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Abstract: Finding outlier loci underlying local adaptation is challenging and is best approached by
suitable sampling design and rigorous method selection. In this study, we aimed to detect outlier loci
(single nucleotide polymorphisms, SNPs) at the local scale by using Aleppo pine (Pinus halepensis),
a drought resistant conifer that has colonized many habitats in the Mediterranean Basin, as the model
species. We used a nested sampling approach that considered replicated altitudinal gradients for
three contrasting sites. We genotyped samples at 294 SNPs located in genomic regions selected
to maximize outlier detection. We then applied three different statistical methodologies—Two
Bayesian outlier methods and one latent factor principal component method—To identify outlier
loci. No SNP was an outlier for all three methods, while eight SNPs were detected by at least two
methods and 17 were detected only by one method. From the intersection of outlier SNPs, only one
presented an allelic frequency pattern associated with the elevational gradient across the three sites.
In a context of multiple populations under similar selective pressures, our results underline the need
for careful examination of outliers detected in genomic scans before considering them as candidates
for convergent adaptation.
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1. Introduction

Finding the genetic basis of local adaptation is a topic of crucial importance in evolutionary
biology as it allows for the study of the mechanisms of natural selection [1,2]. However, there is still no
consensus on how widespread local adaptation is as well as under which conditions it occurs. Studies
based on reciprocal transplant and common garden experiments showed that plants can be locally
adapted [3,4] and that local adaptation is more common for large populations. However, generalizing
this phenomenon depends on the definition of local adaptation (relaxed versus a strict definition, [3]).
Forest trees provide numerous examples of adaptive genetic divergence [5] as they generally combine
a wide distribution across contrasting environmental conditions, large population sizes, and extensive
levels of gene flow that may increase the rate of adaptation as well as high levels of genetic variation
for fitness-related traits. However, examples that show that forest trees can genetically adapt at small
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geographical scales are limited [6]. The few studies that have looked at local adaptation in trees
contemplating adaptive molecular divergence (e.g., [7–10]) or correlations between adaptive genetic
variants and environmental variables [11–13] illustrate that the existence of spatially heterogeneous
selective pressure may favor locally specialized genotypes despite extensive gene flow at the local scale.

In the present study, our objective was to shed new light on the genomic signatures of local
adaptation in Aleppo pine (Pinus halepensis, Mill.). Aleppo pine has a circum-Mediterranean distribution
that is both geographically fragmented and vast, spanning 3.5 million hectares [14]. This very drought
resistant species is able to colonize and adapt to many habitats around the Mediterranean Basin
as well as become invasive in southern hemisphere Mediterranean habitats [15,16]. Its environmental
versatility lies both in its high plasticity [17,18] as well as, potentially, in its genetic adaptation to
the Mediterranean region [19,20]. In Europe, paleoecological and fossil records as well as genetic
data suggest that the Aleppo pine demographic history is characterized by different colonization and
drift events, resulting in its genetic diversity following a longitudinal trend as many other species in
the Mediterranean Basin [20,21]. This left Aleppo pine with a complex genetic pattern made of two
main genetic clusters: an eastern/southern cluster that is more genetically diverse than the western
cluster [20,22–24], with both being connected by population admixture [20,25]. The evolutionary history
of Aleppo pine, combined with its ecological versatility in many Mediterranean habitats, constitute
a good setting to test whether patterns of genetic divergence among heterogeneous environments hold
across phylogeographic groups.

Ruiz Daniels et al. [20] previously investigated selection imprint in 44 populations of Aleppo
pine covering the species range. Here, we focused on seven populations sampled along climatic
gradients and aimed to detect convergent adaptation by combining the following. (1) A nested design
of natural populations from distinct phylogeographic groups and contrasted environments, where
we selected replicated populations in each site across two genetic clusters. Replicated populations
were sampled at distinct elevations to reflect a combination of environments including differences in
precipitation and temperature, two climatic variables known to affect the distribution and adaptation
of this conifer [20,25–29]. Several studies have shown morphological and physiological adjustments of
woody species along elevational gradients [30,31], which seem to therefore constitute relevant selection
drivers. (2) A set of single nucleotide polymorphisms (SNPs) located in genomic regions selected
to maximize outlier detection (see more details in the material and method section). The 294 SNPs
genotyped in the seven populations fall within loci that were found to be under selection in pine
species including Aleppo pine [19,20,24,32]. (3) A combination of methods that look at outlier loci
based on environmental correlations or genetic differentiation. We took advantage of three recently
developed statistical methods that correct for population structure: PCAdapt [33], Bayenv2 [34,35],
and Baypass [36]. This attribute allows these methods to outperform methods that do not [37–40]
and is a critical issue when there is evidence of shared history and gene flow among populations,
as in Aleppo pine. The originality of the present work lies on the combination of these approaches to
maximize the detection of outlier SNPs involved in convergent evolution in Aleppo pine.

2. Materials and Methods

2.1. Sampling

2.1.1. Plant Material and Climatic Data

Adult trees from three sites in three different countries spanning the two main phylogeographic
clusters of Aleppo pine were sampled from population pairs or triplets: three French populations
(356 individuals), two Italian populations (50 individuals), and two Spanish populations (70 individuals),
totaling 476 individuals from seven populations (Figure 1a; see Tables S1 and S2 for more details).
The sites are characterized by contrasted climatic conditions along altitudinal gradients. The aim of
this sampling design was to maximize the differentiation between environments, while minimizing
the differences in evolutionary history (gene flow should reduce differentiation at loci not under
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selection) [2]. This approach has been shown to be effective in comparative studies using simulated
data [39] as well as when inferring outlier loci in empirical studies [12].
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Figure 1. Aleppo pine population structure. (a) Localization of the three populations superimposed on
the natural range of Aleppo pine from EUFORGEN (green area). (b) Bayesian clustering performed in
STRUCTURE for the seven populations. Population order from left to right is as follows: France (Font
Blanche, Siou Blanc, Saint Mitre), Italy (Monte Sant’ Angelo, Mattinata), and Spain (Montan, Alzira).
(c) Score plot of SNP data where each country is color coded (France: red, Italy: green, and Spain: blue).
This plot displays the projections of the individuals onto the first PC (PC1) and the second PC (PC2).

For each population, the 19 bioclimatic variables for the period 1950–2000 (available from
WorldClim [41]) were downloaded to explore SNP-environment associations (see Table S3). The accuracy
of this coarse grain climatic dataset was checked with local climatic datasets for the climatic variables based
on precipitation and temperature. Specifically, WorldClim variables for precipitation and temperature
were compared with those from a functional phytoclimatic model based on raw data from meteorological
stations [42] for the Spanish populations, and from local meteorological stations for the French populations.
Furthermore, elevation was added as a potential driver of selection as it encompasses a combination
of geophysical influences [43], bringing the total of environmental variables to 20 (see Table S2 for
more details).

2.1.2. DNA Extraction, SNP Genotyping, and Gene Annotation

For every genotyped tree, 50 mg of needles were dried with silica gel and ground in a QIAwell
(Qiagen, Venlo, the Netherlands) plate homogenized with a mixer mill MM300 (RETSH, Haan,
Germany) under liquid nitrogen. DNA extractions were carried out with the Invisorb DNA plant HTS
96 kit (Invitek, Hayward, CA, USA) following the manufacturer’s instructions. DNA was quantified
with Nanodrop 10,000 (Thermo Fisher Scientific, Wilmington, DE, USA).

Aleppo pine populations were successfully genotyped at 294 SNPs (conversion rate of 76.56%)
using a 384-plex SNP assay with Illumina VeraCode technology as described in Pinosio et al. [44].
SNP genotypes are available at [45]. These SNPs originated from two sources. (i) 60% were identified
from transcriptomic data coming from two Aleppo pine individuals with contrasting fire-response
phenotypes [44]. A subset of these SNPs may be involved in adaption to fire as shown by the genetic
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association of some SNPs with serotiny [46]; and (ii) 40% were obtained by resequencing some loci
originally developed in loblolly pine [47] as well as candidate genes from Grivet et al. [19,24]. Some
of the loci involved in abiotic stress responses (e.g., cold, heat, drought, oxidative stresses) and
phenology/photosystems have been shown to be under selection in pines, including that of Aleppo
pine [19,20,24,32].

Loci for which SNPs were found putatively under selection using at least two different methods
were annotated from homology with other plant species using Geneious version 6.1 [48] by searching
against known loblolly pine EST contigs and the National Center for Biotechnology Information
reference plant protein database.

2.2. Statistical Analysis

We used two Bayesian outlier approaches, Bayenv2 [34,35] and Baypass [36], as well as one
method based on principal component analysis (PCA), implemented in the software PCAdapt [33].
Since methods for detecting outlier loci are based on underlying hypotheses that take into account
different signals left by natural selection at the molecular level, there are inevitable discrepancies in
the set of outlier loci [2,33,35,36,49]. Deciding which loci will be retained as candidates for further
investigation is challenging, as is demonstrating that these outliers are candidates for convergent
adaptation when detected across parallel elevational gradients.

2.2.1. Population Structure

To confirm that the population pairs/triplets were sampled from the same phylogeographic
clusters, population genetic structure was estimated in two ways. First, pairwise FST was computed
among all seven populations with Genepop v4.1 [50]. Second, the population genetic structure was
inferred using the Bayesian clustering method STRUCTURE [51], with the following parameters:
number of clusters (K) set from 1 to 10; number of iterations per K set to 10; number of steps set
to 100,000 with a burn in period of 10,000 to minimize the effect of the starting configuration, and
with an ancestry model of admixture. The convergence toward reliable allele frequency estimates in
each genetic group and membership probabilities of individuals to a genetic group was assessed by
checking that the alpha parameter was relatively constant, as indicated in the STRUCTURE manual.

2.2.2. Looking for Outliers Using PCA

The rationale of this method is that the FST index of genetic variation can also be viewed as the
proportion of variance explained by principal components [52–56]. First, the number of principal
components to be retained (K) was established by running the PCA analysis in PCAdapt [33] with
a large enough number of components (10 in this case). The K displaying most of the cumulative
explained variance was chosen based on a scree plot, which presents the percentage of variance
explained by each principal component (PC) in decreasing order. The choice of K was also corroborated
by plotting individuals on the first two components (called a score plot by PCAdapt) to verify if the level
of clustering was consistent with the chosen value for K. To account for missing data, the correlation
matrix between individuals was computed using only the markers available for each individual.
The Mahalanobis distance was used to identify the outliers by measuring how distant a data point
is from the multivariate space’s centroid (overall mean), considering the covariance structure of all
of the data points in the sample. By default, alleles displaying MAF < 5% were removed in the
PCAdapt analyses.

Both Manhattan and Quantile—Quantile plots were used to visualize the distribution of the data.
The presence of outliers was confirmed by applying a false discovery rate (FDR), defined as the percentage
of false positives among the list of candidate SNPs. The FDR was set at 10%, as recommended by
Luu et al. [33] using the R package qvalue (R Core Team 2013) to compute the q-values based on the
p-value distribution.
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2.2.3. Looking for Outliers Using Bayesian Approaches

Bayesian approaches have been shown to perform well in situations where there is a non-uniform
population structure [37,57]. The Baypass method is based on a very similar model as the Bayenv, with
some improvements that allow for the better identification of significant outliers (see below). The two
methodologies were used together with the intention of using the significance threshold for the XtX in
Baypass to help define a cut-off point for the Bayenv outputs, for which standardized methods exist
neither for the XtX statistics nor for the Bayes factors. The comparison aimed to also compare the
outliers identified by the two methods.

• Bayenv

The method described in Coop et al. [34] and implemented in the Bayenv 2.0 package [35] estimates
the population differentiation statistic XtX and evaluates the association of ecological variables with
genetic marker differentiation. Bayenv2 first estimates the empirical pattern of covariance in allele
frequencies between populations, and uses this as the null model to test each individual SNP for
selection. To minimize the stochasticity in estimating the null model, three covariance matrices were
produced from 100,000 iterations each, and the mean of these matrices (hereafter called mean covariance
matrix) was then used. In order to test whether the mean covariance matrix represented the true
variance of allele frequencies well across populations, it was compared to a pairwise FST matrix using
a Mantel test in R (R Core Team 2013) with 1000 permutations.

This covariance matrix, which takes into account correlations due to population structure, was then
used as the null model in two analyses aimed at detecting SNPs under selection. (1) Detecting outliers
through differences in overall genetic differentiation as in classic outlier tests by estimating the XtX
averages across multiple samples from the MCMC. Outlier XtX values from the main XtX distribution
were considered as potentially under selection. Finally, these values were compared to the ones
estimated using Baypass in order to ascertain significance. Indeed, in theory, Baypass and Bayenv2
both produce XtX statistics and can be easily compared against each other. However, Bayenv2 does
suffer from a lack of pre-defined methods to establish outliers based on XtX statistics, which would
have been difficult to do without the results from Baypass to use as a guideline. (2) Finding SNPs that
show a significant correlation between an environmental variable and allele frequencies. This was
carried out by comparing, via Bayes factors, a model that allows for a linear relationship between
allele frequency from the 294 SNPs and the 20 environmental variables with a null model based on the
covariance matrix. This approach was repeated three times for each combination of SNP-environmental
variable tested for association to account for instability between independent runs [38]. The mean of
the three runs was then used to infer the final Bayes factors (BF). The Kass and Raftery [58] criterion
was then used to determine the probability of these SNPs under selection, with 2lnK values above six
(BF > 20) classified as strong.

• Baypass

The Baypass method is based on a very similar model as Bayenv2, but is suggested to be
an improvement in two aspects: (i) It has a higher accuracy in the estimation of the baseline (ancestral)
allele frequency through the use of a hierarchical Bayesian model; and (ii) the use of simulated pseudo
observed datasets (PODs) from the posterior predictive distribution in order to calibrate the XtX
statistics and determine a cut-off point for detecting potentially significant outliers by applying a false
discovery rate threshold.

Baypass [36] was run using the core model, and R (R Core Team 2013) was used to analyze and
visualize outputs. First, the correlation matrix Ω̂ was computed and estimates of XtX differentiation
were produced from the SNP data. The correlation matrix was then visualized as a hierarchical cluster
tree in order to be compared to a neighbor joining tree of pairwise FST done in Genepop v4.1 [50].
Genetic distances between populations were computed using the R package APE [59]. Second, a POD
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was constructed using the simulate_baypass function in R with 1000 SNPs by estimating the posterior
mean of the hyperparameters a_pi and b_pi, which specify the beta priors for Pi, the baseline (ancestral)
frequency at each locus, and then simulating samples with these parameter values. The POD was
then analyzed in the same way as the real data to produce values of XtX. The quantiles of these
empirical XtX distributions were used to calibrate the XtX observed for each locus in the original
data, and the 99% quantile of the XtX distribution from the POD analysis provided a 1% threshold
XtX value (the default cut-off in Baypass). This threshold was then used to discriminate between
outlier and neutral SNPs. Baypass is expected to outperform Bayenv2 because it uses the analyzed
data to provide hyperparameters for the outlier detectors. However, as the two methods have not been
used in conjunction, we ran them concomitantly to compare how these different features will impact
outlier detection.

Baypass was also used to detect outlier SNPs showing a significant correlation between
an environmental variable and allele frequencies. This was carried out by comparing a model
that allows for a linear relationship between allele frequency and environmental variable with a null
model using only the correlation matrix. For this purpose, Baypass was run using an importance
sampling estimator (IS) model based on Coop et al. [34]. The empirical Bayesian p-value (eBPis) was
calculated for each SNP-environmental relationship, allowing for evaluation of the support in favor of
a non-null regression coefficient when the eBPis is above three [36]. As there is high variability among
runs when using this feature in Bayenv2, it is advisable to run multiple analyses and then average the
Bayes factors [38]. This is not the case with Baypass, where no such variability exists.

In the two Bayesian analyses, SNPs with a minimum allele frequency (MAF) below 5% were kept
(contrary to the PCA-based method, where by default these SNPs are removed) as their removal is not
recommended because some of these might be under selection.

3. Results

3.1. Population Structure

Pairwise population FST were all significant except between the two Italian populations (Table S4).
Moreover, populations within each country were the least differentiated, while among countries,
the French and Spanish populations were genetically closer to each other than to the Italian populations
(Table S4). This result is in line with the Bayesian clustering that revealed an optimal grouping for
K = 2 and K = 3 (Figure 1b and Figure S1), and as for K > 3, the structure signal was lost (data not
shown) and the variance across the iterations increased (Figure S1). This grouping is in full agreement
with the PCA analysis run with PCAdapt where the main proportion of explained variance lies mainly
in two PCs; more specifically, PC1 separates the Italian populations from the French and Spanish
populations (this scenario corresponds to K = 2 with STRUCTURE), while PC2 separates the French
populations from the other two to a lesser degree (Figure 1c). The genetic closeness between the French
and Spanish populations was also reflected by admixed individuals between the two countries as
shown in Figure 1b,c. Furthermore, they shared other characteristics such as lower genetic diversity
when compared to the Italian ones.

3.2. Looking for Outliers Using PCA

The scree plot clearly showed that most of the variation was accounted for at K = 3 (with the
main proportion of explained variance for the two first PCs), and that it was unnecessary to use more
PCs (Figure S2), as further confirmed by inspecting the scatterplot of the first two PCs (Figure 1c).
The distribution of the p-values was visualized with a Manhattan plot and a QQ-plot, and then used to
compute the q-values (Figure S3). Eleven outliers were detected (Table 1), setting q-values at a false
discovery rate of 10%.
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Table 1. Summary statistics of the 14 outlier loci identified using the three outlier methods of the study.

Bayenv2 SNP Sequence XtX Value

149 seq-8671-529 20.42
4 seq-9882-801 20.83

316 seq-10373-2483 21.52
378 seq-2_3941_01-381 23.76

Baypass SNP Sequence XtX value

378 seq-2_3941_01-381 13.44
149 seq-8671-529 14.14

PCAdapt SNP Sequence p-value

335 seq-1_6493_01-100 2.64E-009
94 seq-55383-900 1.74E-007
19 seq-55383-1485 2.05E-007
331 seq-55383-141 2.95E-007
258 seq-9882-2209 4.74E-004

4 seq-9882-801 7.23E-004
384 seq-0_3073_01-92 1.21E-003
281 seq-16094-410 3.36E-003
10 seq-44358-1615 3.51E-003
113 seq-44358-2515 3.80E-003
269 seq-16094-1379 5.90E-003

3.3. Looking for Outliers Using Bayesian Approaches

• Bayenv

Confidence in the mean covariance matrix representing the true variance of allele frequencies across
populations was assessed by the similarity between its heat map and that of pairwise FST values
(Figure S4), that was found to be statistically significant according to the Mantel test (R2 = 0.801;
p-value = 0.009).

The four top outliers from the XtX analysis were: SNP 4 (seq-9882-801), SNP 149 (seq-8671-529),
SNP 316 (seq-10373-2483), and SNP 378 (seq-2_3941_01-381) (Table 1; Figure S5, left). When the
Bayesian linear model was used with the 20 different environmental variables, four potential outlier
SNPs were detected, classified as strong candidates for selection (20 < BF < 150) according to the Kass
and Raftery (1995) criterion: SNP 169 (seq-0_10162_01-244), SNP 312 (seq-UMN_3408_01-293), SNP 316
(seq-10373-2483), and SNP 378 (seq-2_3941_01-381). Six environmental variables were involved in
these correlations: elevation, BIO 2 (mean diurnal range), BIO 9 (mean temperature of driest quarter),
BIO 12 (annual precipitation), BIO 16 (precipitation of wettest quarter), and BIO 19 (precipitation of
coldest quarter) (Table S5).

• Baypass

Confidence in the correlation matrix Ω̂, was first assessed by visually comparing the Ω̂ values
among the populations (Figure S6). The correlation matrix can be viewed as a hierarchical cluster
tree (Figure S7, left), where the relationships of the seven populations were similar to those found
with a neighbor joining tree based on pairwise FST (Figure S7, right), with populations from the same
country clustering together (the exception being the French population from Font Blanche in the
hierarchical cluster based on Ω̂ that includes much more individuals, from five to ten times more than
the other studied populations). Two outlier SNPs were observed: SNP 149 (seq-8671-529) and SNP 378
(seq-2_3941_01-381) (Table 1; Figure S5, right).

When Baypass was used to detect SNPs showing significant correlation with environmental
variables based on eBPis > 3, 17 SNPs were detected (see Table S6). These were then compared to
the ones in Bayenv2 and only the outliers detected using both methods for the same environmental
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variable were included as strong candidates for selection, leading to a total of three SNPs: SNP 169
(seq-0_10162_01-244), SNP 316 (seq-10373-2483), and SNP 378 (seq-2_3941_01-381) (Table 2).

Table 2. SNPs that coincided in being outliers for the same environmental variables (Env.) for both
Bayesian linear models performed with Bayenv 2 and Baypass.

SNP Sequence Env. BF Bayenv2 eBPis Baypass

169 seq-0_10162_01-244 BIO9 41.97 5.48
316 seq-10373-2483 Elevation 20.90 3.77
378 seq-2_3941_01-381 BIO12 47.38 3.65

BIO 9: Mean temperature of driest quarter; BIO 12: Annual precipitation.

3.4. Combined Results of All Outlier Tests

Eight SNPs were identified as outliers in at least two methods (Figure 2): SNP 4, SNP 149, SNP 169,
SNP 258, SNP 269, SNP 281, SNP 316, and SNP 378.
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Figure 2. Venn diagrams comparing the outliers detected using PCAdapt with those identified using
(a) the XtX statistics from Bayenv2 and Baypass, and (b) the Bayesian linear model (LM) from Bayenv2
and Baypass. Only the SNPs found under selection in more than one method are indicated.

These SNPs belonged to six different loci, of which two could be annotated using the BLAST
search (Table 3): seq-9882 (SNP 4 and SNP 258) corresponds to a PIN-like protein, while seq-10373-2483
(SNP 316) codes for a putative alpha-xylosidase (XYL1).

Table 3. Annotation of the six loci where eight SNPs were found under selection with at least
two methods.

SNP Sequence Description E-Value

4, 258 seq-9882 PIN-like protein in various conifers 1e−96
149 seq-8671 No significant similarity found
169 seq-0_10162_01 Anonymous locus in Pinus taeda 1e−86

269, 281 seq-16094 Anonymous locus in Picea glauca 1e−51
316 seq-10373 Putative alpha-xylosidase (XYL1) in Pinus pinaster 2e−99
378 seq-2_3941_01 Anonymous locus in Pinus taeda 5e−91

Two outliers were detected with both Bayenv2 and Baypass making use of XtX statistics (SNP 149
and SNP 378), while Bayenv2 detected two additional ones (SNP 4 and SNP 316). Of the eleven outliers
detected by PCAdapt, only SNP 4 was in common with the XtX outliers found in Bayenv2 (Figure 2a).
Bayenv2 and Baypass revealed three outlier SNPs correlated with the same environmental variables
(Figure 2b): SNP 169 was found in association with BIO9 (mean temperature driest quarter), SNP
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316 with elevation, and SNP 378 with BIO12 (annual precipitation). The XtX and environmental
association approaches revealed two outliers in common in Bayenv (SNP 316 and SNP 378; Table 1
and Table S5) and one in Baypass (SNP 378; Table 1 and Table S6). Out of the 11 SNPs detected with
PCAdapt, four were in common with those detected by Baypass using environmental correlations
(SNP 4, SNP 258, SNP 269, and SNP 281; Figure 2b), all associated with BIO12 (annual precipitation)
(Table 4). Finally, SNP 316 detected with Bayenv2 based on the XtX statistics was also detected in
environmental correlations with Bayenv2 and Baypass (Figure 2a,b).

Table 4. SNPs found under selection by both PCAdapt and Baypass using the linear model to find
SNPs associated with different environmental variables (Env.).

SNP Contig p-Value PCAdapt eBPis Baypass Env.

4 seq-9882-801 7.23E−004 5.38 BIO12

258 seq-9882-2209 4.74E−004 5.06 Elevation
258 seq-9882-2209 4.74E−004 6.34 BIO12
258 seq-9882-2209 4.74E−004 3.02 BIO19

269 seq-16094-1379 5.90E−003 4.86 BIO12
269 seq-16094-1379 5.90E−003 3.77 BIO16
269 seq-16094-1379 5.90E−003 4.72 BIO19

281 seq-16094-410 3.36E−003 3.21 Elevation
281 seq-16094-410 3.36E−003 5.21 BIO11
281 seq-16094-410 3.36E−003 3.03 BIO12
281 seq-16094-410 3.36E−003 4.64 BIO16
281 seq-16094-410 3.36E−003 4.92 BIO19

BIO 11: Mean temperature of coldest quarter; BIO 12: Annual precipitation; BIO 16: Precipitation of wettest quarter;
BIO 19: Precipitation coldest quarter.

Two of the outlier SNPs potentially targeted by selection, SNP 4 and SNP 378, were remarkable
in that they had allelic frequency patterns compatible with adaptation along the studied altitudinal
gradients. The allelic frequency distribution of those top-candidate SNPs revealed several patterns:
the allelic frequency distribution of SNP 4 indicated that allele A was at higher frequency in low
elevation sites across the three countries, while its frequency was intermediate for the French site
located at intermediate elevation (Figure 3).
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The allelic frequency distribution was somewhat similar for SNP 378 with the highest proportion of
allele A associated with the site of highest altitude, while this proportion was lower for the intermediate
and lowest altitude sites. However, this pattern was true only for the French replicates, with the Italian
and Spanish replicates being monomorphic for the considered allele (Figure 4). Thus, only SNP 4
showed a pattern of allelic frequency across the three sets of populations compatible with convergent
evolution under similar selection pressure linked to elevational gradient.
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4. Discussion

Population structure analyses suggest that the Italian populations experienced a distinct evolutionary
history when compared to the French and Spanish populations. This result is in agreement with the
main genetic clusters previously defined: French and Spanish populations belong to the Western cluster
of Aleppo pine and display lower genetic diversity when compared to the Italian populations that
are part of the Eastern/Southern cluster [20]. Therefore, our sampling covered not only contrasting
environmental conditions within population replicates (i.e., altitudinal gradient), but also distinct
evolutionary genetic units. This sampling design allowed testing whether the pattern of genetic
divergence among heterogeneous environments held between different genetic clusters. Sampling
design (i.e., both sampling strategy and location) is one of the most influential factors when performing
outlier detection tests in studies with simulated data [2,39]. Only recently have empirical analyses
integrated an experimental approach based on replicated population pairs to increase the power of
outlier detection [9,10].

Discovering genes potentially targeted by natural selection also relies on statistical frameworks
that differ in the way they summarize complex data, and therefore could indicate different loci under
selection. This outcome has been seen in both theoretical [39,57] and empirical [12,60,61] works
including the present study. As of yet, there is no single widely accepted approach on how to combine
statistical tests from multiple genome scan methods [40,49]. Even if the model specification is correct
and the tests are properly calibrated, taking the intersection of the set of outlier SNPs leads to the
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identification of too few significant outliers, while taking the union leads to too many. On one hand,
combining several well-calibrated tests can decrease the sensitivity to particular models and lead to
more robust testing approaches [49]. On the other hand, by taking the intersection of SNPs, even if
some have extreme p-values under some tests, we assume that the discarded loci are false-positives
because the underlying assumptions of the respective tests are wrong. Finally, this conservative
approach may lead to overlooking loci under weak selection. There are some indications that such
SNPs exist in conifers [61]: local adaptation could result mainly from small, potentially undetectable,
covarying shifts in frequency at many loci [2]. Looking for polygenic adaptation adds an extra layer of
complexity when trying to disentangle the effects of demographic history and selection, and several
methods have been recently developed to address this issue [62–66].

Locus annotation could be obtained only for one of the two top-candidate SNPs, SNP 4, which is
located in a non-coding region of a PIN-like protein (PIN2 in Pinus tabuliformis; GenBank: AJP06341.1).
This family of proteins act as auxin transporters and constitute key regulators in multiple developmental
events ranging from embryogenesis through morphogenesis and organogenesis to growth responses to
environmental stimuli [67]. The other top-candidate, SNP 378, which was detected by the two Bayesian
linear models in association with annual precipitation in the French populations, was also detected
independently using the Bayenv2 linear model in relation to the precipitation of the driest month in
a study on the whole distribution range of Aleppo pine [20]. Altogether, these results point to SNP
378 as a very good candidate for selection and indicate that precipitation is a potential predominant
driver of selection at two distinct spatial scales. The relevance of the precipitation regime for Aleppo
pine has been emphasized in various disciplines such as ecophysiology [26,28,68], species distribution
modeling [25], population genetics [20,27] and quantitative genetics [29].

The allelic frequency distribution of the two top-candidate SNPs highlights the importance of
taking into account several aspects when interpreting the outputs of selection tests at a local scale: (i) the
evolutionary history of the species (previous studies showed that Aleppo pine western populations
are genetically depleted, [e.g. 20], which constitutes a limitation to detect polymorphic markers in
the Spanish and French populations); (ii) the sampling size in terms of individuals per population
(much more precise allelic frequencies could be obtained for the French population composed of
356 individuals compared to the Italian and Spanish populations comprising 50 and 70 individuals,
respectively); and (iii) the sampling size in terms of replicated environmental gradients (three sites
are somewhat limited to draw general conclusions, especially if some populations are monomorphic
for the targeted SNPs). When detected, a convergent pattern of microevolution at local geographical
scales may be attributed to parallel selective pressures at the locus, shared ancestral standing variation,
or spread of the selected alleles via gene flow. Understanding the origin of convergent evolution
can assist in dissecting the basis of local adaptation, and thereby in predicting adaptive response to
selection [69,70]. In Aleppo pine, the selective pressure along an elevational cline could allow the
species to cope with current and future climate changes characterized by higher temperature and lower
precipitation in the Mediterranean Basin (International Panel on Climate Change, Fifth Assessment
Report [71]). Moving uphill would allow individuals to be exposed to higher precipitation levels
without latitudinal or longitudinal migration [72,73].

5. Conclusions

With the combination of the approaches used here (selection of putative candidate genes for
genotyping, paired sampling technique, and multiple statistical approaches), eight SNPs were identified
as outliers by at least two methods, of which only two (SNP 4 and SNP 378) had their allelic frequencies
associated with elevational gradients, and one (SNP 4) across all population replicates. Looking
for signal of convergent evolution at local or regional scales is an attractive and powerful approach
to understand the molecular basis of adaptation. However, false positives could be linked not
only to the statistical methods used, but also to the sampling. The outcome of our study cautions
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against considering outlier markers detected by genomic scans as automatic candidates for convergent
adaptation in populations submitted to similar selective pressures.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/10/9/673/s1,
Figure S1: Likelihood of K for each value of K estimated in STRUCTURE; Figure S2: Scree plot that displays
the percentage of variance explained by each PC; Figure S3: Distribution of the empirical p-values obtained by
PCAdapt visualized through a Manhattan plot and a QQ-plot; Figure S4: Heatmaps of the pairwise FST distance
and the covariance matrix calculated in Bayenv2; Figure S5: The XtXs estimated from Bayenv2 and from Baypass;
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