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Abstract 

Disease has been identified as a major problem in the aquaculture industry for 

the welfare of the fish stocked as well as for its economic impact.  The number 

of diseases affecting cultured fish has increased significantly during recent 

years with the emergence of several conditions that have added to the overall 

impact of disease on the industry.  Frequently, a lack of scientific knowledge 

about these diseases is compounded by an absence of effective treatment and 

control strategies.  This has been the case with rainbow trout gastroenteritis 

(RTGE), an emerging disease of rainbow trout (Oncorhynchus mykiss 

Walbaum).  This study investigated several aspects related to its aetiology and 

control. 

A retrospective survey of UK rainbow trout farmers was undertaken to ascertain 

the extent and severity of RTGE in the UK as well as to identify RTGE risk 

factors at the site level.  Participants in this study accounted for over 85% of UK 

rainbow trout production in 2004.  It was found that the total number of RTGE-

affected sites had risen from 2 in the year 2000 to 7 in 2005.  The disease was 

only reported from sites producing more than 200 tonnes of trout/year for the 

table market.  Analysis of risk factors associated with RTGE at the site level 

showed that this syndrome was associated with large tonnage and rapid 

production of rainbow trout for the table market.  The data collected during this 

study enabled the identification of those sites that were most likely to present 

with RTGE the following year and this information was used to study the 

epidemiology of RTGE at the unit level. 
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A prospective longitudinal study was undertaken in 12 RTGE-affected UK sites.  

It described in detail the impact, presentation, current control strategies and 

spread pattern of RTGE within affected UK sites.  The risk factors associated 

with RTGE presence and severity were also investigated.  Data were collected 

for each productive unit (i.e. cage, pond, raceway or tank) on the mortalities, 

fish origin, site management and environmental factors.  RTGE was identified 

using a case definition based on gross pathological lesions.  Analysis of these 

data revealed that RTGE behaved in an infectious manner.  This conclusion 

was supported by the presence of a pattern typical of a propagating epidemic 

within affected units.  Also, the risk of an unaffected unit becoming RTGE 

positive was increased if it had received fish from or was contiguous to a RTGE-

affected unit.  The presentation also suggested an incubation period of 20-25 

days.  Risk factor analysis identified management and environmental risk 

factors for RTGE, including high feed input and stressful events, which could be 

used to generate a list of control strategies. 

A study of the histopathological and ultrastructural presentation of RTGE was 

conducted.  The location of segmented filamentous bacteria (SFB) and 

pathological changes found in affected fish were examined.  Pyloric caeca were 

the digestive organ where SFB were found more frequently and in higher 

numbers, suggesting that this was the best location to detect SFB in RTGE-

affected trout.  Scanning and transmission electron microscopy revealed a 

previously undescribed interaction of SFB with the mucosa of distal intestine 

and pyloric caeca and this included the presence of attachment sites and SFB 

engulfment by enterocytes, as previously described in other host species.  The 

SFB were not always adjacent to the pathological changes observed in the 
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digestive tract of RTGE-affected trout.  Such changes included cytoskeletal 

damage and osmotic imbalance of enterocytes, with frequent detachment.  

These observations suggested that if SFB are indeed the cause of RTGE their 

pathogenesis must involve the production of extracellular products. 

Analysis of the gross presentation and blood biochemistry in RTGE-affected fish 

was used to examine the patho-physiologic mechanisms of RTGE.  To enable 

identification of positive RTGE cases for this study, a case definition was 

created from the information available on RTGE gross presentation in the 

literature.  This case definition was assessed in a sample including 152 fish 

cases and 152 fish controls from 11 RTGE-affected UK sites, matched by unit 

of origin.  The analysis of these fish using bacteriology, packed cell volume 

(PCV) and histopathology revealed that RTGE occurred simultaneously with 

other parasitic and bacterial diseases in a percentage of fish identified with this 

case definition.  With the information gained after analysing the gross 

presentation, RTGE-affected fish without concurrent disease were selected for 

the study of the pathogenesis, which included blood biochemical analyses.  

These analyses revealed a severe osmotic imbalance, and a reduced 

albumin/globulin ratio suggesting selective loss of albumin, typical for a protein 

losing enteropathy. 

The role of the SFB “Candidatus arthromitus” in the aetiology of RTGE was 

assessed using a newly developed “C. arthromitus”-specific polymerase chain 

reaction assay (PCR) in conjunction with histological detection.  This technique 

was applied to eight different groups of trout, including an RTGE-affected group 

and seven negative control groups.  This analysis was conducted on DNA 

extracted from paraffin wax-embedded tissues as well as fresh intestinal 
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contents.  The results revealed the presence of “C. arthromitus” DNA in 

apparently healthy fish from sites where RTGE had never been reported.  

Additionally, SFB were observed histologically in two trout from an RTGE-free 

hatchery.  These findings do not permit the exclusion of “C. arthromitus” as the 

aetiological agent for RTGE, although they suggest that the presence of these 

organisms in the digestive system of healthy trout is not sufficient to cause 

clinical disease, and therefore other factors are necessary. 

In conclusion, this study has used a multidisciplinary approach to the study of 

RTGE which has generated scientific information related to the epidemiology, 

pathogenesis and aetiology of this syndrome.  The results of this project have 

suggested priority areas where further work is required, including experimental 

transmission of RTGE, field assessment of the control strategies proposed and 

further investigation into the aetiology of RTGE. 



Acknowledgements 

VII 
 

Acknowledgements 

I would like to extend my sincere gratitude to the following people for the 

contribution in the completion of this PhD thesis: 

First of all, I would like to thank my supervisors, Prof. James F. Turnbull, Dr. 

Mags Crumlish and Prof. Hugh W. Ferguson for their support, encouragement, 

valuable guidance, and help throughout the period of my study.  I am especially 

grateful for the special effort they made for the final corrections of this work. 

I am especially grateful to Elizabeth Stenhouse for her support at the most 

critical moment during these three and a half years.  She may never know how 

much she helped me to persevere in this path instead of choosing an easier 

one just by listening to my troubles with a sympathetic ear...you were right, it 

was worth it. 

My gratitude also goes to everyone at the Institute of Aquaculture who has 

provided valuable help and advice through these studies, especially to all the 

technical, administrative staff and my fellow students.  You know you are far too 

many to fit in one page and you also know this task was impossible without your 

help.  I am indebted to all of you. 

My love goes to my girlfriend Begoña. Thanks for her endless love, support and 

patience. It also goes to all my family, who has always given me their 

unconditional support throughout all my life. This also goes for all my friends, 

the ones who are here and the ones who are away. 

 

Thanks to all of you!!! 



Table of Contents 

VIII 
 

Table of Contents 
               Page N⁰ 
Declaration........................................................................................................ II 
Abstract............................................................................................................ III 
Acknowledgements........................................................................................ VII 
Table of contents........................................................................................... VIII 
List of Figures................................................................................................ XIII 
List of Tables................................................................................................ XVII 

CHAPTER 1.  General Introduction ........................................................... 1-1 

1.1.  The relevance of rainbow trout gastroenteritis ................................... 1-1 

1.1.1. Aquaculture in the world, Europe and the UK .............................................1-1 

1.1.2. Rainbow trout in aquaculture ......................................................................1-5 

1.1.3. Impact of diseases on the UK trout farming industry ................................1-10 

1.2.  Current knowledge of rainbow trout gastroenteritis .......................... 1-14 

1.2.1. Terminology ..............................................................................................1-14 

1.2.2. History .......................................................................................................1-14 

1.2.3. Epidemiology ............................................................................................1-16 

1.2.4. Gross presentation....................................................................................1-17 

1.2.5. Histopathology ..........................................................................................1-19 

1.2.6. Aetiology ...................................................................................................1-20 

1.2.6.1. Segmented filamentous bacteria .................................................................... 1‐20 

1.2.6.2. Viral aetiology ................................................................................................. 1‐24 

1.2.7. Control strategies ......................................................................................1-25 

1.3.  Conclusion ....................................................................................... 1-26 

1.4.  Project outline .................................................................................. 1-27 

1.5.  References ....................................................................................... 1-29 

CHAPTER 2.  A Retrospective Cross-Sectional Study on Rainbow Trout 
Gastroenteritis (RTGE) in the UK ............................................................... 2-36 

2.1.  Abstract ............................................................................................ 2-36 

2.2.  Introduction ...................................................................................... 2-37 



Table of Contents 

IX 
 

2.3.  Materials and Methods ..................................................................... 2-39 

2.3.1. Participants ...............................................................................................2-40 

2.3.2. Questionnaire design and validation .........................................................2-40 

2.3.3. Survey approach and participation ...........................................................2-41 

2.3.4. Data Management and Analysis ...............................................................2-42 

2.4.  Results ............................................................................................. 2-43 

2.4.1. Study response and participant sites ........................................................2-43 

2.4.2. Impact and distribution of RTGE in the UK ...............................................2-45 

2.4.3. Univariable analysis ..................................................................................2-46 

2.4.4. Multivariable analysis ................................................................................2-48 

2.5.  Discussion ........................................................................................ 2-50 

2.6.  Acknowledgements .......................................................................... 2-54 

2.7.  References ....................................................................................... 2-55 

CHAPTER 3.  Prospective Longitudinal Study of “Candidatus 
arthromitus” Associated Rainbow Trout Gastroenteritis in the UK ....... 3-58 

3.1.  Abstract ............................................................................................ 3-58 

3.2.  Introduction ...................................................................................... 3-59 

3.3.  Materials and Methods ..................................................................... 3-61 

3.3.1. Study design .............................................................................................3-61 

3.3.2. Study population and inclusion criteria .....................................................3-61 

3.3.3. Data Collection..........................................................................................3-62 

3.3.3.1. RTGE case definition and recording ................................................................ 3‐63 

3.3.3.2. Independent variables .................................................................................... 3‐63 

3.3.3.2.1. Environment ............................................................................................. 3‐65 

3.3.3.2.2. Feeding practices ..................................................................................... 3‐65 

3.3.3.2.3. Fish stocking data ..................................................................................... 3‐65 

3.3.3.2.1. Disease management ............................................................................... 3‐66 

3.3.3.2.2. Mortalities ................................................................................................ 3‐66 

3.3.3.2.3. Movement and contiguity data ............................................................... 3‐66 

3.3.4. Statistical analysis .....................................................................................3-67 



Table of Contents 

X 
 

3.3.4.1. Incubation period descriptive analysis ............................................................ 3‐67 

3.3.4.2. Descriptive analysis of RTGE treatments ........................................................ 3‐67 

3.3.4.3. Analysis of RTGE spread pattern ..................................................................... 3‐67 

3.3.4.4. Cases and controls study ................................................................................. 3‐69 

3.3.4.5. General linear model....................................................................................... 3‐71 

3.4.  Results ............................................................................................. 3-72 

3.4.1. Descriptive results .....................................................................................3-72 

3.4.1.1. Site characteristics and RTGE impact at the site level .................................... 3‐72 

3.4.1.2. RTGE presentation in affected units ............................................................... 3‐72 

3.4.1.3. RTGE incubation period .................................................................................. 3‐74 

3.4.1.4. RTGE treatments ............................................................................................. 3‐74 

3.4.1.5. Pattern of spread ............................................................................................ 3‐77 

3.4.2. Cases and controls study..........................................................................3-80 

3.4.3. General linear model.................................................................................3-81 

3.5.  Discussion ........................................................................................ 3-82 

3.6.  Acknowledgements .......................................................................... 3-89 

3.7.  References ....................................................................................... 3-90 

CHAPTER 4.  Histopathology & Ultrastructure of “Candidatus 
arthromitus”-Associated Rainbow Trout Gastroenteritis ........................ 4-93 

4.1.  Abstract ............................................................................................ 4-93 

4.2.  Introduction ...................................................................................... 4-94 

4.3.  Materials and methods ..................................................................... 4-96 

4.3.1. RTGE gross case definition ......................................................................4-96 

4.3.2. Fish sampling and sample processing ......................................................4-96 

4.3.3. “Candidatus arthromitus” histological presence ........................................4-97 

4.3.4. Ultrastructural description of RTGE ..........................................................4-98 

4.4.  Results ............................................................................................. 4-99 

4.4.1. “Candidatus arthromitus” histological presence ......................................4-100 

4.4.2. Ultrastructural description of RTGE ........................................................4-103 

4.4.2.1. Scanning electron microscopy ...................................................................... 4‐103 



Table of Contents 

XI 
 

4.4.2.2. Transmission electron microscopy ................................................................ 4‐106 

4.5.  Discussion ...................................................................................... 4-109 

4.6.  Acknowledgements ........................................................................ 4-113 

4.7.  References ..................................................................................... 4-114 

CHAPTER 5.  A Study of Gross, Histological and Blood Biochemical 
Changes in Rainbow Trout (Oncorhynchus mykiss W.) with Rainbow Trout 
GastroEnteritis (RTGE) ............................................................................. 5-117 

5.1.  Abstract .......................................................................................... 5-117 

5.2.  Introduction .................................................................................... 5-118 

5.3.  Materials and Methods ................................................................... 5-120 

5.3.1. RTGE case definition ..............................................................................5-120 

5.3.2. Fish sampling ..........................................................................................5-120 

5.3.3. Sample processing .................................................................................5-121 

5.3.1. RTGE case definition assessment ..........................................................5-122 

5.3.2. Weight and condition factor in RTGE fish ...............................................5-123 

5.3.3. Blood Biochemistry .................................................................................5-123 

5.3.4. Statistical analysis ...................................................................................5-124 

5.4.  Results ........................................................................................... 5-124 

5.4.1. Fish sampling ..........................................................................................5-124 

5.4.2. RTGE case definition assessment ..........................................................5-125 

5.4.3. Weight and condition factor in RTGE fish ...............................................5-128 

5.4.4. Blood Biochemistry .................................................................................5-129 

5.5.  Discussion ...................................................................................... 5-130 

5.6.  Acknowledgements ........................................................................ 5-138 

5.7.  References ..................................................................................... 5-138 

CHAPTER 6.  A Comparative Molecular Study of the Presence of 
“Candidatus arthromitus” in the Digestive System of Healthy Rainbow 
Trout Oncorhynchus mykiss (Walbaum) Affected with Rainbow Trout 
Gastroenteritis (RTGE) ............................................................................. 6-141 

6.1.  Abstract .......................................................................................... 6-141 



Table of Contents 

XII 
 

6.2.  Introduction .................................................................................... 6-142 

6.3.  Material and methods ..................................................................... 6-144 

6.3.1. Experimental design ...............................................................................6-144 

6.3.1.1. Primary experimental groups ........................................................................ 6‐144 

6.3.1.2. Additional experimental groups.................................................................... 6‐144 

6.3.2. Fish sampling and tissue fixation ............................................................6-145 

6.3.3. DNA extraction ........................................................................................6-146 

6.3.4. Nested PCR procedure ...........................................................................6-146 

6.3.5. DNA sequencing procedure ....................................................................6-147 

6.3.6. Histology processing ...............................................................................6-148 

6.4.  Results ........................................................................................... 6-148 

6.4.1. Molecular detection of “C. arthromitus” ...................................................6-148 

6.4.1.1. Primary experimental groups ........................................................................ 6‐148 

6.4.1.2. Additional sample groups ............................................................................. 6‐150 

6.4.2. Histopathology ........................................................................................6-150 

6.5.  Discussion ...................................................................................... 6-152 

6.6.  Acknowledgements ........................................................................ 6-159 

6.7.  References ..................................................................................... 6-160 

CHAPTER 7.  General Discussion ........................................................ 7-165 

7.1.  RTGE at the national level (Chapter 2) .......................................... 7-165 

7.2.  RTGE at the site level (Chapter 3) ................................................. 7-166 

7.3.  RTGE pathogenesis (Chapters 4 & 5) ............................................ 7-169 

7.4.  RTGE aetiology (Chapters 4 &6) ................................................... 7-170 

7.5.  Further work ................................................................................... 7-171 

7.6.  References ..................................................................................... 7-173 

Appendix I: Other enteritides of rainbow trout........................................ 175 
Appendix II: Retrospective Questionnaire............................................... 176 
Appendix III: Prospective Epidemiology RTGE case definition ............ 181 
Appendix IV: RTGE Control Guidelines ...................................................182 

 



List of Figures 

XIII 
 

List of Figures 

Figure 1.1.  Global fisheries production trend from 1950 to 2006.  Production is expressed as 

millions of tonnes.  Data provided by the food and agriculture organization (FAO) of 

the United Nations. ................................................................................................ 1-1 

Figure 1.2.  Relative contribution of capture and aquaculture to the global fisheries production 

from the year 1950 to the year 2006.  Data provided by the food and agriculture 

organization of the United Nations (FAO). ............................................................. 1-2 

Figure 1.3.  Relative contribution of capture and aquaculture to the UK fisheries production 

from the year 1950 to the year 2006.  Data provided by the food and agriculture 

organization of the United Nations (FAO). ............................................................. 1-4 

Figure 1.4.   Relative contribution of each farmed species to the total UK aquaculture production 

for 2006 (Total 2006 production: 172,000 tonnes).  Food and agriculture 

organization of the United Nations (FAO). ............................................................. 1-4 

Figure 1.5. Drawing of a rainbow trout (Oncorhynchus mykiss W.) illustrating the main 

morphological features of this species as well as the typical colouration.  Public 

domain image from the U.S.  Fish and Wildlife Service Source 

(http://images.fws.gov/) .......................................................................................... 1-5 

Figure 1.6.  Total rainbow trout (Oncorhychus myiss W.) aquaculture production for 2006 by 

country (total=550,000 tonnes). Food and agriculture organization of the United 

Nations (FAO). ....................................................................................................... 1-7 

Figure 1.7.  UK rainbow trout (Oncorhynchus mykiss W.) aquaculture production from 1970 to 

2006.  Food and agriculture organization of the United Nations (FAO). ............... 1-8 

Figure 1.8. A:Number of RTGE-affected sites per year in France and Spain from 1994 to 1999. 

Data from Sanz (2000).  B: Number of RTGE-affected sites per year in Italy from 

2001 to 2007 (Cervellione, F., personal comm.). ................................................ 1-15 

Figure 1.9.  Internal gross presentation of rainbow trout gastroenteritis (RTGE), including acute 

hemorrhagic enteritis of the hind gut and yellow and viscous intestinal contents 

flowing out of the ruptured intestine (arrow).  (Picture courtesy of Prof. Turnbull, J. 

F.). ........................................................................................................................ 1-18 



List of Figures 

XIV 
 

Figure 1.10. Phylogenetic trees illustrating the position of “Candidatus arthromitus” respecting 

other bacterial species.  A: phylogenetic position of the SFB within the Clostridium 

subphylum of the gram-positive bacteria (C.= Clostridium).  Snel et al. (1995), with 

permission; B: relative phylogenetic position of trout “C. arthromitus”, the closest 

Clostridium species and “C. arthromitus”from other species.  Urdaci et al. (2001), 

with permission. ................................................................................................... 1-22 

Figure 2.1.  Map of the UK showing the approximate location of the rainbow trout producing 

sites (n=84) which participated in the Rainbow trout gastroenteritis (RTGE) 

retrospective cross-sectional study. .................................................................... 2-44 

Figure 2.2. Bar chart displaying the total number of Rainbow trout gastroenteritis (RTGE) 

positive cases per year for all participant sites of the UK retrospective cross-

sectional study (n=84). ........................................................................................ 2-46 

Figure 3.1.   Examples of two typical presentations of RTGE outbreaks.  Day 0 indicates the first 

day of the outbreak.  A: Primary peak in mortalities followed by a higher secondary 

peak and a smaller tertiary peak; B: Single mortality peak.  Note a shorter outbreak 

with lower mortalities in B. ................................................................................... 3-74 

Figure 3.2.  Frequency of usage of 6 different treatments targeted RTGE during 2006 in 12 

RTGE-affected UK sites. ..................................................................................... 3-75 

Figure 3.3.  RTGE epidemic curves of two selected units (12 sites).  A: Sharp decrease in 

RTGE mortalities during in-feed NaCl treatment (highlighted).  Note a temporary 

increase of RTGE mortalities after the end of the treatment.  B: Example of 

mortality pattern observed in a site using an alternating regime of in-feed NaCl 

(highlighted). ........................................................................................................ 3-76 

Figure 3.4.  Bar chart of the RTGE relative risk of previously unaffected units that received fish 

from a RTGE-affected unit, depending on the outbreak status of the latter at the 

time of transfer (12 sites).  Significant increases in the relative risk are highlighted 

(p<0.05; Fisher Exact) and error bars display 95% confidence intervals. ........... 3-78 

Figure 3.5.  Kaplan Meier survival plots of the onset of RTGE (12 sites).  A: Significantly lower 

survival probability for units contiguous to RTGE cases in all site types 

(Wilcoxon=24.2; p<0.001).  B: Significantly lower survival probability for units 

downstream to previous RTGE cases in pond sites (Wilcoxon=10.7; p<0.001). 3-79 



List of Figures 

XV 
 

Figure 4.1.  Gross and microscopic changes in trout positive for rainbow trout gastroenteritis 

(RTGE).  A: Abdominal distension and release of a yellow and viscous substance 

from the vent when pressure is applied to the abdomen.  (B): Microscopic 

examination of intestinal contents reveals large quantities of sporulating 

segmented filamentous bacteria (B, x20, unstained smear).  C: Internally, there is 

congestion and oedema of the intestinal wall (C, arrow). .................................. 4-100 

Figure 4.2.  Histological presentation of rainbow trout gastroenteritis (RTGE) in distal intestine.  

A: Digestive contents frequently presented a mixture of segmented filamentous 

bacteria (SFB) and detached enterocytes (H&E; x20).  B: SFB could be present in 

large quantities attached to the mucosa (arrow) or floating in the lumen 

(arrowhead; H&E, x10).  Damaged SFB could be observed, with reduced stain 

retention (C; H&E; x40) and fragmentation (D; H&E; x100).  Histopathological 

changes included enterocyte detachment (E; H&E; x100) and congestion of the 

lamina propria (F, arrow) and adventitial layer (F, arrowhead; H&E; x100). ..... 4-102 

Figure 4.3.  Observed frequencies by organ of segmented filamentous bacteria (SFB) presence 

and histopathological changes in RTGE-affected fish (n=152).  Asterisks represent 

a significantly higher frequency (p<0.001; FE). ................................................. 4-103 

Figure 4.4.  Scanning electron microscopy observations of SFB in fish with RTGE.  (A): Large 

numbers of SFB were observed attached to the intestinal mucosa in specific 

locations.  These SFB were also free-floating in the lumen (B, arrow), had clear 

segmentation (C, arrow) and occasionally budding at their distal end (D, arrow).  

Interaction of the enterocyte surface was frequent and included wrapping of SFB 

by the apical membrane of enterocytes (E, arrow) which presented folds 

suggestive of SFB engulfment (F, arrows). ....................................................... 4-104 

Figure 4.5.  Scanning electron microscopical observations of pathological changes within distal 

intestine of fish with RTGE.  Focal detachment of the mucosal layer resulted in 

direct exposure of the lamina propria to the lumen (A, arrows). Pronounced apical 

blebbing of distal intestinal mucosa was observed both associated (B) and non-

associated (C) with SFB proximity. .................................................................... 4-105 



List of Figures 

XVI 
 

Figure 4.6.  Transmission electron microscopical observations of SFB within distal intestine of 

fish with RTGE.  A: Different developmental stages were present within SFB 

filaments, including sporulation (A, 1), cell division (A, 2&3) and vegetative (B).  

Loss of SFB cellular structure resulted in spore release (arrow, C).  Pear-shaped 

segments were found at SFB attachment sites.  These segments were always 

extracellular and surrounded by electron dense areas in the adjacent host 

cytoplasm (D, arrow).  Note the integrity of host membrane surrounding SFB at the 

attachment site (E, arrowhead). ........................................................................ 4-106 

Figure 4.7.  Transmission electron microscopy of pathological changes within distal intestine of 

fish with RTGE. Membrane blebbing, initially located near tight junctions (arrows, 

A-C), and structural loss of microvilli (arrow, D) were observed in the apical pole of 

enterocytes, whereas hydropic degeneration with cytoplasmic dilution was present 

in the basal pole (arrowhead, E), where membrane continuity was intact (arrow, E).  

Hydropic mitochondria and enterocyte detachment (arrows, F) were frequent as 

well as an apparent secretory activity of rodlet cells (arrow, G). ....................... 4-108 

Figure 5.1. Receiver operating characteristic (ROC) curve used to determine the threshold 

where the sensitivity and specificity of packed cell volume (PCV) were highest for 

the detection of RTGE (PCV=51%).  Cases and controls were sampled from the 

same productive units simultaneously (n=304; 152 RTGE+). ........................... 5-125 

Figure 5.2.  Cluster analysis of laboratory tests and gross signs presented by rainbow trout with 

RTGE.  Gross signs part of the case definition used are not included.  Gross signs 

observed in cluster A were present in 31-75% of the fish, those of cluster B in 11-

16% and those of cluster C in 1-6% (n=152). .................................................... 5-127 

Figure 5.3.  External and internal pathological changes frequently observed in moribund fish 

consistent with RTGE case definition.  A: generally swollen appearance with lighter 

colouration (arrow) when compared with apparently healthy fish above; B: 

dischromic changes with striped marking of the flanks (arrow); C: dilation of the 

stomach with clear fluid contents (arrow); D: pyloric caeca with severe congestion 

and oedema (arrow). ......................................................................................... 5-128 

Figure 6.1.  PCR products from paraffin wax embedded tissues obtained with a “Candidatus 

arthromitus” specific nested PCR.  Group A: RTGE-affected fish; Group B: 

Apparently healthy fish cohabiting with affected; Group C: Fish from an apparently 

healthy unit in an affected site; Group D: healthy fish from a random unit in an 

unaffected site.  (n=6 samples per group; gel 1: distal intestine samples; gel 2: 

pyloric caeca samples; M: marker; N: negative control). ................................... 6-149 



List of Figures 

XVII 
 

Figure 6.2. PCR products from fresh digestive contents obtained with a “Candidatus 

arthromitus” specific nested PCR.  Group A: RTGE-affected fish; Group B: 

Apparently healthy fish cohabiting with affected; Group C: Fish from an apparently 

healthy unit in an affected site; Group D: healthy fish from a random unit in an 

unaffected site.  (n=6 samples per group; gel 1: distal intestine samples; gel 2: 

pyloric caeca samples; M: marker; N: negative control). ................................... 6-149 

Figure 6.3. PCR products from paraffin wax-embedded distal intestine obtained with a 

“Candidatus arthromitus” specific nested PCR.  Group 1: hatchery A; group 2: 

Hatchery B.  M: marker; N-: no template DNA; P: positive control. ................... 6-150 

Figure 6.4.  Images of SFB in the pyloric caeca of RTGE-affected trout.  A: SFB (arrow) closely 

associated with enterocytes (H&E; x20).  B: SFB were clearly segmented 

(arrowhead) and displayed Gram variability (Gram counterstained with Neutral 

Red; x100) and could present positive (arrow) or negative (arrowhead) staining.  

These sections were positive in “Candidatus arthromitus” specific PCR. ......... 6-151 

Figure 6.5.  Distal intestine of apparently healthy rainbow trout with SFB presence (arrows; 

H&E; x20).  This section was positive in “Candidatus arthromitus” specific PCR. .. 6-

152 
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CHAPTER 1.  General Introduction 

1.1.  The relevance of rainbow trout gastroenteritis 

1.1.1.  Aquaculture in the world, Europe and the UK 

Fish are an integral part of the human diet, and evidence of widespread global 

use of sea foods by humans is reported as early as 20,000 years ago in the 

fossil record (Scarre 1993).  Fisheries production has been increasing ever 

since (Figure 1.1), as a direct result of the growth of the world’s human 

population, especially during the last six decades (FAO 2006).  Most of the 

fisheries production is destined for human nutrition and in 2005, 75% of the 

fisheries production was used for this purpose (FAO 2006). 
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Figure 1.1.  Global fisheries production trend from 1950 to 2006.  Production is expressed 
as millions of tonnes.  Data provided by the Food and Agriculture Organization (FAO) of 
the United Nations. 

Before aquaculture, humans relied exclusively in the capture of wild fish from 

the environment, but eventually learnt how to rear fish in captivity, perhaps as a 

result of sedentarism (Rabanal 1988).  It is believed that fish culture practices 

were first developed in China during the period from 2000-1000 B.C., where 
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carp, Cyprinus carpio L were cultured initially by the emperors (Rabanal 1988; 

Hickling 1971).  Now, aquaculture practices have extended all over the world 

and the relative contribution of aquaculture to the global fisheries production 

has grown steadily over the last two decades (Figure 1.2).  In 2006, aquaculture 

production contributed to 35% of the global fishery production, which was 

approximately 144 million tonnes (FAO 2008a; FAO 2008b).  Aquaculture has 

grown more rapidly than all other animal food-producing sectors, with an 

average annual growth rate for the world of 8.8% per year since 1970, 

compared with only 1.2% for capture fisheries and 2.8% for terrestrial farmed 

meat production systems (FAO 2006).  However, there are signs that the rate of 

growth for global aquaculture may have peaked, and although the growth in 

production of the different major species groups continues, the increases seen 

so far this decade are less dramatic than the extraordinary growth rates 

achieved in the 1980s and 1990s.  Thus, while the trend for the near future 

appears to be one of continued increases in production, the rate of these 

increases may be declining (FAO 2006). 
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Figure 1.2.  Relative contribution of capture and aquaculture to the global fisheries 
production from the year 1950 to the year 2006.  Data provided by the Food and 
Agriculture Organization of the United Nations (FAO). 
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In Europe, fishery and aquaculture production follow similar trends, although the 

relative contribution of aquaculture to the fisheries production has not been as 

marked as it has been globally, and in 2006 aquaculture contributed to only 

16% of the European fisheries production, which was approximately 16 million 

tonnes (FAO 2008a; FAO 2008b).  Nonetheless, aquaculture in Europe 

produces a significant volume of fish per year and in 2006 it produced 

2.2·million tonnes, with an approximate value of 4000 million British pounds 

(FAO 2008a). 

The United Kingdom (UK) is a special example within the global trend, as 

although aquaculture production has grown markedly since the 1980s.  Before 

that, the UK aquaculture production was negligible (FAO 2008a).  This has 

resulted in a relatively fast rate of growth of the UK aquaculture industry when 

compared with the rest of the world, which is reflected in a faster increase in the 

relative contribution of aquaculture to the UK fisheries production (Figure 1.3).  

This trend also reflects an apparent drop in the growth of the UK aquaculture 

industry, commencing in the year 2005.  It is possible that this drop indicates a 

trend or a transient effect, although overall, the aquaculture production in the 

UK in the year 2006 totalled 0.2 million tonnes with a value of nearly 450 million 

British pounds and represented 22% of the total UK fisheries production. 
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Figure 1.3. Relative contribution of capture and aquaculture to the UK fisheries 
production from the year 1950 to the year 2006.  Data provided by the Food and 
Agriculture Organization of the United Nations (FAO).   

In the UK, most aquaculture production takes place in salt water (94%), with the 

remainder of the production taking place in fresh water (FAO 2008a).  This is 

reflected in the production of each cultured species (Figure 1.4).  The majority 

of the production of the UK is comprised of Atlantic salmon (Salmo salar 

Linnaeus) and blue mussel (Mytilus edulis Linnaeus), both harvested at sea.  

Rainbow trout (Oncorhynchus mykiss Walbaum) was third in production volume 

in 2006.  The UK rainbow trout industry will be the focus of interest in this study. 
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Figure 1.4.  Relative contribution of each farmed species to the total UK aquaculture 
production for 2006 (Total 2006 production: 172,000 tonnes).  Food and agriculture 
organization of the United Nations (FAO). 
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1.1.2.  Rainbow trout in aquaculture 

Rainbow trout are ray-finned teleost fish included in the family Salmonidae 

(Behnke 1992).  As such, they have an elongated, fusiform body shape and 

present a forked tail, pelvic fins located far back and a dorsal adipose fin.  Their 

colouration can vary with habitat, size, and sexual condition, but generally 

present a blue to olive green colour above a pink band along the lateral line and 

silver colour below (Figure 1.5).  Taxonomically, the species was originally 

named Salmo mykiss by Johann Julius Walbaum in 1792 based on type 

specimens from Kamchatka peninsula (Russia).  Richardson named a 

specimen of this species Salmo gairdneri in 1836, and in 1855, W.  P.  Gibbons 

found a population and named it Salmo iridia, later corrected to Salmo irideus.  

However, both S. gairdneri and S. irideus scientific names were deprecated 

once it was determined that Walbaum's type description was conspecific.  More 

recently, DNA studies showed rainbow trout are genetically closer to Pacific 

salmon (Oncorhynchus species) than to brown trout (Salmo trutta) or Atlantic 

salmon (S. salar), so the genus was changed and today this species is known 

as Oncorhynchus mykiss Walbaum (Behnke 1992). 

 
Figure 1.5.  Drawing of a rainbow trout (Oncorhynchus mykiss W.) illustrating the main 
morphological features of this species as well as the typical colouration.  Public domain 
image from the U.S.  Fish and Wildlife Service Source (http://images.fws.gov/) 
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Rainbow trout are native to the Pacific drainages of North America, from Alaska 

to Mexico, the Russian Kamchatka peninsula and the Okhothsk sea (Behnke 

1992).  Since 1874 this species has been introduced to waters on all continents 

except Antarctica, for recreational angling and aquaculture purposes 

(MacCrimmon 1971). 

Rainbow trout are suitable for aquaculture for a variety of reasons (Cowx 2005; 

Sedgwick 1990).  It is hardy, easy to spawn, fast growing, tolerant of a wide 

range of environments and handling, and the large fry can be easily weaned on 

to an artificial diet.  Pelleted feed is available for all the life stages, enabling the 

production of high-protein and high-energy diets with 35-45% protein and 22% 

or more fat, which rainbow trout convert efficiently, often at food conversion 

ratios (FCRs) close to 1:1.  Also, it is possible to produce populations of all-

female rainbow trout, therefore avoiding early maturation of male fish.  

Additional advantages of all-female trout include higher FCRs and resistance to 

handling and disease (Cowx 2005).  Finally, there are several outputs for 

rainbow trout culture, including food products, live fish for recreational game 

fishing and the sale of eggs and fry from hatcheries to other farms. 

The commercial rearing of rainbow trout was facilitated in early 1900s by a 

Danish trout farmer who designed a production site where fresh water flowed 

through each fish pond, a design that radically improved the productivity 

simultaneously reducing the environmental challenge to the fish stocked 

(Sedgwick 1990).  The global rainbow trout aquaculture has grown 

exponentially since the 1950s, initially in Europe and more recently in Chile 

(FAO 2008a; FAO 2006).  In 2006, rainbow trout was produced in a total of 58 

countries with Chile the largest producer (Figure 1.6).  In this country the 
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majority of rainbow trout is produced in salt or brackish water.  Other major 

producing countries included Norway, Iran, Denmark, France, Italy, United 

States of America (USA), Spain, Germany, Poland, China and the UK, which 

was the 12th highest producer worldwide in 2006 (FAO 2008a). 
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Figure 1.6.  Total rainbow trout (Oncorhynchus mykiss W.) aquaculture production for 
2006 by country (total=550,000 tonnes). Food and agriculture organization of the United 
Nations (FAO). 

Until the end of the Second World War the UK trout industry consisted of less 

than 20 restocking farms (i.e. sites producing trout destined to stock rivers or 

lakes to facilitate fishing).  In 1950, a Danish entrepreneur opened the first table 

farm in Lincolnshire (i.e. producing trout for human consumption), and in 1960 

pelleted feeds were introduced.  This last development contributed to the 
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expansion of the rainbow trout industry in the UK, which has a size of almost 

360 trout farms at present (Read 2008). 

Most UK aquaculture trout production (Tyson 2008; FAO 2008a) is comprised of 

rainbow trout (96.3%), although other trout species are also produced, including 

brown trout (S. trutta L.; 3.6%) and brook trout (Salvelinus fontinalis L.; 0.1%).  

When examining the trend of rainbow trout aquaculture production for the UK 

from 1970 (Figure 1.7), one can observe a phase of exponential growth from 

the 1980s to the 1990s, and a period of slower growth thereafter, suggesting 

that the industry has reached stability.  In 2006, approximately 18,000 tonnes of 

rainbow trout were produced in the UK with an approximate total value of 36 

million British pounds.  Of this, most of the production (78%) was destined for 

the table market and the rest (22%) was destined for restocking (FAO 2008a). 
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Figure 1.7.  UK rainbow trout (Oncorhynchus mykiss W.) aquaculture production from 
1970 to 2006.  Food and Agriculture Organization of the United Nations (FAO). 
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These statistics suggest that rainbow trout aquaculture in the UK is a successful 

industry, although over the course of its history, several ongoing issues have 

been identified that have hindered further growth.  Among these issues, the 

profit margins, the environmental impact of trout sites, decreased availability of 

protein sources for feed and fish disease were most important (Cowx 2005). 

As with any business, rainbow trout farms aim to increase revenue and reduce 

expenditure.  This can be done by using the best value feed, seed and 

materials, and achieving an efficient FCR.  The average cost of production 

stems mainly from the cost of the fish, husbandry, feed and veterinary and 

medicine costs, and has been estimated at 0.7-1.1 British pounds/kg (Cowx 

2005).  Monoculture is the most common practice and intensive systems are 

considered necessary in most situations to make the operation economically 

attractive (Cowx 2005). 

In the UK, the size of farm considered viable for table trout production has been 

moving upwards (Read 2008).  Trout farms impact their surrounding 

environment in different ways (Cowx 2005), including the biochemical alteration 

of water and sediment by uneaten feed, fish excreta and disease treatment 

chemicals, the transmission of disease to vulnerable wild populations and the 

potential impact of escapees on wild stocks.  The need to maintain these factors 

within acceptable levels imposes several costly requirements on the design of 

trout farms, as well as a limit to the productivity of each site, both of which are 

enforced in the UK by the environment agency (EA) in England and Wales and 

the Scottish environment protection agency (SEPA) in Scotland. 
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The decreasing availability and increasing cost of fish meal, the major source of 

protein in commercial trout diets, have led to the widespread consideration of 

alternative sources of protein in the formulation of feeds for use in the fish 

farming industry (Cowx 2005).  Soybean protein is one of the most promising 

plant protein sources as a fish meal substitute.  Recommendations for soya 

product incorporation in salmonid diets vary among the studies.  Excessively 

high inclusion levels of soya products have been found to affect palatability, 

feed conversion and intestinal integrity, although the exact causal links between 

these effects are not yet known (Bakke-McKellep et al., 2007; Kaushik 2007; 

Sanden et al., 2005). 

The impact of fish disease to the UK rainbow trout industry is directly relevant to 

understand the importance this study for the industry and is explained in detail 

in the following section (1.1.3.). 

1.1.3.  Impact of diseases on the UK trout farming industry 

The presence of disease in rainbow trout-producing sites has a negative 

influence on the industry for several reasons, including economic, welfare, 

environmental and public health.  In fact, disease has been recognised as one 

of the greatest challenges facing trout farmers in the UK at the current time 

(MacIntyre 2008; Read 2008; North et al. 2008; Wall 2008). 

The economic impact of fish mortalities stems from fish that have died at the 

site, which cannot be sold for human consumption (Regulation (EC) No 

1774/2002 2002), or fish that have been rejected or downgraded at the 

processing plant as well as the additional costs for appropriate disposal of these 

fish.  Loss of investment is higher the closer the fish is to complete the 
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productive cycle, as the investment in feed input and husbandry is continuous 

for each fish during the whole cycle.  Some diseases also cause reduction in 

the growth rate of diseased trout (Speare et al. 1998; Beamish et al. 1996).  A 

recent study has shown that the primary risk factor associated with deteriorating 

rainbow trout welfare in the UK is disease, irrespective of which disease is 

involved and how many diseases the population has been exposed to 

(MacIntyre 2008).  Diseases can have important environmental consequences 

through their impact on wild fish populations (Murray & Peeler 2005).  Public 

health issues related directly to rainbow trout disease are rare although both 

Clostridium botulinum and Lactococcus garviae have been diagnosed in 

rainbow trout in the UK (Scott 2002; Bark & McGregor 2001; Cann & Taylor 

1982).  In the former the risk to public health was considered low, as the toxin 

was never isolated from the flesh of affected fish (Cann & Taylor 1982).  Human 

disease in connection with these outbreaks has not been reported, although 

these two conditions are potentially zoonotic (Sobel 2005; Fefer et al. 1998; 

Elliot et al. 1991). 

For all of these reasons, the reduction or elimination of disease is in the best 

interest of the UK rainbow trout industry.  Several factors have conspired 

against this, including a low number of licensed treatments (Read 2008) as well 

as the lack of scientific information on specific rainbow trout diseases.  The 

importance of research on fish disease for the aquaculture industry is high, as 

shown by the distribution of the UK aquaculture research and development 

(R&D) investment from 1999 to 2006, where fish disease research received 

56% of all the expenditure (James 2006). The present study aimed to contribute 
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to this effort by supplying further scientific evidence on a specific rainbow trout 

disease. 

Several disease entities have been reported in the UK rainbow trout industry, 

including infectious and non infectious diseases.  The most important diseases 

are infectious and parasitic (Table 1.1) and together cost the industry 

approximately 5 million British pounds/year (Read 2008). 

 

Table 1.1.  List of common diseases of farmed rainbow trout in the UK (DEFRA; 
http://defra.gov.uk). 

Common disease name Abbreviation Aetiology Type 

Enteric redmouth ERM Yersinia ruckeri Bacterial 

Furunculosis “Furunc” Aeromonas salmonicida Bacterial 

Proliferative kidney disease PKD Tetracapsuloides bryosalmonae Parasitic 

Rainbow trout fry syndrome RTFS Flavobacterium psychrophilum Bacterial 

White spot “Ich” Ichthyophthirius multifiliis Parasitic 

Taken from the DEFRA website on 31st January 2009.  Detailed pathological descriptions for each one of 
these rainbow trout diseases can be found in Austin (2007), Ferguson (2006) and Roberts (2001). 

Despite the importance of the diseases listed in Table 1.1, these are not the 

only diseases in the UK rainbow trout industry and notifiable and emerging 

diseases have been also reported in UK sites. 

An updated list of notifiable diseases of fish was supplied by DEFRA in their 

website (http://www.defra.gov.uk/corporate/regulat/forms/fish/DOF21.pdf).  The 

regulations designed to control disease impose large costs in terms of trade 

restrictions, surveillance, and control or eradication programmes (Murray & 

Peeler 2005).  In 2006, an outbreak of viral haemorraghic septicaemia (VHS) 

was diagnosed in a single UK site on the river Ouse.  The positive diagnosis of 

VHS at this site resulted in the culling and disposal of all fish on the farm, the 

disinfection and fallowing of the site and the restriction of movements of live and 
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dead fish from all the fish farms in the catchment (VHS National Control Centre 

2006). 

An ‘‘emerging disease’’ has been defined as a new disease, a new presentation 

of a known disease (e.g. increased severity or appearance in a new species) or 

an existing disease that appears in a new geographical area (Brown 2000).  

Numerous diseases have emerged as serious economic or ecological problems 

in aquaculture through pathogen exchange with wild populations, evolution from 

non-pathogenic micro-organisms and anthropogenic transfer of stocks (Murray 

& Peeler 2005).  In the UK rainbow trout industry, perhaps the most relevant 

emerging diseases of recent years have included sleeping disease (McLoughlin 

& Graham 2007), strawberry disease/red mark syndrome (Ferguson et al. 

2006); (Irving et al. 2006) and rainbow trout gastroenteritis (Branson 2003).  

The establishment of these has been facilitated by intensive aquaculture 

practices, which frequently result in high population densities and stressful 

factors (such as concurrent disease) which increase the risk of infection 

establishment and spread (North et al. 2006; Pickering & Pottinger 1989).  For 

all the reasons previously explained, it is necessary to reduce the impact of 

these emerging diseases and this can be achieved by the application of 

biosecurity programmes together with the use of adequate treatments (Murray 

& Peeler 2005).  Information on the risk factors, aetiology and pathogenesis 

associated with a specific disease is required for the appropriate design of 

treatments and control strategies (Treves-Brown 2000) and the present project 

has tried to increase this information, focusing on a specific emerging disease 

of rainbow trout: rainbow trout gastroenteritis (RTGE). 
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1.2.  Current knowledge of rainbow trout gastroenteritis 

1.2.1.  Terminology 

The term rainbow trout gastroenteritis (RTGE) was chosen in 1999 to 

accommodate an enteric syndrome that had been regularly reported since 1995 

during the summer (Branson 2003).   The defining feature of this syndrome was 

the accumulation of large quantities of segmented filamentous organisms (SFB) 

within the distal intestine of affected fish (Branson 2003; Michel et al. 2002; 

Urdaci et al. 2001), something that has not been reported in any other enteritis 

of rainbow trout (Appendix I). 

1.2.2.  History 

The first report of RTGE took place in 1992 in France, affecting a small number 

of farms (Sanz 2000) and has been present in this country since then (Toranzo 

2004; Michel et al. 2002).  In Spain, RTGE was first detected in 1995 and by 

1999 it was affecting approximately 60% of the rainbow trout farms (Branson 

2003; Sanz 2000).  As reported by Sanz (2000), the number of sites affected by 

RTGE in France and Spain increased steadily from 1994 to 1999 (Figure 1.8), 

and the disease has been considered to have the highest impact on the rainbow 

trout industry of both these countries (Sanz 2000).  In Italy, RTGE was 

diagnosed in the year 2000 for the first time, and a similar increase has been 

observed (Cervellione, F., personal comm.) 
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Figure 1.8. A: Number of RTGE-affected sites per year in France and Spain from 1994 to 
1999. Data from Sanz (2000).  B: Number of RTGE-affected sites per year in Italy from 
2001 to 2007 (Cervellione, F., personal comm.). 

 

The first case of RTGE in the UK was diagnosed in 2000, and it was observed 

again in the same farm in 2001, as well as in other rainbow trout farms 

(Denham 2004; Branson 2003).  One report is available on the presence of 

RTGE in Croatia (Toranzo 2004).  In all these reports, the diagnosis of RTGE 

was based on the observation of external and internal pathological changes, 

microscopical examination of fresh smears and histopathology (Toranzo 2004). 
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1.2.3.  Epidemiology 

Several authors have reported on the mortality due to RTGE in affected sites 

and despite an overall similarity, there are differences between these reports 

(Branson 2003; Michel et al. 2002; Urdaci et al. 2001).  None of these reports 

presents information about the sample size used to obtain any of the figures 

provided. The proportion of productive units affected by RTGE within affected 

sites ranged between 10-40% (Urdaci et al. 2001).  All reports included daily 

mortality figures and it is likely that these were calculated as the mean of the 

daily mortalities during the outbreaks, although this was not clear in any report.  

Daily mortality figures ranged between 0.3-1% (Branson 2003; Michel et al. 

2002; Urdaci et al. 2001; Sanz 2000).  In one report, the authors recorded peak 

daily mortalities of 3-4% (Michel et al. 2002).  There was variablilty regarding 

the weight range affected by RTGE: two reports agreed fish between 50-500g 

were affected (Branson 2003; Urdaci et al. 2001), whereas the third recorded 

RTGE most frequently in fish larger than 800g (Michel et al. 2002).  In two 

cases, information about duration of RTGE mortalities was also provided.  This 

information was consistent between the two reports and suggested the 

presence of outbreaks lasting 2-4 wk, with mortalities peaking on the second 

week after onset (Branson 2003; Michel et al. 2002).  In the first UK case, 

RTGE mortalities were restricted to only some of the ponds and started three 

weeks after introduction of naive fish (Branson 2003).  All this information is 

consistent with RTGE being an infectious condition with an incubation time of 

approximately 3 weeks. 

All published RTGE reports also suggested factors that may have influenced 

the presentation of this syndrome.  None of the suggestions was supported by 

data (Branson 2003; Michel et al. 2002; Urdaci et al. 2001).  All reports have 
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suggested that this syndrome was present in the summer preferentially and that 

water temperature may have played an important role in its development 

(Denham 2004; Toranzo 2004; Branson 2003; Michel et al. 2002; Urdaci et al. 

2001; Sanz 2000).  They have also suggested that there may be a lower 

temperature threshold for RTGE although there is disagreement on the 

minimum temperature at which RTGE was observed ranging from 12-16ºC 

(Branson 2003; Michel et al. 2002; Urdaci et al. 2001; Sanz 2000).  One 

exception was RTGE presence observed at 9ºC (Branson 2003).  Overall, this 

information suggests that despite the importance of water temperature, there 

may not be a constant temperature threshold for RTGE.  Anecdotal 

observations by field workers have suggested that RTGE appears to be 

triggered by stress factors with the first mortalities following episodes of 

environmental perturbation and handling.  Disappearance of clinical RTGE after 

changes in diet or environment was also observed (Michel et al. 2002).  

Additional suggestions include an association of low-energy diets with RTGE 

(Urdaci et al. 2001). 

1.2.4.  Gross presentation 

All reports are consistent in the description of RTGE presentation (Denham 

2004; Toranzo 2004; Branson 2003; Michel et al. 2002; Urdaci et al. 2001; Sanz 

2000). Clinical appearance of RTGE occurred suddenly, with lethargy and loss 

of appetite.  Fish tended to gather near the pond outlet and uncoordinated 

swimming occasionally occurred, reminiscent of neuropathological toxic 

mechanisms.  In many cases, the accumulation of large amounts of yellow 

mucoid faeces (or faecal casts) in affected ponds was the first sign of disease 

noticed by fish farmers (Toranzo 2004; Branson 2003; Michel et al. 2002).  



General Introduction 

1-18 
 

Gross lesions included abdominal distension, and mucous content of the 

intestine, which could extrude from the anus.  In some cases, RTGE-affected 

fish presented with a dyschromia characterized by dark streaks scattered along 

the flanks and/or with yellowish mucoid excretions from the vent (Branson 2003; 

Michel et al. 2002; Sanz 2000).  Internal lesions in diarrhoeic trout included 

signs of acute haemorrhagic enteritis predominantly in the hind gut, with a 

haemorrhagic and oedematous appearance of the intestinal mucosa (Figure 

1.9).  The entire digestive tract, including the enlarged stomach and pyloric 

caeca, was filled with a straw-coloured mucoid material which could accumulate 

as a dense occluding plug in the terminal portion (Branson 2003; Michel et al. 

2002; Sanz 2000). 

 

 
Figure 1.9. Internal gross presentation of rainbow trout gastroenteritis (RTGE), including 
acute hemorrhagic enteritis of the hind gut and yellow and viscous intestinal contents 
flowing out of the ruptured intestine (arrow).  (Picture courtesy of Prof. Turnbull, J. F.). 
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1.2.5.  Histopathology 

Large quantities of SFB have been observed in smears of the intestinal 

contents of RTGE-affected fish (Michel et al. 2002; Urdaci et al. 2001) and this 

may be the most defining clinical feature of this syndrome.  Enteritic changes 

are found as part of the presentation of other conditions caused by several 

parasitic, fungal, bacterial and viral agents (Austin B. & Austin D.A. 2007; 

Ferguson 2006; Michel et al. 2002; Urdaci et al. 2001; Roberts 2001), although 

none of these conditions is reported to be associated with SFB (Appendix I). 

The SFB found within the digestive tract of RTGE-affected trout were non-

branched with an approximate width of 1µm (0.6-0.12µm) and up to 60µm long, 

a length that was made up of a variable number of 1.2-2.6µm long segments 

(Urdaci et al., 2001).  Several forms, apparently corresponding to different 

stages of maturation, could be seen in wet mounts or in preparations stained 

with metachromatic toluidine blue.  These organisms are Gram variable, but 

generally Gram positive, and produce spores that stain readily with malachite 

green (Ferguson 2006; Michel et al. 2002; Urdaci et al. 2001).  Previous reports 

vary on the preferred location of SFB in the digestive system of RTGE-affected 

trout. Some (Michel et al. 2002) reported their presence throughout the 

digestive system, whereas others (Branson 2003) observed SFB more 

frequently in the distal intestine. 

Histopathological lesions in the digestive system of affected trout were more 

severe in the pyloric stomach and caeca (Ferguson 2006; Branson 2003; Michel 

et al. 2002; Urdaci et al. 2001; Sanz 2000). The mucosa was congested and the 

intestinal wall thickened by oedema, but perhaps the most severe change was 
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epithelial necrosis with extensive mucosal detachment.  Histopathological 

changes in other organs have not been reported. 

1.2.6.  Aetiology 

The aetiological agent of RTGE has not been identified (Toranzo 2004; Branson 

2003; Michel et al. 2002; Urdaci et al. 2001).  This has hindered the 

development of control strategies targeted at the primary cause of RTGE, 

including treatments and diagnostic tests (Toranzo 2004).  An apparent 

reduction in mortalities after treatment with antibiotics (Urdaci et al. 2001; Sanz 

2000) suggests that there is at least some bacterial component in the 

pathogenesis of this syndrome. Most authors have proposed SFB as the most 

likely aetiology for RTGE (Michel et al. 2002; Urdaci et al. 2001), although the 

inability to culture them in vitro (Angert 2005) has hindered confirmation.  It is 

therefore not possible to exclude other potential aetiological candidates, such 

as a viral agent. 

1.2.6.1.  Segmented filamentous bacteria 

The filamentous bacteria observed in the distal intestine of rainbow trout 

affected with RTGE have been identified as part of the “Candidatus arthromitus” 

group of segmented filamentous bacteria.  This identification was achieved by 

fluorescent in situ hybridization of SBF 16S rRNA sequences, using an 

oligonucleotide probe specifically designed to react with known SBF 16S rRNA 

sequences from chicken, rat and mouse (Michel et al. 2002; Urdaci et al. 2001). 

Although SFB cannot be cultured outside of the host gastrointestinal tract 

(Angert 2005), populations can be maintained as mono-associations with mice 

and this was the method chosen to sequence the mouse SBF 16S rRNA gene 
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(Klaasen et al. 1991a).  This enabled comparison of 16S rRNA sequences, 

which demonstrated that SFB found in the ileum of mice were closely related to 

the genus Clostridium (Snel et al. 1994), and further work by the same authors 

determined that SFB from rats, mice and chickens formed a distinct 

phylogenetic group and proposed the inclusion of these organisms in the “C. 

arthromitus” group (Snel et al. 1995).  “Candidatus” is a provisional status used 

for incompletely described prokaryotes (Murray & Stackebrandt E. 1995) and 

the term “arthromitus” was coined by Leidy (1881) from the greek arthron 

(=joint) and mitos (=thread). 

“Candidatus arthromitus” form a group of bacteria with similar morphology and 

ecological niches. Gram positive, endospore-forming SFB have been found 

attached to the intestine of a wide range of vertebrates (Smith 1997; Lowden & 

Heath 1995; Klaasen et al. 1992; Allen 1992; Goodwin et al. 1991; Sanford 

1991; Angel et al. 1990b; Davis & Savage 1974) and invertebrates (Klaasen et 

al. 1992; Margulis et al. 1990; Leidy 1881).  A single study reported the 

presence of SFB, using light microscopy, in the intestines of healthy individuals 

from 13 vertebrate species, including the carp, concluding that SFB are 

ubiquitous in the animal kingdom (Klaasen et al. 1993). 

Repeated lack of success in the transmission of chicken or rat SBF to mice 

suggested host specificity of SFB, which also presented slight morphological 

differences depending on the host species (Allen 1992; Tannock et al. 1984) 

and consequent phylogenetic 16S rRNA analysis of “C. arthromitus” from crab-

eating monkey, rats, mice and chickens confirmed these were in fact different 

species (Imaoka et al. 1997; Snel et al. 1995).  As a result the most accepted 

theory today is that different species of SFB colonize different host species 
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specifically. These phylogenetic differences were also found with trout SFB 

(Figure 1.10 A, B), suggesting that these also represent a different species 

within the “C. arthromitus” group (Urdaci et al. 2001). 

A B

 
Figure 1.10. Phylogenetic trees illustrating the position of “Candidatus arthromitus” 
respecting other bacterial species.  A: phylogenetic position of the SFB within the 
Clostridium subphylum of the gram-positive bacteria (C.= Clostridium).  Snel et al. (1995), 
with permission; B: relative phylogenetic position of trout “C. arthromitus”, the closest 
Clostridium species and “C. arthromitus”from other species.  Urdaci et al. (2001), with 
permission. 

The life cycle and multiplication of “C. arthromitus” have been examined by 

several authors (Angert 2005; Ferguson D.J. & Birch-Andersen 1979; Chase & 

Erlandsen 1976; Davis & Savage 1974).  In “C. arthromitus”, endospore 

formation is coordinated with the production of active intracellular offspring for 

reproduction or for dispersal through harsh environments such as aerobic 

conditions.  These spores have been shown to participate in the spread 

mechanism of SFB between susceptible chickens and mice (Ali & Reynolds 

1996; Klaasen et al. 1992) and have been observed in trout “C. arthromitus” 
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(Michel et al. 2002).  It has been noted that the duration of a whole growth cycle 

in mice SFB should occur within the 20-30h villous transit time of epithelial cells, 

unless attachment retards or inhibits cell migration (Angert 2005), and it is likely 

that this may also be the case in trout “C. arthromitus”.  Factors affecting “C. 

arthromitus” numbers have been studied in mice and an increase in SFB 

numbers has been linked to low immunoglobulin A concentrations (Suzuki et al. 

2004) whereas a decrease in numbers was associated with age, activation of 

the mucosal immune system and administration of Lactobacillus plantarum to 

immunodepressed mice (Fuentes et al. 2008; Snel et al. 1998).  Goodwin et al. 

(1991) suggested that diet composition, environmental stress and antimicrobial 

drugs also play a role in SFB colonization in chickens, turkeys and quails. 

At present, it is not clear if the “C. arthromitus” found in RTGE-affected trout are 

responsible for its aetiology, or if their proliferation is just a consequence of the 

changes caused by this syndrome.  Arguments for the aetiological role of “C. 

arthromitus” include the fact that these organisms have never been reported in 

the digestive system of healthy trout, whereas they are consistently observed in 

RTGE-affected trout (Denham 2004; Toranzo 2004; Michel et al. 2002; Urdaci 

et al. 2001; Sanz 2000).  However, “C. arthromitus” has never been reported as 

an aetiological cause of disease in other animal species and although it was 

initially associated with diarrhoea, malabsorption, fluid and gas-filled intestines 

in poultry (Goodwin et al. 1989), the same workers concluded that SFB are not 

necessarily pathogens, and that they might in fact be part of the normal 

microflora of the intestine (Goodwin et al. 1991).  Other arguments against the 

aetiological role of “C. arthromitus” in RTGE include the observation of SFB in 

the intestine of healthy carp using light microscopy (Klaasen et al. 1993).  Other 
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reason include an stimulatory effect of “C. arthromitus” on the immune system 

and intestinal transit of mice (Umesaki et al. 1999; Jiang et al. 1998; Snel et al. 

1996) and a possible correlation with lower Salmonella enteritidis colonization of 

the murine intestine (Garland et al. 1982).  All of the above suggest a non-

pathogenic role for these bacteria. 

“Candidatus arthromitus” could also be normal part of the native flora of rainbow 

trout, which has not been previously detected.  Klaasen et al. (1993) 

emphasized that the inability to detect mucosa-associated SFBs in any species 

could relate to the gut being only poorly or irregularly colonized by these 

organisms, as previously suggested for other bacterial species (Davis & Balish 

1979).  Additionally, when sampling of SFB positive animals takes place more 

than 3h post-mortem, they may not be detected, possibly due to destruction of 

SFB attachment sites by autolytic enzymes (Davis 1980). The observation of 

impaired “C. arthromitus” membranes in the intestine of RTGE-affected trout 

(Michel et al. 2002) may be an indication of the fragility of trout SFB. However, 

the application of molecular techniques to the study of rainbow trout flora may 

help to provide a better understanding of the contribution of non-culturable 

organisms to the microflora of trout, as suggested by the work by Pond et al. 

(2006). 

1.2.6.2.  Viral aetiology 

There are several parallels between trout RTGE and “stunting syndrome”, an 

infectious enteric disorder of turkey poults (Angel et al. 1990b; Bracewell & 

Randall 1984).  In this syndrome, SFB were only observed in turkey poults with 

clinical signs of diarrhoea, but not in the intestine of clinically normal birds 
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(Angel et al. 1990b).  This led to the hypothesis that SFB were associated with 

the aetiology of this syndrome. 

This situation was clarified firstly by the development of a transmission protocol 

using homogenised intestines from affected poults as the inocula (Angel et al. 

1990a). This enabled the experimental manipulation of the syndrome in the 

laboratory, and it was found that an inoculum without bacteria, obtained using 

0.45 or 0.20µm microfilters, was also successful in the transmission of the 

stunting syndrome to naive poults (Sell et al. 1992). This finding supported the 

hypothesis of a viral agent, and indeed a virus was subsequently isolated and 

characterized (Ali & Reynolds 1997). 

1.2.7.  Control strategies 

The only information available on possible management strategies for RTGE in 

the literature is based on anecdotal observations.  Sudden changes in diet 

and/or environment and feeding restriction have been associated with reduced 

RTGE losses (Branson 2003; Michel et al. 2002).  The treatment of RTGE at 

affected sites has been based on trial and error, as a result of a lack of scientific 

knowledge on its aetiology and pathogenesis.  Treatments used have included 

different antibiotic treatments and in-feed liquid paraffin or sodium chloride 

(NaCl) at various concentrations.  Fasting for 7 days or more has also been 

used in Italy (Sarti et al. 2008). 

The reported antibiotic treatment of RTGE consisted of in-feed administration of 

tetracycline or oxytetracycline over 6 days, after a 3-4 days fasting period 

(Urdaci et al. 2001).  The outcome of this treatment strategy was not reported.  

Another report suggests that treatment with the antibiotics amoxycillin, 



General Introduction 

1-26 
 

oxytetracycline and potentiated sulphonamide was effective in alleviating the 

condition, but that it often recurred once treatment was completed (Branson 

2003).  This observation suggests that the cause of RTGE is not eliminated 

completely from the population by the treatment, or that affected populations 

are continuously exposed to the cause of RTGE.  There was no information on 

the time elapsed from the end of the treatment to recurrence.  Administration of 

flumequine, a fluoroquinolone, has been recently used in Italy in repeated 

treatments at 25-day intervals, although the efficacy of this strategy is not 

reported (Sarti et al. 2008; Treves-Brown 2000). 

Penicillin, placed in drinking water, eliminated SFB from the ileum of healthy 

mouse and rat in 10 h, but recolonization was observed 4 to 5 weeks after the 

penicillin treatment was stopped (Davis & Savage 1976).  In further studies, the 

influence of several antimicrobial drugs on SFB in the ileum of mice was tested.  

The drugs tested included amoxycillin, bacitracin, cefotaxim, ciprofloxacin, 

clindamycin, cotrimoxazole, doxycyclin, gentamicin, metronidazole, neomycin, 

polymyxin, streptomycin, trimethoprim, and vancomycin.  All of these drugs 

reduced the number of SFB in the ileum, although to different degrees, 

suggesting that SFB are sensitive to antimicrobial drugs (Klaasen et al. 1991b; 

Koopman et al. 1987). 

1.3.  Conclusion 

Rainbow trout gastroenteritis has been present in the UK since 2000 (Branson 

2003), although there is no information on the number of sites affected.  It is 

reported as the rainbow trout disease with the highest impact in France and 

Spain, where the number of sites affected has escalated during recent years 



General Introduction 

1-27 
 

(Sanz 2000).  Despite the importance of RTGE as an emerging disease, 

scientific information on this syndrome is very limited.  Data on the prevalence, 

spread, aetiology and pathogenesis are required to enable effective prevention 

and control of this disease.  The study presented here was designed to 

contribute to that information. 

1.4.  Project outline 

This study was jointly funded by the Department of Environmental, Food and 

Rural Affairs (DEFRA, project nº: FC1173), the Scottish Aquaculture Research 

Forum (SARF, project nº: SARF016) and the British Trout Association (BTA).  

The primary aim of the project was to identify potential control strategies for 

RTGE through the investigation of the epidemiological, pathogenic and 

aetiological aspects of this syndrome.  The ultimate aim was to support the 

sustainability of UK trout farming by controlling RTGE. The scope for each one 

of the chapters is reviewed below. 

Chapter 2.  Retrospective epidemiological study:  This study included the 

production of definitive evidence for the distribution and severity of RTGE in the 

UK trout industry.  It also identified risk factors at the site level and populations 

at risk for the prospective study. The tool chosen was a questionnaire-based 

retrospective survey.  This is the only chapter which has been sent for 

publication before the submission of this thesis and it has been accepted by the 

journal “Aquaculture” (Elsevier, The Netherlands). 
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Chapter 3.  Prospective epidemiological study:  This study described in detail 

the impact, pattern of spread, and risk factors associated with RTGE within a 

population of sites affected by this syndrome. It was designed as a prospective 

longitudinal study. 

Chapter 4.  Histopathological and ultrastructural description:  This study 

provided a detailed description of the patterns associated with SFB presentation 

in RTGE fish, as well as a description of the pathological changes found in 

RTGE-affected fish. It was based on a sample library created from fish sampled 

from 11 UK sites affected by RTGE. 

Chapter 5.  Study of the pathogenesis of RTGE:  This study aimed to examine 

the pathogenesis of RTGE using gross examination, histology and blood 

biochemistry on the sample library above mentioned. 

Chapter 6.  Study of the role of SFB:  This study assessed the association of 

SFB with RTGE-affected fish.  A molecular tool for specific detection of SFB 

was designed, assessed and finally applied to describe the distribution of SFB 

in the digestive system of healthy trout, as well as RTGE-affected trout. 

The chapters in this thesis take the form of a series of draft manuscripts readied 

for publication.  The contribution of Jorge del-Pozo to all of the chapters 

includes the totality of the field sampling, data collection, laboratory work, 

statistical analyses and writing of the manuscripts.  All other authors, including 

Prof. James F. Turnbull, Dr. Margaret Crumlish and Prof. Hugh W. Ferguson, 

provided assistance with the experimental design, guidance and proof reading 

for all the chapters. 
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CHAPTER 2.  A Retrospective Cross-Sectional 
Study on Rainbow Trout Gastroenteritis 
(RTGE) in the UK 
Del-Pozo, Jorge*; Crumlish, Margaret; Ferguson, Hugh W.; Turnbull James F. 

This work was accepted as presented in “Aquaculture”, Elsevier, Netherlands. 

2.1.  Abstract 

Rainbow trout gastroenteritis (RTGE) is a summer enteritic syndrome affecting 

farmed rainbow trout which has been reported since 1992 in France, Spain, 

Italy, and Croatia.  RTGE was first reported in the UK in the year 2000 and 

limited information has been available about its epidemiology since this report.  

Our work aims to contribute to this knowledge with a retrospective cross-

sectional study devised to determine the extent and severity of RTGE in the UK 

as well as to identify RTGE risk factors at the site level.  Eighty-four sites 

participated in the study, representing 88% of the 2004 rainbow trout production 

by weight in the UK.  It was found that RTGE had been present in at least 11 

(13%) of these sites from 2000 to 2005 and the total number of sites affected by 

RTGE per year had increased over time, with prevalence values in the sample 

ranging from 2.4% during the year 2000 to 8.3% during 2005.  Univariable 

analysis of the whole dataset revealed a confounding effect of high average 

production, leading to stratification of all the analysis.  Several management and 

environmental variables were significantly associated with RTGE, including 

higher mean production, use of a major processing plant, lower residence 

times, lower harvest weights, use of diploid fish, systematic vaccination, water 

oxygenation, the use of automatic and/or demand feeding systems and higher 

maximum water temperature.  Also, a number of fry sources were associated 
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with RTGE, but further analysis suggested that a common source of RTGE via 

fry was unlikely.  None of the egg sources or feed types included in the study 

was associated with RTGE and production for the restocking market presented 

a protective association.  Multivariable logistic regression identified the use of a 

major processing plant and lower residence time as the two variables with the 

strongest association with RTGE presence.  Overall, the results of this study 

have confirmed RTGE in the UK as a major disease problem that is linked to a 

high productivity level and production of fish for the portion-size market. 

2.2.  Introduction 

Since 1995, an unusual form of mortality has been regularly reported in farmed 

rainbow trout, Oncorhynchus mykiss (Walbaum).  This condition was first 

described in France in 1992 and since then has been reported in Spain, Italy, 

Croatia and the UK (Denham 2004; Toranzo 2004; Branson 2003).  In Spain, 

the first report was in 1995 and by 1999 it was affecting approximately 60% of 

the Spanish rainbow trout farms (Branson 2003).  Similarly, the first case in the 

UK was diagnosed in a single site in 2000 and the following year the condition 

was observed in more locations (Denham 2004; Branson 2003).  The 

presentation of the condition was consistent in these reports and the term 

rainbow trout gastroenteritis (RTGE) was proposed in 1999 to describe this 

syndrome (Branson 2003; Michel et al. 2002; Urdaci et al. 2001). 

Rainbow trout gastroenteritis was reported to predominantly occur in the 

summer and to have a significant impact to the production of affected sites 

(Branson 2003; Michel et al. 2002; Urdaci et al. 2001).  Daily mortalities in the 

order of 0.5-1.0% and higher were common, generally affecting relatively big 
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fish (≥0.8kg).  Mortalities could be observed for as long as 15-30 days, resulting 

in significant economic losses for affected sites (Michel et al. 2002). 

Michel et al. (2002) reported that fish affected by RTGE generally exhibit 

lethargy and reduced appetite but can also develop dark striping of the flanks.  

Frequently, accumulation of mucoid faeces on the bottom of ponds and nervous 

signs were also included in the presentation.  Internal gross lesions include 

severe congestion and oedema of the intestinal wall with the intestinal lumen 

containing relatively large quantities of mucoid material.  Histologically, this 

presentation is accompanied by accumulation of large numbers of segmented 

filamentous bacteria (SFB) (Michel et al. 2002).  A genetic probe targeted at 

specific 16S rRNA regions of SFB from rat, mouse and chicken was used to 

identify the SFB in the intestine of RTGE-affected trout and as a result these 

were included in the “Candidatus arthromitus” group, closely related to 

Clostridium phylogenic group I (Urdaci et al. 2001; Snel et al. 1995; Murray & 

Stackebrandt 1995; Snel et al. 1994).  “Candidatus arthromitus” has been 

suggested as a possible aetiological agent for RTGE, as they are always 

observed in trout presenting RTGE pathological changes (Urdaci et al. 2001), 

although failure to culture SFB in vitro has hindered confirmation of this 

hypothesis (Angert 2005; Klaasen et al. 1992; Davis & Savage 1974).  The role 

of SFB in intestinal illnesses of other animal species is still unclear and although 

their presence has been reported in poultry with diarrhoea (Morishita et al. 

1992; Angel et al. 1990; Goodwin et al. 1989), a direct aetiological role has 

never been reported and various authors consider these organisms as part of 

the normal intestinal microflora (Talham et al. 1999; Jiang et al. 1999; Umesaki 

et al. 1995; Klaasen et al. 1993; Goodwin et al. 1991). 
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At the start of this study, no information was available on the epidemiology of 

RTGE at the site level in the UK.  Knowledge of risk factors associated with a 

health condition is essential for the design of control strategies for that condition 

(Thrusfield 2006) and these risk factors can be identified either through 

observational studies or experimental/clinical trials.  In the earlier stages of 

research, observational studies are commonly used to generate hypotheses 

and establish association between possible risk factors and the presence of 

clinical disease.  Cross-sectional studies are observational studies that make 

few assumptions about the disease status of the population of interest, allowing 

large numbers of potential risk factors to be screened.  A cross-sectional design 

was used in this study, since limited information was available on RTGE within 

the UK, allowing the prevalence to be established (Thrusfield 2006; Dohoo et al. 

2003).  The objectives of this study were (1) to estimate the extent and severity 

of RTGE in the UK rainbow trout industry and (2) to identify risk factors 

associated with RTGE at the level of the farm or site. 

2.3.  Materials and Methods 

A cross-sectional retrospective study of UK rainbow trout farms was conducted 

from April to June 2006, with data collected referring to the time interval 

between the years 2000 and 2005.  The year 2000 was selected due to the first 

report of RTGE in the UK (Branson 2003).  In this study the unit of interest was 

the whole site (i.e. A collection of productive units owned and operated as a 

single unit), and risk factors were those associated with RTGE positive sites. 
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2.3.1.  Participants 

Participants included members of the British Trout Association (BTA) and non 

members.  All members of the BTA are listed and their contact details 

(telephone, address and e-mail) available in the website of this organization, 

accessible to the general public (www.britishtrout.co.uk).  Non BTA members’ 

details are more difficult to obtain, as they are not listed in a single public 

source.  To obtain a representative list of all the rainbow trout farms in the UK, a 

list of all BTA members was amalgamated with a list of rainbow trout farms 

constructed from sources of data in the public domain.  The resulting list 

consisted of 169 salmonid farms distributed throughout the UK.  Further 

selection was made on the list by eliminating rainbow trout sites that were not 

operating from 2000 to 2005 and sites that did not stock rainbow trout.  After the 

selection process, a total of 126 rainbow trout sites were included in the final 

list.  To ensure confidentiality, each site was assigned a unique randomly 

generated number. 

2.3.2.  Questionnaire design and validation 

The survey questionnaire (Appendix II) was designed to include closed 

questions, which provide a limited range of options (Thrusfield 2006; 

Oppenheim 1992).  Closed questions were considered appropriate for this 

survey, as those surveyed had the option to respond by telephone or mail.  The 

information required for the survey was compiled from literature searches on 

RTGE and “C. arthromitus” as well as information available on the usual 

management procedures of rainbow trout sites.  All this information was 

synthesised into a set of questions that were then arranged by subject, from 

generic to more specific.  After the preliminary design, the questionnaire was 
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pilot-tested in two rainbow trout sites (not included in the study) where the time 

length, layout and absence of ambiguity of the questionnaire were assessed.  

All the variables included are displayed in Table 2.1 and a copy of the 

questionnaire can be found in Appendix II. 

 

Table 2.1. Variables included in the RTGE retrospective cross-sectional study conducted 
between April and June 2006. 

Category Variable (possible responses) 
Outcome Presence of RTGE from 2000 to 2005 

Environmental 
Variables 

Water use (m3/day) *†; Water source (borehole/lake/river); Water type (hard/soft); Water 
reuse (yes/no); Maximum yearly water temperature (°C); Water Treatment 
(no/aeration/oxygenation); Substrate (earth/concrete/metal/fibreglass); Contiguous Sites ‡ 
(yes/no) 

Production 
Variables 

Mean Production (tonnes/year), Target market (table/restocking); System type 
(cages/ponds/raceways/tanks); Feeding system (automated/demand/manual); Closed 
Production § (yes/no); Mean Trout Residence Time (months); Mean Stocking Density 
(kg/m3); Weight at Stocking (g); Weight at Harvest (g); Fallowing (yes/no); Type of Feed 
(feed 1 to 14 **); Scheduled Treatments (no/vaccination 1 to 4 **); Use of Processing 
Plant (processing plant 1 to 7 **); Share of Facilities (workers/equipment) 

Biological 
Variables 

Source of Fry (fry source 1 to 34 **); Source of eggs (egg source 1 to 11 **); Ploidy 
(Diploid/Triploid); Other Animals on Site (Dog/Sheep/Cattle/Cat); Predator Presence 
(Cormorant/Heron/Mink/Otter/Seagull) 

*=Based on the site abstraction license. †=Only applied to pond sites. ‡=This variable indicated the 
presence of another rainbow trout producing site in the same water system within 5 miles. §= Closed 

systems produce their own fry. **=Random number assigned to maintain confidentiality. 

 

2.3.3.  Survey approach and participation 

A standard letter containing information on the purpose of the project and the 

funding bodies involved was mailed to all 126 sites.  After a minimum interval of 

one week, all sites were contacted by mail (once) and telephone (weekly) to 

request their participation.  These data collection procedures were implemented 

during a period of three months (April-June 2006) to ensure the inclusion of the 

maximum number of participants possible. 
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2.3.4.  Data Management and Analysis 

A database was created in the software package EpiInfo™ (Dean et al. 2007) 

and used to collate all survey data, create several calculated variables (mean 

production (tonnes/year), summer water usage (m3/day) and mean stocking 

density (kg/m3)).  Continuous variables were categorised into high and low 

through their median value and also included as dichotomous variables in the 

analysis.  The identification of risk factors was based in statistical association 

with whether or not there was a case of RTGE.  This was defined as: “A case of 

RTGE is a rainbow trout producing site that had RTGE diagnosed by an 

independent fish health expert on fish samples from one or more of its 

production units at any moment between the beginnings of the year 2000 to the 

end of the year 2005”. 

The analysis of the data was firstly descriptive, which provided information on 

the background of RTGE in the UK.  This was followed by risk factor univariable 

and multivariable analyses.  The data were not normal and univariable analysis 

used Fisher Exact and Kruskall-Wallis tests for dichotomous and continuous 

variables respectively, with results with p<0.05 considered as statistically 

significant.  During analysis, a correlation was observed between several 

possible risk factors and a higher mean production. In order to minimize the 

confounding effect of mean production, data were stratified into low and high 

productivity level through the median of the mean production (70 tonnes/year).  

All cases were located in the upper stratum and as a result the final univariable 

and multivariable analysis were performed only in this stratum.  Multivariable 

analysis involved the use of logistic regression modelling.  Univariable logistic 

regression was used for the selection of variables for multivariable analysis, and 
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all variables that showed a Wald statistic p<0.25 through univariable logistic 

regression were kept for multivariable analysis.  Before model building, the 

assumption of linearity of the logit of continuous variables with the dependent 

variable was tested using the Box-Tidwell transformation test and continuous 

variables that did not meet this assumption were included as dichotomous 

variables only.  These variables were also tested for multicolinearity using 

Pearson correlation and variables presenting significant correlation (p<0.05) 

were not included in the same model.  In these cases, the variable judged as 

most biologically plausible was used as a candidate in the multivariable 

analysis.  Both forward and backward stepwise model building approaches 

were used and the best model was determined by a significant reduction in the  

-2*log likelihood statistic.  The Hosmer-Lemeshow test was applied to all 

candidate models to ensure adequate goodness of fit and all possible 

interaction terms were tested (Thrusfield 2006; Dohoo et al. 2003).  All the 

univariable analysis, correlation tests and multivariable logistic regression 

models were conducted using both SPSS™ (SPSS Inc.) and EpiInfo™ (CDC) 

computer packages. 

2.4.  Results 

2.4.1.  Study response and participant sites 

Of 126 UK sites initially contacted, 84 sites agreed to take part in the study.  

This sample did not include sites from Northern Ireland and as an indicator for 

the response rate, the sum of the yearly production of all the sites participating 

in this study during 2004 (13,539 tonnes) represented 88% by weight of the 

total UK production (15,917 tonnes), excluding Northern Ireland (DEFRA 2006).  
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Of these 84 sites, 58 (69%) were BTA members and 26 (31%) were non BTA 

members.  The sample included river-based as well as lake-based sites utilising 

pond, raceways, tanks or cage systems and their mean yearly production 

ranged from 3 to 1000 tonnes/year.  Participant sites were located in England, 

Wales and Scotland but not Northern Ireland (Figure 2.1). 

 
Figure 2.1. Map of the UK showing the approximate location of the rainbow trout 
producing sites (n=84) which participated in the rainbow trout gastroenteritis (RTGE) 
retrospective cross-sectional study. 

Of all the sites included 29 (35%) produced exclusively for the table market, 34 

(40%) for the restocking market, 17 (20%) produced for both markets and the 

remaining 4 (5%) were fry only producers.  The residence time of trout at each 
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one of the sites ranged from 5 to 36 months (mean= 15mo).  Trout were 

harvested at weights ranging from 5 to 3300 grams (mean= 698g).  More than 

half of the sites stocked only rainbow trout, although 43% stocked other species 

as well, namely brown trout (Salmo trutta), brook trout (Salvelinus fontinalis) or 

carp.  One feed company supplied 83% of the sites, with the remaining 17% 

being supplied by any of the other 13 companies.  Only 11 sites (13%) used 

closed production systems i.e. eggs were produced from their own broodstock, 

hatched on site and no external fry were purchased. 

2.4.2.  Impact and distribution of RTGE in the UK 

The survey results revealed a total of 11 RTGE cases (13% of sites) from 2000 

to 2005 (Table 2.2).  Only one of the cases had RTGE diagnosed every year 

from 2000 to 2005 and the rest presented RTGE during one to four years.  All 

cases were located in two distinct areas, either the south of England or 

Scotland.  Cases in the south of England were river-based and clustered in a 

relatively small area whereas Scottish cases were both river-based and loch-

based sites and distributed throughout Scotland.  All cases were high-level 

producers, producing 200 to 1000 tonnes/year for the table market, using 

externally supplied fry (non-closed system), with the exception of a single site 

that combined production for restocking as well. 

Table 2.2. Number of participant sites on the RTGE retrospective epidemiology study 
divided by region and presence or absence of RTGE from 2000 to 2005. 

REGION RTGE Absent (%) RTGE Present (%) TOTAL 
England 55 (93%) 4 (7%) 59 
Scotland 12 (63%) 7 (37%) 19 

Wales 6 (100%) 0 (0%) 6 

TOTAL 73 11 84 
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The site-level prevalence of RTGE in the surveyed population ranged from 2% 

during 2000 to 8% during the year 2005 (Figure 2.2).  An increasing trend in the 

total number of cases was observed, with new cases observed every year 

although none of the farms had RTGE present on all the years of the study. 

All sites located within five miles in the same water system to RTGE sites were 

also positive for RTGE.  As a result, it was not possible to analyse the risk 

associated with close geographical proximity to RTGE cases. 
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Figure 2.2. Bar chart displaying the total number of Rainbow trout gastroenteritis (RTGE) 
positive cases per year for all participant sites of the UK retrospective cross-sectional 
study (n=84). 

2.4.3.  Univariable analysis 

The preliminary univariable analysis of the whole dataset revealed the presence 

of a confounding effect of mean production on several variables.  To minimize 

this effect, stratified analyses were conducted by dividing the data into high and 

low producers.  Since cases were only present in the stratum of high producers 

it would have not been possible to adjust for confounding by mean production 
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and the rest of the analysis was performed on a dataset including only high 

producers, which comprised 41 sites (11 cases and 30 controls). 

The univariable analysis identified a total of 17 variables statistically associated 

with RTGE cases, of which 12 were categorical and 5 were continuous (Table 

2.3). 

Table 2.3. Dichotomous and continuous variables statistically associated with RTGE 
cases identified through univariable analysis of higher producers stratum data (>70 
tonnes/year, n=41, p<0.05) from Rainbow trout gastroenteritis (RTGE) retrospective 
cross-sectional survey in the UK. Variables not significantly associated with RTGE were 
not included in this table. 

Dichotomous Variable (Variable type) Crude Odds 
Ratio 

95% Confidence 
interval (T) 

P 
(FE) 

Fry Source 3 (Yes/No) 18.0 3.3-97.8 <0.001 
Use of Processing plant 1 or 2 (Yes/No) 18.8 3.2-110.3 <0.001 
Mean Production (High/Low)* 18.2 2.0-161.4 0.002 
Fry Source 12 (Yes/No) 17.1 1.6-178.1 0.01 
Fry Source 16 (Yes/No) 17.1 1.6-178.1 0.01 
Automated and/or Demand Feeders (Yes/No) 11.3 1.0-123.2 0.05 
Diploid vs. Triploid 8.2 1.0-72.4 0.03 
ERM I.P. Vaccination† 6 1.4-26.6 0.02 
Fry Source 8 (Yes/No) 3.1 1.7-39.5 0.01 
Aeration vs. Oxygenation 0.2 0.05-0.9 0.04 
Earth Substrate‡ 0.2 0.1-1.0 0.05 
Production for Restocking Only 0.1 0.01-0.8 0.01 

(T) Taylor series, (FE) Fisher exact. *High>217 tonnes/year. †: ERM= Enteric red mouth disease; 
I.P.=Intraperitoneal. ‡: Only applies to river-based sites  

Continuous Variable (Measure 
Unit) 

Median (mean) 
RTGE cases 

Median (mean) 
non-RTGE cases 

P 
(KW) 

Water Use (Million Gallons/day)* 20(21.5) 5(9.5) 0.002 
Mean Production (tonnes/year) 300(452.7) 155(244.1) 0.003 
Trout Residence Time (Months) 8(9.2) 12(14.3) 0.005 
Trout Weight at Harvest (grams) 400(390) 600(823.4) 0.02 
Maximum Water Temperature (0C) 20(21.4) 18.5(18.3) 0.05 

(KW)=Kruskal-Wallis analysis; * only applies to river based sites. 

 

 

 



Retrospective Cross-Sectional Study 

2-48 
 

It was not possible to calculate the odds ratio for instances where there were no 

cases (or non-cases) exposed to the independent variable.  For example, all 

cases harvested the fish at a weight lower than the median of the sample 

(median=469g), produced fish for the market table and used externally 

produced fry, and none of the cases used water from a borehole.  Further 

analysis of fry sources significantly associated with RTGE did not reveal one or 

more sources that had been shared by all RTGE cases.  Fry sources 12 and 16 

were only present in cases from the South of England, whereas fry sources 3 

and 8 were present in sites from both areas. 

2.4.4.  Multivariable analysis 

The reduction of the sample size due to stratification did not affect the number 

of variables that could be included in the final multivariable model as the 

number of cases stayed constant, although the number of cases available 

(n=11) limited the maximum number of variables that could be included in a 

logistic regression model to 2 (Dohoo et al. 2003).  Correlation analysis 

revealed significant multicolinearity between several variables significantly 

associated with RTGE (Table 2.4).  Significantly correlated variables were not 

included in the same model.  Forward and backward stepwise model building 

approaches yielded several acceptable models.  The final model presented in 

Table 2.5 had the lowest -2*log likelihood ratio value of all the potential 

candidates. 
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Table 2.4. Inter-correlation between selected variables to be offered to the multivariable 
logistic regression model (P-values for Pearson correlation). These variables were 
identified by univariable logistic regression in the higher producers stratum data (>70 
tonnes/year, n=41) from a Rainbow trout gastroenteritis (RTGE) retrospective cross-
sectional survey conducted in the UK. 

Variables a b c d e f g h i 
a- Trout Residence time (months) --    
b-Use of Processing plant 1 or 2 0.13 --    
c-Production for Restocking Only 0.008 0.006 --    
d-Trout Weight at Harvest (grams) <0.001 0.07 0.48 --    
e-Automated and/or Demand Feeders 0.61 0.62 0.72 0.83 --    
f-Diploid vs. Triploid 0.22 0.34 0.10 0.84 0.42 --  
g-ERM I.P. Vaccination† 0.11 <0.001 0.01 0.10 0.32 0.34 -- 
h-Use of Oxygenation 0.01 0.14 0.39 0.03 0.32 0.34 0.56 -- 
i-Maximum Water Temperature (°C) 0.005 0.002 0.10 <0.001 0.71 0.72 0.01 0.09 -- 
j-Mean Production (Tonnes/year) 0.004 0.270 0.01 0.86 0.19 0.11 0.27 0.16 0.68 

Headers a-j: Letters are used to abbreviate the table headers and correspond to each variable in the first 
column. †: ERM= Enteric red mouth disease; I.P.=Intraperitoneal. 

The results of Hosmer-Lemeshow test (χ2=2.15; d.f.=8; p=0.98) suggest that 

this model fits the data adequately.  The constant was not significantly different 

from zero, as the first variable in the model is a risk factor whereas the second 

variable is protective (i.e. Higher residence time presents lower odds of 

belonging to the group of RTGE cases).  The interaction between these two 

predictor variables was not significant.  The confidence intervals around the 

point estimates were wide, suggesting that caution should be taken when 

drawing inference from this model. 

Table 2.5. Multivariable logistic regression model for higher producers stratum data (>70 
tonnes/year, n=41) from a Rainbow trout gastroenteritis (RTGE) retrospective cross-
sectional survey conducted in the UK against the outcome RTGE case=Yes/No. 

Variables (Unit) Odds Ratio (95% C.I.) Z P 
Use of Processing Plant 1 or 2 (Yes/No) 24.93(2.33-266.87) 2.66 0.008 
Trout Residence Time (Months) 0.59(0.59-0.97) -2.08 0.04 
CONSTANT * 1.25 0.21 

-2*Log Likelihood=25.6, Degrees of Freedom=2, P<0.001 
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2.5.  Discussion 

The presence of RTGE in the UK was first confirmed in a rainbow trout-

producing site in England in 2000 (Branson 2003) and no information has been 

available on the epidemiology of this condition within the UK rainbow trout 

industry since this report.  This study aimed to appraise the extent and severity 

of RTGE in the UK rainbow trout industry and to identify the risk factors 

associated with RTGE at the site level. 

The response rate to the survey was good with respondents representing 88% 

of UK trout production by weight in 2004 (DEFRA 2006).  The sample was 

considered to be representative of the rainbow trout industry of the UK and 

comprised most types of farming systems, spread throughout the UK with the 

exception of Northern Ireland.  Several sites did not participate and the 

remaining 12% of the production came from a relatively large number of smaller 

sites (42 or more), suggesting that the sample may have been biased to larger 

producers.  Despite this, the inclusion of both large and small producers, 

including BTA members and non-BTA members suggest this is not the case, 

although this possibility should be considered when interpreting the findings of 

this study. 

The survey identified a total number of 11 sites in the UK which had RTGE 

diagnosed by a fish health expert between 2000 and 2005.  The number of 

cases by year suggested an increasing trend in the prevalence of RTGE 

positive sites from 2000 to 2005 in the survey sample.  The inclusion of cases 

that were diagnosed by a fish health expert ensured an acceptable specificity of 

the screening method although the sensitivity of this design was not 

guaranteed, as health expert advice may not have been summoned if a 
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transitory problem due to RTGE did not present a significant impact on the 

overall site production.  It is also possible that an increasing awareness on the 

presence of this disease in the UK could have raised the diagnosed/reported 

cases.  There was therefore possible underreporting of the condition in the 

survey, although it is reasonable to expect that all significant RTGE outbreaks 

were included and the increasing trend is likely to be real.  The results of the 

survey demonstrate that RTGE is not linked to a single geographical location 

with cases distributed in two distinct areas (i.e. South of England and Scotland) 

which have markedly different environmental and production characteristics.  All 

sites in the same water system within 5 miles of a case were also cases, 

suggesting the possibility of local spread of this condition.  However, it was not 

possible to test this hypothesis further. 

The univariable analysis considered potential risk factors related to farming 

system, biotic and abiotic factors.  RTGE was not restricted to a single farming 

system although it was strongly associated with high productivity level and even 

within the subset of high producers a significative association was found 

between RTGE cases and high mean production.  It was not possible to 

eliminate completely the possibility of confounding by the mean production and 

several variables correlated with high production were also associated with 

RTGE cases in the high stratum only, including the use of oxygenation, 

vaccination strategies against enteric redmouth disease (ERM) and several fry 

and egg sources.  Variables confounded by high production which applied 

exclusively to pond sites included higher water turnover and the use of a non-

earth based substrate. 
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All RTGE cases produced rainbow trout for the table market and production for 

the restocking market was negatively associated with RTGE.  This was 

reflected in the association of RTGE with lower trout turnover times, use of 

diploid trout instead of triploid and lower fish weights at harvest, all consistent 

with the production of portion-sized trout for the table market.  None of the feed 

types was associated with RTGE, although the association of the use of 

automated and/or demand feeding systems with RTGE suggests that feeding 

strategies may play an important role in its development.  Fish stocking 

management strategies, such as stocking density, weight of fish at stocking and 

the use of systematic fallowing were not associated with RTGE. 

Univariable analysis also suggested an important role of a higher maximum 

water temperature in the summer, which was significantly associated with 

RTGE cases.  The nature of the data collected did not allow the definition of a 

specific temperature range for the condition, as time interval data would have 

been required, but this finding is consistent with previous reports of the 

condition, which confirmed the presence of RTGE only when water 

temperatures were over 12-16°C (Branson 2003; Michel et al. 2002; Urdaci et 

al. 2001), although in one of these reports it was suggested that in Scottish 

farms the temperature threshold can be as low as 9°C (Branson 2003).  RTGE 

was not associated with water calcium levels and none of the cases used 

borehole water.  All cases bought fry from outside sources and four fry sources 

were significantly associated with RTGE cases although none of these was 

common to all cases, suggesting the absence of a common source of RTGE via 

fingerling introduction in the surveyed population.  The presence of any other 
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animal species on site with potential contact with the fish was not associated 

with RTGE. 

Multivariable logistic regression modelling of the dataset identified two factors 

strongly associated with RTGE cases, namely the use of one or both of two 

processing plants and lower trout turnover times.  These two variables 

generated the best model, but a significant correlation with other variables 

associated with RTGE and the presence of other acceptable models suggested 

that these variables may also be interpreted as indicators of a specific type of 

site.  The limited sample size of the dataset resulted in inflated odds ratios and 

confidence intervals, suggesting that the model has limited predictive power, 

although the presence of the factors included in the model are indicative of a 

higher risk of being a RTGE case (Dohoo et al. 2003).  The use of one or both 

of two processing plants was associated with RTGE and further analysis 

revealed that these sites were an important subpopulation of the highest 

producers in the sample, strongly suggesting that RTGE may be exclusively 

associated with the subset of highest producers of the UK rainbow trout 

industry.  Intensive aquaculture practices present many situations where stress 

and physical injury can strongly increase susceptibility to naturally occurring 

pathogens and the quantity of fish movements within and into intensive sites is 

necessarily higher, increasing the likelihood of disease introduction and spread 

(Ashley 2007; Bucke 1980).  Transmission between sites via shared harvest 

equipment and vehicles from processing plants was not suggested by this 

analysis, as sharing of workers and equipment was not associated with RTGE 

cases, although the apparently increasing prevalence of RTGE within the UK 

together with the possibility of local spread observed in this study suggest an 
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important role of biosecurity in RTGE control, as previously suggested for other 

fish diseases (Danner & Merrill 2006; Scott 2004; St-Hilaire et al. 2002).  In any 

case, more data is necessary to verify the hypothesis that RTGE is infectious.  

Shorter fish residence times were also strongly associated with RTGE and 

positive cases had residence times of 6 to 13 months.  This type of productive 

cycle is characteristic of rainbow trout farms that produce for the portion size 

table market, as shown by the presence of correlation with production for the 

table market within the sample.  Lower residence times have also been linked 

with intensive production and increased stress (Ashley 2007) and a relatively 

higher feed input is necessary to achieve the productive targets, a factor that 

could play an important role in the development of RTGE. 

Concluding, this retrospective cross-sectional study has shown that RTGE was 

present in the UK in at least 11 sites from 2000 to 2005 and that it is likely that 

its prevalence in the UK has increased during this period.  RTGE was 

associated with high productivity and production of fish for the portion size 

market.  More research will be required to clarify the influence of the risk factors 

identified on the presentation of RTGE, including transmission trials, 

pathogenesis studies and epidemiology studies at the productive unit level. 
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CHAPTER 3.  Prospective Longitudinal Study 
of “Candidatus arthromitus”-Associated 
Rainbow Trout Gastroenteritis in the UK 
Del-Pozo, Jorge*; Crumlish, Margaret; Ferguson, Hugh W.; Turnbull, James F. 

3.1.  Abstract 

Rainbow trout gastroenteritis (RTGE) is an emerging disease of farmed rainbow 

trout (Oncorhynchus mykiss) reported in Croatia, France, Italy, Spain and the 

UK.  The impact of RTGE at the site level varies and daily mortalities of 0.5-1% 

are common.  The gross lesions seen in affected fish include severe enteritis 

with congestion and oedema.  The segmented filamentous bacterium 

“Candidatus arthromitus” has been suggested as a possible aetiological agent 

of RTGE.  A limited number of epidemiological observations on RTGE are 

available in the literature and climatic and stress factors such as water 

temperature and fish handling have been indicated as possible risk factors.  

This prospective longitudinal epidemiology study was designed to describe the 

impact, presentation, current control strategies and spread pattern of RTGE 

within affected UK sites.  Risk factors associated with both the presence and 

severity of the syndrome were also investigated.  For this purpose, a 

longitudinal study at the population level was designed and data collected 

prospectively from June to November 2006 from 12 RTGE positive UK sites.  

This information was used to describe RTGE presentation and pattern of 

spread, as well as the treatments used during outbreaks.  Conditional 

multivariable logistic regression (CLR) and general linear modelling (GLM) were 

used to identify potential risk factors associated with the presence and severity 
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of RTGE.  The results of the descriptive analysis strongly suggested that RTGE 

is infectious, an observation supported by risk analysis of fish transfers and unit 

location.  The CLR analysis identified eight variables significantly associated 

with the presence of RTGE, including two models with four environmental and 

four management factors.  Additionally, GLM analysis identified a significant 

association of mean feed input per fish during an outbreak with RTGE 

cumulative mortalities. 

3.2.  Introduction 

Rainbow trout gastroenteritis (RTGE) is an enteric syndrome affecting 

commercially reared rainbow trout Oncorhynchus mykiss (Walbaum) during the 

summer (Michel et al. 2002; Urdaci et al. 2001).  The clinical presentation of the 

syndrome includes severe congestion and oedema of the intestinal wall 

associated with the presence of large numbers of the segmented filamentous 

bacterium “Candidatus arthromitus” (Michel et al. 2002).  RTGE has been 

reported in several European countries (Toranzo 2004; Cervellione, personal 

comm.; Branson 2003; Michel et al. 2002).  In France, Spain and the UK, RTGE 

has spread beyond the site where it was first detected and has become a 

significant problem for the rainbow trout industry (Branson 2003; Chapter 2; 

Michel et al. 2002; Sanz 2000).  A retrospective epidemiological study of RTGE 

in the UK (Chapter 2) reported an increase from two to seven in the total 

number of RTGE positive sites between 2000 and 2005.  In this study, RTGE 

was associated with high levels and rapid rates of production of fish for the 

portion size table market.  The impact of RTGE on the sites affected is 

economically significant, and daily mortalities of 0.5-1% of relatively big fish 

(≥0.8 kg) have been reported (Michel et al. 2002).  Mortalities peak 
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approximately 10-14 days after onset, and cease approximately 3-4 weeks 

later, after the fish reach 160-200 g or when water temperatures drop below 

12°C (Branson 2003).  Anecdotal observations have led to the suggestion of 

several risk factors that could be associated with RTGE. 

Firstly, in a single land-based site, RTGE was observed within a limited group of 

ponds receiving first-use water but never in ponds receiving second-use water, 

even if the water originated from an affected unit (Branson 2003).  Other 

suggested factors have included stressors, such as handling (Michel et al. 

2002).  All the authors agree on the importance of water temperature, but there 

is disagreement between reports on the minimum temperature at which RTGE 

is observed (12-16°C) and none of these reports provides information on the 

number of outbreaks used to extract these figures (Branson 2003; Michel et al. 

2002; Urdaci et al. 2001).  Additionally, RTGE has been reported once at water 

temperatures of 9°C in a single Scottish site (Branson 2003), suggesting there 

may be variability in the presentation and therefore a relatively large sample is 

required. 

Other anecdotal epidemiological observations include the disappearance of 

clinical RTGE after changes in diet or environment and an apparent association 

of low-energy diets with RTGE (Michel et al. 2002; Urdaci et al. 2001).  Several 

approaches have been used for the treatment of RTGE, although there are no 

reports of the efficacy of any of these treatments.  These have included 3-4 

days fasting followed by 6 days of tetracycline or oxytetracycline oral 

administration (Urdaci et al. 2001), flumequine treatments every 25 days (Sarti 

et al. 2008) and various percentages of sodium chloride (NaCl) mixed in with 

the feed (McKenzie, K.  personal comm.).  The review of the literature available 
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on RTGE at the beginning of this study revealed that most of the 

epidemiological information on RTGE was based on anecdotal observations. 

An epidemiological study was designed with the aim of describing the impact, 

pattern of spread and risk factors associated with RTGE within a population of 

sites affected by this syndrome.  The ultimate aim was to provide data 

applicable to the prevention and control of this disease in rainbow trout 

productive systems (Hedrick 1998). 

3.3.  Materials and Methods 

3.3.1.  Study design 

A prospective longitudinal study was designed to investigate the presence and 

severity of RTGE, with the productive unit as the observational unit.  A 

productive unit was defined as a population of rainbow trout stocked in the 

same cage/tank/pond/raceway at a specific point in time.  The timeframe was 

June to November 2006. 

3.3.2.  Study population and inclusion criteria 

The study involved 17 rainbow trout producing sites chosen during a pre-

sampling phase.  All 17 sites had participated previously in a retrospective study 

of RTGE in the UK (Chapter 2) and agreed to participate in the study on the 

basis of confidential handling of the data collected.  The number of sites 

selected was as high as practicable while allowing for regular visits to all the 

sites.  Every one of the selected sites produced more than 200 tonnes per year 

of rainbow trout for the table market and RTGE had been reported previously in 

at least 11 of them (Chapter 2).  These criteria were chosen so RTGE could be 
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reasonably expected to occur in a proportion of these sites during the study.  

The timeframe of the study was chosen to include the time of the year when 

RTGE had been previously observed, adding one month before and afterwards 

to ensure inclusion of complete RTGE outbreaks (Branson 2003).  At the end of 

the study a total of 12 sites were positive for RTGE and analysis was performed 

only in data from these sites. 

Descriptive analyses were performed on all the data from the 12 affected sites 

for reference to the total number of units.  For further statistical analysis, only 

relevant cases and controls were included.  To ensure that units from the 

population at risk were included as negative controls, only units that had been 

stocked for at least a month and fed at least once during the study were 

included as controls.  These criteria filtered out the units that were used for fish 

transfer management only (i.e.  grading, harvest, etc.).  The cases did not 

include units with concurrent diseases and/or RTGE daily mortalities that did not 

exceed 0.05%. 

3.3.3.  Data Collection 

All the data used in the study were collated from farm records.  These records 

were kept on paper or computer and included information collected daily from 

June to October 2006 for every unit in the study.  Computer records were 

exported from FarmControl™ (Maritech, UK) and DJournal™ (Skretting, UK) 

software, using standard exporting features of these packages and paper 

records were manually entered onto spreadsheets.  All the data were finally 

collated in a single spreadsheet for convenience of analysis. 
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3.3.3.1.  RTGE case definition and recording 

During the study the following case definition was used to identify affected fish: 

“RTGE is a condition of rainbow trout, associated with daily mortalities of 0.5% 

or more and present during the summer.  Affected moribund fish usually present 

a lighter colouration as well as a generally swollen appearance externally, while 

internally, their lower intestine is distended, congested, oedematous and has a 

yellow viscous content.  Other organs appear apparently unchanged”.  This 

case definition was created from literature searches and preliminary field 

observations (Branson 2003; Michel et al. 2002; Urdaci et al. 2001) and 

facilitated the selection of RTGE cases based on gross lesions, while 

minimising the presence of concurrent disease in the sample (Chapter 4).  This 

case definition was used to create RTGE diagnosis guidelines that were sent to 

each participant site before the start of the study, in order to enable recognition 

of RTGE by site staff with consistency across the sites (Appendix III).  In 

addition, all participant sites were visited regularly during the period of the study 

to verify RTGE diagnosis and recording by the site workers.  This was assessed 

by collection and analysis of samples from all suspected RTGE positive units at 

the time of the visit for gross examination and bacteriological analysis.  A unit 

was only considered a case when RTGE had been recorded during the period 

of the study.  Both the presence and cumulative mortalities of RTGE were 

considered outcomes for subsequent analysis. 

3.3.3.2.  Independent variables 

All the continuous variables were included in the analysis both as recorded, 

summarized (minimum, mean and maximum) and categorized through the 

median value (Table 3.1). 
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Table 3.1.  Variables recorded during a RTGE prospective longitudinal study.  Each 
variable was recorded daily for each one of the stocked units in all sites. 

Category Variable Possible Values 
Outcome Variables RTGE presence Yes/No

RTGE cumulative mortality (%) Continuous, Min, Max, Mean 

Site Management 

Number of days stocked Continuous, Min, Max, Mean 
Aeration System Yes/No 
Oxygenation System Yes/No 

System Type 
Cages
Ponds
Raceways
Tanks

Feeding system Automated
Demand
Hand

Feed input* Continuous, Min, Max, Mean 
Feed type 1 to 14 
Pellet size (mm) Continuous, Min, Max, Mean 

Treatments 

Starvation
In-feed NaCl mixed on site 
Commercial in-feed NaCl 
In-feed Liquid Paraffin 
In-feed Oxytetracycline 
Other in-feed Antibiotic 
Chloramin T in water + In-feed Liquid paraffin
Chloramin T in water 
Formalin in water

Number of Movements Continuous, Min, Max, Mean 

Fish transfer 

RTGE to RTGE
RTGE to Healthy 
Healthy to RTGE 
Healthy to Healthy 
Stocking 
Harvest 

Contiguity Contiguity to RTGE cases 
Downstream to RTGE cases** 

Water Usage (number of times) Continuous**

Environment 

Water temperature (°C) Continuous, Min, Max, Mean 

Bottom material 

Concrete
Earth
Fibreglass
Metal
Net

Fish Variables 
Total biomass (kg) Continuous, Min, Max, Mean 
Mean Weight (g) Continuous, Min, Max, Mean 
Stocking Density (kg/m3) Continuous, Min, Max, Mean 
Source of fry 1 to 34

Other Mortality 
Causes 

Bacterial Kidney Disease (BKD) Yes/No
Costiasis Yes/No
Enteric Red Mouth (ERM) Yes/No
Furunculosis Yes/No
Handling mortalities Yes/No
Predation Yes/No
Proliferative Kidney Disease Yes/No
Rainbow Trout Fry Yes/No
Sleeping Disease (SD) Yes/No
Unspecified mortalities Yes/No
White Spot (“Ich”) Yes/No

* Feed input was expressed as a percentage of the individual fish weight; **: Only applies to land-based 
sites 
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3.3.3.2.1.  Environment 

Mean daily temperature was recorded in °C as part of standard site 

management procedures by all participant sites.  Measurements were taken in 

a single location within the site.  Information on the number of times water was 

used before entering specific units was obtained from analysis of the layout of 

all land based sites.  Information on aeration systems and bottom material used 

for each unit was collected on site visits. 

3.3.3.2.2.  Feeding practices 

A categorical variable was created to record the feeding system used in each 

one of the units included in the study.  In addition, feed type (Type 1 to 15), 

pellet size and weight fed were recorded daily for each unit.  In order to take 

into account variations in feed input due to the number of fish in the unit as well 

as the mean weight across the fish in the unit, feed input was expressed in the 

analysis as a percentage of individual fish weight. 

3.3.3.2.3.  Fish stocking data 

Information on the source of fry was available for all the fish present in a site 

and coded as categorical variables.  Each one of the 34 fry sources used by all 

sites was assigned a random number for confidentiality.  In the event of mixing 

of fish from different batches, all fry sources of the fish stocked in the unit were 

considered simultaneously in the analysis.  The mean fish weight was recorded 

by site staff by regular weighing of samples consisting of 100 individuals from 

each unit.  These figures were then recorded in a database, which then 

estimated the daily variation between samples according to the feed input.  This 

figure was also expressed as stocking density (number of fish/m3) during the 

analysis. 
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3.3.3.2.1.  Disease management 

Several variables were created to record all the treatments given to the fish 

during the period of the study, including treatment type (1 to 17) and length of 

the course of treatment.  Dosage was also recorded as a percentage of the feed 

for in-feed treatments. 

3.3.3.2.2.  Mortalities 

Other causes of mortality were recorded during the study both in RTGE cases 

and controls and were included in the analysis as dichotomous variables (i.e.  

presence or absence) to examine the possible effect that they may have had in 

the presence and prevalence of RTGE.  Causes of observed mortality other 

than RTGE included unspecified diseases, predation and losses due to fish 

handling. 

3.3.3.2.3.  Movement and contiguity data 

All fish movements, including intra-site movements, stockings and harvests 

were recorded as part of normal management procedures.  This information 

was collated in a single spreadsheet and each movement categorized 

according to the RTGE status of the source and receiving unit: healthy to 

healthy, healthy to RTGE, RTGE to healthy, RTGE to RTGE, stocking and 

harvesting.  For receiving units that eventually became cases, only inward 

movements previous to outbreaks were included in the analysis. 

A map of each site was used to record units that were contiguous to or 

downstream (only land based) from previous cases.  The map was not available 

for one site, which was not included in the analysis and the first RTGE case in 

each site (i.e.  “index” case) was not considered for contiguity analysis. 
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3.3.4.  Statistical analysis 

All data management and analyses in this study were conducted in MS Excel™ 

(Microsoft, USA), SPSS™ (SPSS Inc., USA) and EpiInfo™ (CDC, USA) 

computer packages. 

3.3.4.1.  Incubation period descriptive analysis  

Two different approaches were taken to describe the incubation period of RTGE 

on the 12 sites included in the study.  The first one involved the selection of 

previously empty units that had been stocked with fish from outside the site 

during the period of the study and then undergone an outbreak.  Intra-site 

transfers were not considered for this analysis to reduce the risk of including 

fish that may have been already incubating the disease.  Once the selection 

was made, histograms of the time elapsed between stocking and RTGE onset 

were plotted and the observed frequencies analysed.  The second approach 

involved analysis of the time in days between RTGE outbreaks in units that had 

suffered two consecutive RTGE outbreaks during the period of the study.  

These two approaches allowed the estimation of the incubation plus the time 

course of the disease, as the first day when RTGE mortalities were recorded 

was the reference value. 

3.3.4.2.  Descriptive analysis of RTGE treatments 

All treatments used 15 days before and during RTGE outbreaks were 

described, including summary statistics and analysis of mortality plots in respect 

of treatment days. 

3.3.4.3.  Analysis of RTGE spread pattern 

Intra-site movements and contiguity data were included in the case-control 

study as well as analysed separately in order to obtain further information on 
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the role of these two variables in the spread pattern of RTGE within sites.  

Preliminary analysis suggested clear differences in the spread pattern of RTGE 

between water-based sites and land-based sites, which led to the performance 

of stratified analyses.  In addition, the simultaneous presentation of RTGE 

across most units in a cage site suggested the fish movement data from this 

site were not suitable for this part of the study.  During the analysis, the risk of 

receiving units becoming cases after fish transfer from an affected unit was 

examined using contingency tables.  Then, the differences in the RTGE relative 

risk of receiving units depending on the timing of transfer from RTGE positive 

units were examined.  This analysis was conducted on a dataset including only 

outgoing movements from RTGE positive units, which were classified according 

to a 15-day time series, as shown in Table 3.3.  All fish transfer data seven 

weeks before and seven weeks after RTGE outbreaks were used as a 

reference and all other time series groups were compared with this reference 

using contingency tables.  A Fisher Exact test was used to assess the 

significance of the Mantel Haenszel-adjusted odds ratios, with a significance 

level of p<0.05. 

Table 3.2.  Fifteen-day time series used for analysis of the RTGE risk of receiving units 
depending on the timing of fish transfer relative to the RTGE outbreak on the outgoing 
unit.  All the frequency data from groups -6 to 5 were compared against data from the 
control groups -7 and 7 

TIME 
SERIES 

Weeks relative to RTGE 
outbreak** 

-7* 7 & MORE WEEKS PRE-OUTBREAK 
-6 5 & 6 WEEKS PRE-OUTBREAK 
-4 3 & 4 DAYS PRE-OUTBREAK 
-2 1 & 2 WEEKS PRE-OUTBREAK 
0 FIRST TWO WEEKS OF OUTBREAK 

00 3 WEEKS TO END OF OUTBREAK 
1 1 & 2 WEEKS POST-OUTBREAK 
3 3 & 4 WEEKS POST-OUTBREAK 
5 5 & 6 WEEKS POST-OUTBREAK 
7* 7 & MORE WEEKS POST-

*Data from these groups were used as reference for analysis 
** Time in relation to RTGE outbreak in outgoing unit 
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The analysis of contiguity data was conducted in a similar fashion and both the 

odds of contiguity and downstream location to RTGE cases were calculated 

using contingency tables stratified by earth-based and water-based sites and 

tested with Fisher Exact as explained above.  In addition, Kaplan-Meier analysis 

of survival was used to evaluate differences in the time from the beginning of 

the study to the onset of RTGE, harvest or the end of the study.  These 

differences were assessed for units that were contiguous to cases for all site 

types or for downstream/upstream location to cases for land based sites only. 

Finally, both fish movements and contiguity to cases were included in an 

unconditional multivariable logistic regression model.  The first RTGE cases on 

each site were eliminated from the analysis and only units for which data on 

both aspects were available were included, resulting in a final number of 15 

cases and 32 controls.  These variables were previously tested for correlation 

using Pearson product-moment correlation coefficient and all possible 

interaction terms in the model were tested (Thrusfield 2006; Dohoo et al. 2003). 

3.3.4.4.  Case-control study 

A case-control study was performed on the data from the selected RTGE cases 

and healthy units from the population at risk.  Cases were matched to controls 

in system type and geographical location.  System type was chosen due to its 

confounding association with several management variables and to account for 

the differences found between earth-based and water-based sites, whereas 

geographical location (England/Scotland) was chosen for its association with all 

the environmental variables.  A ratio of two controls per case was used for all 

matches by random selection of cases and controls within each match, leading 

to a final number of 43 cases and 86 controls.  All continuous variables were 
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then summarized and minimum, maximum and mean values were included in 

the analysis both as continuous and categorised through the median value. 

Firstly, univariable analysis was conducted on the resulting data.  Continuous 

independent variables were compared using Kruskal-Wallis test and categorical 

variables were analysed with Fisher’s exact test and stratified by system type 

and geographical location.  Mantel-Haenzel adjusted odds ratios (ORs) were 

used for measurement of the strength of associations.  Variables with a p< 0.25 

in univariable analyses were included in multivariable conditional logistic 

regression (CLR) models (Rahman et al. 2003) where controls were matched to 

cases by system type and geographical location.  Before model building, the 

assumption of linearity of the logit of continuous variables with the dependent 

variable was tested using the Box-Tidwell transformation test and continuous 

variables that did not meet this assumption were included as dichotomous 

variables only.  All variables were also tested for correlation and all variables 

with Pearson product-moment correlation coefficient over 0.7 were not included 

in the same model.  The maximum number of explanatory variables included in 

the final model was limited by the number of events per variable (Bagley et al. 

2001; Peduzzi et al. 1996) and both forward and backward stepwise model 

building approaches were used.  The best model was determined by a 

significant reduction in the -2*log likelihood statistic.  All the interaction terms 

within the models were evaluated (Thrusfield 2006; Dohoo et al. 2003). 
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3.3.4.5.  General linear model  

A general linear model (GLM) was used to assess the effect of management 

practices during the outbreak on the severity of RTGE, expressed as the 

cumulative mortality percentage of each RTGE outbreak.  To achieve this, a 

spreadsheet was created only including data collected during RTGE outbreaks 

in all selected cases. 

Examination of RTGE cumulative mortality indicated over dispersion and 

skewing to the right of the untransformed dependent variable.  As a 

consequence of this, logarithmic transformation (ln) was applied, which resulted 

in a normally distributed outcome suitable for GLM analysis (KS=0.072; 

p>0.15).  This transformation was also applied to the independent variables 

when appropriate.  Additionally, four outliers were eliminated from the data, 

where cumulative mortalities had been overestimated as a result of fish 

movements into these units during the outbreak.  This action resulted in a final 

dataset including 69 RTGE cases.  Univariable GLM was used to select the 

variables and those with p<0.05 were retained as covariates for multivariable 

GLM analysis.  In every model, the site variable was included in the model as a 

random factor in order to account for intrinsic differences between the sites.  

Correlated variables were not included simultaneously in the same model and 

both forward and backward stepwise procedures were used to find the most 

appropriate model, which presented the highest adjusted R2 value.  All possible 

variable interactions were tested and the final model appropriateness was finally 

confirmed by leverage-point analysis and normality testing of the model’s 

residuals. 
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3.4.  Results 

3.4.1.  Descriptive results 
3.4.1.1.  Site characteristics and RTGE impact at the site level 

The presence of RTGE was confirmed in 12 UK rainbow trout producing sites.  

Some characteristics of the units in these sites are summarized in Table 3.3. 
 

Table 3.3.  Summary statistics of all stocked productive units (cage/tank/pond/raceway) 
from 12 RTGE+ UK sites (n=420). 

 Min Mean Max SD 
Stocking days (d) 4 113.9 153 38.3 
No Fish 97 30430.4 148474 26758.3 
Mean Fish Weight (g) 4 144.8 2859 225.0 
Stocking Density (kg/m3) 0.3 17.6 63 13.0 
Water Temperature (oC) 7 15.2 24 0.9 
No Times water is used 1 1.3 8 0.9 
No fish movements* 0 8.8 63 10.1 

*Includes all movements in or out of the units.  SD: Standard deviation 

Within these sites, RTGE was observed and recorded in 164 productive units 

(39% of all stocked units).  The number of units affected by RTGE varied from 2 

(5.7%) to 44 (95.7%) within a site.  Fish losses due to RTGE totalled 61.4 

tonnes representing 27% of the total mortality weight of all selected sites during 

the period of the study.  Total cumulative RTGE mortalities at the unit level 

ranged 0.02-77.9% with daily RTGE mortalities of 0.002-21.9%. 

3.4.1.2.  RTGE presentation in affected units 

RTGE was first reported in June in southern sites and in July in northern sites.  

A total of 73 units were selected as cases for further analysis.  RTGE 

represented 53.8% of the total number of mortalities recorded in the selected 

units.  Mortalities due to disease occurring at different times to RTGE included 

common summer parasitic, bacterial and viral infections.  The characteristics of 

the selected cases are shown in Table 3.4. 
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Table 3.4.  Summary statistics of 73 RTGE-affected units from 12 RTGE+ sites.  During 
RTGE outbreaks, concurrent diseases were absent and daily RTGE mortalities exceeded 
0.05%. 

 Variable Min Mean Max SD 
Number of RTGE Outbreaks 1 1.2 2 0.4 
Total Number of Days Stocked (d) 42 125.5 153 30.0 
Total Number of Fish Movements* 0 10.4 63 10.5 
Stocking Density (kg/m3)† 0.8 25.9 58.9 12.7 
Fish Mean Weight (g)† 16 216.5 564 103.9 
Water Temperature (°C)† 9.8 15.9 22.0 2.0 
Water Temperature (°C)‡ 12.0 16.1 20.7 1.7 
SD: Standard deviation.  * All movements in or out of the units.  † During RTGE outbreaks.  ‡ During first 

day RTGE outbreaks. 
 

RTGE was more commonly observed within ponds and raceways in land-based 

sites.  It was observed only twice in tanks as an apparently concurrent cause of 

mortalities with proliferative kidney disease (PKD) and for this reason, these 

cases were not used for further analysis. 

The mean length of RTGE outbreaks was 25.5 days, although it ranged from 3 

to 63 days.  For visual examination of the epidemic curves rolling mean 

mortality values were plotted, as mortalities were not recorded daily and the 

plotting of raw data could have obscured the underlying presentation.  These 

plots frequently (51%) revealed an epidemic pattern involving a lower primary 

peak of mortality numbers followed by a higher secondary peak, with 20-25d of 

separation between peaks (Figure 3.1 A).  In 41% of the cases, a single 

mortality peak could be observed (Figure 3.1 B).  These two presentation types 

were not clearly delimited in several longer outbreaks, but this occurrence was 

infrequent (8%). 
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Figure 3.1.  Examples of two typical presentations of RTGE outbreaks.  Day 0 indicates 
the first day of the outbreak.  A: Primary peak in mortalities followed by a higher 
secondary peak and a smaller tertiary peak; B: Single mortality peak.  Note a shorter 
outbreak with lower mortalities in B. 

3.4.1.3.  RTGE incubation period 

The mean time elapsed between stocking of previously empty units to RTGE 

onset was 23.7 days (4 to 48 days; SD=11.7).  The mean time between 

repeated outbreaks was 22.6 days (19 to 26 days; SD=2.2). 

3.4.1.4.  RTGE treatments 

A total of 66 units were treated at least once during RTGE outbreaks of which 

11 (16.7%) received more than one type of treatment.  Six different treatments 

were used against RTGE (Figure 3.2).  These treatments included: (a) 4% NaCl 
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mixed manually with standard commercial feed and externally covered with fish 

oil for 5 days; (b) 4% NaCl included within a specially formulated commercial 

pelleted feed for 10-15 days; (c) 2% liquid paraffin mixed manually with the feed 

for 2-3 days; (d) Chloramin-T bath treatment at 6ppm and (e) 1% in-feed 

oxytetracycline for 10 days.  Treatments (d) and (e) were never given in 

isolation and were always combined with in-feed salt or in-feed liquid paraffin. 

Commercial    In‐
feed salt
48%

In‐feed Paraffin
27%

Salt mixed with 
feed manually

15%

Chloramin‐T
5%

Oxytetracycline
5%

 
Figure 3.2.  Frequency of usage of 6 different treatments targeted RTGE during 2006 in 12 
RTGE-affected UK sites. 

None of the treatments eliminated the condition completely in every usage and 

secondary outbreaks were observed in 16 units treated previously against 

RTGE (24.2%).  In addition, RTGE occurred shortly after treatment with NaCl or 

liquid paraffin in units that were previously unaffected, suggesting neither of 

these two treatments prevented RTGE. 

The effect of the treatments on RTGE mortality plots was generally inconsistent 

and varied between units, although several patterns were observed.  These 

included an apparent reduction in RTGE mortalities during treatment with both 
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types of in-feed NaCl.  This was observed in 79% of the units, although RTGE 

mortalities were still present after treatment in 58% units (Figure 3.3 A).  This 

reduction in mortalities was more frequently observed (83% units) when in-feed 

NaCl was administered during periods of 10-15 days as opposed to periods of 3 

days (60% units).  An anecdotal observation was made in a single site, which 

used commercial in-feed NaCl with an alternating regime (i.e.  15 days on 

supplemented diet followed by 15 days on non-supplemented diet).  In this site, 

RTGE outbreaks occurred in the periods when non-supplemented diet was 

given to the fish (Figure 3.3 B). 
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Figure 3.3.  RTGE epidemic curves of two selected units (12 sites).  A: Sharp decrease in 
RTGE mortalities during in-feed NaCl treatment (highlighted).  Note a temporary increase 
of RTGE mortalities after the end of the treatment.  B: Example of mortality pattern 
observed in a site using an alternating regime of in-feed NaCl (highlighted). 
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A reduction in mortalities due to RTGE was observed in only 13.3% of all the 

units treated with liquid paraffin. 

3.4.1.5.  Pattern of spread 

The results of initial analysis of fish transfer data in respect to the RTGE status 

of outgoing and receiving units are displayed in Table 3.5.  A total number of 

935 intra-site fish transfers were examined during this analysis and significant 

increases in the odds of being RTGE+ after receiving fish from a RTGE positive 

unit were observed in land-based sites, whereas the differences were not 

significant in cage sites. An epidemic pattern consistent with Figure 3.1 A was 

observed in 31% of the units that became positive after transfer. 

 

Table 3.5.  Results of the analysis of intra-site fish transfers in respect to the RTGE 
status of outgoing and receiving units and stratified by site type (12 sites). 

 INTRA-SITE FISH MOVEMENT 
FREQUENCIES    

 Healthy 
to 

Healthy 

RTGE 
to 

Healthy 

Healthy 
to 

RTGE 

RTGE 
to 

RTGE 

Odds 
ratio* 95% CI P (FE) 

Land Based 375 140 26 34 3.5 1.96-6.27 <0.001 

Water Based 224 45 79 12 0.76 0.36-1.57 0.5 
*Odds of being RTGE positive after incoming fish transfer from a RTGE positive unit.  FE: Fisher Exact 

(threshold P<0.05) 
 

No fish movements out of RTGE+ units undergoing an outbreak were made in 

cage sites, making time series analysis impossible for this type of site.  

However, this analysis was possible for land-based sites and it was found that 

the relative RTGE risk of receiving units was significantly increased only if the 

fish introduced originated from a case unit that was undergoing an RTGE 

outbreak at the time of the transfer (Figure 3.4).  The relative risks ranged from 
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2.58 (95% CI: 1.82-3.65) if transfer took place during the first two weeks of the 

outbreak to 2.2 (95% CI: 1.63-2.97) during the rest of the outbreak. 
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Figure 3.4.  Bar chart of the RTGE relative risk of previously unaffected units that 
received fish from a RTGE-affected unit, depending on the outbreak status of the latter at 
the time of transfer (12 sites).  Significant increases in the relative risk are highlighted 
(p<0.05; Fisher Exact) and error bars display 95% confidence intervals. 

The results of the analysis of contiguity to cases are shown in Table 3.6.  

Significantly increased odds of a unit becoming RTGE positive were observed 

for both earth and cage sites when the unit was contiguous to previous cases.  

Additional analysis in land-based sites revealed significantly increased RTGE 

odds ratios only for units located downstream to RTGE cases (OR=5.09 (1.08-

27.19); p=0.03).  This increase was not observed when the units were located 

upstream to RTGE cases (OR=2.19 (0.67-7.28); p=0.23). 

 

 

 



Prospective Longitudinal Study 

3-79 
 

Table 3.6.  Analysis of the RTGE risk of previously unaffected units depending on their 
contiguity to previous RTGE cases (12 sites). 

CONTIGUITY TO RTGE CASES    

  Contiguous 
and RTGE+ 

Contiguous 
and healthy 

Non 
contiguous 
and RTGE+ 

Non 
contiguous 
and healthy 

Odds 
ratio* 95% CI P(FE) 

Land based 28 15 1 13 24.8 2.8-546.1 <0.001 
Water 8 6 6 29 6.4 1.4-32.9 0.01 
All Sites** 36 21 7 42 11.1 3.2-36.0 <0.001 

*Odds of becoming RTGE positive after contiguity to a RTGE positive unit.  **Stratified by site type using 
Mantel-Haenzel adjusted odds ratio.  FE: Fisher exact test (Confidence level p<0.05). 

The survival analysis shown in Figure 3.5 confirmed a significantly faster onset 

of RTGE from the first day of the study between units contiguous to cases and 

non contiguous units to cases for all site types (Wilcoxon=24.16; p<0.001).  This 

was also observed in units located downstream to RTGE cases for land based 

sites only (Wilcoxon=10.65; p=0.001). 
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Figure 3.5.  Kaplan Meier survival plots of the onset of RTGE (12 sites).  A: Significantly 
lower survival probability for units contiguous to RTGE cases in all site types 
(Wilcoxon=24.2; p<0.001).  B: Significantly lower survival probability for units 
downstream to previous RTGE cases in pond sites (Wilcoxon=10.7; p<0.001). 
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Finally, contiguity to cases and fish transfer from RTGE positive units were 

identified as risk factors for RTGE by multivariable logistic regression.  The 

interactions between the two variables were not significant, suggesting an 

independent effect of each variable in the model.  This model is displayed in 

Table 3.7. 

Table 3.7.  Multivariable logistic regression model of the association of contiguity and 
fish transfer from cases with RTGE onset (cases: 15 units; controls: 32 units). 

Variables Odds Ratio (95% C.I.) Z P 
Contiguous to RTGE case (Yes/No) 8.3(1.8-38.6) 2.7 0.007 
Received fish from RTGE (Yes/No) 8.9(1.5-54.2) 2.4 0.017 
CONSTANT * -3.4 <0.001 

-2*Log Likelihood=42.9, Degrees of Freedom=2, p<0.001 

3.4.2.  Cases and controls study 

A total number of 34 variables with p<0.25 in Mantel-Haenzel stratified 

univariable analysis were included in multivariable CLR analysis.  Each case 

was matched to two controls by system type and geographical location.  The 

maximum number of variables in the final model was reduced to four in order to 

maintain an acceptable number of events per variable (case n=43) (Dohoo et al. 

2003; Peduzzi et al. 1996).  Two different models were fitted to the data, one for 

environmental variables and one for management variables (Table 3.8).  

Forward and backward stepwise model building approaches yielded several 

acceptable models and the final models selected presented the lowest -2*log 

likelihood ratio compared with the other candidate models. 
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Table 3.8.  Conditional multivariable logistic regression models of the association of 
environmental and management variables with RTGE presence in a unit (12 sites; n=129; 
43 cases/86 controls). 

Environmental Variables Odds Ratio (95% C.I.) Z P 
Mean stocking density (kg/m3) 23.9 (1.3-444.7) 2.1 0.03 
Mortalities due to predation (Yes/No) 19.3(1.2-300.3) 2.1 0.03 
Mean temperature of water (°C) 15.8 (1.1-218.0) 2.1 0.04 
Contiguous to RTGE case (Yes/No) 11.1 (1.2-104.1) 2.1 0.03 

-2*Log Likelihood=26.3, Degrees of Freedom=4, P<0.001 
 

Management Variables Odds Ratio (95% C.I.) Z P 
Received fish from RTGE cases (Yes/No) 5.5 (1.7-18.2) 2.8 0.005 
Mean daily Feed Input per Fish (High/Low)* 5.4 (1.7-17.2) 0.6 0.005 
Mortalities due to handling (Yes/No) 3.0 (1.1-8.7) 0.5 0.04 
No use of aeration 0.2 (0.04-0.7) -2.4 0.02 

*Categorised through median (=0.9% of individual fish weight).  -2*Log Likelihood=67.6, Degrees of 
Freedom=4, p<0.001 

The specified -2*Log likelihood ratio statistic for the models was calculated by 

comparison with an empty model and a p<0.05 for each variable indicated that 

the coefficient for that predictor variable was significantly different from zero. 

3.4.3.  General linear model 

Table 3.9 shows all significant management variables in multivariable GLM 

along with coefficients that indicate the direction and magnitude of the effect of 

each variable on the cumulative RTGE mortality during the outbreak (cases 

n=69). 

 

Table 3.9.  General linear model of the variables associated with the natural logarithm of 
the RTGE cumulative mortalities (12 sites).  Site was included as a random factor in the 
model to account for intrinsic site differences (n=69). 

Model term Factor Type Coefficient SE P 
Site Random   <0.001 
Ln Outbreak Length (Days) Covariate 1.21 0.12 <0.001 
Ln Mean (Daily Feed Input (kg)/Fish Number) Covariate 0.54 0.13 <0.001 
Constant  1.18 0.93 0.21 

Adjusted R2=85.5%.  SE: Standard error 
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The model (Table 3.9) adequately fitted the data, as suggested by a normal 

distribution of the residuals (KS=0.09; p>0.15) and the absence of outlier 

leverage points.  This model accounted for 85.5% of the variation in the dataset 

and included two significant variables, namely outbreak length in days and the 

mean daily feed input per fish expressed in kg.  Both these variables were log 

transformed and presented a positive effect on the log of the cumulative RTGE 

mortality.  The magnitude of the coefficients also indicated a higher influence of 

outbreak length on RTGE cumulative mortalities. 

3.5.  Discussion 

This study has described the impact, pattern of spread and risk factors 

associated with the presence and severity of RTGE within affected rainbow 

trout producing sites.  The epidemiological design chosen was a prospective 

longitudinal study, as this design allows examination of the association between 

exposure to a potential cause and development of disease, even if these are 

separated by a period of time (Thrusfield 2006).  This approach has been 

successfully used for identifying risk factors associated with the presence of 

disease in Atlantic salmon, dairy cattle, poultry, rainbow trout and shrimp 

(Corsin et al. 2005; Corsin et al. 2001; Rose et al. 1999; Ortega et al. 1996; 

Kaneene & Miller 1995; Jarp et al. 1995; McVicar 1987). 

A total number of 12 sites were positive for RTGE during this study, five more 

sites than reported in 2005 (Chapter 2), suggesting the prevalence of RTGE 

positive sites in the UK had increased.  This syndrome was recorded from June 

to October 2006, and outbreaks started more than a month later in Scottish 

sites, compared with English sites.  RTGE represented 27% of the total number 
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of fish mortalities recorded in these sites and affected relatively larger fish, 

resulting in significant impact on the production of the sites.  The proportion of 

affected units varied greatly between sites suggesting that differences in fish, 

management and environmental variables played an important role in the 

presentation of RTGE at the unit level.  To avoid possible confounding effects 

due to intrinsic differences between sites this factor was considered in the 

analysis by using Mantel Haenzel adjusted odds ratios, case-control matching 

in CLR and the inclusion of site as random effect in GLM. 

Clearly delimited outbreaks of RTGE were observed in 45% of the units 

affected, whereas in the remaining units, mortalities due to RTGE were 

relatively low and/or other conditions were observed simultaneously.  Data from 

the latter were not included in further analysis.  These observations suggest that 

during previous years, RTGE was unlikely to have been present, undetected, at 

low mortality levels.  Therefore, previous underreporting of RTGE at the country 

level is unlikely, a possibility previously suggested (Chapter 2). 

Water temperatures recorded during RTGE outbreaks were consistent with 

previous reports (Branson 2003; Michel et al. 2002; Urdaci et al. 2001).  The 

spread distribution of temperature data did not allow the estimation of a 

temperature threshold, suggesting that temperature is not the only factor 

influencing the onset of RTGE. 

Descriptive analysis of the duration of RTGE outbreaks revealed great 

variability, although analysis of their presentation was consistent with an 

infectious nature of RTGE.  Most outbreaks presented multiple mortality peaks 

in the epidemic curve, a presentation that is consistent with a propagating 
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epidemic, with the disease spreading between fish in the affected unit 

(Thrusfield 2006).  The mean time between mortality peaks, recurrent outbreaks 

and the onset of RTGE in newly stocked units suggested an incubation period 

of 20-25 days.  This is also consistent with previous anecdotal observations and 

treatment approaches based on these: Branson (2003) observed in a single site 

that RTGE mortalities started in batches of newly stocked fish about 3 weeks 

after their arrival, and in Italy flumequine treatments are repeated every 25 days 

to avoid recurrence (Sarti et al. 2008). 

Several treatments were used for RTGE during this study.  The two main 

strategies for RTGE treatment used during this study were 4% NaCl or 2% 

liquid paraffin, both mixed in with the feed.  In both cases, the supplemented 

feed input and length of the treatments were variable, both between and within 

sites.  The presence of recurrent outbreaks after treatment suggested that 

RTGE was not consistently eliminated from the population by these treatments 

and more information on the pathogenesis of RTGE is needed in order to 

understand the potential effects of these treatments on RTGE-affected fish. 

A sharp reduction in the number of RTGE mortalities was commonly observed 

during in-feed NaCl treatment, although the presence of RTGE was not totally 

eliminated and in 58% occasions RTGE mortalities were still present at the end 

of the treatment.  These observations suggest that although in-feed NaCl may 

have a palliative effect on RTGE-affected fish, it does not eliminate it.  The 

intermittent presentation of RTGE in the site where in-feed NaCl was alternated 

with non-supplemented feed could have been an effect of the NaCl treatment or 

a result of the incubation period of RTGE, although the lack of reference 

controls at this site (all the units were given the treatment), did not allow further 
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examination of these possibilities.  A sharp reduction of mortalities during or 

after treatment was observed in only 13% of the units treated with in-feed liquid 

paraffin, suggesting this treatment may have been ineffective. 

Other treatments were used during in this study, including oral oxytetracycline 

and chloramin-T bath, but these were always combined with in-feed salt or 

liquid paraffin and therefore it was not possible to define the effects of these 

treatments in isolation.  Antibiotic treatments previously used for RTGE have 

included amoxycillin, oxytetracycline and potentiated sulphonamides, which 

have been found to alleviate the condition, although recurrence was observed 

after treatment (Branson 2003).  Urdaci et al.  (2001), reported the use of 

oxytetracycline in a treatment lasting 6 days, followed by 3-4 days fasting with 

no further detail on the outcome (Urdaci et al.  2001). 

Fish transfers are a biosecurity concern (Danner & Merrill 2006; Scott 2004) 

and several known rainbow trout infectious diseases have been transmitted in 

cohabitation challenge (Ogut 2004; Madetoja et al. 2000; McCarthy et al. 1996).  

Frequency analysis of intra-site fish transfers in RTGE-affected sites revealed 

increased odds of a unit becoming RTGE positive after receiving fish from an 

affected unit only in land-based sites.  The presence of propagating RTGE 

outbreaks in 31% of the units that became positive after receiving fish from 

previous cases was consistent with horizontal transmission of RTGE between 

fish in these units.  Additional time-series analysis of these data revealed that 

the relative risk of receiving units was increased only when fish were introduced 

from a batch undergoing an active RTGE outbreak.  This type of movement was 

observed only in land-based sites and never in cage sites and this is likely to 

have been the reason for the non-association of RTGE and intra-site fish 
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movements in cage sites.  The results of these analyses suggested that RTGE 

was transmitted through cohabitation although transmission may have occurred 

only from fish undergoing clinical disease.  However, this mechanism did not 

explain all the outbreaks, suggesting that other factor or factors had an 

influence on the intra-site spread of RTGE. 

To test the possibility of spread via water, the effect of contiguity to cases was 

examined.  This analysis confirmed significantly increased odds of becoming 

RTGE positive for units that were contiguous to cases in both land-based and 

cage sites.  Furthermore, in land-based sites, a significantly increased risk of 

becoming RTGE positive was also observed for units located downstream to 

cases but not for units located upstream.  A significantly more rapid onset of 

RTGE was also observed for units contiguous or downstream to cases using 

survival analysis.  The results of the analyses of the site layouts in respect to 

the spread of RTGE were consistent with spread via water of RTGE.  These 

results apparently contradict previous anecdotal observations by Branson 

(2003), who reported that RTGE was never observed in ponds receiving 

second-use water from an affected unit in a single site. It is possible that fish 

transfers could have played a predominant role in this specific case, although 

this possibility was not examined in the study. 

An independent effect of fish transfers and contiguity to cases was confirmed 

with logistic regression analysis, suggesting that RTGE is infectious and 

spreads within affected sites both by fish transfers from clinically affected units 

and via water. Large accumulation of yellow mucoid faeces have been 

observed in RTGE-affected ponds (Michel et al. 2002) and it is possible that 

that faecal-oral route is the mechanism of transmission of RTGE, although 
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experimental transmission experiments will be required to confirm this 

possibility. 

Conditional logistic regression analysis of risk factors identified several 

variables associated with the presence of RTGE at the unit level using two 

models that related to both the environment and management within RTGE-

positive sites.  Neither of these models identified a significant association of fry 

source or feed type with the presence of RTGE, suggesting that RTGE 

outbreaks do not have a common source, although the possibility cannot be 

dismissed due to the limited data available. None of the interactions between 

the variables included in both models was significant, suggesting an 

independent effect of these on the outcome. 

Four environmental variables were positively associated with RTGE presence, 

namely higher mean stocking densities, presence of mortalities due to 

predation, higher mean water temperatures and contiguity to previous RTGE 

cases.  The influence of higher stocking densities is probably a result of the 

increased contact rate between an infectious agent and susceptible individuals 

within the unit, therefore facilitating the transmission of disease (Thrusfield 

2006).  Predation is likely to induce stress in the stocked fish (Huntingford et al. 

2006) and it is not possible to eliminate the possibility of a direct or indirect role 

of predators in the transmission and spread of RTGE.  Higher water 

temperature has been linked with the onset and presence of RTGE in previous 

reports (Branson 2003; Michel et al. 2002; Urdaci et al. 2001) and the results of 

this study are consistent with those observations.  The effect of increased water 

temperature is likely to be complex, and increased temperatures have been 

linked to variations in the immune system, higher metabolic rates, reduced 
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dissolved oxygen and changes in the intestinal microflora (Bowden et al. 2007; 

Pond et al. 2006; Evans & Claiborne 2006).  In addition, the multiplication or 

pathogenicity of a hypothetical RTGE bacterial agent may also be affected by 

temperature.  The inclusion of contiguity to previous cases supported previous 

observations. 

The management model identified three risk factors for RTGE: reception of fish 

from affected units, higher mean feed input and mortalities due to handling.  

The model also included one protective factor: lack of an aeration system.  The 

inclusion of contiguity to previous cases also supported previous observations.  

Higher feed input levels are associated with shorter production cycles for the 

table market, both risk factors for RTGE at the site level (Chapter 2).  The 

mechanism behind the association of higher feed input with RTGE is likely to be 

complex and could involve increased environmental organic load, increased 

metabolic stress and influences on the bacterial flora (Pond et al. 2006; Woo et 

al. 2003; Reddy & Leatherland 1998). High feeding rates and/or rapid growth 

have been associated with a range of pathological conditions in salmonids, 

including bacterial gill disease (BGD), columnaris disease, vibriosis, acute 

cardiomypathy and water belly syndrome (Speare 1998; Ferguson et al. 1990; 

Staurnes et al. 1990).  The presence of mortalities associated with fish handling 

is also associated with increased stress (Ashley 2007) and may have resulted in 

predisposition of fish to RTGE.  A protective effect of the absence of an aeration 

system could have been related to the water movement created by these 

systems.  This may have helped to keep potentially infectious material 

suspended in the water column, thus facilitating contact with susceptible 

individuals, or it may have reflected a lower level of intensification. 
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The results of the GLM identified a significant influence of higher daily feed 

input/fish during outbreaks.  This was observed after adjustment for 

confounding by outbreak length, and suggested that reducing the feeding input 

during RTGE outbreaks could help to reduce the impact that this condition has 

on affected units. This analysis has confirmed anecdotal observations by 

Branson (2003) who reported a decrease of RTGE mortalities after feed 

restriction as well as providing an epidemiological basis for a control strategy 

previously reported, consisting of fasting affected units for 7 or more days (Sarti 

et al. 2008). 

Overall, the results of this study strongly suggested an infectious nature of 

RTGE and despite the limitations of a relatively small dataset it allowed an in-

depth description and analysis of the impact, presentation, spread and current 

control strategies.  It also identified risk factors associated with both the 

presence and severity of this syndrome within affected sites.  As in all 

observation-based studies the risk factors identified should be tested in 

intervention strategies.  An experimental model for RTGE would greatly 

increase our capacity to investigate these observations further in experimental 

studies. 
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CHAPTER 4.  Histopathology & Ultrastructure 
of “Candidatus arthromitus”-Associated 
Rainbow Trout Gastroenteritis 
Del-Pozo, Jorge*; Crumlish, Margaret; Turnbull, James F.; Ferguson, Hugh W. 

4.1.  Abstract 

Rainbow trout gastroenteritis (RTGE) is linked to the presence of large numbers 

of the segmented filamentous bacterium “Candidatus arthromitus” (SFB) within 

the lower digestive system, although the aetiological role of this bacterium has 

yet to be clarified.  The present study examined the histopathological changes 

and ultrastructure of the digestive tract of fish with typical gross lesions, and 

assessed the preferred locations of SFB.  Histopathology showed that 85% of 

the fish affected with RTGE had SFB in distal intestine and/or pyloric caeca.  

The presence and number of SFB were always significantly higher (p<0.001) in 

pyloric caeca, suggesting that this is the preferred site for SFB.  Additionally, 

SFB degradation was observed in distal intestine with apparent osmotic 

damage, reduced stain retention and filament fragmentation.  Histopathological 

changes included enterocyte detachment and congestion of the lamina propria 

and adventitial layers.  These changes were relatively more frequent in distal 

intestine (p<0.001), mirroring the gross presentation.  Scanning and 

transmission electron microscopy revealed a close interaction of SFB with the 

mucosa of distal intestine and pyloric caeca.  These interactions included the 

presence of SFB attachment sites and alterations of the apical membrane of 

enterocytes which suggested that engulfment of SFB had taken place.  Despite 

these close interactions, SFB were most commonly seen in the lumen rather 
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than adjacent to the areas with pathological changes, suggesting that if these 

organisms do indeed play a role in the pathogenesis of RTGE extracellular 

products may be involved.  Ultrastructural changes included loss of microvillar 

structure, membrane blebbing, hydropic mitochondrial damage and basal 

hydropic degeneration of enterocytes, which frequently resulted in disruption of 

tight junctions and enterocyte detachment.  As a result, relatively large areas of 

lamina propria were exposed, probably resulting in compromise of the host 

osmotic balance and facilitation of the entry of secondary pathogens.  Changes 

in other cell types included an apparent secretory activity of rodlet cells, which is 

also described. 

4.2.  Introduction 

Rainbow trout gastroenteritis (RTGE) is a term suggested in 1999 to describe a 

specific syndrome of rainbow trout, Oncorhynchus mykiss W. (Branson 2003).  

This condition has been reported in Croatia, France, Italy, Spain and the UK 

during the summer (Toranzo 2004; Branson 2003, Cervellione personal comm.; 

Michel et al. 2002; Urdaci et al. 2001).  The economic impact of RTGE is 

significant, and daily mortalities of 0.5-1% were common during outbreaks 

(Branson 2003; Michel et al. 2002). 

The presentation of RTGE includes severe enteritis with massive accumulation 

of segmented filamentous bacteria (SFB) within the lower digestive system 

(Branson 2003; Michel et al. 2002; Urdaci et al. 2001).  These SFB have been 

classified as “Candidatus arthromitus”, a group of bacteria closely related 

phylogenetically to Clostridium (Urdaci et al. 2001; Snel et al. 1995).  Trout SFB 

have been suggested as the aetiological agent for RTGE, although this 

possibility has not been confirmed, in part due to the current inability to culture 
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SFB in vitro (Angert 2005; Branson 2003; Michel et al. 2002; Urdaci et al. 2001).  

The gross presentation of RTGE has been described in several studies.  It 

included externally abdominal dilation, whereas internally severe distal enteritis 

with congestion and oedema of the intestinal wall were found (Branson 2003; 

Michel et al. 2002; Urdaci et al. 2001).  The intestine contains a yellow and 

viscous fluid, in which large numbers of SFB can be seen under light 

microscopy (Branson 2003; Michel et al. 2002; Urdaci et al. 2001).  

Histopathological changes include severe enterocyte detachment, congestion 

and SFB accumulation in both distal intestine and pyloric caeca (Branson 2003; 

Michel et al. 2002; Urdaci et al. 2001).  Previous reports on the preferred 

location of SFB in the digestive system of enteritic trout vary; Michel et al. 

(2002) reported their presence throughout the digestive system, whereas 

Branson (2003) observed SFB preferentially in the distal intestine. 

Enteritides other than RTGE have been described in rainbow trout, including 

bacterial, parasitic, fungal and viral conditions (Appendix I; Ferguson 2006; 

Weber 2005; Roberts 2001; Austin et al. 1992) although isolated enteritis is 

infrequent in fish and is most often part of systemic disease (Ferguson 2006).  

Of all the enteritides of rainbow trout, RTGE is the only one that is reported to 

be associated with SFB, suggesting that this condition is a distinct disease 

entity, despite the generic term used to describe it. 

There are several reports on the pathological changes accompanying RTGE at 

both the histopathological and ultrastructural level, but most of these have 

focused on the detection and description of SFB rather than the host responses.  

no numerical data have been provided in any report to support observations on 

where SFB are preferentially found in RTGE-affected fish (Branson 2003; 
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Michel et al. 2002).  This study aimed to contribute to these areas by applying a 

statistical approach to the study of SFB histopathological presentation and 

using scanning and transmission electron microscopy to complement previous 

ultrastructural studies on the presentation of RTGE. 

4.3.  Materials and methods 

4.3.1.  RTGE gross case definition 

All the RTGE-affected fish (RTGE+) in this study were identified by a case 

definition created from previous literature and based on the gross presentation 

(Branson 2003; Michel et al. 2002; Urdaci et al. 2001).  The case definition was: 

“RTGE is a condition of rainbow trout, observed in units with daily cumulative 

mortalities of 0.5% or more and present during the summer. Affected fish 

present a distended abdomen externally while internally their lower intestine is 

dilated, congested and oedematous, containing a yellow viscous substance”. 

4.3.2.  Fish sampling and sample processing 

The rainbow trout in this study were sampled from 1st June to 31st September 

2006 at 11 UK sites with RTGE presence.  At each site visited, two groups of 

fish were sampled from a single productive unit (i.e. cage, pond or raceway) 

during an RTGE outbreak: (a) As many moribund fish showing external signs of 

RTGE as practically possible (moribund RTGE+) and (b) 30 randomly sampled 

apparently healthy fish.  The sample size of group b was chosen to enable 

disease detection with 95% confidence if the prevalence was at 10% or more.  

This strategy enabled the random detection of cohabiting fish consistent with 

the case definition, which were processed and included in the analysis as 

“subclinical” RTGE-positive fish (“subclinical” RTGE+). 
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All fish were sampled on-site, euthanized prior to sampling with benzocaine 

(SIGMA E1501) at 250mg/l (AVMA 2001), and fish origin, fork length, weight 

and the presence of any external or internal gross signs were recorded.  

Samples for histopathology were taken from three locations in the digestive 

tract; the pyloric end of the stomach (one 1cm tubular section), proximal pyloric 

caeca (10-15 whole caeca) and distal intestine (one 1cm tubular section).  All 

the digestive tissues sampled were sectioned longitudinally before placement in 

fixative to allow rapid penetration, with the aim of minimizing artifacts caused by 

autolysis.  All histology samples were placed in 10% buffered formalin and left 

for at least 24h before processing using standard protocols and embedding in 

individual paraffin wax blocks.  Finally 5µm sections from these blocks were cut, 

placed on slides and stained with haematoxylin and eosin (H&E). Sections 

positive for SFB were also Gram-stained following standard protocols. 

4.3.3.   “Candidatus arthromitus” histological presence 

The digestive tissues of all fish consistent with the case definition for RTGE 

were assessed for the presence of SFB and histopathological changes. All the 

histology slides were read “blind” by the same person and SFB were identified 

as bacteria approximately 0.6-1.2µm in diameter and up to 60µm in length, with 

apparent segmentation every 1.2-1.6µm (Urdaci et al. 2001).  SFB presence 

was noted in each tissue after scanning the entire section at objective x10 and if 

present, the number of SFB was recorded as the mean number of SFB counted 

in three microscopic fields at x20 (area=0.95 mm2).  The microscopic fields 

were systematically chosen for SFB abundance and a value of 100 was 

recorded for SFB numbers equal to or exceeding 100 bacteria/field.  

Additionally, any histopathological changes observed were noted.  Finally, the 
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statistical differences regarding histological presence and quantity of SFB were 

assessed with respect to the organ (i.e. distal intestine or pyloric caeca) and 

clinical status (i.e. moribund or “subclinical”).  The statistical tests used were 

Fisher exact (FE) for SFB presence and Kruskal Wallis (KW) for SFB numbers, 

with significance assumed under p=0.05. 

4.3.4.  Ultrastructural description of RTGE 

Samples from six moribund rainbow trout with gross presentations consistent 

with RTGE were also processed for scanning and transmission electron 

microscopy.  These fish were sampled from a single site at one point in time 

and only pyloric caeca and distal intestine samples were taken, which were also 

incised to allow rapid fixation.  The samples were placed for 24h in a fixative 

comprising 2.5% (v/v) glutaraldehyde in 0.1M sodium cacodylate.  Scanning 

electron microscopy samples were then trimmed into 9 mm squares of no more 

than 1 mm thickness, post-fixed for 2h in 1% (v/v) osmium tetroxide in 0.1 M 

sodium cacodylate buffer, pH 7.3, and then dehydrated in increasing 

concentrations of ethanol (30-100%).  The pieces were then dried with carbon 

dioxide in a Bal-Tec 030™ critical point drier (Leica™, Wetzlar, Germany), 

mounted on a metal stub with colloidal silver, coated with a thin conductive film 

of gold in an Edwards S150B™ sputtering coater (Edwards™, Crawley, UK) 

and examined with a Jeol JSM6460LVN™ scanning electron microscope (Jeol, 

Welwyn Garden City, UK), operated at 5-10kV.  Transmission electron 

microscopy samples were trimmed to 1mm2 cubes, rinsed in 0.1 M sodium 

cacodylate buffer, pH 7.3 for 12h and post-fixed for 1h in 1% (v/v) osmium 

tetroxide in 0.1 M sodium cacodylate buffer, pH 7.3.  All samples were then 

washed with distilled water and en-bloc stained in the dark for 2h with 2% (v/v) 
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uranyl acetate in 30% (v/v) acetone.  The samples were then dehydrated with 

increasing concentrations of acetone (60-100%), infiltrated and blocked with 

agar low viscosity resin, cut at 50-70 nm with a Reichert Ultracut-E™ 

ultramicrotome (Leica™, Wetzlar, Germany) and contrasted with 5% uranyl 

acetate and lead citrate.  These samples were examined with a Tecnai G2 Spirit 

Bio Twin™ transmission electron microscope (Tecnai™, Eindhoven, 

Netherlands) operated at 120 kV. 

4.4.  Results 

A total of 464 rainbow trout were sampled from 11 sites in the UK from June to 

September 2006.  Of these, 134 were moribund fish consistent with the case 

definition for RTGE (moribund RTGE+) and 330 were randomly sampled fish 

from the same units.  During post-mortem examination, consistency with RTGE 

case definition was recorded in 18 of the randomly sampled fish and these fish 

were included in the analyses as “subclinical” RTGE+ fish.  This resulted in a 

total number of 152 RTGE+ fish (“subclinical” + moribund) in which the analyses 

were performed.  The remaining 312 fish were not consistent with RTGE case 

definition and were not included in this study. 

Externally, “subclinical” RTGE+ fish presented with milder dilation of the 

abdomen but internally with all gross signs included in RTGE case definition.  In 

22% of the “subclinical” RTGE+ fish, the yellow viscous intestinal content was 

mixed with feed. 
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4.4.1.  “Candidatus arthromitus” histological presence 

A total of 152 RTGE positive fish (134 moribund and 18 “subclinical”) were 

included in the study, with a mean weight of 218(±90.5; SD) grams.  All of these 

fish had gross signs consistent with the case definition for RTGE both internally 

and externally (Figure 4.1 A, C).  Microscopic examination of the yellow viscous 

fluid from the vent revealed large quantities of sporulating SFB in most fish 

(Figure 4.1 B). 

A

C

5µm

B

 
Figure 4.1. Gross and microscopic changes in trout positive for rainbow trout 
gastroenteritis (RTGE).  A: Abdominal distension and release of a yellow and viscous 
substance from the vent when pressure is applied to the abdomen.  (B): Microscopic 
examination of intestinal contents reveals large quantities of sporulating segmented 
filamentous bacteria (B, x20, unstained smear).  C: Internally, there is congestion and 
oedema of the intestinal wall (C, arrow). 

 

Histologically, it was possible to observe SFB in the pyloric caeca and/or distal 

intestine of 85% of all RTGE positive fish, both attached to the mucosa and free 

within the lumen (Figure 4.2 A, B).  The SFB were never observed in any of the 

sections of pyloric stomach.  No significant differences were observed between 
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moribund and apparently healthy RTGE+ fish in either the presence of SFB 

(p=0.7; FE) or in the SFB numbers observed (p=0.4; KW).  Marked differences 

were observed, however, depending on the organ and SFB detection was 

significantly more frequent in pyloric caeca than in distal intestine of all RTGE-

positive fish (p<0.001; FE).  The average number of detectable SFB per x20 

field was also significantly higher in pyloric caeca than in distal intestine 

(p<0.001; KW), with SFB counts of 45.9 (±2.9; SE) SFB/field in the former and 

6.5 (±1.3; SE) SFB/field in the latter.  Moreover, apparent degradation of SFB 

was observed in the distal intestine of 10 RTGE+ fish, as evidenced by reduced 

stain retention and disruption of the filamentous structure (Figure 4.2 C, D).  

Gram variability of SFB was observed in the Gram-stained sections, although 

most SFB were Gram-positive. 

The histopathological changes observed in RTGE-positive fish included 

generalised enterocyte detachment (Figure 4.2 E) and congestion of the 

adventitial layers and the lamina propria in distal intestine and/or pyloric caeca 

(Figure 4.2 E, F).  Histopathological changes were significantly more frequent in 

distal intestine (p<0001; FE) than in pyloric caeca.  The bar chart in figure 4.3 

summarizes, by organ, the frequency of SFB observations with the observed 

frequency of enterocyte detachment and congestion of the intestinal wall in all 

RTGE positive fish. 
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Figure 4.2. Histological presentation of rainbow trout gastroenteritis (RTGE) in distal 
intestine.  A: Digestive contents frequently presented a mixture of segmented 
filamentous bacteria (SFB) and detached enterocytes (H&E; x20).  B: SFB could be 
present in large quantities attached to the mucosa (arrow) or floating in the lumen 
(arrowhead; H&E, x10).  Damaged SFB could be observed, with reduced stain retention 
(C; H&E; x40) and fragmentation (D; H&E; x100).  Histopathological changes included 
enterocyte detachment (E; H&E; x100) and congestion of the lamina propria (F, arrow) 
and adventitial layer (F, arrowhead; H&E; x100). 
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Figure 4.3. Observed frequencies by organ of segmented filamentous bacteria (SFB) 
presence and histopathological changes in RTGE-affected fish (n=152).  Asterisks 
represent a significantly higher frequency (p<0.001; FE). 

4.4.2.  Ultrastructural description of RTGE 

4.4.2.1.  Scanning electron microscopy 

Large numbers of SFB were always present in distal intestine and/or pyloric 

caeca of the 6 RTGE-affected fish sampled for electron microscopy.  These 

bacteria could be seen free-floating in the lumen as well as attached to the 

intestinal mucosa in both these locations (Figure 4.4 A, B), although epithelial-

associated SFB were not ubiquitous and appeared to be restricted to specific 

locations.  All SFB were approximately 1µm wide, of variable length and were 

clearly segmented (Figure 4.4 C). In the distal intestine, SFB occasionally had 

structures consistent with propagation by budding at the distal end (Figure 4.4 

D).  Enterocytes interacted with SFB frequently, and these interactions resulted 

in changes in their apical membrane, which folded around sections of SFB and 

presented apparent “trails” suggesting that engulfment of SFB by enterocytes 

had taken place (Figure 4.4 E, F). 
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Figure 4.4. Scanning electron microscopy observations of SFB in fish with RTGE.  (A): 
Large numbers of SFB were observed attached to the intestinal mucosa in specific 
locations.  These SFB were also free-floating in the lumen (B, arrow), had clear 
segmentation (C, arrow) and occasionally budding at their distal end (D, arrow).  
Interaction of the enterocyte surface was frequent and included wrapping of SFB by the 
apical membrane of enterocytes (E, arrow) which presented folds suggestive of SFB 
engulfment (F, arrows). 
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Pathological changes observed included multifocal detachment of the mucosal 

layer and pronounced apical blebbing of enterocytes (Figure 4.5 A, B, C).  The 

former always resulted in direct exposure of the lamina propria to the digestive 

lumen whereas the latter could be associated or not with SFB proximity (Figure 

4.5 B, C). 

B

A

C

 
Figure 4.5. Scanning electron microscopical observations of pathological changes within 
distal intestine of fish with RTGE.  Focal detachment of the mucosal layer resulted in 
direct exposure of the lamina propria to the lumen (A, arrows). Pronounced apical 
blebbing of distal intestinal mucosa was observed both non-associated (B) and 
associated (C) with SFB proximity. 
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4.4.2.2.  Transmission electron microscopy 

Different developmental stages were observed within single SFB filaments, 

including vegetative, dividing and sporulating stages (Figure 4.6 A, B).  Loss of 

cellular structure resulted in spore release (Figure 4.6 C), as previously reported 

(Michel et al. 2002).  The proximal segment at SFB attachment sites presented 

a pear-shaped appearance (Figure 4.6 D).  These segments were always 

extracellular and surrounded by an electron dense area within the cytoplasm of 

the adjacent enterocytes (Figure 4.6 E).  No other cellular reaction was 

observed and no direct evidence of SFB phagocytosis was observed in TEM. 

1µm

E

BA C

1µm 0.5µm

D

0.5µm 0.5µm

1

2

3

 
Figure 4.6. Transmission electron microscopical observations of SFB within distal 
intestine of fish with RTGE.  A: Different developmental stages were present within SFB 
filaments, including sporulation (A, 1), cell division (A, 2&3) and vegetative (B).  Loss of 
SFB cellular structure resulted in spore release (arrow, C).  Pear-shaped segments were 
found at SFB attachment sites.  These segments were always extracellular and 
surrounded by electron dense areas in the adjacent host cytoplasm (D, arrow).  Note the 
integrity of host membrane surrounding SFB at the attachment site (E, arrowhead). 
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Ultrastructural changes indicative of osmotic imbalance and cytoskeletal 

damage were frequently observed both at the apical and basal poles of 

enterocytes.  At the apical pole these changes included cytoplasmic membrane 

blebbing and loss of microvilli structure (Figure 4.7 A, B, C & D).  The 

presentation of membrane blebbing suggested that this occurred initially close 

to tight junctions and progressed to the rest of the apical pole while some blebs 

appeared to cast off from the cell.  Hydropic degeneration with cytoplasmic 

dilution was seen at the basal pole, and the cytoplasmic membrane appeared 

intact (Figure 4.7 E).  Other enterocyte lesions included hydropic degeneration 

of mitochondria.  A large number of enterocytes had lost the tight junction 

integrity and were detaching from the enteric mucosa (Figure 4.7 F).  Changes 

in other cell types were also seen; for example, rodlet cells were abundant and 

always present adjacent to an area of fluid accumulation, suggesting they may 

have been actively secreting (Figure 4.7 G). 
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Figure 4.7. Transmission electron microscopy of pathological changes within distal 
intestine of fish with RTGE. Membrane blebbing, initially located near tight junctions 
(arrows, A-C), and structural loss of microvilli (arrow, D) were observed in the apical pole 
of enterocytes, whereas hydropic degeneration with cytoplasmic dilution was present in 
the basal pole (arrowhead, E), where membrane continuity was intact (arrow, E).  
Hydropic mitochondria and enterocyte detachment (arrows, F) were frequent as well as 
an apparent secretory activity of rodlet cells (arrow, G). 
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4.5.  Discussion 

Accumulation of large numbers of “C. arthromitus” have been observed in the 

lower digestive tract of rainbow trout with RTGE (Branson 2003; Michel et al. 

2002; Urdaci et al. 2001).  In this study, most RTGE-affected fish presented with 

large numbers of SFB in their lower digestive tract, detectable by histopathology 

or electron microscopy.  By contrast with other reports, however (Michel et al. 

2002), the presence of SFB was never confirmed in any of the pyloric stomach 

sections examined in this study.  Although the histopathological presence of 

SFB was significantly associated with RTGE-affected fish, these organisms 

were also observed in several apparently healthy controls from the same units 

(data not shown).  This was probably a result of generalised increase of SFB 

load within affected units or subclinical infection, although all of these fish were 

actively feeding and did not present any of the gross changes associated with 

RTGE.  No significant differences were observed in the presence and quantity 

of SFB between moribund and “subclinical” RTGE+ fish, but SFB were more 

commonly observed and in higher numbers in pyloric caeca than in distal 

intestine.  Both these observations suggest that the pyloric caeca are the 

preferred site for histological detection of SFB in RTGE-affected fish.  Previous 

reports on the preferred location of trout SFB do vary; Michel et al. (2002) 

reported their presence throughout the digestive system, whereas Branson 

(2003) observed SFB more frequently in the distal intestine.  It is not possible to 

contrast our findings with these reports, as none of them included numerical 

data.  The differences between organs were significant in our study and it is 

possible that the conditions in pyloric caeca are more favourable for SFB.  This 

possibility is supported by the observation of reduced staining and loss of 
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structure (degeneration) of SFB noted in several distal intestines from RTGE-

affected fish, an observation consistent with SFB membrane impairment as 

previously reported (Michel et al. 2002).  Congestion and enterocyte 

detachment were more frequent in distal intestine, and it is possible to 

hypothesize that SFB degradation in the distal intestine could have coincided 

with sporulation, cellular toxicity or autolysis during fixation.  Also, this may have 

been the reason for the failure to detect these organisms histologically in 15% 

of RTGE-affected fish.  The degradation of SFB could also have a bearing on 

RTGE pathogenesis, as “C. arthromitus” are closely related to Clostridium 

(Urdaci et al. 2001; Snel et al. 1994) and may produce endotoxin, which would 

be released after cytoplasmic membrane damage (Michel et al. 2002). 

All analytical methods used in this study revealed SFB both free within the 

lumen and attached to the digestive mucosa.  On the mucosal surface, SFB 

appeared to concentrate in specific areas, whereas other locations were devoid 

of these organisms.  Morphological differences between mucosal areas with 

and without SFB were not noted in this study, although they may exist and 

several authors have noted a tropism of SFB for lymphoid tissues and specific 

locations in other animals.  Preferred locations include the ileum of mice (Davis 

& Savage 1974), the ileum and caecum of the chicken (Klaasen et al. 1992) and 

ileal Peyer’s patches of several species (Meyerholz et al. 2002; Smith 1997; 

Lowden & Heath 1995; Jepson et al. 1993; Sanford 1991; Pearson et al. 1982).  

All the SFB observed in this study had an appearance consistent with previous 

reports, both in size, segmentation, sporulation and the presence of different 

developmental stages within a single filament (Branson 2003; Michel et al. 

2002; Urdaci et al. 2001).  There was no evidence for spore germination in 
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either intestine or pyloric caeca, as previously observed (Michel et al. 2002).  

This observation suggests that these spores may constitute the form of 

dispersal between hosts, as has been shown for SFB in mice (Klaasen et al. 

1992).  There was close interaction of SFB with the digestive mucosa of RTGE-

affected rainbow trout and SFB attachment sites, and apparent engulfment of 

SFB by enterocytes was observed.  Attachment sites were similar to those 

described for SFB in mice and poultry, with an electron-dense area resulting 

from actin accumulation, implying a cell metabolic response (Jepson et al. 

1993), although the nipple-like appendages reported in other species 

(Yamahuchi & Snel 2000; Jepson et al. 1993; Chase & Erlandsen 1976; Davis 

& Savage 1974) were not observed in the distal segments of trout SFB, which 

presented a pear-like shape.  It is possible that this absence resulted from the 

plane of the section, although morphological differences have been observed 

between SFB in different animal species (Heczko et al. 2000; Smith 1997; 

Lowden & Heath 1995; Klaasen et al. 1993; Allen 1992; Goodwin et al. 1991; 

Sanford 1991) and it is possible that trout SFB do not present this feature.  

Apparent engulfment of SFB by adjacent enterocytes was suggested by SEM 

observations, although this was not directly confirmed by TEM.  It is not 

possible to discard this possibility, and intracellular bodies structurally similar to 

SFB were observed occasionally in TEM (data not shown), but phagocytosis 

was never observed directly.  Phagocytosis of SFB has been reported in poultry 

and has been related to the role of these in the activation of the mucosal 

immune system (Yamahuchi & Snel 2000). 

The role of SFB in the aetiology of RTGE is unclear (Branson 2003; Michel et 

al. 2002; Urdaci et al. 2001) and this study also failed to demonstrate a role.  
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None of the pathological changes observed in the digestive system of RTGE-

affected fish was exclusively associated with closely apposed SFB, suggesting 

that if SFB are indeed the cause of RTGE, they are inducing pathological 

changes without direct contact, for example by toxin release (Michel et al. 

2002).  An aetiological role of SFB has never been demonstrated in other 

species and although accumulation of large numbers of SFB were associated 

with stunting syndrome in turkey poults, this syndrome was subsequently shown 

to be caused by a virus (Ali & Reynolds 1997; Angel et al. 1990).  No inclusion 

bodies or viral particles were seen in the digestive system of RTGE-affected fish 

in this or other studies. 

Severe pathological changes were observed in the digestive mucosa of rainbow 

trout affected with RTGE, including loss of microvilli, apical blebbing, hydropic 

change to mitochondria and basal hydropic degeneration.  All these changes 

suggest cytoskeleton damage and severe osmotic imbalance at the enterocyte 

level.  The blebs observed were consistent with zeosis, as their matrix was 

devoid of cytoplasmic organelles and filled with ribosomes only (Ghadially 

1997).  The cytoplasmic blebbing of enterocytes has been reported in other 

species to be associated with local ischaemia, with the presence of enterotoxin 

and apoptosis (Kamaras & Murrel 2001; Mills et al. 1999; Malorni et al. 1990; 

Wagner et al. 1979) and can precede enterocyte detachment (Barros et al. 

2003; Wagner et al. 1979).  In RTGE+ fish, large numbers of affected 

enterocytes lost the integrity of their tight junctions and were shed to the enteric 

lumen.  Mucosal loss was extensive and resulted in direct exposure of a large 

area of the lamina propria to the digestive lumen.  This would probably have 

compromised osmotic balance and facilitated the entry of opportunistic 
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pathogens, as the digestive osmotic barrier is located at the tight junctions and 

is part of the passive immune system (Evans & Claiborne 2006).  Finally, the 

frequent presence of rodlet cells with adjacent fluid accumulation suggests that 

these cells were being recruited and were actively secreting.  Rodlet cells are 

exclusive to teleosts and it is believed that they have a role as part of the host 

response to tissue damage, stress and noxious agents, including parasites, 

toxic metals and acid exposure (Reite & Evensen 2006; Reite 2005).  It is 

therefore possible that rodlet cell recruitment and activity may be a common 

feature of fish enteritis, although there are no reports in this respect.  

Degranulation of eosinophilic granular cells was not seen in RTGE fish, in line 

with reports of an independent action of these two cell types (Reite 2005). 
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CHAPTER 5.  A Study of Gross, Histological 
and Blood Biochemical Changes in Rainbow 
Trout (Oncorhynchus mykiss W.) with 
Rainbow Trout Gastroenteritis (RTGE) 
Del-Pozo, Jorge*; Crumlish, Margaret; Turnbull, James F.; Ferguson, Hugh W. 

5.1.  Abstract 

Rainbow trout gastroenteritis (RTGE) is an emerging disease syndrome of 

farmed rainbow trout (Oncorhynchus mykiss W.) in several European countries.  

The clinical presentation includes severe distal enteritis with congestion, 

oedema and mucosal detachment.  Affected fish present with accumulation of 

large numbers of the segmented filamentous bacteria “Candidatus arthromitus” 

(SFB) in the lower digestive system.  These organisms have been suggested as 

the aetiology of RTGE, although confirmation has been hindered by the inability 

to culture SFB in vitro.  Alterations in the microflora and the presence of a toxin 

have also been proposed, but the mechanisms behind the pathogenesis of 

RTGE are still unknown.  This study examined the macroscopic and 

microscopic changes in trout with RTGE (RTGE+), as well as the blood 

chemistry.  The aims of the study included assessment of a case definition for 

RTGE, refinement of its clinical description and study of its pathogenesis using 

blood biochemical analysis.  The case definition was created from previous 

literature on RTGE and was based on the gross presentation.  A total of 464 

rainbow trout sampled from 11 sites in the UK were included in this study, 

comprising 152 RTGE+ fish and 330 random, apparently healthy fish.  Using 

this sample, the case definition was assessed by analysis of its agreement with 
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three laboratory tests: histopathology, packed cell volume and kidney 

bacteriology.  Cluster analysis was used for refinement of the clinical description 

and this analysis indicated the presence of three distinct presentations within 

the population of RTGE+ fish.  Cluster A included gross signs associated with 

moribund RTGE+ fish and it is likely that these signs were associated with the 

final clinical stages of RTGE.  Clusters B and C identified gross signs consistent 

with concurrent diseases, notably furunculosis, enteric red mouth and 

proliferative kidney disease.  These results confirmed the presence of 

concurrent disease in a sample of fish identified according to the reported gross 

presentation for RTGE.  These criteria were used to choose fish with RTGE 

only for the analysis of the pathogenesis.  The blood chemistry of RTGE+ fish 

without concurrent disease indicated a severe osmotic imbalance, and a 

reduced albumin/globulin ratio indicative of selective loss of albumin.  These 

findings are compatible with a protein losing enteropathy (PLE). 

5.2.  Introduction 

Rainbow trout gastroenteritis (RTGE), present in several European countries 

(Denham 2004; Toranzo 2004; Cervellione, personal comm.; Branson 2003; 

Michel et al. 2002; Urdaci et al. 2001; Sanz 2000), has been spreading since its 

first report in 1992 (Michel et al. 1999).  This is a syndrome that affects farmed 

rainbow trout Oncorhynchus mykiss (Walbaum) predominantly during the 

summer (Branson 2003; Michel et al. 2002; Urdaci et al. 2001).  The impact of 

RTGE varies both in number of cages, tanks or ponds affected and number of 

mortalities within affected units (Branson 2003; Michel et al. 2002; Urdaci et al. 

2001).  Outbreaks last an average of 25.5 days and usually present a pattern 



Pathogenesis Study 

5-119 
 

consistent with a propagating epidemic, suggesting this condition is infectious 

(Chapter 3). 

The aetiology of RTGE is still unclear, although segmented filamentous bacteria 

(SFB), have been implicated (Branson 2003; Michel et al. 2002; Urdaci et al. 

2001).  Both the gross and histopathological presentation of RTGE have been 

described by several authors (Branson 2003; Michel et al. 2002; Urdaci et al. 

2001):  Externally, clinical onset is sudden with lethargy and loss of appetite. 

Yellow mucoid material is often excreted from the vent of affected fish and it is 

possible to observe an accumulation of large amounts of similar material in the 

bottom of ponds.  Occasionally, uncoordinated swimming is observed. Some 

fish present with characteristic dischromic changes consisting of dark, vertical 

stripes along the flanks.  Internally signs of acute enteritis are observed, with 

generalised dilation of the digestive system and mucosal congestion and 

oedema.  The lower digestive tract contains a yellowish mucoid material that 

accumulates to form an occluding plug in the anal area.  Histologically, SFB 

accumulation, congestion and enterocyte detachment are present in both distal 

intestine and pyloric caeca.  Michel et al. (2002) also described these 

histopathological changes in the pyloric end of the stomach. 

Several hypotheses have been proposed regarding the pathogenesis of RTGE, 

including alterations in the microflora and/or the presence of a toxin or toxic 

component (Michel et al. 2002).  There is lack of published information on the 

pathogenesis of RTGE, and the work presented here aims to contribute to that 

information by investigating the pathogenesis of RTGE. 
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5.3.  Materials and Methods 

5.3.1.  RTGE case definition 

Positive fish (RTGE+) were identified according to a case definition created 

from previous literature and based on the gross presentation, (Branson 2003; 

Michel et al. 2002; Urdaci et al. 2001).  The case definition was: “RTGE is a 

condition of rainbow trout, observed in units with daily cumulative mortalities of 

0.5% or more and present during the summer.  Affected fish present a 

distended abdomen externally, while internally their lower intestine is dilated, 

congested and oedematous, and has a yellow viscous content”.  During the 

study, apparently healthy individuals used as negative controls were identified 

by a general absence of gross abnormalities. 

5.3.2.  Fish sampling 

All the rainbow trout in this study were sampled from 1st June to 31st September 

2006 at 11 UK sites with RTGE.  Two categories of fish were sampled from a 

single unit undergoing an RTGE outbreak: (1) As many moribund fish showing 

external signs of RTGE as practically possible and (b) 30 randomly sampled 

apparently healthy fish.  The sample size of (b) was chosen to enable disease 

detection with 95% of confidence if the prevalence was at 10% or more. 

All fish were sampled on-site, euthanized prior to sampling with benzocaine 

(SIGMA E1501) at 250mg/l (AVMA 2001), and fish origin, fork length, weight 

and the presence of any external or internal gross signs were recorded.  Blood 

samples were taken from the caudal vein with a 2 ml pre-heparinised (1000 

IU/ml) syringe with a 23G needle (Terumo™, Leuven, Belgium) and posterior 

kidney samples were aseptically taken with a sterile plastic loop.  Samples for 
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histology were taken from three locations in the digestive tract, the pyloric end 

of the stomach (one 1cm tubular section), proximal pyloric caeca (10-15 whole 

caeca) and distal intestine (one 1cm tubular section). 

5.3.3.  Sample processing 

Samples for histology were placed in 10% (v/v) neutral buffered formalin and 

left for a minimum period of 24h before processing using standard protocols and 

embedding in individual paraffin wax blocks.  Finally 5µm sections from these 

blocks were cut, placed on slides and stained with haematoxylin and eosin 

(H&E).  All the histology slides were examined “blind” by the same person and 

SFB were identified as bacteria approximately 0.6-1.2µm in diameter and up to 

60µm in length, with apparent segmentation every 1.2-1.6µm (Urdaci et al. 

2001).  SFB presence was recorded in each tissue after scanning the entire 

section at objective x10.  Any histopathological changes were noted and the 

presence of lamina propria and/or adventitial congestion and epithelial 

detachment was recorded. 

Blood samples were loaded into heparinised haematocrit tubes that were 

subsequently centrifuged (20,000 g, 5 min) and the packed cell volume (PCV) 

read as a percentage of the total volume of the sample.  Posterior kidney 

samples were inoculated onto a tryptone soya agar (TSA, Oxoid™, UK) plate 

and incubated at 22°C.  When bacterial growth was present, colony morphology 

and Gram staining were recorded following standard microbiological procedures 

(Buller 2004). 
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5.3.1.  RTGE case definition assessment 

The case definition of RTGE was assessed by analysis of its agreement with 

three laboratory tests, namely PCV, histopathology and kidney bacteriology in 

TSA, as well as all the possible combinations of these.  These analyses were 

conducted on data from all the RTGE+ fish in the sample, matched individually 

with healthy negative controls from the same unit.  A receiver operating 

characteristic (ROC) curve was plotted to determine the most appropriate 

threshold PCV value to separate RTGE+ fish from negative controls, which was 

chosen as the point in the curve which was nearest to sensitivity=1 and 1-

specificity=0 (Thrusfield 2006).  Histological sections were considered positive 

for RTGE if there was presence of SFB, congestion of the adventitial and 

lamina propria and detachment of enterocytes (Branson 2003; Michel et al. 

2002; Urdaci et al. 2001).  A fish was considered positive for histopathological 

RTGE if distal intestine or pyloric caeca were positive.  Bacterial cultures were 

considered negative for bacterial growth if a total absence of bacterial colonies 

was noted after incubation for 15 days.  Sensitivity and specificity values for the 

three laboratory tests were calculated with their 95% confidence intervals 

(Thrusfield 2006). 

Further analysis was made on the different clinical presentations seen 

exclusively in RTGE+ fish.  For this purpose, the tools used were the analysis of 

the statistical association of each gross sign with the results of the laboratory 

tests and the cluster analysis of gross presentations using Ward’s linkage 

method (Hill & Lewicki 2007). 
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5.3.2.  Weight and condition factor in RTGE fish 

To complement the findings of the cluster analysis, a subset of the data was 

selected for univariable conditional logistic regression (CLR) analysis of the 

differences in weight and condition factor between RTGE+ fish without 

concurrent disease and apparently healthy fish.  A group of RTGE+ fish which 

were negative for bacteriology and did not present enlarged kidneys were 

selected and matched by unit of origin with three negative controls.  Before 

CLR, the linearity of the logit of continuous variables with the dependent 

variable was tested for all variables using the Box-Tidwell transformation test.  A 

cut-off point of p=0.05 was applied in CLR analysis (Dohoo et al. 2003). 

5.3.3.  Blood Biochemistry 

Biochemical analyses were conducted on plasma from a sample of 30 fish (20 

RTGE+ and 10 controls) taken from a single unit in one of the sites affected. 

None of the RTGE+ fish sampled was positive for bacteriology or had an 

enlarged kidney.  The quantity of plasma obtained from RTGE+ fish was very 

small as a result of the increase in PCV and two groups of RTGE+ fish were 

required to ensure a sufficient quantity of plasma for the analyses.  Blood 

samples were taken from the caudal vein with a 2 ml pre-heparinised (1000 

IU/ml) syringe with a 23G needle (Terumo™, Leuven, Belgium) and centrifuged 

at 3000g for 10m. Plasma was then transferred to a cryovial and snap-frozen in 

liquid nitrogen for transport and storage.  All samples were analysed by Scottish 

Agricultural College, Penicuik, UK.  Total protein and albumin were measured 

for the first group of RTGE+ fish (n=10) while sodium, chloride and potassium 

were measured for the second group of RTGE+ fish (n=10); all parameters 

were measured for the control group (n=10). 
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5.3.4.  Statistical analysis 

All the fish data with the exception of the blood biochemistry dataset were 

collated in a single spreadsheet, where a calculated variable for condition factor 

was created (CF= (100*Weight (g))/Forklength3 (cm)).  If not specified 

previously, the statistical association was tested with Fisher Exact (FE) for 

dichotomous variables and non-parametric Kruskal-Wallis (KW) for continuous 

variables, with significance assumed below p=0.05.  All data management and 

analyses were conducted in MS Excel 2007™ (Microsoft, USA), Statistica™ 

(Statsoft Ltd., Bedford, UK) and EpiInfo™ (CDC, Atlanta, USA). 

5.4.  Results 

5.4.1.  Fish sampling 

A total of 464 rainbow trout were sampled from 11 sites in the UK (7 in Scotland 

and 4 in England) from June to September 2006.  Of these, 134 were moribund 

fish consistent with the RTGE case definition (moribund RTGE+) and 330 were 

randomly selected fish from the same units.  An average of 42 (range=31-81) 

fish were sampled from a RTGE+ unit in each site, of which a mean of 12 

(range=1-51) were moribund RTGE+ and 30 were random apparently healthy 

fish. During post-mortem examination, 18 randomly sampled fish were 

consistent with the case definition and these fish were included in the analyses 

as “subclinical” RTGE+ fish.  Externally, these fish presented with less obvious 

dilation of the abdomen and internally with all gross signs included in the RTGE 

case definition.  In 22% of the “subclinical” RTGE+ fish, the yellow viscous 

intestinal content was mixed with feed. 
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5.4.2.  RTGE case definition assessment 

The dataset included all 152 RTGE+ fish matched with 152 negative controls. 

The PCV values of RTGE+ fish were significantly higher (p<0.001, KW), with a 

mean PCV=55% (range=19-92%), whereas negative controls presented a 

mean PCV of 44% (range=7-68%).  The surface area under the ROC curve for 

PCV was 75% and the apparent shoulders found in the extremes of the plot 

indicated the presence of relatively lower, physiological and higher PCV values 

in RTGE+ fish (Figure 5.1). The nearest point of the curve to sensitivity=1 and 

1-specificity=0 was PCV=51%, which was chosen as the threshold for the PCV 

laboratory test. 
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Figure 5.1. Receiver operating characteristic (ROC) curve used to determine the 
threshold where the sensitivity and specificity of packed cell volume (PCV) were highest 
for the detection of RTGE (PCV=51%).  Cases and controls were sampled from the same 
productive units simultaneously (n=304; 152 RTGE+).  A star indicates the cut-off point 
where the distance to sensitivity and specificity=1 was minimum (51%), whereas the two 
arrows indicate the physiological range (CPV=32-45%). 

The sensitivity and specificity of both positive and negative kidney bacteriology 

were assessed, as only 15% of RTGE+ fish were positive for this test.  The 

values for sensitivity and specificity for each test are shown in Table 5.1. 
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Table 5.1. Sensitivity and specificity of three laboratory tests applied to a sample of 
RTGE+ cases and apparently healthy negative controls from the same units (n=304; 152 
RTGE+). 

Laboratory test Sensitivity (95% CI) Specificity (95% CI) Relative distance*
Histological RTGE 93.6 (87.9-96.7) 80.4 (74-85.6) 0.21 

PCV>51% 84.8 (77.5-90) 74.3 (67.4-80.1) 0.30 

Pos. K. Bacteriology 92 (75-97.8) 53.8 (47.9-59.5) 0.47 

Neg. K. Bacteriology 46.2 (40.5-52.1) 8.0 (2.2-25) 1.07 

* Euclidean distance relative to the point where sensitivity and specificity equal 1 in a scatter plot where 
Y=Sensitivity and X=1-Specificity. CI: Confidence Interval; PCV: % packed cell volume; Pos. K. Bact.: 
Positive kidney bacteriology; Neg. K. Bact.: Negative kidney bacteriology; Histological RTGE (i.e. SFB 
presence, enterocyte detachment and congestion in intestine or caeca). 

Descriptive analysis of the gross clinical presentation revealed that RTGE+ fish 

had other external and internal gross signs that were not included in the case 

definition of RTGE.  Several of these pathological changes were significantly 

more prevalent in moribund RTGE+ fish (Table 5.2).  The stomach of all the fish 

presenting gastric dilation contained a clear, slightly viscous fluid. 

 

Table 5.2. External and internal gross signs in 152 RTGE+ fish.  Gross signs included in 
RTGE case definition are not included.  The statistical significance of the association of 
each gross sign with moribund fish is indicated. 

 Description Frequency 
(%) 

Relative % 
Moribund* 

OR 
(95% CI) 

P 
(FE) 

External 
Gross 
Signs 

Swollen Appearance 107 (70%) 96% 18.8 (5.9-60.1) <0.001 

Lighter Colouration 81 (53%) 100% N/A <0.001 

Striping of Flanks 47 (31%) 98% 12.2 (1.6-93.4) 0.001 

Gill Pallor 9 (6%) 89% 1.5 (0.2-12.2) 0.6 

Darker Colouration 7 (5%) 100% N/A <0.001 

Haemorrhagic Gills 5 (3%) 100% N/A <0.001 

Skin Lesions 1 (1%) 100% N/A <0.001 

Internal 
Gross 
Signs 

Pyl. Caeca Congestion 97 (64%) 90% 2.7 (1.1-6.6) 0.03 

Gastric Dilation 61 (40%) 98% 19.1 (2.5-146.2) <0.001 

Enlarged Kidney 16 (11%) 81% 0.8 (0.2-2.9) 0.4 

Splenomegaly 16 (11%) 88% 1.3 (0.3-6.0) 0.5 

Hepatic Pallor 8 (5%) 88% 1.3 (0.2-10.9) 0.6 

Hepatomegaly 5 (3%) 80% 0.7 (0.1-6.6) 0.6 

Hepatic Haemorrhage 5 (3%) 80% 0.7 (0.1-6.6) 0.6 

* Relative to the total number of fish where each pathological change was observed. OR: Odds ratio of the 
association with moribund RTGE + fish; 95% CI: 95% Confidence Intervals; FE: Fisher Exact. 
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After incubation of kidney samples on TSA for 15d at 22°C, 23 (15%) RTGE+ 

fish were positive for bacterial growth.  Analysis of colony morphology and 

Gram staining (Buller 2004) indicated that 18(78%) of these isolates were 

consistent with Aeromonas salmonicida, and 3 (13%) with Yersinia ruckeri, 

while the remaining 2 (9%) were mixed cultures.  To account for the potential 

presence of concurrent bacterial diseases in RTGE+ fish, positive kidney 

bacteriology results were included in the cluster analysis.  A percentage of 

RTGE+ were not positive in histopathology (20%) and the range of PCV values 

found in RTGE+ fish included physiological reference values (PCV=32-45% 

(Stoskopf 1993)), as well as relatively higher and lower values.  Additionally, 

proliferative kidney disease (PKD), a condition that results in anaemia (Clifton-

Hadley et al. 1987) was reportedly endemic in at least 5 of the sampling sites.  

For these reasons, kidney bacteriology, histopathology and physiological, 

higher and lower PCV values were included in the cluster analysis.  This 

analysis identified three clusters in the data (Figure 5.2). 

 
Figure 5.2. Cluster analysis of laboratory tests and gross signs presented by rainbow 
trout with RTGE.  Gross signs part of the case definition used are not included.  Gross 
signs observed in cluster A were present in 31-75% of the fish, those of cluster B in 11-
16% and those of cluster C in 1-6% (n=152). 
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Pathological changes included in clusters B and C appeared in 1 to 16% of the 

RTGE+ fish and include signs that can be found in other disease entities, 

including bacterial and parasitic conditions (Ferguson 2006; Roberts 2001).  

Pathological changes found in cluster A were presented by 31-75% of the 

RTGE+ fish and were significantly more frequent in the RTGE+ moribund fish 

(Table 5.2).  These pathological changes are not commonly reported in other 

fish disease conditions in the literature (Figure 5.3 A, B, C & D). 

 

A

C
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Figure 5.3. External and internal pathological changes frequently observed in moribund 
fish consistent with RTGE case definition.  A: generally swollen appearance with lighter 
colouration (arrow) when compared with apparently healthy fish above; B: dischromic 
changes with striped marking of the flanks (arrow); C: dilation of the stomach with clear 
fluid contents (arrow); D: pyloric caeca with severe congestion and oedema (arrow). 

5.4.3.  Weight and condition factor in RTGE fish 

For comparative analysis of fish weight and condition factor in RTGE+ fish, the 

matching of cases and controls resulted in a final dataset of 276 fish including 

90 RTGE+ fish.  The results of the Box Tidwell transformation test revealed fish 

weight was not linear with the logit of the outcome, therefore this variable was 
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included as dichotomous in the final analysis.  Finally, no significant differences 

were found between RTGE+ and apparently healthy negative controls with 

regards to weight or condition factor (Table 5.3). 

 

Table 5.3. Univariable conditional logistic regression (CLR) analysis of the differences in 
weight and condition factor (CF) between RTGE positive fish and apparently healthy 
negative control trout sampled from the same unit. 

VARIABLE RTGE+ 
Mean (Range) 

RTGE- 
Mean (Range) 

Conditional logistic regression 
OR (95%CI) P 

Fish weight (g)* 192.0 (24.0-390.0) 222.6 (63.0-500.0) 1.0 (0.5-1.8) 0.94 
CF † 1.3 (1.0-2.6) 1.4 (0.9-4.0) 1.0 (0.4-2.4) 0.99 
OR: Odds ratio; * this variable failed Box Tidwell transformation test and was included as a dichotomous 
variable divided through the median (192g); † CF: Condition factor = (100*Weight (g))/Forklength3 (cm). 

 

5.4.4.  Blood Biochemistry 

Both RTGE+ groups had significantly higher PCV values than the apparently 

healthy group, similar to previous results.  Significantly higher levels of total 

plasma proteins were recorded in the first group of RTGE+ fish when compared 

with the apparently healthy group (p<0.001; KW).  A significant increase in both 

albumin and globulin fractions (p<0.001; KW) was also found.  Further analysis 

revealed a lower albumin/globulin ratio in RTGE+ fish (p=0.02; KW).  

Significantly lower concentrations of sodium and chloride ions were recorded in 

the plasma of RTGE+ fish when compared with the group of apparently healthy 

fish, although no differences were noted in the plasma concentration of 

potassium between these two groups (Table 5.4). 
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Table 5.4. Comparative values of biochemical parameters of blood plasma from 
apparently healthy fish RTGE-affected fish. 

VARIABLE RTGE– 
Mean (SE) 

RTGE+ (a) 
Mean (SE) 

RTGE+ (b)
Mean (SE) P (KW) Reference 

values* 
Sodium (mmol/l) 146.5 (2.4) - 89.4 (1.5) <0.001* 123-164† 

Chloride (mmol/l) 123.1 (2.2) - 45.5 (2.0) <0.001* 120-147† 

Potassium (mmol/l) 3.3 (0.2) - 3.3 (0.2) 0.9095 3.3-3.5† 

Total Protein (g/l) 43 (1.5) 83.1 (3.5) - <0.001* 28-60§ 

Albumin (g/l) 18.6 (0.7) 32.2 (1.9) - <0.001* 17-19§ 

Globulin (g/l) 24.4 (1.1) 50.9 (2.7) - <0.001* 5-41§ 

Albumin/Globulin (g/g) 0.8 (0.03) 0.6 (0.04) - 0.02* N/A 

SE: Standard Error. (a) & (b): RTGE+ experimental groups. KW: Kruskal-Wallis.  All groups n=10 fish. †: 
Powell (2006). §: Bowser (1993) 

5.5.  Discussion 

A case definition is a list of criteria used to identify diseased individuals within 

affected populations, thereby enabling the diagnostic consistency necessary for 

the scientific study of diseases in the field (Dohoo et al. 2003).  The initial case 

definition for RTGE used in this study was created from previous reports on the 

clinical presentation and epidemiology of this syndrome (Branson 2003; Michel 

et al. 2002; Urdaci et al. 2001).  This case definition aimed to enable the 

identification of RTGE during field sampling and provide the site managers with 

a tool for identifying RTGE.  For both these reasons, this case definition was 

based on the gross presentation.  It was necessary to assess the case definition 

before its use for the research of RTGE, but the absence of a “gold standard” 

diagnostic test for RTGE and the lack of available prevalence complicated this 

task.  The former did not allow the use of traditional methodologies of sensitivity 

and specificity calculation (Thrusfield 2006) and the latter made the use of latent 

class models inadequate (Dohoo et al. 2003).  To overcome these problems, an 
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indirect approach was used, and the case definition was indirectly assessed by 

comparison with three laboratory tests in a sample of cases and controls. 

The inclusion of PCV for the case definition assessment tool was a result of the 

apparently higher PCV values observed in RTGE+ fish during a preliminary 

phase of the experiment (data not shown).  This observation was confirmed in 

the sample and a significantly higher PCV was observed in RTGE+ fish.  For 

the estimation of a threshold to separate cases from non cases using PCV, a 

ROC curve was plotted, using the assessed case definition as reference.  A 

ROC plot is a visual representation of the changes in sensitivity (i.e. % true 

positives) and 1-specificity (i.e. 1-% true negatives) for each of the possible 

thresholds of the test (Thrusfield 2006).  The area under the curve indicated that 

PCV is an acceptable predictor for RTGE in this dataset, and the coordinates of 

the plot were used to calculate the threshold that would maximize both 

sensitivity and specificity.  The representation of the ROC curve also suggested 

the presence of PCV values that did not follow the main pattern. 

Bacterial samples from the kidney were used as an indicator of the possible 

presence of bacterial septicaemia and both apparently healthy and RTGE+ fish 

were predominantly negative.  However, a relatively small percentage of 

RTGE+ fish were positive for bacterial growth, a result that suggested the 

presence of bacterial septicaemia in these individuals. 

Histopathology has been one of the main diagnostic tools used for RTGE and 

histopathological changes found in RTGE+ fish included SFB presence, 

enterocyte detachment and congestion in distal intestine or pyloric caeca 

(Branson 2003; Michel et al. 2002; Urdaci et al. 2001).  These features of the 
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histopathological presentation of RTGE were used for its diagnosis also in this 

study.  In the majority of cases, there was agreement with the gross 

presentation of RTGE, and most fish positive by histopathology were also 

positive for RTGE case definition.  Despite this, a relatively high number of fish 

did not present with histological evidence of RTGE, despite having gross 

lesions consistent with the case definition.  These can be considered false 

negatives.  All the above described criteria had to be present in a section for a 

positive histopathological diagnosis, and it is possible that these negative 

results could have been caused by failure to detect any of the histopathological 

changes, as a result of human error, SFB degradation, tissue autolysis or the 

presence of focal lesions.  More importantly, it is also possible that these results 

were caused by the existence of other enteritic conditions resulting in signs 

mimicking the RTGE gross case definition, which would result in 

misclassification of these fish as RTGE+. 

The results of the case definition assessment using three laboratory tests 

revealed the presence of two or more subpopulations in the RTGE+ fish 

sample.  Most RTGE+ fish had significantly increased PCV, negative kidney 

bacteriology and positive histopathology but a relatively small percentage could 

present differing results for one or more of these tests.  Cluster analysis was 

used to analyse the possibility of different gross presentations found in 

association with these laboratory tests and it revealed three different clinical 

presentations in the RTGE+ fish sample. 

Cluster A was comprised of pathological changes which were frequent in the 

sample and included increased PCV values and positive histopathology.  

Further analysis revealed that the gross signs included in cluster A were 
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significantly associated with moribund RTGE+ fish, suggesting that this 

presentation reflects the final clinical stages of RTGE.  As a result of this, 

cluster A presentation has special diagnostic importance for RTGE, as disease 

diagnosis is most frequently attempted in moribund fish (Ferguson 2006). 

Cluster B and cluster C presentations included pathological changes that were 

infrequent in the RTGE+ sample.  Pathological changes in cluster B were 

grouped with positive kidney bacteriology and physiological PCV, as well as 

gross signs consistent with the presence of bacterial septicaemia in these fish 

(Austin & Austin 2007; Ferguson 2006; Roberts 2001).  The isolates were 

mostly consistent with Y. ruckeri and A. salmonicida, suggesting that these 

RTGE+ fish had concurrent enteric redmouth (ERM) and furunculosis, 

respectively.  Cluster C signs are consistent with infection with Tetracapsuloides 

bryosalmonae, the causative agent of PKD, an observation that is supported by 

the relatively low PCV values of these fish, splenomegaly and enlarged kidneys, 

all consistent with this disease (Clifton-Hadley et al. 1987).  It is possible that 

these two presentations had been a reflection of false positives or the presence 

of concurrent diseases in RTGE+ fish.  Several infectious agents and parasites 

have been reported to cause histopathologically obvious enteritis in trout, 

although this feature is normally part of a systemic presentation and not 

associated with SFB presence (Austin & Austin 2007; Ferguson 2006; Roberts 

2001).  A proportion of fish positive for RTGE histopathology was observed for 

both fish positive for bacteriology (26%) and fish with physiological/lower PCV 

values (77%).  It is possible that fish negative for RTGE histopathologically had 

been misclassified by the case definition, although this possibility is unlikely for 

fish that were positive by histopathology. 
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Concluding, these results suggest that a population of fish identified using the 

proposed RTGE case definition will be comprised of a majority of fish with 

RTGE exclusively and a smaller percentage of RTGE+ fish with concurrent 

diseases, including PKD, furunculosis or ERM.  Moreover, this case definition is 

not 100% specific and it is possible that a relatively small percentage of the fish 

consistent with this case definition are non-RTGE enteritides that have been 

misclassified.  The information gained on the gross presentations found in these 

groups enables the design of a case definition for the identification of RTGE+ 

fish that do not present concurrent disease by excluding fish that present with 

any of the gross signs included in cluster B or C.  This might be useful in 

situations where the presence of other diseases is unwanted, for example 

pathogenesis studies using field samples or transmission attempts using 

challenge with neat RTGE+ digestive contents. 

Michel et al. (2002) made several suggestions regarding the possible 

pathogenic mechanisms of RTGE, specifically focusing on the role of the 

bacteria.  The study presented here has examined the pathophysiological 

changes observed in RTGE+ fish.  Fish weight and condition factor appeared 

unchanged in RTGE+ fish, suggesting that these parameters do not alter 

susceptibility to the disease within an affected unit.  There was no apparent loss 

of weight during the clinical phase of RTGE, although affected fish stop feeding 

after the onset of clinical RTGE (Branson 2003; Michel et al. 2002; Urdaci et al. 

2001).  This may reflect a relatively short clinical phase, although it is also 

possible that weight loss was counterbalanced by fluid uptake, as evidenced by 

the gross swelling observed in RTGE+ fish. 
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Changes in haematological parameters have been used to examine the 

pathophysiology of several diseases of salmonids (Rehulka & Minarik 2007; 

Powell et al. 2006; Ackerman & Iwama 2001; Byrne et al. 1995; Clifton-Hadley 

et al. 1987).  In the case of RTGE, the results of the haematological analysis 

indicated the presence of severe osmotic imbalance. During the study, the 

negative control fish values for total protein, albumin, globulin, Na+, Cl- and K+  

were comparable with previously published rainbow trout reference values 

(Powell 2006; Bowser 1993), suggesting cohabiting fish used as controls were 

healthy.  Significantly higher PCVs and total protein concentration indicated 

haemoconcentration in RTGE+ fish (Stockham & Scott 2002).  As a result, both 

albumin and globulin were increased, although a significantly reduced 

albumin/globulin ratio was observed. An increase in globulin is unlikely, given 

the acute nature of RTGE and the relatively longer time required for the 

synthesis of high molecular weight proteins (Stockham & Scott 2002).  By 

contrast, selective loss of albumin through the digestive system is consistent 

with the severe enterocyte detachment observed in RTGE+ fish and it is 

therefore the likely cause for the observed effect. 

Selective albumin loss is typical of protein losing enteropathies (PLE), although 

in other animal species PLE involves hypoproteinemia (Stockham & Scott 

2002).  It is possible that the presentation of PLE in rainbow trout differs to that 

in mammals.  Capillary hydraulic and oncotic pressures are considerably lower 

in fish and their capillary membranes are relatively permeable to protein (Evans 

& Claiborne 2006).  Additionally, the role of albumin in the maintenance of the 

plasma oncotic pressure is not as important as it is in mammals (Evans & 

Claiborne 2006).  It still has some influence, however, as shown by relatively 
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small differences observed in circulating volume recovery between 

splenectomized fish that were injected with plasma or saline solution (Olson et 

al. 2003).  Transcapillary fluid transfer is also fast in rainbow trout, which can 

replace their entire plasma volume with interstitial fluid approximately half an 

hour post-haemorrhage (Olson et al. 2003; Duff & Olson 1989).  Additionally, 

rainbow trout living in fresh water regulate their plasma at a higher osmolality 

than their environment (Evans & Claiborne 2006).  Disruption of the intestinal 

mucosal osmotic barrier would result in fast fluid transfer from the digestive 

lumen into the fish.  In RTGE+ fish, this fluid uptake may occur at the same time 

as a fast transfer of fluid from the vascular to the interstitial compartment, 

triggered by the increase in hydrostatic pressure together with a reduction in the 

oncotic pressure within the capillaries.  The differences in hydrostatic pressure 

between the interstitial and the vascular spaces (Evans & Claiborne 2006) will 

result in fluid retention in the former and haemoconcentration in the latter.  It is 

possible that the balance could be quickly restored, but the gross presentation 

of moribund fish with RTGE suggests these fish are drinking, and therefore 

there is a constant influx of hypotonic fluid into RTGE+ fish.  This hypothesis is 

supported by the presence of a swollen but histopathologically normal stomach 

containing a clear fluid. It is possible that this behaviour is triggered by the 

renin-angiotensin system (Fuentes & Eddy 1998), stimulated by the sudden 

decrease in blood volume and blood pressure resulting from the 

haemoconcentration, although perhaps there are other mechanisms involved.  

The concurrent hyponatraemia and hypochloraemia reflect the electrolyte loss 

through the intestine and the excessive intake of hypotonic water.  It is also 
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possible that the apparent normokalaemia is in reality a hypokalaemia masked 

by the haemoconcentration (Stockham & Scott 2002). 

The pathogenesis model proposed in this study would also help to explain the 

apparent reduction of RTGE mortalities observed during the treatment with in-

feed salt (Chapter 3).  An increase in the intake of electrolytes would contribute 

to increase the osmolality of the intestinal lumen, therefore restoring the Na+/Cl- 

balance within the vascular space and limiting the osmotically driven intake of 

hyposmotic fluid from the environment.  As a result, this treatment effectively 

provides osmotic support to RTGE+ fish, as long as in-feed salt is ingested.  

The interstitial accumulation of fluid is consistent with the gross swollen 

appearance observed in RTGE+ fish.  Despite this, there were no clear signs of 

the presence of ascites and it is possible that the secondary (lymphatic) 

circulation, which may be involved in regulation of the circulating volume (Olson 

1996), is also involved. Also, the accumulation of fluid in the interstitial space 

may have caused cerebral oedema, with functional compromise of the central 

nervous system, resulting in the uncoordinated swimming observed by Michel et 

al (2002). 

Bacterial enteritis in fish is not common (Lumsden 2006; Roberts 2001), but 

RTGE may prove to be a model suitable to study the pathophysiology of these 

mucosal changes.  Further research will be necessary to uncover the reasons 

for the initial epithelial detachment and the physiological consequences of the 

severe osmotic imbalance that ensues. 
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CHAPTER 6.  A Comparative Molecular Study 
of the Presence of “Candidatus arthromitus” 
in the Digestive System of Healthy Rainbow 
Trout Oncorhynchus mykiss (Walbaum) 
Affected with Rainbow Trout Gastroenteritis 
(RTGE) 
Del-Pozo, Jorge*; Turnbull James; Ferguson, Hugh; Crumlish, Margaret 

6.1.  Abstract 

Observations were made using histopathological techniques in conjunction with 

a nested PCR protocol for the specific detection of “Candidatus arthromitus”on 

DNA extracted from formalin-fixed paraffin wax-embedded tissues.  Samples 

positive for “C. arthromitus” DNA included fish with rainbow trout gastroenteritis 

(RTGE), clinically normal co-habiting fish, and apparently healthy controls from 

both RTGE positive and RTGE negative sites.  The results obtained from the 

PCR were confirmed by nucleotide sequencing.  “Candidatus arthromitus” DNA 

was found in distal intestine as well as in sections of pyloric caeca, suggesting 

that both these locations are appropriate for molecular detection of “C. 

arthromitus” DNA in trout.  Furthermore, rainbow trout fry distal intestinal 

samples from two different hatcheries where RTGE had not been reported were 

also positive for “C. arthromitus” DNA.  Differences in “C. arthromitus” DNA 

detection between paraffin wax-embedded and fresh digestive content samples 

from the same fish suggested that these may be predominantly epithelium-

associated in healthy trout.  Parallel histopathological observations indicated 

that pyloric caeca are the preferred site for visualizing segmented filamentous 
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bacteria (SFB) in trout with RTGE.  The results of this study showed that the 

presence of SFB was not invariably associated with clinical disease and that 

more information is required to understand the role of these organisms. 

6.2.  Introduction 

Fish enteritides are part of a systemic presentation in most cases (Austin B. & 

Austin D.A. 2007; Ferguson 2006; Weber 2005; Roberts 2001).  This is not the 

case with rainbow trout gastroenteritis (RTGE), which is an exclusively enteritic 

syndrome of rainbow trout Oncorhynchus mykiss (Walbaum), reported in 

several European countries (Denham 2004; Toranzo 2004; Ghittino, personal 

comm.; Branson 2003; Michel et al. 2002; Urdaci et al. 2001; Sanz 2000).  

Clinically, fish present with congestion and oedema of the intestinal wall 

(Branson 2003; Michel et al. 2002; Urdaci et al. 2001).  The presence of RTGE 

in a rainbow trout producing site usually results in significant economic loss for 

affected sites, and daily mortalities of 0.5-1.0% are common (Branson 2003; 

Michel et al. 2002; Urdaci et al. 2001). 

RTGE has been linked to the accumulation of large numbers of segmented 

filamentous bacteria (SFB) within the digestive tract of enteritic rainbow trout 

(Michel et al. 2002; Urdaci et al. 2001), a phenomenon that has not been 

reported in healthy trout.  These SFB are described as Gram-positive bacteria 

0.6-1.2µm in diameter and up to 60µm long, with apparent segmentation every 

1.2-1.6µm.  In the longest filaments, vegetative segments can be observed 

often containing spores, which are readily stained with malachite green (Michel 

et al. 2002; Urdaci et al. 2001).  A comparative study of 16S rRNA gene 

sequences has shown that SFB found in the ileum of mice (Klaasen et al. 1991) 
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are closely related to the genus Clostridium (Snel et al. 1994). These bacteria 

have been included in a separate group called “Candidatus arthromitus”, which 

includes SFB found in the digestive system of several species (Snel et al. 

1995). The most recent addition to this group has been the SFB in trout (Urdaci 

et al. 2001). 

At present, the role of “C. arthromitus” in the aetiology of RTGE is not clear: 

Urdaci et al. (2001) suggested that the presence of other pathogens cannot be 

excluded although in their study SBF were always observed in enteritic trout.  

An additional possibility is that SFB are part of the natural microbial flora of 

rainbow trout, but have not previously been detected. 

It is largely accepted that “C. arthromitus” cannot be cultured in vitro (Angert 

2005; Klaasen et al. 1992; Davis & Savage 1974) making it impossible to study 

SFB using routine bacteriology methods.  Molecular techniques have been 

proposed as a way to identify fastidious and non-culturable micro-organisms 

(Fenollar & Raoult 2004) and have been successfully used for several fish 

pathogens (Fouz et al. 2006; Chang et al. 2002; Toyama et al. 1994).  The use 

of molecular techniques using DNA extracted from paraffin wax-embedded 

tissues has made possible the use of archive material and to relate the 

molecular analysis to specific histopathological lesions in fish (Crumlish et al. 

2007).  The purpose of the present study was to use DNA extracted from fresh 

intestinal contents and paraffin wax-embedded tissue samples for the specific 

detection of “C. arthromitus” 16S rRNA gene using a nested polymerase chain 

reaction (PCR).  The ultimate objective of the research was to describe and 

compare the presence of “C. arthromitus” in the pyloric caeca and distal 

intestine of fish clinically affected by RTGE, as well as in clinically normal fish, in 
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an attempt to clarify the role of “C. arthromitus” in the aetiology of this 

syndrome. 

6.3.  Material and methods 

6.3.1.  Experimental design 

6.3.1.1.  Primary experimental groups 

Four groups of fish samples from two UK rainbow trout farms both positive (Site 

A) and negative (Site B) for the presence of RTGE were used (Table 6.1).  

These four groups comprised: (a) fish displaying RTGE signs, (b) apparently 

healthy cohabiting fish, (c) negative controls from RTGE-free units of site A and 

(d) negative controls from site B.  Molecular analyses were performed on both 

paraffin wax-embedded tissues and fresh contents of distal intestine and pyloric 

caeca.  There were six fish per experimental group and all the samples were 

also processed for histology. 
 

Table 6.1. Experimental groups analyzed histopathologically and with nested PCR for 
specific detection of “Candidatus arthromitus”. 

Fish id Group Site Site 
RTGE status 

Production unit 
RTGE status 

Fish 
RTGE status 

1 to 6 a A POSITIVE POSITIVE POSITIVE 
7 to 12 b A POSITIVE POSITIVE NEGATIVE 

13 to 18 c A POSITIVE NEGATIVE NEGATIVE 
19 to 24 d B NEGATIVE NEGATIVE NEGATIVE 

6.3.1.2.  Additional experimental groups 

In order to complement the primary findings of the main experimental design, 

five more experimental groups were included in the study (Table 6.2): (1) fry 

from a UK hatchery (Hatchery A) that supplied fish to RTGE-positive sites, (2) 

fry from a UK hatchery (Hatchery B) that supplied fish to sites in which RTGE 
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had never been reported, (3) fry from Northern Ireland (Hatchery C) and (4) 

ongrowing rainbow trout from Northern Ireland (Site C).  For these additional 

groups, histopathological and molecular analyses were performed in paraffin 

wax-embedded samples of distal intestine only. Clinical RTGE had never been 

reported in any of the rainbow trout producing sites included in groups 1 to 4. 

 

Table 6.2. Additional experimental groups analyzed histopathologically and with 
“Candidatus arthromitus” specific nested PCR. 

Fish id Group Site Site 
RTGE status 

Fish 
RTGE status 

25 to 30 1 Hatchery A NEGATIVE NEGATIVE 

31 to 36 2 Hatchery B NEGATIVE NEGATIVE 

37 to 42 3 Hatchery C NEGATIVE NEGATIVE 

43 to 46 4 Site C NEGATIVE NEGATIVE 

 

6.3.2.  Fish sampling and tissue fixation 

All the fish were killed using an overdose of benzocaine (Sigma-Aldrich™, 

Gillinham, UK) at 250mg/l (AVMA 2001).  Distal intestine and pyloric caeca 

were sampled separately and sequentially.  Fresh digestive contents were 

collected in sterile cryovials by sterile sectioning of each digestive area distal to 

the collection point.  Using a different set of sterile forceps for each sample, 

pressure was exerted in the proximal area to transfer the contents into the 

cryovial, which was then snap-frozen in liquid nitrogen.  Following this, the 

tissues sampled for histology were directly placed in 10% (v/v) neutral buffered 

formalin after sterile dissection.  No incision was made in the digestive tract 

before fixation and tissue samples were kept in the formalin fixative for at least 

24 h before further processing.  Fixed tissues were then trimmed and placed in 

plastic cassettes in an automatic tissue processor, according to the 
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manufacturer’s protocol (Citadel™ Tissue processor, Pennsylvania, USA).  

After processing, cassettes were removed from the tissue processor and 

embedded in paraffin wax.  The excess wax surrounding the embedded tissue 

was trimmed away to maximize the proportion of tissue-to-wax in each block, 

which then was cut using a manual rotary microtome. 

6.3.3.  DNA extraction 

Fresh digestive contents were processed for DNA extraction with a DNEasy™ 

kit (Qiagen™, Crawley, UK) following the manufacturer’s protocol.  For paraffin 

wax-embedded tissues the protocol described by Crumlish et al (2007) was 

applied with modifications, whereby each paraffin wax-embedded tissue sample 

was cut at 1µm of thickness to further improve the extraction of bacterial DNA 

(Loeschke et al. 2005). 

6.3.4.  Nested PCR procedure 

A Buffer IV PCR kit was used for the reaction (ABGENE™, Epsom, UK). PCR 

reactions were assembled in thin-walled 0.2ml PCR tubes and the reaction 

volume (50 μL) contained 500ng of template DNA for the first step, 10 mM of 

each primer, 2.5 mM of each dNTP, 5 μL of 10× PCR reaction buffer 

(ABGENE), 1.5 mM MgCl2, 2.5 U of Taq DNA polymerase (ABGENE) and miliQ 

water up to 50µl.  The tubes were placed in a thermocycler (Biometra T 

gradient™, Goettingen, Germany) and subjected, for the first step, to an initial 

denaturation at 94°C for 5 min, followed by 35 cycles of denaturation at 94°C for 

30 s, annealing at 56°C for 1 min 30 s, extension for 72°C for 1 min 30 s and a 

single extension cycle of 72°C for 5 min.  For the second PCR reaction all the 

parameters were identical, except only 1µl of the first round PCR product was 

added and the thermocycler programme was modified for annealing (58°C for 1 
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min) and extension (72°C for 1 min).  Two sets of primers targeted to 16S rRNA 

were used in the two steps of the nested PCR (MWG Oligo™, London, UK).  

For the first step universal primers, complementary to conserved regions of 

most eubacterial 16S rRNA, were used: 20F (5’-

AGAGTTTGATCATGGCTCAG-3’) and 1500R (5’GGTTACCTTGTTACGACTT-

3’) (Weisburg et al. 1991).  The second step of the nested PCR was performed 

using primers SFB779F (5’-TGTGGGTTGTGAATAACAAT-3’) and SFB1380R 

(5’-GGTTAGCCCACAGGTTTCGG-3’), specific for “C. arthromitus” (Urdaci et 

al. 2001).  Negative controls with no DNA were used for each reaction and the 

results were visualised using a 1 % (w/v) tris acetate buffer (TAE) agarose gel 

with 0.5 µg/ml ethidium bromide run in an electrophoresis well set at 80V.  A 

Trackit™ 100bp ladder (Invitrogen™, Paisley, UK) was used for reference. 

6.3.5.  DNA sequencing procedure 

Nucleotide sequencing was used to identify the final amplification products of 

the nested PCR technique.  For the primary experimental groups, the samples 

sequenced included two randomly chosen amplification products from each 

group of paraffin wax-embedded tissues (16 samples) and all the positive 

samples from the fresh intestinal content samples.  For the additional 

experimental groups all the positive samples were sequenced.  Each sample 

was purified using a Qiaquick™ DNA kit (Qiagen™, Crawley, UK) following the 

manufacturer’s protocol and sequenced using a CEQ Beckman 2000™ 

sequencer following the manufacturer protocol (Beckman Coulter™, High 

Wycombe, UK).  All the sequences obtained were contrasted with other 16S 

rRNA sequences in the EMBL database by BLAST analysis (Altschul et al. 

1997). 
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6.3.6.  Histology processing 

Two 5µm thick paraffin wax-embedded sections of each sample were stained 

using both haematoxylin and eosin and Gram stains.  Each section was then 

examined using light microscopy for the presence or absence of autolytic 

changes in the tissue and compatibility of any pathological changes observed in 

the section with the current histopathological description of RTGE (Michel et al. 

2002).  Also, the whole section was screened at x20 for the presence of Gram-

positive filamentous bacteria and, if present, a description of these bacteria was 

made.  This included segmented appearance, Gram variability and 

interaction/association with enterocytes.  The bacteria were considered 

consistent with SFB if they were approximately 0.6-1.2µm in diameter and up to 

60µm long, with apparent segmentation every 1.2-1.6µm (Urdaci et al. 2001). 

6.4.  Results 

6.4.1.  Molecular detection of “C. arthromitus” 

All of the samples from all the experimental groups were positive for the 

presence of eubacterial DNA, as shown by the presence of a 1480bp 

amplification product in the primary PCR (data not presented).  No amplification 

products were observed in any of the negative control samples (no template 

DNA). 

6.4.1.1.  Primary experimental groups 

The results of the second step of the nested PCR for paraffin wax-embedded 

tissues are displayed in Figure 6.1, where a PCR product at the expected 

weight band of 601bp can be observed for most samples from all fish groups (A 

to D) in both distal intestine and pyloric caeca, with the exception of two distal 
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intestine samples from RTGE-positive fish (lanes 5 and 6) and one pyloric 

caeca sample from an apparently healthy individual cohabiting with RTGE-

positive fish (lane 36). 
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Figure 6.1. PCR products from paraffin wax-embedded tissues obtained with a 
“Candidatus arthromitus”-specific nested PCR.  Group A: RTGE-affected fish; Group B: 
Apparently healthy fish cohabiting with affected; Group C: Fish from an apparently 
healthy unit in an affected site; Group D: healthy fish from a random unit in an unaffected 
site.  (n=6 samples per group; gel 1: distal intestine samples; gel 2: pyloric caeca 
samples; M: marker; N: negative control). 

A different detection pattern was observed after the second PCR step on fresh 

digestive contents (Figure 6.2), where RTGE+ fish (group A) were positive in all 

cases for both distal intestine and pyloric caeca.  Three samples from 

cohabiting fish were positive for both organs (lanes 7, 11, 12, 31, 35 and 36) 

and only one pyloric caeca sample from site B was positive (lane 45). 
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Figure 6.2. PCR products from fresh digestive contents obtained with a “Candidatus 
arthromitus”-specific nested PCR.  Group A: RTGE-affected fish; Group B: Apparently 
healthy fish cohabiting with affected; Group C: Fish from an apparently healthy unit in an 
affected site; Group D: healthy fish from a random unit in an unaffected site.  (n=6 
samples per group; gel 1: distal intestine samples; gel 2: pyloric caeca samples; M: 
marker; N: negative control). 
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6.4.1.2.  Additional sample groups 

In the case of groups 1 to 5, only two fish from group 1 (hatchery A; lanes 51 

and 54) and one fish from group 2 (hatchery B; lane 55) were positive in the 

PCR test (Figure 6.3).  Sample 52 produced a non-specific amplification 

product, which did not appear in two subsequent repetitions of the analysis 

using the same sample and was therefore not considered when interpreting the 

results.  All the rainbow trout from Northern Ireland were negative for “C. 

arthromitus” DNA (Data not shown). 

2072
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Group 1  Group 2 
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Figure 6.3. PCR products from paraffin wax-embedded distal intestine obtained with a 
“Candidatus arthromitus”-specific nested PCR.  Group 1: hatchery A; group 2: Hatchery 
B.  M: marker; N-: no template DNA; P: positive control. 

The BLAST search of all the sequences obtained from the amplification 

products of this study showed 98 to 100% consistency with the published 

sequence of trout SFB with EMBL accession number AY007720 (Urdaci et al. 

2001). 

6.4.2.  Histopathology 

Gram-variable SFB were observed in distal intestine and pyloric caeca sections 

of both RTGE-affected and apparently healthy trout.  These bacteria were not 

observed in any of the distal intestine samples of any fish with RTGE and 

evidence of severe tissue lysis was observed in these sections.  This was not 

the case with pyloric caeca from the same fish (Figure 6.4 A), where autolytic 

changes were less pronounced and Gram variable segmented filamentous 

bacteria were always present in large numbers both attached to the mucosal 
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layer of the intestine as well as apparently free within the lumen (Figure 6.4 A, 

B). 

40µm

BA

5µm

 
Figure 6.4. Images of SFB in the pyloric caeca of RTGE-affected trout.  A: SFB (arrow) 
closely associated with enterocytes (H&E; x20).  B: SFB were clearly segmented 
(arrowhead) and displayed Gram-variability (Gram counterstained with Neutral Red; 
x100) and could present positive (arrow) or negative (arrowhead) staining.  These 
sections were positive in “Candidatus arthromitus”-specific PCR. 

Regarding the presence of SFB within the digestive system of apparently 

healthy fish, these were observed in the distal intestine of two fish cohabiting 

with RTGE-affected individuals and one fry from hatchery A (Figure 6.5).  In this 

case, SFB were never observed interacting closely with the enterocytes, 

although close interaction with feed particles was observed in several 

occasions.  SFB were not present in large numbers in any of these samples 

(Figure 6.5).  

When contrasting the results of the histopathology and the “C. arthromitus”-

specific PCR, it was found that all sections presenting SFB were also positive in 

the PCR test.  Gram-positive filamentous bacteria were observed in several 

tissue sections that were negative in PCR for “C. arthromitus” DNA.  None of 

these bacteria were Gram-variable or segmented. 
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Figure 6.5.  Distal intestine of apparently healthy rainbow trout with SFB presence 
(arrows; H&E; x20).  This section was positive in “Candidatus arthromitus” specific PCR. 

 

6.5.  Discussion 

This study has demonstrated the presence of “C. arthromitus” DNA in both 

RTGE positive samples and negative controls in formalin-fixed wax-embedded 

tissues and frozen digestive contents from rainbow trout digestive system.  

“Candidatus arthromitus” DNA was found in both distal intestine and pyloric 

caeca, suggesting that samples from both locations are equally appropriate for 

determining the presence of SFB using molecular microbiological techniques.  

Histologically, SFB were present in large numbers within pyloric caeca of 

RTGE-affected fish, although they were not observed in distal intestine sections 

even in the same fish, despite being detected by PCR in all but two occasions.  

The inconsistency of the results between paraffin wax-embedded and fresh 

intestinal samples in this case may have been due to the limitations of the 
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technique used for DNA extraction in wax-embedded tissues.  This technique 

targeted a very specific section of the intestine (approximately 100µm in total 

thickness) which in conjunction with an irregular mucosal colonisation by SFB 

and DNA degradation due to autolytic changes, may have led to false negative 

results (Klaasen et al. 1993b; Davis & Savage 1974). 

In addition, caution is recommended in the interpretation of negative results in 

PCR performed on DNA extracted from formalin-fixed paraffin-wax embedded 

tissues, due to the harshness of the procedures required for this technique 

(Cataloluk et al. 2003; Srinivasan et al. 2002).  Nevertheless, the technique 

used in this study did provide positive results, which were confirmed by 

sequencing and suggested that the PCR technique used here was able to 

detect “C. arthromitus” DNA in paraffin wax-embedded sections. 

Attachment of SFB to the enteric mucosa was observed histologically in 

enteritic trout, although evident differences between mucosal areas with and 

without SFB were not noted.  A preference of SFB for mucosal lymphoid 

epithelium has been described in rodents (Jepson et al. 1993; Abrams 1977) 

and horses (Lowden & Heath 1995).  In both species SFB are strongly 

anchored to the epithelial cells of Peyer’s patches, as well as to the small 

intestinal epithelium.  This is not a possibility in rainbow trout, where a structure 

comparable to mammalian Peyer patches has not been identified, although 

trout do have an intraepithelial lymphoid population (Bernard et al. 2006; 

McMillan & Secombes 1997). 

More relevant to the aetiological role of “C. arthromitus” in the development of 

RTGE is the fact that SFB DNA was found in the digestive system of trout with 
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clinical RTGE and in apparently healthy fish.  In addition, bacteria consistent 

with SFB were observed histologically within the digestive system of apparently 

healthy trout.  No previously published reports are available on the histological 

observation of SFB in healthy rainbow trout, and their presence has been 

consistently associated only with fish affected with RTGE (Branson 2003; 

Michel et al. 2002; Urdaci et al. 2001).  The present observations do suggest, 

however, that SFBs can also be found in apparently healthy fish, albeit more 

infrequently and in lower numbers than in fish affected with RTGE.  Additionally, 

the differences in SFB detection between fresh digestive contents and wax- 

embedded tissues from the same fish suggest that SFB could be mostly 

epithelium associated in healthy trout, with sporadic presence in the digestive 

lumen.  In RTGE-affected fish the apparent increase in SFB numbers (Michel et 

al. 2002) would result in a consistent presence of these organisms floating 

freely in the digestive tract lumen.  A higher frequency of SFB presence in the 

digestive contents of healthy cohabiting fish, as opposed to healthy fish from 

other sites, suggests that the load of SFB is increased within the affected units, 

although it is also possible that these fish were subclinically affected with 

RTGE. 

Several factors may have contributed to the absence of histological observation 

of SFB in healthy rainbow trout, including the location, degradation and the 

presentation of these bacteria.  Several authors have observed that the inability 

to detect mucosa-associated SFBs in any species is linked to the intestine 

being only poorly or irregularly colonized by these organisms (Klaasen et al. 

1993b; Davis & Savage 1974).  Davis (1980) noted that if sampling of SFB-

positive animals takes place more than 3h post-mortem, SFBs may not be 
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detected, possibly due to destruction of SFB attachment sites by autolytic 

enzymes.  Additionally, the filamentous structure of the bacteria decays quickly 

after suspension in saline and even when the samples are refrigerated.  

Structural degradation of trout SFB occurs within a few hours (Michel et al. 

2002), a length of time that may well be reduced if the intestine is not incised to 

allow rapid fixation.  It is also possible that trout SFB could also be present in 

another form in healthy trout.  For example, Bacillus cereus normally presents a 

flagellated rod shape but also has an “arthromitus” stage within the digestive 

system of healthy arthropods (Margulis et al. 1998).  These organisms are also 

spore forming (Angert 2005) and could have been present as spores.  It is 

therefore possible that SFB have gone undetected in clinically healthy rainbow 

trout and although SFB could still play a role in the aetiology of RTGE, this 

would not involve a straightforward infection that conforms easily to Koch’s 

postulates.  These observations are compatible with two possibilities: a) that 

SFB are a previously undetected part of the native intestinal microflora of 

rainbow trout or b) that SFB are endemic in specific trout populations. 

Looking at the first of these, it is possible that “C. arthromitus” are part of the 

microflora of normal rainbow trout, as this group of bacteria is considered by 

some authors to be ubiquitous in the animal kingdom (Klaasen et al. 1993a).  A 

lack of SFB pure culture methodologies (Angert 2005) may have contributed to 

their non-detection.  However other methodologies are possible, and light 

microscopy analysis has been useful for the detection of SFB presence within 

the intestine of healthy carp (Klaasen et al. 1993a).  Several reports have 

indicated a significant variability of rainbow trout intestinal microflora and have 

suggested that external factors such as feeding, season and antibiotic 
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administration have an effect on stability of the intestinal microflora even at the 

individual level (Huber et al. 2004; Spanggaard et al. 2000).  More recently, a 

study demonstrated that the microflora are more stable when fish are kept in 

constant conditions, but this would hardly be the case in rainbow trout 

production sites, which are regularly subjected to sometimes quite pronounced 

environmental changes (Pond et al. 2006). 

The other possibility is the existence of rainbow trout populations where SFB 

are endemic and this position is consistent with the negative PCR results 

observed in rainbow trout from Northern Irish sites.  However, the number of 

individuals included in the study was not statistically sufficient to declare 

freedom from SFB presence.  The endemic status of naive stocks would be 

reached after contact with infected trout or infective material and then would be 

maintained through horizontal transmission.  It is likely that spores are essential 

for the horizontal transmission of SFB as observed in mice and chicken (Ali & 

Reynolds 1996; Klaasen et al. 1991), as "C. arthromitus” are considered to be 

unculturable and species-specific suggesting a limited adaptability to 

environmental conditions (Angert 2005; Allen 1992; Tannock et al. 1984).  If this 

is the case, the spore survival time should be long enough to ensure the 

presence of receptive individuals within the population.  If SFB are endemic, 

they could either be present in all the individuals of the population or exclusively 

in apparently healthy carrier individuals, where they would be able to colonize 

and multiply.  In this case carrier trout may release infectious material either 

continuously or sporadically which would not infect other trout in the population 

until favourable conditions for the bacteria were met. 
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A consistent increase in the number of SFB has been previously reported in 

RTGE-affected fish (Branson 2003; Michel et al. 2002; Urdaci et al. 2001).  This 

was confirmed by the results of this study, although SFB were observable only 

in the pyloric caeca of these fish.  This increase could occur immediately before 

or during the course of RTGE and it could be a result of exposure to an as yet 

unknown trigger.  This could be either external to the fish (e.g. diet, treatment, 

environmental conditions, etc.) or arise from within the fish (e.g. presence of a 

different infectious agent, changes in digestive motility, immunosuppressed 

status, etc.).  Ultimately the increased SFB presence may play or not a 

significant role in the aetiology of RTGE but would certainly facilitate histological 

detection. 

Factors affecting SFB numbers have been studied in mice and an increase in 

SFB numbers has been linked to low IgA concentrations (Suzuki et al. 2004).  

Decrease in numbers was associated with age, activation of the mucosal 

immune system and administration of Lactobacillus plantarum to 

immunodepressed mice (Fuentes et al. 2008; Snel et al. 1998).  Goodwin et al. 

(1991) suggested that diet composition, environmental stress and antimicrobial 

drugs also play a role in SFB colonization. 

As suggested by previous work, an increased number of SFB in RTGE-affected 

trout is not necessarily linked with the aetiology of RTGE (Michel et al. 2002; 

Urdaci et al. 2001).  In other animal species, SFB have been reported as 

commensal as well as being associated with various enteritides.  In poultry, 

SFB have been associated with inflammation of intestinal mucosa and 

vacuolation of enterocytes (Goodwin et al. 1989).  However, it was concluded at 

a later date that SFB are not necessarily pathogens and in fact they might be 



Aetiological Role of “Candidatus arthromitus” 

6-158 
 

part of the normal intestinal microflora of poultry (Goodwin et al. 1991).  SFB 

were initially associated with the aetiology of stunting syndrome in turkey poults 

(Angel et al. 1990), an infectious enteric disorder that was subsequently shown 

to be caused by virus (Ali & Reynolds 1997; Sell et al. 1992).  The proliferation 

of SFB was observed only in turkey poults with clinical signs of diarrhoea, but 

not in the intestine of symptom-free birds, a situation similar to RTGE (Michel et 

al. 2002; Urdaci et al. 2001). 

A positive effect of SFB on their host has been recognized in mammals.  These 

organisms are considered to be non-pathogenic potent microbial stimuli of the 

murine gut mucosal immune system and to competitively exclude pathogens 

from the murine small bowel (Umesaki et al. 1999; Talham et al. 1999; Umesaki 

et al. 1995; Klaasen et al. 1993b; Garland et al. 1982).  All of these positions 

are compatible with SFB being a previously unrecognised non-pathogenic part 

of the normal microflora of healthy rainbow trout intestine.  Nevertheless, it is 

not possible to exclude a direct or indirect involvement of SFB in a complex 

pathogenesis picture with the evidence available.  Increased concentrations of a 

hypothetical SFB toxin could play an important role, perhaps even being the 

cause of the disease itself.  The possible involvement of a toxin in RTGE 

pathogenesis is not a new concept (Michel et al. 2002), and the phylogenetic 

proximity of “C. arthromitus” to the Clostridium genus of bacteria, which 

comprises several toxin-producing species, would make this hypothesis feasible 

(Wilson et al. 2002; Snel et al. 1994).  If this was true and SBF are directly or 

indirectly related to RTGE pathogenesis, only trout with SFB in their digestive 

system would be susceptible to developing RTGE. 
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Concluding, this study has reported the presence of “C. arthromitus” DNA in 

apparently healthy and RTGE-affected rainbow trout using molecular probes 

specific for this bacterial species.  It also has explored several hypotheses 

regarding the aetiological role of “C. arthromitus” in the pathogenesis of RTGE.  

Parallel histopathological observations have confirmed the presence of SFB in 

RTGE-affected and clinically healthy rainbow trout.  Further work is required to 

clarify several of the points raised, namely quantitative studies of SFB in both 

sick and healthy rainbow trout, in situ studies of SFB morphology in apparently 

healthy individuals, SFB culture attempts and further research on the 

pathogenic mechanisms behind RTGE. 

6.6.  Acknowledgements 

This research was supported by the Scottish Aquaculture Research Forum 

(SARF), the Department of Environment, Food and Rural Affairs (DEFRA) and 

the British Trout Association (BTA). Also, the authors would like to especially 

acknowledge the managers of the sites involved. 

 

 

 

 

 

 

 

 

 

 



Aetiological Role of “Candidatus arthromitus” 

6-160 
 

6.7.  References 

Abrams, G. D. 1977, 'Microbial effects on mucosal structure and function'. The 
American Journal of Clinical Nutrition, vol. 30, pp. 1880-1886. 

Ali, A. & Reynolds, D. L. 1996, 'Primary cell culture of turkey intestinal epithelial 
cells'. Avian Diseases, vol. 40, pp. 103-108. 

Ali, A. & Reynolds, D. L. 1997, 'Stunting syndrome in turkey poults: isolation 
and identification of the etiologic agent'. Avian Diseases, vol. 41, pp. 870-881. 

Allen, P. C. 1992, 'Comparative study of long, segmented, filamentous 
organisms in chickens and mice'. Laboratory Animal Science, vol. 42, pp. 542-
547. 

Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & 
Dipman, D. L. 1997, 'Gapped BLAST and PSI-BLAST: A new generation of 
protein database search programs'. Nucleic Acid Research, vol. 25, pp. 3389-
3402. 

Angel, C. R., Sell, J. L., Fagerland, J. A., Reynolds, D. L. & Trampel, D. W. 
1990, 'Long-segmented filamentous organisms observed in poults 
experimentally infected with stunting syndrome agent'. Avian Diseases, vol. 34, 
pp. 994-1001. 

Angert, E. 2005, 'Alternatives to binary fission in bacteria'. Nature Reviews: 
Microbiology, vol. 3, pp. 214-224. 

Austin B. & Austin D.A. 2007, Bacterial Fish Pathogens: Diseases of Farmed 
and Wild Fish. Fourth Ed., Springer-Praxis, Chichester. 

AVMA 2001, '2000 Report of the AVMA Panel on Euthanasia'. Journal of the 
American Veterinary Medical Association, vol. 218, pp. 669-696. 

Bernard, D., Six, A., Rigottier-Gois, L., Messiaen, S., Chilmonczyk, S., Quillet, 
E., Boudinot, P. & Benmansour, A. 2006, 'Phenotypic and Functional Similarity 
of Gut Intraepithelial and Systemic T Cells in a Teleost Fish'. The Journal of 
Immunology, vol. 176, pp. 3942-3949. 

Branson, E. 2003, 'Rainbow trout Gastro-Enteritis (RTGE)-first diagnosis in the 
UK'. Fish Veterinary Journal, vol. 7, pp. 71-76. 

Cataloluk, O., Cakmak, E. A., Buyukberber, N. & Barlas, O. 2003, 'Formalin 
fixing and paraffin embedding may lead to extra band development in PCR'. 
The new microbiologica : official journal of the Italian Society for Medical, 
Odontoiatric, and Clinical Microbiology (SIMMOC), vol. 26, pp. 193-198. 

 



Aetiological Role of “Candidatus arthromitus” 

6-161 
 

Chang, P. H., Lin, C. W. & Lee, Y. C. 2002, 'Lactococcus garvieae infection of 
cultured rainbow trout, Oncorhynchus mykiss in Taiwan and associated 
biophysical characteristics and histopathology'. Bulletin of the European 
Association of Fish Pathologists, vol. 22, pp. 319-327. 

Crumlish, M., Diab, A. M., George, S. & Ferguson, H. W. 2007, 'Detection of the 
bacterium Flavobacterium psychrophilum from a natural infection in rainbow 
trout, Oncorhynchus mykiss (Walbaum), using formalin-fixed, wax-embedded 
fish tissues'. Journal of Fish Diseases, vol. 30, pp. 37-41. 

Davis, C. P. 1980. 'Post-mortem alterations of bacterial localization'. In: 
Scanning Electron Microscopy, A. M. F. O'Hare, (Ed.), SEM inc., Chicago, pp. 
523-526. 

Davis, C. P. & Savage, D. C. 1974, 'Habitat, succession, attachment, and 
morphology of segmented, filamentous microbes indigenous to the murine 
gastrointestinal tract'. Infection and Immunity, vol. 10, pp. 948-956. 

Denham, K. 2004, 'Fish health controls: The activities of the fish health 
inspectorate in England and Wales'. Trout News, vol. 38, pp. 29-31. 

Fenollar, F. & Raoult, D. 2004, 'Molecular genetic methods for the diagnosis of 
fastidious microorganisms'. APMIS, vol. 112, pp. 785-807. 

Ferguson, H. W. 2006, Systemic pathology of fish: A text and atlas of normal 
tissues in teleosts and their responses in disease. Second Ed., Scotian Press, 
London, UK. 

Fouz, B., Zarza, C. & Amaro, C. 2006, 'First description of non-motile Yersinia 
ruckeri serovar I strains causing disease in rainbow trout, Oncorhynchus mykiss 
(Walbaum), cultured in Spain'. Journal of Fish Diseases, vol. 29, pp. 339-346. 

Fuentes, S., Egert, M., Jimenez-Valera, M., Monteoliva-Sanchez, M., Ruiz-
Bravo, A. & Smidt, H. 2008, 'A strain of Lactobacillus plantarum affects 
segmented filamentous bacteria in the intestine of immunosuppressed mice'. 
FEMS Microbiology Ecology, vol. 63, pp. 65-72. 

Garland, C. D., Lee, A. & Dickson, M. R. 1982, 'Segmented filamentous 
bacteria in the rodent small intestine: Their colonization of growing animals and 
possible role in host resistance to Salmonella'. Microbial Ecology, vol. 8, pp. 
181-190. 

Goodwin, M. A., Cooper, G. L., Brown, J., Bickford, A. A., Waltman, W. D. & 
Dickson, T. G. 1991, 'Clinical, pathological, and epizootiological features of 
long-segmented filamentous organisms (bacteria, LSFOs) in the small 
intestines of chickens, turkeys, and quails.'. Avian Diseases, vol. 35, pp. 872-
876. 

Goodwin, M. A., Cooper, G. L. & Waltman, W. D. 1989, 'Diarrhea associated 
with long-segmented filamentous organisms (LSFO) in the small intestines of 
turkeys, chickens and quails'. In: 38th Western Poultry Disease Conference, pp. 
103-109. 



Aetiological Role of “Candidatus arthromitus” 

6-162 
 

Huber, I., Spanggaard, B., Appel, K. F., Rossen, L., Nielsen, T. & Gram, L. 
2004, 'Phylogenetic analysis and in situ identification of the intestinal microbial 
community of rainbow trout (Oncorhynchus mykiss, Walbaum)'. Journal of 
Applied Microbiology, vol. 96, pp. 117-132. 

Jepson, M. A., Clark, M. A., Simmons, N. L. & Hirst, B. H. 1993, 'Actin 
accumulation at sites of attachment of indigenous apathogenic segmented 
filamentous bacteria to mouse ileal epithelial cells.'. Infection and Immunity, vol. 
61, pp. 4001-4004. 

Klaasen, H. L. B. M., Koopman, J. P., Poelma, F. G. J. & Beynen, A. C. 1992, 
'Intestinal, segmented, filamentous bacteria'. FEMS Microbiology Reviews, vol. 
88, pp. 165-180. 

Klaasen, H. L. B. M., Koopman, J. P., Van den Brink, M. E., Bakker, M. H., 
Poelma, F. G. J. & Beynen, A. C. 1993a, 'Intestinal, segmented, filamentous 
bacteria in a wide range of vertebrate species.'. Laboratory Animals, vol. 27, pp. 
141-150. 

Klaasen, H. L. B. M., Koopman, J. P., Van den Brink, M. E., Van Wezel, H. P. 
N. & Beynen, A. C. 1991, 'Mono-association of mice with non-cultivable, 
intestinal, segmented, filamentous bacteria.'. Archives of Microbiology, vol. 156, 
pp. 148-151. 

Klaasen, H. L. B. M., Van der Heijden, P. J., Stok, W., Poelma, F. G. J., 
Koopman, J. P., Van den Brink, M. E., Bakker, M. H., Eling, W. M. C. & Beynen, 
A. C. 1993b, 'Apathogenic, intestinal, segmented, filamentous bacteria stimulate 
the mucosal immune system of mice'. Infection and Immunity, vol. 61, pp. 303-
306. 

Loeschke, S., Goldmann, T. & Vollmer, E. 2005, 'Improved detection of 
mycobacterial DNA by PCR in formalin-fixed, paraffin-embedded tissues using 
thin sections'. Pathology, Research and Practice, vol. 201, pp. 37-40. 

Lowden, S. & Heath, T. 1995, 'Segmented filamentous bacteria associated with 
lymphoid tissues in the ileum of horses'. Research in Veterinary Science, vol. 
59, pp. 272-274. 

Margulis, L., Jorgensen, J. Z., Dolan, S., Kolchinsky, R., Rainey, F. A. & Lo, S.-
C. 1998, 'The arthromitus stage of Bacillus cereus: Intestinal symbionts of 
animals'. Proceedings of the National Academy of Sciences, vol. 95, pp. 1236-
1241. 

McMillan, D. & Secombes, C. 1997, 'Isolation of rainbow trout (Oncorhynchus 
mykiss) intestinal intraepithelial lymphocytes (IEL) and measurement of their 
cytotoxic activity'. Fish & Shellfish Immunology, vol. 7, pp. 527-541. 

 

 



Aetiological Role of “Candidatus arthromitus” 

6-163 
 

Michel, C., Bernardet, J. F., Daniel, P., Chilmonczyk, S., Urdaci, M. C. & de 
Kinkelin, P. 2002, 'Clinical and aetiological aspects of a summer enteritic 
syndrome associated with the sporulating segmented filamentous bacterium 
"Candidatus arthromitus" in farmed rainbow trout, Oncorhynchus mykiss 
(Walbaum)'. Journal of Fish Diseases, vol. 25, pp. 533-543. 

Pond, M. J., Stone, D. M. & Alderman, D. J. 2006, 'Comparison of conventional 
and molecular techniques to investigate the intestinal microflora of rainbow trout 
(Oncorhynchus mykiss)'. Aquaculture, vol. 261, pp. 194-203. 

Roberts, R. J. 2001, Fish pathology. Third Ed., W.B. Saunders, Edinburgh, UK. 

Sanz, F. 2000, 'La gastroenteritis de la trucha (Language: Spanish)'. Trouw 
Informa, vol. Spring, pp. 16-18. 

Sell, J. L., Reynolds, D. L. & Jeffrey, M. 1992, 'Evidence that bacteria are not 
causative agents of stunting syndrome in poults'. Poultry Science, vol. 71, pp. 
1480-1485. 

Snel, J., Blok, H. J., Kengen, M. P., Kudwig, W., Poelma, F. G. J., Koopman, J. 
P. & Akkermans, A. D. L. 1994, 'Phylogenetic Characterization of Clostridium 
Related Segmented Filamentous Bacteria in Mice Based on 16S Ribosomal 
RNA Analysis'. Systematic and Applied Microbiology, vol. 17, p. 172. 

Snel, J., Heinen, P. P., Blok, R. J., Carman, R. J., Duncan, A. J., Allen, P. C. & 
Collins, M. D. 1995, 'Comparison of 16S rRNA sequences of segmented 
filamentous bacteria isolated from mice, rats, and chickens and proposal of 
"Candidatus arthromitus"'. International Journal of Systematic Bacteriology, vol. 
45, pp. 780-782. 

Snel, J., Hermsen, H. J., Smits, H. J., Bos, N. A., Eling, W. M. C., Cebra, J. J. & 
Heidt, P. J. 1998, 'Interactions between gut-associated lymphoid tissue and 
colonization levels of indigenous, segmented, filamentous bacteria in the small 
intestine of mice'. Revue Canadienne de Microbiologie, vol. 44, pp. 1177-1182. 

Spanggaard, B., Huber, I., Nielsen, J., Nielsen, T., Appel, K. F. & Gram, L. 
2000, 'The microflora of rainbow trout intestine: a comparison of traditional and 
molecular identification'. Aquaculture, vol. 182, pp. 1-15. 

Srinivasan, M., Sedmak, D. & Jewell, S. 2002, 'Effect of Fixatives and Tissue 
Processing on the Content and Integrity of Nucleic Acids'. American Journal of 
Pathology, vol. 161, pp. 1961-1971. 

Suzuki, K., Meek, B., Doi, Y., Muramatsu, M., Chiba, T., Honjo, T. & Fagarasan, 
S. 2004, 'Aberrant expansion of segmented filamentous bacteria in IgA-deficient 
gut'. Proceedings of the National Academy of Sciences of the United States of 
America, vol. 101, pp. 1981-1986. 

Talham, G. L., Jiang, H.-Q., Bos, N. A. & Cebra, J. J. 1999, 'Segmented 
filamentous bacteria are potent stimuli of a physiologically normal state of the 
murine gut mucosal immune system'. Infection and Immunity, vol. 67, pp. 1992-
2000. 



Aetiological Role of “Candidatus arthromitus” 

6-164 
 

Tannock, G. W., Miller, J. R. & Savage, D. C. 1984, 'Host specificity of 
filamentous, segmented microorganisms adherent to the small bowel epithelium 
in mice and rats'. Applied and Environmental Microbiology, vol. 47, pp. 441-442. 

Toranzo, A. E. 2004. 'Report about bacterial diseases'. In: Mediterranean 
Aquaculture Laboratories, P. Alvarez-Pellitero et al., (Eds.), CIHEAM/FAO, pp. 
49-89. 

Toyama, T., Kita-Tsukamoto, K. & Wakabayasi, H. 1994, 'Identification of 
Cytophaga psychrophila by PCR targeted 16S ribosomal RNA'. Fish Pathology, 
vol. 29, pp. 271-275. 

Umesaki, Y., Okada, Y., Matsumoto, S., Imaoka, A. & Setoyama, H. 1995, 
'Segmented filamentous bacteria are indigenous intestinal bacteria that activate 
intraepithelial lymphocytes and induce MHC class II molecules and fucosyl 
asialo GM1 glycolipids on the small intestinal epithelial cells in the ex-germ free 
mouse'. Microbiology and Immunology, vol. 39, pp. 555-562. 

Umesaki, Y., Setoyama, H., Matsumoto, S., Imaoka, A. & Itoh, K. 1999, 
'Differential Roles of Segmented Filamentous Bacteria and Clostridia in 
Development of the Intestinal Immune System'. Infection and Immunity, vol. 67, 
pp. 3504-3511. 

Urdaci, M. C., Regnault, B. & Grimont, P. A. D. 2001, 'Identification by in situ 
hybridization of segmented filamentous bacteria in the intestine of diarrheic 
rainbow trout (Oncorhynchus mykiss)'. Research in Microbiology, vol. 152, pp. 
67-73. 

Weber, E. S. 2005, 'Gastroenterology for the piscine patient'. Veterinary Clinics 
of North America: Exotic Animal Practice, vol. 82, pp. 247-276. 

Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. 1991, '16S 
ribosomal DNA amplification for phylogenetic study'. Journal of Bacteriology, 
vol. 173, pp. 697-703. 

Wilson, M., McNab, R. & Henderson, B. 2002. 'Bacterial exotoxins'. In: Bacterial 
disease mechanisms, 1st edn, M. Wilson, R. McNab, & B. Henderson, (Eds.), 
Cambridge University Press, Cambridge, UK, pp. 466-513. 
 
 
 
 
 
 
 
 
 
 



General Discussion 

7-165 
 

CHAPTER 7.  General Discussion 

The primary aim of this study was to identify potential control strategies for 

rainbow trout gastroenteritis (RTGE).  Scientific information on this syndrome 

had mainly focused on case reporting (Toranzo 2004; Branson 2003; Sanz 

2000) and the study of the segmented filamentous bacteria “Candidatus. 

arthromitus” in affected fish (Michel et al. 2002; Urdaci et al. 2001).  There was 

a lack of information in several areas of the syndrome including its 

epidemiology, pathogenesis and aetiology.  Such information is needed for a 

rational approach to control.  In order to provide knowledge in each of these 

fields, the study was designed using a multidisciplinary approach whereby 

RTGE was studied at the country, site, fish and aetiological levels. 

7.1.  RTGE at the national level (Chapter 2) 

The methodology chosen was a retrospective survey, which revealed a 

relatively rapid rise in the number of RTGE-affected sites in the UK.  This 

mirrored the pattern observed in France, Spain and Italy (Sarti et al. 2008; Sanz 

2000). In France and Spain, RTGE is considered the most damaging disease 

for the rainbow trout industry (Sanz 2000).  It is therefore reasonable to think 

that without adequate control strategies, the impact of RTGE on the UK rainbow 

trout industry could escalate to the levels observed in these countries.  This is 

not the case at present and other diseases have a higher impact to the UK trout 

industry (Read 2008).  However, the importance of RTGE in other countries 

suggests it is necessary to have appropriate control and prevention measures in 

place.  In the UK, the presence of RTGE was associated with high and rapid 

production of trout for the table market and all the sites affected were relatively 



General Discussion 

7-166 
 

large farms by UK standards, producing more than 200 tonnes of trout/year.  A 

general increase in production has been identified as one of the key processes 

underlying disease emergence in aquaculture (Murray & Peeler 2005).  This 

could be related to the higher stocking densities and frequent movement of live 

fish to and from producing sites (Murray & Peeler 2005).  Altogether, the results 

of this study support the idea that disease monitoring at high productivity sites is 

of special relevance to the detection of emerging diseases in the UK.  This is 

currently being developed at the Institute of Aquaculture (University of Stirling, 

UK) in the form of a scheme for monitoring sentinel farms in the UK trout 

industry (SARF028). 

The retrospective survey allowed the identification of UK sites previously 

affected by RTGE as well as the risk factors associated at the site level.  

Additional information on a wide sample of sites from the UK rainbow trout 

industry was collected.  With these data, it was possible to generate a list of 

sites which were likely to have RTGE in the following year, enabling the 

collection of data prospectively. 

7.2.  RTGE at the site level (Chapter 3) 

A prospective longitudinal study was used to describe in detail the impact, 

pattern of spread and risk factors associated with RTGE within a population of 

11 sites in the UK.  The results of this study revealed an economic loss from 

RTGE on these sites comparable to that described for sites in Spain and France 

(Michel et al. 2002; Urdaci et al. 2001), thus reinforcing the importance of this 

disease for the UK. 
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This study also provided epidemiological evidence supporting the idea that 

RTGE behaves as an infectious condition that spreads within affected sites via 

fish movements and water.  Transmission via fish transfer was more likely to 

occur if the fish had been transferred from a unit undergoing a clinical outbreak, 

suggesting this condition may not be highly contagious.  The importance of fish 

transfers for the intra-site spread of disease is not a new concept (Danner & 

Merrill 2006; Scott 2004), but the data provided by this study has enabled the 

establishment of relevant control strategies for RTGE before identification of the 

aetiological agent is achieved.  These strategies would include the avoidance of 

fish transfers and isolation of affected units during RTGE outbreaks, which if 

followed could reduce the intra-site spread of RTGE. 

Identifying the hypothetical incubation period of 20-25 days also has direct 

repercussions for controlling RTGE, as it provides a temporal reference for the 

expected recurrence after treatment and may be used for the design of future 

treatment strategies.  This finding has provided an epidemiological basis for a 

treatment which has been used against RTGE, comprising flumequine 

treatments repeated every 25 days (Sarti et al. 2008; Treves-Brown 2000). 

However, the efficacy of this treatment is not reported and this medicine is not 

licensed for aquaculture use in the UK (NOAH 2009).  Additionally, this 

approach may lead to the development of antibiotic resistance.  Field studies to 

assess the effects of different antibiotic treatments on RTGE-affected fish are 

necessary before considering the implementation of such strategies in the UK. 

Previous suggestions on the importance of temperature on the onset of RTGE 

were confirmed by the results of the study (Toranzo 2004; Branson 2003; 

Michel et al. 2002; Urdaci et al. 2001; Sanz 2000).  The distribution of the data 
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suggests an absence of a common threshold temperature, which may have 

resulted in the observed disagreement between published reports.  Directly 

relevant to the control of RTGE is the identification of management and 

environmental risk factors associated at the site level.  Avoiding high feeding 

rates and stressful events can be directly included as part of a preventative 

programme.  High feeding rates have been associated with a range of 

pathological conditions in salmonids although there is no information on the 

mechanisms behind this association, which could perhaps be related to 

increased organic loading or increased metabolic stress (Speare 1998; 

Staurnes et al. 1990).  In this study it was also found that higher feed input 

during RTGE outbreaks was associated with higher cumulative mortalities, 

confirming previous anecdotal observations (Branson 2003) and this suggests 

that feed restriction during RTGE outbreaks is likely to reduce the impact of 

RTGE once it is present within a unit.  This observation has also provided 

epidemiological basis for another treatment strategy that has been used against 

RTGE, comprised of fasting affected fish for 7 days or more (Sarti et al. 2008). 

The appraisal of RTGE treatments used in UK affected sites revealed that 

treatments are based on trial and error and are applied with an inconsistent 

methodology.  This is probably due to the fact that RTGE is an emerging 

syndrome where there is lack of scientific information.  Descriptive analysis 

revealed an apparent reduction in RTGE mortalities when sodium chloride 

(NaCl) was fed to the fish during outbreaks.  The use of NaCl as an in-feed 

treatment has not been reported before, although it has been studied with 

reference to osmoregulatory and nutritional aspects (Salman 2007; Perry et al. 
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2006).  However, the results of this study suggested that the use of NaCl during 

outbreaks may reduce the impact of RTGE. 

7.3.  RTGE pathogenesis (Chapters 4 & 5) 

An attempt to study the pathogenesis of RTGE consisted of analysis of gross 

lesions and blood biochemistry of RTGE-affected fish (Chapters 4 & 5).  The 

diagnosis of RTGE in laboratories has been based mainly on the observation of 

external and internal gross lesions, microscopical examination of fresh smears 

and histopathology (Toranzo 2004).  However, the lack of information on the 

aetiology of RTGE has resulted in the absence of a “gold standard” test for 

RTGE diagnosis.  This study applied three laboratory tests to a sample of 

RTGE-affected fish in order to test a case definition derived from the information 

available on RTGE gross lesions.  These analyses included bacteriology, 

histopathology and packed cell volume (PCV) and revealed that some RTGE-

affected fish in the sample had concurrent disease.  These fish had large 

numbers of segmented filamentous bacteria (SFB) in their digestive tract, 

suggesting that they had not been wrongly classified.  Concurrent disease could 

have resulted from the entrance of secondary pathogens facilitated by loss of 

the intestinal mucosal integrity, although it was not possible to examine this 

possibility further here.  However, this finding suggested that gross lesion-based 

field identification of RTGE fish for experimental studies is likely to result in 

sampling fish with concurrent disease, which may hinder research on RTGE, as 

this is currently based exclusively on field samples.  For example, the presence 

of concurrent disease has been the reason for previous unsuccessful attempts 

at RTGE transmission (Verner-Jeffreys, personal comm.).  To avoid this 

possibility in the study of RTGE pathogenesis, the information gained through 
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these analyses was applied to the design of a case definition in which 

concurrent diseases were filtered out 

This modified case definition was then used for the sampling of RTGE-affected 

fish.  Comparative analysis of the blood biochemistry of RTGE-affected and 

apparently healthy fish from the same unit, produced a profile consistent with a 

protein losing enteropathy, as described in other animal species (Stockham & 

Scott 2002).  This pathogenic mechanism was consistent with the gross 

presentation as well as the observed response to in-feed NaCl.  The results of 

this study are consistent with a palliative effect of in-feed NaCl on RTGE-

affected fish, if fed during RTGE outbreaks. 

Ultrastructural studies (Chapter 4) revealed cytoskeletal damage and severe 

osmotic imbalance at the level of the enterocyte.  This could have been a result 

of the exposure of enterocytes to a toxin (Michel et al. 2002).  In other species 

these changes have been reported to be associated with local ischaemia, with 

the presence of enterotoxin and with apoptosis (Kamaras & Murrel 2001; 

Malorni et al. 1990). 

7.4.  RTGE aetiology (Chapters 4 &6) 

The aetiological role of “C. arthromitus” was assessed with molecular tools and 

ultrastructural analysis.  Molecular analysis revealed the presence of “C. 

arthromitus” DNA in populations of healthy trout from sites where RTGE had 

never been reported, and SFB were observed histologically in two of these 

trout.  These results suggested that if “C. arthromitus” are indeed involved in the 

aetiology of RTGE, they may be necessary, but not sufficient to cause clinical 

disease.  Despite this, large numbers of SFB were observed only in RTGE-
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affected fish, in agreement with previous observations (Toranzo 2004; Branson 

2003; Michel et al. 2002; Urdaci et al. 2001).  Additionally, the close interaction 

of SFB with enterocytes was described for the first time in rainbow trout, 

confirming a reaction of enterocytes to the presence of SFB.  Despite this, SFB 

were not always adjacent to the pathological changes observed in enterocytes, 

suggesting that if SFB are indeed the cause of RTGE, the pathogenesis 

requires the involvement of an extracellular product. 

7.5.  Further work 

The multidisciplinary approach used in this study has been successful in 

providing scientific information regarding the epidemiology, pathogenesis and 

aetiology of RTGE, with direct applications to the prevention and control of 

RTGE at the site level (Appendix IV).  Rainbow trout gastroenteritis is still a 

challenging and worthwhile subject, and the results from this study suggest that 

priority should be placed on specific areas for future research, including: 

Transmission studies:  The adaptation to RTGE of the challenge protocols 

used in the research of stunting syndrome (Angel et al. 1990) would allow 

testing experimental transmission of RTGE in the laboratory.  Fresh digestive 

contents or intestinal homogenates from RTGE-affected fish without concurrent 

disease could be used as the challenge material (Chapter 5).  The ability to 

manipulate RTGE in the laboratory would result in a faster and more accurate 

acquisition of scientific information on this syndrome. 

Field intervention studies:  Aimed at the testing of the control measures 

suggested by the results of this study (Appendix IV), as well as to assess 

formally the effectiveness of different antibiotic treatments and different 
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concentrations of in-feed NaCl in a semi-controlled environment.  It may be 

especially interesting to assess the effect of prolonged fasting of affected fish 

and the use of antibiotic treatments.  These types of intervention studies are 

likely to present several challenges, which should be considered during the 

design of the experiment, including site participation and a natural variability in 

RTGE prevalence between units. 

Further aetiological studies:  These could include the application of culture 

independent methodologies (e.g. denaturing gradient electrophoresis) to the 

screening of intestinal contents of RTGE-affected fish to detect the presence of 

bacterial aetiological agents other than SFB.  Also, it would be possible to use 

gradient centrifugation of diluted intestinal contents of RTGE-affected fish for 

detecting viral particles.  If the experimental transmission of RTGE were 

successful, it would be possible to test the extent of the bacterial involvement in 

RTGE pathogenesis through the use of filtered and unfiltered intestinal 

contents.  This would also alleviate the need for in vitro culture methods. 

SFB culture studies:  These would include the culture in vitro of trout “C. 

arthromitus” using different anaerobic media, perhaps enriched with rainbow 

trout intestinal homogenate.  This possibility is likely to be challenging, as all 

previous attempts have been unsuccessful (Angert 2005), although the 

availability of pure “C. arthromitus” cultures would enable direct testing of their 

aetiological role in RTGE, through the challenge of apparently healthy trout with 

large quantities of pure SFB. 
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Appendix I: Other enteritides of rainbow trout 

The table below contains a list of enteritides of rainbow trout other than rainbow 

trout gastroenteritis (RTGE) for reference.  Although this list is not exhaustive, it 

contains the most common conditions observed in farmed rainbow trout.  The 

presence of SFB is not reported in the literature for any of these conditions and 

the aetiological agent for all of them has been identified. 

 

Type Aetiology Common Name Presentation in intestine Systemic 
component

 
Birnavirus Infectious Pancreatic 

Necrosis (IPN) 
Enterocyte detachment and catarrhal 

enteritis Yes 

Viral Rhabdovirus Infectious Haemopoietic 
Necrosis (IHN) 

Eosinophilic granular cell necrosis, 
enterocyte detachment Yes 

 
Rhabdovirus Viral Haemorrhagic 

Septicaemia (VHS) 
Multifocal haemorrhage and 

enterocyte necrosis Yes 

 
Yersinia    
ruckeri 

Enteric redmouth (ERM) Petechial haemorrhage and 
congestion Yes 

 
Aeromonas 
salmonicida 

Furunculosis 
Primary lesion: Acute enteritis with 

congestion Yes 

Bacterial 
Piscirickettsia 

salmonis 
Piscirickettsiosis Macrophage infiltration and ischaemic 

necrosis 
Yes 

Citrobacter 
freundii 

N/A Dilation and watery contents Yes 

 
Lactococcus 

garvieae 
Lactococcossis Epithelial detachment and multifocal 

haemorrhage 
Yes 

 
Streptococcus 

spp. 
Streptococcosis Epithelial detachment and multifocal 

haemorrhage 
Yes 

Fungal Ichthyophonus 
hoferi 

N/A Granulomatous inflamation Yes 

Metazoan 
Cestodes Tapeworm Focal necrosis and granulomatous 

responses with mild catarrhal enteritis No 

Acantocephalans N/A Focal necrosis and granulomatous 
responses No 

Protozoan 

Flagellates 
(Spironucleus) Hexamitiasis Catarrhal enteritis No 

Myxozoa 
(Ceratomyxa) 

N/A 
Diffuse, necrotizing and 

granulomatous enteritis with loss of 
folds 

No 

Nutritional Excessive soya 
protein Soya-induced enteritis Short and widened folds and 

inflammatory infiltrate No 

• Austin B. & Austin D.A. (2007). Bacterial Fish Pathogens: Diseases of Farmed and Wild Fish. Fourth 
Ed., Springer-Praxis, Chichester. 

• Austin, B. et al. (1992). Bulletin of the European Association of Fish Pathologists, vol. 12, pp. 166-167. 
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• Ferguson, H. W. (2006). Systemic pathology of fish: A text and atlas of normal tissues in teleosts and 

their responses in disease. Second Ed., Scotian Press, London, UK. 
• Roberts, R. J. (2001). Fish pathology. Third Ed., W.B. Saunders, Edinburgh, UK. 
• Weber, E. S. (2005). Veterinary Clinics of North America: Exotic Animal Practice, vol. 82, pp. 247-276. 
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Appendix II: RTGE Retrospective Questionnaire 
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Appendix III: Prospective Epidemiology RTGE case 
definition for farmers 
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Appendix IV: RTGE control guidelines 
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