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Abstract. We study the effect of varying perturbation strength on the
fractal dimensions of Quadratic Assignment Problem (QAP) fitness land-
scapes induced by iterated local search (ILS). Fitness landscapes are
represented as Local Optima Networks (LONs), which are graphs map-
ping algorithm search connectivity in a landscape. LONs are constructed
for QAP instances and fractal dimension measurements taken from the
networks. Thereafter, the interplay between perturbation strength, LON
fractal dimension, and algorithm difficulty on the underlying combina-
torial problems is analysed. The results show that higher-perturbation
LONs also have higher fractal dimensions. ILS algorithm performance
prediction using fractal dimension features may benefit more from LONs
formed using a high perturbation strength; this model configuration en-
joyed excellent performance. Around half of variance in Robust Taboo
Search performance on the data-set used could be explained with the aid
of fractal dimension features.
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1 Introduction

Many systems can be characterised by their fractal geometry. Fractals are pat-
terns which contain parts resembling the whole [1]. This kind of geometry is
non-Euclidean in nature and a non-integer dimension can be computed for a
pattern — the fractal dimension. This is an index of spatial complexity and cap-
tures the relationship between the amount of detail and the scale of resolution
the detail is measured with. Not all systems can be characterised by a single
fractal dimension, however [2] and multiple fractal dimensions — a spectrum —
can be obtained through multifractal analysis. If there is diversity within the
spectrum, this is an indication that the pattern is multifractal; i.e., the spatial
complexity may be heterogeneous in nature.

Local Optima Networks (LONs) [3] are a tool to study fitness landscapes.
The nodes are local optima, and the edges are transitions between local optima
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using a given search operator. Analysing the features of LONs can help explain
algorithm search difficulty on the underlying optimisation problem. LONs have
been subject to fractal analysis previously [4]; results have suggested that their
fractal dimension, and extent of multifractality, may be linked to increased search
difficulty.

The connection between perturbation strength and fractal dimension in LONs
has not been studied before. We speculate that there may be some untapped
knowledge concerning algorithm performance explanation in this area, and ad-
vance towards this aim in the present work.

The Quadratic Assignment Problem (QAP) — a benchmark combinatorial
optimisation domain — is used for this study. We extract LONs with low and
high perturbation strength, then compute fractal dimension features from them.
Separately, two metaheuristics (iterated local search and robust taboo search)
are executed on the QAP instances to collect algorithm performance information.
The interplay between perturbation strength, fractal dimensions, and algorithm
performance is then examined.

2 Methodology

2.1 Quadratic Assignment Problem

Definition. A solution to the QAP is generally written as a permutation s of
the set {1, 2, ..., n}, where si gives the location of item i. Therefore, the search
space is of size n!. The cost, or fitness function associated with a permutation
s is a quadratic function of the distances between the locations, and the flow
between the facilities, f(s) =

∑n
i=1

∑n
j=1 aijbsisj , where n denotes the number

of facilities/locations and A = {aij} and B = {bij} are the distance and flow
matrices, respectively.

Instances. We consider the instances from the QAPLIB1 [5] with between 25 and
50 facilities; these are of moderate size, and yet are not always trivial to solve.
Some of the instances in this group have not been solved to optimality; for those,
we use their best-known fitness as the stand-in global optimum. In the rest of this
paper, for simplicity we refer to these as the global optimum. According to
[6,7], most QAPLIB instances can be classified into four types: uniform random
distances and flows, random flows on grids, real-world problems, and random
real-world like problems. All of these are present in the instance set used in this
work.

2.2 Monotonic Local Optima Networks

Monotonic LON. Is the directed graph MLON = (L,E), where nodes are
the local optima L, and edges E are the monotonic perturbation edges.

1 http://www.seas.upenn.edu/qaplib/
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Local optima. We assume a search space S with a fitness function f and a
neighbourhood function N . A local optimum, which in the QAP is a minimum,
is a solution l such that ∀s ∈ N(l), f(l) ≤ f(s). Notice that the inequality is not
strict, in order to allow the treatment of neutrality (local optima of equal fitness),
which we found to occur in some QAP instances. The set of local optima, which
corresponds to the set of nodes in the network model, is denoted by L.

Monotonic perturbation edges. Edges are directed and based on the per-
turbation operator (k-exchange, k > 2). There is an edge from local optimum l1
to local optimum l2, if l2 can be obtained after applying a random perturbation
(k-exchange) to l1 followed by local search, and f(l2) ≤ f(l1). These edges are
called monotonic as they record only non-deteriorating transitions between local
optima. Edges are weighted with estimated frequencies of transition. We esti-
mated the edge weights in a sampling process. The weight is the number of times
a transition between two local optima basins occurred with a given perturbation.
The set of edges is denoted by E.

2.3 Multifractal Dimensions

A fractal dimension is the logarithmic ratio between amount of detail in a pat-

tern, and the scale used to measure the detail: ln(detail)
ln(scale) . Multifractal analysis

[2] can be used for systems where a single fractal dimension may not be suffi-
cient to characterise the spatial complexity. With this approach, a spectrum of
dimensions is instead produced. Study of the spectrum can provide information
about the multifractality (i.e., the heterogeneity of fractal complexity), as well as
dimensionality. We approach multifractal analysis using the sandbox algorithm
[8] where several nodes are randomly selected to be sandbox ‘centres’. Members
of the sandboxes are computed as nodes which are r edges apart from the centre
c. After that the average sandbox size is calculated. The procedure is replicated
for different values of r which is the sandbox radius. To facilitate the produc-
tion of a dimension spectrum the whole process is repeated for several arbitrary
real-valued numbers which supply a parameter we call q.

The sandbox algorithm has been specialised and modified to suit LONs [4]
and this is the process we use for our fractal analysis experiments. Fitness dis-
tance — as well as network edge distance — is considered. The comparison
between two local optima fitness values is conducted through logarithmic re-
turns: fitness difference = |ln(f1/f2)| where f1 and f2 are the fitnesses of two
local optima at the start and end of a LON edge. The resultant value can then be
compared with a set fitness-distance maximum allowable threshold, ϵ. Pseudo-
code for the multifractal algorithm we use on the LONs is given in Algorithm 1.
Sandbox centre selection is at Line 7 of the Algorithm. A node n is included in
the ‘sandbox’ of a central node c (Line 15 of the pseudo-code) if either the LON
edge distance d(n, c) = 1 or d(n, c) = r−1 and the fitness-distance between the

two local optima is less than a threshold: |ln( f(n)f(c) )| < ϵ (see Line 14).



Algorithm 1 Multifractal Analysis of a LON

Input: LON , q.values, radius.values, fitness.thresholds, number.centres
Output: mean sandbox size

1: Initialisation:
2: centre.nodes← ∅, noncentre.nodes← all.nodes
3: mean.sandbox.sizes← ∅
4: for q in q.values do
5: for r in radius.values do
6: for ϵ in fitness.thresholds do
7: centre.nodes← RANDOM.SELECTION(all.nodes, number.centres)
8: sandbox.sizes← ∅
9: for c in centre.nodes do
10: number.boxed← 0
11: for v in all.nodes do
12: d← DISTANCE(c, v)
13: j ← DIFFERENCE(f(c), f(v))
14: if ( d == 1 ) OR ( d == r - 1 and j < ϵ ) then:
15: number.boxed← number.boxed + 1
16: end if
17: end for
18: sandbox.sizes← sandbox.sizes ∪ {[number.boxed]}
19: end for
20: bs← MEAN(sandbox.sizes)
21: mean.sandbox.sizes[q][r][ϵ] ← bs
22: end for
23: end for
24: end for

At the end of each ‘sandboxing’ iteration conducted with particular values
for the parameters q, r and ϵ, the associated fractal dimension is calculated:

fractal dimension =
ln(detailq−1)

(q − 1) ∗ ln(scale)
(1)

where detail is the average sandbox size (as a proportion of the network size), q
is an arbitrary real-valued value, and scale is r

dm , with r being the radius of the
boxes and dm the diameter of the network. The sandbox algorithm has a cubic
time complexity and quadratic space complexity [9].

3 Experimental Setup

3.1 Iterated Local Search

We use Stützle’s iterated local search (ILS) for both gathering performance
data and as the foundation of LON construction [7]. The local search stage
uses a first improvement hill-climbing variant with the pairwise (2-exchange)
neighbourhood. This operator swaps any two positions in a permutation. The



perturbation operator exchanges k randomly chosen items. We consider two per-
turbation strengths for both constructing the LONs and computing the
performance metrics: ND

8 (we will henceforth refer to this as low perturba-

tion) and 3ND
4 (this will be referred to as high perturbation) with ND being the

problem dimension. These perturbation magnitudes were chosen because they
have been studied previously for the QAP and ILS [10]; in that work, ND

8 is

the lowest strength considered, while 3ND
4 is the second-strongest (the strongest

was a total restart, which we decided was too extreme for our purposes). Only
local optima which have improved or equal fitness to the current are accepted.
Worsening local optima are never accepted.

3.2 Robust Taboo Search

Robust Taboo Search (ROTS) [11] is a competitive heuristic for the QAP and
is also executed on the instances in this study. ROTS is a best-improvement
pairwise exchange local search with a variable-length taboo list tail. For each
facility-location combination, the most recent point in the search when the fa-
cility was assigned to the location is retained. A potential move is deemed to
be ‘taboo’ (not allowed) if both facilities involved have been assigned to the
prospective locations within the last y cycles. The value for y is changed ran-
domly, but is always from the range [0.9n, 1.1ND], where ND is the problem
dimension.

Algorithm Performance Metric. We compute the performance gap to sum-
marise ILS and ROTS performance on the instances. In the case of ILS, runs
terminate when either the known best fitness is found or after 10,000 iterations
with no improvement. For ROTS, runs complete when the best-known fitness
is found or after 100,000 iterations. The performance gap is calculated over 100
runs for each, and is defined as the mean obtained fitness as a proportion of the
best-known fitness.

3.3 LON Construction and Metrics

The LON models are constructed by aggregating the unique nodes and edges
encountered during 100 independent ILS runs with the standard acceptance
strategy (i.e. accepting improvements and equal solutions). Runs terminate after
10,000 non-improving iterations.

At this stage, esc instances are removed from the set: their local optima
networks are uninteresting to study because there is a very high degree of LON
neutrality. Removing these anomalies left us with the remaining moderate-size
(between 25 and 50, inclusive) QAPLIB: 40 instances. There are two LONs per
problem instance (for the two perturbation strengths), totalling 80 LONs.

For each LON, thousands of fractal dimensions are produced. The exact num-
ber depends on the diameter of the network: full parameter details are given in



the next Section. The measurements we compute from the set of fractal dimen-
sions for a given LON are: the median fractal dimension (simply the median
of all the dimensions calculated); the maximum fractal dimension (maximum of
all dimensions); the dimension variance; the multifractality (measured by taking
the absolute value of a fractal dimension at the end of the spectrum divided by
the absolute value of a dimension at the beginning), and an excerpt dimension
(randomly chosen from the spectrum).

We consider some other LON metrics too: the flow towards global optima
(computed as the incoming network edge strength to global optima in the LON);
the number of local optima (simply the number of nodes in the LON); and the
number of global optima (number of LON nodes with the best-known fitness).

3.4 Multifractal analysis

We implement the multifractal analysis algorithm for LONs in C programming
language and have made it publicly available for use; some of the code func-
tionality was obtained from a monofractal analysis algorithm [12] available on
Hernan A. Makse’s webpage2. To generate multifractal spectra, a range of arbi-
trary real-valued numbers is needed. We set these as q in the range [3.00, 8.90]
in step sizes of 0.1. The number of ‘sandbox’ centres in each iteration is set at 50
and the choice of these centres is randomised. A range of ten values is used for
the local optima fitness-distance threshold: ϵ ∈ [0.01, 0.19] in step sizes of 0.02.
The sizes of sandboxes are integers in the range r ∈ {2..diameter− 1} where di-
ameter is the LON diameter. Note that in the interest of reducing computation,
we constrain the maximum considered box radius to eleven — that is, when the
LON diameter exceeds twelve (diameter− 1 > 11), then the upper limit for r is
set to 11, to allow ten possible values r ∈ {2..11}.

3.5 Regression Models

Random Forest regression [13] is used. We separate LONs by the ILS perturba-
tion strength which was applied during their construction; in this way, for mod-
elling there are two distinct data-sets, each of them totalling 40 rows. Each ob-
servation is a set of LON features such as median fractal dimension (these are the
independent variables) alongside performance metrics (the dependent variables).
LONs formed using low perturbation are mapped to low-perturbation ILS per-
formance runs, and high-perturbation LONs are mapped to high-perturbation
ILS performance runs. The same Taboo Search performance metrics are used for
both sets of LONs. The candidate independent variables are:

◦ Number of local optima
◦ Number of global optima
◦ Search flow towards global optima
◦ Median fractal dimension for the LON

2 https://hmakse.ccny.cuny.edu/
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◦ Variance of fractal dimension (proxy for multifractality)
◦ Maximum fractal dimension
◦ Variation in the multifractal spectrum (proxy for multifractality)

The manner of computing the metrics was described in Section 3.3. Iterated
local search and Robust Taboo Search performance gap on the instances serve
as response variables, making this a regression setting.

We aimed for models with as few independent variables as possible, ow-
ing to the limited number of eligible QAPLIB instances of moderate size. The
one-in-ten rule [14] stipulates that roughly ten observations are required per
independent variable. Our instance sets are each comprised of 40 instances —
so we correspondingly set the maximum number of independents as four and
conduct feature selection, as described now.

Recursive Feature Elimination. Backwards recursive feature elimination (RFE)
was used to select model configurations with subsets of the predictors. We use
Root Mean Squared Error (RMSE) as the quality metric for model comparisons.
RMSE is the square-root of the MSE, which itself is the mean squared difference
between the predicted values and true values. For the experiments, we configure
RFE as follows. Random Forest is the modelling method. We consider feature
subset sizes of one, two, three, and four from a set of eight candidates (listed
earlier). The RFE cross-validation is set to 10-fold; model configurations are
compared based on the mean RMSE over the 10 folds.

Models using selected features. After feature selection, Random Forest regres-
sion is conducted using the selected features only. There are several separate
model configurations owing to the different ILS perturbations under scrutiny
and the two optimisation performance algorithms. To attempt to mitigate the
effect of the limited training set size — which is due to the available quantity
of moderate-size QAPLIB instances — we bootstrap the selection of the train-
ing and validation sets. We consider an 80-20 split for training and validation
with 1000 iterations. Quality metrics are computed on both the training set and
also from the predictions made on the validation set. The first included mea-
surement is the R-Squared (RSQ, computed as 1 − MSE

variance(t) , where t is the

response variable). Also considered is the RMSE, as detailed already. The met-
rics are computed as the mean value over 1000 bootstrapping iterations, and
their standard error is also included in the results. The standard error reported
here is a measurement for how varied the means for RSQ and RMSE are across
different random sub-samplings: it is the standard deviation of the means for
these parameters.

Details. For all feature selection and subsequent modelling, the default hyperpa-
rameters for Random Forest in R are used, namely: 500 trees; minimum size of
terminal nodes set to five; a sample size set to the number of observations;
re-sampling with replacement; features considered per split set to one-third
of the number of features. Independent variables are standardised as follows:
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(f) tai30b,p=high,d=(11.62, 167.32)

Fig. 1: Monotonic LONs for selected instances and the two perturbation
strengths, p = low (left) p = high (right). The median and maximum frac-
tal dimension are also indicated in the sub-captions as d = (median, maximum)

p = (p−E(p))
sd(p) , with p being the predictor in question, E the expected value

(mean), and sd the standard deviation.



4 Experimental Analysis

4.1 Network Visualisation

Visualisation is a powerful tool to get insight into the structure of networks.
Figure 1 illustrates MLONs for three representative QAP instances: a real-world
instance bur26, a random flows on grids instance nug25, and a random real-
world like instance tai30b. The networks in Figure 1 capture the whole set
of sampled nodes and edges for each instance and perturbation strength. The
two perturbation strengths, low and high, are shown. In the plots, each node is a
local optimum and edges are perturbation transitions, either improving in fitness
(visualised in grey) or leading to equal fitness nodes (visualised in orange). Node
and edge decorations reflect features relevant to search. The edges colour reflect
their transition type, to nodes with improving (grey) or equal fitness (orange).
Global optima are highlighted in red. The start nodes (without incoming edges)
are highlighted as yellow squares, while the sink nodes (without outgoing edges)
are visualised in blue.

Figures 1a and 1b reflect the same problem instance (bur26a) but with
LONs constructed using different perturbation strengths. Figure 1b has higher
fractal dimensions and this is probably because of the lesser extent of neutrality
at the local optima level (in the image, this can be seen through the amount of
orange connections), as well as fewer connection patterns between local optima.
There are also some long monotonic paths. All of these factors would result
in higher fractal dimension, because they would lend to the fitness-distance and
edge-distance boxing constraints in the multifractal analysis algorithm not being
satisfied — and consequently, nodes remaining un-boxed, leading to a higher level
of detail being computed and a higher fractal dimension (recall Section 2.3 for
particulars on this process).

The LONs of instance tai30b (Figure 1e and 1f) have the highest fractal
dimensions shown. This is probably because of the lack of LON neutrality (lack
of orange edges in the plot), as well as long and separate monotonic pathways
(notice the number of edge-steps forming some of the paths). Additionally, com-
pared to the networks associated with the other two instances, the LON fitness
ranges are quite large for here: the minimum LON fitness is around 73-74% of
the maximum in the tai30b LONs, while for the other two instances shown in
Figure 1a-1d, it is between approximately 92%-99%. This means that the fitness-
distance boxing condition in the fractal algorithm will be satisfied much less for
these LONs, resulting in higher fractal dimensions. This situation also implies
that the monotonic pathways contain large fitness jumps.

4.2 Distributions

Figure 2 presents distributions for fractal dimension measurements, split by per-
turbation strength: low and high. In Figure 2a are median fractal dimensions
for the LONs. Notice that the dimensions are noticeably higher — and more
varied — in the high-perturbation group (on the right) when compared to the



low-perturbation group on the left. Next, in Figure 2b, are the maximum frac-
tal dimensions for the LONs. The same trend is evident here; that is, high-
perturbation LONs (on the right) have higher and more varied dimensions than
the low-perturbation LON group.
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Fig. 2: Distributions of fractal dimension measurements taken from local optima
networks. Note the different scales on the y-axes.

Figure 2c shows the amount of multifractality (heterogeneity of fractal ge-
ometry), computed as the absolute value of a fractal dimension at the end of the
spectrum divided by the absolute value of a dimension at the beginning. This
time, in the plot, it cannot confidently be said that one group contains more
multifractality than another; however, it seems clear that the high-perturbation
group have more varied multifractality values.

4.3 Predictive Modelling

Table 1 presents the configuration and quality of regression models for algorithm
performance prediction. Each column (columns two to four) is a model setting.
The first two rows are configuration information: the ILS perturbation strength
used to form the LONs whose features are used as predictors (LON perturbation)
and the features selected for the model by recursive feature elimination. All the
remaining rows convey data about the quality of the models. Provided are the
RSQ, RMSE, and RMSE as a percentage of the range of the target variable.
Each of these are reported for the training and validation data. In the Table,
abbreviations are used for feature names. Multifractality is computed as the
absolute value of a fractal dimension at the end of the spectrum divided by the
absolute value of a dimension at the beginning; FD is short for fractal dimension;
flow GO is the combined strength of LON edges incoming to global optima; and
var FD is the variance of the fractal dimension.

Recall from Section 3.5 that the number of local optima and the number
of global optima were candidate predictors. Notice from Table 1, row two, that



Table 1: Information about models with features selected by recursive feature
elimination in a Random Forest setting.

Iterated Local Search Robust Taboo Search

LON perturbation low high low high

selected features
[multifractality,
median FD ,
max FD ]

[flow GO,
multifractality,

max FD,
median FD ]

[median FD,
multifractality,

flow GO,
max FD ]

[var FD, median FD ]

RSQ-train (SE) 0.1663 (0.2650) 0.7917 (0.2457) 0.8610 (0.3081) 0.7523 (0.2790)

RMSE-train (SE) 0.0001 (0.0001) 0.0000 (0.0000) 0.0005 (0.0042) 0.0010 (0.0044)

RMSE%range-train 0.1% (0.1%) 0% (0%) 0.1% (0.7%) 0.2% (0.8%)

RSQ-validation (SE) 0.8661 (0.4630) 0.9891 (0.4147) 0.5124 (1.1331) 0.4973 (1.0439)

RMSE-validation (SE) 0.0086 (0.0076) 0.0007 (0.0021) 0.0709 (0.0509) 0.0720 (0.0482)

RMSE%range-validation 7.9% (7.0%) 0.3% (0.8%) 12.2% (8.8%) 12.4% (8.3%)

these are never selected from the pool. Instead, fractal dimension metrics and
the incoming search flow to global optima (flow GO) are chosen by the RFE
algorithm. We particularly note that multifractality, which captures how varied
the fractal complexity in a LON is, appears in three of the four model setups.
The median fractal dimension appears in all four, and maximum dimension in
three. Differing quantities of predictors are selected. In two cases, there is the
maximum allowable amount (recall Section 3.5) chosen from eight candidates:
four. The remaining models, however, contain less selected features: two and
three, respectively.

Bold text in the Table draw the eye to the best value within a row. RMSE
values are not highlighted in this way because they do not have a common range
(owing to different response variable distributions). Instead, the RSQ and RMSE
as a percentage of the range are emphasised with emboldened text. Notice that
the model built using features of high perturbation LONs and which is modelling
ILS performance gap as a response seems to be the best of the four models; this
can be seen by comparing the second model column with the other three. RMSE
is very low on both training and validation data, suggesting that this is a good
model. While the RSQ-train is lower than for the ROTS response using low-
perturbation LONs modelling (in the next column along), the RSQ-validation is
superior to that — and indeed, the others — by a large margin.

Using features of low-perturbation LONs to model ILS performance response
results in a much weaker model (view this in the first model column). The
RSQ for training data is poor — only approximately 0.17. Even though the
RSQ for validation data is significantly higher (approximately 0.87), the low
RSQ on training data suggests that it does not accurately capture the patterns.
Comparing this model (low-perturbation LONs) with its neighbour in the Table
(high-perturbation LONs), we observe that using a higher perturbation strength
to construct LONs may result in fractal dimension metrics which are more useful
in predicting ILS performance.



Focusing now on the two models which consider ROTS performance as re-
sponse variables (model columns three and four), we can see that — on validation
data — each of them explains around 50% of variance (RSQ-validation row).
That being said, both RSQ means have very high standard errors (in brackets).
This means that while the results hold true for this set of QAP instances, we
would be cautious in extrapolating these specific results to other instance sets. A
high standard error can occur with a limited sample size and with high diversity
of training instances — both of which are present in our dataset. Nevertheless,
the fact that some ROTS variance can be explained (at least for this specific
dataset) is important because the LONs were not formed using a ROTS process;
ILS was the foundation (Section 3.3).

The finding means that performance of a separate metaheuristic can be par-
tially explained using ILS-built LON fractal dimension features, even when dif-
ferent perturbation strengths are used. Notice also that the low-perturbation
model for ROTS is slightly better than the high-perturbation LON model. This
might be because ROTS does not conduct dramatic perturbations on solutions.
While RMSE is low on the training data (RMSE%range-train), it is much higher
on validation data (although still not what might be considered ‘high’).

5 Conclusions

We have conducted a study of the relationship between Iterated Local Search
(ILS) perturbation strength and fractal dimensions. The ILS perturbation strength
is used when constructing Local Optima Networks (LONs), and fractal dimen-
sion can be computed from those LONs.

We found that higher-perturbation LONs also have higher fractal dimensions.
Fractal dimension measurements drawn from LONs which were constructed us-
ing low and high perturbation strengths were related to algorithm performance
on the underlying Quadratic Assignment Problems (QAPs). The results showed
that ILS algorithm performance prediction using fractal dimension features may
benefit more from LONs formed using a high perturbation strength; this model
configuration enjoyed excellent performance. Around half of variance in Ro-
bust Taboo Search performance on the dataset used could be explained using
predictors including fractal dimension features, and the model using the low-
perturbation features was slightly stronger than the high-perturbation model.

The local optima networks are available online3; the fractal analysis algorithm
for local optima networks is published here4.
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