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1. The characteristic equation

Non-linear age-dependent biomathematical models have a recent history.

Many biological phenomenons can be modelled better by non-linear differ-

ential equations. Age-specific mortality and fertility are among the most

basic parameters of the theory of population dynamics and demography. In

the present paper we shall consider the following McKendrick-type equa-

tion.

∂p(t, a)

∂t
+

∂p(t, a)

∂a
= −µ(a, P (t))p(t, a) (1.1)

p(0, a) := p0(a),

where p(t, a) denotes the density of individuals of age a at time t,

P (t) =

∫ M

0

p(t, a)da (1.2)

is the quantity of the total population at time t; µ(a, P (t)) denotes the

intrinsic mortality and β(a, P (t)) the fertility, which depend on P (t), in

general, which makes the PDE (1.1) a non-linear one. (It is assumed that

the vital rate functions β, µ are non-negative C1 functions.)

The density of newborns at time t is given by

p(t, 0) =

∫ M

0

β(a, P (t))p(t, a)da. (1.3)
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We assume a finite maximal age denoted by M .

Recall now the characteristic equation corresponding to the stationary

solution of the system (1.1)-(1.3), p1(a) = p1(0)e−
R

a

0
µ(s,P1)ds from 1

K(λ) = A11(λ)A22(λ) − A12(λ)A21(λ) + A12(λ) + A21(λ) = 1 (1.4)

where

A11(λ) =

∫ M

0

e−λae−
R

a

0
µ(s,P1)dsda,

A12(λ) = −p1(0)

∫ M

0

e−λae−
R

a

0
µ(s,P1)ds(

∫ a

0

µ′

P (s, P1)e
λsds)da,

A21(λ) =

∫ M

0

e−λaβ(a, P1)e
−

R

a

0
µ(s,P1)dsda,

A22(λ) = p1(0)(

∫ M

0

β′

P (a, P1)e
−

R

a

0
µ(s,P1)dsda−

−

∫ M

0

e−λaβ(a, P1)e
−

R

a

0
µ(s,P1)ds

∫ a

0

µ′

P (s, P1)e
λsdsda).

Here P1 =
∫ M

0
p1(a)da is the quantity of the total population.

Recall the following notations:

π(a, P (t)) = e−
R

a

0
µ(s,P (t))ds, R(P (t)) =

∫ M

0

β(a, P (t))π(a, P (t))da

where the second term denotes the so called net reproductive number

and R(P1) = 1 at any stationary solution, obviously.

2. Conditions for stability

Although Gurtin and McCamy deduced a characteristic equation in 2 for a

stationary solution of the system (1.1)-(1.3) in a completely different form,

they didn’t used it to proove stability except one very special example.

In the following two theorem we summarize our results obtained by the

localization of the roots of this “new” characteristic equation (1.4), deduced

by the author in 1.
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Theorem 2.1.

In the case of µ(a, P ) = m(a), β(a, P ) general the stationary solution

p1(a) at total population quantity P1 is stable if β′(., P1) < 0, if instead

β′(., P1) > 0 then it is unstable.

The following theorem gives a condition which implies instability of the

stationary solution p1(a) for general µ(a, P ), β(a, P ).

Theorem 2.2.

If R′(P1) > 0 holds then the stationary solution p1(a) at total population

quantity P1 is unstable.
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