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Abstract

Nonlinear McKendrick equation with age-dependent mortality and

fertility is considered. In [1] the author deduced the characteristic equa-

tion whose roots determine the stability. We are able to give sufficient

conditions for the stability of the stationary solutions of the system in

some cases.
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1 Introduction

Non-linear age-dependent models have a recent history. Many biological phe-
nomenons can be modelled better by non-linear differential equations. Age-
specific mortality and fertility are among the most basic parameters of the
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theory of population dynamics and demography. In the present paper we shall
consider the following McKendrick-type equation [2],[5] .

∂p(t, a)

∂t
+

∂p(t, a)

∂a
= −µ(a, P (t))p(t, a) (1.1)

p(0, a) := p0(a),

where p(t, a) denotes the density of individuals of age a at time t,

P (t) =

∫ M

0

p(t, a)da (1.2)

is the quantity of the total population at time t; µ(a, P (t)) denotes the intrinsic
mortality and β(a, P (t)) the fertility.
The density of newborns at time t is given by

p(t, 0) =

∫ M

0

β(a, P (t))p(t, a)da. (1.3)

We assume a finite maximal age denoted by M .
This type of models has a wide literature. There exists results about sta-

bility in special cases. In [4] Sect. IV an Allee-logistic model is treated where
the main assumption is that the mortality does not depend on the size of the
population, and a factorization property for the fertility rate β(a, P (t)) is as-
sumed. In the next section we will able to give sufficient condition for stability
under the same assumptions.

Our motivation is that the characteristic equation deduced by the author
in [1] seems to be very useful deciding stability as an example in [1] presented
first by Gurtin and MacCamy in [3] shows.

2 µ does not depend on P (t)

Recall the characteristic equation corresponding to the stationary solution of
(1.1)-(1.3), p1(a) = p1(0)e−

∫ a
0 µ(s,P1)ds from [1]
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K(λ) = A11(λ)A22(λ)− A12(λ)A21(λ) + A12(λ) + A21(λ) = 1

where

A11(λ) =

∫ M

0

e−λae−
∫ a
0 µ(s,P1)dsda,

A12(λ) = −p1(0)

∫ M

0

e−λae−
∫ a
0 µ(s,P1)ds(

∫ a

0

µ′P (s, P1)e
λsds)da,

A21(λ) =

∫ M

0

e−λaβ(a, P1)e
−

∫ a
0 µ(s,P1)dsda,

A22(λ) = p1(0)(

∫ M

0

β′P (a, P1)e
−

∫ a
0 µ(s,P1)dsda−

∫ M

0

e−λaβ(a, P1)e
−

∫ a
0 µ(s,P1)ds

∫ a

0

µ′P (s, P1)e
λsdsda)

where P1 =
∫ M

0
p1(a)da is the quantity of the total population.

Recall the following notations:

π(a, P (t)) = e−
∫ a
0 µ(s,P (t))ds, R(P (t)) =

∫ M

0

β(a, P (t))π(a, P (t))da

where the second term denotes the so called net reproductive number and
R(P1) = 1 at any stationary solution, obviously.

Now suppose that µ(a, P (t)) = m(a) and β(a, P (t)) = b(a)f(P ) where
b(.), m(.), f(.) ∈ C1.

Theorem 1. The characteristic equation K(λ) = 1 for any stationary
solution p1(a) is stable if and only if R′(P1) < 0.

Proof. Under the assumptions for the vital rates above the characteristic
equation reduces to the following

∫ M

0

e−λaπ(a)β(a, P1)da +

∫ M

0

e−λaπ(a)da

∫ M

0

β′P (a, P1)p1(0)π(a)da = 1
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and ∫ M

0

β′P (a, P1)p1(0)π(a)da =

∫ M

0

f ′(P1)p1(0)b(a)π(a)da.

For any stationary solution∫ M

0

β(a, P1)π(a)da =

∫ M

0

f(P1)b(a)π(a)da = 1,

and with
p1(0) =

P1∫ M

0
π(a)da

we get

K(λ) = 1 =

∫ M

0

e−λaπ(a)b(a)f(P1)da +

∫ M

0

e−λaπ(a)da
P1∫ M

0
π(a)da

f ′(P1)

f(P1)
.

Now suppose that f ′(P1) > 0 holds. Then it is easy to see that for the
characteristic equation K(λ)

limλ→−∞K(λ) = +∞ limλ→+∞K(λ) = 0

and K(λ) is a strictly monotone decreasing function of λ, so there exists
exactly one real λ for which K(λ) = 1 holds. Now we are going to show that
λ ≥ 0 holds. Contrary, suppose that λ < 0. Then for every a ∈ [0, M ] we have
e−λa ≥ 1. Then∫ M

0

e−λaπ(a)b(a)f(P1)da >

∫ M

0

π(a)b(a)f(P1)da = 1,

and ∫ M

0

e−λaP1
π(a)∫ M

0
π(a)da

f ′(P1)

f(P1)
da > 0.

This shows that K(λ) > 1 for every λ < 0.
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On the other hand if f ′(P1) < 0 then suppose that there exists a solution
λ = x + iy with x ≥ 0. Then the characteristic equation assumes the form

1 = Re(K(λ)) =

∫ M

0

e−xacos(ya)π(a)b(a)f(P1)da

+

∫ M

0

e−xacos(ya)π(a)da
P1∫ M

0
π(a)da

f ′(P1)

f(P1)

and Im(K(λ)) = 0.
If x ≥ 0 then e−xa ≤ 1 and |cos(ya)| ≤ 1, so that

Re(K(λ)) ≤
∫ M

0

π(a)b(a)f(P1)da + P1
f ′(P1)

f(P1)
da ≤ 1 + P1

f ′(P1)

f(P1)
< 1,

a contradiction.
Finally observe that R′(P1) < 0 ⇐⇒ f ′(P1) < 0 because R(P ) =∫ M

0
b(a)f(P )π(a)da.�
This result is in accordance with the example of Gurtin-MacCamy (see

[1],[3]), because now m′(P ) ≡ 0 and −β′(P1) > 0 ⇐⇒ f ′(P1) < 0.

3 µ does depend on P

Now suppose the following vital rates, both of them depending on P

β(a, P ) = b(a)f(P ), µ(a, P ).

The characteristic equation is

K(λ) = A11(λ)A22(λ)− A12(λ)A21(λ) + A12(λ) + A21(λ) = 1,

where now
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A11(λ) =

∫ M

0

e−λaπ(a, P1)da,

A12(λ) = −p1(0)

∫ M

0

e−λaπ(a, P1)

∫ a

0

µ′P (s, P1)e
λsdsda

A21(λ) =

∫ M

0

e−λaβ(a, P1)π(a, P1)da

A22(λ) = p1(0)(

∫ M

0

β′P (a, P1)π(a, P1)da−
∫ M

0

e−λaβ(a, P1)

∫ a

0

µ′P (s, P1)e
λsdsπ(a, P1)da).

Theorem 2. The stationary solution p1(a) corresponding to the popula-
tion quantity P1 is asymptotically stable if f ′(P1) < 0 and µ′P (., P1) > 0.

Remark. We are to prove that under the conditions above the character-
istic equation cannot have roots with positive or zero real part, and we refer
to [4] Th.I.5.1, where it is proven that if there exist a root with positive real
part then there exists a real positive root, too.

Proof. We are going to prove that under the conditions for the vital rates
for any real λ ≥ 0 we have K(λ) < 1.
Observe that A21(λ) ≤ 1 ⇐⇒ λ ≥ 0, so it is enough to prove

A11(λ)A22(λ)− A12(λ)A21(λ) + A12(λ) < 0

or

−A11(λ)A22(λ)− A12(λ) > −A12(λ)A21(λ). (3.1)

Simplifying the first term of A22(λ) we get:

A22(λ) = p1(0)(
f ′(P1)

f(P1)
−

∫ M

0

e−λab(a)f(P1)

∫ a

0

eλsµ′P (s, P1)dsπ(a, P1)da).
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Now we are going to substitute the Aij(λ) into the inequality (3.1):

−f ′(P1)

f(P1)
p1(0)

∫ M

0

e−λaπ(a, P1)da+

+p1(0)

∫ M

0

e−λaπ(a, P1)da(

∫ M

0

e−λab(a)f(P1)π(a, P1)

∫ a

0

eλsµ′P (s, P1)dsda)+

+p1(0)

∫ M

0

e−λaπ(a, P1)

∫ a

0

eλsµ′P (s, P1)dsda >

> p1(0)(

∫ M

0

e−λaπ(a, P1)

∫ a

0

eλsµ′p(s, P1)dsda)(

∫ M

0

e−λaβ(a, P1)π(a, P1)da).

(3.2)
Omitting the first term of the left-hand side and dividing by p1(0) we get

(

∫ M

0

e−λaπ(a, P1)da)(

∫ M

0

e−λaβ(a, P1)π(a, P1)

∫ a

0

eλsµ′P (s, P1)dsda)+

+

∫ M

0

e−λaπ(a, P1)

∫ a

0

eλsµ′P (s, P1)dsda >

> (

∫ M

0

e−λaπ(a, P1)

∫ a

0

eλsµ′P (s, P1)dsda)(

∫ M

0

e−λaβ(a, P1)π(a, P1)da) (3.3)

which implies (3.2).

Subtracting the second term of the left-hand side we get

(

∫ M

0

e−λaπ(a, P1)da)(

∫ M

0

e−λaβ(a, P1)π(a, P1)

∫ a

0

eλsµ′P (s, P1)dsda) >
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> (

∫ M

0

e−λaπ(a, P1)

∫ a

0

eλsµ′P (s, P1)dsda)(

∫ M

0

e−λaβ(a, P1)π(a, P1)da− 1).

(3.4)
Finally observe that for λ ≥ 0 we have e−λa ≤ 1 so that

(

∫ M

0

e−λaβ(a, P1)π(a, P1)da− 1) ≤ 0.

The first factor of the right-hand side of (3.4) is positive because µ′(., P1) >

0, thus the right-hand side is negativ while the left-hand side is positive. This
proves (3.3) wich implies (3.2). �

Remark. Under the assumptions on the vital rates in the theorem R′(P1) <

0 holds.

R(P (t)) =

∫ M

0

β(a, P (t))π(a, P (t))da

R′(P1) =

∫ M

0

β′P (a, P1)π(a, P1) + β(a, P1)π
′
P (a, P1)da

π′P (a, P1) = −
∫ a

0

µ′P (s, P1)dse−
∫ a
0 µ(s,P1)ds = −π(a, P1)

∫ a

0

µ′p(s, P1)ds

R′(P1) =

∫ M

0

β′P (a, P1)π(a, P1)da−
∫ M

0

β(a, P1)π(a, P1)

∫ a

0

µ′P (s, P1)dsda

If β′p(., P1) < 0, µ′P (., P1) > 0 then R′(P1) < 0.
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