters, identifying the correct ones in those with migraine is not trivial. This
might leave the reader wondering if there is any point to all these models at all. The issue
here may be the level of abstraction: instead of thinking at the level of neurotransmitters,
it may be more worthwhile to look at the level of measurable behaviour to link this to
the models. There are possibilities for doing this in terms of EEG estimates of functional
connectivity, for example. This has been started in recent work in epilepsy and may be a
fruitful area when considering migraine [149].
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It may also be possible to link the models of aura to visual performance from these
individuals, throughout the migraine cycle if possible. For example, signal detection theory
has been used to account for behavioural data with some success in migraine, e.g., [182,183].
It has been suggested in the case of those with migraine aura that there will be a particular
susceptibility to external stimuli due to increased internal noise levels, thought to be due to
increased spontaneous neural firing rates [180]. One outstanding question in migraine aura
is what initiates the migraine aura in the first place. One possibility is input to the system,
in the form of triggers; however, triggers are idiosyncratic and have been demonstrated to
be unreliable [109]. In the original reaction–diffusion model, the initiation of the pattern
formation was due to spontaneous fluctuations of activity [46]. This could provide an
important bridge between reaction–diffusion systems modelling aura and signal detection
theory modelling behaviour—both would predict increased levels of spontaneous firing,
which would make the initiation of an attack (all other things being equal) more likely.

In order to link models to perceptual performance, it is important to understand which
elements of the models relate to perception. It has been suggested that the output of the
pyramidal cells relates to our perceptual experience [50]. The idea of where perception
happens is beyond the scope of this review, but it is important to note that the model
outputs generally plotted are the excitatory system at that particular time point (e.g., [54]),
which could be the output of (groups of) pyramidal cells. Neural oscillations, specifically
alpha band oscillations, have been directly linked to perceptual performance. For example,
observers are more likely to detect a stimulus if its arrival coincides with the trough of the
alpha band oscillation (low alpha power); however, the arrival of the incoming stimulus
has the effect of increasing phase locking (synchronisation) of the alpha band oscillations
and therefore increasing the resulting ERP component [209–211]. Those with migraine
aura also show an increase in ERP response amplitude to incoming stimuli compared
to controls [125,212,213], which would be consistent with this idea; however, they show
increased lower alpha band (8–10 Hz) power in the resting state compared to controls [214].
These recordings were all taken interictally, and so given that the alpha band reduces
during the attack [151,152], it is essential to look at cycle effects in the EEG before drawing
firm conclusions.

This is a relatively unexplored area, but it might help to use these models of the
migraine aura in combination with experimental results on EEG behaviour during an
attack and behavioural performance during the migraine cycle to help understand how
attacks are initiated, which may help with preventing them.

7. Discussion and Unresolved Questions

This review outlines reaction–diffusion models of the classic features of migraine aura,
the zig-zag fortifications and the scotoma. These reaction–diffusion models of inhibitory
and excitatory interactions between networks of neurons are flexible abstractions that help
understand the dynamics of the cortical spreading depolarisation and depression, respec-
tively. Factors predisposing models to cortical spreading depolarisation and depression are
(1) the balance between strength and spatial range of excitatory and inhibitory interactions
and (2) the likelihood of occurrence of spontaneous hyperactivity, which could trigger a
wave of depolarisation. Direct links to electrophysiology are difficult due to the lack of
experimental data during the attack; however, neural oscillations may be a fruitful area of
investigation as these relate to functional connectivity of the network and the excitability
of the brain, which may relate to the terms of the models. Additionally, neural oscillations
have been shown to fluctuate over the migraine cycle, linking them to the disorder. Recent
advances in wearable technology may open possibilities for investigating oscillatory be-
haviour and functional connectivity estimates throughout the migraine cycle, which would
be able to directly link to the models. For example, wearable technology has been used to
estimate electrophysiological activity at different stages of the migraine cycle [179,215].

Psychophysical methods can also be used to determine the relevant parameters for
the models, as these provide indirect estimates of cortical excitability. For example, signal
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detection models accounting for perceptual performance predict increased noise and
gain in the migraine brain. These may relate to reaction–diffusion model parameters,
e.g., internal noise levels may relate to the initial random fluctuation in activity that
initiates the travelling waves in the models. Importantly, perceptual performance varies
over the migraine cycle, which would be expected if the underlying processes relate to the
disorder itself.

7.1. Arguments against Cortical Spreading Depression as the Mechanism for Migraine

Importantly, there are several arguments against describing migraine aura through
cortical spreading depression and models thereof (see [216,217] for detailed discussion).
Firstly, cortical spreading depression has been robustly recorded for patients who have
experienced a stroke or head trauma [35,218] where it is possible to obtain continuous elec-
trocortical recording via cortical electrodes or subcortical electrocorticograms. In contrast,
to date, there is no electrophysiological evidence of spreading depression during a human
migraine attack.

There are also questions about how cortical spreading depression accounts for more
complex aura and hallucinations. For example, bilateral visual aura, which are experienced
across both hemispheres, are not explained by cortical spreading depression, since propa-
gation requires contiguous grey matter and does not cross the corpus callosum [217]. Since
spreading depression only propagates in the hemisphere of origin, it is also argued [216] to
insufficiently account for the bilateral pain experienced by 40% of people with migraine.

Thus, it is important to note that the models are an oversimplification of the diversity
of migraine aura, and at present, the models focus on the typical, simple geometric hal-
lucinations. There are more complex hallucinations such as hallucinations of people and
objects, e.g., [9], which tend to be idiosyncratic and less common than the typical zigzag
lines, flashing lights, and scintillating scotoma [8,9]. These more advanced illusions are
not included in the current models and complex patterns may be a result of a secondary
involvement of higher visual areas of the brain, such as those areas specialised for face and
object recognition.

Migraine is a multi-faceted disorder, and there is also variation in each individual’s
attacks. The models present a simplification of one possible set of events, and do not
take this variability into account. Models currently limit themselves on the propagation
of the travelling wave, rather than inferences about the possible hallucinations if it were
to spread to higher-order visual areas. However, recent work by Kroos et al. [219] has
generated individual-specific reaction–diffusion models using the individual’s MRI data.
This model successfully recreates the diffusion of water as an approximation of electrical
conductivity, and importantly, the shape of the individual’s cortex is incorporated in
modelling the spreading depression for that individual. This is important as it is the first
step to modelling the individual-specific variation in aura.

7.2. Can We Infer Clues to Aura Susceptibility from the Models?

One outstanding question is whether there are behavioural and electrophysiological
clues to aura susceptibility, and this might be able to be predicted from the models. For ex-
ample, alpha band oscillations relate to the inhibition of responses, which may facilitate the
spread of the migraine aura. Increased internal noise may also relate to the susceptibility
to migraine aura, and this could be measured using behavioural techniques. Predictions
about internal noise levels could be made based on varying model parameters, generating
clear, testable hypotheses. Given the difficulty of direct physiological measures during the
migraine aura, it may be possible to use psychophysical measures with well-established
hypotheses to provide a better route to understanding altered sensory processing.

7.3. How the Models Account for Pain

Another unresolved element is the link to the headache and pain of migraine. It is
common to experience migraine headache without aura, and it is also possible to experience
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aura without pain. Some approaches consider migraine without aura as intermediate,
between attacks with aura and no attack. The reaction–diffusion models are limited to the
aura and do not explicitly account for pain. However, Kroos et al. [220] recently applied
a reaction–diffusion equation to model spreading depression for five single case studies
of patients with migraine. Simulated spreading depression was personalised for each
patient, matching their symptoms during a migraine attack to the wavefront propagation
based on acquired MRI data. In the simulation, the spreading depression reached the
primary and secondary somatosensory cortex, specifically the topographical area related
to the trigeminal nerve, and pain processing prefrontal areas. The authors suggest that
the propagation of extracellular K+ may elicit the headache by activating afferent pain
receptors [220]. This is important as the spreading depression is linked to the activation of
the trigeminal neurons that are involved in mediating lateralised head pain [217]. Future
work to link the spreading depression and the head pain could use reaction–diffusion
models as a basis.

7.4. Long-Term Effects and Stroke Risk

There is also the possibility of long-term effects of migraine. It has been suggested
that repeated migraine attacks increase the likelihood of subsequent migraine attacks (for a
review, see [221]). Frequency of attacks can increase in some individuals, eventually even
progressing to chronic migraine, and this may be due to sensitisation of the system from
repeated spreading depolarisation and depression mechanism [222]. Although migraine
is thought to be benign [223] and the attacks fully reversible [224], there is some evidence
of possible long-term damage from regular attacks [2,225–227]. There is also an increased
risk of stroke in those with migraine aura [228]. Stroke is also thought to be a disorder as a
result of spreading depolarisation [218,229], so this is an important avenue to be explored
in terms of models of spreading depolarisation and depression.

7.5. Age and Sex Differences

The majority of the literature in this review is focused on adults with migraine aura,
and therefore, the conclusions must be restricted to this population. However, it is im-
portant to consider those with paediatric migraine as well. The prevalence of paediatric
migraine overall is around 8%, and around half continue to experience migraine into
adulthood [230]. However, the prevalence of paediatric migraine aura is much lower,
estimated to be around 1.6% [231]. The clinical characteristics are similar to those of
adults, with the majority experiencing visual aura, and this is stable across the age bands
investigated (under 6, 7–10, 11–14, and over 15 years) [232].

There are also sex differences in migraine, with migraine being more prevalent in
females than males, and this interacts with age. Across the age range of 3 to 85+ years,
migraine prevalence is estimated to be 17% in females compared to 8% in males, with the
ratio females to males being the greatest between the ages of 20–40 [233]. However,
under the age of 10, female and male prevalence was found to be similar [233]. Research
has shown the median age of onset is estimated to be mid-twenties for both men and
women, suggesting that puberty is not a factor in determining migraine [234].

Hormonal changes have been thought to be the case of the increased prevalence in
migraine in females compared to males. However, there are differences between migraine
with and without aura—attacks without aura are more likely with the withdrawal of
oestrogen, whereas migraine with aura attacks are more likely when there are high levels
of oestrogen, for example pregnancy [235]. Diary studies have shown that migraine occurs
around the onset of menstruation in those with migraine without aura, but not migraine
with aura [236], and higher peaks in oestrogen levels across the menstrual cycle have been
found in migrane with aura [235]. Additionally, systematic reviews of the literature have
found that migraine without aura seems to be more affected by the transition of menopause
compared to migraine with aura, which seems to be more stable [237,238]. Research has
shown that migraine aura is not related to menopause [239].
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The current models do not consider any age-related or sex-related differences at
present, but this could potentially be incorporated in future. For example, it has been
proposed that visual arousal might be increased around the peak in oestrogen levels prior
to ovulation [240]. The higher peaks in oestrogen level in migraine with aura might thus
be associated with increased excitability in the visual cortex. While some studies have
suggested an increase in visual sensitivity around ovulation [241–247], others have shown
no effects on contrast sensitivity [248]. It would, however, be informative to study this
directly in cases of migraine with aura.

Interestingly, it has been shown that spreading depolarisation cannot be elicited using
K+ in the neonatal rat before the age of 12 days [249]. Understanding the factors that
protect the juvenile brain from spreading depolarisation is of interest for the progression of
migraine and worth exploring in future modelling work.

8. Conclusions

This review has outlined reaction–diffusion models for a general readership, with the
aim of improving accessibility to the diverse disciplines involved in understanding mi-
graine. Direct experimental literature supporting these models is sparse, since measure-
ments during the attack are logistically difficult. Ideally, intercranial recordings during
the aura under different conditions would provide measures of the cortical dynamics of
cortical spreading depolarisation and depression; however, such measures are not possible.
In order to treat migraine, we need to know the mechanisms of the aura and, perhaps
more importantly, the factors determining susceptibility to attacks. This is where reaction–
diffusion models could be useful to bridge the gap between proposed mechanisms and
testable hypotheses, since they are able to illuminate the “black box” of what is happening
during the aura itself, and develop hypotheses that can be tested using electrophysiological
and psychophysical techniques. It would be especially useful to track the changes in model
parameters and compare to experimental data across the migraine cycle. With longitudinal
behavioural evidence becoming easier to obtain through advances in wearable technology,
the theoretical predictions of these models will be testable in the near future.
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Abbreviations
The following abbreviations are used in this manuscript:

AC Alternating current
BAM Basilar-type-migraine
DC Direct current
GABA Gamma-aminobutyric acid
Glx Combined glutamate and glutamine complex
K+ Potassium ion
MA Migraine with aura
MEG Magnetoencephalogram
MO Migraine without aura
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MR Magnetic resonance
MT Middle-temporal
NDMA Nitrosodimethylamine
PSD Power spectral density
rCBF Cerebral blood flow
tACS Transcranial alternating current stimulation
tDCS Transcranial direct current stimulation
TMS Transcranial magnetic stimulation
Xe Xenon
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