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Abstract

As a first approximation of immune-mediated within-host parasite dynamics we
can consider the immune response as a predator, with the parasite as its prey.
In the ecological literature of predator-prey interactions there are a number of
different functional responses used to describe how a predator reproduces in
response to consuming prey. Until recently most of the models of the immune
system that have taken a predator-prey approach have used simple mass ac-
tion dynamics to capture the interaction between the immune response and the
parasite. More recently Fenton and Perkins (2010) employed three of the most
commonly used functional response terms from the ecological literature.

In this paper we make use of a technique from computing science, process
algebra, to develop mathematical models. The novelty of the process algebra
approach is to allow stochastic models of the population (parasite and immune
cells) to be developed from rules of individual cell behaviour. By using this
approach in which individual cellular behaviour is captured we have derived a
ratio-dependent response similar to that seen in previous models of immune-
mediated parasite dynamics, confirming that, whilst this type of term is con-
troversial in ecological predator-prey models, it is appropriate for models of the
immune system.
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1. Introduction

The immune system is made up a large number of different types of cells
and proteins which interact in a highly complex way. Understanding how the
immune system responds to parasites is a critically important problem in the
fight against infectious diseases. Researchers have been using mathematical
models to help us to understand these interactions for more than 30 years.
There are a large number of publications in this area in which different models
describe these interactions on many different scales and with differing levels of
detail. For example, some people have developed large-scale (e.g., individual-
based) models that describe explicitly the interactions between particular types
of cells (e.g., the model of Ganusov et al. [18], that captures how IL-2 regulates
the expansion of the CD4+T cell population). However, in order to analyse
these models it is often necessary to rely on simulation rather than analytical
solutions [32]. The disadvantage of this simulation-based approach is that the
results depend on the values chosen for particular parameters and it is difficult
to say anything general about the dynamical behaviour of the system. This
is because an individual simulation considers only a single realisation of the
stochastic model and it is only by performing a large number of simulations
that we can comment more generally on the behaviour of the system even for
one set of parameter values.

Other approaches take a more generic view and describe more biologically
simplified interactions between ‘parasite’ and ‘immune’ cells [4, 30]. In this
simplified context, a useful view is to assume that the immune cells behave like
predators and the parasite cells behave like prey; this allows authors to borrow
from ecological models of predator-prey systems. In these simplified models the
interaction term between immune (I) and parasite (P) cells is often of the form
I.f(P ). Ecological predator-prey models have made use of various functional
responses [5, 8, 16, 21, 22] to describe the interaction between the two species.
The functional response describes the rate at which a single predator consumes
the prey species. In an immunological setting the functional response describes
the rate at which a single immune cell removes parasites (whether directly or
indirectly) and immunological models have focussed predominantly on simple
mass action dynamics. One exception to this is a series of papers, Borghas and
De Boer [10], Borghans et al. [11] and Pilyugin and Antia [31] which deployed a
ratio-dependent functional response (so called because a predator’s consumption
rate of prey depends on the numbers of predators and prey only through their
ratio). This form of functional response has been the source of some controversy
in the ecological literature. In 1992 a series of papers in a special edition of a
journal were uniformly in favour of using ratio-dependent response to describe
predator prey interactions e.g. [13]. However, in 1994 Abrams [1] responded to
this by saying that this functional form did not reflect any plausible widely-
applicable mechanism and was not supported by any available data. There is
continued discussion about its use in the ecological context in the literature
[1, 2, 3, 5, 6].

In the immunological context a ratio-dependent interaction rate has been ar-
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rived at in a number of settings, by means of a quasi-steady-state approximation
based on Michaelis-Menten dynamics used to describe biochemical interactions
[31, 11]. This assumption is only valid for a certain range of parameters (for
example it assumes a large amount of substrate relative to enzyme), although
this can extended by a change of variable [11].

A second alternative to the mass action assumption was recently discussed
in Fenton and Perkins [17] who developed models of within-host interspecific
parasite interactions making use of the three ecological functional responses
described by Holling [21, 22]. In a model representing a single parasite species
Fenton and Perkins made use of a generalised predator-prey model:

dP

dt
= rP − If(P ) ,

dI

dt
= ef(P )I − δI , (1)

where P is the parasite, I is the immune response, r is the per capita growth
rate of P , e is the rate at which immune proliferation is stimulated by contact
with the parasite, δ is the decay rate of the immune response and f(P ) is the
functional response. The three functional responses employed were

Type 1 : f(P ) = βP ,

Type 2 : f(P ) =
βP

1 + hβP
,

Type 3 : f(P ) =
βP 2

1 + hβP 2
,

where β is the rate at which parasites are killed and h is the handling time taken
to process each parasite. It was found that (1) has quite different stability
criteria for the three different functional responses. For a Type 1 functional
response the model is neutrally stable; for Type 2 the model is always unstable;
and for Type 3 the model stability criterion is e > 2δh. However, these functions
were derived using a population-level approach, which seeks to describe changes
in the numbers of different types of individuals in the population directly.

All of these models describe a population of cells within an individual, but
make assumptions about how the cells interact at the cell population level. The
advantage of these simplified models over the more biologically realistic simu-
lation models is that they consist of coupled non-linear differential equations
which can be analysed to determine the possible types of long-term behaviour
and the ranges of parameter values under which they occur. This allows us
to interpret results in very general terms and understand the relative impor-
tance of different parameters. However in modelling the immune system (and
indeed many other systems) we would ideally like to write down rules about how
individual cells behave and interact and derive the population-level behaviour
directly from those individual level assumptions.

In this paper we present a technique which gives us the best of both worlds,
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forming a natural bridge between these different scales: process algebra. This
theoretical computer science technique is a family of related languages. They
are suitable to describe systems comprised of many similar individual compo-
nents, which may have complex interactions. The descriptions are abstract and
concise, and underpinned by formal mathematical semantics. Process algebra
allows us to write down rules of individual behaviour and then rigorously derive
population-level equations. We can then carry out individual-based simulations
as well as analyse the population-level equations. Process algebras are a theoret-
ical computing science tool. Although initially developed to study distributed
computer systems, more recently process algebras have been used to study bio-
logical systems [14, 33]. In particular the process algebra Weighted Synchronous
Calculus of Communicating Systems (WSCCS) [37] has proven useful in study-
ing a wide range of biological systems [19, 28, 27, 29, 35, 36]. Our group has
established a rigorous method for deriving equations to describe the mean be-
haviour of an infectious disease system as a whole [28, 26]. This approach allows
us to combine the benefits of ODEs and stochastic simulations.

Having previously established the use of this approach to study disease at
the epidemiological (between-host) scale, we use WSCCS here to investigate
predator-prey models of immune-mediated, within-host parasite dynamics. In
this paper we wish to determine the form of the functional response in the pop-
ulation level equations that come from WSCCS models of the immune system,
and compare it to the most commonly-used forms [17, 30, 12]. In this way we can
investigate if any of the commonly used functional responses discussed above,
or some novel form of functional response, emerge from a formal description of
individual behaviour. This will allow us to establish whether WSCCS is a rea-
sonable approach to modelling immunological systems, deriving population-level
behaviour from assumptions about how individual cells interact.

2. Process algebra

The present work makes use of the process algebra WSCCS [37], which is a
discrete time process algebra with each agent (here representing an individual
immune cell or parasite) performing an action (representing some aspect of
individual behaviour) in each step of time. These time steps are abstract: there
is no notion of absolute time in WSCCS, only ordering of events. Time steps
have no defined length, and therefore the modeller has freedom to capture events
in each time step which happen with different durations. We describe different
types of individual in the syntax of WSCCS and represent a population by the
modular parallel composition of these agents.

Traditionally, process algebra models are analysed by deriving the underlying
Markov chain of the model, by performing stochastic simulations or by algebraic
manipulation of equivalences [7]. In recent years, the analysis of process algebra
models by fluid flow approximation [15, 20, 26, 28] has become popular, i.e.
rigorous derivation of population-level system dynamics, in the form of mean
field equations or ordinary differential equations, from the individual-based pro-
cess algebra model. This approach allows changing of scale, moving from the
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stochastic description of individuals to a description of the mean behaviour of
the population as a whole, considering only the syntax of the process algebra
model: no lengthy complex computation is required. The automatic conversion
between scales allows each perspective to be used in the strongest way possible.
That is, individual observations formally generate the population-level model.

McCaig et al. [26] described a method to automatically derive mean field
equations (MFEs) from WSCCS models. The translation is based on analysis
of the potential actions of each agent in the context of the whole population,
producing a term in the MFEs capturing change in the number of that agent.
The translation from process algebra to mean field equations is based on a
well known result, by Kurtz [23], for Markov chains. In this paper we develop a
simple WSCCS predator-prey model of immune response to investigate the form
of functional response that comes about from an individual-based description
of the system.

2.1. WSCCS

In order to understand the model presented in Section 3, we remind the
reader of the WSCCS language and the method of deriving mean field equations.
The method was originally presented in [25]; the example here is new.

2.1.1. Syntax and Semantics

In WSCCS the basic components are actions and the processes (or agents)
that carry out those actions. The actions are chosen by the modeller to represent
activities in the system. For example, infect , send , receive, throw dice, and so
on. The special pre-defined action

√
simply indicates the passing of time.

Processes are constructed via a small number of operators, allowing ordering
of actions, probabilistic choice between actions, and parallel composition of
processes. The formal syntax and semantics of WSCCS is presented in Tofts [37],
a portion of which is repeated in the appendix here for easy reference. In Figure 1
a simple model is presented to illustrate the language. This model, which was
developed by McCaig et al. [25], describes ecological model of a population
where growth depends on limited resource (density-dependent growth). In the
model the density-dependence comes about through competition for food and
the food is immediately replaced after being eaten.

The model defines five types of agents (N1 to Popn). The individuals in
the population are modelled by the agents N1 and N2. The food resource for
which individuals compete is modelled by the agents F1 and F2.

This is a two stage model reflecting two components of population dynamics.
In the first stage, the individuals compete for food and reproduce if they are
able to eat. In the second stage, individuals probabilistically ‘choose’ whether
to die or not.

The process which can perform the action a and then evolve to process P
is written a : P where a is an action, and P a process. For example, the F2
process performs a

√
action and then becomes F1. Weighted (probabilistic)

choice is expressed with the + operator. For example, process N2 can die with
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N1
def
= 1.eat : (N2×N2) + 1.

√
: N2

F1
def
= 1.eat : F2 + 1.

√
: F2

N2
def
= pd.

√
: 0 + (1− pd).

√
: N1

F2
def
= 1.

√
: F1

Popn
def
= N1{n} × F1{f}d{

√
}

Figure 1: Naive growth model

probability pd (and become the null process 0) or can survive with probability
1− pd (and become the process N1).

Communication occurs via the paired actions eat and eat. These can be
thought of as input and output respectively (so F1 outputs some food, and
N1 may absorb that food). If an N1 does manage to eat then it reproduces,
becoming two N2 agents in parallel (represented by the × operator).

The system as a whole (described by Popn) comprises n individuals and
f food items acting in parallel. WSCCS is a synchronous calculus: in every
time step every agent has to perform some action (hence the

√
actions above

— these processes are just marking time until the next stage). By combining
simple known individuals in parallel, complex overall population level behaviour
emerges.

2.2. Deriving Mean Field Equations

The semantics of WSCCS is transition-based, defining the actions that a
process can perform and the weight with which a state can be reached. A
problem WSCCS shares with all other process algebras is that of state-space
explosion; i.e. the state space of a WSCCS description is exponential in the
number of agents in that description. This problem is a serious bar to modelling
biological problems as the number of individuals in most realistic systems is
ideally in the thousands, if not millions, therefore methods of analysis requiring
explicit generation of the state space are too computationally expensive, or even
impossible.

Fluid-flow approximation provides a solution to this problem. For WSCCS
McCaig et al. [26] presented an alternative and equivalent semantics is given for
WSCCS in terms of Mean Field Equations. Algebraic rules are applied to the
WSCCS syntax of the model to obtain a set of first-order difference equations
expressing the average behaviour of the model. This is an approximation to
the original transition-based semantics, but has been shown to be a close match
with average results obtained from repeated simulations of the transition-based
semantics [26]. There are four benefits to this approach. The state-space explo-
sion problem is avoided. A new viewpoint of the system is produced, rigorously
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function calculateTerm (A,w, a): String {
case A in {

probabilistic(A): return w ∗At;
communicating(A):

term = (At ∗ collaborators(A))/(At + collaborators(A) + competi-
tors(A));

if a equals
√

return (A - term) else return term;
}}

Figure 2: Pseudo code to calculate proportion of agents at time t+ 1

and symbolically. The resulting MFE may be amenable to further algebraic
analysis using standard mathematical techniques. Finally, and to the biologist
most importantly, it is possible to exploit known (measured) information about
individual behaviour and to link this with emergent population features. In
other words, to use the semantics of process algebra to bridge automatically
between the scales of individual behaviour and population properties.

The method is based around construction and interpretation of a table not-
ing change in the number of agents in the system. The pseudo-code to compute
these table entries based on the type of action carried out is repeated in Fig. 2.
Some auxiliary definitions are required. The method is based on algebraic trans-
formation of the syntax of the model. Processes can be classified by syntactic
features as: communicating (having an action enabled that is involved in a
communication), and probabilistic (having only actions enabled that are not in-
volved in communication). For a process communicating on action a, we define
two groups of agents involved in the synchronisation: collaborators are those
processes with the matching action a, and competitiors are those processes with
the same action a. We illustrate the method by deriving MFE for the simple
growth model of Fig. 1.

2.2.1. Derivation of MFE for a Simple growth Model.

Consider again the simplistic growth model in Fig. 1. The MFE approxima-
tion uses the details of the actions in Fig. 1 to consider the evolution of numbers
of agents. The table below shows rows relating to each agent, and each activity
that agent can perform, and the resultant number of agents in the new state.
For example, the row (N1t, eat) details the evolution of N1 following an eat ac-
tion. There is no entry under F2 (because N1 do not evolve to F2). The entry
under N2 is calculated according to the code of Fig. 2 and the information that
eat is a communicating action, collaborators in that action are F1 and there are
no competitors. F1 evolves to F2 no matter which action occurs (indicating by
∗). The populated parts of the transition table for this system are as follows:
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N2t+1 F2t+1

(N1t, eat) 2× N1tF1t

N1t+F1t

(N1t,
√

) N1t − N1tF1t

N1t+F1t

(F1t, ∗) F1t

Similarly, a table can be constructed for the evolution of N2 and F2 to N1
or 0 and F1 respectively.

N1t+1 F1t+1 0

(N2t,
√

) (1− pd)N2t pdN2t

(F2t,
√

) F2t

Each column in each table can be used to construct a MFE for that agent. 0
is ignored here since this is not of interest to us. For example, using the first
table, the following MFE are obtained

N2t+1 = 2× N1tF1t
N1t + F1t

+N1t −
N1tF1t
N1t + F1t

= N1t +
N1tF1t
N1t + F1t

F2t+1 = F1t, (2)

where N2t+1 represents the number of N2 agents at time t + 1 expressed in
terms of N1t, the number of N1 agents at time t. The second table generates
different MFE

N1t+2 = (1− pd)N2t+1

F1t+2 = F2t+1. (3)

To obtain MFE for the system, equations (2) and (3) are combined, and sim-
plified by removing intermediate terms, i.e. N2, and F2, to yield an expression
of N at time t. We also simplify by collapsing the two time steps above into
one time step. The resulting MFE become

Nt+1 = (1− pd)Nt + (1− pd)
NtFt

Nt + Ft

Ft+1 = Ft, (4)

We can further simplify by noting that the amount of food doesn’t change
so that we can write Ft+1 = Ft = f . Substituting f for the F s in (4) we can
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simplify to have a single equation that describes the population:

Nt+1 = (1− pd)Nt + (1− pd)
Ntf

Nt + f
.

3. Model

The model considered in this section is inspired by the predator-prey mi-
croparasite model of Fenton and Perkins (2010) summarised earlier. Here we
give a description of the individual behaviour modelled and also the MFEs that
are derived from the models. The WSCCS description of the model can be
found in Fig. 3.

P1
def
= ppp.

√
: P2×N2 + (1− ppp).

√
: P2

I1
def
= pdi.

√
: 0 + (1− pdi).

√
: I2

P2
def
= 1.phag : 0 + 1.

√
: P1

I2
def
= 1.phag : I1× I1 + 1.

√
: I1

N2
def
= 1.

√
: P1

Popn
def
= P1{p} × I1{i}d{

√
}

Figure 3: Simple predator-prey type immunology model

Here we focus on illustrating the development and application of the process
algebra approach with reference to a highly simplified, generic parasite-immune
system interaction. This framework can readily be extended to incorporate
more realistic features and complexities seen in genuine host-parasite systems.
In our model there are two types of individual: I, representing immune cells,
and P , representing parasites, e.g. malaria or giardia. The model develops in
two separate stages which together form one “time step”. In the first stage of
the model the parasite cells proliferate, with probability ppp, dividing to give
rise to a new parasite cell, N , which is not able to be neutralised by the immune
response in the next stage of the model. At the same time the immune cells can
die, with probability pdi, or continue on to the next stage of the model. In the
second stage of the model parasite cells that come into contact with an immune
cell are phagocytosed. As a result of phagocytosis, parasite cells are removed
from the system and immune cells proliferate, becoming two cells in the next
iteration of the model. In addition, the new parasites, N , become P in the next
iteration of the model.

Over the two stages we have moved from a population featuring only I and
P , to a system consisting of these same types of individuals, but in different
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numbers. It is the mean of this change in the numbers of I and P that is
captured in our MFEs. The MFEs derived from this model, using the algorithm
of McCaig et al. [26] as described above, are:

Pt+1 = (1 + ppp)Pt −
Pt(1− pdi)It
Pt + (1− pdi)It

,

It+1 = (1− pdi)It +
Pt(1− pdi)It
Pt + (1− pdi)It

. (5)

In contrast to the three types of functional response used by Fenton and Perkins
(2010), which are all functions of P only, this model features a functional re-
sponse that is a function of both P and I:

f(P, I) =
Pt(1− pdi)

Pt + (1− pdi)It
. (6)

This is the ratio-dependent functional response, which is similar to those which
have derived before for within-host parasite dynamics by a quasi-steady-state
assumption [10, 11, 31] and has been more widely used in an ecological context
[1, 2, 3, 5, 6]. Here we have found this functional response emerging naturally
from the simple individual behaviour described in our process algebra model.

3.1. Analysis of the models

Our WSCCS model has the advantage over other approaches that it can
be studied either by performing simulations, or by producing time series of the
MFEs that describe the average behaviour. For this model we find that for many
sets of parameter values the total number of parasites grows exponentially, and
consequently stochastic simulations are very computationally expensive. For
this reason, the results described here were obtained by producing time series
of the MFEs. This illustrates one of the advantages of this approach; even in
situations where performing stochastic simulations of the model is impractical
(because of large numbers of individuals) we can easily determine the average
behaviour of the system, and be sure that it is a direct consequence of the
heterogeneous individual behaviours described.

The model presented here features only two parameters, both of which are
probabilities (ppp, the probability of parasite proliferation, and pdi, the proba-
bility of immune cell death), so it is possible to obtain results across the entire
range of the parameter space. Stability analysis showed that stability depends
on the initial ratio of ρ = I/P and whether I → 0 or P → 0 first. We therefore
produced time series of (5) across the parameter space, for small initial values
of I and P and for different values of the initial ratio ρ = I1/P1. The absolute
numbers of I1 and P1 are not important in terms of the qualitative results; the
shape of the curves in the resulting graphs are set purely by the ratio ρ. We
illustrate this in Fig. 4 by showing time series for ρ = 1 with different initial
conditions (P always initially equal to I), which shows that the speed of clear-
ance of the parasite is not affected by an increase in the initial infection load if
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the initial number of immune cells are increased by the same factor.

0 20 40 60 80 100

0
20
0

40
0

60
0

80
0

10
00

time

P

P(0)=I(0)=1
P(0)=I(0)=2
P(0)=I(0)=5
P(0)=I(0)=10

Figure 4: P with fixed ρ = 1 for different initial values of P = I: ppp = 0.8, pdi = 0.1

Across the parameter space we can classify several different types of dynami-
cal behaviour, though the range of different types of behaviour varies depending
on the ratio ρ. We present plots of the boundaries of the different types of be-
haviour for three different values of ρ (Figs. 5-7), with up to eight different types
of behaviour in the regions labelled as follows:

• A - A small and short-lived increase in the number of immune cells, fol-
lowed by decrease of I to 0, while the number of parasites is decreasing
for the whole of the duration studied (104 time steps).

• B - I and P both decrease from the beginning.

A and B represent the situation where an initial infection is swiftly re-
moved from the host by the immune response (P → 0).

• C - Both I and P increase initially but ultimately both tend to 0. This
represents the situation where the parasite becomes established, possibly
causing illness, but ultimately the immune response is able to clear it.

• D - I and P are both increasing for the entire duration studied.

• E - I is decaying from the beginning while P experiences unbounded
growth.

11



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ppp

pd
i

A
C

D

B H G

F E

Figure 5: Parameter space for ρ = 1

• F - I is decaying from the beginning while P experiences a small, short-
lived drop but ultimately experiences unbounded growth.

For most of E and F in all of the conditions considered here pdi > 0.5. This
means that immune cells are more likely to die than survive and possibly
proliferate, therefore the immune cells can never increase in number.

• G - P increases from the beginning while I experiences a small, short-lived
drop but ultimately experiences unbounded growth.

• H - Both I and P experience a small, short-lived drop but both ultimately
experience unlimited growth.

D, E, F, G and H represent the situation where the parasite overwhelm-
s the host’s immune system, ultimately leading to host death. Hence,
the diagonal line separating these regions from regions A-C represents the
threshold separating parasite persistence and growth from parasite eradi-
cation (effectively, it is the within-host equivalent to the R0=1 threshold
line inherent in standard between-host disease ecology, for parasite persis-
tence).

Fig. 5 is the parameter space for ρ = 1. Here all of the types of behaviour
described are possible in different areas of the parameter space.

For different values of the ratio ρ similar results are found, but with some
of the regions increased in size and some reduced or no longer present. For
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Figure 6: Parameter space for ρ = 0.01

instance Fig. 6 features the parameter space for ρ = 0.01. We see here that for
this small value of ρ (initially many more parasites than immune cells) regions
A and B, where the parasite is controlled from the beginning of the infection,
do not feature and P always increases initially.

Conversely we can consider the parameter space for ρ = 100 (Fig. 7). We
can see that for this large value of ρ (initially many more immune cells than
parasites, possibly reflecting the scenario of an existing immune memory to the
parasite) region C is not present, meaning that there is never an outbreak of
the disease that becomes established (P increases) but is ultimately controlled
by the immune system. Instead either the parasite kills the host (E, F and H)
or the immune response suppresses the parasite (B). The only situations where
P can increase is when ppp is large (the parasites proliferate rapidly) or where
pdi is large (immune response dies out before it can attack the parasite).

4. Conclusions

In this paper we have presented a predator-prey model of immune-mediated,
within-host parasite dynamics, developed using the process algebra WSCCS. We
have found that the mean field equations, which capture the average behaviour
of the model, feature a functional response term that does not simply depend on
the density or parasite or immune cells, but on their ratio. A similar functional
form has been deployed in ecological predator-prey models [5], and is similar
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to those found by other authors who have modelled general immune responses
with handling time [31], or T cell proliferation [12]. In these papers the authors
assume that parasite and immune cells interact like a substrate and enzymes
respectively in biochemical interactions and follow Michaelis-Menten kinetics.
They also use a quasi-steady-state assumption. This means that a number of
assumptions have to be made, including the random mixing of cells (mass ac-
tion), that there are initially a large number of parasite cells and that these
parasite cells reach equilibrium faster than new immune cells are formed. In
the approach presented here we also assume random mixing (although we could
relax that assumption in later models which the previously discussed approach-
es could not). The mean field assumptions hold when the populations of cells
are large, but we can determine what happens at small population densities by
carrying out stochastic simulations of the system. We do not have to make any
assumptions about the speed at which equilibrium is reached. The results pre-
sented here give support to the use of ratio-dependent interactions in an immune
system even for very simple assumptions about individual cell behaviour. Al-
though similar results might be gained using the quasi-steady-state assumption
the advantage that process algrebra gives is the ability to build more complex
models in the future, for example previous work has added time delays, spatial
factors and partioning of the population [9]. Process algebra also allows us to
use a mix of stochastic individual based simulations and mean field equations
in order to analyse the system under consideration.
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In the case presented here, by carrying out the analysis presented in 3.1
we can look at all of the possible dynamical behavior of this simple parasite-
immunity system. We see that the qualitative dynamics are unaffected by size
of the initial populations, with the shapes of plots of the time series determined
solely by the initial ratio of immune cells to parasites. Quantitatively, changing
the size of the initial population, while maintaining the ratio I/P (as in Fig. 4),
changes the size of both sub-populations for the entire duration studied, by the
same proportion.

Time series of the MFEs were produced for three different ratios of the
initial conditions across the entire parameter space. Depending on the initial
conditions the range of behaviour seen across the parameter space is different.
This might represent exposure to different doses of parasites (which changes P)
or previous exposure to the pathogen, or vaccination which would increase I.
For equal initial numbers of parasites and immune cells there is a wide range of
different types of behaviour from the immune cells immediately overwhelming
the parasite cells, to a short increase in parasite cells before they are controlled,
to parasite cells overwhelming the immune cells and growing exponentially. In
the situation where there are initially many more parasites than immune cells
(representing the situation where the host is exposed to a large dose of an
infection) the parasite load always grows initially, though for lower values of
both parameters the infection is ultimately cleared. This could correspond,
for instance, to the situation where a host is re-exposed to a known pathogen.
Secondary immunity developed during the initial exposure can be so effective
that the host does not become unwell. Conversely when there are initially many
more immune cells than parasites there is no region of parameter space in which
the parasite load initially increases but is ultimately controlled. If the parasite
ever becomes established it will grow exponentially, leading to host death. These
behaviours seem intuitively obvious for the simple type of infection presented
here but are very different to the sort of behaviour found in Fenton and Perkins
(2010). In particular they found cycles, from models which made use of Type 2
and Type 3 functional responses. For most types of viral or bacterial infection,
once an infection is cleared we would only see re-emergence of the infection if the
host is re-exposed, and often only if the secondary infection was with a different
strain of the parasite. This means that cycles are not a realistic behaviour for
the sort of simple infection being considered. Immune memory [34] means that
when re-infected with a known parasite there would initially be more immune
cells than parasites in our simple model. We therefore believe that the model
we have derived here is realistic for a broad range of infections.

We have already shown in previous work that process algebra can give us
useful insights into host-pathogen interactions [24, 25, 26, 27]. In this work pro-
cess algebra has shown an important insight into the interaction of the immune
system and a simple parasite. By describing simple interactions at the individu-
al level we obtain equations to describe the population that feature a functional
response which is similar to, and gives weight to other models of the immune
system [12, 31, 11]. It should be noted, however, that not all types of parasite,
nor all types of immunity, behave in the way described by the simple model
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presented here. The work presented here provides an essential proof of concept,
allowing subsequent work to explore the consequences, at the population level,
of introducing more complex rules at the individual level (e.g. antigenic varia-
tion of parasites or affinity maturation of B cell), where those population-level
consequences are unknown beforehand.

Hence, the work presented here has shown that process algebras are a promis-
ing approach for this sort of problem.

Appendix A. Syntax and Semantics of WSCCS

The possible WSCCS expressions are given by the following BNF grammar:

A ::= X | a :A | Σ{wi.Ai|i ∈ I} | A×B | AdL | Θ(A) | A[S] | X def
= A .

Here X ∈ Var , a set of process variables; a ∈ Act , an action group; wi ∈ W , a
set of weights; S a set of renaming functions, S : Act → Act such that S(

√
) =
√

and S(a) = S(a); action subsets A ⊆ Act with
√
∈ A; and arbitrary indexing

sets I. Actions form an abelian group with identity
√

and the inverse of action
a being a. Actions occur instantaneously and have no duration.

The informal interpretation of the operators is as follows:

• 0 a process which cannot proceed, representing deadlock ;

• X the process bound to the variable X ;

• a :A a process which can perform the action a becoming the process A ;

• Σ{wi.Ai|i ∈ I} the weighted choice between processes Ai , the weight of
Ai being wi . Considering a large number of repeated experiments of this
process, we expect to see Ai chosen with relative frequency wi/Σi∈Iwi .
Weights are generally positive natural numbers or reals, but may also
incorporate the special weight ω which is greater than all natural numbers.
This is used in priority and is written mωn where m,n ≥ 0. The binary
plus operator can be used in place of the indexed sum, i.e. writing Σ{11.a :
0, 22.b :0|i ∈ {1, 2}} as 1.a :0 + 2.b :0 ;

• A × B the synchronous parallel composition of A and B . At each stage
each process must perform an action with the composed process perform-
ing the composition (denoted #) of the individual actions, e.g. a :A× b :B
yields a#b : (A × B). This is a powerful operator: models are construct-
ed by describing simple individuals and composing a number of those in
parallel. McCaig [24] introduced an extended notation A{n} which is
syntactic sugar for n instances of process A in parallel, where n ∈ N ;

• AdL a process which can only perform actions in the group L . This
operator is used to enforce communication on actions b /∈ L. Two processes
in parallel may communicate when one carries out an action and the other
carries out the matching co-action, e.g. eat and eat . Communication can
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a:A
a−→A

∑
{wi.Ai|i∈I}

wi7−→Ai

A
a−→A′ B

b−→B′

A×Ba#b−→A′×B′

A
w7−→A′ B

v7−→B′

A×B wv7−→A′×B′

A
a−→A′ B

w7−→B′

A×B w7−→A×B′
A

w7−→A′ B
a−→B′

A×B w7−→A′×B

A
a−→A′ a∈L
doesL(A)

A
w7−→A′ doesL(A′)

doesL(A)

A
a−→A′ a∈L

AdL a−→A′dL
A

w7−→A′ doesL(A′)

AdL w7−→A′dL

A
a−→A′

A[S]
S(a)−→A′[S]

A
w7−→A′

A[S]
w7−→A′[S]

A
a−→A′ X

def
=A

X
a−→A′

A
w7−→A′ X

def
=A

X
w7−→A′

A
a−→A′

Θ(A)
a−→Θ(A′)

A
nωi
7−→A′@(j>i).A

mωj
7−→A′′

Θ(A)
n7−→Θ(A′)

Table A.1: Operational rules for WSCCS

be used to model passing of information from one process to another, or
to coordinate activity. Such communication is strictly two-way; that is,
only two processes may interact on this action ;

• Θ(A) represents taking the prioritised parts of the process A only (we do
not use prioritiased communication in this paper, but it is included for
completeness) ;

• A[S] represents A relabelled by the function S (we do not use relabelling
in this paper, but it is included for completeness) ;

• X def
= A represents binding the process variable X to the expression A .

The semantics of WSCCS is transition based, defining the actions that a
process can perform and the weight with which a state can be reached. The
operational rules of WSCCS, presented in Table A.1, formalise the descriptions
above. In particular note the two different arrows which feature in the table:
a→ represents a transition associated with the action a ; and

w7−→ represents a
transition associated with a weight w . The auxiliary predicate doesL(A) , which
denotes the ability of A to perform L after zero or more probabilistic actions,
is well defined since only finitely branching choice expressions are allowed.
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Highlights 
• Population level dynamics were derived from the interactions of parasite and immune cells. 
• Interactions between parasites (P) and immune cells (I) should be of ratio‐dependent form   
• This is in contrast to previous models with commonly used predator‐prey functional responses. 
• The derived model gives realistic population dynamics. 

 

 




