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1 Introduction

Linear demand functions have been used extensively in the economics literature as a convenient mod-
elling tool to showcase important properties of market systems. The reliance on linear demand has been
long standing in the modern theory of industrial organization (see Amir et al. (2017) but also Kopel et al.
(2017) for insightful overviews) and important in the empirical estimation of consumer demand (see, for
instance, Deaton (1974b)-(1978) but also Deaton (1974a) for aggregate demand) as well as of labour sup-
ply (see Stern (1984) for an overview). Linear demand functions are also ubiquitous in microeconomic
textbooks for the purposes of demonstrating various properties of consumer or market demand. Given
these observations, it is somewhat surprising that incomplete progress has been made with respect to a
proper characterization of the underlying preferences which can rationalize linear demand systems.

It is well known that linear demand is not easily generated by rational preferences or market struc-
tures. With respect to preferences, the existing literature has looked at the problem from the classical
perspective on demand integrability: the (Marshallian) demand function of interest is assumed to sat-
isfy enough regularity conditions (e.g., being sufficiently smooth, satisfying the Law of Demand, being
injective, or its Slutsky matrix being symmetric and negative semidefinite) for the corresponding system
of partial differential equations to be solved by an appropriate expenditure function, which can lead
then to a utility function via duality (see, for instance, Houthakker (1960), Epstein (1981), or Jackson
(1986); see also Epstein (1982), LaFrance (1990) as well as Nocke and Schutz (2017) for incomplete de-
mand systems). In this spirit, LaFrance (1985) established that individual linear demand places strong
restrictions on the underlying preference: it requires a quadratic or Leontief quasi-direct utility function.
In a similar spirit, Alperovich and Weksler (1996) solve for the underlying (direct) utility function for
the two-commodities case with income-normalized prices. With respect to market structures, Jaffe and
Weyl (2010) have shown that aggregate linear demand cannot result from (sufficiently smooth) rational
discrete-choice models. More recently, Amir et al. (2017) investigated the required properties for a quasi-
linear/quadratic utility function to generate a linear demand function satisfying the Law of Demand; as
it turns out, these properties have important implications for some widely used theoretical frameworks
in industrial organization.

Their important contributions notwithstanding, these studies fail to assign unambiguously the key
desirable properties of linear demand to the requisite characteristics of rational choice. As a result, they
fall short from actually characterizing the microfoundations of linear demand - an important desidera-
tum as linear demand models are deployed mainly to obtain basic economic intuition to facilitate predic-
tions and policy making (see, for instance, Berry and Haile (2021) for a discussion on the advantages of
preference-based demand estimation). As it will become apparent in what follows, our current knowl-
edge on linear demand functions is incomplete, leaving space for fundamental misunderstanding.

In contrast to the existing literature, the present study takes consumer preferences as the primitive
and a most general formulation of a linear demand system as the desideratum. To analyse how the
two are related, I take a novel approach to demand integrability that relies on some recent results in
Diasakos and Gerasimou (2020). They refer to a (weak) notion of smooth preferences which admits ge-
ometric interpretation via the concept of a preference gradient and the associated notion of preference
differentiability. Diasakos and Gerasimou (2020) establish that this notion of smooth preferences is fun-
damentally linked to the invertibility of the resulting demand function. The present study begins by
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showing that this notion of smooth preferences provides also theoretical underpinnings for a ubiqui-
tous (albeit hitherto axiomatic) assumption in the literature on the microfoundations of linear demand;
namely, that we refer to incomplete demand systems. More precisely, there are k ∈N \ {0} commodities
whose demand levels are observed, but also m + 1 commodities (m ∈ N) with unobserved demands.
The observed demand function is linear (i.e., exhibits constant coefficients) with respect to the prices of
the k commodities.

Another feature that sets the present approach apart from the extant literature is that it applies for
either of the two possible price-normalization regimes (with respect to the price of a numeraire com-
modity or income). I proceed to establish that, under either price-normalization regime, a linear demand
function is generated by a differentiable preference relation if and only if (i) the unobserved part of the
demand system comprises but one commodity (i.e., m = 0) while (ii) the matrix of constant coefficients
on the prices of the observed commodities is non-singular (see Theorems 1 and 3 below). Combining
preference differentiability with properties (i)-(ii) facilitates a straightforward integrability exercise via
the preference gradient (the inverse demand function). This leads to analytical solutions for the under-
lying (direct) utility function (see Theorems 2 and 4 below).

Somewhat unexpectedly perhaps, when prices are normalized with respect to a numeraire, the com-
bination of preference differentiability and properties (i)-(ii) above dictates that the linear demand cannot
be function of income. As to be expected, on the other hand, the corresponding utility function is of the
quasi-linear/quadratic form. Given this utility formulation, well-known arguments can be deployed to
show that the Slutsky matrix of the total demand system must be symmetric and negative semi-definite.
And as the linear demand varies only with the prices of the observed commodities, it follows that the
(non-singular) matrix of constant coefficients itself must be symmetric and negative definite; hence, that
the linear demand must obey also the strict Law of Demand.

This translates into important messages with respect to the quest for microfoundations of linear de-
mand systems (such as multi-variate linear demand functions for differentiated products in oligopolistic
markets). On the one hand, linear demand systems that do not satisfy the (strict) Law of Demand or are
income dependent are not rationalizable by preferences that are smooth even in the least sense. On the
other hand, linear demand systems that are income independent and satisfy the (strict) Law of Demand
are fully consistent with continuous, strictly monotonic, strictly convex, and weakly smooth rationaliz-
ing preferences. Yet we should always keep in mind not only that these demand systems are incomplete,
but more importantly that their unobserved part plays an integral role for the underlying preference re-
lation: it depicts a single (numeraire) commodity whose quantity demanded is completely determined
by what remains from income once the observed expenditure has been funded.

The next section introduces the notational and theoretical backdrop for our approach. Section 3
presents the analysis itself along with the underlying intuition. In Section 4, we compare our results
with those in the relevant literature and discuss their implications for microfounding linear demand
functions. The supporting results whose proofs are too long to be included in the main text can be found
in the Appendix (Section A).
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2 The theoretical framework

As our consumption set we consider an open and convex X ⊆ Rn
++ where n ∈ N : n ≥ 2. The con-

sumer’s preferences are captured by a continuous weak order % on X (i.e. by a complete and transitive
binary relation whose graph is a closed subset of X× X). For A ⊆ X, we let

max
%

A := {x ∈ A : x % y for all y ∈ A}

denote the set of all %-greatest elements in A. Given some set Y ⊆ Rn
++ of income-normalized strictly

positive prices, the budget correspondence B : Y� X is defined by1

B(p) := {x ∈ X : px ≤ 1}

We will say that % generates the demand correspondence ξ : Y� X if the latter is defined by

ξ(p) := max
%

B(p)

We will refer to such a demand correspondence as rational. A rational demand correspondence is onto if,
for all x ∈ X there exists p ∈ Y such that x ∈ ξ(p). If ξ(·) is single-valued (hence a demand function), it
is said to be injective if for all p, p′ ∈ Y, p 6= p′ implies ξ(p) 6= ξ(p′). A demand function ξ : Y → X that
is both injective and onto is invertible. If ξ(·) has this property, then the inverse demand given by

p(x) := {p ∈ Y : x = ξ(p)}

is itself a well-defined bijective function p : X → Y.
Proposition 1 in Diasakos and Gerasimou (2020) establishes that, within the realm of continuous

preferences, a rational demand function ξ : Y → X requires that the generating preference relation
% is strictly convex and strictly monotone on X.2 Their analysis proceeds to show that, within the
realm of strictly convex, strictly monotone and continuous preferences, the generated demand function
is invertible (in fact, an homeomorphism) if and only if the underlying preference relation satisfies a
particular notion of smoothness, weak smoothness.

The first notion of smooth preferences in the literature was proposed in Debreu (1972), where a
preference relation% on a consumption set X was defined to be smooth of order r (Cr for short) if the graph
of the indifference relation (i.e., the set {(x, y) ∈ X× X : x ∼ y} ⊂ X× X) is a Cr-manifold on X× X.3 It
turns out that a monotone preference relation on X is Cr if and only if it is representable by a Cr (i.e., r-
times continuously differentiable) utility function. Generalizing Debreu’s notion, Neilson (1991) defined
a preference relation on X as weakly smooth of order r if each of its indifference sets (Ix := {z ∈ X : z ∼ x},

1Throughout the paper, for any x, y ∈ Rk and 1 < k ≤ n the dot-product pᵀx will be denoted simply by px.
2As usual, the preferences are said to be convex if, for all x, y ∈ X and any α ∈ [0, 1], x % y implies αx + (1− α)y % y, and

monotonic if x � y implies x � y. They are strictly convex if, for all x, y ∈ X and α ∈ (0, 1), x % y implies αx + (1− α)y � y, and
strictly monotonic if x > y implies x � y.

3Let A ⊆ Rn. A function f : A→ Rn is an homeomorphism if it is injective, continuous, and its inverse function is continuous
on f (A). Letting A be in addition open, a Cr function f : A → Rn is a Cr diffeomorphism if it is an homeomorphism with a
Cr inverse function. A set M ⊆ Rn is a Cr k-dimensional (k ≤ n) manifold if for every x ∈ M there is a Cr diffeomorphism
f : A → Rn (A ⊆ Rn open) which carries the open set A ∩ (Rk × {0n−k}) onto an open neighborhood of x in M. For more
details and some economic-theoretic examples, see Chapter 1.H in Mas-Colell (1985).
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x ∈ X) is a Cr-manifold on X. In Diasakos and Gerasimou (2020), a preference relation that is weakly
smooth of order 1 is referred to simply as weakly smooth.

More recently Rubinstein (2006) defined the preference relation% on X to be differentiable if for every
x ∈ X there exists px ∈ Rn \ {0} such that

{z ∈ Rn : px · z > 0} = {z ∈ Rn : there exists λ∗z > 0 such that x + λz � x for all λ ∈ (0, λ∗z )} (1)

To interpret this geometrically, for distinct bundles x and z in X, call z an improvement direction at x if
there exists λ∗ > 0 such that x + λz � x for all λ ∈ (0, λ∗), assuming (x + λz) ∈ X. In light of this
definition, the right hand side of (1) defines the set of all improvement directions at x. The left hand side
of (1) on the other hand defines the set of all directions z that are evaluated as strictly positive by some
vector px (which depends on x). Preference differentiability of % at x requires the existence of a vector
px such that the set of all directions that receive strictly positive valuations under px coincide with the
set of all improvement directions of %. Such a vector px will be referred to as a preference gradient at x.4

To relate these notions to the present investigation, for (arbitrary) x ∈ X consider the projection of Ix

along the (arbitrary) ith dimension of Rn
+,

I i
x := {zi ∈ R+ : there exists z−i ∈ Rn−1

+ such that z ∈ Ix},

and define the set

I−i
x := {z−i ∈ Rn−1

+ : there exists zi ∈ R+ such that z ∈ Ix}

analogously, as the projection of Ix on Rn−1
+ (the resulting subspace when the ith dimension is removed

from Rn
+). We can construct then the indifference-projection correspondence li(·|x) : I−i

x � I i
x for good i by

requiring
zi ∈ li(z−i|x) ⇐⇒ z ∈ Ix

whose graph is the indifference set Ix. As established in Diasakos and Gerasimou (2020), for % con-
tinuous, strictly convex and strictly monotonic, the mapping li(·|x) is a locally convex and thus also
continuous function. As a result, its local subdifferential ∂li(z−i|x), which comprises the collection of the
function’s local subgradients at z−i, is non-empty and fundamentally linked to its smoothness: li(·|x)
is differentiable at z−i if and only if ∂li(z−i|x) is a singleton, in which case the unique local subgradient
coincides with the gradient.

With regard to economic interpretation, when li(·|x) is differentiable at z−i the jth entry ∂li(z−i|x)/∂zj

of the gradient ∇li(z−i|x) defines the marginal rate of substitution of good i for good j 6= i. Indeed, if %
is representable by a utility function u : X → R that is continuously differentiable at z, we have

∂li (z−i|x)
∂zj

= −

∂u(z)
∂zj

∂u(z)
∂zi

(2)

4An intuitive interpretation for the entries of px is that they represent the consumer’s “subjective values” of the different
goods relative to the reference bundle x: “Starting from x, any small move in a direction that is evaluated by this vector as positive is
an improvement” (Rubinstein, 2006 p. 71). It is also noteworthy that the notion of preference gradient can also be viewed as a
generalization of the notion of valuation equilibrium in Radner (1993).
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The right-hand side of this equation depicts the textbook definition of the marginal rate of substitution
of good i for good j. The definition rests upon invoking the Implicit Function Theorem; thus, upon
assuming that u(·) is a C1 function (equivalently, that % is itself C1). By contrast, the left-hand side of
(2) exists and is continuous in a more general environment: when % is differentiable - see Proposition 2
in Diasakos and Gerasimou (2020). And given that it is continuous, strictly convex and strictly mono-
tonic, % being differentiable is equivalent to % being weakly smooth - see Theorem 1 in Diasakos and
Gerasimou (2020).

More importantly for our purposes, % being differentiable is equivalent to % generating a unique,
homeomorphic demand function ξ : Y → X with Y an open subset of Rn

++ - see Proposition 3 in Diasakos
and Gerasimou (2020). Specifically, letting q−i(x) denote the negative of the gradient li(·|x) at x, the
preference gradient px coincides with p(x), the value of the inverse demand at this bundle. Formally,
we have

q−i(x) := −∇li(x−i|x) (3)

qi(x) =
1

xi + q−i(x) · x−i
(4)

p(x) = qi(x)
(
1, q−i(x)

)
(5)

where q−i(x) ∈ Rn−1
++ , qi(x) > 0, and p(x) ∈ Rn

++. Notice finally that, although taking distinct index
goods i and j in the above system leads to distinct vectors (qi(x), q−i(x)) and (qj(x), q−j(x)), the prefer-
ence gradient, p(x), is invariant with respect to the choice of the index good. Moreover, that qi(x) = pi(x)
for the index good i is due to the fact that we normalize prices with respect to income.

3 Linear demand

The preceding overview of the key theoretical concepts was given in terms of prices that are normalized
with respect to income. Yet most of the literature on linear demand concerns itself with the case where
prices are normalized instead with respect to a numeraire commodity.

3.1 When prices are normalized with respect to a numeraire

Taking the nth commodity as the numeraire, we can deploy (5) above to define the functions w : Yn →
R++ and q−n : Y → Rn−1

++ , respectively, by w(pn) := 1/pn and q−n(p) = p−n/pn. We then have a
mapping between the income-normalized prices p ∈ Y from the preceding section and the correspond-
ing vector of numeraire-normalized prices and income, (q−n, w) ∈ Q×W - where qn := q−n(p) while
W := w(Yn) and Q := q−n(Y). This mapping gives also the numeraire-normalized (i.e., Marshallian)
demand ξ̃ : Q×W → X as ξ̃(q−n, w) := ξ((1, q−n(p)/w). It is trivial moreover to check that, since w(·)
is an homeomorphism, if % is continuous, strictly convex, strictly monotonic and differentiable on X
then ξ̃(·) is itself an homeomoprhism and thus Q×W is open in Rn−1

++ ×R++.
We will restrict attention to demand functions ξ̃ : Q ×W → X that satisfy both of the following

conditions.

(A) The domain Q×W has non-empty interior: ∃(q, ε) ∈ (Q×W)×R++ such that Bq(ε) ⊂ Q×W.5

5For y ∈ Rn and ε > 0, Bε (y) denotes the open ball in Rn with center y and radius ε.
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(B) For at least one of the non-numeraire commodities its quantity demanded responds to a change in
its own relative price, other things being equal:

∃ (j, q, δ) ∈ {1, . . . , n− 1} × (Q×W)×R \ {0} : q + δej ∈ Q×W ∧ ξ̃ j
(
q + δej

)
6= ξ̃ j (q) (6)

Together conditions (A)-(B) above provide the theoretical underpinnings (see Claim 2 and Remark (ii)
in Section A) for a key assumption in the literature on linear demand: namely, that the observed linear
demand system is incomplete. Specifically, linear demand models always assume that, for some k ∈N :
1 ≤ k < n, the demands of the commodities indexed by M := {k + 1, . . . , n} are unobserved. The
observed linear functional form depicts the demands of the commodities indexed by K := {1, . . . , k};
their demand exhibits constant coefficients with respect to the prices q1, · · · , qk.

In what follows we depict the unobserved demands by the vector z ∈ XM and the observed ones
by x ∈ XK. Moreover, for M0 := M \ {n} we denote the respective relative prices by qM0 ∈ QM0 and
qK ∈ QK.6 Letting then x(·) denote the observed components of ξ̃(·), a linear demand system is given
by

x (qK, qM0 , w) := α (qM0 , w) + BqK (7)

where B is a k× k matrix of constants while a : QM0 ×W → Rk is a continuous function.
As we have already pointed out, a theoretical justification for the formulation in (7) is given by the

assumption that the total demand system ξ̃(·) satisfies conditions (A)-(B) above simultaneously. With
respect to (B), given condition (A), it suffices for (6) that the matrix B has a non-zero diagonal element
or a symmetric principal minor (see Remarks (iii)-(iv) in Section A). With respect to condition (A), it
suffices that the domain for the relative prices and income is open. A theoretical justification for the
latter requirement is given by the discussion in the opening paragraph of this section. For if the demand
system is generated by a continuous, strictly monotonic, strictly convex, and differentiable preference
relation then Q×W is necessarily open.

In fact, differentiability of the underlying preference relation places additional restrictions not only
on the formulation for the observed linear demand but also on the total commodity system itself.

Theorem 1 Let % be a continuous, strictly convex, and strictly monotonic weak order on X which generates the
observed demand function in (7). The following are equivalent.
(i). % is differentiable.
(ii). B is non-singular, M0 = ∅, and α(·) is a constant.

Proof. That (i) ⇒ (ii) follows from Lemmas A.1, A.2, and A.3 (see Section A). To show that (ii) ⇒ (i),
observe first that, by Theorem 1 in Diasakos and Gerasimou (2020),% is differentiable if the total demand
ξ̃(·) is injective. To see that the latter property does hold under the hypotheses in (ii), let α(·) := α and
take (q1, w1), (q′′, w2) ∈ QK ×W with (q′, w1) 6= (q′′, w2). There are two cases to consider. If q′ 6= q′′,
we cannot have α + Bq′ = x(q′) = x(q′′) = α + Bq′′ given that B is non-singular; clearly, we must have

6Our analysis will use the following notation. Consider the index set N := {1, . . . , n} and let A ⊂ N . For y ∈ Rn and
S ⊆ Rn, we let yA and SA denote, respectively, the projections of y and S on the subspace that results from Rn when the
dimensions in N \A are removed.
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ξ̃(q′, w1) 6= ξ̃(q′′, w2). If, on the other hand, q′ = q = q′′ and w1 6= w2, notice that ξ̃(q, w1) = (z, x(q)) =
ξ̃(q, w2) only if w1 − qx(q) = z = w2 − qx(q); i.e., only if w1 = w2.

In terms of the analytical arguments to establish Theorem 1, the involved ones refer to the “only if”
direction. Lemma A.1 shows that % is differentiable only if B is non-singular; it does so by an argument
ad absurdum which can be outlined intuitively as follows. If B is singular, there must exist some v ∈
Rk \ {0} such that Bv = 0; hence, such that x(q0

M0
, q0

K + λv, w0) = x(q0
M0

, q0
K, w0) for some (q0

M0
, q0

K, w0) ∈
Q ×W and λ ∈ R \ {0} sufficiently small. It is straightforward to show that this leads to a violation
of the Weak Axiom of Revealed Preference (WARP) when vx(q0

M0
, q0

K, w0) = 0 or vx(q0
M0

, q0
K, w0) =

vx(q0
M0

, q0
K, w′) for some w′ ∈ W with w′ 6= w0. For the case where vx(q̃−i, q, w) 6= vx(q̃−i, q, w′) for all

(q̃−i, q) ∈ Q and all w, w′ ∈ W with w′ 6= w, we fix the unobserved part of the demand at the bundle
z0 := z(q0

M0
, q0

K, w0) and restrict attention to the relationship between the n-dimensional price-income
space Q ×W and the k-dimensional space of observed demand bundles {(z0, x), x ∈ XK}. The latter
space is open in Rk (recall that X is open in Rn), and thus can be covered by a collection of hyperplanes
{x ∈ XK : vx = ρ, ρ ∈ L} from some interval L ⊆ R. Letting x0 := x(q0

M0
, q0

K, w0), we show that the
hyperplane {x ∈ XK : vx = vx0} embeds the set X(z0,x0) := {x ∈ XK : x = x(q0

M0
, qK, w0), qK ∈ Vq0

K
} for

some neighbourhood Vq0
K

of q0
K in QK. But this is absurd given that% is differentiable only if the demand

system is an homeomorphism. For, on the one hand, being the image of Vq0
K

under an homeomorphic
demand, X(z0,x0) must be open in Rk. Yet, on the other hand, it must also lie within a hyperplane in Rk.

Given this result, Lemma A.2 establishes that% is differentiable only if the set of commodities whose
demands are unobserved is a singleton. To do so we exploit the fact that preference differentiability al-
lows for direct demand integrability along the indifference sets of% via the preference gradient function,
qK(·) - recall equation (3) above. Under the functional form in (7) and as B is invertible, the integrabil-
ity exercise leads to a quasi-indirect utility function which is quasi-linear in the unobserved demands.
To complete the argument we show that the linear part of the utility function cannot admit a multi-
dimensional consumption vector.

Finally, Lemma A.3 shows that% is differentiable only if the function α(·) does not vary with income
- its only possible argument as M0, and thus also QM0 , must be empty (Lemma A.2)). The argument
here is once again ad absurdum and exploits the functional form in (7) in conjunction with the fact that
B is invertible. Dropping now the subscript K from our notation, we fix again the unobserved part of
the demand at the level z0 := z(q0, w0) and restrict attention to the relationship between the (k + 1)-
dimensional price-income space QK ×W and the k-dimensional space of observed demand bundles
{(z0, x), x ∈ XK}. A contradiction obtains now by considering the set X(z0,x0) := {x ∈ XK : x :=
x(q, w0), (q, w) ∈ V(q0,w0)} for some neighbourhood V(q0,w0) of (q0, w0) in QK ×W. For as V(q0,w0) is open
in Rk+1, so should be its image under the homeomorphic demand. Yet the latter is contained in X(z0,x0) ⊂
Rk.

In light of these results, under preference differentiability the expression in (7) above reduces to the
following

x (q) := α + Bq, q ∈ QK (8)

where α ∈ Rk is a constant and B is non-singular, while M = {n}. Preference differentiability means
also that this formulation allows for integrability of the preference gradient function to trace out the
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indifference sets analytically. This leads to a complete characterization of the linear demand function in
terms of the generating preference relation.

Theorem 2 Let % be a continuous, strictly convex, and strictly monotonic weak order on X which generates the
observed demand function in (8). The following are equivalent.
(i). % is differentiable.
(ii). B is non-singular.
(iii). % is represented by the utility function u : X → R given by

u (z, x) := z− xB−1α + xB−1x/2 (9)

(iv). B is symmetric and negative definite.
(v). x(·) satisfies the strict Law of Demand:

(q′ − q′′)(x(q′)− x(q′′)) < 0 ∀q′, q′′ ∈ QK : q′ 6= q′′

Proof. That (i)⇔ (ii) is due to Theorem 1 while (iv)⇒ (v) holds trivially. Observe also that, QK being
open, (v) necessitates that B is non-singular.7 We only have to show thus that (ii)⇒ (iii)⇒ (iv).
(ii)⇒ (iii). Let B be non-singular (and, thus, % be differentiable). We can write then q = B−1(x − α)

where, by the very choice of normalization, we have q = −∇xlz(x|(z, x)) - recall equation (3) above. For
any given (z0, x0) ∈ X, therefore, we must obey the system of differential equations

∂z/∂xi =
(

B−1 (α− x)
)

i
, i = 1, . . . , k (10)

along the indifference curve I(z0,x0). Integrating along this curve gives

z = xB−1α− xB−1x/2 + c, (z, x) ∈ I(z0,x0)

where c remains constant along I(z0,x0). The claim follows by setting u(z, x) := c.
(iii)⇒ (iv). The utility maximization problem (UMP) for the objective in (9) results in the inverse de-
mand q(x) = B−1(α− x). Observe also that, being represented by the C1 utility function in (9),% is itself
C1 and thus differentiable. As a result, by Proposition 2 in Diasakos and Gerasimou (2020), q(·) must be
injective; hence, B−1 must be non-singular. It follows then that the total demand is ξ̃(·) := (z(·), x(·))
where x(·) is given by (8) while z(·) is given by z(q, w) := w − qx(q). It is trivial to check now that
ξ̃(·) satisfies the hypotheses of Theorem 1 in Hurwicz and Uzawa (1971). As a result, the Slutsky matrix
of ξ̃(·) must be symmetric and negative semidefinite. And as x(·) is given by the specification in (8),
the kth principal minor of the Slutsky matrix for ξ̃(·) - i.e., the Slutsky matrix for x(·) - coincides with
B. Therefore, B must be symmetric and negative semidefinite; more precisely, symmetric and negative
definite given that it is also non-singular.8

Remark. Within the realm of Theorem 2, the requirement that % be monotonic imposes the following
restriction on its domain:9

X ⊆ R++ ×
{

x ∈ Rn−1
++ : B−1 (α− x)� 0

}
7Let q′ ∈ QK . If B is singular, there must exist some v ∈ Rk \ {0} such that Bv = 0; hence, such that x(q′ + λv) = x(q′) for

any λ ∈ R \ {0} sufficiently small to give q′ + λv ∈ QK . Clearly, (v) above cannot hold if B is singular.
8Recall that a symmetric (square) matrix is positive semidefinite [resp. positive definite] if and only if all of its eigenvalues

are nonnegative [resp. strictly positive], while a (square) matrix is non-singular if and only if all of its eigenvalues are non-zero.
9For two vectors x, y ∈ Rn, we write x � y whenever xi < yi for all i ∈ {1, . . . , n}.
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3.2 When prices are normalized with respect to income

Returning to the case where the prices are normalized with respect to income, we will restrict attention
to demand functions ξ : Y → X that satisfy both of the following conditions.

(A*) The domain Y has non-empty interior: ∃(p, ε) ∈ Y×R++ such that Bp(ε) ⊂ Y.

(B*) For at least one of the commodities its quantity demanded responds to a change in its own relative
price, other things being equal:

∃ (i, p, δ) ∈ {1, . . . , n} ×Y×R \ {0} : p + δei ∈ Y ∧ ξi (p + δei) 6= ξi (p) (11)

Similarly to the preceding case, conditions (A*)-(B*) provide the theoretical underpinnings for the
key assumption in the literature that the observed linear demand system is incomplete (see Claim 1
and Remark (iii) in Section A). Letting again the demands of the commodities indexed by M be unob-
served and indexing the commodities with observed demands by K, the respective relative prices will
be depicted now by pM ∈ YM and pK ∈ YK. The observed linear demand system is given by

x (pM, pK) := α (pM) + BpK (pM, pK) ∈ Y (12)

where B is a k× k matrix of constants while a : YM → Rk is a continuous function.
A theoretical justification for the formulation in (12) is given by the assumption that the total demand

system ξ(·) satisfies conditions (A*)-(B*) above simultaneously. Regarding condition (B*), given condi-
tion (A*), it suffices for (11) that the matrix B has a non-zero diagonal element or a symmetric principal
minor (see Remarks (iii)-(iv) in Section A). With respect to condition (A*), on the other hand, it suffices
that the domain for the relative prices is open. A theoretical justification for this assumption is given by
the discussion in Section 2: if the demand system is generated by a strictly monotonic, strictly convex
and differentiable preference relation then Y is necessarily open.

And as before, differentiability of the underlying preference relation places additional restrictions
not only on the formulation for the observed linear demand but also on the total demand system itself.

Theorem 3 Let % be a continuous, strictly convex, and strictly monotonic weak order on X which generates the
observed demand function in (12). The following are equivalent.
(i). % is differentiable.
(ii). B is non-singular and M = {n}.

Proof. That (i)⇒ (ii) follows from Corollaries A.1 and A.2 (see Section A). The argument to show that
(ii)⇒ (i) is trivially similar to the respective part in the proof of Theorem 1.

Given these results, under preference differentiability and assuming that α(·) is also a linear function,
the expression in (12) above reduces to the following

x (pn, pK) := α + γpn + BpK, (pn, pK) ∈ Y (13)

9



where α, γ ∈ Rk are constants while M = {n}. In light of Theorem 3, preference differentiability allows
for direct integrability of the formulation in (13) along the indifference sets via the preference gradient
function. As before, this leads to a complete characterization of the linear demand function in terms of
the properties of the underlying generating preference.

Theorem 4 Let % be a continuous, strictly convex, and strictly monotonic weak order on X which generates the
demand function in (13). The following are equivalent.
(i). % is differentiable.
(ii). B is non-singular.
(iii). % is represented by the utility function u : X → R given by

u (z, x) :=
(

z + xB−1γ
)

exp
(
−
∫ xB−1 (x− α)

1− xB−1 (x− α)
dx
)

(14)

Proof. That (i)⇔ (ii) is due to Theorem 3. Moreover, since u(·) is C1 so must be%. Hence, the preference
is weakly smooth and that (iii)⇒ (i) is due to Proposition 2 in Diasakos and Gerasimou (2020). It remains
to show that (ii)⇒ (iii).
(ii)⇒ (iii). Let B be non-singular (and, thus, % be differentiable). Recall also equations (3)-(5). We have
p = pnqK with qK = −∇xlz(x|(z, x)) and pn = (z + qKx)−1. The given demand schedule can be written
therefore as follows

x = α + pn (BqK + γ)

or equivalently

qK = B−1
(

p−1
n (x− α)− γ

)
= B−1 ((z + qKx) (x− α)− γ)

= B−1 (x− α) qKx + B−1 (z (x− α)− γ)

This implies though that(
1− xᵀB−1 (x− α)

)
qKx− xᵀB−1 (x− α) z = −xᵀB−1γ

For any given (z0, x0) ∈ X, therefore, we must obey the differential equation

(1− f (x))
k

∑
j=1

xj∂z/∂xj − f (x) z = −g (x) γ (15)

along the indifference curve I(z0,x0), and where f (x) := xᵀB−1(x− α) while g(x) := xᵀB−1.
To integrate now along the indifference curve, take any j ∈ K and consider the parametrization xj :=
eτhj(s) with (τ, s) ∈ T × S for some functions hj : S → R++ and where T ⊂ R while S ⊂ Rk−1. Since
xj = ∂xj/∂τ, the PDE in (15) can be transformed to the following ODE

(1− f (x (τ, s)))dz/dτ − f (x (τ, s)) z = −g (x (τ, s)) γ

Restricting attention to the set
{
(z, x) ∈ X : xᵀB−1(x− α) 6= 1

}
, we can re-write this as10

dz/dτ − f (x (τ, s)) z
1− f (x (τ, s))

= − g (x (τ, s)) γ

1− f (x (τ, s))
10On the set

{
(z, x) ∈ X : xᵀB−1(x− α) = 1

}
(15) gives z = xᵀB−1γ. Our utility representation is such that u(z, x) = 0 along

the indifference curve I0 :=
{
(z, x) ∈ X : z = xᵀB−1γ ∧ xᵀB−1(x− α) = 1

}
.
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whose solution is straightforward:

z =
1

µ (x (τ, s))

(
c−

∫
µ (x (τ, s)) g (x (τ, s)) γ

1− f (x (τ, s))
dτ

)
(16)

where

µ (x (τ, s)) := exp
(
−
∫ f (x (τ, s))

1− f (x (τ, s))
dτ

)
while s is a vector of free parameters. Fix now these parameters and consider a change in τ. We have

∆ (eτµ (x (τ, s))) = µ (x (τ, s))∆eτ + eτ∆µ (x (τ, s))

= eτ

(
1− f (x (τ, s))

1− f (x (τ, s))

)
µ (x (τ, s))∆τ =

eτµ (x (τ, s))
1− f (x (τ, s))

∆τ

and thus

∆ (µ (x (τ, s)) g (x (τ, s))) = ∆
(

µ (x (τ, s)) x (τ, s)ᵀ B−1
)

= ∆

(
µ (x (τ, s))

k

∑
j=1

B−1
j eτhj (s)

)

= ∆ (eτµ (x (τ, s)))
k

∑
j=1

B−1
j hj (s)

=
eτµ (x (τ, s))

1− f (x (τ, s))

k

∑
j=1

B−1
j hj (s)∆τ

=
µ (x (τ, s))

1− f (x (τ, s))

k

∑
j=1

B−1
j xj (τ, s)∆τ

=
µ (x (τ, s))

1− f (x (τ, s))
B−1x (τ, s)∆τ =

µ (x (τ, s)) g (x (τ, s))
1− f (x (τ, s))

∆τ

That is,∫
µ (x (τ, s)) g (x (τ, s))

1− f (x (τ, s))
dτ = µ (x (τ, s)) g (x (τ, s))

and (16) reads

z = (c− µ (x (τ, s)) g (x (τ, s)) γ) /µ (x (τ, s))

Clearly, we have that

(z + µ (x) g (x) γ) = c, (z, x) ∈ I(z0,x0)

and the claim follows by setting u
(
z0, x0) := c.

Remark. Within the realm of Theorem 4, the requirement that % be monotonic imposes the following
restriction on its domain:

X ⊆
{
(z, x) ∈ Rn

++ : B−1

(
z + xᵀB−1γ

(1− xᵀB−1 (x− α))
2 (2x− α)− γ

)
� 0

}
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To conclude our analysis, a comparison between the statements of Theorem 1 and Theorem 3 but also
of Theorem 2 and Theorem 4 is noteworthy. Theorems 1 and 3 both establish that % being differentiable
is fundamentally related to B being non-singular and M being singleton. There is a key feature in the
proofs of Lemmas A.1-A.2 that renders Theorem 3 for its most part a corollary of Theorem 1. Namely,
whenever we appeal to the linearity of the demand formulation in (7), we do so while holding income
constant. We can do this also in the realm of the demand formulation in (12): x(·) is linear in qK for a
given pn. Yet, in contrast to Theorem 1, Theorem 3 does not claim that α(·) must be a constant. In the
proof of Lemma A.3 we use that the linear part of x(·) in (7) is independent of income.11 This property
does not obtain under the formulation in (12).

The single discrepancy in the statements of Theorems 1 and 3 accounts in turn for the difference in
scope between Theorems 2 and 4. The very fact that α(·) is constant in (8) ensures that the kth principal
minor of the Slutsky matrix for ξ̃(·) coincides with B. Being also non-singular, the latter must be sym-
metric and negative definite; as a result, x(·) must also obey the strict Law of Demand. Needless to say,
the formulation in (12) does not allow for an immediate mapping between the Slutsky matrix for ξ(·)
and B.

As a final remark, notice that α, γ, and B in (13) are all scalars when k = 1. (15) reads then

(x (x− α)− β)dz/dx− (x− α) z = γ (17)

For a closed-form solution for u(·) in this case, see Alperovich and Weksler (1996).12

4 Discussion and related literature

To compare the present analysis with the pertinent literature, we should note first that the studies most
relevant for Section 3.1 above are those in LaFrance (1985) and Amir et al. (2017), while for Section
3.2 is that in Alperovich and Weksler (1996). LaFrance (1985) examines the demand formulation in (7)
distinguishing between two cases: whether or not a(·) is function of income. For the case where a(·) is
independent of income, he takes B to be symmetric and negative semidefinite and establishes that the
underlying utility function must be quasi-linear/quadratic. The latter is a quasi-direct utility, conditional
upon the relative prices of the unobserved commodities. For the case where a(·) does vary with income,
LaFrance (1985) shows that the conditional (upon the relative prices of the unobserved commodities as
well as income in this case) utility function must be Leontief. Amir et al. (2017) take the set of unobserved
commodities to be a singleton and the demand formulation to be given by (8). They show that this can
be generated by the utility function in (9) if B−1 is a symmetric, negative definite matrix with non-zero
diagonal entries. Finally, Alperovich and Weksler (1996) investigate the demand formulation in (13) for
the case where n = 2; they obtain a closed-form solution for the utility function in (14) for this special
case.

As we established in the opening paragraphs of Sections 3.1-3.2, restricting attention to the incom-
plete demand systems in (7)-(8) or (12)-(13) can be justified by the conjunction of conditions (A)-(B) or

11More precisely, as the linear part of x(·) in (7) is separated from the part that varies with income, we can ensure that ε(·)
as defined by (32) below varies only with λ, not with qK .

12Equation (17) is equivalent to equation (5) in Alperovich and Weksler (1996) - once a typo in their equations (3)-(5) has been
corrected.
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(A*)-(B*), respectively, for the complete demand system. With respect to conditions (A) and (A*), it suf-
fices that the domains Q ×W and Y, respectively, are open - an assumption to be found in all three
studies above. Regarding conditions (B) and (B*), given conditions (A) and (A*), respectively, it suffices
for either of (6) and (11) that the matrix B has a non-zero diagonal element or a symmetric principal
minor (see Remarks (iii)-(iv) in the Appendix).13 The former restriction is assumed in Amir et al. (2017),
where the diagonal elements of B are all non-zero, but also in Alperovich and Weksler (1996) where B is
a non-zero scalar. The latter restriction can be found in LaFrance (1985) where B itself is symmetric.

With respect to the restrictions placed on the matrix B, under the formulation in (8), the matrix being
symmetric and negative semidefinite can be justified by assuming that the Slutsky matrix of the com-
plete demand system itself is symmetric and negative semidefinite. Yet our analysis facilitates a direct
connection with the underlying rationalizing preference. By our Theorem 1, as long as the preference
relation is (at least weakly) smooth, B must also be non-singular; hence, B being negative semidefinite
is equivalent to B being negative definite. Equally importantly, the possibility of more than one un-
observed commodities in LaFrance (1985) is a vacuous generalization while his argument for the case
where a(·) does vary with income should be read as ad absurdum, if the demand system is generated by
(at least weakly) smooth preferences - to conclude that the latter must be Leontief is absurd. As for the
analysis in Amir et al. (2017), Theorem 1 provides underpinnings for the theoretical framework itself.
Their starting point is a continuously differentiable utility function; hence, a utility representation for
preferences that are weakly smooth. A linear demand system generated by such preferences can only
have the form in (8).

Our analysis in Section 3.1 relates also to the study in Nocke and Schutz (2017) who investigate
the integrability of demand systems of the form x(q) - i.e., the observed demands are independent of
income - that satisfy the Law of Demand and for which there exists a function v(·) such that ∇qv(q) =
−x(q). Nocke and Schutz (2017) establish the existence of a rationalizing objective function, z + φx(q),
where the convex function φx(q) := infq>>0{qx + v(q)} is minimized at qx: x = x(qx). It should be
noted though that their objective lends itself to a direct utility function if and only if x(·) is invertible;
for then we can define the inverse demand function q(·) and proceed to get the direct utility function
U(z + x) = z + φx(q(x)). When x(·) is in particular linear, the demand system investigated in Nocke
and Schutz (2017) coincides with that in (8). In this case, x(·) is invertible if and only if B is non-singular
(Theorem 1). And as the latter property requires that B is also symmetric (Theorem 2), we get that
v(q) = −αq− qᵀBq/2 while φx(q) = qᵀx x− qᵀx Bqx/2 with q: x = α + Bq. Moreover, B being in addition
non-singular, we have qx = B−1(x− α) and U(z, x) takes the form in (9) .

Our analysis bears also implications on the quest for microfoundations of demand estimation. Theo-
rems 1-2 place strong restrictions on the functional form of quadratic utility the applied economist may
appeal to. For instance, the form (x − α)A(x − α) - see Deaton (1978) - is valid only if the (n − 1)-th
principal minor of A is symmetric and negative definite while Ann = 0 = Ajn + Anj for j = 1, · · · , n− 1.
Similarly, an additive utility function - see Houthakker (1960) - is consistent with linear demand only if
it is of the form u(z, x) = z + ∑j∈K(αjxj + bjx2

j ) while for all j = 1, · · · , n− 1 we have bj = 0 if αj = 0; the

13Remarks (iii)-(iv) in the Appendix highlight sufficient conditions for the hypothesis (C*) in Claim 2. The intuition for the
latter result is that the gradient of the complete demand system with respect to the vector of relative prices cannot be constant
everywhere. Our intuition agrees with that in Jaffe and Weyl (2010) which shows that the complete demand system cannot be
linear under discrete choice.
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constant-coefficients matrix of the corresponding linear demand is diagonal.
Most importantly perhaps, our results shed new light on the quest for microfoundations of linear

demand systems in the context of applications in theoretical industrial organization. Amir et al. (2017)
suggest that models of multi-variate linear demand functions for differentiated products ought to be re-
garded with some suspicion when the demand functions in question do not satisfy the Law of Demand.
Their tone is understandably cautious given their key hypothesis of an underlying strictly concave quasi-
linear/quadratic utility function. By contrast, as it offers a complete characterization of linear demand
functions in terms of the underlying rationalizing preferences, the present analysis leads to far more
commanding conclusions. Multi-variate linear demand functions for differentiated products that do not
satisfy the (strict) Law of Demand or are income dependent are not rationalizable - at least not by rational
preferences smooth enough to allow for tractable utility functions.

In the more specific context of duopoly, Bos and Vermeulen (2020) investigate whether a linear de-
mand system can be rationalized by a representative agent.14 They restrict attention to the quadratic
part of the utility function in (9) keeping their analysis agnostic on the linear part. This leads to the
conclusion that linear demand is inconsistent with strictly monotonic and strictly convex rationalizing
preferences.15 The present study paints a very different picture: linear demand systems are fully consis-
tent with continuous, strictly monotonic, strictly convex, and weakly smooth rationalizing preferences.
However, this microfoundation of linear demand cannot be agnostic about the unobserved part of the
demand system. For it implies that linear demand systems depict general, not partial, equilibrium anal-
ysis.

The unobserved part of a rationalizable linear demand system cannot be ignored by appealing to the
usual “other things being equal” assumption, nor by assuming some (sufficiently high) unspent income
in the background. For the (representative) agent this is an integral part of her preference relation - one
depicting a single (numeraire) commodity whose quantity demanded is determined by what remains
from her income once her observed expenditure has been funded. If we want to interpret the unob-
served part as some basket of goods and services (i.e, a Hicksian composite commodity), we have to
accept that there are no substitution or income effects within this basket. The agent does not care about
the composition of the basket; she cares only about its aggregate size. If we want to impose a ceteris
paribus assumption on her (unobserved) income, we have to accept that her (equally unobserved) con-
sumption of the numeraire commodity must vary along the observed demand hyperplane (modulo the
zero-measure subset where observed expenditure remains constant).
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A Supporting results

To make the exposition in this section less cumbersome, for y ∈ Rn and i ∈ N we will use the notation yi

and y−i in lieu of y{i} and yN\{i}, respectively. That is, yi and y−i will denote, respectively, the projections
of y on the ith dimension of Rn and on the subspace that results from Rn when the ith dimension is
removed. Taking also j ∈ N \ {i}, we will use the notation y−(i,j) in lieu of yN\{i,j}; i.e., y−(i,j) will
denote the projection of y on the subspace that results from Rn when both the ith and jth dimensions are
removed. Finally, as usual, ||y|| denotes the Euclidean norm of y while ei denotes the vector in Rn with
1 as its ith entry and zeroes everywhere else.

Claim 1 Let the demand system ξ : Y → X be given by ξ(p) := α + Ap, where α and A are, respectively, a
constant n-dimensional real vector and an n× n real matrix. Suppose also that ξ(·) satisfies Walras’ law. Then at
least one of the following conditions

(A) ∃(p, ε) ∈ Y×R++ such that Bp(ε) ⊂ Y

(C) ∃ε ∈ Rn \ {0} such that εAε 6= 0,

cannot hold.

Proof. To establish the claim arguing ad absurdum, suppose that both conditions hold simultaneously.
Letting (p, ε) ∈ Y ×R++ be as in (A) and ε ∈ Rn \ {0} be as in (C), take λ ∈ (0, 1) sufficiently small so
that λ||ε|| ≤ 1 and define the (−ε, ε)→ Y function p(δ) := p + δλε. By Walras’ law we ought to have

pα + pAp = pξ (p) = 1 = p (δ) ξ (p (δ)) = p (δ) α + p (δ) Ap (δ)

= pα + pAp + δλεα + δλεAp + δ2λ2εAε + δλpAε

As this implies in turn that

δ = −εα + εAp + pAε

λεAε
∀δ ∈ (−ε, 0) ∪ (0, ε) (18)

the desired contradiction obtains immediately.
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Claim 2 Let the demand system ξ̃ : Q×W → X be given by ξ̃(q) := α + Aq, where α and A are, respectively,
a constant n-dimensional real vector and an n× n real matrix. Suppose also that ξ̃(·) satisfies Walra’s law. Then
at least one of the following conditions,

(A*) ∃(q, ε) ∈ Q×W ×R++ such that Aq(ε) ⊂ Q×W

(C*) ∃ε ∈ Rn \ {0} such that ε−i A−iε 6= 0 - where A−i denotes the (n− 1)× n matrix that results from A
when its ith row is removed, -

cannot hold.

Proof. Letting (q, ε) ∈ Y ×R++ be as in (A*) and ε ∈ Rn \ {0} be as in (C*), take λ ∈ (0, 1) sufficiently
small so that λ||ε|| ≤ 1 and define the (−ε, ε) → Y function q(δ) := q + δλε. Using Walras’ law again
we now have

δλ = w + δλ− w

= ξi (q + δλε) + (q−i + δλε−i) ξ−i (q + δλε)− (ξi (q) + q−iξ−i (q))

= ξi (q + δλε)− ξi (q) + q−i (ξ−i (q + δλε)− ξ−i (q)) + δλε−iξ−i (q + δλε)

= δλ (Ar
i ε + q−i A−iε + ε−iα−i + ε−i A−iq + δλε−i A−iε)

where Ar
i denotes the ith row of A. As the last equality above means that

δ =
1−

(
Ar

i ε + q−i A−iε + ε−iα−i + ε−i A−iq
)

λε−i A−iε
∀δ ∈ (−ε, 0) ∪ (0, ε)

the claim follows.

Remarks
(i). Notice that (11) in the main text is a sufficient condition for hypothesis (C) in Claim 1. To see this,
suppose that condition (C) above does not hold. We have then εAε = 0 for all ε ∈ B0(1). Letting
ε := ei/2 we get that Aii = 0 for all i ∈ {1, . . . , n}. But then (11) cannot hold.

(ii) Similarly, (6) in the main text is a sufficient conditon for hypothesis (C*) in Claim 2. To see this,
suppose that (C*) above does not hold. We have then ε−i Aε = 0 for all ε ∈ B0(1). Letting ε := ej/2 we
get that Ajj = 0 for all j ∈ {1, . . . , n} \ {i}. But then (6) cannot obtain.

(iii). Condition (11) [resp. (6)] in the main text is equivalent to the requirement that one of the diagonal
elements of A [resp. A−i] is not zero.

(iv). For hypothesis (C) [resp. (C*)] to hold, it suffices that one of the principal minors of A [resp. A−i] is
symmetric.
To see this for hypothesis (C), suppose again that εAε = 0 for all ε ∈ B0(1). Letting now ε := ei + ej for
arbitrary i, j ∈ {1, . . . , n} with i 6= j, we get that Aii + Aij + Aji + Ajj = 0; i.e., that Aij + Aji = 0 (for, as
observed above, we also have Aii = 0 = Ajj).
For hypothesis (C*), suppose again that ε−i A−iε = 0 for all ε ∈ B0(1). Letting now ε := ej + ek for
arbitrary j, k ∈ {1, . . . , n} \ {i} with j 6= k, we get that Ajj + Ajk + Akj + Akk = 0; i.e., that Ajk + Akj = 0
(for we also have Ajj = 0 = Akk).
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Lemma A.1 Let the continuous, strictly convex and strictly monotonic weak order % on X generate the de-
mand function ξ̃ : Q → X whose projection on the dimensions in K, x : QM0 × QK ×W → XK, is given by
x (qM0 , qK, w) := α (qM0 , w)− BqK for some function a : QM0 ×W → Rn. Then % is differentiable only if B is
non-singular.

Proof. To establish the contrapositive statement, let B be singular; that is, let there be v ∈ Rn \ {0} such
that Bv = 0. Take an arbitrary x0 ∈ XK. Since the complete demand system ξ̃ (·) generated by % is onto
- see Proposition 1 in Diasakos and Gerasimou (2020) - there exists

(
q0

M0
, q0

K, w0

)
∈ QM0 ×QK ×W such

that x0 = x
(

q0
M0

, q0
K, w0

)
. To argue ad absurdum, suppose also that % is differentiable. As this implies

that QM0 ×QK ×W is open - see Theorem 1 in Diasakos and Gerasimou (2020) - we may take λ0 ∈ R++

sufficiently small so that
(

q0
M0

, q0
K + λv, w0

)
∈ QM0 × QK ×W for all λ ∈ (−λ0, λ0). Define then the

function q : (−λ0, λ0) → QK by q (λ) := q0
K + λv. This gives x

(
q0

M0
, q (·) , w0

)
= x0. Moreover, letting

z0 := z
(

q0
M0

, q0
K, w0

)
, we have

z0
n + q0

M0
z0 + q (λ) x0 = w0 +

(
q (λ)− q0

K
)

x0 = w0 + λvx0 (19)

and

zn
(
q0

M0
, q (λ)

)
+ q0

M0
z−n

(
q0

M0
, q (λ)

)
+ q0

Kx
(
q0

M0
, q (λ)

)
= w0 +

(
q0

K − q (λ)
)

x
(
q0

M0
, q (λ)

)
= w0− λvx0

(20)

If vx0 = 0, the desired contradiction obtains immediately. For, on the one hand, the bundle
(
z0, x0) is

affordable at the price vector
(

q0
M0

, q (λ) , w0

)
while at the same time

(
z
(

q0
M0

, q (λ)
)

, x
(

q0
M0

, q (λ)
))

is affordable at
(

q0
M0

, q0
K, w0

)
. Yet, on the other hand, % is differentiable only if the demand system is

injective - see again Theorem 1 in Diasakos and Gerasimou (2020). The two bundles being thus distinct,
we have a violation of the WARP.16

Suppose next that vx (qM0 , qK, w) 6= 0 for all (qM0 , qK, w) ∈ QM0 × QK ×W. We must consider the
following cases.
Case I: There exists w′ ∈W \ {w0} such that vx

(
q0

M0
, q0

K, w′
)
= vx0.

Observe first that, letting ∆α
(

q0
M0

, w0

)
:= α

(
q0

M0
, w′
)
− α

(
q0

M0
, w0

)
, we have

x
(
q0

M0
, q0

K, w′
)
− ∆α

(
q0

M0
, w0
)
= x

(
q0

M0
, q0

K, w0
)
= x0 = x

(
q0

M0
, q0

K + λv, w0
)

(21)

Letting also ∆w := w′ − w0 and λ := −∆w/vx0 we get that

w0 − λvx0 = w′ = zn
(
q0

M0
, q0

K, w′
)
+ q0

M0
z−n

(
q0

M0
, q0

K, w′
)
+ q0

Kx
(
q0

M0
, q0

K, w′
)

= zn
(
q0

M0
, q0

K, w′
)
+ q0

M0
z−n

(
q0

M0
, q0

K, w′
)
+ q0

K
(
x0 + ∆α

(
q0

M0
, w0
))

= zn
(
q0

M0
, q0

K, w′
)
+ q0

M0
z−n

(
q0

M0
, q0

K, w′
)
+ w0 − z0

n − q0
M0

z0 + q0
K∆a

(
q0

M0
, w0
)

and thus

zn
(
q0

M0
, q0

K, w′
)
+ q0

M0
z−n

(
q0

M0
, q0

K, w′
)
= z0

n + q0
M0

z0 − λvx0 − q0
K∆a

(
q0

M0
, w0
)

(22)

16The demand system ξ̃ (·) results from the maximization of the rational and strictly convex preference %. It is well known
that ξ̃ (·) must satisfy the Weak Axiom of Revealed Preference.
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However, (21) and (22) together imply that

zn
(
q0

M0
, q0

K, w′
)
+ q0

M0
z−n

(
q0

M0
, q0

K, w′
)
+
(
q0

K + λv
)

x
(
q0

M0
, q0

K, w′
)

= z0
n + q0

M0
z0 − λvx0 − q0

K∆α
(
q0

M0
, w0
)
+
(
q0

K + λv
) (

x0 + ∆α
(
q0

M0
, w0
))

= z0
n + q0

M0
z0 + q0

Kx0 + λv∆α
(
q0

M0
, w0
)

= w0 + λv
(
x
(
q0

M0
, q0

K, w′
)
− x

(
q0

M0
, q0

K, w0
))

= w0

as well as that

zn
(
q0

M0
, q0

K + λv, w0
)
+ q0

M0
z−n

(
q0

M0
, q0

K + λv, w0
)
+ q0

Kx
(
q0

M0
, q0

K + λv, w0
)

= w0 +
(
q0

K −
(
q0

K + λv
))

x
(
q0

M0
, q0

K + λv, w0
)
= w0 − λvx0 = w′

another violation of the WARP.
Case II: vx (qM0 , qK, w′) 6= vx (qM0 , qK, w) for all (qM0 , qK, w) , (qM0 , qK, w′) ∈ QM0 ×QK ×W.
Consider the sets

Q0 :=
{
(qM0 , qK, w) ∈ QM0 ×QK ×W : z (qM0 , qK, w) = z0}

X0
K :=

{
(z, x) ∈ X : z = z0}

Since X is open in Rn
++, the set X0

K is open in Rk
++. Since the total demand is an homeomorphism so is

its restriction x : Yz0 → X0
K; hence, Yz0 is also open in Rk

++. Moreover, the hyperplane

X∗K :=
{

x ∈ X0
K : vx = vx0}

being open in Rk−1
++ , so is the preimage

Q∗ :=
{
(qM0 , qK, w) ∈ Q0 : x (qM0 , qK, w) ∈ X∗K

}
Observe now that, for any x

(
q1

M0
, q1

K, w1

)
, x
(

q2
M0

, q2
K, w2

)
∈ X∗K, we have

0 = vx
(

q1
M0

, q1
K, w1

)
− vx

(
q2

M0
, q2

K, w2
)

= vx
(

q1
M0

, q1
K, w1

)
− vx

(
q2

M0
, q2

K, w1
)
+ vx

(
q2

M0
, q2

K, w1
)
− vx

(
q2

M0
, q2

K, w2
)

(23)

As a result, x
(

q2
M0

, q2
K, w1

)
∈ X∗K renders the first difference on the right-hand side of (23) above

zero, necessitating in turn that vx
(

q2
M0

, q2
K, w1

)
= vx

(
q2

M0
, q2

K, w2

)
. Yet the latter equality contradicts

the very hypothesis that defines the case under consideration. Clearly, for any w1 6= w2, we have
x
(

q2
M0

, q2
K, w1

)
6∈ X∗K if x

(
q2

M0
, q2

K, w2

)
∈ X∗K. Similarly, we have that

0 = vx
(

q1
M0

, q1
K, w1

)
− vx

(
q2

M0
, q2

K, w2
)

= vx
(

q1
M0

, q1
K, w1

)
− vx

(
q1

M0
, q1

K, w2

)
+ vx

(
q1

M0
, q1

K, w2

)
− vx

(
q2

M0
, q2

K, w2
)

(24)

And as the first difference on the right-hand side of (24) cannot be zero, for any
(

q1
M0

, q1
K

)
6=
(

q2
M0

, q2
K

)
,

we must have x
(

q1
M0

, q1
K, w2

)
6∈ X∗K if x

(
q2

M0
, q2

K, w2

)
∈ X∗K.

Let now Q∗n and Q∗M0∪K be, respectively, the projections of Q∗ along the income and the remaining n− 1
price dimensions. The preceding argument means that there must exist a bijection f : Q∗n → Q∗M0∪K such
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that any x (qM0 , qK, w) ∈ X∗K can be written as x ( f (w) , w). However, since Q∗M0∪K is open in Rk−2
++ while

X∗K is open in Rk−1
++ , this is absurd. For, on the one hand, the homeomorphism f (·) necessitates that

k− 2 = 1. On the other hand, the graph of f (·) being open in R++, the homeomorphism x (graph f (·))
on X∗K necessitates that k− 1 = 1.
Given the preceding contradiction, we conclude that income remains constant (at w0) along the hyper-
plane X∗K. We will show now that, for any q1

K, q2
K ∈ QK with q1

K 6= q2
K, we cannot have vx

(
q0

M0
, q1

K, w0

)
6=

vx
(

q0
M0

, q2
K, w0

)
. To argue by contradiction, let

vB
(

q2
K − q1

K

)
= vx

(
q0

M0
, q2

K, w0
)
− vx

(
q0

M0
, q1

K, w0

)
6= 0

Choose (κ, w) ∈ (0, 1)× Bw0 such that vα
(
q̃0, w

)
= vα

(
q̃0, w0

)
− κvB

(
q2

K − q1
K
)
.17 Letting q3

K := κq2
K +

(1− κ) q1
K, we now have

v
(

x
(

q0
M0

, q1
K, w0

)
− x

(
q0

M0
, q3

K, w
))

= v
(

B
(

q1
K − q3

K

)
+ α

(
q̃0, w0

)
− α

(
q̃0, w

))
= κvB

(
q1

K − q2
K

)
+ v

(
α
(
q̃0, w0

)
− α

(
q̃0, w

))
= 0

This contradicts though that income remains constant along X∗K.
Clearly, we have{

x ∈ X0
K : x = x

(
q0

M0
, qK, w0

)
, qK ∈ QK

}
⊆ X∗K (25)

Take now ε ∈ R++ sufficiently small so that Bq0
K
(ε) ⊂ Q0

K - where Q0
K is the projection of Q0 on QK.

Consider also the budget sets

B (qK) :=
{

x ∈ X : qKx = w0 − q0
M0

z0} , qK ∈ QK

The restriction of the preference relation % on X ×
{

z0} being strictly convex, strictly monotonic, and
continuous, we obtain an homeomorphic demand function x̃ : Q∗K → X where Q∗K is an open subset

of the set
(

w0 − q0
M0

z0
)−1

QK. Letting now κ1 = min
{

1, 1/
(

w0 − q0
M0

z0
)}

and comparing x̃ (·) with

x0 (·) := x
(

q0
M0

, ·, w0

)
on Bq0

K
(κ1ε) reveals the desired contradiction. For we must have

(
z0, x0 (qK)

)
%(

z0, x̃ (qK)
)

everywhere on Bq0
K
(κ1ε). Yet, x̃ (·) being an homeomorphism, the image set x̃

(
Bq0

K
(κ1ε)

)
is

an open neighbourhood of x0 in Rk
++ while (25) necessitates that x0

(
Bq0

K
(κ1ε)

)
⊆ X∗K, which is open in

Rk−1
++ . The contradiction is due to the monotonicity of %.

Corollary A.1 Let the continuous, strictly convex and strictly monotonic weak order% on X generate the demand
function ξ : Y → X whose projection on the dimensions in K, x : PM × PK → XK given by x (pM, pK) :=
α (pM)− Bp for some function α : PM → Rn. Then % is differentiable only if B is non-singular.

Proof. Recall how the two sets of normalized prices are related: (pM, pK) = pn ((1, qM0) , qK) and
pn = 1/w. The argument in the preceding proof remains valid once we replace w0, w′, w, w1, and

17By hypothesis, in this case, α
(
q̃0, ·

)
is a non-constant function; hence, by continuity, vα

(
q̃0, ·

)
is one-to-one on a sufficiently

small neighbourhood of w0. Observe also that, choosing κ sufficiently small, brings w arbitrarily close to w0. The existence of
w follows from the continuity of α

(
q̃0, ·

)
.
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w2, respectively, by 1/p0
n, 1/p′n, 1/pn, 1/p1

n, and 1/p2
n.

A slight adjustment must be in Case I. Letting now ∆α
(

q0
M0

, p0
n

)
:= α

(
q0

M0
, p′n
)
− α

(
q0

M0
, p0

n

)
, we have

x
(
q0

M0
, q0

K, p′n
)
− ∆α

(
q0

M0
, p0

n
)
− ∆pBq0

K = x
(
q0

M0
, q0

K, p0
n
)
= x0 = x

(
q0

M0
, q0

K + λv, p0
n
)

(26)

where ∆p0
n := p′n − p0

n and λ := ∆p0
n/
(

p0
n p′nvx0). That is,

1/pn − λvx0 = 1/p′n = zn
(
q0

M0
, q0

K, p′n
)
+ q0

M0
z−n

(
q0

M0
, q0

K, p′n
)
+ q0

Kx
(
q0

M0
, q0

K, p′n
)

= zn
(
q0

M0
, q0

K, p′n
)
+ q0

M0
z−n

(
q0

M0
, q0

K, p′n
)
+ q0

K
(
x0 + ∆α

(
q0

M0
, p0

n
)
+ ∆p0

nBq0
K
)

= zn
(
q0

M0
, q0

K, p′n
)
+ q0

M0
z−n

(
q0

M0
, q0

K, p′n
)

+1/p0
n − q0

M0
z0 + q0

K
(
∆α
(
q0

M0
, p0

n
)
+ ∆p0

nBq0
K
)

and thus

zn
(
q0

M0
, q0

K, p′n
)
+ q0

M0
z−n

(
q0

M0
, q0

K, p′
)
= z0

n + q0
M0

z0
−n − λvx0 − q0

K
(
∆α
(
q0

M0
, p0

n
)
+ ∆p0

nBq0
K
)

(27)

Now (26)-(27) imply that

zn
(
q0

M0
, q0

K, p′n
)
+ q0

M0
z−n

(
q0

M0
, q0

K, p′n
)
+
(
q0

K + λv
)

x
(
q0

M0
, q0

K, p′n
)

= z0
n + q0

M0
z0
−n − λvx0 − q0

K
(
∆α
(
q0

M0
, p0

n
)
+ ∆p0

nBq0
K
)

+
(
q0

K + λv
) (

x0 + ∆α
(
q0

M0
, p0

n
)
+ ∆pBq0

K
)

= z0
n + q0

M0
z0
−n + q0

Kx0 + λv
(
∆a
(
q0

M0
, p0

n
)
+ ∆p0

nBq0
K
)

= 1/p0
n + λv

(
x
(
q0

M0
, q0

K, p′n
)
− x0) = 1/p0

n

as well as

zn
(
q0

M0
, q0

K
)
+ q0

M0
z−n

(
q0

M0
, q0

K + λv, p0
n
)
+ q0

Kx
(
q0

M0
, q0

K + λv, p0
n
)

= 1/p0
n +

(
q0

K −
(
q0

K + λv
))

x
(
q0

M0
, q0

K + λv, p0
n
)

= 1/p0
n − λvx0 = 1/p′n

Yet

p0
nzn
(
q0

M0
, q0

K, p′n
)
+ p0

nq0
M0

z−n
(
q0

M0
, q0

K, p′n
)
+ p0

n
(
q0

K + λv
)

x
(
q0

M0
, q0

K, p′n
)

= 1 = p′nzn
(
q0

M0
, q0

K + λv, p0
n
)
+ p′nq0

M0
z−n

(
q0

M0
, q0

K + λv, p0
n
)
+ p′nq0

Kx
(
q0

M0
, q0

K + λv, p0
n
)

is a violation of the WARP.

Lemma A.2 Let the continuous, strictly convex and strictly monotonic weak order % on X generate the de-
mand function ξ̃ : Q → X whose projection on the dimensions in K, x : QM0 × QK ×W → XK, is given by
x (qM0 , qK, w) := α (qM0 , w) − BqK for some function a : QM0 ×W → Rn. Then % is differentiable only if
M0 = ∅.

Proof. To argue ad absurdum, let j ∈ M0 6= ∅. Recall first that % is differentiable at (z, x) if and only if
the vector of relative prices (qM0 , qK) is the unique subgradient of ln (·| (z, x)) at (z−n, x). Hence,% being
differentiable, we have

ln ((z−n, x) | (z, x)) + qM0 z−n + qKx ≤ ln ((z̃−n, x̃) | (z, x)) + qM0 z̃−n + qK x̃
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for any (z̃−n, x̃) ∈ I−i
(z,x). And as ln (·| (z, x)) is differentiable everywhere along the latter set, this neces-

sitates in fact that

0 = ∇z−n ln ((z−n, x) | (z, x)) + qM0 (28)

0 = ∇xln ((z−n, x) | (z, x)) + qK (29)

Take now
(

q0
M0

, q0
K, w0

)
∈ QM0 × QK ×W, and let z0 := z

(
q0

M0
, q0

K, w0

)
and x0 := x

(
q0

M0
, q0

K, w0

)
.

Obviously, the system (28)-(29) must hold everywhere on the indifference set I(z0,x0). Given this, if we

restrict attention to relative price changes in the set
{

q0
M0

}
× QK, we move along I(z0,x0) as long as we

obey the following system of partial differential equations

∂zn/∂zj = −q0
j , j ∈ M0

∂zn/∂xj = −qj (w, x) =
(

B−1 (α (q0
M0

, w
)
− x
))

j
, j ∈ K

where the last equality above uses the fact that B is non-singular (recall Lemma A.1). Integrating then
along I(z0,x0), we have

zn = xB−1α
(
q0

M0
, w
)

B−1 − xB−1x/2− q0
M0

z−n + c0, (z, x) ∈ I(z0,x0)

where c0 remains constant along I(z0,x0). We can define thus a quasi-indirect utility function v : X×M→
R by setting v

(
z0, x0, q0

M0

)
:= c0; that is, by letting

v (z, x, qM0 , w) := −xB−1α (qM0 , w) B−1 + xB−1x/2 + qM0 z−n + zn

= −xB−1x/2 + q (x, qM0 , w) x + qM0 z−n + zn

Notice now that, as X is open in Rn
++, taking ε0 > 0 sufficiently small, the hyperplane

X∗M :=
{(

z, x0) ∈ X : z :=
(

z0
n + q0

j ε, z0
j − ε, z0

−(n,j)

)
, ε ∈ (0, ε0)

}
lies in X and is open in Rn−k−1

++ . Consider also renormalizing the prices relative to income. As p0
n := 1/w0

and p0
j = q0

j /w0, we get that

p0
Mz = p0

Mz0 +
(

p0
nq0

j − p0
j

)
ε = p0

Mz0 (30)

or equivalently p0
Mz0 + p0

Kx0 = 1 = p0
Mz + p0

Kx0. Clearly,
(
z0, x0) � (z, x0) for any

(
z, x0) ∈ X∗M.

Observe next that the hyperplane

Y∗−(n,j) :=
{(

pM0\j, pK

)
∈ YM0\{j} ×YK : pM0\jz

0
M0\j + pKx0 = 1−

(
p0

nz0
n + p0

j z0
j

)}
is open in Rn−3

++ , and restrict the homeomorphic total demand ξ(·) to the domain Yj × Yn × Y∗−(n,j). The
restriction itself being homeomorphic, the image set ξ(Yj ×Yn ×Y∗−(n,j)) must be also open in Xj × Xn ×
Rn−3

++ . Moreover, since (p0
M, p0

K) ∈ Yj × Yn × Y∗−(n,j), ξ(Yj × Yn × Y∗−(n,j)) must include a neighbourhood
of (z0, x0) in Xn × Xj ×Rn−3

++ . That is, ξ(Yj ×Yn ×Y∗−(n,j)) ∩ X∗M 6= ∅.
Choosing, therefore, a sufficiently small ε1 ∈ (0, ε0), we can find

(
p1

M, p1
K
)
∈ Yj × Yn × Y∗−(n,j) such that

z1 = z
(

p1
M, p1

K
)

and x0 = x
(

p1
M, p1

K
)

where z1 :=
(

z0
n + q0

j ε1, z0
j − ε1, z0

−(n,j)

)
. Now, since

(
z1, x0) ∈ X∗M,

we must have
(
z0, x0) � (z1, x0). Taking w1 := 1/p1

n and q1
j = w− 1p1

j , this necessitates that

0 < p1
M

(
z0 − z1

)
+ p1

K
(
x0 − x0) = − (p1

nq0
j − p1

j

)
ε1 = −

(
q0

j − q1
j

)
ε1/w1
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i.e., that q1
j > q0

j . Yet as we also have

p0
nz0

n + p0
j z0

j = 1−
(

p1
M\{j}z

0
−(n,j) + p1

Kx0
)

= p1
nz1

n + p1
j z1

j

=
(

z1
n + q1

j z1
j

)
/w1

>
(

z1
n + q0

j z1
j

)
/w1

=
w0

w1

(
p0

nz1
n + p0

j z1
j

)
=

w0

w1

(
p0

nz0
n + p0

j z0
j

)
we get in fact that w0 < w1. This implies in turn that

z0
n + q0

M0
z0
−n + q0

Kx0 = w0 < w1

= z1
n + q1

M0
z1
−n + q1

Kx0

= z1
n +

(
q1

M0
− q0

M0

)
z1
−n +

(
q1

K − q0
K

)
x0 + q0

Kx0 + q0
M0

z1
−n

= z1
n +

(
q1

M0
− q0

M0

)
z1
−n +

(
q1

K − q0
K

)
x0 + q0

Kx0 + w0 p0
M\{n}z

1
−n

= z1
n +

(
q1

M0
− q0

M0

)
z1
−n +

(
q1

K − q0
K

)
x0 + q0

Kx0

+w0

(
p0

M\{n}z
0
−n + p0

n

(
z0

n − z1
n

))
= z1

n +
(

q1
M0
− q0

M0

)
z1
−n +

(
q1

K − q0
K

)
x0 + q0

Kx0 + w0

(
p0

M\{n}z
0
−n − p0

nε1

)
< z1

n +
(

q1
M0
− q0

M0

)
z1
−n +

(
q1

K − q0
K

)
x0 + q0

Kx0 + w0 p0
M\{n}z

0
−n

= z1
n +

(
q1

M0
− q0

M0

)
z1
−n +

(
q1

K − q0
K

)
x0 + q0

Kx0 + q0
M0

z0
−n

where the penultimate equality above follows from (30). Clearly, we have that

z1
n − z0

n +
(

q1
M0
− q0

M0

)
z1
−n +

(
q1

K − q0
K

)
x0 > 0 (31)

But then we must have

v
(

z1, x0, q1
M0

, w1

)
= −xB−1x/2 + q

(
x0, q1

M0
, w1

)
x0 + q1

M0
z1
−n + z1

n

= −xB−1x/2 + q1
Kx0 + q1

M0
z1
−n + z1

n

> −xB−1x/2 + q0
Kx0 + q0

M0
z0
−n + z0

n

= −xB−1x/2 + q
(
x0, q0

M0
, w0
)

x0 + q0
M0

z0
−n + z0

n = v
(
z0, x0, q0

M0
, w0
)

the inequality above due to (31). And as this means that
(
z1, x0) � (z0, x0), the desired contradiction

follows from the absurdity
(
z1, x0) � (z0, x0) � (z1, x0).

Corollary A.2 Let the continuous, strictly convex and strictly monotonic weak order% on X generate the demand
function ξ : Y → X whose projection on the dimensions in K, x : PM × PK → XK given by x (pM, pK) :=
α (pM)− Bp for some function α : PM → Rn. Then % is differentiable only if M0 = ∅.

Proof. Recall again how the two sets of normalized prices are related: (pM, pK) = pn ((1, qM0) , qK). The
preceding proof applies as is - with the slight adjustment that B above should be replaced by pnB.
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Lemma A.3 Let the continuous, strictly convex and strictly monotonic weak order % on X generate the de-
mand function ξ̃ : Q → X whose projection on the dimensions in K, x : QM0 × QK ×W → XK, is given by
x (qM0 , qK, w) := α (qM0 , w)− BqK for some function a : QM0 ×W → Rn. Then % is differentiable only if α (·)
is a constant.

Proof. Let % be differentiable. As M0 = ∅ (Lemma A.2), α (·) can be a function only of income. In what
follows, we will drop the subscript K from the members of QK and write (7) as x (q, w) := α (w) + Bq. To
argue ad absurdum, suppose that α (·) is not constant around the arbitrary point w0 ∈ W. Letting then
λ0 ∈ R++ be sufficiently small, we must have α (w) 6= α (w0) for all w ∈ (w0 − λ0, w0 + λ0) \ {w0}. Take
also an arbitrary q0 ∈ QK and let x0 := x

(
q0, w0

)
and z0 := z

(
q0, w0

)
. Consider also the sets

QKz0 := {q ∈ QK : z (q, w0) = z0}
Xz0 := {(z, x) ∈ X : z = z0}

Since X is open in Rn
++, the set Xz0 is open in Rn−1

++ . Since the total demand is an homeomorphism so is
the mapping x : Yz0 → Xz0 ; hence, QKz0 is also open in Rn−1

++ . And as
(
z0, x0) ∈ Xz0 , taking ε0, ρ0 ∈ R++

both sufficiently small ensures that Bx0 (ε0) ⊂ Xz0 and Bq0 (ρ0) ⊂ QKz0 .
Recall now that, % being differentiable, B is non-singular (Lemma A.1). As a result, the function

x0 (q) := α (w0) + Bq

defines an homeomorphism x0 : Bq0 (ρ0) → Bx0 (ε0). Moreover, since α (w0 + λ) 6= α (w0), we have
x (q, w0) 6= x (q, w0 + λ) for all (λ, q) ∈ (−λ0, λ0) × Bq0 (ρ0). In fact, letting λ1 ∈ (0, λ0) and ρ1 ∈
(0, ρ0) both sufficiently small so that ||α (w0 + λ)− α (w0) || < ε0/2 for all λ ∈ (−λ1, λ1) and x (q, w0) ∈
Bx0 (ε/2) for all q ∈ Bq0 (ρ1), we have

||x (q, w0 + λ)− x0|| ≤ ||x (q, w0 + λ)− x (q, w0) ||+ ||x (q, w0)− x0||
= ||α (w0 + λ)− α (w0) ||+ ||x (q, w0 + λ)− x0|| < ε0

That is, x (q, w0 + λ) ∈ Bx0 (ε0) for all (λ, q) ∈ (−λ1, λ1)×Bq0 (ρ1). And as x0 (·) is an homeomorphism,
we have that

∃! qλ ∈ Bq0 (ρ0) : x (q, w0 + λ) = x0(qλ)

Define then the (−λ1, λ1)→ Bq0 (ρ0) function ε (q, λ) := qλ − q, and observe that the last relation above
can be also written as

x (q, w0 + λ) = x (q + ε (q, λ) , w0)

Clearly, for all (λ, q) ∈ (−λ1, λ1)×Bq0 (ρ1), we have

ε (q, λ) = ε (λ) := B−1 (α (w0 + λ)− α (w0)) (32)

This implies in turn that

x (q− ε (λ) , w0 + λ) = B (q− ε (λ)) + α (w0 + λ)

= Bq− (α (w0 + λ)− α (w0)) + α (w0 + λ) = x (q, w0)
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and thus

w0 + λ = z (q− ε (λ) , w0 + λ) + (q− ε (λ)) x (q− ε (λ) , w0 + λ)

= z (q− ε (λ) , w0 + λ) + (q− ε (λ)) x (q, w0)

= z (q− ε (λ) , w0 + λ) + w0 − z (q, w0)− ε (λ) x (q, w0)

or, equivalently,

z (q− ε (λ) , w0 + λ) = z (q, w0) + λ + ε (λ) x (q, w0) (33)

Recall now the quasi-indirect utility function we obtained in the proof of Lemma A.2. As M0 = ∅, this
reads here

v (z, x, w) = xB−1x/2 + q (x, w) x + z

That is,

v (q− ε (λ) , w0 + λ) = x (q− ε (λ) , w0 + λ) B−1x (q− ε (λ) , w0 + λ) /2

+ (q− ε) x (q− ε (λ) , w0 + λ) + z (q− ε (λ) , w0 + λ)

= x (q, w0) B−1x (q, w0) /2 + (q− ε) x (q, w0)

+z (q, w0) + λ + ε (λ) x (q, w0)

= v (q, w0) + λ (34)

which implies in turn that λ 7→ z (q, λ) := z (q− ε (λ) , w0 + λ) is an injective function.18 Hence, for any
q ∈ Bq0 (ρ1), the image of z (q, λ) on (−λ1, λ1) is an open neighbourhood around the point z (q, w0).
Take now δ0 ∈ R++ such that the neighbourhood Bz0 (δ0) lies within the domain. Let also z0 (λ) :=
z
(
q0, λ

)
. By the preceding argument, taking λ2 ∈ (0, λ1) sufficiently small, z0 (·) on (−λ2, λ2) maps

onto Bz0 (δ1) for some δ1 ∈ (0, δ0).
Fix now some λ ∈ (−λ2, λ2) and consider the sets

QKz0(λ) :=
{
(q, w0 + λ) ∈ QK : z (q− ε (λ) , w0 + λ) = z0 (λ)

}
Xz0(λ) :=

{
(z, x) ∈ X : z = z0 (λ)

}
By the same argument as in the opening paragraph above, Xz0(λ) and QKz0(λ) are open in Rn−1

++ . And as
q0 ∈ QKz0(λ), choosing ρλ ∈ (0, ρ1) sufficiently small, we get Bq0 (ρλ) ⊂ QKz0(λ). Moreover, using (33)
above, we have that

0 = z (q− ε (λ) , w0 + λ)− z0 (λ)

=
(
z (q, w0) + λ + ε (λ) x (q, w0)− z

(
q0, w0

)
− λ− ε (λ) x

(
q0, w0

))
=

(
z0 + λ + ε (λ) x (q, w0)− z0 − λ− ε (λ) x0)

= ε (λ)
(
x0 (q)− x0) ∀q ∈ Bq0 (ρλ)

18To see first that z (q, ·) is a function, notice that we cannot have z′, z′′ ∈ z (q, λ) with z′ 6= z′′. For (34) would imply then
that (z′, x (q, w0)) ∼ (z′′, x (q, w0)), an absurdity under monotonicity. To see now that z (q, ·) must be injective, observe that
we cannot have z (q, λ′) = z (q, λ′′) with λ′ 6= λ′′. For, letting z′ := z (q, λ1), (34) would imply now that (z′, x (q, w0)) �
(z′, x (q, w0)).
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As though x0 (·) is an homeomorphism, it maps Bq0 (ρλ) onto Bx0 (ελ) for some ελ ∈ (0, ε0). We have
established thus that ε (λ)

(
x− x0) = 0 for every x ∈ Bx0 (ελ); equivalently, that ε (λ) = 0. To complete

the argument, recall (32). Since B−1 is non-singular, ε (λ) = 0 implies that α (w0 + λ) = α (w0). And as
λ above was chosen arbitrarily, α (·) must remain constant on (w0 − λ2, w0 + λ2).
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