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Abstract
1. Efforts to preserve, protect and restore ecosystems are hindered by long delays 

between data collection and analysis. Threats to ecosystems can go undetected 
for years or decades as a result. Real- time data can help solve this issue but 
significant technical barriers exist. For example, automated camera traps are 
widely used for ecosystem monitoring but it is challenging to transmit images 
for real- time analysis where there is no reliable cellular or WiFi connectivity.

2. We modified an off- the- shelf camera trap (Bushnell™) and customised existing 
open- source hardware to create a ‘smart’ camera trap system. Images captured 
by the camera trap are instantly labelled by an artificial intelligence model and 
an ‘alert’ containing the image label and other metadata is then delivered to the 
end- user within minutes over the Iridium satellite network. We present results 
from testing in the Netherlands, Europe, and from a pilot test in a closed- canopy 
forest in Gabon, Central Africa. All reference materials required to build the 
system are provided in open- source repositories.

3. Results show the system can operate for a minimum of 3 months without 
intervention when capturing a median of 17.23 images per day. The median 
time- difference between image capture and receiving an alert was 7.35 min, 
though some outliers showed delays of 5- days or more when the system was 
incorrectly positioned and unable to connect to the Iridium network.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction 
in any medium, provided the original work is properly cited and is not used for commercial purposes.
© 2022 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society.

Robin C. Whytock and Thijs Suijten contributed equally to the manuscript. 

www.wileyonlinelibrary.com/journal/mee3
mailto:
https://orcid.org/0000-0002-0127-6071
https://orcid.org/0000-0001-7005-8003
https://orcid.org/0000-0002-4327-7259
https://orcid.org/0000-0002-0393-9342
mailto:rcwhytock@gmail.com
http://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1111%2F2041-210X.14036&domain=pdf&date_stamp=2023-01-03


868  |   Methods in Ecology and Evoluon WHYTOCK et al.

1  |  INTRODUC TION

Automated camera traps (or ‘trail cameras’) are used in wildlife sur-
veys and to detect ecosystem threats (Bessone et al., 2020; Hobbs 
& Brehme, 2017; Wearn & Glover- Kapfer, 2019). Many commercial 
models are available and camera traps can also be custom- built using 
off- the- shelf components (Droissart et al., 2021).

Network- enabled camera traps, which send captured images to 
users in real- time, are commercially available but typically need ac-
cess to a reliable broadband cellular network connection. Broadband 
network coverage is concentrated on human population centres, 
often far from areas of ecological or conservation interest. In ‘data 
poor’ countries, network coverage can also be limited or unreliable 
(Leidig & Teeuw, 2015). Several satellite networks have global cov-
erage but data bandwidths are extremely limited or expensive, and 
they cannot be used to cost- effectively transmit images and audio. 
As a result, there are many landscapes where existing network- 
enabled camera traps cannot reliably be deployed at scale.

Using camera trap data for timely decision- making can be lim-
ited by the time required to label images generated by camera traps, 
which can number millions or more. Many attempts have been made 
to streamline the image labelling process, ranging from using dedi-
cated software that optimises the labelling workflow, to large- scale 
community science projects and dedicated artificial intelligence algo-
rithms (Beery et al., 2019; Swanson et al., 2016). However, the time 
needed to analyse data can still be in the order of months or years.

The precision and accuracy of the latest artificial intelligence 
algorithms for camera trap image labelling now approach or match 
human experts for some species. However, these algorithms typi-
cally require powerful computing resources either based online 
(i.e. in ‘the cloud’) or locally on a PC using expensive hardware 
(Norouzzadeh et al., 2018; Tabak et al., 2019; Whytock et al., 2021). 
Recent developments in the field of ‘edge computing’ allow artificial 
intelligence algorithms to be deployed on low- cost, energy- efficient 
microcomputers, opening the door to integration of artificial intelli-
gence with camera trap hardware for deployment in the field. Image 
metadata from artificial intelligence classifiers, such as species labels 
and timestamps, is substantially smaller in size and therefore easier 
to transmit over satellite networks that have global coverage.

Here, we present a design for a ‘smart’ camera trap system that 
integrates artificial intelligence with a popular off- the- shelf camera 
trap to generate real- time alerts transmitted over a satellite network. 
Our goal was to create a system that could provide real time insights 

to help rangers protect wildlife. The system was designed to work in 
remote areas without existing internet or cellular connections and it 
therefore transmits data using the Iridium satellite network, which 
provides global coverage. We present results from systematic test-
ing in the Netherlands and a field- pilot in Gabon, Central Africa in a 
landscape with no existing cellular or other terrestrial network con-
nectivity. Our aim is to provide broad insights into how we solved 
the technical challenges posed by integrating artificial intelligence 
with existing camera trap models to achieve reliable alerts in chal-
lenging environments.

2  |  METHODS

2.1  |  System overview

Our objective was to create a robust, field- ready system within 1 
year that could (1) provide real- time alerts from camera traps, (2) 
be deployed in the most rural landscapes without existing cellular, 
long range radio (LoRa) or wireless fidelity network (WiFi) coverage, 
(3) function without infrastructure such as communication towers, 
permanent base stations or meshed networks, (4) once configured, 
be easily installed in the field by users who do not have a technical 
background and (5) take advantage of existing technology (i.e. camera 
traps), thus allowing us to solve the problem within a relatively short 
time frame. The approximate cost for the hardware components is 
1185 euros plus a monthly running cost of approximately 22.5 euros.

Our solution was to modify a nonnetwork enabled Bushnell™ 
camera trap so that it could communicate with a nearby microcom-
puter (Figure 1; Figure S1). The microcomputer, which we named 
the ‘smart bridge’ (Figure 1; Figure S2) is powered by 6 × 18,650 re-
chargeable lithium- ion batteries that are trickle charged by a small 
solar panel (Figure 1). The smart bridge is based on an earlier pro-
totype designed to take photographs of wild penguins (see Data 
Availability Statement) and provides an intelligent link, or ‘bridge’, 
between the camera trap and the end user.

We customised the camera trap by installing a microcontroller into 
the camera housing with LoRa capabilities based on the OpenCollar 
Lion Tracker (see Data Availability Statement) (Figure S1) and by in-
stalling a WiFi- enabled SD card. When an image is captured by the 
camera trap, the LoRa board in the camera alerts the smart bridge, 
and the camera activates the WiFi SD card, creating a local WiFi 
network. The smart bridge boots a Raspberry Pi Compute Module 4 

4. We anticipate significant developments in this field and hope that the solutions 
presented here, and the lessons learned, can be used to inform future advances. 
New artificial intelligence models and the addition of other sensors such as 
microphones will expand the system's potential for other, real- time use cases 
including real- time biodiversity monitoring, wild resource management and 
detecting illegal human activities in protected areas.
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microcontroller (Raspberry Pi Foundation, Cambridge, UK; hereafter 
Raspberry Pi) that joins the WiFi network and retrieves the image or 
images from the camera. The species captured in the image are then 
identified using an artificial intelligence algorithm for species clas-
sification (a TensorFlow Lite model, trained using Google's AutoML 
platform, Supplementary Material). The model was trained to iden-
tify three classes, ‘elephant’, ‘human’ and ‘other’. Once an image is 
labelled, the species and metadata (time, date, location) and smart 
bridge sensor data (internal temperature and humidity sensors, 
and power status) are finally transmitted via a RockBlock modem 
(Ground Control, Billericay, UK; hereafter RockBlock) connected to 
the Iridium satellite network. The message is encoded and trans-
ferred to a web- based application running in the cloud (Google's App 
Engine). These data were then instantly provided to the end user as 
WhatsApp™ messages and web- based alerts by pushing the data to 
the EarthRanger software platform (www.earth ranger.com). To save 
power, the Raspberry Pi then shuts down and the smart bridge en-
ters a low- power sleeping mode. Pairing between the camera and 
smart bridge is automatic and requires no user input or setup. A dia-
gram of the system logic is shown in Figure 2. A technical overview 
of the system design, components used and the artificial intelligence 
algorithm are given in the Supplementary Material and permanent 
Digital Object Identifiers for all open source code and hardware de-
sign files are given in the Data Availability Statement.

3  |  C A SE STUDY AND FIELD TEST

Real- time alerts from cameras have many potential applications 
but our interest was testing if they could be used to help manage 
human- elephant interactions during crop depredation, in Gabon, 
Central Africa. We therefore partnered with Gabon's Agence 
Nationale des Parcs Nationaux (ANPN) to test the camera's ability 
to detect elephants and send real- time alerts to ecoguards working 
for ANPN over WhatsApp™ in two locations. The first location was 
the Station d'Etudes des Gorilles et Chimpanzés (SEGC) in Lopé 
National Park, where elephants are common in the surrounding area. 
The facilities at the research station allowed us to test the system 
under controlled but realistic conditions (elephants regularly enter 

the station grounds). The second location was Kazamabika village, in 
the northern edge of Lopé National Park, where communities have 
established farms and work closely with ANPN to find solutions to 
human- elephant conflict.

3.1  |  Field testing

We tested five systems under different conditions for a combined 
total of 72 days (Table 1). The artificial intelligence model was trained 
on three classes relevant to the pilot tests, which were elephant, 
human or ‘other’ (Supplementary Material). Camera locations were 
chosen to test (a) how the position of the smart bridge and vegetation 
structure (e.g. forest canopy cover) affected data transmission and 
satellite connectivity, (b) how far the smart bridge could be installed 
from the camera, (c) how well the solar panel functioned under dif-
ferent light levels, and (d) how well the artificial intelligence algorithm 
performed with different image backgrounds (open areas, farmland 
and forest). We chose the testing locations based on qualitative dif-
ferences in vegetation structure, light availability and image back-
ground (Table 1). In summary, the smart bridge and solar panel were 
installed together on a tree 2– 6 m above the ground level at a distance 
of 5– 20 m from the camera trap. Camera traps were installed on a tree 
approximately 40– 50 cm above the ground level, perpendicular to and 
approximately 4 m from the centre of well- used elephant paths.

We compared results from field testing with benchmark 
data from two systems operated in a private urban setting in the 
Netherlands for 3 months.

3.2  |  Data analysis

To evaluate the speed at which alerts were transmitted and received, 
we calculated the median time- difference in minutes between image 
capture and receipt of the alert by the back-end for each location in-
dividually, and for all stations. For each of the test locations, we also 
created time- series plots showing changes in smart bridge power 
during deployment. The Bushnell™ camera power was also moni-
tored during tests in the Netherlands but not during the field testing.

F I G U R E  1  System deployed in the field 
showing (a) the solar panel and (b) smart 
bridge attached to a tree approximately 
6 m above ground level. The Bushnell™ 
camera trap (c) is installed approximately 
40– 50 cm above the ground level and 
approximately 10 m away from the smart 
bridge.
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F I G U R E  2  Diagram showing the stepwise logic between the Bushnell™ camera trap capturing an image and sending an alert via the smart 
bridge. The total duration of the entire process is approximately 7 min under optimal conditions.
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We assessed artificial intelligence model performance (Kappa 
statistics, precision, recall, accuracy, balanced accuracy and F1 score, 
see (Kuhn, 2020)) on the newly captured images by comparing the ar-
tificial intelligence- generated image labels with ‘expert’ labels. Expert 
labels were created for each image after the field test by first pro-
cessing the captured images using the Mbaza AI software (Whytock 
et al., 2021) and manually validating all results (co- author RW).

4  |  RESULTS

A total of 814 images were captured during the field test (Table S2) 
and alerts for 588 images were successfully transmitted to the back-
end. Of the 226 alerts not received, 72 were from Cayette, where we 
installed the smart bridge just 2 m above ground level under a dense 
forest canopy, and it was unable to connect to the Iridium network. 
A further 154 alerts not received were from Forest East because the 
smart bridge unexpectedly ran out of battery after just 6 days caused 
by a problem with the charging circuit that was later solved. We re-
moved a further 17 images which had no timestamp (human error 
during camera setup) and which could not be used to evaluate alert 
time delays, leaving n = 571 alerts from four systems for the analysis. 
A detailed breakdown of battery life and power consumption is given 
in Supplementary Material and Figures S3 and S4.

4.1  |  Alert times

There was a median 7.35 min time difference between capturing 
an image and sending an alert (n = 4 camera stations). Median, 
minimum and maximum alert times are given in Table S1 for each 
location. Of the four systems, Kazamabika had the slowest median 
alert time (306.3 min) and some alerts were delayed for days (outli-
ers in Figure 3) because the smart bridge was not well positioned 
and could not connect to the iridium network. A total of 296 (52%) 
of alerts were received within 15 min or less (Figure 3; Figure S5).

4.2  |  Artificial intelligence model accuracy and 
interpreting alerts

Overall model accuracy on new data collected during the field test 
(n = 571 images) was 84%, with a Kappa statistic of 0.74. For the 
elephant class, precision was 82% and recall 86%, with a balanced 
accuracy of 86%. All test statistics for all classes and a confusion 
matrix are given in Table S2 and Figure S6.

5  |  DISCUSSION

Sending real- time alerts from ecological sensors such as camera 
traps in areas with poor data connectivity is complex and involves 
integrating a large number of potentially complex hardware and TA
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software components. Our results demonstrate that these compo-
nents can be successfully integrated to achieve reliable, near real- 
time alerts from camera traps under challenging field conditions.

5.1  |  Problems and solutions

A total of 588 alerts were generated by our four systems during 
18 days of field- testing, and the final total could have been as high 
as 814 if all alerts had been transmitted and received. This is a 
substantial amount of data to interpret on a rolling basis with just 
four active camera systems and three AI label classes. In future, we 
recommend using approaches such as ‘vote- counting’ (e.g. sending 
single alerts for a sequence of images based on the most common 
species label) to reduce the total number of alerts. This would also 
reduce data transmission costs, which is likely to be an important 
consideration for many end users.

Our system does not currently send images directly but this 
would be possible using an on- demand approach. For example, users 
could request certain images or an image series by sending a mes-
sage (relayed via satellite) to the smart bridge. The main limitations 
to implementing this is achieving a reasonable trade- off between 
image quality and transmission costs. For example, sending an ex-
tremely compressed thumbnail (Figure S7) would cost $2 USD per 
image with a $20 per month contract on the Iridium network.

Future generations of camera traps might run artificial intelli-
gence models on the camera hardware directly instead of using a sep-
arate smart bridge. However, if the goal is to transmit real- time data 
from cameras installed near the ground (i.e. below 2 m) for wildlife 
monitoring, then developers should be aware that it will be difficult 
to achieve network connectivity under a dense forest canopy. We 
were not able to send any alerts from Cayette forest patch, where 

the smart bridge was installed just 2 m above the ground level, but in-
creasing this height to 4 m or greater resolved this issue. The wireless 
smart bridge, which can be mounted high in a tree, might therefore be 
a useful design feature for future edge computing solutions.

5.2  |  Potential applications beyond our case study

Our results show that we have created a viable hardware solution 
for running powerful artificial intelligence algorithms in the field and 
transmitting results over a satellite network. The computing power 
of the Raspberry Pi 4 is currently underused and there is scope for 
integrating artificial intelligence models with other sensors, such as 
microphones for bioacoustic research. There are already a substan-
tial number of open source Raspberry Pi projects available for eco-
logical research (Jolles, 2021), and many of these could be integrated 
with the smart bridge with relatively minimal effort.

6  |  CONCLUSION

We have shown that it is possible to send reliable, real- time 
information from camera traps over the Iridium satellite network by 
integrating an artificial intelligence model, off- the- shelf camera traps 
and custom hardware. Our solution does not depend on installation 
of additional network infrastructure in the landscape and can be 
deployed in the field by non- experts from anywhere on earth. 
However, scaling up our system will require engineering expertise 
and potentially commercial production. We hope that the broader 
solutions presented here can inform future efforts to successfully 
design and deploy robust, connected camera traps that provide real- 
time insights for conservation and ecology.
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