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ABSTRACT 

Hemocyanins (Hcs) and phenoloxidases (POs) are both members of the type-3 copper 
protein family, possessing di-cupric active sites which facilitate the binding of dioxygen. 
While Hcs and POs share a high degree of sequence homology, Hcs have been associated 
traditionally with oxygen transport whereas POs are catalytic proteins with a role in 
innate immunity. Evidence gathered in recent years details numerous immune 
functions for Hc, including an inducible PO activity. Unlike the pro-phenoloxidase 
activation cascade in arthropods, the endogenous mechanism(s) involved in the 
conversion of Hc into an immune enzyme is lacking in detail.  

The overall aim of this research was to characterise the physiological circumstances in 
which Hc is converted into a PO-like enzyme during immune challenge. A series of 
biochemical, biophysical and cellular techniques were used to assess the ability of 
phospholipid liposomes to mimic the well-characterised induction of PO activity in Hc 
by SDS micelles. Incubation of Hc purified from Limulus polyphemus, in the presence of 
phosphatidylserine (PS) liposomes, yielded ~ 90% of the PO activity observed upon 
incubation of Hc with the non-physiological activator, SDS. Phospholipid–induced PO 
activity in Hc was accompanied by secondary and tertiary structural changes similar to 
those observed in the presence of SDS. Subsequent analysis revealed that electrostatic 
interactions appear to be important in the PS-Hc activation complex.  

In vivo, PS-Hc interactions are assumed to be limited in quiescent cells. However, 
amebocytes undergoing apoptosis redistribute PS onto the outer leaflet of the plasma 
membrane, resulting in the potential for increased Hc-PS interactions. In the absence of 
a reliable culturing technique for L. polyphemus amebocytes, in vitro conditions were 
optimised for the short term maintenance of this labile cell type. Amebocytes retained 
viability and functionality in a medium that mimicked most-closely, the biochemical 
properties of L. polyphemus hemolymph. When presented with a fungal, bacterial or 
synthetic challenge, ~9% of amebocytes in vitro were found to be phagocytically active. 
Target internalisation was confirmed via the use of fluorescent quenchers and 
membrane probes. Within 4 hours of target internalisation, amebocytes underwent 
apoptosis, characterised by the loss of plasma and mitochondrial membrane potential, 
increased caspase-3 activity and extracellularisation of PS. Phagocytosis-induced cell 
death led to a proportional increase in the level of Hc-derived PO activity, suggesting 
that Hc may be interacting with PS present on terminal amebocyte membranes.  

The PO activity of Hc was investigated further in order to address an economically 
important issue; hyperpigmentation in commercial shellfish. While PO enzymes are 
thought to be the cause of hyperpigmentation in Nephrops norvegicus, evidence 
presented here suggests that cellular PO is inactivated after freeze-thawing, while 
extracellular Hc retains stability and displays a heightened level of inducible PO activity 
under similar treatments. Known PO inhibitors were used successfully to reduce Hc-
derived PO activity, with inhibitors assumed to bind Hc in a manner similar to PO-
inhibitor complexes. 

Structural and functional studies of hemocyanins and immune cells presented 
here provide new insights into the interactions of hemocyanin-activator 
complexes in invertebrates. 
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Chapter 1: Introduction  

 

 

 

 

 

 

 

1.1 Background and thesis overview 

The horseshoe crab, Limulus polyphemus, and the shellfish, Nephrops norvegicus, are 

members of the most diverse and successful phylum on earth, the arthropods. 

Predictions of arthropod species richness detail the potential existence of up to 30 

million species (Mora et al., 2011). Despite constant exposure to harsh environmental 

conditions and a battery of pathogenic and parasitic organisms, arthropods inhabit 

almost every terrestrial and maritime niche on the planet. Over the past number of 

decades, the intricacies of arthropod immunity have been investigated; for which, the 

2011 Nobel Prize in physiology or medicine was awarded to Jules A. Hoffmann and 

Bruce A. Beutler for their discoveries and subsequent work on Toll receptor signalling 

(http://www.nobelprize.org).  

Arthropods possess a single line of inducible defence, namely innate immunity. In 

contrast to mammals and fish (vertebrates), arthropods (invertebrates) lack the 

biological machinery necessary to synthesise unique clones of lymphocytes that are 
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specialised to identify and proliferate in response to the presence of particular antigenic 

compounds. Nonetheless, this archaic, yet highly complex biological defence system can 

adequately eliminate infection (Rowley and Powell, 2007). Typically, invertebrate 

innate immunity consists of three lines of defence. The first, being of physical nature, is 

the sclerotised cuticle (functionally equivalent to mammalian skin) which prevents 

invasion of foreign entities into the hemocoel (body cavity). Once the cuticle has been 

breached, cellular and humoral defences constitutively present in the hemolymph 

(functionally equivalent to mammalian blood) work in synergy to combat sepsis, 

mycosis, parasitism and viremia (reviewed by Iwanaga and Lee, 2005).  

Numerous immune-related signal transduction and proteolytic cascades co-operate to 

combat noxious invaders (reviewed by Cerenius et al., 2010). A cascade of particular 

importance, involved both in development and immunity, is the prophenoloxidase 

(proPO) activation cascade. In this, activated phenoloxidase (PO) enzymes play essential 

roles in the encapsulation of microbes, the generation of cytotoxic products and 

contribute to the formation of insoluble gel-like clots during wound healing (Cerenius et 

al., 2008).  

PO enzymes share many sequence and functional similarities with another type-3 

copper protein, hemocyanin (Hc) (Burmester, 2001). Hc, a protein considered 

traditionally to be involved in respiration and homeostasis in invertebrates has been 

characterised recently to possess numerous immune functions. Of these immune 

functions, the ability of Hc to be converted into a phenoloxidase (PO)-like enzyme has 

received most attention. Activation of PO enzymes and their respective functions in vivo 

have been well characterised in crustacean and insect systems; however, the 

endogenous events leading to the conversion of Hc into a PO-like enzyme are to a 
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greater extent unknown. Therefore, the overall aim of this thesis was to characterise 

the physiological circumstances in which the respiratory protein Hc, is converted 

into a PO-like enzyme, in vivo. To this end, the presented thesis encompasses six core 

objectives:  

1) to test the ability of natural phospholipids to induce PO activity in Hc 

2) to characterise the structural changes associated with the induction of PO 

activity in Hc by natural activator(s) 

3) to isolate invertebrate immune cells and maintain them in vitro 

4) to monitor phagocytic activity and apoptosis of invertebrate immune cells  

during immune challenge 

5) to monitor Hc-derived PO activity in the presence of quiescent and active 

immune cells 

6) to explore the role of Hc-derived PO in hyperpigmentation of shellfish 

Unlike crustaceans, which possess both Hc and PO, chelicerates such as L.  polyphemus 

(Fig. 1.1 A) contains Hc only, therefore, any PO activity detected is assumed to be 

derived from Hc alone. L. polyphemus proved to be an ideal system to address objectives 

1 to 5 of the presented thesis. As Hc is known to display PO-like activity, the 

involvement of Hc in the unwanted pigmentation of commercial shellfish has been 

proposed in recent years. Therefore, to address an economically important issue, 

objective 6, Hc was purified from the langoustine, N. norvegicus (Fig. 1.1 B), and 

investigated for its contribution to the occurrence of hyperpigmentation in fresh-caught 

and farmed shellfish.  
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Figure 1.1 Model organisms used for research. A) Dorsal (top image) and ventral 

(bottom image) views of the Atlantic horseshoe crab, Limulus polyphemus. B) The 

Norway lobster, Nephrops norvegicus.  
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1.2 Innate immune responses of arthropods 

1.2.1 Physical barrier 

Invertebrates (including crustaceans, insects and some chelicerates) possess a chitinous 

external barrier consisting of three layers: a waxy epicuticle, an exocuticle and an 

endocuticle. Beneath the endocuticle, an epithelial layer which is in contact with the 

haemocoel secretes AMPs in response to cuticular damage whilst simultaneously a 

clotting response ensues. The sclerotised exoskeleton of horseshoe crabs consists of a 

series of hypodermal glands that secrete a cytolytic glycoprotein complex which 

prevents the attachment and colonisation by nocuous epibionts (Harrington et al., 2008, 

Stagner and Redmond, 1975). 

Insects possess many mechanical barriers, including the chitin lining of the tracheal 

system and the peritrophic matrix of the mid-gut lumen (Billingsley and Lehane, 1996). 

The fruit fly D.  melanogaster possesses an enzyme complex in their intestine, known as 

Duox (EC.1.11.1.-). Duox is analogous to the NADPH oxidase (EC.1.6.3.1) complex in 

mammals. In D. melanogaster, the Duox complex produces reactive oxygen species 

(ROS) in the gut, in response to the presence of invasive microorganisms (Ferrandon et 

al., 2007).  

1.2.2 Sensing, recognition and immune signalling pathways  

Invertebrates lack adaptive immunity, however, in order to withstand an infection, they 

have retained the ability to differentiate between classes of microorganisms via 

pathogen recognition receptors (PRRs) and respond accordingly (Lavine and Strand, 

2002). PRRs are constitutively secreted into the hemolymph and are expressed on the 

hemocyte cell surface. The most studied PRRs include peptidoglycan recognition 

proteins (PGRP), Gram-negative binding proteins (GNBP), hemolin (a member of the 
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immunoglobulin (Ig) superfamily) and an abundance of insect, crustacean and 

horseshoe crab immune-lectins (examples: tachylectins 1 to 5, limulin and 

carcinoscorpin) (Kanost et al., 2004, Iwanaga, 2002, Kim et al., 2000b). PRRs function by 

binding to differential sugar moieties found on microbes, collectively known as 

pathogen associated molecular patterns (PAMPs): lipopolysaccharide (LPS) from Gram-

negative bacteria, lipoteichoic acid (LTA) from Gram-positive bacteria, β-1, 3-glucan and 

mannan from fungi, laminarin and viral RNA (Uvell and Engstrom, 2007). Opsonisation 

of foreign invaders in the hemolymph allows cell derived PRRs to bind to immobilised 

cells and activate the appropriate immune defence. Hemolin and immunlectins such as 

IML-1and IML-2 (originally isolated from Bombyx mori) recognise and bind to the 

surface of microbes and aggregate them (Koizumi et al., 1999). Cellular PRRs have been 

well characterised due to extensive research involving the insect model D. melanogaster 

(Silverman et al., 2009) and the availability of its fully sequenced genome (Adams et al., 

2000).  

The Toll receptor (first identified in D. melanogaster; Lemaitre et al., 1996) is 

considered a cellular PRR, even though it is activated via an extracellular ligand known 

as Spaetzle. Opsonised Gram-positive bacteria and fungi are recognised by the ligand 

Spaetzle. Spaetzle binds to the Toll receptor, resulting in the oligomerization of a 

complex that coordinates various signal transduction cascades, the expression, 

synthesis and release of AMPs, and the activation/regulation of pro-PO (Cerenius et al., 

2010; section 1.3.4). The Toll pathway is involved in immune recognition and plays a 

vital role in the development and homeostasis of an organism (Hoffmann, 2003; De 

Gregorio, 2001).  
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A Drosophila Toll-like receptor has been identified in horseshoe crabs (Inamori et al., 

2004), shrimp (Li and Xiang, 2012) and other invertebrates. Analysis reveals that 

horseshoe crab Toll-like receptors maybe involved in restoring the granular content of 

amebocytes after exocytosis, it is postulated also, that coagulogen could act as a Toll-like 

ligand, given its high level of structural similarity with Spaetzle (Kurata et al., 2006). 

Gram-negative bacteria are recognised by PGRPs leading to the activation of the 

immune deficiency (Imd) pathway. The Imd receptor initiates two cascades that result 

in the expression and release of AMPs. The first, involves the activation of a 

transforming growth factor-β kinase (dTAK1) which phosphorylates the cytosolic IKK 

complex. Simultaneously, a second cascade consisting of a hetero-trimeric complex 

(FADD/DREDD/Imd) also associates with the IKK complex (Leulier et al., 2000). 

Recently, dTAK1 has been observed to activate a third signal transduction cascade 

known as the Jun-N-terminal Kinase (JNK) pathway. The JNK pathway activates early 

response genes involved in wound repair and has also been associated with cell rupture 

and the release of PO from crystal cells in insects (Bilda et al., 2007; Tanji and Tony-Ip, 

2005).  

There is a fourth signal transduction cascade known as the JAK-STAT pathway. The 

stimulus of this pathway remains unclear; however, some evidence suggests that this 

pathway is involved in anti-viral defence in Drosophila and shrimp (Dostert et al., 2005; 

Li and Xiang, 2012). Furthermore, activation of this pathway is linked to development 

and may also be responsible for inducing the production of molecules analogous to 

mammalian cytokines that regulate hemocyte proliferation, differentiation and 

phagocytic behaviour (Lemaitre and Hoffmann, 2007; Agaisse and Perrimon, 2004; 

Tzou et al., 2002; Hong and Dearolf, 2001).  
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1.2.3 Coagulation of arthropod hemolymph  
 
Coagulation in arthropods has been studied extensively, however, most information 

available has focussed on crustaceans and horseshoe crabs. Preventing the loss of vital 

body fluid is essential to an organism’s survival. Damage to an insect’s integument, 

whether it is created by a pathogen, parasite or herbivore, will initiate a series of 

reactions collectively known as the hemostatic system; this will function alongside the 

immune response in order to repair the wound (Theopold et al., 2002).  

A number of cascades contribute to hemostasis in arthropods. The polymerisation of 

lipophorins and vitellogenein-like proteins is achieved via the action of a calcium 

dependent transglutaminase (E.C. 2.3.2.13) (Fig. 1.2) (Cerenius et al., 2010). These 

clotting proteins contain a cysteine rich domain homologous to the mammalian blood 

clotting proteins of Von Willebrand factor (Vilmos and Kurucz, 1998). Insects and 

crustaceans are alike in their ability to form hemolymph-clots. In both cases, 

transglutaminase is essential for clot formation. Conversely, horseshoe crab hemolymph 

clotting involves a well-characterised proteolytic cascade; in this organism, 

transglutaminase catalyses the cross-linking and stabilisation of existing clots (Cerenius 

et al., 2010). Wang et al., (2010) have demonstrated a novel function for 

transglutaminase in Drosophila (and humans). During bacterial invasion, micro-clots 

form (similar to nodules) and act to sequester bacteria in the hemolymph, 

transglutaminase anchors the bacterium to the clot matrix allowing AMPs and 

phagocytes to kill them.   

Arguably, the most well-known invertebrate clotting cascade is that of the horseshoe 

crab, involving the release of clotting factors via the mass exocytosis of granules from 

amebocytes (Iwanaga and Lee, 2005). This phenomenon has been exploited to produce
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the most sensitive test for microbial contamination in biomedicine, the Limulus 

amebocyte lysate (LAL) test (Ding and Ho, 2010).  

In vivo, horseshoe crab amebocytes detect LPS (endotoxin) via a G-protein dependent 

exocytic pathway which depends entirely on the proteolytic activity of the serine 

protease, factor C (Koshiba et al., 2007). The exocytosis of the cytosolic granule-derived 

content into the surrounding plasma provides an endogenous feedback mechanism in 

which the AMP, tachyplesin, dramatically amplifies amebocyte sensitivity to LPS 

(Iwanaga, 2002, Kawabata et al., 2009, Tagawa et al., 2012). Factor C (amongst other 

effectors) is released and is autocatalytically activated upon binding to the lipid A 

portion of bacterial LPS. Once factor C is activated it then subsequently activates factor 

B. Activated factor B converts the pro-clotting enzyme into the fully functional clotting 

enzyme. Clotting enzymes, in turn, promote the proteolytic conversion of coagulogen 

into coagulin, which aggregates spontaneously into an impermeable clot. Alternatively, 

factor G is released and directly cleaves the pro-clotting enzyme into the clotting 

enzyme in response to β-1, 3-glucans present on fungi (Kawabata et al., 2009) (Fig. 1.2). 

In order to ensure the newly formed clot is adequate to plug a wound, melanin is used 

to coat the clot (Fig. 1.2). Evidence suggests that the clotting cascade and the pro-PO 

cascade work synchronously during an immune response in order to deter an infection 

and repair wounds (Li et al., 2002; Nagai and Kawabata, 2000; Cerenius et al., 2010).  

1.2.4 Complement-like proteins in invertebrates 

In vertebrates, the complement cascade (also known as the hemolytic cascade) is 

traditionally associated with clot formation (thrombosis). A C3-convertase complex 

(activated by three convergent pathways: classical, lectin and alternative) cleaves C3, 

exposing an intramolecular thioester bond that interacts with a pathogen (Ricklin et al., 
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2010). The association of C3 with pathogens serves many purposes, including: marking 

pathogens for phagocytosis-mediated clearance and promoting the formation of a 

membrane attack complex that ultimately leads to cell rupture (Nonaka, 2011). The 

majority of known proteases involved in mammalian complement belong to either the 

complement factor B (Bf) family or the mannose binding lectin associated serine 

proteases (MASP) or C3 proteins. C3, Bf and MASP homologues have been identified in 

almost all invertebrates studied thus far (reviewed by Cerenius et al., 2010). 

Zhu et al., (2005) first identified complement-like proteins in the horseshoe crab C. 

rotundicauda. Proteins akin to Bf (CrBf/C2) and C3 (CrC3) were recorded having broad 

microbial binding properties. Subsequently, Ariki et al., (2008) and Tagawa et al., 

(2012) catalogued numerous complement-like  proteins present in the hemolymph of T. 

tridentatus: TtC3, TtC2/Bf1 and TtC2/Bf2. Factor C, in the presence of LPS, acts as a 

TtC3 convertase, allowing TtC3 to recruit TtC3b deposition on Gram-negative bacterial 

membranes. It is thought that in order to opsonise Gram-positive bacteria and fungi, 

plasma and amebocyte-derived lectins such as C-reactive protein and/or tachylectin-1, 

form a complex with a second C3 convertase and recruit TtC2/Bf1 and TtC2/Bf2 

deposition onto the respective microbial membranes (Tagawa et al., 2012). C3 proteins 

have been identified in a variety of invertebrates, including: horseshoe crabs, insects, 

sea squirts and sea urchins to name but a few (reviewed by Nonaka, 2011). However, 

greater understanding is needed to fully characterise complement-mediated immunity 

in invertebrates.  

Footnote 2; This stylised diagram is constructed from information 

published; Kawabata et al. (2009), Iwanaga (2002) and Kurata et 

al. (2006) 
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Figure 1.2 Schematic representation of wound healing/clot formation in arthropods. Cuticular damage and microbial infection activate 
the following cascades2; A) amebocyte-derived clotting cascade (basis for LAL) in horseshoe crabs, B) plasma-derived clotting proteins 
(in crustaceans and insects) and C) Phenoloxidase/Hemocyanin-derived phenoloxidase activity.  
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1.2.5 Arthropod immune cells 

The collective name given to an immune cell found in the predominance of arthropod 

species is the hemocyte. The site of hemocyte generation appears to be species specific; 

haematopoiesis occurs in the cephalothorax of crustaceans and lymphoid glands in 

dipteran insects (reviewed by Smith, 2010). Amebocyte synthesis in horseshoe crabs is 

unknown; evidence suggests the location to be in the region of the gill flaps, or within 

connective tissue (Coursey et al., 2003).  

Classification of hemocytes varies substantially in the literature. In lepidopteran insects 

(such as Galleria mellonella) six different classes of hemocytes have been recognised: 

prohemocytes, plasmatocytes, granulocytes, spherulocytes, coagulaocytes and 

oenocytoids (Price and Ratcliffe, 1974, Kavanagh and Reeves, 2004). A seventh class of 

lepidopteron hemocyte has been characterised. Known as the hyper-spreading or 

hyperphagocytic hemocyte, this cell only appears in the haemocoel (body cavity) of 

Manduca sexta larvae when a microbial infection reaches a critical level (Dean et al., 

2004a, Dean et al., 2004b).  

In Dipteran insects (such as D. melanogaster) there are three immune cell lineages: 

lamellocytes, plasmatocytes and crystal cells (or oenocytoids). These cells are involved 

in phagocytosis, encapsulation and PO release, respectively (Meister, 2004). 

Interestingly, a new hemocyte lineage known as pseudopodocytes was discovered in 

Drosophila affinis and Drosophila obscura (which lack lamellocytes) (Harvard et al., 

2012). Evidence suggests that pseudopodocytes are essential for encapsulation in the 

aforementioned Drosophila species. In crustaceans, there are typically three mature 

hemocytes: granulocytes, semi-granulocytes, and hyalinocytes, and 

immature/undifferentiated prohemocytes (Smith, 2010; Roulston and Smith, 2011).  
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Often referred to as a ‘living fossil’, L. polyphemus is widely considered to possess a 

single immune cell type, the granular amebocyte. Other cell types observed in HSC 

hemolymph include cyanoblasts (Fahrenbach, 1970) and plasmatocytes (Jakobsen and 

Suhr-Jessen, 1990, Suhr-Jessen et al., 1989). According to Jakobsen and Suhr-Jessen 

(1990), the Japanese horseshoe crab Tachypleus tridentatus contains two different types 

of amebocyte: granulocytes and plasmatocytes. The latter constitutes less than one 

percent of the total blood cell population found in the horseshoe crab. The function of 

these amebocytic plasmatocytes is unknown, also, it is unclear whether plasmatocytes 

are simply granular amebocytes that have undergone spontaneous exocytosis of 

cytosolic content, or if they are pro-amebocytes. In almost all arthropods studied, a 

series of immune cells carry out specific functions during immune assault (Smith, 2010), 

however, horseshoe crab amebocytes are known to carry out multiple functions: the 

production and release of > 25 immune effectors from cytoplasmic stored granules 

(Iwanaga 2002), phagocytic behaviour (Armstrong and Levin, 1979; Gupta and 

Campenot, 1996; chapter 4) and hemostasis properties (Levin, 1988). 

 

1.2.5.1 Phagocytosis 

Phagocytosis is a process carried out by specialised cells in the blood of mammals and 

the hemolymph of invertebrates. Hemocytes can phagocytose biotic (bacteria, yeast) 

and abiotic targets (latex microspheres) (Jiravanichpaisal et al., 2006). In contrast to 

many invertebrates studied, the process of phagocytosis in L. polyphemus is poorly 

characterised (this topic is addressed in chapter 4). Phagocytosis involves the 

entrapment and internalisation of pathogens into a vacuole known as a phagosome 

(either via opsonic or direct receptor-target interactions). Thorough investigations of 
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the proteome of murine macrophage phagosomes were carried out by Garin et al., 

(2001) and Goyette et al., (2012), leading to an enhanced understanding and 

appreciation of the structure, complexity, maturation process and functions of 

phagosomes. The phagosome fuses with cytosolic granules (containing lytic enzymes: 

lysozyme and cathepsin) to form an intracellular acidic phagolysosome that in 

cooperation with reactive nitrogen and oxygen intermediates kills the pathogen (Lavine 

and Strand, 2002). Phagocytosis carried out by invertebrate immune cells has 

demonstrated mechanistic similarities with that of mammalian leukocytes, notably 

neutrophils (Banville et al., 2011). Cytosolic proteins in the arthropod hemocytes 

(homologous to mammalian neutrophil proteins) translocate to the phagolysosome 

membrane forming an NADPH oxidase complex (Fig. 1.3). This complex produces 

reactive nitrogen and oxygen species (RNS, ROS) and in co-ordination with the acidic 

granules, results in the destruction of engulfed pathogens (Renwick et al., 2007, Bergin 

et al., 2005).  

 

1.2.5.2 Encapsulation and nodulation  

During sepsis or mycosis, populations of microorganisms will be opsonised via 

hemolymph and hemocyte derived immune lectins and subsequently immobilised. 

These immobilised microbes can either be nodulated or encapsulated. Typically, a 

nodule is formed when a population of microorganisms are trapped in a hemocyte-

derived extracellular structure and are usually found attached to internal organs, such 

as the fat-body/hepatopancreas (Jiravanichpaisal et al., 2006). A nodule consists of an 

amalgamation of viable and non-viable hemocytes, non-self particles and melanised 

debris (Stanley-Samuelson, 1991). Miller et al., (1994) demonstrated that microbial 
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populations present in the hemolymph of M. sexta larvae lead to the biosynthesis of 

eicosanoids, resulting in the hemocyte undergoing a conformational change allowing 

them to adhere to microorganisms, thus facilitating nodule formation.  

When an infection is caused by a parasite (such as a nematode or wasp egg) rather than 

a microorganism, hemocytes are unable to phagocytose the parasite due to its size, 

therefore, the parasite is encapsulated (Lavine and Strand, 2002; Strand 2008). Upon 

recognition of a parasitoid, free floating granulocytes will adhere to the parasitoid and 

release plasmatocyte spreading proteins that attract plasmatocytes to the site of 

infection. Recruited plasmatocytes secrete cytoplasmic stored adhesion molecules onto 

their outer membrane surface resulting in multiple layers of hemocytes attaching to the 

parasitoid (Strand and Clark, 1999). Finally a monolayer of granulocytes attach and 

apoptose on the periphery, thus ending encapsulation. Asphyxiation, production of ROS, 

AMP release and deposition of melanin collectively lead to the destruction of the 

encapsulated intruder (Lavine and Strand, 2002; Gillespie et al., 1997). The processes of 

encapsulation and nodulation both lead to the formation of a hemocyte-like mesh, 

which is ultimately melanised by PO enzymes (reviewed by Cerenius and Soderhall, 

2004; Jiravanichpaisal et al., 2006) 

Hemocytes can function individually (phagocytosis) or co-operatively (encapsulation, 

nodulation and cell signalling) to fight infections.  
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Figure 1.3 Schematic representation of microbial phagocytosis. A) An opsonised 

microbe is internalised into a phagosome.  Microbicidal granules fuse to form a 

phagolysosome and the NADPH oxidase complex is activated. B) Detailed view of the 

NADPH oxidase complex and the components involved in respiratory burst. NADPH 

oxidase accepts electrons from NADPH and reduces oxygen to O2- (superoxide). 

Myeloperoxidase, in the presence of chlorine, uses H2O2 to form hypochlorous acid 

(HOCl). Superoxide can interact with nitric oxide (NO-), yielding peroxynitrite (ONOO-). 

Hydroxyl radicals (.OH) can be formed through various reactions. This figure was 

adapted from El-Benna et al. (2008) and Kavanagh and Reeves (2004). 
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1.2.6 Humoral defences; antimicrobial peptides 

Arthropods do not possess antibodies; however, they are capable of synthesising a 

plethora of proteins that confer a degree of non-specific immunity against many 

pathogenic and parasitic organisms (Moret and Siva-jothy, 2003; Faulhaber and Karp, 

1992). AMP synthesis is the hallmark of the humoral immune response. AMPs are 

synthesised in response to microbial invasion and are secreted by hemocytes, barrier 

epithelia, the fat body/hepatopancreas and the reproductive organs of arthropods 

(Nehme et al., 2007). Melanin synthesis, wound healing and proPO activation (see 

section 1.3.4) are considered semi-humoral responses as they can be activated via 

constitutively expressed PRRs in the hemolymph. Subsets of AMPs show preferential 

activity against particular microorganisms (Lemaitre et al., 1997). AMPs can be divided 

into subgroups based on their amino acid composition, molecular structure and mode of 

action. Not only do AMPs form membranous pores on microbes, they can translocate 

intracellularly and inhibit cell wall, nucleic acid and protein synthesis along with the 

disruption of cytoplasmic membrane integrity (Brogden, 2005). Individual organisms 

possess species-specific families of AMPs; for example, the horseshoe crab synthesises a 

series of peptides known as tachyplesins (Kawabata et al., 2009), shrimp produce 

penaeidins (Destoumieux et al., 1997) and the European honey bee Apis mellifera 

produces specific AMPs known as jelleines, found only in royal jelly (Fontana et al., 

2004).  

Research has focussed predominantly on the expression of AMPs in response to 

bacterial and fungal infections. Fungi present in the hemocoel elicit the expression of 

drosomycin and metchniokwins in insects and polyphemusins (amongst others) in 

horseshoe crabs (Kurata et al., 2006). Gram-positive bacteria stimulate the expression 

of defensin and Gram-negative bacteria induce the expression of diptericin, drosocins 
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(in insects) and Factor D (in horseshoe crabs) (Hoffmann, 2003; Ohta et al., 1992).  Not 

only are AMPs synthesised dependent on which microbe is present, research conducted 

by Mowlds et al., (2010) demonstrated that AMP expression is influenced by the 

pathogen load, and not an all or nothing response.  

Numerous enzymes are also synthesised to fight infection. For example, expression and 

activity of lysozyme has been shown to preferentially increase in the presence of a 

parasite, in contrast to expression levels analysed during a yeast or bacterial infection 

(Roxström-Lindquist et al., 2004). Recent work suggests that the release of AMPs is the 

last line of defence against infection. In insects, AMP synthesis is not induced until up to 

99.5% of bacteria have been removed from the hemolymph, suggesting that AMPs 

function to kill microbes that may threaten to cause secondary infections (Haine et al., 

2008) 

1.2.7 Cell death and immunity 

It is now well known that cell death is essential for immunomodulation, both in 

mammals and invertebrates (Sokolova, 2009). Depending on the circumstances, 

immune cell death can be achieved by pathogens, extracellular death cues, or self-

induced defence mechanisms. Hemocytes in insects (oenocytoids) and crustaceans 

(semi-granular) and vibratile cells in echinoderms, release immune effectors via cell 

rupture/exocytosis, and undergo cell death in order to facilitate clot formation and 

pathogen encapsulation/nodulation (Smith, 2010; Sokolova, 2009; Bilda et al., 2007; 

Jiravanichpaisal et al., 2006). The two most well-known types of cell death are apoptosis 

and necrosis. Apoptosis and necrosis are considered two extremes of a continuum, 

because of this, numerous ‘novel’ cell death processes have been established recently; 
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Necroptosis (or programmed necrosis) and Autophagy (cellular recycling) are some 

examples, but will not be discussed further (Kanduc et al., 2002; Remijsen et al., 2011).  

The term apoptosis was first introduced by Kerr et al., (1972).  Apoptosis is considered 

a ‘silent’ pathway that serves to deter the systemic spread of pathogens, while avoiding 

pro-inflammatory responses. Apoptosis is an energy dependent, tightly regulated 

process that compartmentalises cytosolic components into membranous apoptotic 

bodies (micro-vesicles), preventing the release of cytotoxic and damaging substances 

into the surrounding environment (Elmore, 2007; Feig and Peter, 2007). Typical 

characteristics of a cell undergoing apoptosis include: cell shrinkage (pyknosis), the 

extracellularisation of PS on the plasma membrane, DNA fragmentation (karyorrhexis), 

vacuolisation and membrane blebbing (or blistering) (Kroemer et al., 2009). There exist 

a number of different apoptotic pathways that are initiated dependent on internal 

(intrinsic) or external (extrinsic) stimuli, such as cellular damage or death signals, 

respectively. A family of proteases, known as caspases, are involved in almost all 

apoptotic pathways; activated caspases engage in signal transduction, de-construction 

of the cytoskeleton and membrane packaging (Hengartner 1996, 2000; Feig and Peter, 

2007).  

Necrotic cell death results in the uncontrolled dissemination of harmful, pro-

inflammatory molecules associated with severe stress. Necrosis is an energy 

independent process, categorised by an over-production of ROS, cell swelling (oncosis) 

and rupture of the plasma membrane (Kroemer et al., 2009). Apoptosis and necrosis 

have been reported in a variety of invertebrate species, notably in shrimp, possessing 

homologues of proteins involved in many aspects of cell death regulation (Smith, 2010).  
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In 2004, Brinkmann et al. described a novel form of cell death, known as NETosis 

(neutrophil extracellular traps). The authors observed neutrophils releasing 

‘microbicidal nets’ consisting of a de-condensed nuclear chromatin mesh, histones and 

AMPs that function to entrap and kill bacteria. This cell death phenomenon is commonly 

known as ETosis as it has been characterised in numerous cell types (e.g. mast cells) 

and organisms (e.g. crustaceans/insects), not just mammalian neutrophils (Remijsen et 

al., 2011; Smith et al., 2010; Robb et al., 2012). ETosis does not display stereotypical 

signs of apoptotic or necrotic cells, clearly distinguishing this process as an alternative 

cell fate, involved in innate immune defence (Remijsen et al., 2011).  

1.3 Immune-functions of an ancient respiratory protein, Hemocyanin 

 

1.3.1 Members of the Type-3 copper protein family 

Both arthropod and mollusc Hcs belong to the family of type-3 copper proteins which 

also include POs, insect hexamerins and cryptocyanins (Burmester, 1999; Terwilliger et 

al., 1999). PO commonly refers to both tyrosinases (EC 1.14.18.1) and catecholoxidases 

(EC 1.10.3.1), while the former can generate reactive quinonoids from the ortho-

hydroxylation of monophenols into o-diphenols and their subsequent oxidation into o-

quinones (Fig. 1.4), catecholoxidases only perform the oxidation step. Although Hcs and 

POs differ across all structural levels, their respective active sites share high levels of 

sequence homology. Two copper atoms, CuA and CuB, each coordinated by three highly 

conserved histidine residues, permit the binding of dioxygen. Crystal structures of 

bacterial, fungal, plant and insect POs all display similar di-copper centres with those of 

arthropod and mollusc Hcs (Fig. 1.5). Like most POs studied, Hcs incubated in the 

presence of detergents and/or proteinases can be activated to accommodate phenolic 

molecules (Decker et al., 2007a). 
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Figure 1.4 Emphasising tyrosinase and catecholoxidase activity in the biosynthesis of 

the chromogen, melanin. The above figure is a schematic representation of the steps 

associated with melanin synthesis in insects. 
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Figure 1.5 Active sites of six representative type-3 copper proteins. 1, Ipomoea batatas 

catecholoxidase (PDB; 1BT3) 2, Limulus polyphemus hemocyanin subunit II (PDB; 

1OXY) 3, Manduca sexta prophenoloxidase (PDB; 3HHS) 4, Octopus dofleini hemocyanin 

(PDB; 1JS8) 5, Streptomyces castaneoglobisporus tyrosinase (PDB; 2ZMX) 6, Agaricus 

bisporus tyrosinase (PDB; 2Y9W). 7, Superimposed active sites of L. polyphemus 

hemocyanin (blue), Manduca sexta prophenoloxidase (green) and Agaricus bisporus 

tyrosinase (black). The dicopper atoms are depicted as orange spheres. Images were 

produced using UCSF Chimera molecular graphics software version 1.6.2. 
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1.3.2 On the presence of hemocyanin in invertebrates 
 

Hc can be found in chelicerates, crustaceans, molluscs and larval stages of some insects 

(Sanchez et al., 1998). Interestingly, chelicerates possess Hc only, whereas crustaceans 

(and a small number of insects) possess Hc and PO. Chelicerates and crustaceans do not 

possess an open respiratory system (tracheal system) like insects, thus they depend 

almost entirely on Hc for their respiratory demands. For decades the accepted paradigm 

of the evolution of Hc in arthropods has entailed the loss of this particular protein in 

insects due to the development of a complex respiratory system, therefore, the presence 

of Hc is considered unnecessary (Burmester and Hankeln, 2007). Mollusc and arthropod 

Hcs are hypothesised to have evolved from two different ancestors, about 700-800 and 

550-600 million years ago, respectively (Voit et al., 2000, Burmester, 2001, Lieb et al., 

2000, van Holde et al., 2001).   

 

Recently Pick et al., (2010) observed that the insect, Blaptica dubia, possesses Hc in 

early stages of development and stops synthesising the protein when they mature into 

adults. Hagner-Holler et al., (2004) observed an ancestral and functional hemocyanin in 

nymphs and adults of the stonefly Perla marginata that exhibits a high affinity for 

oxygen binding. The stonefly Hc consists of two subunits (Hc1 and Hc 2). Orthologous 

Hc subunits have been identified in the stonefly Perla grandis, the firebrat Thermobia 

domestica and the grasshopper Schistocerca americana (Fochetti et al., 2006, Pick et al., 

2008, Sanchez et al., 1998). Hemocyanin present in adult stages of insects may be a 

remnant of early arthropod evolution and subsequent species divergence; this theory 

has been recently proposed by Pick et al., (2009), Amore at al, (2009) and Amore and 

Fochetti, (2009). 
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Theoretically, adult insects have no need for respiratory proteins as the open 

circulatory system they possess (tracheal system), provides adequate oxygen dispersion 

to all organs. However, insects in larval stages do not have a fully developed tracheal 

system, and this may be why Hc has been found in low amounts in larval and nymphal 

stages of development; utilised to temporarily aid gas transport. The majority of insect 

species that Hc has been detected in are incapable of flight. Furthermore, insects that 

can fly and have been shown to synthesise Hc, only possess Hc in larval stages of 

development. It has been suggested that Hc associated oxygen transport was an 

inadequate system to provide oxygen for the high demands of intense aerobic 

respiration needed for insect flight, leading to selection pressure that resulted in an 

open respiratory system.  

 

A recent study carried out by Amore et al., (2009) investigated the functional role of 

hemocyanin found in the hemolymph of the stoneflies, Dinocras cephalotes and Isoperla 

grammatica. Using RT-PCR and bioinformatics they hypothesized that Hc may carry out 

a yet unknown physiological role, possibly similar to Hc-d PO activity observed in 

chelicerates (Amore and Fochetti, 2009). This theory remains untested.  

 

1.3.3 Structural characteristics and putative function 

Hcs are large multi-subunit enzymes, ubiquitous in crustacean, chelicerate and mollusc 

hemolymph. Hc is produced in the hepatopancreas (functionally equivalent to 

mammalian liver) and released into the hemolymph (Lee et al., 2004). Hc primarily 

functions as a carrier of molecular oxygen, reversibly binding peroxide in a µ: η2- η2 side-

on coordination between the two copper atoms (Cu A and Cu B) bound to a four α-helix 
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bundle and ligated by six highly conserved histidine residues (Decker et al., 2007a). 

Mammalian blood is red in colour due to the oxygenation of haemoglobin via Fe within 

the heme cofactor. In contrast, chelicerate and to a lesser extent crustacean hemolymph 

is blue in colour due to the conversion of Hc (containing a di-copper active site) from a 

deoxygenated (Cu I) state into an oxygenated (Cu II) state. The oxygenated state of Hc 

can be detected by an intense absorption peak at ~ 340 nm (ε = 20,000 M-1cm-1) (Fig. 

1.6) (Decker and Jaenicke, 2004). Hemocyanins are polar molecules with a 

predominantly negatively charged electrostatic surface. These properties improve the 

solubility and hydration of Hc in the hemolymph. Possessing a negatively charged 

surface limits Hc from associating with other negatively charged surfaces inside the 

organism, such as, the glycocalyx of cells bathing in hemolymph (Jaenicke and Decker, 

2003).  

The basic structure of arthropod Hc is hexameric in nature and is usually found as 

multiples of hexamers (2 x 6mer, 4 x 6mer, 6 x 6mer, and 8 x 6mer). Each arthropod Hc 

subunit (~ 70 – 75 kDa) consists of three domains: domain I contains five to six α-

helices, domain II contains a four α-helix bundle and domain III contains a seven 

stranded anti-parallel β-barrel. Domain II contains the di-copper active site (Decker et 

al., 2007a, Magnus et al., 1994, Hazes et al., 1993, Volbeda and Hol, 1989). Mollusc Hc 

can be found in the form of cylindrical decamers, didecamers or multiples of decamers. 

Each polypeptide subunit (~ 350 – 400 kDa) possesses approximately seven or eight 

paralogous functional units (FU: FU-a – FU-h). Mollusc FUs are typically 50 kDa in size, 

however, the structure of FU-h is different to other FUs as it contains an additional 

stretch of ~ 100 amino acids located at the C-terminal end of the polypeptide, bringing 

the total molecular weight of FU-h to ~  60 kDa (Lieb et al., 2000, Jaenicke et al., 2010). 
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Each FU is ordinarily composed of two domains, the α-domain consisting of a four α-

helix bundle that includes the di-copper active site and the β-domain consisting of a 

seven stranded anti-parallel β-barrel. The α and β domains of mollusc Hc are 

functionally equivalent to domains II and III of the arthropod Hc subunit, respectively. 

Mollusc Hc can possess > 160 oxygen binding sites, whereas the largest known 

arthropod Hc (8 x6mer, from the horseshoe crab, L. polyphemus) contains 48 oxygen 

binding sites. The bi-nuclear copper active site and subsequent oxygen binding 

properties of both mollusc and arthropod Hcs are almost identical, however, their 

molecular structures differ substantially across all levels (Fig. 1.7) (Decker and van 

Holde, 2010, Decker et al., 2007a/b, Cuff et al., 1998).  
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Figure 1.6 Absorption spectra of 0.3 mg mL-1 Limulus polyphemus hemocyanin in 100 

mM Tris-HCl buffer, pH 7.5. The absorbance peak at ~ 340 nm observed for hemocyanin 

with dioxygen bound [CuII-O22-CuII] is in contrast to the deoxygenated hemocyanin 

spectrum. Inset, A) an aliquot of oxygenated (blue) horseshoe crab hemolymph and B) 

an aliquot of deoxygenated (clear) horseshoe crab hemolymph. Deoxygenated 

hemocyanin was prepared using dialysis. Oxy-Hc in 100 mM Tris-HCl, pH 7.5 was 

dialysed against 100 mM Tris-HCl, pH 7.5 containing 20 mM EDTA, overnight at 4oC.  
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Figure 1.7 Structure of arthropod hemocyanin (PDB; 3IXV, 1LL1 and 1OXY) and 

mollusc hemocyanin (PDB-1JS8 and EMDB-1648). Also shown is the di-copper active 

site (with six conserved histidine residues), indicative of type three copper proteins 

(Copper atoms are a light brown colour and oxygen is depicted in red). Images were 

produced using UCSF Chimera and Jmol molecular graphics software versions 1.6.2 and 

12.2.15, respectively.  
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1.3.4 Phenoloxidase and hemocyanin-derived phenoloxidase activity   

PO enzymes are found in mammals, flora, invertebrates and microorganisms. Activated 

POs catalyse the initial steps in a series of enzymatic reactions of a biosynthetic 

pathway that will eventually lead to the formation of the pigment melanin (Cerenius 

and Soderhall, 2004). In insect and crustacean hemolymph, the activation of PO is 

coordinated by the proPO activation cascade. The proPO cascade is initiated as result of 

cuticular damage and/or the detection of microbes present in the hemolymph (Fig. 1.8). 

During a microbial or parasitic challenge, the recognition of PAMPs such as 

lipopolysaccharides and/or β-glucans via PRRs present in the hemolymph and on 

hemocyte plasma membranes, initiates a serine proteinase cascade (Cerenius and 

Söderhäll, 2004). Serine proteases cleave the inactive Pro-prophenoloxidase activating 

enzyme (pro-ppA) into an active pro-Phenoloxidase activating enzyme (ppA). Thus, ppA 

cleaves the inactive pro-Phenoloxidase (pro-PO) zymogen into an active PO enzyme. PO 

is released from specialised arthropod hemocytes (crystal cells) and deposited at the 

site of infection, damaged cuticle or during cell-mediated defences such as 

encapsulation and nodulation (Fig. 1.8). POs catalyse the oxidation of phenolic 

compounds into quinones. Non-enzymatic polymerisation of quinones results in the 

formation of melanin, which plays a vital role in the development and defence response 

of organisms (reviewed by Soderhall and Cerenius, 1998, Cerenius and Soderhall, 

2004).  

Over the last decade, a large number of publications have reported inducible PO activity 

of the respiratory protein Hc, in vitro. To date, Hc-d PO activity has been characterised 

in over 39 species of arthropods and molluscs (Table 1.1). It is considered that 

components similiar to those associated with the proPO activation cascade are involved 

in the conversion of Hc into an immune enzyme, namely PO (Baird et al., 2007). 
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Figure 1.8 The proPO activation cascade in invertebrates. Microbial ligands are 

recognised by cellular receptors. A signal transduction cascade eventually leads to 

crystal-cell lysis and the subsequent release of activated phenoloxidase.  

PO; phenoloxidase, Pro-ppA; pro-proPhenoloxidase activating enzyme, LPS; lipopolysaccharide, LTA; 
lipoteichoic acid and PGRP-LC; peptidoglycan recognition protein-LC.  

 



P a g e  | 31 

 

 
 

Table 1.1 Known hemocyanin-derived phenoloxidase (Hc-d PO) activity in invertebrates 

Species Activity Endogenous elicitors Exogenous elicitors References 
     
Phylum Arthropoda     
Chelicerata     
Carcinoscorpius rotundicauda CO Subtilisin LPS, LTA and  microbial 

proteasesϮ 

Jiang et al., [2007] 

Eurypelma californicum TY & CO Trypsin and chymotrypsin SDS Jaenicke and Decker, [2008], Baird et al., 
[2007], Decker et al., [2001], Decker and 
Rimke, [1998] 

Limulus polyphemus CO PS, PI, L-PC, PE, PG, PC, trypsin, 
linoleiate and linolenate  

SDS and CPC Coates et al., [2012], Coates et al., [2011], Baird 
et al., [2007], Decker et al., [2001], Nellaiappan 
and Sugumaran [1996], Wright et al., [2012] 

Pandinus imperator  TY & CO - SDS Nillius et al., [2008], Baird et al., [2007] 
Tachypleus tridentatus CO Factor B, clotting enzyme, tachyplesin, 

PE, tachystatins [A, B, C], big defensin,  
SDS Nagai et al., [2001], Nagai and Kawabata [2000] 

Crustacea     
Astacus leptodactylus TY & CO Trypsin SDS Jaenicke and Decker, [2004] 
Bathynomus giganteus CO - SDS Terwilliger [2007], Pless et al., [2003]  
Calappa granulata CO - SDS Jaenicke and Decker, [2004] 
Cancer magister CO - SDS Terwilliger and Ryan, [2006] Decker et al., 

[2001] 
Cancer pagarus  CO Trypsin SDS Jaenicke and Decker, [2004], Bhagvat and 

Richter [1938] 
Carcinus aestuarii CO - - Salvato et al., [1998] 
Carcinus maenas  CO Trypsin SDS and perchlorate Jaenicke and Decker, [2004], Zlateva et al., 

[1996] 
Cirolana harfordi  CO -  SDS Terwilliger, [2007] 
Charybdis japonica  TY & CO Hemocyte lysate supernatant and 

trypsin 
SDS and urea Fan et al., [2009] 

Erimacrus isenbeckii  CO Trypsin SDS, LPS and LTA Kim et al., [2011] 
Homarus americanus CO Trypsin SDS and perchlorate Jaenicke and Decker, [2004], Zlateva et al., 

[1996] 
Litopenaeus vannamei CO Trypsin  Yan et al., [2008] ∞ 
Nephrops norvegicus TY & CO - SDS Gimenez et al., [2010]/Chapter 3 
Pacifastacus leniusculus  CO Trypsin - Lee et al., [2004] 
Palinurus elephas TY & CO Trypsin  SDS Jaenicke and Decker, [2004,] 
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Table  1.1  continued…     
Panulirus argus CO Trypsin and chymotrypsin SDS Perdomo-Morales et al., [2008] 
Panulirus interruptus CO Trypsin SDS Jaenicke and Decker, [2004] 
Paralithodes camtschaticae CO Trypsin SDS Jaenicke and Decker, [2004] 
Parapenaeus longirostris  CO - SDS Martinez-Alvarez et al., [2008] 
Penaeus japonicus TY & CO Hemocyte lysate supernatant SDS, Lam and 

isopropanol 
Adachi et al., [2005a, 2003, 2001] 

Penaeus vannamei  TY & CO Trypsin and chymotrypsin  SDS, isopropanol, 
acetone and methanol 

Garcia-Carreno et al., [2008] 

Porcellio scaber CO Hemocyte lysate supernatant SDS Jaenicke et al., [2009] 
Portunus trituberculatus TY & CO - Urea Fujieda et al., [2010a, 2010b]  
Potamon potamion CO - SDS Jaenicke and Decker, [2004] 
Scylla serrata - - - Chen et al., [2009]∞ 

Phylum Mollusca     
Cephalopoda     
Octopus vulgaris TY & CO - Tween20, urea and 

hexafluoroisopropanol 
Campello et al., [2008], Suzuki et al., [2008] 
Morioka et al., [2006], Salvato et al., [1998, 
1983] 

Sepia officinalis CO Subtilisin - Siddiqui et al., [2006] 
Sepioteuthis lessoniana TY - - Nakahara et al., [1983] 
     
Gastropoda     
Haliotis diversicolor CO - - Peng et al., [2010]∞ 

Helix aspersa CO - SDS Decker et al., [2001] 
Helix pomatia TY & CO Subtilisin - Siddiqui et al., [2006], Bhagvat and Richer 

[1938] 
Helix vulgaris CO - - Hristova et al., [2008] 
Oncomelania hupensis  CO α-chymotrypsin SDS and urea Guo et al., [2009] 
Rapana thomasiana CO Subtilisin SDS Idakieva et al., [2009]* 

Rapana venosa CO Trypsin SDS and urea Dolashki et a., [2011], Hristova et al., [2008] 
     
CPC-cetylpyridinium chloride, SDS-sodium dodecylsulphate, CO-catecholoxidase, TY-tyrosinase, PS-phosphatidylserine, PI-phosphatidylinositol, PG-

phosphatidylglycerol, PE-phosphatidylethanolamine, L-PC-lyso-phosphatidylcholine, PC-phosphatidylcholine, LPS-lipopolysaccharide, LTA-lipoteichoic acid and 

LAM-laminarin. * indicates that freeze thawing [lyophilisation] of Hemocyanin induces phenoloxidase activity. ∞ indicates the abstract is not available in English. Ϯ 

indicates microbial proteases; PAE from Pseudomonas aeruginosa, Proteinase K from Tritirachium album and type XIV protease of Streptomyces griseus. N.B. 

Subtilisins are purified from Bascillus species, however, they are used to represent potential endogenous inducers like trypsin and chymotrypsin).  
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1.3.5 Exogenous versus endogenous activation  

Under certain conditions, Hc can display PO activity in vitro. Hc is converted into a PO-

like enzyme either through proteolytic treatment (e.g. trypsin, microbial proteases) or 

via physical disruption of protein conformation using detergents, solvents, salts and/or 

phospholipids (Table 1.1). It is commonplace to use low concentrations of SDS to assess 

enzymatic activity of PO enzymes (Decker and Jaenicke 2004). The anionic detergent, 

SDS, has demonstrated on numerous occasions the ability to induce PO activity of Hc 

(Decker and Rimke, 1998, Decker et al., 2001, Baird et al., 2007, Decker et al., 2007a, 

2007b). High concentrations of the denaturant will lead to the unfolding of the enzyme 

and concurrently induce PO activity in Hc for a short period of time before it is 

denatured completely. However, at low concentrations, SDS induces a conformational 

change in Hc that allows phenolic molecules access to the catalytic site for an extended 

period of time. A thorough study carried out by Baird et al., (2007), demonstrated that 

SDS micelles induce optimal PO activity in three checlicerate Hcs. Concentrations of SDS 

above critical micelle concentration resulted in subtle secondary and tertiary structural 

changes that permit substrate access to the dicopper centre and possibly mimic in vivo 

conformational changes necessary for the induction of Hc-d PO activity.  

Nagai and Kawabata (2000) recorded PO activity of horseshoe crab (HSC) Hc in the 

presence of a clotting enzyme, with optimal activation of Hc achieved using a 1:1 

stoichiometry of Hc : clotting enzyme. Subsequently in 2001, Nagai and co-workers 

exposed HSC Hc to chitin-binding amphiphilic anti-microbial peptides (AMPs) such as 

tachyplesin, and recorded PO activity. The interaction between Hc and tachyplesin 

seems to involve the hydrophobic side of tachyplesin, as site directed mutagenesis of 

tryptophan and tyrosine residues led to a severe reduction in tachyplesin affinity for Hc. 
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The authors postulated that in vivo during wound healing, AMPs bind to the internal 

chitin of the horseshoe crab. These chitin bound AMPs provide a platform for Hc to 

attach. Upon attachment to the AMPs, Hc undergoes a conformational change leading to 

PO activity, resulting in the formation of melanin that is subsequently used to coat the 

clot constructed during wound healing. This theory is supported by studies indicating 

Hc’s involvement in wound healing and hormone transport (ecdysone binding 

properties) (Nagai and Kawabata, 2000, Jaenicke et al., 1999 Adachi et al., 2005b).  

Even though the exposure of Hc to a number of endogenous molecules (coagulation 

factors, hemocyte components, etc.) can lead to PO activity in vitro (Table 1.1), the in 

vivo activation of Hc-d PO remains poorly characterised. Nellaiappan and Sugumaran 

(1996), recorded PO activity in L. polyphemus hemolymph in the presence of a number 

of phospholipids and fatty acids. They assumed the activity was derived from a PO 

enzyme, however, no PO has been identified in any chelicerate studied, therefore, the 

activity recorded is most likely derived from Hc.  Furthermore, the fatty acids and 

phospholipids used in this study were dissolved in EtOH, making it difficult to 

determine the effects of these molecules on Hc activation, as EtOH is a known activator 

of both PO and Hc-d PO (reviewed by Decker and Jaenicke, 2004).   

In vitro, SDS micelles promote optimal Hc-d PO activity; based on this information, 

membrane phospholipids in the form of small unilamellar vesicles (SUVs, i.e. liposomes) 

have been investigated as potential endogenous activators of Hc-d PO (Chapter 2). 

Rationally, phospholipids in liposome form share similar structural and electrostatics 

with SDS micelles.  Moreover, phospholipids, particularly phosphatidylserine (PS), have 

been shown previously to induce PO activity in the fruit fly, Drosophila melanogaster 

(Bilda et al., 2009).  
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1.3.6 Mode of activation and the di-copper active site 

Based on a vast number of publications and the recent availability of insect proPO 

crystal structures, it is widely considered that in true PO enzymes and in Hcs, the 

removal of an amino acid ‘placeholder’ residue from the proximity of the dicopper 

centre permits bulky phenolic molecules access to the active site which can be turned 

over and products released (Baird et al., 2007, Decker et al., 2007a, Jaenicke and Decker, 

2008, Nillius et al., 2008). A phenylalanine residue in arthropod Hc (Fig. 1.9a) and a 

leucine residue in mollusc Hc have been identified as placeholders (Decker et al., 

2007b). Proteolytic treatment of Hc appears to remove the N-terminus of arthropod Hc 

subunits and the C-terminus of mollusc Hc FUs, which contain the respective 

placeholder residues. On the other hand, treatment with detergents is thought to 

disrupt protein conformation, dislocating the placeholder residue, thus creating a subtle 

opening for substrate access (Decker et al., 2007a). With respect to proPOs, a caddie 

protein interacts with proPO, seemingly blocking the di-copper active site with a 

tryptophan or tyrosine residue (Fig 1.9b). The removal of this caddie protein is 

necessary for the conversion of the inactive proPO zymogen into active PO (Decker and 

Rimke, 1998).  

1.3.7 Hemocyanin as a precursor of antimicrobial peptides 

Not only can Hc-d PO activity be induced by amphiphilic antimicrobial peptides, Hc has 

also been observed to function as a precursor of antibacterial and antifungal peptides in 

crustaceans. Destoumieux-Garzón et al., (2001) isolated two peptides from the 

hemolymph of Penaeus stylirostris and a single peptide from P. vannamei hemolymph. 

The purified peptides demonstrated strict fungicidal activity. The peptides displayed up 

to 100 % sequence similarity with a region on the C-terminus of their respective Hcs, 
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and upon microbial infection, a significant increase in peptide concentrations were 

observed in the hemolymph. Sequence comparisons have confirmed that these peptides 

are products of Hc, resulting from an uncharacterised proteolytic cleavage. Similarly, 

Lee et al., (2003) isolated a peptide consisting of 16 amino acid residues, known as 

Astacidin 1, from the hemolymph of the crayfish, Pacifastacus leniusculus. Astacidin 1 

displays potent bactericidal activity. Lee and co-workers demonstrated that the peptide 

is derived from the C-terminus of crayfish Hc and is present as a β-sheet structure in 

citric acid buffer, pH 4. Astacidin 1 concentration increased significantly in the 

hemolymph of shrimp exposed to microbial ligands. It is believed that a cysteine-rich 

proteinase, under acidic conditions, cleaves the crayfish hemocyanin in order to 

produce Astacidin 1 during infection.  
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Figure 1.9 View of the active site of type-3 copper proteins with placeholder residues 

present.  A) Limulus polyphemus hemocyanin subunit II (PDB; 1OXY). The placeholder 

residue, Phe 49, is coloured pink. B) Streptomyces castaneoglobisporus tyrosinase (PDB; 

2ZMX). The placeholder residue, Tyr 98, is coloured yellow. Histidine residues are grey 

and blue in colour, Cu atoms are presented as brown spheres and oxygen is coloured 

blue. Images were produced using UCSF Chimera molecular graphics software version 

1.6.2. 
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1.3.8 Antiviral properties of hemocyanin 

Whilst attempting to obtain novel antiviral proteins from white spot syndrome virus 

(WSSV) infected shrimp, Penaeus monodon, Zhang et al., (2004a) purified peptides (73 

kDa and 75 kDa) coupled to virus particles that were subsequently identified as Hc in 

origin. Upon further investigation, purified Hc demonstrated non-specific antiviral 

properties against a range of cultured DNA and RNA fish viruses (Table 1.2), with no 

measureable cytotoxicity against host cells. The Hc peptides neutralised the viruses and 

prevented replication. Recently, Lei et al., (2008) pre-incubated white-spot syndrome 

virus (WSSV) particles with purified Penaeus japonicus Hc (PjHc) prior to infection, 

resulting in a ten-fold reduction in viral load present in the gills, in contrast to control 

shrimp that had received a non-pre-treated WSSV infection. Furthermore, upon 

monitoring Hc subunit transcriptional regulation during viral infection, it was 

demonstrated that subunit PjHcY expression remained unchanged, conversely, PjHcL 

expression increased significantly during viremia. This unusual difference in antiviral 

properties of arthropod Hc subunits has also been recorded for mollusc Hc subunits. 

Dolashka-Angelova et al., (2009) recorded antiviral activity of whelk (Rapana venosa) 

Hc against respiratory syncytial virus (RSV). Only glycosylated FU RvH-c was effective 

against RSV, whereas non-glycosylated FU RvH-b and native Hc were not. Dolashka et 

al., (2010) further emphasized the importance of glycosylation of R. venosa Hc FUs in 

antiviral defence, as only glycosylated FU RvH2-e demonstrated activity against HSV 

virus type 1. Interestingly, Dolashka et al., (2010) carried out a screen of glycans 

present on R. venosa Hc subunits and found that a number of carbohydrate chains 

present on FUs may associate with regions of glycoproteins found on HSV, either by 

interactions with specific residues or through less specific van der Waals interactions. 
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Differences in the oligosaccharide content of Hc subunits may be partly responsible for 

their varying antiviral potency and warrants further investigation.  

Pan et al., (2005) carried out a genetic screen on WSSV infected shrimp, P. japonicus. Of 

eight novel immune-related genes that were observed to significantly increase in 

expression upon infection, Hc was the second most up-regulated (β-glucan binding 

protein was the first).  Other studies have demonstrated similar increases in Hc mRNA 

expression in response to viral infection. Macrobrachium rosenbergii nodavirus (MrNV) 

and extra small virus (XSV) infected shrimp demonstrated an  increase in expression of 

proPO and Hc mRNA (Ravi et al., 2010), similarly, exposure of red swamp crayfish 

Procambarus clarkii to WSSV led to an increase in Hc mRNA expression levels (Shi et al., 

2010). The aforementioned studies did not investigate whether an increase in Hc mRNA 

expression correlated with a concurrent increase in Hc present in the hemolymph. An 

increase in mRNA expression does not necessarily lead to an increase in the synthesis of 

the respective protein, however, Rattanarojpong et al., (2007) and Bourchookarn et al., 

(2008) recorded an increase in Hc synthesis (via 2-D gel electrophoresis) in the 

hemolymph of P. vannamei and P. monodon in response to yellow head virus (YHV) 

infection, respectively. In 2009, Havanapan et al., recorded an increase in C-terminus 

fragments of Hc present in the hemolymph of P. vannamei, during Taura syndrome virus 

(TSV) infection, concomitantly, the N-terminus fragments of Hc were down regulated. 

Further analysis showed a switch in the isoelectric point of C-terminal fragments to a 

more acidic pI due to phosphorylation of serine residues.  

Interestingly, extracellular regulated kinase 1/2 (ERK 1/2) was recorded to increase in 

expression during viral infection. Hc from TSV infected shrimp co-immunoprecipitated 

with ERK 1/2 (Havanapan et al., 2009). ERK enzymes are known to play a key role in 
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innate immunity (Garcia-Garcia et al., 2008). Motif scans of shrimp Hc revealed a 

potential ERK D-domain positioned at V527, between R520 and S534 on the C-terminal 

end of the protein. Havanapan and co-workers (2009) postulated a novel role for Hc in 

innate immunity, through the regulation of ERK signalling pathways during immune 

challenge. These findings further illustrate a broad role for Hc in anti-viral defence and 

highlight potential alternative strategies for enhancing cultured shrimp resistance to 

disease.  
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Table 1.2 Hemocyanin derived immune-functionality (aside from inducible phenoloxidase activity, Table 1.1) 

Species Immune activity Hemocyanin aggregation state Target Reference 

Phylum Arthropoda     

Carcinoscorpius rotundicauda  Production of ROS 8 x 6mer [assumed] P. aeruginosa and S. aureus Jiang et al., [2007] 

Litopenaeus setiferus  Induction of ROS Hc –like lectin [291 kDa] L. setiferus hemocytes Alpuche et al., [2009] 

Litopenaeus vannamei Agglutinative Dodecamer V. parahaemolyticus, S. 
aureus and mammalian 
RBCs 

Pan et al., [2008] 

Litopenaeus vannamei Agglutinative Hc-IgA like protein [~ 75 kDa] Vibrio, Aeromonas and 
Pseudomonas sps., and 
mammalian erythrocytes 

Zhang et al., [2006a & b] 

Litopenaeus vannamei Agglutinative Multimer (SNP’s on C-terminus) Vibrio, Aeromonas and 
Staphylococcus sps. 

Zhao et al., [2012] 

Litopenaeus vannamei Antibacterial? Hc-fragment (28.5 kDa) Vibrio parahaemolyticus Zhang et al., [2008] 

Litopenaeus vannamei Hemolytic/Opsonising Multimer, Hc oligomers [~ 150-230 
kDa] 

Mammalian erythrocytes Zhang et al., [2009] 

Pacifastacus leniusculus  Antibacterial Hc derived peptide [1.945 kDa] B. megaterium and E.coli Lee et al., [2003] 

Penaeus japonicus  Antiviral Multimer and subunits [PjHc-L & 
PjHc-Y]   

WSSV Lei et al., [2008] 

Penaeus monodon  Antiviral Hc peptides [73 and 75 kDa] SGIV, FV3, LDV, ThRV, ABV 
and IPNV 

Zhang et al., [2004] 

Penaeus stylirostris  Antifungal  Hc derived peptides [7.9, 8.3 kDa] F. oxysporum Destoumieux-Garzon et al., 
[2001] 

Penaeus vannamei  Antifungal  Hc derived peptide [2.7 kDa] F. oxysporum Destoumieux-Garzon et al., 
[2001] 

Penaeus vannamei Agglutinative Hc multimer Mammalian erythrocytes Zhang et al., [2005] 

Penaeus vannamei Signalling-ERK1/2 C-terminal Hc fragments TSV Havanapan et al., [2009] 

Scylla serrata  Agglutinative Hc multimer and 76  kDa subunit Vibrio sps. A. hydrophila E. 
coli K12 and S. aureus.   

Yan et al., [2011] 

     

Phylum Mollusca     

Octopus maya Agglutinative Hc-like agglutinin [66 kDa] Mammalian erythrocytes Alpuche et al., [2010] 

Rapana venosa  Antiviral  Subunits [glycosylated RvH2-e and 
RvH-c] 

HSV-1 and RSV Dolashka et al., [2010], Dolashka 
-Angelova [2009] 

Abbreviations; angelfish birnarvirus [ABV], extracellular signal regulated kinase [ERK],  frog virus 3 [FV3], Herpes simplex virus type1 [HSV-1], infectious 

pancreatic necrosis virus [IPNV], lymphocyctis virus [LDV], respiratory syncytial virus [RSV], Singapore grouper virus iridovirus [SGIV], Taura syndrome virus 

[TSV], threadfin reovirus [ThRV] and white spot syndrome virus [WSSV], reactive oxygen species [ROS], red blood cells [RBCs], reactive oxygen species [ROS] 
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1.3.9 Hemocyanin and the production of reactive oxygen species 

Hc was isolated from the hemolymph of the Mangrove horseshoe crab, Carcinoscorpius 

rotundicauda and exposed to a range of microbial proteases and ligands in vitro, which 

resulted in the production of reactive oxygen species (ROS) and the simultaneous 

induction of Hc-d PO activity (Jiang et al., 2007). As PO enzymes catalyse the initial steps 

in melanin synthesis, quinone derivatives can enter enzymatic/non-enzymatic redox 

cycling pathways with their respective semi-quinone counterparts, leading to the 

production of cytotoxic ROS (Bogdan et al., 2007). ROS production by C. rotundicauda 

Hc was induced in the presence of intact microorganisms, especially pathogenic strains 

that secrete extracellular proteases. Both Gram-positive and Gram-negative bacteria 

induced Hc derived ROS, providing an instant anti-microbial assault against invading 

microbes. In the same study, mammalian hemoglobin treated with microbial proteases, 

produced ROS and displayed anti-microbial properties, also (Jiang et al., 2007). The data 

discussed here, hints at an evolutionary ancient mode of immune-surveillance present 

in invertebrates and mammals.  

 A Hc-like lectin purified from the hemolymph of Litopenaeus setiferus binds to a 

glycoprotein receptor on the plasma membrane of activated granular hemocytes in vitro 

and induces the production of ROS via an NADPH oxidase complex and accompanying 

oxidative pathways (Alpuche et al., 2009). The lectin-carbohydrate interaction appears 

to be mediated by carboxyl and N-acetylated groups of sugars (such as N-acetyl-

neuraminic acid). The production of ROS is an important component of the invertebrate 

immune response (Bogdan, 2007) and has been used successfully as an indicator of 

immune competence in shrimp (Yon-Chin et al., 2008).  
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1.3.10 Immunoglobulin-like domains and agglutination behaviour of hemocyanin 

Numerous proteins present in invertebrate hemolymph, namely opsonins and lectins, 

agglutinate/immobilise microbes in preparation for host cell derived defences, such as 

encapsulation and phagocytosis. Lacking a true adaptive immune response and 

therefore, the ability to produce specific antibodies, invertebrates possess proteins that 

belong to the Immunoglobulin superfamily (IgSF). Hc (~ 75 kDa) purified from the 

hemolymph of shrimp, Litopenaeus vannamei, was identified as an IgA like protein due 

to the presence of a  conserved Ig domain, located at the C-terminus (Zhang et al., 2006). 

Using immunoblot analysis, the purified Hc cross reacted with both goat anti- human 

IgA and rabbit anti-shrimp Hc on independent occasions. Previously, Zhang et al., 

(2004b) purified Hc from Penaeus vannamei hemolymph and characterised an IgG like 

domain, consisting of ~ 252 amino acids, present at the C-terminus also. Further 

analysis of shrimp Hc confirmed that Hc shares four conserved regions with human Ig-

heavy chain and a single conserved region on the Ig kappa chain.   

Incubation of shrimp Hc with eight different species of pathogenic bacteria and animal 

erythrocytes, in vitro, resulted in the gross aggregation of the cells (Zhang et al., 2006). 

Hc induced agglutination of microbial and mammalian cells can be inhibited by a variety 

of saccharides, indicating a carbohydrate interaction between Hc and the target-cell 

plasma membrane. This agglutination behaviour of shrimp Hc (as well as reactivity with 

an Ig domain) is characteristic of IgSF molecules and further supports a role for Hc in 

invertebrate innate immunity. In a subsequent study, Pan et al., (2008) demonstrated 

that both hexameric and dodecameric oligomers of L. vannamei Hc could bind to 

bacteria and mammalian red blood cells (RBCs), however, only the Hc dodecamer could 

agglutinate the RBCs. Considering that a dodecamer conformation potentially offers at 

least two carbohydrate binding sites, whereas a hexameric conformation only contains 



P a g e  | 44 

 

 
 

one, it would appear that, a dodecamer optimises the number of bacteria that can be 

immobilised by Hc during sepsis. More recently, Fan et al., (2011) demonstrated 

agglutinating activity of Scylla serrata Hc against seven different bacterial species. S. 

serrata Hc subunits demonstrated differential agglutinating properties (that could be 

inhibited by numerous saccharides), with the 75 kDa subunit showing optimal activity. 

Using mutant strains of E. coli (ΔOmpA and ΔOmpX), Fan and co-workers confirmed that 

ligand interactions between specific bacterial outer membrane proteins and Hc were 

essential for the agglutination of target cells.  

Interestingly, Alpuche et al., (2010) purified a 66 kDa (3 x 22 kDa subunit) lectin from 

the hemolymph of Octopus maya that agglutinated a range of mammalian erythrocytes 

and demonstrated a dependence on the orientation of hydroxyl/amine groups of C2 

sugars for successful agglutination to occur. The presence or absence of divalent cations 

(such as Ca2+ and Mg2+) had no measureable effect on agglutination behaviour. This 

Octopus lectin showed no sequence identity to any known lectin, but showed partial 

identity to Octopus dolfleini Hc, particularly with the tyrosinase domains and copper A 

and B sites.  

1.3.11 Hemolytic behaviour of shrimp hemocyanin 

Hc purified from the hemolymph of shrimp, L. vannamei, not only demonstrates 

agglutination behaviour (Zhang et al., 2006) but also demonstrates hemolytic activity 

against mammalian erythrocytes (Zhang et al., 2009). Hc subunits and oligomers 

induced erythrocyte cell rupture via the formation of ion permeable pores. Hemolytic 

activity of Hc was dependent on temperature, pH and divalent cation concentration 

(particularly calcium). The addition of osmoprotectants (sucrose and polyethylene 

glycol (PEG)) to the hemolysis assay inhibited cell rupture, providing evidence of a 
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colloid-osmotic lysis mechanism. There are two hallmarks of colloid-osmotic lysis of 

erythrocytes; 1) osmotic stabilisation of erythrocytes can be achieved in the presence of 

sucrose and PEG and 2) pre-lytic swelling of cells (Harris et al., 1991). Further research 

is needed to fully characterise the hemolytic ability of shrimp Hc.  

1.3.12 Hyperpigmentation in crustaceans; hemocyanin versus phenoloxidase 

Hyperpigmentation (or melanosis) in farmed and fresh caught shellfish (notably 

shrimp) is a non-infectious condition that causes cuticular darkening in the form of 

black spots; consequently, the displeasing aesthetics lead to a severe reduction in 

market value (Adachi et al., 2001). Traditionally, sulfiting compounds have been used to 

inhibit hyperpigmentation. One such sulfiting compound, sodium metabisulphite, is a 

known allergen, and has been linked with occurrences of occupational asthma (Steiner 

et al., 2008).  Heeding both health concerns and shellfish sustainability issues there is a 

pressing need for natural, safe and effective inhibitors of shellfish hyperpigmentation.  

While many inhibitors of hyperpigmentation have been used throughout the shellfish 

industry, the true causative agent of hyperpigmentation remains uncertain. Generally, 

inhibitors are considered to target PO enzymes, although, recent evidence suggests that 

Hc is also targeted by PO inhibitors (Garcia-Carreno et al., 2008, Martinez-Alvarez et al., 

2008).  

Hc is a more stable protein compared to PO, demonstrating retention in enzymatic 

activity upon exposure to extreme temperature and pH shifts (reviewed by Decker et al., 

2007, Kim et al., 2011). The development of novel, safe and efficacious inhibitors of 

hyperpigmentation in shellfish would be of significant commercial importance. The 

stability of cellular PO and Hc-d PO of hemolymph extracted from the langoustine 

Nephrops norvegicus has been investigated (Chapter 3), in order to find the true cause of 
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hyperpigmentation in shellfish. A range of known PO inhibitors have been employed in 

order to screen for potential Hc-d PO specific inhibitors.  

1.4 Summary 

  

  

 

 

 

 

 

 

 

 

 

Once considered a primordial response, lacking complexity and sophistication, innate 

immunity of arthropods shares great mechanistic, biochemical and molecular 

similarities with those of mammals. Significant progress has been made over the last few 

decades, however, many aspects of arthropod immunity have been examined using 

favoured insect models, and to a lesser extent, crustaceans. In order to truly evaluate 

immune-function in arthropods, the study of a greater diversity of species is warranted.  

It is now recognised widely that Hc acts as a multi-resource/function enzyme in 

invertebrates, being utilised for a plethora of physiological and immunological 

processes, when required. Even though certain advances have been made over the last 

decade in characterising the switch of Hc from a respiratory protein to an immune-

enzyme, the in vivo activation and regulation of these processes are lacking in detail. 

Chapters 2, 3 and 6 provide new insight into the structure-function relationship of Hc-d 

PO from two arthropods, L. polyphemus and N. norvegicus.   

Furthermore, almost six decades after Frederick Bang’s initial discovery (1956) of 

hemolymph clotting in L. polyphemus, the amebocyte derived clotting cascade continues 

to receive substantial attention because of its economic and biomedical importance. In 

contrast, the alternative immune functions of amebocytes, such as phagocytosis and 

hemostasis, have received little attention by comparison. Chapters 4, 5 and 6 provide 

new insight into the maintenance of amebocytes in vitro, their phagocytic properties, 

their possible contribution towards Hc activation (in vivo) and their significance in 

monitoring captive horseshoe crabs.   
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Chapter 2:  

Phospholipid Induced Conformational Changes in Limulus 

polyphemus Hemocyanin; Putative Natural Activators of 

Hemocyanin-derived Phenoloxidase Activity 

 

 

 

 

 

 

 

 

 

A version of this chapter has been published;  

Christopher J. Coates, Sharon M. Kelly* and Jacqueline Nairn. 2011. Possible role of 

phosphatidylserine–hemocyanin interaction in the innate immune response of Limulus 

polyphemus. Developmental and Comparative Immunology. 35 (2), 155-163.   

 

 

 

*S.M. Kelly provided training with circular dichroism and performed experiments.  
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2.1 Abstract 

 
Phenoloxidase enzymes and the associated pro-phenoloxidase activation cascade play 

an essential role in the immune response of arthropods. Phenoloxidase activity can be 

elicited in the oxygen carrier, hemocyanin, by the addition of the artificial inducer, SDS. 

There is some evidence to support hemocyanin acting as a phenoloxidase in vivo; 

however, the identity of natural activators remains unclear. This chapter explores the 

role of a number of phospholipids, notably phosphatidylserine, as possible natural 

activators of hemocyanin-derived phenoloxidase activity. Characterisation of the 

structural changes associated with activation of hemocyanin-derived phenoloxidase 

suggests that phospholipids induce similar conformational changes to those caused by 

the artificial inducer, SDS. Preliminary investigations on the nature of the interaction 

between hemocyanin and phosphatidylserine are presented also. It is proposed that 

anionic phospholipids, in particular phosphatidylserine, may act as natural activators of 

hemocyanin-derived phenoloxidase, in vivo. 
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2.2 Introduction 

It is now well documented that it is possible to change the function of hemocyanin, in 

vitro, from an oxygen carrier to an enzyme activity that plays a key role in invertebrate 

innate immunity, namely phenoloxidase (PO) (E.C. 1.10.3.1) (Decker et al., 2007). One of 

the most effective activators of hemocyanin-derived PO activity, in vitro, is the artificial 

inducer, SDS. It has been demonstrated previously that SDS-induced PO activation in 

chelicerate hemocyanin is associated with conformational changes which enhance 

substrate access to the di-copper centre of this protein (Baird et al., 2007). It is assumed 

that the presence of SDS mimics the effects of putative natural activators present in 

arthropod hemolymph, such as small antimicrobial peptides (Nagai et al., 2001), fatty 

acids and phospholipids (Baird et al., 2007).  

 

The phospholipid phosphatidylserine (PS) is normally located on the inner surface of 

the cell plasma membrane but in cells entering the apoptotic pathway, PS appears on 

the outer surface of the membrane. Exposure of PS on the outer membrane of the cell 

surface is considered a hallmark of programmed cell death in eukaryotes. It has been 

proposed that release of inner membrane phospholipids, including PS, during apoptosis 

leads to the activation of pro-phenoloxidase (proPO) in insects and crustaceans (Bilda et 

al., 2009, Sugumaran and Nellaiappan, 1990 and Sugumaran and Nellaiappan, 1991). 

Findings presented here suggest that PS may elicit PO activity in Hc, a type 3 copper 

protein which is structurally related to proPO (Zlateva et al., 1996 and Decker and 

Tuczek, 2000). This chapter presents an analysis of hemocyanin-derived PO activity, 

and associated conformational changes, in hemocyanin from Limulus polyphemus, 

caused by the addition of the putative natural activator of PO activity, 

phosphatidylserine (PS). 



P a g e  | 50 

 

 
 

2.3 Materials and Methods 

2.3.1 Purification of Limulus polyphemus hemocyanin 

Hemolymph was obtained via cardiac puncture (Fig. 2.1) using sterile 16 gauge needles 

(BD Microlance 3). Extracted hemolymph was centrifuged immediately at 500 × g for 5 

min at 4 °C to remove the cellular fraction. The supernatant was centrifuged at 400,000 

× g at 4 °C for 90 min and Hc pellets were re-suspended in stabilisation buffer (5 mM 

CaCl2, 5 mM MgCl2, 100 mM Tris–HCl, pH 7.5), yielding partially purified Hc. Partially 

purified Hc was applied to a Sephacryl S-500 HR (120 cm × 1.6 cm) gel filtration column 

(GE Healthcare), previously equilibrated with stabilisation buffer. The gel filtration 

column was calibrated using Blue Dextran (2 MDa), thyroglobulin (670 kDa) and 

apoferritin (450 kDa). The protein concentration was determined by UV absorbance 

measurements at 280 nm, using the value of 1.39 for the absorbance of a 1 mg mL-1 

solution of Hc from L. polyphemus, in a quartz cuvette with pathlength 1 cm. Purified Hc 

was characterised by 280 nm: 350 nm absorption ratio values and by SDS-PAGE. 

Fractions with a 280 nm:350 nm absorption ratio value of 4.2, indicative of oxy-

hemocyanin, were pooled and analysed by SDS-PAGE (4–12% NuPAGE-Novex, Bis-Tris 

gels (Invitrogen)). Peptide mass fingerprinting (Fingerprints Proteomics Facility, 

University of Dundee) was used to confirm the identity of protein species separated by 

SDS-PAGE. 

 

2.3.2 Preparation of phospholipids 

L-α-Phosphatidyl-L-serine from soybean (PS; P0474), L-α-phosphatidylinositol (PI; 

P0639) and 1-palmitoyl-sn-glycero-3-phosphocholine (L-PC; L5254) were purchased 

from Sigma–Aldrich Chemical Company Ltd. Phospholipid stock solutions were 

prepared in 100 mM Tris–HCl, pH 7.5 at concentrations of 1 mg mL-1. Re-suspended 
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phospholipids were placed in a water bath and sonicated (Decon FS 200 frequency 

sweep) at room temperature for no more than 1 h. Sonicated phospholipids were stored 

at 4 °C under nitrogen gas. Phospholipid solutions were passed through 0.1 μm pore 

syringe filters (Anotop 10, Whatman) 6 times in order to remove large unilamellar 

vesicles. Phospholipids were added to PO assays to the following final concentrations: 

PS at 0–20 μg mL-1 (0–25.6 μM), PI at 10 μg mL-1 (11.7 μM) or LPC at 10 μg mL-1 (20.2 

μM). 

 

2.3.3 Dynamic light scattering 

All dynamic light scattering measurements were recorded at 20 °C on a Malvern, 

Zetasizer Auto Plate Reader (50 mW 830 nm Laser). A 50 μL sample of 10 μg mL-1 

phospholipid, in 100 mM Tris–HCl, pH 7.5, was placed in a single unit on a 384 well 

plate. Similar conditions were used to analyse Hc at 1 mg mL-1, in 100 mM Tris–HCl, pH 

7.5, in the absence and presence of phospholipids (final concentration of 10 μg mL-1). 

Particle size measurements were recorded using 13 scans of 10 s duration over a period 

of approximately 10 min. Equipment was cleaned using 6 M guanidine HCl, 10% Decon, 

0.1 M HCl and 0.1 M NaOH prior to use.  

 

2.3.4 Phenoloxidase assay measurements   

Spectrophotometric determination of phenoloxidase activity was carried out at 20 °C in 

a 96-well plate (MDS VERSA max microplate reader). Each assay (100 μL volume) 

consisted of 2 mM dopamine hydrochloride in 100 mM Tris–HCl, pH 7.5 and Limulus Hc 

at a final concentration of 1 mg mL-1. Hc was pre-incubated for 10 min with 

phospholipids at concentrations ranging from 0 to 20 μg mL-1 or with the anionic 

detergent SDS at a concentration of 3.5 mM. PO activity was initiated by the addition of 
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dopamine. PO activity was detected by observing an increase in absorbance at 475 nm 

arising from the formation of dopachrome and its derivatives. One unit is defined as 1 

μmol of dopachrome formed per minute, with an absorption coefficient for dopachrome 

at this wavelength of 3600 M−1 cm−1. PO activity of Hc in the presence of PS and 

increasing concentrations of NaCl (0 – 500 mM) were monitored in order to investigate 

the nature of the Hc-PS interaction. Control assays consisting of Hc in the absence of 

activators were recorded.  

 

2.3.5 Circular dichroism 

CD spectra were recorded on a Jasco J-810 spectropolarimeter at 20 °C. 1S-(+)-10-

camphorsulphonic acid was used to calibrate the spectropolarimeter. All spectral 

measurements were carried out using 100 mM sodium phosphate buffer, pH 7.5. In all 

far and near UV experiments, each measurement was corrected by the subtraction of a 

spectrum of buffer alone. 

Spectra in the far UV region (180–260 nm) were recorded in quartz cylindrical cells of 

pathlength 0.02 cm at a protein concentration of either 0.3 mg mL-1, or 0.4 mg mL-1. 

Data were analysed over the wavelength range 195–240 nm with DICHROWEB, using 

SELCON 3 and protein reference 3 to determine the secondary structure content. 

Samples of Hc (0.3 mg mL-1), in the presence of 10 μg mL-1 phospholipids or 3.5 mM 

SDS, were pre-incubated for 10 min before CD measurements were recorded. In each 

case, 4 scans were recorded (and averaged) at a scan rate of 10 nm/min with a time 

constant of 2 s. Samples of Hc (0.4 mg mL-1) were pre-incubated for 10 min in the 

presence of increasing concentrations of PS (0–20 μg mL-1) before CD measurements 

were recorded. In each case, 4 scans were recorded (and averaged) at a scan rate of 50 

nm/min with a time constant of 0.5 s. 
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Spectra in the near UV region (250–400 nm) were recorded in a quartz rectangular cell 

of pathlength 1 cm using a protein concentration of 0.4 mg mL-1. Samples of Hc (0.4 mg 

mL-1) were pre-incubated for 10 min in the presence of increasing concentrations of PS 

(0–20 μg mL-1) prior to CD measurements. In each case 1 scan was recorded at a scan 

rate of 10 nm min-1 with a time constant of 2 s.  

 

2.3.6 Fluorescence spectroscopy 

All experiments were recorded on a Perkin Elmer LS50 spectrofluorimeter at 20 °C. 

Fluorescence intensity was recorded using a quartz cuvette of 1 mL capacity at a protein 

concentration of 0.1 mg mL-1 in 100 mM sodium phosphate buffer, pH 7.5, with a 5 nm 

bandwidth for the excitation and emission 

I. Intrinsic tryptophan fluorescence from 300 nm – 510 nm was detected using 

an excitation wavelength of 290 nm. Increasing concentrations of PS (0–20 μg 

mL-1), PI (0–10 μg mL-1), LPC (0–10 μg mL-1) or SDS (3.5 mM) were incubated 

with Hc for 10 min prior to fluorescence measurements. Fluorescence 

emission maxima of Hc in the presence of PS and increasing concentrations of 

NaCl (0 – 500 mM) were recorded to investigate the nature of the Hc-PS 

interaction.  

II. Histidine fluorescence (Cu(II) quenching of active site residues) from 400 nm 

– 510 nm was detected using an excitation wavelength of 330 nm. All 

phospholipids (10 μg mL-1) and SDS (3.5 mM) were incubated with Hc for 10 

min prior to analysis.  

All scans were recorded at a rate of 50 nm min-1 and corrected by the subtraction of a 

spectrum of buffer/activator alone. Control experiments indicated that phospholipids, 

SDS and NaCl made no measureable contributions to the fluorescence signals. 
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2.3.7 Absorption spectroscopy 

Absorption spectra of Hc samples were recorded on an Ultrospec 2100 pro UV/Visible 

spectrophotometer over the range of 240–380 nm. The properties of the copper binding 

site of Hc were monitored via the absorption peak at 340 nm which is characteristic of 

type three copper proteins. The effects of increasing concentrations of PS (0–20 μg mL-

1), PI (10 μg mL-1), LPC (10 μg mL-1) and SDS (0–3.5 mM) on absorption spectra were 

determined by incubating 0.3 mg mL-1 Hc for 10 min prior to absorption spectra 

measurements.  

 

2.3.8 Conductivity measurements 

The conductivity of 100 mM Tris-HCl, pH 7.5 in the absence and presence of increasing 

concentrations of sodium chloride (0 – 500 mM) were recorded at room temperature 

using a Portland Electronics Conductivity meter; Model P335. The fine and coarse 

temperature settings were 10oC and 55oC, respectively, using a scale of 0 – 30 mmho. 

The electrode was placed in 5 mL of sample and left for 5 min to equilibrate before 

values were recorded.  

 

2.3.9 Statistical analysis 

All phenoloxidase enzyme assays were performed in triplicate on three independent 

occasions. Results are expressed as the mean ± standard error. Assays were analysed 

using ANOVA. Differences were considered significant at p ≤ 0.05. 
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2.4 Results 

2.4.1 Purification of hemocyanin from Limulus polyphemus 

The success of Hc purification was judged by the 280 nm: 350 nm absorption ratio 

values (Fig. 2.1A) and by SDS-PAGE (Fig. 2.1B). A 280 nm: 350 nm absorption ratio 

value of 4.2 was obtained, which is characteristic of type 3 copper proteins and reflects 

values previously obtained in similar studies (Zlateva et al., 1996). SDS-PAGE indicated 

the presence of Hc subunits with a molecular mass of 70 kDa and 72 kDa (identity 

confirmed by peptide mass fingerprinting; Appendix A), with little sign of degradation 

or presence of contaminants. Typically, 200 mg of Hc was purified from 10 mL of 

hemolymph (Table 2.1). Dynamic light scattering experiments produced a calculated 

radius of gyration for the purified L. polyphemus Hc of 7.46 nm, suggesting that Hc was 

present in hexameric form (4 x 6mer = ~ 1.68 MDa). This is in good agreement with the 

Sephacryl S-500HR gel filtration elution volume which suggested an overall native 

molecular mass of 1.7 MDa. The minor species, which eluted from the S-500HR gel 

filtration column with an apparent molecular mass of ∼350 kDa, contained both Hc and 

C-reactive protein. 

 

2.4.2 Nature of phospholipids 

Dynamic light scattering experiments were used to characterise the nature of the 

prepared phospholipids. The calculated radius of gyration of the prepared 

phospholipids was 10–15 nm, indicating the presence of liposomal structures 

(Appendix B). 

 

 

 

http://www.sciencedirect.com/science/article/pii/S0145305X10002065#bib0125
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Figure 2.1 Purification of hemocyanin from Limulus polyphemus. A) Sephacryl S-500 HR 
size exclusion chromatogram of purified hemocyanin. There are two peaks present; 
peak A is hemocyanin, whereas peak B is hemocyanin and C-reactive protein. Fractions 
from peak A with a 280 nm: 340 nm absorption ratio value of 4.2 (hemocyanin) were 
pooled. B) SDS-PAGE analysis of purified L. polyphemus hemocyanin. Lane 1, molecular 
weight markers, lane 2, main peak (A), lane 3, minor peak (B). Each lane was loaded 
with 2 μg of protein. Peptide mass fingerprinting identified subunit bands of 70 kDa and 
72 kDa as hemocyanin and subunit band of 24 kDa as C-reactive protein. (C) Extraction 
of horseshoe crab hemolymph through the arthroidal membrane.  
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Table 2.1 Purification of hemocyanin from Limulus polyphemus, for 1 mL of hemolymph  

 Protein conc. 
(mg mL-1)a 

Percentage 
dioxygen boundb              

Ratio 
(280 nm : 350 nm) 

Total PO  
(U) 

Specific activity 
(U mg-1) 

Yield  
(%) 

Hemolymph 
(acellular) 

48 100% 4.3 133.92 2.79 100 

Supernatant 
(centrifuged at 400,000g) 

1.56 2.2% 44.6 0.84 0.54 3.25 

Pellet 
(semi-purified) 

43.3 96% 5 122.5 2.83 90.2 

Peak fractionsϮ 
(gel filtration) 

4.1 
 

100% 4.2 77.7 3.16 51.25 

a, hemocyanin concentration was determined as outlined in section 2.3.1  

b, values were calculated from the A 350 nm signal. 

Ϯ, each of the individual fractions (3 x 2 mL) had an absorbance ratio value of 4.2.  
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2.4.3 Phospholipid induced phenoloxidase activity  

Previous data suggested that SDS induction of PO activity in Hc, which is accompanied 

by a conformational change, is optimal in the presence of the micellar form of SDS 

(Baird et al., 2007). In the search for a natural activator which would mimic SDS 

micelles, the ability of phospholipid liposomes to induce PO activity in Hc have been 

tested. PO assay measurements in the presence of phospholipids typically found in L. 

polyphemus amebocytes (MacPherson et al., 1998) indicated that they induced PO 

activity (Fig. 2.2). Control assay measurements indicated that phospholipids failed to 

oxidise dopamine in the absence of Hc. In the present study results suggest that the 

anionic phospholipids, phosphatidylserine (PS) and phosphatidylinositol (PI) are more 

effective at activating PO activity than the neutral lyso-phosphatidylcholine (PC). Under 

the conditions used, PS (10 μg/mL) induced 80% of the activity achieved with SDS 

micelles. In an attempt to determine the optimal concentration of PS required for PO 

activation, PO activity was monitored over a range of PS concentrations (Fig. 2.3). The 

PO activity increased with PS concentrations over the range 0–20 μg/mL PS; however, it 

proved technically challenging to explore the effects of higher concentration of PS due 

to the difficulties associated with PS solubilisation at concentrations in excess of 20 

μg/mL in the assay. PS concentrations of 20 μg/mL induced 4.3 U of dopachrome 

formation, a value which represents 90% of the activation achieved with optimal 

micellar concentrations of SDS (3.5 mM). The structural changes associated with PS 

induction of PO activity in Hc were subsequently explored using a range of biophysical 

techniques. 

 

Footnote 1; Images of phospholipids were obtained, and modified, 
from Avanti Polar lipids Inc. http://avantilipids.com/ 2012 

 

http://www.sciencedirect.com/science/article/pii/S0145305X10002065#fig0015
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Figure 2.2 Phospholipid induced phenoloxidase activity of hemocyanin from Limulus 

polyphemus. Assays included 2 mM dopamine and 1 mg/mL hemocyanin, in 100 mM 

Tris–HCl, pH 7.5. Hemocyanin was pre-incubated for 10 min with either 

phospholipids or SDS. Phenoloxidase activity was initiated by the addition of 

substrate. Assays were recorded over a 6 min period. The histogram illustrates an 

increase in absorbance at 475 nm resulting from the formation of dopachrome and its 

derivatives. The control assay consisted of hemocyanin and substrate in the absence 

of an activator. Inset; molecular structures of phospholipids and SDS1. A significant 

increase in phenoloxidase activity relative to the control at p < 0.05 is indicated by *. 

Letters common between each treatment indicate no significant difference. 
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Figure 2.3 Phosphatidylserine induced phenoloxidase activity of hemocyanin from 

Limulus polyphemus. Hemocyanin was pre-incubated with increasing concentrations of 

phosphatidylserine (1 μg mL-1 (black), 2 μg mL-1 (blue), 3 μg mL-1 (grey), 4 μg mL-1 

(purple), 5 μg mL-1 (green), 10 μg mL-1 (orange), 20 μg mL-1 (light blue) and 3.5 mM SDS 

(red)). Typical assays consisted of 1 mg mL-1 hemocyanin and 2 mM dopamine in 100 

mM Tris–HCl, pH 7.5. Phenoloxidase activity was initiated with the addition of 

substrate. The control (pink) consisted of hemocyanin and substrate in the absence of 

an activator. A second control was performed in the absence of hemocyanin, yielding 

comparable data to the control illustrated in the graph. A significant increase in 

phenoloxidase activity compared to the control at p < 0.05 is indicated by *.  
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2.4.4 Effect of phospholipids on secondary structure 

Far-UV CD spectra (Fig. 2.4 and Fig 2.5) indicate that the presence of phospholipids 

induced conformational changes in Hc which are similar to the changes observed in the 

presence of micellar SDS (Baird et al., 2007). The anionic phospholipids, PS and PI, 

produced changes which were most similar to those observed with SDS; however, the 

change in molecular ellipticity at 205 nm was less pronounced. Analysis of the data over 

the wavelength range 195–240 nm using DICHROWEB suggested that, in the presence 

of phospholipids, the α-helical content of Hc increased, the β-sheet content decreased 

and the unordered structure content remained unchanged (Table 2.2). PS induced an 

increase in the α-helical content of Hc similar to that observed with SDS. Prolonged (2 

days) incubation of Hc with the phospholipids resulted in no further change in the far-

UV CD spectra indicating that the conformation associated with the activated state of Hc 

is stable in the presence of phospholipids. Activity measurements also indicated that 

prolonged incubation with PS resulted in activity retention, ∼15% following 2 days 

incubation with PS. This is in contrast to prolonged incubation of L. polyphemus Hc with 

micellar SDS which results in denaturation and complete loss of activity (Baird et al., 

2007). 
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Figure 2.4 Far-UV CD spectra of 0.3 mg mL-1 Limulus polyphemus hemocyanin incubated with a range of membrane phospholipids. 
Hemocyanin in 100 mM sodium phosphate buffer, pH 7.5, was incubated with (A) SDS (3.5 mM), (B) phosphatidylserine (10 μg mL-1), 
(C) phosphatidylinositol (10 μg mL-1) and (D) lyso-phosphatidylcholine (10 μg mL-1) over a range of incubation periods (5min - 2days) 
prior to the spectral analysis. 



P a g e  | 63 

 

 
 

 

Figure 2.5 Far-UV CD spectra of 0.3 mg mL-1 Limulus polyphemus hemocyanin following 

incubation with phosphatidylserine. Hemocyanin in 100 mM sodium phosphate buffer, 

pH 7.5, was pre-incubated for 10 min with various concentrations of phosphatidylserine 

(0–20 µg mL-1) prior to spectral analysis. 
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Table 2.2 Percentage change in secondary structure content of hemocyanin following 

incubation with phospholipids 

Activators Limulus Hc Experimental 

conditions* 

Helix 

(%) 

Sheet 

(%) 

Turns 

(%) 

Unordered 

(%) 

---------------- 0.3 mg mL-1 Buffer alone 25.2 32.3 18.2 24.5 

PS (10 µg mL-1) 0.3 mg mL-1 30 min 29.3 25.2 17.9 27.7 

PI (10 µg mL-1) 0.3 mg mL-1 30 min 27.4 26.9 18.9 26.7 

LPC (10 µg mL-1) 0.3 mg mL-1 30 min 27.7 23.7 19.2 29.4 

SDS (3.5 mM) 0.3 mg mL-1 1 hour 31.9 20.9 30 27.2 

       

---------------- 0.4 mg mL-1 Buffer alone 27.5 25.8 19.5 27.2 

PS (1 µg mL-1)  0.4 mg mL-1 10 min 28.1 24.2 20.7 27 

PS (5 µg mL-1) 0.4 mg mL-1 10 min 29.2 22.9 20 27.9 

PS (10 µg mL-1) 0.4 mg mL-1 10 min 30.2 21.5 20.8 27.4 

PS (20 µg mL-1) 0.4 mg mL-1 10 min 30.7 21.3 21.1 26.7 

Secondary structure predictions were conducted on DICHROWEB, using SELCON 3 and 

reference set 3. * indicates the amount of time hemocyanin was incubated with each 

activator before the spectra were recorded. 
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2.4.5 Effects of phosphatidylserine on tertiary structure 

Intrinsic fluorescence (Fig. 2.6) and near-UV CD (Fig. 2.7) measurements suggested that 

a structural change in Hc was induced by the presence of phospholipids in a manner 

similar to conformational change induced by micellar SDS (Baird et al., 2007), the most 

effective being PS. Increasing the concentration of PS from 0 to 20 μg mL-1 resulted in a 

decrease in the wavelength of fluorescence emission maximum from 343 nm to 340 nm 

(Table 2.3) suggesting the presence of PS reduces solvent exposure of some or all of the 

tryptophan residues (Fig. 2.6A). Increasing the concentration of PS from 0 to 20 μg mL-1 

also led to a 4-fold increase in the intensity of fluorescence. The maximum wavelength 

shift and the increase in fluorescence intensity observed with Hc in the presence of 20 

μg mL-1 PS were very similar to the response induced by micellar concentrations of SDS. 

The presence of 10 μg/mL of each phospholipid had little effect on the intrinsic 

fluorescence properties of the model compound N-acetyl-L-tryptophan (Fig. 2.6D), 

suggesting that the changes in Hc fluorescence are not a consequence of direct 

interactions between phospholipids and exposed tryptophan side chains. A similar 

control experiment with micellar SDS indicated that there are no direct SDS–tryptophan 

interactions.  

Near-UV CD spectra of L. polyphemus Hc, recorded in the presence of 0–20 μg/mL PS, 

revealed a conformational change in the presence of increasing PS (Fig. 2.7). The 

reduction in peak intensity in the region 260–320 nm suggests a change in the 

environment around some of the aromatic residues present in Hc. The reduction in peak 

intensity of the near-UV CD spectrum of Hc induced by 20 μg mL-1 PS is similar to the 

changes induced by 3.5 mM SDS; however, the intensity of the optimum decrease was 

∼2.5-fold smaller with PS suggesting a less substantial change in the environment 

around some of the aromatic residues in Hc. 
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 Figure 2.6 Fluorescence emission spectra of 0.1 mg mL-1 Limulus polyphemus hemocyanin, in the presence of A) phosphatidylserine, B) 
phosphatidylinositol and C), lyso-phosphatidylcholine. Hemocyanin was pre-incubated for 10 min with increasing concentrations (0–
20 µg mL-1) of phospholipids or SDS (3.5 mM). Experiments were conducted in 100mM sodium phosphate buffer, pH 7.5. Samples were 
excited at 290 nm and the subsequent fluorescent spectrum was recorded. D) Fluorescence emission spectrum of 2 µM N-acetyl-L-
tryptophan, in 100mM sodium phosphate buffer, pH 7.5, was excited at 290 nm in the absence and presence of either phospholipid (10 
µg mL-1) or SDS (3.5 mM) after 10 min incubation. 
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Table 2.3 Intrinsic tryptophan fluorescence peak wavelength of Limulus polyphemus in 

the absence and presence of phospholipids and SDS. A blue-shift in fluorescence 

emission maxima occurs with 3.5 mM SDS and increasing concentrations of 

phospholipids, particularly phosphatidylserine.  

 Activators 

Concentration SDS PS PI LPC 

0 µg mL-1 (control) 343 nm 343 nm 343 nm 343 nm 

1 µg mL-1 - 343 nm 343 nm 343 nm 

2 µg mL-1 - 342.5 nm - - 

3 µg mL-1 - 342.5 nm - - 

4 µg mL-1 - 341.5 nm - - 

5 µg mL-1 - 341 nm 341.5 nm 342 nm 

10 µg mL-1 - 340.5 nm 341 nm 341.5 nm 

20 µg mL-1 - 340 nm - - 

3.5 mM 340 nm - - - 
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Figure 2.7 Near-UV CD spectra of 0.4 mgmL-1 Limulus polyphemus hemocyanin 

following incubated with phosphatidylserine. Hemocyanin in 100 mM sodium 

phosphate buffer, pH 7.5, was pre-incubated for 10 min with various concentrations of 

phosphatidylserine (0–20 µg mL-1) prior to spectral analysis. 

 

 

 

 

 

 

 

 

 

 

 

 



P a g e  | 69 

 

 
 

2.4.6 Presence of copper  

Type 3 copper proteins, including Hc and PO, have a characteristic absorption peak 

between 340 nm and 350 nm (ɛ ∼20,000 M−1 cm−1) (Decker et al., 2001). The di-copper 

centre of type 3 copper proteins also gives rise to a characteristic near-UV CD signal at 

∼340 nm. Addition of phospholipids has little effect on the absorption band which 

occurs at ∼340 nm for L. polyphemus Hc (Fig. 2.8) suggesting that the arrangement 

around the Cu(II) ions is not altered. The presence of PS at the highest concentration of 

20 µg mL-1 reduced the near-UV CD signal at ∼340 nm by ∼40° cm2 dmol−1 suggesting a 

subtle change in the nature of the Hc–copper interaction. Micellar SDS appeared to have 

a greater effect on the arrangement around the Cu(II) ions of L. polyphemus Hc; 

previously a reduction in the near-UV CD signal at ∼340 nm × ∼100° cm2 dmol−1 and a 

substantial reduction in the absorption band at ∼340 nm, have been observed (Baird et 

al., 2007). The subtle change in Hc incubated with PS compared to the severe changes 

observed in Hc with SDS, infers PS may promote a more stable conformation of 

activated Hc-d PO.  

Both Hcs and POs exhibit a characteristic histidine fluorescence signal at 415 – 430 nm 

when excited at 325 – 340 nm, in addition  to the tryptophan fluorescence signal at ~  

340 nm (when excited at 290 nm). Histidine residues present at the active site are 

responsible for the fluorescence signal between 415-430 nm, however, due to the close 

proximity of the copper atoms (CuA and CuB), the signal is severely quenched (Bacci et 

al., 1983; Baird, 2007). Hc incubated in the presence of phospholipids and SDS yielded 

negligible changes in the histidine signal (Fig. 2.9), indicating that the dicopper centre 

remains intact during activation. This is unsurprising given that phospholipids do not 

cause alter the absorption signal at 340 – 350 nm.  
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 Figure 2.8 Absorption spectra of 0.3 mg mL-1 Limulus polyphemus hemocyanin. 
Hemocyanin in 100 mM sodium phosphate buffer, pH 7.5, was pre-incubated for 10 
min with a range of concentrations of (A) phosphatidylserine (0–20 µg mL-1), (B) SDS 
(0–3.5 mM) and (C) phosphatidylinositol and lyso-phosphatidylcholine (10 µg mL-1, 

respectively) prior to absorption spectrum analysis. Data was recorded over the range 
260–400 nm. 
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Figure 2.9 Fluorescence emission spectra of 0.1 mg mL-1 Limulus polyphemus 

hemocyanin, in the presence of phospholipids and SDS. Hemocyanin was pre-incubated 

for 10 min with 10 µg mL-1 of phospholipid or SDS (3.5 mM) prior to spectral readings. 

Experiments were conducted in 100 mM Tris-HCl, pH 7.5. Samples were excited at 330 

nm and the subsequent fluorescent spectrum was recorded. The histidine fluorescence 

peak wavelength of Limulus polyphemus in the presence of phospholipids and SDS is 

depicted also.  
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2.4.7 Preliminary investigations on the nature of the phosphatidylserine- hemocyanin 

interaction 

In order to investigate the properties of the interaction between Hc and PS, Hc was 

incubated in the presence of PS and increasing concentrations of NaCl. The addition of 

NaCl led to a threefold increase in the conductivity of the solution (Fig 2.10), at the 

highest concentration of 0.5 M NaCl. 

 

PO activity of Hc in the presence of 20 μg mL-1 PS and the absence of NaCl was recorded 

at ~ 4 U. The addition of increasing concentrations of NaCl resulted in a decrease in Hc-

d PO activity, <1 U, in the presence of 0.5 M NaCl (Fig 2.11). The addition of NaCl to Hc in 

the presence of PS, induced a hypochromic effect and accompanying red shift in the 

fluorescence emission maxima of Hc (Fig. 2.12), around the 340 nm signal (Table 2.4). 

Control spectra indicate that increasing NaCl concentrations have no measureable effect 

on the model compound N-acetyl-L-tryptophanamide; indicating NaCl ions did not cause 

a change in the fluorescence spectrum due to direct interactions with exposed 

tryptophan side chains (Fig. 2.12B).  
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Figure 2.10 Conductivity measurements of 100 mM Tris-HCl, pH 7.5 were recorded in 

the presence of increasing concentrations of NaCl (0 – 500 mM). Conductivity 

measurements were taken at room temperature and performed in duplicate on two 

independent occasions.  
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Figure 2.11 Phosphatidylserine induced phenoloxidase activity of hemocyanin from 

Limulus polyphemus in the presence of increasing concentrations of NaCl (0 – 500 mM). 

Hc (1 mg mL-1) was pre-incubated with PS (20 µg mL-1) for 10 min in 100 mM Tris-HCl, 

pH 7.5 in the presence of increasing salt concentrations. Phenoloxidase activity was 

initiated by the addition of substrate (2 mM dopamine). Assays were recorded over a 6 

min period. The histogram illustrates an increase in absorbance at 475 nm resulting 

from the formation of dopachrome and its derivatives.  
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Figure 2.12 Fluorescence emission spectra of 0.1 mg mL-1 Limulus polyphemus 

hemocyanin with increasing concentrations of NaCl (mM).  A) phosphatidylserine (20 

µgmL-1) and increasing concentrations of NaCl (mM). Hemocyanin in the presence of PS 

was pre-incubated for 10 min with increasing concentrations of NaCl. Experiments were 

conducted in 100 mM Tris-HCl, pH 7.5. Samples were excited at 290 nm and the 

subsequent fluorescent spectrum was recorded. B) Fluorescence emission spectrum of 

2 µM N-acetyl-L-tryptophan, in 100 mM Tris-HCl, pH 7.5, was excited at 290 nm in the 

absence and presence of 25 mM and 250 mM NaCl2 after 10 min incubation. 
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Table 2.4 Intrinsic tryptophan fluorescence peak wavelength of Limulus polyphemus in 

the presence of phosphatidylserine and increasing concentrations of NaCl. Hemocyanin 

(0.1 mg mL-1) and 20 µg mL-1 PS in 100 mM Tris-HCl, pH 7.5 were-pre-incubated with a 

range of NaCl concentrations prior to spectral analysis. A red shift in fluorescence 

emission maxima occurs when concentrations of NaCl increase. 

 

 Sample 

 Hc only Hc +PS 

 [NaCl]    

0 mM 343 nm 340 nm 

5 mM - 340 nm 

25 mM - 340 nm 

50 mM - 340.5 nm 

100 mM - 341. nm 

200 mM - 341.5 nm 

250 mM - 342 nm 

500 mM 343 nm 342.5 nm 
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2.5 Discussion  

Hc functions as an oxygen carrier in many arthropods, however, functional studies over 

the past decade have identified multiple roles for Hc in innate immunity (Chapter 1). 

The functional conversion of Hc into a PO-like enzyme has been achieved by: limited 

proteolysis of chelicerate and crustacean Hc (Decker and Tuczek, 2000); addition of 

denaturants to chelicerate, crustacean and mollusc Hc (Decker and Jaenicke, 2004); or 

the association of Hc from the chelicerate Tachypleus tridentatus with clotting cascade 

proteins/peptides (Nagai and Kawabata, 2000 and Nagai et al., 2001). Sequence 

alignments (Decker and Jaenicke, 2004) and structural comparisons (Li et al., 2009) 

indicate that Hc is homologous to PO, an enzyme involved predominantly in innate 

immunity. 

 

In this chapter Hc-d PO activity is recorded in the presence of phospholipids, notably PS 

(Fig. 2.2 and Fig. 2.3). PS-induced secondary (Fig. 2.4,) and tertiary (Fig. 2.6 and Fig 2.7) 

structural changes in Hc are similar to those observed in the presence of SDS, in 

agreement with previous studies (Baird et al., 2007). Studies in Drosophila melanogaster 

have led to the proposal that PS acts as a natural inducer of proPO following injury 

(Bilda et al., 2007 and Bilda et al., 2009). PS is an anionic phospholipid which occurs 

predominantly on the cytoplasmic side of the plasma membrane in quiescent eukaryotic 

cells; however, PS is externalised onto the extracellular side of the plasma membrane 

upon damage, infection or apoptosis. The appearance of PS on the extracellular side of 

the membrane is required to promote protein-mediated responses to damage, infection 

and apoptosis (Chaurio et al., 2009). Given that PS liposomes, which activate proPO in 

vivo (Bilda et al., 2009), and that SDS micelles, which induce PO activity in Hc in vitro 

(Baird et al., 2007), share a similar charge and shape, the ability of PS to induce PO 
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activity in L. polyphemus Hc was explored. While the source of PO activity in some 

arthropods can be attributed to proPO, or to a combination of proPO and Hc, in the 

chelicerate L. polyphemus the PO activity appears to be due to Hc only (Terwilliger and 

Ryan, 2006). Thus, L. polyphemus presents a simple system for studying PS induction of 

PO activity in Hc. 

In the absence of artificial or putative natural activators, purified L. polyphemus Hc 

exhibits no measureable PO activity. Addition of lyso-PC, PI and PS were capable of 

inducing PO activity, with PS proving almost as effective as the universal artificial 

activator SDS (Fig. 2.3). In mammalian systems, PS is known as the most effective 

anionic phospholipid capable of activating blood coagulation (Zwaal et al., 1998). PC, PE 

and sphingomyelin, in isolation or in combination with other phospholipids, are capable 

of influencing coagulation complex formation; however, PS appears to be the most 

effective activator. The predominant interactions between PS and coagulation proteins 

appear to be electrostatic, with possible membrane penetration by hydrophobic 

residues (Stace and Ktistakis, 2006). In general, PS-binding proteins contain short 

stretches of sequence rich in basic and hydrophobic residues (Stace and Ktistakis, 

2006).  

Sequence analysis of L. polyphemus Hc (courtesy of J. Nairn and A. Patterson; Coates et al., 

2011) reveals a possible PS-binding site in the region P181 to K196, with the sequence 

PSTWNPKYFGKKKDRK (using L. polyphemus Hc subunit II, PDB; 1OXY). The identified 

amino acid stretch possesses a theoretical pI value of 10.3. This predominantly 

positively charged region is present as a loop close to the mouth of the active centre of 

Hc (Fig. 2.13), which contains the conserved placeholder residue, Phe 49 (Fig. 2.14). The 

distance between Phe 49 and Ser 182 (present on the positively charged loop) is ~ 8.3 
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Å. It is possible that upon binding of phospholipids to Hc, in particular PS, the removal 

or trans-location of this loop, could provide phenolic molecules with a direct route to 

the copper centre, leading to enhanced PO activity in Hc.  

Preliminary investigations of Hc-PS interactions suggest that electrostatic interactions 

play a significant role (Fig. 2.11 and Fig. 2.12). Hc-d PO activity was reduced by ~ 75% 

at the highest concentration of 500 mM NaCl (concentrations above this resulted in Hc 

solubility issues). NaCl ions are known to influence protein stability; at low 

concentrations, ligand-induced ion-specific interactions of NaCl with proteins can 

promote conformational stability (Date and Dominy, 2013), and this may account for 

the most prominent changes in the fluorescence emission maxima of Hc with PS, at 

concentrations above 0.1 M (Fig. 2.12). On the other hand, increasing concentrations of 

NaCl can be correlated broadly with protein unfolding (Date and Dominy, 2013). It may 

be that binding of PS to Hc is dependent on a synergy of electrostatics and direct 

interactions with specific amino acids. In this study, NaCl may be affecting Hc and PS 

individually or together as a protein-lipid complex, therefore, more data is needed in 

order to fully characterise this interaction. Moreover, the recently crystallised structure 

of the zymogen proPO from Manduca sexta (Li et al., 2009) provided insight to the 

molecular mechanisms associated with proteolytic activation of PO, with a drastic 

change in the electrostatic surface of the enzyme accompanying the conversion of 

proPO to PO. The switch in electrostatic surface potential of M. sexta proPO upon 

activation may also be similar for the activation of Hc into Hc-d PO, giving credence to 

potential electrostatic interactions between Hc and phospholipids.  

In the event of wounding and or/microbial infection, the conversion of Hc to PO may be 

mediated by a number of activators in a manner similar to proPO activation (Cerenius et 
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al., 2008). The interaction of activators with a number of specific sites on Hc would 

reflect the multiple roles of Hc and the regulation of its conversion to PO. Activation 

events may include the externalisation of PS onto the extracellular side of the cell 

membrane and the release of antimicrobial peptides. Antimicrobial peptides released 

from the S-granules of T. tridentatus amebocytes form an amphipathic β-hairpin 

conformation which is stabilised by two disulphide bonds: one face of the β-sheet is 

hydrophobic and the other face is cationic. The hydrophobic side chains, together with 

the disulphide bonds, have been shown to be essential for the peptide–Hc interaction 

and the resultant conversion of Hc to PO (Nagai et al., 2001). It has been demonstrated 

that in the case of activation by PS, electrostatic interactions appear to be important for 

PS–Hc interactions and the subsequent induction of PO activity in Hc. 
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Figure 2.13 A) Electrostatic surface potential of Limulus polyphemus hemocyanin 
(PDB ID code 1OXY). The surface of Hc is predominantly negatively charged, 
however, the region P181 to K196 (Hc subunit II, sequence ID code P04253) is 
mostly positively charged. This region may interact directly with phospholipids 
resulting in greater substrate access to the Cu(II) centre. B) Location of the positively 
charged loop (P181 to K196) relative to the entrance of the Cu(II) centre of L. 
polyphemus hemocyanin (PDB ID code 1OXY). The secondary structure elements are 
shown as ribbons with the positively charged loop shown in blue. The copper-
coordinating His ligands are shown as sticks. The di-copper atoms are shown as 
spheres. Molecular graphics images were produced using the UCSF Chimera package 
from the Resource for Biocomputing, Visualization, and Informatics at the University 
of California, San Francisco (supported by NIH P41 RR-01081). 
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Figure 2.14 Proximity of the positively charged loop to the dicopper centre of 

hemocyanin (PDB; 1OXY), which contains the placeholder residue, Phe 49. The distance 

between Phe 49 and Ser 182 is ~  8.3 Å. The secondary structure elements are shown as 

ribbons with the positively charged loop shown in green. His ligands are shown as 

sticks, with copper atoms represented by brown spheres. Molecular graphics images 

were produced using the UCSF Chimera package from the Resource for Biocomputing, 

Visualization, and Informatics at the University of California, San Francisco (supported 

by NIH P41 RR-01081).  
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Results presented here show clearly that PS induction of PO activity in Hc is 

accompanied by a structural change in the protein (Fig. 2.15) and this structural change 

can be reversed with the addition of NaCl (Fig. 2.16). An increase in Hc-d PO activity is 

correlated broadly with an increase in the fluorescence emission maximum and blue-

shift; likewise, a reduction of Hc-d PO in the presence of increasing concentrations of 

NaCl display a hypochromic effect and accompanying red-shift in the emission 

maximum. The nature of this change is very similar to that observed with micellar SDS 

induction (Baird et al., 2007), with two subtle yet significant differences: PS induction 

produces a ∼2.5-fold lower change in the near-UV CD spectrum and causes no change in 

the absorption spectrum at 340 nm. Thus PS (at 20 μg mL-1) appears to induce a similar 

level of PO activation as micellar SDS, but PS promotes a smaller, and more stable, 

conformational change. The changes in both the secondary and tertiary structure of Hc 

which accompany induction of PO activity suggest that PO substrates can now access 

the Cu(II) centre, be turned over and products released.  

It has been proposed that removal of a highly conserved phenylalanine (Phe 49 in L. 

polyphemus and T. tridentatus Hc) allows entrance to the Cu(II) centre of Hc (Decker 

and Tuczek, 2000; Nagai et al., 2001). Also, the crystal structure of proPO from M. sexta 

led to the proposal of a model for proPO activation in which proteolytic cleavage results 

in exposure of a basic region on the surface of the enzyme, promoting the formation of 

an activation complex involving proPO activating protease and clip-domain serine 

protease homolog (Li et al., 2009). The model of electrostatic interactions mediating 

proPO activation and the trans-location of Phe 49 may be of relevance to the induction 

of PO activity in Hc, caused by PS binding, and is in good agreement with data presented 

here.   
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Figure 2.15 Correlation of phenoloxidase activity and structural changes in Limulus 

polyphemus hemocyanin with increasing concentrations of phosphatidylserine. The 

percentage of total structural change remaining (Far-UV circular dichroism 

spectroscopic data (at 207 nm) and intrinsic tryptophan fluorescence data (at 340 nm)) 

and the maximum hemocyanin-derived phenoloxidase activity are plotted against 

increasing concentrations of phosphatidylserine (0–20 µg mL-1). The extent of the blue 

shift in the emission maxima of hemocyanin incubated in phosphatidylserine was also 

plotted against maximum phenoloxidase activity measurements. The percentage of total 

structural change remaining was calculated from the change in intensity in the spectra 

at the appropriate wavelengths, assuming 100% structure remaining in the absence of 

phosphatidylserine and 0% structure remaining in the presence of 20 µg mL-1 

phosphatidylserine. 
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Figure 2.16 Correlation of phenoloxidase activity and structural changes in Limulus 

polyphemus hemocyanin in the presence of phosphatidylserine (20 µg mL-1) and 

increasing concentrations of NaCl. The percentage of total structural change remaining 

(Intrinsic tryptophan fluorescence data (at 340 nm)) and the maximum hemocyanin-

derived phenoloxidase activity are plotted against increasing concentrations of NaCl (0 

– 500 mM). The extent of the red-shift in the emission maxima of hemocyanin in the 

presence of PS with increasing NaCl concentrations was also plotted against 

phenoloxidase activity measurements. The percentage of total structural change 

remaining was calculated from the change in intensity in the spectra at the appropriate 

wavelength (~ 340 nm) assuming 100 % structure remaining in the presence of 500 

mM NaCl, and 0 % structure remaining in the absence of 500 mM NaCl. 
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2.6 Conclusions  

Anionic phospholipids, in particular phosphatidylserine, induce phenoloxidase activity 

in Hc from L. polyphemus. This change in function is accompanied by a structural change 

which mimics the activity and structural changes observed in chelicerate hemocyanins 

in presence of the artificial activator SDS. A direct interaction between PS and Hc, 

possibly via a PS-binding site, or a less specific electrostatic interaction is suggested. 

These findings suggest a novel role for PS in activating innate immunity following its 

exposure on the cell surface and subsequent interaction with Hc.  
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Chapter 3:  

di-Phenoloxidase Activity of Nephrops norvegicus 

Hemocyanin; Applications for the Inhibition of 

Hyperpigmentation in Shellfish 

 

 

 

 

 

 

 

 

 

A version of this chapter has been published;  

Christopher J. Coates and Jacqueline Nairn. 2013. Hemocyanin-derived phenoloxidase 

activity; a contributing factor to hyperpigmentation in Nephrops norvegicus. Food 

Chemistry. 140, 361-369. 
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3.1 Abstract 

 
The phenomenon of hyperpigmentation (melanosis) in shellfish has long been 

attributed to phenoloxidase enzymes. Over the last number of years, the oxygen carrier 

hemocyanin, has demonstrated multiple immune- and physiological functionalities, 

most notably, inducible phenoloxidase activity. In this chapter, hemocyanin purified 

from the hemolymph of Nephrops norvegicus displays diphenoloxidase activity in the 

presence of a number of  elicitors and retains structural and functional integrity 

throughout the process of freeze-thawing (at -25oC). Conversely, cellular phenoloxidase 

activity (present in crude cell-lysates), demonstrates > 98% reduction in activity after 

freeze-thawing. Evidence suggests that hemocyanin may act as a causative agent of 

hyperpigmentation in N. norvegicus. The inhibition of hemocyanin-derived 

phenoloxidase activity is discussed in this chapter, and for the first time, the biophysical 

interactions of shellfish hemocyanin with known phenoloxidase inhibitors are 

presented. 
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3.2 Introduction 

Hyperpigmentation (or melanosis) is a non-infectious condition of shellfish which has 

deleterious impacts on shellfish aquaculture/fisheries and is associated with food 

spoilage (Kim et al., 2000a). Although this cuticular darkening is not a health hazard 

(Fig. 3.1), the displeasing aesthetic appearance of the shellfish ultimately leads to a 

reduction in market value (Garcia-Carreno et al., 2008). Phenoloxidase (PO) enzymes, 

both tyrosinases (E.C. 1.14.18.1) and catecholoxidases (E.C. 1.10.3.1), catalyse the initial 

steps in a series of enzymatic reactions that leads to the synthesis of the chromogen, 

melanin (Cerenius & Soderhall, 2004). PO enzymes and the associated proPO activation 

cascade play an essential role in invertebrate immunity, however, it is thought that PO 

enzymes are the primary cause of hyperpigmentation, post mortem (Martinez-Alvarez 

et al., 2008). Consequently, concerted efforts have been made to prevent and/or inhibit 

hyperpigmentation, by targeting PO enzyme activity (Nirmal & Benjakul, 2009; Montero 

et al., 2001). Recent reports suggest that the extracellular PO derived from Hc, and not 

cellular PO, is the likely cause of hyperpigmentation in crustaceans (Adachi et al., 2001; 

Garcia-Carreno et al., 2008; Martinez-Alvarez et al., 2008). Furthermore, Hc not only 

demonstrates PO activity, but is also inhibited by known PO inhibitors (Jaenicke & 

Decker, 2008; Wright, et al., 2012).  

Hc is abundant in the hemolymph of invertebrates, comprising > 90% of total protein 

content, and is known to retain structural and functional integrity across a wide 

temperature range, -20oC to 70oC (Decker, et al., 2007a). Conversely, PO is less 

abundant within the cells of hemolymph and is more sensitive to thermal denaturation 

(Cong et al., 2005; Garcia-Carreno et al., 2008; Liu et al., 2006). Cellular PO activity (cell 

lysates) and extracellular hemocyanin-derived phenoloxidase activity (Hc-d PO) of N. 
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norvegicus hemolymph, pre- and post-freezing, mimicking the in situ handling of 

harvested shellfish, have been investigated with a view to characterising the true cause 

of hyperpigmentation. N. norvegicus is of significant commercial importance in the 

North–east Atlantic and Mediterranean areas, with an average of 20-30 metric tonnes 

caught per port annually, in the Spanish Mediterranean alone (Gimenez, et al., 2010). 

This chapter details the purification of Hc from N. norvegicus. The kinetic properties of 

Hc-d PO activity are presented and the efficacy of known PO inhibitors against Hc-d PO 

activity has been determined.  
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Figure 3.1 Appearance of fresh caught prawns (A) and prawns with hyperpigmentation 

present (B). Melanin appears to accumulate on the ventral surfaces of the prawns. 

Modified from http://www.inrb.pt/fotos/editor2/guidebook.pdf. 
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3.3 Materials and Methods 

3.3.1 Chemicals  

All chemicals and reagents used in this study were of the highest quality, purchased 

from Sigma Aldrich Chemical Company, Dorset UK, unless stated otherwise. Inhibitors: 

L-ergothioneine (L-ER), mimosine and 4-hexylresorcinol (4HR) were purchased from 

BIOMOL International, Acros Organics and Santa Cruz Biotechnology Inc., respectively. 

Tropolone, kojic acid and 1-phenyl 2-thiourea (PTU) were purchased from Sigma.  

3.3.2 Maintenance of Nephrops norvegicus 

N. norvegicus specimens were kindly provided by John Davis, Xyrex. Specimens were 

maintained in a closed circulation tank (at 16oC ± 2oC) containing natural seawater and 

fed three times a week on squid and/or mussels. Approximately 50% of seawater was 

exchanged per week, in addition to using an internal submerged filter pump (Hailea-

BT1000) and siphoning of faeces/particulates. Water quality assessments (including 

salinity, ammonia, nitrites, nitrates, phosphates, pH and calcium) were performed 

regularly using a Hagen Master Test Kit (Aquatic Warehouse). 

3.3.3 Cellular parameters 

Hemolymph was extracted using a 23 gauge hypodermic needle attached to a sterile 

syringe. The needle was inserted into the membrane between the pincher cheliped and 

cephalothorax (Fig. 3.3). The membrane was cleaned with 70% ethanol pre- and post- 

extraction to avoid sepsis. A maximum of 200 µL of hemolymph was extracted per 

specimen.  

 



P a g e  | 93 

 

 
 

A) Hemocyte numbers and viability 

Extracted hemolymph was diluted immediately in a ratio of 1:1 (v/v) in marine anti-

coagulant (3% NaCl, 100 mM dextrose, 47 mM citric acid and 10 mM EDTA, pH 4.6), 

adapted from Söderhäll & Smith (1983). Serial dilutions were carried out in LPS-free 

saline (3% NaCl, 10 mM NaHCO3, pH 7.5) and hemocyte concentrations were calculated 

using an improved Neubauer hemocytometer.  

Viability of extracted hemocytes was determined by the trypan-blue exclusion method 

(Altman et al., 1993). Hemocytes were washed in LPS-free saline and re-suspended in 

3% NaCl-20 mM HEPES, pH 7.5 containing 0.2 % (w/v) trypan-blue. Hemocytes were 

incubated for ~ 3 min at room temperature, with stained vs. unstained hemocyte counts 

used to determine percentage viability.  

 

B) Phenoloxidase staining 

Approximately 5 x104 hemocytes were added to culture wells (final volume, 500 µL) 

containing 3% NaCl, 20 mM HEPES, pH 7.5, 10 mM CaCl2, 10 mM MgCl2, 5 mM KCl2 and 

10 mM NaHCO3. Hemocytes were allowed to settle to the bottom of the well (~ 30 min) 

before half of the buffer (~  250 µL) was removed and replaced with an equal volume of 

PO stain (3% NaCl - 20 mM HEPES, pH 7.5, 20 µg mL-1 lipopolysaccharide (LPS), 5 mM 

dopamine, 5 mM 4-methoxyphenol, 5 mM 3-methyl-2-benzothiazolinone hydrazine 

(MBTH) and 2.5% EtOH), adapted from Aladaileh, Nair & Raftos (2007). Hemocytes 

were incubated for 30 min at room temperature in the presence of the PO stain and 

then fixed with 2.5 % neutral formaldehyde. Cells were viewed and quantified using 

brightfield optics of an Olympus M081 inverted microscope. Randomly chosen fields of 

view were selected until ~ 300 individual cells had been observed per well.  
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3.3.4 Phenoloxidase activity of cell lysates and acellular hemolymph 

Approximately 200 µL of hemolymph were withdrawn per specimen (N. norvegicus). 

Extracted hemolymph was centrifuged immediately at 1000 x g for 5 min at room 

temperature. The supernatant (containing Hc) was removed and stored on ice or frozen 

at -25oC. Cell pellets were washed, and either; (A) re-suspended in Lysis buffer (100 mM 

Tris-HCl, pH 7.5, 10 mM CaCl2, 10 mM sodium cacodylate, 1% (v/v) nonidet P-40, 50 µM 

phenylmethylsulfonylfluoride (PMSF) and 20 µM E-64) and sonicated for 5 min at 30 

Amp and subsequently frozen at -25oC, or (B) re-suspended in 3% NaCl - 20 mM HEPES, 

pH 7.5 and frozen. Following incubation at -25 oC for 24, 72 and 120 h, cell-free 

hemolymph and cell extracts were incubated on ice for 2 h prior to PO activity 

measurements. The PO assays contained 1 mg mL-1 hemolymph protein or 50 µg mL-1 

cell lysate proteins in 100 mM Tris-HCl, pH 7.5 containing 2 mM dopamine 

hydrochloride as substrate and 0.1% (3.5 mM) SDS. Protein samples were pre-

incubated with SDS for 5 min prior to activity measurements. PO activity was initiated 

with the addition of substrate and was monitored by an increase in absorbance at 475 

nm, detecting the products of dopamine oxidation.   

Protein concentrations of the cell lysates and hemolymph-supernatant were determined 

using 0.06% Coomaisse G250 dye reagent, with bovine serum albumin as standard 

(Sedmak & Grossberg, 1977). 

 

3.3.5 Purification of Nephrops norvegicus hemocyanin 

The purification of Hc from the hemolymph of N. norvegicus was adapted from Coates et 

al. (2011). Hemolymph from 5 individuals (5 x 200 µL) was pooled together. Extracted 
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hemolymph was centrifuged immediately and the acellular supernatant was collected 

and stored on ice. The supernatant was treated further as outlined in section 2.3.1. The 

concentration of purified Hc was determined by UV absorbance measurements at 280 

nm, using the value of 1.43 for the absorbance of a 1 mg mL-1 solution of Hc (Brouwer, 

Whaling, & Engel, 1986) in a quartz cuvette of 1cm pathlength. Hc fractions with a 280 

nm: 350 nm absorbance ratio value of 4.2 (oxy-hemocyanin) were pooled and analysed 

by SDS PAGE (4 – 12%, NuPAGE-Novex Bis-Tris Gels, Invitrogen). The proteins with an 

apparent molecular weight of 72-74 kDa were identified by peptide mass fingerprinting 

(Fingerprints Proteomics Facility, University of Dundee). Purified Hc was stored at 4oC. 

 
3.3.6 Dynamic light scattering 

All measurements were recorded at 5oC on a Malvern, Zetasizer Auto Plate Reader 

(50mW 830nm Laser). A 50 µL sample of a 2.5 mg mL-1 solution of purified N. 

norvegicus Hc in 100 mM Tris-HCl, pH 7.5 was placed in a single unit on a 384 well plate. 

Particle size measurements were recorded using 13 scans of 10 s duration over a period 

of ~ 10 min; the estimated size represents an average of 3 repeats. For the melting 

curve experiments, single measurements were taken from 5oC to 90oC in 2oC 

increments. Equipment was cleaned using 6M Guanidine HCl, 10% Decon, 0.1M HCl and 

0.1M NaOH prior to use. 

 

3.3.7 Hemocyanin derived phenoloxidase activity 

Phenoloxidase activity was measured at 20°C in a 96 well plate (MDS VERSA max 

microplate reader). Assays (100 µL volume) consisted of 2 mM dopamine hydrochloride 

in 100 mM Tris-HCl, pH 7.5 and N. norvegicus Hc at a final concentration of 1 mg mL-1. 

Hc was either pre-incubated for 5 minutes with 0.1 % SDS, CPC or 20 % (v/v) 
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isopropanol, or for 30 mins with 1 M Urea and/or 200 mM NaClO4. PO activity was 

monitored as outlined in section 2.3.4. Values for the auto-oxidation of substrate were 

deducted from the Hc-d PO activity values to generate absorbance changes which could 

be attributed to Hc-d PO only. 

3.3.8 Enzyme Kinetics 

A) Substrate properties  

Stock solutions of dopamine and 4-methylcatechol were prepared in 100 mM Tris-HCl, 

pH 7.5. Hc was pre-incubated with 3.5 mM SDS for 5 min. Assays were initiated by the 

addition of substrate. Dopamine and 4-methylcatechol were assessed over the ranges 0 

– 4 mM and 0 – 30 mM, respectively. Hc failed to display monooxygenase activity in the 

presence of L-tyrosine at concentrations between 0 – 20 mM.  

B) Inhibition studies 

Stock solutions of kojic acid, PTU, tropolone, L-ER and mimosine were prepared in 100 

mM Tris, pH 7.5. Stock solutions of 4-HR were prepared in 100 mM Tris, pH 7.5, 

containing 25% ethanol. Inhibition studies were carried out by pre-incubating N. 

norvegicus Hc with SDS for 5 min and subsequently with an inhibitor for a further 5 min. 

The assays were initiated by the addition of 2 mM dopamine. Each assay was conducted 

in triplicate and average rates were calculated. 

 

3.3.9 Absorption Spectroscopy 

The absorption spectra of purified Hc samples were recorded on an Ultrospec 2100 pro 

UV/Visible spectrophotometer over the range of 240–400 nm. The properties of the 
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copper binding site of Hc were monitored via the absorption peak at ~ 350 nm which is 

characteristic of type three copper proteins with dioxygen bound.  

A) Hemocyanin stability; freeze-thawing 

The absorption spectra of 0.3 mg mL-1 N. norvegicus Hc, in 100 mM Tris-HCl, pH 7.5, 

were recorded prior to incubation at -25oC and following incubation at -25oC for 24 h 

with subsequent thawing on ice for 2 h.  

B) Inhibitor interactions 

The absorption spectra of 0.4 mg mL-1 Hc were recorded in the presence of SDS and 

inhibitors. Hc, in 100 mM Tris-HCl, pH 7.5, was pre-incubated with 1.4 mM SDS for 5 

min and subsequently incubated in the presence of an inhibitor (4-HR, 60 µM, L-

ergothioneine, 220 µM and/or mimosine, 250 µM) for a further 5 min. A control 

spectrum, with no inhibitor, was recorded to note any changes caused by a further 5 

min incubation with SDS. 

3.3.10 Fluorescence Spectroscopy 

All experiments were recorded on a Perkin Elmer LS50 spectrofluorimeter at 20◦C over 

the range 300-510 nm. Intrinsic tryptophan fluorescence was recorded using a quartz 

cuvette of 1 mL capacity at a protein concentration of 0.1 mg mL-1 in 100 mM Tris-HCl, 

pH 7.5. The excitation wavelength used was 290 nm with a 5 nm bandwidth for the 

excitation and emission. All scans were recorded at a rate of 50 nm/min and corrected 

by the subtraction of a spectrum of SDS/inhibitor only. Control experiments were 

conducted to note the contribution that inhibitors and SDS made to the fluorescence 

signals. 
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A) Hemocyanin stability; freeze-thawing 

Fluorescence emission spectra of 0.1 mg mL-1 N. norvegicus Hc, in 100 mM Tris-HCl, pH 

7.5, were recorded prior to incubation at -25oC and following incubation at -25oC for 24 

h with subsequent thawing on ice for 2 h.  

B)  Inhibitor interactions 

Fluorescence emission spectra of 0.05 mg mL-1 Hc were recorded in the presence of SDS 

and inhibitors. Hc, in 100 mM Tris-HCl, pH 7.5,  was pre-incubated with 1.4 mM SDS for 

5 min and subsequently incubated in the presence of an inhibitor (4-HR, 30 µM, L-

ergothioneine, 110 µM and/or Mimosine, 125 µM) for a further 5 mins. A control 

spectrum, with no inhibitor, was recorded to note any changes caused by a further 5 

min incubation with SDS. 

 

3.3.11 Data handling 

Substrate kinetic data was fitted to a Michaelis-Menten equation using Sigma Plot 12, 

yielding Vmax and Km values. IC50 inhibition values were calculated using a range of 

inhibitor concentrations; 4-HR (0 – 0.5 mM), L-ER (0 – 1 mM), Mimosine (0 – 1 mM), 

Kojic acid (0 – 1 mM), Tropolone (0 – 1 mM) and PTU (0 – 0.05 mM). Inhibition data was 

fitted to a standard curve using a four parameter logistic equation (minimum, 

maximum, EC50 and slope of the curve). Data presented here, represents the mean ± 

standard error. 
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3.4  Results 

3.4.1 Effect of freeze-thawing on phenoloxidase activity from cellular and hemolymph 

fractions 

 

 

The relative amounts of inducible PO activity from extracellular Hc-d PO and cellular PO 

were calculated as ~  50 U and ~  969 U (prepared from 1 mL of hemolymph), 

respectively. Cellular PO activity is reduced by > 98 % after incubating at -25oC for 120 

h and subsequently thawing for 2 h, whereas extracellular Hc-d PO retains 100% 

activity following a similar treatment (Fig. 3.2A). Interestingly, it appears that the 

freeze-thawing process increases PO activity recorded in the hemolymph fraction (Hc-d 

PO activity) by ~ 20 % following incubation at -25oC for 72 h.  

 

Extracted hemocytes of N. norvegicus were stained for viability (using trypan-blue) and 

the presence of PO (Fig. 3.2B), to ensure functionality prior to lysis, and to confirm the 

presence of cellular proPO. Between 5 to 6 x106 hemocytes per mL were enumerated, > 

98% were viable and ~ 11% stained positive for PO, under the conditions used.  
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3.4.2 Purification of hemocyanin from Nephrops norvegicus 

Figure 3.2 Effect of freeze-thawing on cellular and hemolymph fractions from 

Nephrops norvegicus. A) Phenoloxidase activity of freeze-thawed crude cell lysates 

and cell-free hemolymph (i.e. Hc-d PO) from N. norvegicus. At time 0, hemocytes were 

lysed via lysis buffer and sonicated. At time points; 24 – 120 h, hemocyte lysis was 

achieved via the freeze-thawing process. B) Properties of hemocytes extracted from 

N. norvegicus. Images; non-viable hemocytes stain blue due to loss of plasma 

membrane integrity (black arrows).Viable cells are unstained. Hemocytes that stain 

positive for PO appear an intense dark brown/red colour (blue arrows). Unstained 

cells appear a faint brown due to the presence of the chromogenic substance, MBTH, 

in the stain. Values are represented by the mean ± standard error, n = 7.  
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3.4.2 Purification of hemocyanin from Nephrops norvegicus 

The success of Hc purification from N. norvegicus hemolymph was determined by the 

280 nm: 350 nm absorption ratio values and SDS-PAGE (Fig. 3.3). A 280 nm: 350 nm 

absorption ratio value of 4.2 was achieved, which is characteristic of type three copper 

proteins with dioxygen bound, and in good agreement with Hcs purified previously 

(Coates et al., 2011). Hc subunits with a molecular mass of ~ 72 kDa and ~ 74 kDa were 

identified using SDS-PAGE (Fig. 3.3B), and confirmed by peptide mass fingerprinting 

(Appendix 10.1). Typically, ~ 10.5 mg of Hc was purified from 1 mL of N. norvegicus 

hemolymph (Table 3.1). Dynamic light scattering measurements produced a calculated 

radius of gyration of 8.3 ± 0.2 nm for purified N. norvegicus Hc, suggesting Hc was 

present as a hexamer (Appendix 10.2).  

 

3.4.3 Stability of Nephrops norvegicus hemocyanin  

 

Purified Hc from N. norvegicus hemolymph was incubated at -250C for 24 h and thawed 

subsequently on ice for 2 h. The resultant absorption spectra (Fig. 3.4A) and 

fluorescence spectra (Fig. 3.4B), pre- and post-freezing, demonstrated retention of Hc 

structural integrity. Using DLS, Hc displayed a melting point at ~ 55oC (Fig. 3.5), 

characterised by high levels of protein aggregation.  
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Figure 3.3 Purification of hemocyanin from Nephrops norvegicus. A) Sephacryl-500 HR 
size exclusion chromatogram displaying a single peak. Peak fractions with a 280 nm: 
350 nm absorption ratio value of 4.2 (oxy-hemocyanin) were pooled. B) SDS PAGE 
analysis of purified N. norvegicus hemocyanin. Lane 1, molecular weight markers and 
Lane 2, represents the peak (lane was loaded with 0.5 µg protein). C) Hemolymph is 
extracted from N. norvegicus between the pincher cheliped and cephalothorax (black 
arrow).
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Table 3.1 Purification of hemocyanin from Nephrops norvegicus, for 1 mL of hemolymph  

 Protein conc. 
(mg mL-1)a 

Percentage 
dioxygen boundb             

Ratio 
(280 nm : 350 nm) 

Total PO  
(U) 

Specific activity 
(U mg-1) 

Yield  
(%) 

Whole hemolymph 
(acellular) 

22.1 100 % 4.7 47.5 2.15 100 

Supernatant 
(centrifuged at 400,000 g) 

2.2 10.5 % 47.4 1.12 0.51 9.95 

Pellet 
(Semi-purified) 

19.3 96 % 5 41.3 2.14 87.3 

Peak fractionsϮ  
(Gel filtration) 

1.77 
 

100 % 4.2 23.7 2.23 48 

a, hemocyanin concentration was determined as outlined in section 3.3.5 

b, values were calculated from the A 350 nm signal. 

Ϯ, each of the individual fractions (3 x 2 mL) had an absorbance ratio value of 4.2.  
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Figure 3.4 Effect of freeze-thawing on the stability of purified Nephrops norvegicus 

hemocyanin. A) Absorption spectra of 0.3 mg mL-1 N. norvegicus hemocyanin (in 100 

mM Tris-HCl, pH 7.5) before and after freeze-thawing. B) Fluorescence emission spectra 

of 0.1 mg mL-1 N. norvegicus hemocyanin (in 100 mM Tris-HCl, pH 7.5) before and after 

freeze-thawing. Purified hemocyanin was frozen at -25oC for 24 h and subsequently 

thawed on ice for 2 h before spectral measurements. 



P a g e  | 105 

 

 
 

 

Figure 3.5 Melting curve for purified Nephrops norvegicus hemocyanin across the 

temperature range, 0oC to 70oC. Inset; the hydrodynamic radius of the major species 

(Hemocyanin) in the solution is depicted, before aggregation (0oC - 55oC).  
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3.4.4 Inducible phenoloxidase activity of Nephrops norvegicus hemocyanin 

 

Effect of elicitors  

PO activity of N. norvegicus Hc was assessed in the presence of known PO elicitors (Fig. 

3.6) (using conditions similar to those in Perdomo-Morales et al., 2008 and Fan et al., 

2009). Hc-d PO activity was highest in the presence of the anionic detergent, SDS, at a 

concentration of 3.5 mM, conditions which would ensure the micelle form of SDS. 

However, incubation of Hc in the presence of SDS concentrations > 4 mM appeared to 

have a deleterious effect on enzyme activity (Fig. 3.7).  Incubation of Hc in the presence 

of the cationic detergent, CPC, yielded high levels of PO activity, but overall CPC was not 

as effective as SDS. Urea and isopropanol also induced PO activity. Hc failed to display 

PO activity in the absence of an elicitor.  

Extended incubation of N. norvegicus Hc in the presence of 3.5 mM SDS, over a period of 

2 h, led to a significant decrease in enzymatic activity (Fig. 3.8).  Maximum activity of ~ 

2.23 U was achieved after 5 minutes pre-incubation with SDS.  

 

Substrate Kinetics 

The PO activity of N. norvegicus Hc was not detected in the presence of the monophenol 

tyrosine, but was evident using the di-phenolic substrates, dopamine hydrochloride and 

4-methylcatechol (Fig. 3.9). Data was fitted to the Michaelis-Menten equation in order to 

determine the kinetic parameters: Vmax and Km. Analysis indicates that while 4-

methylcatchol elicits a higher rate of activity; Vmax = 5.84 ± 0.235 U, Km = 9.85 mM ± 0.894 

(R2 = 0.973), dopamine appears to bind more efficiently; Vmax = 2.4 ± 0.067 U, Km = 0.431 

mM ± 0.043 (R2 = 0.956). 
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Figure 3.6 Hemocyanin derived phenoloxidase activity of purified Nephrops norvegicus 

hemocyanin induced by a range of known phenoloxidase activators. Assays included 2 

mM dopamine and 1 mg mL-1 hemocyanin in 100 mM Tris-HCl, pH 7.5. Hemocyanin was 

pre-incubated in either SDS (3.5 mM), CPC (2.8 mM) or isopropanol (20%, v/v) for 5 

min or  for 30 min in sodium perchlorate (200 mM) or Urea (1M) before activity 

measurements were recorded. Assays were initiated with the addition of substrate and 

recorded over a 10 min period. Control assays consisted of hemocyanin and substrate in 

the absence of an activator. Values are represented by the mean ± standard error.  
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Figure 3.7 Stability of activated Nephrops norvegicus hemocyanin in the presence of 

increasing concentrations of SDS. Hc was pre-incubated in each concentration of SDS, 

for 5 mins. Assays were initiated by the addition of substrate. The inset provides clearer 

detail of the region of the main plot contained within the red box and shows 

phenoloxidase activity expressed as a percentage of the maximum activity. Values are 

represented by the mean ± standard error 
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Figure 3.8 Stability of activated hemocyanin in the presence of SDS over time. 

Hemocyanin was pre-incubated with 3.5 mM SDS for periods between 0 and 120 min. 

The inset provides clearer detail of the region of the main plot contained within the red 

box and shows phenoloxidase activity expressed as a percentage of the maximum 

activity. Control assays consisted of hemocyanin and substrate in the absence of an 

activator. Values are represented by the mean ± standard error. 
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Figure 3.9 Kinetic analysis of o-diphenoloxidase activity of Nephrops norvegicus 

hemocyanin (0.1 mg mL-1) towards A) Dopamine-hydrochloride, 0 – 4 mM and B) 4-

methylcatechol, 0 – 30 mM, in 100 mM Tris-HCl, pH 7.5. Kinetic data was fitted to the 

Michaelis-Menten equation using SigmaPlot 12 and the subsequent Vmax and Km values 

for each substrate were recorded. Inset; chemical structures of each substrate.   
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3.4.5. The inhibition of hemocyanin derived phenoloxidase activity 

  

 

Inhibitor efficiency 

 

The effects of a range of known PO inhibitors (Table 3.2), were tested on Hc-d PO 

activity from N. norvegicus, using dopamine as substrate. IC50 values were calculated for 

each inhibitor. While all six inhibitors affected the catecholoxidase activity of N. 

norvegicus Hc, the teratogenic compound PTU, demonstrated the most effective 

inhibition; IC50 = 0.57 µM ± 0.11. In this study, the order of inhibitor efficiency is PTU > 

4-HR > tropolone > L-ER > kojic acid > mimosine (Table 3.2). The second most effective 

inhibitor, 4-HR, displayed an IC50 value of 56 µM ± 5.5, which is ~  4-fold lower than L-

ER, kojic acid, mimosine and tropolone.  

 

Inhibitor-hemocyanin interactions 

Inhibitor induced changes in the tertiary structure of Hc were recorded using intrinsic 

tryptophan fluorescence intensities (Fig. 3.10). Incubation of Hc in the presence of 

inhibitors, 4-HR, L-ER and mimosine, led to an increase in fluorescence intensity, which 

is indicative of a reduction of internal quenching. Hc in the presence of 4-HR and L-ER 

resulted in a decrease (6.5 nm) in the wavelength of the fluorescence emission 

maximum, suggesting that tryptophan residues present in the Hc subunit become less 

exposed to the solvent. The tyrosinase substrate analogue, mimosine, also caused an 

increase in fluorescence intensity, but was accompanied by a red shift in the emission 

maximum (Table 3.3). While incubating Hc in the presence of SDS micelles yields an 

increase in intrinsic fluorescence intensity, the increase is at least ~ 2 fold greater in the 

presence of SDS plus an inhibitor (Fig. 3.10A). Fluorometric assessment of Hc in the 

presence of inhibitors suggests significant structural changes may accompany the 
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inhibition of PO activity. Control experiments in which each inhibitor was added to the 

model compound N-acetyl-L-tryptophanamide confirmed that the inhibitor-induced 

conformational changes in Hc fluorescence were not the result of direct interactions 

between the inhibitor and exposed tryptophan side chains (Fig. 3.10B).  

 

The effects of 4-HR, L-ER and mimosine on the di- copper centre of N. norvegicus Hc 

were monitored by UV-absorption spectroscopy (Fig. 3.11). Incubation of Hc with the 

inhibitors resulted in a decrease in the absorption peak at ~ 350 nm. This peak is typical 

of type 3 copper enzymes with di-oxygen bound and is due to the peroxide which is 

present in a μ−η2:η2 side-on coordination and acts as a strong σ-donor ligand to the 

Cu(II) ions. This hypochromic effect, at ~ 350 nm, in the presence of inhibitors, suggests 

a distortion of the dicopper centre via inhibitor-active site interactions or changes 

induced by inhibitor binding in close proximity to the active site.  

 

The spectral properties of tropolone and kojic acid prevented the determination of the 

effects of these inhibitors on the 350 nm absorption peak and fluorescence emission 

maximum of Hc. 
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Table 3.2 Inhibitors of hemocyanin-derived phenoloxidase  

Inhibitor 
(order of efficacy) 

IC50 value 
(µM) 

Inhibitor Structure 

 
1-phenyl 2-thiourea 

 
0.57 ± 0.11 

 
 
4-Hexylresorcinol 

 
56 ± 5.5 

 
 
Tropolone  

 
188 ± 3.57 

 
 
L-Ergothioneine 

 
217 ± 20.1 

 
 
Kojic Acid 

 
247 ± 23 

 
 
Mimosine 

 
277 ± 12.3 

 
 

IC50 inhibition values were calculated using a range of inhibitor concentrations. 
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Figure 3.10 Intrinsic tryptophan fluorescence of Nephrops norvegicus hemocyanin 
in the presence of phenoloxidase inhibitors. A) Fluorescent emission spectra of 0.05 
mg mL-1 Nephrops norvegicus hemocyanin. Hemocyanin (in 100 mM Tris-HCl, pH 
7.5) was pre-incubated with 1.4 mM SDS for 5 min and subsequently incubated in 
the presence of an inhibitor for a further 5 mins. Samples were excited at 290 nm 
and the subsequent spectrum was recorded. B) Fluorescent emission spectra of 2 
µM N-acetyl-L-tryptophan, in 100 mM Tris-HCl, pH 7.5 was excited at 290 nm in the 
presence and absence of SDS and/or inhibitors after a 5 min incubation period.  
Inhibitor concentrations used for both A and B were as follows; 4-HR, 30 µM, L-
Ergothioneine, 110 µM and Mimosine, 125 µM. Data was recorded over the range 
300 nm – 510 nm. 
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Table 3.3 Intrinsic tryptophan fluorescence peak wavelength of Nephrops norvegicus Hc 

in the presence of inhibitors and SDS.  

ASpectral properties prevented the determination of the effects of inhibitor on the 

dicopper active site of Hc, as the inhibitor displayed peaks around the fluorescence 

emission maxima (and the absorption spectrum). Inhibitors were in the presence of 

both Hc (0.05 mg mL-1) and SDS (1.4 mM).  

 Inhibitor 
 

Tryptophan fluorescent 
emission maxima 

Hc only (0.05 mg mL-1) - 342 nm 
Hc & SDS_5 min - 340 nm 
Hc & SDS_10 min - 340 nm 
   
    

- 1-phenyl 2-thiourea - 
Hc & SDS_5 min 4-Hexylresorcinol 335.5 nm 

- TropoloneA  - 
Hc & SDS_5 min L-Ergothioneine 335.5 nm 

- Kojic AcidA - 
Hc & SDS_5 min Mimosine 348.5 nm 
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Figure 3.11 Absorption spectra of 0.4 mg mL-1 Nephrops norvegicus hemocyanin. 

Hemocyanin (in 100 mM Tris-HCl, pH 7.5) was pre-incubated with 1.4 mM SDS for 5 

min and subsequently incubated in the presence of an inhibitor (4-HR, 60 µM, L-

ergothioneine, 220 µM and/or Mimosine, 250 µM) for a further 5 mins. Data was 

recorded over the range 240 nm – 400 nm. 
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3.5 Discussion 

3.5.1 The stability of phenoloxidase and hemocyanin derived phenoloxidase from 

Nephrops norvegicus hemolymph  

The onset of hyperpigmentation occurs when fresh-caught or harvested shellfish are 

thawed after frozen storage (Adachi et al., 2001). Both cellular and supernatant 

fractions of N. norvegicus hemolymph were incubated at -25oC for a period between 0 to 

120 h, subsequently thawed, and assessed for PO activity. Cell-derived PO activity was 

almost completely inactivated following this treatment (Fig. 3.2). Conversely, the 

supernatant fraction containing Hc, not only retained activity under similar conditions, 

but Hc-d PO activity levels increased by ~ 20 % at 72 h. Interestingly, mollusc Hc 

purified from Rapana thomasiana, displays an increase in PO levels, from ~  1 U to 9 U 

(with catechol as substrate), after freeze-drying (lyophilisation) (Idakieva, Islam-

Siddiqui, Meersman, De Maeyer, Chakarska & Gielena, 2009). By freezing intact cells and 

cell lysates, and subsequently monitoring PO activity after thawing, we have confirmed 

that PO activity is susceptible to hypothermic induced de-activation (Fig. 3.2).  

Hc from N. norvegicus was purified from the acellular hemolymph fraction by size 

exclusion chromatography. The elution profile of purified Hc (Fig. 3.3A), along with the 

optical density ratio values (A 280 nm: A 350 nm, Table 3.1), the SDS-PAGE profile (Fig. 

3.3B) and mass spectrometry data, indicates Hc is present without cell-derived PO 

contamination.   

The abundance of Hc present in hemolymph (> 90 % of total protein content) and the 

high resistance of Hc to adverse temperatures (Fig 3.4, Fig. 3.5), suggests that Hc-d PO 

may contribute to hyperpigmentation. Similar studies performed in Penaeus japonicus 
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(Adachi et al., 2001), Parapenaeus longirostris (Martinez- Alvarez et al., 2008) and 

Penaeus vannamei (Garcia-Carreno et al., 2008) also exhibit inducible PO activity of 

purified Hc and noted tolerances to extreme pH and temperature conditions.  

Hemocyte lysate supernatants and clotting factors/antimicrobial peptides are capable 

of inducing PO activity of P. vannamei Hc (Garcia-Carreno et al., 2008) and Tachypleus 

tridentatus Hc (Nagai & Kawabata, 2000; Nagai, Osaki & Kawabata, 2001), respectively. 

Post mortem, tissue and cellular integrity is compromised, leading to the systemic 

release of endogenous activators of Hc-d PO, such as: proteinases from the digestive 

gland, immune effectors (Adachi, Hirata, Nagai, Fujisawa, Kinoshita & Sakaguchi, 1999) 

and phospholipids from hemocytes/amebocytes (Nellaiappan & Sugumaran, 1996; 

Coates, et al., 2011). Furthermore, substantial levels of Hc have been shown to reside 

throughout the cuticle layers of shrimp exoskeleton (Adachi et al., 2005a); while these 

findings suggest a role for Hc in the sclerotisation of cuticle during moulting, this 

reservoir of Hc may also contribute to the progression of hyperpigmentation, post 

mortem.   

3.5.2. Phenoloxidase activity of Nephrops norvegicus hemocyanin 

In vivo, the native precursor prophenoloxidase (proPO) does not possess enzymatic 

activity, but is processed by serine proteinases into an active PO enzyme, in the 

presence of pathogens (Cerenius and Soderhall, 2004). Similarly, native Hc does not 

possess PO activity, but may be converted in vitro into a PO-like enzyme in the presence 

of denaturants and/or proteinases (Decker and Jaenicke, 2004; Jiang et al., 2007). The 

universal in vitro activator of PO activity, SDS, also causes optimal activation of Hc-d PO 

activity of N. norvegicus Hc (Fig. 3.6 and Fig. 3.7). The activation of PO activity in Hc 

from L. polyphemus has been shown to be accompanied by secondary and tertiary 
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structural changes induced by SDS micelles (assumed to mimic the in vivo mode of 

activation) which allows substrate access to the di-copper centre, be turned over, and 

products released (Baird et al., 2007). Evidence presented in chapter 2 suggests that 

liposomal phospholipids, principally phosphatidylserine, sharing similar structural and 

electrostatic surface properties with SDS micelles, are putative activators of Hc-d PO 

activity, in vivo (Coates et al., 2011).  

Hc purified from the hemolymph of over 20 different species of Crustacea demonstrate 

inducible PO activity, in vitro (Table 3.4). In contrast to chelicerate and mollusc Hcs, the 

kinetic properties of crustacean Hc-d PO activity are poorly understood. Purified 

crustacean Hc appears relatively more susceptible to denaturation in comparison to 

chelicerate Hc-d PO, especially in the presence of SDS (Jaenicke and Decker, 2004; 

Jaenicke and Decker, 2008). Incubation of N. norvegicus Hc in SDS (3.5 mM) over a 

period of 2h led to a substantial loss of PO activity, > 96% (Fig. 3.8).  

 

Considering the two di-phenolic substrates tested here, N. norvegicus Hc displayed a 20-

fold higher affinity for dopamine hydrochloride over 4-methylcatechol. A Km value of 

0.431 ± 0.043 mM for dopamine is similar to that determined for Agaricus bisporus 

tyrosinase (Km = 0.72 ± 0.08 mM) (Fenoll, et al.,  2002). Hc purified from Panulirus argus 

demonstrates a higher affinity for dopamine with a Km value of 0.181 ± 0.0011 mM 

(Perdomo-Morales et al., 2008). The high affinity of Hcs for the phenolic substrate, 

dopamine, emphasises the similar catalytic properties of Hcs and POs.   
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Table 3.4 Inhibition of hemocyanin-derived phenoloxidase activity from crustaceans 

Species Activity Exogenous elicitors Inhibition (> 50 %) References 
 

Bathynomus giganteus CO SDS PTU; ~ 2.5 mM,  DETC; 0.1 mM EDTA; 1 mM  Terwilliger, (2007), Pless et 
al., (2003) 

Calappa granulata CO SDS _ Jaenicke and Decker (2004) 

Cancer magister CO SDS _ Terwilliger and Ryan, (2006), 
Decker et al., (2001) 

Cancer pagurus  CO SDS and trypsin HCN; ~  0.28 mM, NaF; ~  0.18 mM, cupferron; ~ 0.05 
mM, NA2S; ~ 0.1 mM 

Jaenicke and Decker, (2004) 
Bhagvat and Richter, (1938) 

Carcinus aestuarii CO - - Salvato et al., (1998) 

Carcinus maenas  CO SDS, perchlorate and trypsin - Jaenicke and Decker, (2004), 
Zlateva et al., (1996) 

Cirolana harfordi  CO SDS - Terwilliger, (2007) 

Charybdis japonica  TY & CO SDS, urea, HLS and trypsin PTU; 5 mM, Cysteine; 10 mM, Ascorbic acid; 10 mM, 
Sodium sulphite; 10 mM, EDTA; 10 mM, DETC; 20 
mM, Benzoic acid; 10 Mm, Zn2+; 5 mM, Cu2+; 5 mM  

Fan et al., (2009) 

Erimacrus isenbeckii  CO SDS, LPS,  LTA and trypsin PTU; 29.3 µM,  DETC; 29.3 µM, EDTA; 37.5 µM Kim et al., (2011) 

Homarus americanus CO SDS, perchlorate and trypsin  Jaenicke and Decker, (2004), 
Zlateva et al., (1996) 

Nephrops norvegicus CO SDS, CPC, urea, isopropanol, sodium 
perchlorate 

4-HR; 56 µM, L-ER; 217 µM, Kojic acid; 247 µM, 
mimosine; 277 µM, tropolone; 188 µM, PTU; 0.57 µM 

Gimenez et al., (2010),*  

Pacifastacus leniusculus  CO Trypsin - Lee et al., (2004) 

Palinurus elephas TY & CO SDS and trypsin - Jaenicke and Decker, (2004) 

Panulirus argus CO SDS, trypsin and chymotrypsin - Perdomo-Morales et al., 
(2008) 

Panulirus interruptus CO SDS and trypsin - Jaenicke and Decker, (2004) 

Paralithodes camtschaticae CO SDS and trypsin - Jaenicke and Decker, (2004) 

Parapenaeus longirostris  CO SDS 4-HR; 0.01-1 mM, Tropolone; 9 mM, Ascorbic acid; 
0.01-1 mM, Na2S2O5; 0.025-0.5 mM   

Martinez-Alvarez et al., 
(2008) 

Penaeus japonicus TY & CO SDS, Lam, isopropanol and HLS 4-HR; 0.01 mM, Hinokitiol; 0.01 mM, PTU; 0.1 mM, 
Kojic acid; 0.1 mM, DETC; 1 mM, Cysteine; 1 mM 

Adachi et al., (2001), Adachi 
et al., (2005a & b), Adachi et 
al., (2003) 

Penaeus vannamei  TY & CO SDS, isopropanol, acetone, methanol, 
trypsin and chymotrypsin 

- Garcia-Carreno et al., (2008) 

Porcellio scaber CO SDS and HLS - Jaenicke et al., (2009) 

Portunus trituberculatus TY & CO Urea - Fujieda et al., (2010a & b),  

Potamon potamion CO SDS - Jaenicke and Decker, (2004) 

Scylla serrata CO - EDTA Chen et al., (2009)∞ 

SDS-sodium dodecylsulphate, CO-catecholoxidase, TY-tyrosinase, LPS-lipopolysaccharide, LTA-lipoteichoic acid, LAM-laminarin and HLS-hemocyte lysate 

supernatant, PTU, 1-phenyl, 2-thiourea, DETC, diethyldithiocarbamic acid, EDTA, ethylenediaminetetraacetic acid, HCN, hydrogen cyanide, NaF, sodium fluoride, 

NA2S, sodium sulphide, 4-HR, 4-hexylresorcinol, L-ER, L-ergothioneine, Na2S2O5 - sodium metabisulphite. ∞ indicates the entire manuscript is not available in 

English, * represents data presented in this study.  
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3.5.3 Hyperpigmentation; inhibiting hemocyanin derived phenoloxidase activity 

The inhibition of PO activity has been well studied; the prevention of 

hyperpigmentation of human skin, browning of fruits and mushrooms (Khan, 2012). 

The occurrence of hyperpigmentation post harvesting, in fresh-caught and cultured 

shellfish is also a major concern, however, the cause and subsequent inhibition of the 

abnormal accumulation of melanin in shellfish is lacking in detail.  Data presented here, 

not only establishes Hc as a possible cause of hyperpigmentation in N. norvegicus, but 

also provides information on the kinetic and biophysical interactions of PO inhibitors 

with shellfish Hc.  

A biophysical assessment of chelicerate Hc conformational changes in the presence of 

SDS, concurrent with the induction of PO activity, reveals a decrease in the absorption 

spectra of Hc at 350 nm and an increase in the fluorescence emission maxima, indicative 

of changes in the di-copper active site and the tertiary structure of the protein (Baird et 

al., 2007). Inhibition data presented here (Table 3.2, Fig. 3.8 and Fig. 3.9), suggest that 4-

HR, L-ER and mimosine inhibit Hc-d PO activity; biophysical studies indicate that these 

inhibitors either mimic a phenolic substrate and occupy the di-copper active site, or 

bind close to the active site. The observed collapse in the absorption spectrum around 

the 350 nm signal in the presence of an inhibitor has also been recorded for L. 

polyphemus Hc in the presence of PTU and 4-HR (Wright et al., 2012).  

 

Recently, the crystal structures of Bacillus megaterium (Sendovski et al., 2011) 

tyrosinase with kojic acid bound and A. bisporus tyrosinase with tropolone bound 

(Ismaya et al., 2011) have provided valuable insight into the mechanisms of PO 

inhibition. Kojic acid interacts strongly with residues at the entrance of the binuclear 



P a g e  | 122 

 

 
 

active site, Phe197, Pro201, Asn205, and Arg209. Bound kojic acid binds in an identical 

position in both tyrosinase subunits and is orientated similarly to the placeholder 

residue Tyr 98, of the caddie protein associated with the inactive proPO zymogen. On 

the other hand, the A. bisporus Hc-tropolone complex reveals that tropolone binds in a 

less specific manner, binding in different positions with each subunit, but appearing to 

block phenolic entrance to the active site nonetheless.  

Tropolone and kojic acid have been shown to inhibit Hc-d PO from L. polyphemus  

(Wright et al., 2012) with modelling studies suggesting that tropolone and kojic acid 

may bind L. polyphemus Hc in a similar manner to the PO-inhibitor complexes. PTU and 

4HR were also reported as efficient inhibitors of L. polyphemus Hc-d PO. Our results 

suggest that N. norvegicus Hc-d PO is inhibited by PTU, 4HR, tropolone and kojic acid in 

a manner similar to Hc-d PO from L. polyphemus (Wright et al., 2012). Data presented 

here are consistent with inhibition studies performed previously on other arthropod 

Hcs, namely Eurypelma californicum (Jaenicke and Decker, 2008) and Parapenaeus 

longirostris (Martinez-Alvarez et al., 2008).   

Chang (2009) discussed the relative success of different classes of PO inhibitors based 

on their biochemical structures; it appears that compounds containing a 4-rescorinol 

moiety or a 5-resorcinol moiety are the most effective inhibitors of PO, with novel 

inhibitor design focussed predominantly on this structural criterion.  Even though PTU 

was found to be the most potent inhibitor of Hc-d PO activity in N. norvegicus (Table 

3.2) and other invertebrates (L. polyphemus (Wright et al., 2012), E. californicum 

(Jaenicke and Decker, 2008) and Charybdis japonica (Fan et al., 2009)), due to its toxic 

nature and restricted use, PTU is not a viable option for commercial application. 4-HR, a 

well characterised inhibitor of PO activity (reviewed by Chang, 2009), has proven to be 
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a potent inhibitor of Hc-d PO from N. norvegicus.  Derivatives of 4-HR may prove to be 

more effective inhibitors of Hc-d PO and should be investigated further.  

 

3.6 Conclusion 

The presented data reports the loss of N. norvegicus cellular PO activity and the 

retention of acellular Hc-d PO activity, after freeze-thawing, emphasising the need for 

future studies on Hc-d PO inhibition and a new approach to the treatment of 

hyperpigmentation. Known PO inhibitors were effective at inhibiting Hc-d PO activity 

from N. norvegicus, with 4HR proving the most promising candidate of the compounds 

tested here (considering both health and safety concerns).  While PO and Hc share some 

similarities at their copper centres, subtle structural differences occur. The 

development and characterisation of Hc-d PO specific inhibitors is key to the safe and 

efficient prevention of hyperpigmentation in commercial shellfish.  
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Chapter 4:  

Development of an in vitro phagocytosis assay for Limulus 

polyphemus amebocytes 

 

 

 

 

 

 

 

 

 

 

A version of this chapter has been published;  

Christopher J. Coates, Tim Whalley* and Jacqueline Nairn. 2012. Phagocytic activity of 

Limulus polyphemus amebocytes in vitro. Journal of Invertebrate Pathology. 111, 205-

210. 

 

*T. Whalley (co-supervisor) provided membrane probes and aided experimental design.  
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4.1 Abstract 

Phagocytosis of invading microorganisms is a fundamental component of innate 

immune defense. The Atlantic horseshoe crab, Limulus polyphemus, possesses a single 

immune cell type, the granular amebocyte. Amebocytes release a repertoire of potent 

immune effectors in the presence of pathogens, and function in hemostasis. In contrast 

to other arthropod hemocytes, phagocytosis by L. polyphemus amebocytes remains 

poorly characterised, partly due to the technical challenges associated with handling 

these labile cells. These challenges have been addressed and the internalisation of 

microbial and synthetic targets by amebocytes in vitro were observed.  Confirmation of 

target internalisation was achieved using a combination of fluorescent quenching and 

lipophilic membrane probes: R18, FM 1-43. Viability, morphological integrity and 

functionality of extracted amebocytes appeared to be retained in vitro. The phagocytic 

properties of L. polyphemus amebocytes described here, in the absence of endotoxin, are 

similar to those observed for arthropod hemocytes and mammalian neutrophils.  
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4.2 Introduction 

The Atlantic horseshoe crab (HSC), L. polyphemus, is unique among arthropods in that it 

appears to contain a morphologically distinct cell type, the granular amebocyte.  

Granular amebocytes comprise approximately 99 % of circulating blood cells (Suhr-

Jessen et al., 1989) and upon infection, release a battery of immune effectors, including: 

components necessary for coagulation to occur, anti-microbial peptides (AMPs), lectins 

and transglutaminases (Akbar-John et al., 2010; Iwanaga and Lee, 2005; chapter 1). The 

remaining 1% consists of plasmatocytes-like cells.  Amebocytes respond differentially to 

microorganism surface polysaccharides, enlisting a suite of complement proteins, which 

enable the recognition and conditional clearance of invading microorganisms (Gupta et 

al., 1991; Kawabata et al., 2009; Kurata et al., 2006; Tagawa et al., 2012). It is the 

exceptional sensitivity of amebocytes to lipopolysaccharides (LPS) that has led to the 

commercial exploitation of HSCs to provide the LAL test (Ding and Ho, 2001).  

Phagocytosis of pathogens is an essential process required for combating infection and 

is indicative of immune competence in invertebrates (Iwanaga, 2002, Le Moullac and 

Haffner, 2000). The biochemical and molecular processes involved from the recognition 

of opsonised pathogens via specific receptor-ligand interactions (complement/TLR), to 

subsequent ingestion and eventual destruction by superoxide and microbicidal granules 

have been well characterised in mammalian and invertebrate model host systems 

(Chapter 4; Garin et al., 2001, Rosales, 2011, Vazquez et al., 2009, Lavine and Strand, 

2002, Ratner and Vinson, 1983). In HSCs, however, relatively few studies have detailed 

the phagocytic properties of amebocytes, possibly due to the technical challenges 

associated with this labile cell type, including, high sensitivity to endotoxins, 

demonstrating a lack of proliferation in vitro and proving recalcitrant to molecular 

manipulation and standard culturing methods (Armstrong, 1985, Copeland and Levin, 
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1985, Sherman, 1981). Armstrong and Levin (1979) described the internalisation of 

carbonyl iron particles by amebocytes, in vitro. Although later studies have attempted to 

detail the phagocytic capacity of HSC amebocytes (Gupta and Campenot, 1996, Gupta, 

1997), a standardised assay does not exist, hence, amebocyte phagocytosis remains 

poorly understood.  

 

In many phagocytosis assays, crystal violet (CV), methylene blue (MB) and trypan blue 

(TB) are used routinely to quench fluorescence of non-internalised targets (Serda et al., 

2009, Xue et al., 2001, Van Amersfoort and Van Strijp, 1994). Here, the quenching 

effectiveness of each quencher mentioned above has been assessed across the range pH 

4.5 – pH 7.0. Commercial fluorescent-labelled microspheres were not sensitive to 

quenching in this study, therefore lipophilic membrane probes, FM1-43 and R18, along 

with the fluid phase marker, Rho-dextran, were used to confirm microsphere 

internalisation. Lipophilic membranes probes have been utilised previously in studies 

to investigate various cellular phenomena (Cochilla et al., 1999, Whalley et al., 1995), 

particularly respiratory burst associated with phagocytosis in mammalian leukocytes 

(Yeung et al., 2006, Emmendörffer et al., 1990). 

 

In this chapter, the conditions necessary for the short term maintenance (< 24 h) of 

amebocytes in vitro have been optimised, permitting evaluation of amebocyte 

phagocytosis in the presence of microbial and synthetic targets. Confirmation of target 

internalisation was achieved using a combination of fluorescent quenching and 

lipophilic membrane probes. 
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4.3 Materials and methods 

4.3.1 Chemicals and reagents 

All chemicals and reagents used were of the highest purity and quality, purchased from 

Sigma Aldrich Chemical Company (Dorset, UK) unless stated otherwise. All consumables 

such as falcon tubes, culture plates and hypodermic needles were purchased pyrogen-

free. All glassware was baked at 180oC for no less than 4 h and all solutions were 

autoclaved to ensure sterility.  

4.3.2 Maintenance of Limulus polyphemus 

Intermolt Atlantic horseshoe crabs (HSCs) (kindly provided by Alex Mühlhölzl, Marine 

Biotech Limited) were housed in a closed circulation tank (200 L) at 13oC ± 2oC, 

containing artificial seawater (Red Sea Salt) with a stocking density of no more than 

three HSCs per 1 m2 floor space. HSCs were fed approximately 2 % of their body weight 

in mussels/shrimp, three to four times per week. Approximately 35 % of water was 

exchanged per week, in addition to using an external filtration pump (Eheim Classic 

External Filter, 2213) and daily siphoning of faeces, to maintain water quality. 

Assessments of water quality properties (NH3, PO4, NO3-, NO2, pH, Ca2+ and carbonate 

hardness) were performed routinely, using a Hagen Master Test Kit (Aquatics 

Warehouse) (Appendix C).  

4.3.3 Microbial cultures   

Escherichia coli M15 (cultured in Lysogeny Broth) and Bacillus megaterium (cultured in 

Nutrient Broth) were grown overnight at 37oC in an orbital shaker at 200 rpm. 

Saccharomyces cerevisiae AH22 were grown to stationary phase (~  1 x108 cells mL-1) in 

25 mL YEPD broth (2 % w/v, bactopeptone (Oxoid Ltd.), 1 % w/v, yeast extract (Oxoid 
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Ltd.) and 2 % w/v, glucose) in an orbital shaker (200 rpm) at 30oC. Beauveria bassiana 

were grown for two weeks on potato dextrose agar containing chloramphenicol (0.05 

mg mL-1) and subsequently left to sporulate and dry at room temperature for a further 

two weeks. Fungal spores were harvested and stored at 4oC in a 50 mL pyrogen-free 

falcon tube containing silica beads (for desiccation). Optical density readings at 600 nm 

were used to calculate microbial cell concentrations, an OD600 value of 1.0 corresponds 

to ~ 1.2 x109 cells/mL for bacteria (E.coli and B. megaterium) and ~ 3 x107 cells/mL for 

S. cerevisiae, using previously established growth curves (Novaspec-4049 

Spectrophotometer). B. bassiana spores were enumerated using an Improved Neubauer 

haemocytometer.   

4.3.4 Preparation of fluorescent targets 

Microorganisms were cultured as stated previously. 1 mL of microbial culture was 

pelleted at room temperature (10,000 x g for 5 min) and subsequently washed four 

times in 100 mM NaHCO3, pH 9. The final pellet was re-suspended in 100 mM NaHCO3, 

pH 9 containing either 0.5 mg mL-1 fluorescein isothiocyanate (FITC, Sigma-Aldrich; 

F2502) or 0.1 mg mL-1 Lissamine Rhodamine B Sulfonyl Chloride (Molecular Probes, 

Invitrogen; L1908) and incubated in the dark for 1 h at room temperature or 4oC, 

respectively. After incubation, microbes were pelleted and washed in the same manner 

until a clear supernatant was observed. The final pellet containing the fluorescent-

labelled microbes was re-suspended in 1 mL PBS, pH 7.3 and stored in the dark at 4oC 

for no longer than five days. Dried B. bassiana spores, ~ 10 mg, were suspended in 1 mL 

100 mM NaHCO3, pH 9 and labelled as above. 2 µm FITC labelled (Fluoresbrite®, 

Polysciences; 18338-5) and Rhodamine labelled (Sigma-Aldrich; L3030) 2 µm 
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(diameter) carboxylate-modified latex microspheres were also used as targets for 

phagocytosis.  

4.3.5 Hemolymph extraction and total amebocyte counts 

All salts and glassware used were rendered endotoxin free by baking at 180oC for a 

period no less than 4 h. HSC hemolymph (500 µL) was extracted via cardiac puncture 

using a 26-gauge hypodermic needle (BD Microlance 3) attached to a syringe containing 

an equal volume of pre-chilled marine anti-coagulant (3% NaCl, 100 mM dextrose, 47 

mM citric Acid and 10 mM EDTA, pH 4.6), adapted from Söderhäll and Smith (1983). 

The arthroidal membrane was cleaned with 70 % ethanol before and after hemolymph 

withdrawal to prevent sepsis. Serial dilutions of hemolymph were carried out in LPS-

free saline (3% NaCl, 10 mM NaHCO3, pH 7.5) and amebocyte counts were estimated 

using an improved Neubauer haemocytometer.  

 

4.3.6 Evaluation of amebocyte viability and functionality in vitro 

Extracted cells were washed in LPS-free saline (500 x g for 5 min at 4oC) before being 

seeded into wells of a 24-well pyrogen-free culture plate containing Grace’s Modified 

Insect Medium (GMIM)(no salt supplement) or 3 % NaCl- 20 mM HEPES, pH 7.5, 10 mM 

CaCl2, 10 mM MgCl2, 5 mM KCl2, and 10 mM NaHCO3 (NaHEP), or Shields and Sang 

Insect medium (SSIM, supplemented to 3% NaCl). Each well contained 500 µL of culture 

media (supplemented with 5 % v/v HSC plasma) and ~ 1 x105 amebocytes. Amebocytes 

were left to settle for 20 min to form a monolayer before the media was exchanged by 

aspiration. Viability of amebocytes, in vitro, was determined by the trypan-blue 

exclusion method; see section 3.3.3. 
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The morphology of amebocytes in vitro was observed using brightfield optics of an 

Olympus M081 inverted microscope and categorised. At each time point amebocytes 

were fixed using 2.5 % formaldehyde and assessed immediately. Amebocyte 

morphology categories were identified using characteristics outlined previously 

(Hurton et al., 2005, Coates et al., 2012). Namely, granular spherical (GS) amebocytes 

are dense and highly refractile. Granular flat (GF) amebocytes are identified by a visible 

nucleus.  Dendritic-Like (D-L) amebocytes lose refractility due to exocytosis of cytosolic 

granules. Large vacuoles and pseudopodia are also visible in D-L amebocytes. 

 

Exposure of amebocytes to LPS in this study served as an indicator of immune-

functionality (adapted from Armstrong and Rickles, 1982). Amebocytes were deemed 

functionally compromised when < 50% of (GS and GF) amebocyte cytosolic granules 

were released in response to the presence of LPS (20 µg mL-1). All in vitro experiments 

were performed at 18oC, unless otherwise stated.  

  

4.3.7 Preparation of crude Limulus amebocyte lysate (LAL) 

LAL from freshly isolated amebocytes 

Hemolymph was extracted (5 mL) using a 16-gauge hypodermic needle attached to a 

syringe containing an equal volume of 3 % NaCl, pH 7.5 and 10 mM N-ethylmaleimide. 

Amebocytes were washed immediately in LPS-free saline and lysed in sterile, pyrogen 

free distilled water. Debris was removed by centrifugation, 10,000 x g for 5 min at 4oC. 

Crude lysate was lyophilized (Christ Alpha 1-4 freeze-dryer) overnight and 

reconstituted in pyrogen free water (Sigma). 
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LAL from amebocytes maintained in vitro 

Amebocytes maintained in vitro (NaHEP) for 24 hours were dissociated from the 

substratum of culture wells by trypsinization (0.1 mM trypsin, prepared in PBS, pH 7.3), 

pelleted, re-suspended in 3 % NaCl, pH 7.5 containing 10 mM N-ethylmaleimide and 

lysed as stated above.  

Estimates of protein concentrations present in cell lysates were performed using 0.06% 

Coomassie G250 dye reagent and bovine serum albumin as standard (Sedmak and 

Grossberg, 1977). The reactivity of 0.5 mg mL-1 crude lysate from freshly extracted and 

in vitro amebocytes was tested using microbial ligands and phospholipids. 

I. Ligands:  LPS (5 µgmL-1) from E. coli, mannan (20 µgmL-1) from S. cerevisiae, 

lipoteichoic acid (LTA, 20 µgmL-1) from Streptococcus pyogenes and laminarin 

(20 µgmL-1) from Laminaria digitata.  

II. Phospholipids: PS (50 µgmL-1), PI (50 µgmL-1), L-PC (50 µgmL-1), PC (50 µgmL-1) 

and phosphatidylethanolamine (PE, 50 µgmL-1) (adapted from Kurata et al., 

2006) 

Reaction mixtures were monitored continuously over a 3 h period using an Ultrospec 

2100 pro UV/Visible spectrophotometer. An increase in absorbance at 470 nm upon 

incubation of cell lysate with ligands is indicative of flocculation and an increase in 

sample viscosity, due to coagulation/gelation (Adapted from Young et al., 1972). Control 

spectra of lysates were recorded in the absence of a ligand/phospholipid. 

 

 

 

 

 



P a g e  | 133 

 

 
 

4.3.8 In vitro phagocytosis assay 

4.3.8.1 Confirmation of target internalisation 

To confirm internalisation of fluorescent targets and to eliminate non-phagocytic target-

amebocyte associations, two methods were developed: 

I. Quenching of fluorescence; the quenching properties of CV, MB and TB were 

assessed by monitoring fluorescence intensity of labelled microbes (FITC- 

labelled S. cerevisiae presented here), pre- and post-quenching, over the range, 

pH 4.5- pH 7. Quenchers were used at a final concentration of 0.2 % (w/v).  

II. Commercial 2 µm fluorescent –labelled microspheres were not sensitive to 

quenching, therefore lipophilic membrane probes, R18 and FM 1-43 (Molecular 

probes, Invitrogen; O246 and T3163) and the fluid-phase marker Rhodamine-

dextran (D3308) were used to confirm microsphere internalisation. Amebocytes 

were applied to pre-prepared culture wells containing fluorescent microspheres 

and R18, FM 1-43 or Rho-Dex (depending on the concurrent target fluorophore) 

at final concentrations of 2 µM, 6 µM and 10 µM, respectively. Upon assay 

completion, samples were also treated with CV (0.2%), in order to quench non-

internalised membrane probe.  

 

Amebocytes were washed and re-suspended in 3% NaCl-20 mM HEPES, pH 7.5 

containing 2.5 % neutral formaldehyde and subsequently analysed. N.B. microbial 

target sizes: S. cerevisiae; 3-4 µm, B. bassiana spores; 2-4 µm and B. megaterium; ~2.5 

µm.  
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4.3.8.2 Phagocytic properties 

Microbes and/or fluorescent microspheres were applied to culture wells containing 500 

µL NaHEP. Targets were centrifuged at 500 x g for 10 min at 4oC to promote monolayer 

formation. Extracted amebocytes were applied to pre-prepared culture wells containing 

fluorescent targets with the final ratio of amebocytes: targets of 1:20. Amebocytes were 

allowed to settle to the bottom of the well for 20 min before the assay was recorded. 

Phagocytic activity was monitored over a 1 h period and then stopped by the addition of 

2.5 % formaldehyde. Samples were assessed for phagocytosis using fluorescent filters 

on an Axiovert 135 inverted microscope. GFP/FITC filter-set (excitation 450-490 nm, 

emission 515-560 nm) to view FITC (green) labelling and red filter-set (excitation 546 

nm, emission 590 nm) to view rhodamine B labelling. Images and videos were captured 

using a Moticam Pro 282B camera. Image analysis/preparation was achieved using 

Image J software. Approximately 300 amebocytes were scored per culture well. The rate 

of phagocytosis was recorded as the percentage of phagocytically active amebocytes. 

The phagocytic index was recorded as the number of internalised targets per 

phagocytically active amebocyte.  

 

Some phagocytosis assays were conducted in the absence and presence of either, 

normal HSC plasma (5 % v/v) or heat treated (100oC for 10 min) HSC plasma, to 

investigate whether hemolymph-derived components influence amebocyte 

phagocytosis.   
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4.3.9 Data analysis 

A total of 7 HSCs were used in this study: each HSC was bled on 3-4 independent 

occasions, with no less than a week between each extraction. The Ryan-Joiner test for 

normality and Levene’s test for equal variances were employed to assess data sets.  

Amebocyte viability, morphology and functionality were analysed using a two-way 

analysis of variance with culture media and time as designated factors. Time was 

treated as a nested factor within the main effect of culture medium. Bonferroni post hoc 

tests were applied when necessary. Percentage data sets were transformed successfully 

using arcsine square-root or exponential square-root functions. Rates of phagocytosis 

and PIs were also analysed using 2-way ANOVA, with target and fluorophore as factors. 

A one way analysis of variance was used to analyse quenching of fluorescence at pH 4.5 

and amebocyte lysate gelation at the 1h time point. Differences were considered 

significant at p < 0.05. Statistical analysis was performed using Minitab version 16 

analytical software. Values are represented by the mean ± standard error.   
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4.4  Results 

4.4.1 Amebocyte viability and vitality, in vitro 

Previous attempts to maintain HSC amebocytes in vitro yielded limited success. In the 

data presented here, HSC amebocytes retained viability levels of 83.1% in GMIM, 55% in 

SSIM and 84% in NaHEP, after 24 h in vitro (Fig. 4.1). Amebocytes maintained in vitro in 

either GMIM or NaHEP exhibited > 60% GS, 16-25% granular-flat (GF) and 10-15% 

dendritic-like (D-L) morphologies, after 24 h (Fig. 4.2 B and C). A significant decrease (p 

< 0.05) in GS morphology was recorded using SSIM, accompanied by a significant 

increase in the proportions of GF and D-L morphologies (p < 0.01, p < 0.05, 

respectively), over the course of the experiment (Fig. 4.2D). 

 

LPS-induced granule exocytosis was used as a proxy for amebocyte immune-

functionality. Irrespective of the culture media used, a decreasing trend was observed in 

the proportion of GS and GF amebocytes degranulating in the presence of LPS (Fig. 4.3) 

over time. After 24 h in vitro, ~ 65% of amebocytes present in NaHEP, fully 

degranulated upon exposure to LPS, whereas only 42% and 19% of amebocytes 

responded to LPS in GMIM and SSIM, respectively (Fig. 4.3). While amebocytes 

maintained in vitro in GMIM and NaHEP exhibited similar levels of viability and GS 

morphology (Fig. 4.1 and 4.2), amebocytes in GMIM demonstrated a significant 

reduction in immune-functionality (p < 0.05, n = 7).    

 

Based on these observations, the functional state of amebocytes in NaHEP was further 

assessed. In vivo, granules released from amebocytes, in response to microbes, contain 

all the components necessary for coagulation to occur (Akbar-John et al., 2010, Iwanaga 

and Lee, 2005). The efficacy of lysates from freshly isolated amebocytes and 
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amebocytes maintained in vitro for 24 h was monitored upon exposure to microbial 

ligands (LPS, LTA, mannan and laminarin) and phospholipids (PS, PI, L-PC and PE). 

Spectrophotometric analysis of the freshly withdrawn and isolated amebocyte lysates in 

the presence of ligands/phospholipids yielded almost identical results, with no 

significant differences detected (Fig. 4.4A and B). Lysates in the absence of ligands or 

phospholipids did not show any measureable increase in flocculation/gelation (Fig. 4.4). 

These measurements further emphasise the effective immune-functionality of ex vivo 

amebocyte populations, preserved in NaHEP.  
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Figure 4.1 Percentage viability of Limulus polyphemus amebocytes in vitro. Amebocytes 

were extracted from L. polyphemus and seeded into culture wells containing SSIM or 

GMIM or NaHEP, pH7.5. Viability was assessed over 24 h using trypan blue to 

distinguish between viable and non-viable amebocytes. Inset; (1) viable amebocytes 

remain unstained, (2) non-viable amebocytes stain blue due to the loss of plasma 

membrane integrity (arrows represent viable amebocytes). A significant decrease in 

amebocyte viability between different culture media at p < 0.05 (n = 7) are represented 

by a & b at 4 h and c & d at 24 h. Letters common between treatments indicate no 

significant difference. 
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Figure 4.2 Limulus polyphemus amebocyte morphology, in vitro. A) Appearance of 
different amebocyte morphologies present in vitro.  Granular spherical (GS) 
amebocytes are dense and highly refractile. Granular flat (GF) amebocytes are 
identified by a visible nucleus (N). Dendritic-Like (D-L) amebocytes lose refractility 
due to the loss of cytosolic granules. Large vacuoles (V) and pseudopodia (P) are also 
visible. The scale bar represents 10 µm. B), C) and D) represent the percentage 
morphologies of amebocytes maintained in vitro over a period of 24 h, with either, 
NaHEP, GMIM or SSIM, respectively. A significant decrease in amebocyte morphology 
representation compared to 1 h samples at p < 0.05 is represented by * (n = 7). 
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Figure 4.3 Degranulation of Limulus polyphemus amebocytes in response to LPS. A) 

Percentage degranulation of in vitro amebocytes in response to the presence of 20 

µgmL-1 lipopolysaccharide (LPS). Extracted amebocytes were maintained in one of three 

media and subsequently exposed to LPS at 1 h, 4 h and 24 h time points. Amebocytes 

were considered functionally active when > 50% of cytosolic granules were released in 

response to LPS exposure. B) Viable amebocytes in the absence and presence of LPS. 

De-granulation was completed within 2 min. A significant decrease in amebocyte 

functionality between different culture media at p < 0.05 is represented by * (n = 7) 

numbers 1-3 for 4 h and letters a-b for 24 h. Treatments sharing either the same letters 

or numbers are not significantly different.  
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Figure 4.4 Response of crude Limulus polyphemus amebocyte lysates to microbial ligands and 
membrane phospholipids. Lysates were prepared from freshly extracted amebocytes and from 
amebocytes which had been in vitro (NaHEP) for 24 h. A) Spectrophotometric analysis of 0.5 
mgmL-1 lysate in the presence of I) 5 µg mL-1 LPS, II) 20 µgmL-1 laminarin, III) 20 µg mL-1 LTA or 
mannan was measured over a period of 3 h. IV) Control spectra consisted of lysates only. B) 
Absorbance readings at 1 h post incubation of 0.5 mgmL-1 lysate in the presence of 50 µg mL-1  
phospholipid (PS, PI L-PC and PE), and 5 µg mL-1 LPS as a positive control. An increase in 
absorbance at 470 nm is indicative of lysate gelation. Data is represented by the mean ± standard 
error (n = 4).  
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4.4.2 In vitro phagocytosis; confirming target internalisation 

The sensitivity of amebocytes in vitro to Gram-negative bacteria led to mass 

degranulation and severe clotting upon exposure to E. coli (Fig. 4.5 A). Previous reports 

have also highlighted this technical difficulty and commented on the inability of 

amebocytes to perform phagocytosis in the presence of endotoxin (Gupta and 

Campenot, 1996, Armstrong and Levin, 1979). For this reason, fluorescent 

(FITC/Rhodamine B) carboxylate modified 2 µm latex microspheres were used to mimic 

the approximate size and electrostatic properties of E.coli, for phagocytosis assays (Fig. 

4.5B).  

 

Using FITC-labelled S. cerevisiae, the quenching effectiveness of CV, MB and TB were 

assessed across the range pH 4.5 to pH 7. In each case, quenching at pH 4.5 resulted in 

the largest decrease in S. cerevisiae fluorescence (Fig. 4.6A). CV yielded the largest 

decrease in fluorescence, 84%, followed by MB with 72% and lastly by TB with a 54% 

reduction (Fig. 4.6A and B). As the fluorescent latex microspheres used in this study 

were not sensitive to quenching, a method was developed to distinguish between 

ingested and non-internalised microspheres. Labelling the amebocytes with fluorescent 

lipophilic (styryl) membrane probes, R18 and FM 1-43, and the fluid –phase marker 

Rho-Dex enabled the visualisation and counting of phagocytosed microspheres. FM 1-43 

(green/yellow) was used in conjunction with Rhodamine B (red) labelled targets (Fig. 

4.7), R-18/Rho-Dex were used alongside FITC- labelled targets (Fig. 4.8 and 4.9). While 

this method was developed to permit the use of latex microspheres, the technique was 

effective in distinguishing phagocytosed from non-phagocytosed fluorescent microbes. 
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Figure 4.5 The appearance of Limulus polyphemus amebocytes following exposure to E. 

coli and 2µm latex microspheres. A) L. polyphemus amebocytes in vitro (NaHEP), 1) in 

the absence of E. coli and 2), in the presence of E. coli. Image 2 shows the clotting 

(gelation) of amebocytes in the presence of E. coli. B) L. polyphemus amebocytes in the 

presence of FITC-labelled 2 μm latex microspheres. Black arrows indicate internalised 

microspheres.  
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Figure 4.6 Effect of pH on the quenching properties of crystal violet, methylene blue or 

trypan blue in the presence of FITC-labelled Saccharomyces cerevisiae. A) S. cerevisiae 

were incubated (for 20 mins) in each quencher (0.2%, w/v) over the range pH 4.5 to pH 

7.0. Changes in fluorescent intensity due to quenching are presented above.  B) 

Fluorescent and brightfield images, taken before and after quenching using crystal 

violet (0.2%, w/v in 3% NaCl-20 mM HEPES, pH 4.5 [blue square]). 
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Figure 4.7 Confirmation of Saccharomyces cerevisiae internalisation by Limulus 

polyphemus amebocytes. Amebocytes were labelled with FM 1-43 and yeast were 

labelled with Rhodamine B. 1) Brightfield image of an L. polyphemus amebocyte in vitro 

(black arrow is showing an internalised yeast cell). 2) Green/yellow fluorescent filter 

showing the amebocyte labelled with the membrane probe, FM 1-43, post quenching. 3) 

Red fluorescent filter showing the Rhodamine-labelled yeast cell. 4) A merging of 

images 2 and 3. 5) The edges of the internalised yeast cell and the amebocyte 

phagosome are highlighted from image 4. 
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Figure 4.8 Confirmation of internalisation of 2 µm microspheres by Limulus polyphemus 

amebocytes. Amebocytes were labelled with R18 and 2 μm latex microspheres were 

purchased pre-labelled. 1) Brightfield image of a L. polyphemus amebocyte in vitro 

(black arrow is showing an internalised microsphere). 2) Red fluorescent filter showing 

the amebocyte labelled with the R18 membrane probe. 3) Green/yellow fluorescent 

filter showing the FITC-labelled microsphere. 4) A merging of images 2 and 3. 5) The 

edges of the microsphere inside the amebocyte phagosome are highlighted from image 

4. Image J software was used to prepare images 4 and 5. 
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Figure 4.9 Confirmation of Bacillus megaterium internalisation by Limulus polyphemus 

amebocytes. Amebocytes were incubated with the fluid phase marker, Rhodamine-

dextran and FITC-labelled B. megaterium. 1) Brightfield image of a L. polyphemus 

amebocyte, 2) Crystal violet quenching demonstrating B. megaterium internalisation, 3) 

merging of images 1 and 2, 4) Image showing internalisation of targets and fluid-phase 

marker (Rho-Dex). 5) The edges of the three bacterial cells inside the amebocyte 

phagosome are highlighted from image 4. 
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4.4.2. continued… 

On average, 9 % of the total amebocyte population displayed phagocytic properties in 

this study (Fig 4.10); however, if non-internalised (externally attached) amebocyte-

target interactions are included, the proportion of potentially active increase to ~ 21 % 

(Fig. 4.11). No differences were observed in the rate of phagocytosis between 

amebocytes assayed with fungal (S. cerevisiae, B. bassiana), bacterial (B. megaterium) or 

synthetic (latex microspheres) targets (Fig. 4.10). The number of targets internalised 

per amebocyte (phagocytic index) was determined for each of the microbial and 

synthetic targets used, with no differences observed. Amebocytes that phagocytosed S. 

cerevisiae (3-4 µm) and/or B. bassiana spores (2-4 µm) displayed a phagocytic index 

between 1.26 and 1.43, while phagocytic indices for B. megaterium (~ 2.5 µm) and 

synthetic microspheres (2 µm) were between 1.61-1.7 and 1.69-1.71, respectively (Fig. 

4.10). No significant differences were detected between rates of phagocytosis (Fig. 

4.10A) and phagocytic indices (Fig. 4.10B) using either FITC (green) or Rhodamine B 

(red) labelled targets; suggesting that neither fluorophore used had any measurable 

effect on the phagocytic properties of amebocytes. 

 

Moreover, a preliminary study was conducted in order to investigate whether 

hemolymph components influenced amebocyte phagocytosis. Amebocytes in the 

presence of spores and bacteria demonstrated reduced rates of phagocytosis in the 

absence of hemolymph plasma (p < 0.01) and in the presence of heat-treated plasma (p 

< 0.05)  (100oC for 10 min) (Fig. 4.12).  
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Figure 4.10 Phagocytic properties of Limulus polyphemus amebocytes in vitro. A) Ratio 

of L. polyphemus amebocytes phagocytosing in the presence of fluorescent microbial 

targets and/or synthetic microspheres after 1 h in vitro. Assays were stopped by the 

addition of 2.5% neutral formaldehyde. B) The phagocytic indices (number of targets 

internalised per amebocyte) were observed for targets labelled with each fluorophore; 

FITC-green and Rhodamine B-red. Symbols;  S. cerevisiae, Δ B. bassiana, ♦ B. 

megaterium and  latex microspheres. included. Data is represented by the mean ± 

standard error. No significant differences were detected between microbial/synthetic 

targets (n = 5).  



P a g e  | 150 

 

 
 

 

 

Figure 4.11 Proportion of amebocytes having internalised and/or associated with 

fluorescent–labelled microbes, in vitro. Phagocytosed microbes and extracellular 

amebocyte-target associations have been included. Values are represented by the mean 

± standard error. Significant differences (p < 0.05) between targets are represented by 

letters that are not shared. Data is represented by the mean ± standard error (n = 5). 
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Figure 4.12 Phagocytic properties of Limulus polyphemus amebocytes in the presence 

of hemolymph plasma, heat treated plasma (100oC for 10 min), or in the absence of 

plasma. NaHEP was supplemented with 5% (v/v) plasma in experiments. A one-way 

ANOVA was used to confirm differences in amebocyte phagocytosis (using FITC-labelled 

microbes), in the absence and presence of either normal plasma or heat-treated plasma. 

Data is represented by the mean ± standard error. A significant decrease in amebocyte 

functionality between different conditions at p < 0.05 is represented by * (n = 4). Letters 

common between each treatment indicate no significant differences.  
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4.5 Discussion 

4.5.1 Maintenance of arthropod immune cells in vitro 

Given the biomedical and economic importance of HSC amebocytes (Ding and Ho, 2001, 

Walls et al., 2002), significant investment has been made in attempts to produce 

amebocytes in vitro. Although a number of patents, including those issued in 1980 to 

Pearson and 1992 to Gibson and Hilly, have claimed to culture successfully HSC crab 

amebocytes using excised gill lamellae and high levels of L-arginine; to date, these 

efforts have proved largely unsuccessful. Indeed, a similar outcome has been noted for 

attempts to maintain hemocytes from other marine invertebrates (Rinkevich, 2011). 

Limited success has been achieved in establishing long-term cultures and/or hemocyte 

cell lines derived from arthropods, notably marine organisms (Rinkevich, 2005, 2011). 

Crustacean hemocytes remain viable (~ 70% for hyalinocytes) for up to 14 days in vitro 

(Walton and Smith, 1999). Recent advancements in understanding Pacifastacus 

leniusculus haematopoiesis may aid the design of more robust methods (Noonin et al., 

2012). In contrast, insect cell lines have been successfully maintained in vitro, with over 

500 insect lines in use (Ikonomou et al., 2003, Smagghe et al., 2009).  

 

In this study, GMIM (recommended by Hurton et al., 2005) and NaHEP, assumed to 

imitate the ionic strength of HSC hemolymph (section 4.3.6) were tested for their ability 

to sustain HSC amebocytes in vitro. While viability and GS states of amebocyte 

morphology remained high in both GMIM and NaHEP (Fig 4.1 and Fig. 4.2), the 

functionality of amebocytes present in GMIM (at 24 h) appeared compromised (Fig. 

4.3). Overall, amebocytes exhibited the highest levels of viability, morphological 

integrity and functionality, when maintained in NaHEP. Moreover, upon testing crude 

amebocyte lysates from in vitro and freshly withdrawn samples, no deterioration in the 
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ability of in vitro amebocyte lysates to gelate in the presence of microbial ligands and/or 

membrane phospholipids was observed (Fig. 4.4). PI and PS are known to bind and 

subsequently activate protease activity in Factor C, almost as efficiently as bacterial LPS 

(Ariki et al., 2004; Kurata et al., 2006). However, neither L-PC nor PE have 

demonstrated affinities for Factor C, therefore, it is unsurprising that upon incubation of 

L-PC and PE with amebocyte lysates, no measurable increase in lysate gelation is 

recorded (Fig. 4.4B). Amebocytes extracted, and preserved for 24 h in NaHEP, are 

capable of responding to the presence of ligands via degranulation, with their 

exocytosed granular content appearing to gelate in a manner similar to the assumed 

amebocyte response in vivo. These findings are not only relevant to phagocytosis 

studies but could also enhance development of the commercial-scale maintenance of 

amebocytes, reducing the need for the bi-annual harvest of HSC blood by biomedical 

companies.  

 

4.5.2 Phagocytic properties of amebocytes 

Phagocytosis by HSC amebocytes was first reported by Ruediger and Davis (1907) and 

later by Stagner and Redmond (1975); amebocytes were observed ingesting Gram-

positive bacteria. Armstrong and Levin (1979), characterised HSC amebocytes 

phagocytising carbonyl iron particles in vitro, however, amebocytes failed to 

demonstrate phagocytic behaviour in the presence of bacterial endotoxin. Gupta and 

Campenot (1996) monitored the phagocytic behaviour of HSC amebocytes in the 

presence of 1µm FITC-labelled microspheres and observed up to 55% of amebocytes 

exhibited phagocytic properties. This is a significantly greater percentage of 

phagocytosis than the 9% observed in data presented here, using 2 µm FITC-labelled 

microspheres (Fig. 4.10). Inclusion of the non-internalised amebocyte-target 
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interactions, in a manner similar to the studies of Gupta and Campenot (1996), results 

in the ‘phagocytic’ proportion of amebocytes increasing to ~ 21 % (Fig. 4.11). The 

discrepancy between results may be due to system differences; Gupta and Campenot 

(1996) did not confirm target internalisation, used different sized microspheres and 

carried out their phagocytosis assay in a marine anti-coagulant, pH 4.6, lacking divalent 

cations and supplemented with 10 mM EDTA. The physiology of the amebocytes in 

Gupta and Campenot’s assay may differ from that of the amebocytes used here with 

NaHEP, pH 7.5, containing similar levels of CaCl2, MgCl2 and KCl2 to those found in HSC 

hemolymph (Robertson, 1970). 

More recently, Zhu et al., (2005), recorded what appeared to be phagocytosis of 

Staphylococcus aureus by Carcinoscorpius rotundicauda amebocytes, in vitro and in vivo; 

however, due to excessive clumping there remains a possibility that the bacteria may 

have associated or simply co-aggregated with the amebocytes. While similar rates of 

phagocytosis have been recorded for other invertebrate hemocytes, such as 

Acanthoscurria gomesiana (Fukuzawa et al., 2008) and Penaeus monodon (Xian et al., 

2010), a 9% rate of phagocytosis is generally quite low among invertebrates (Table 4.1). 

Despite the low percentage of phagocytically active amebocytes in vitro, they 

nonetheless appear capable of functioning as efficiently as other invertebrate 

phagocytic cells; phagocytic indices displayed by HSC amebocytes here (1.2 to 1.7) are 

comparable to other phagocytic cells. G. mellonella hemocytes show a similar response 

to fungi with a phagocytic index for Candida albicans of ~ 1.18 (Bergin et al., 2005) (~ 

1.3 for HSC amebocytes in the presence of S. cerevisiae and B. bassiana), while 

Litopenaeus vannamei exhibits a phagocytic index between 1.2 and 2 for bacteria, 

dependent on the species (Pope et al., 2011) (~  1.7 for HSC amebocytes in the presence 
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of B. megaterium). Interestingly, amebocytes and mammalian neutrophils appear to 

ingest similar levels of fungi in vitro, ~ 1.26 and ~ 1.25, respectively (Bergin et al., 

2005).  

Using a protease cocktail and a high concentration of EDTA, Zhu et al., (2005) recorded 

a large decrease in C. rotundicauda amebocytes either associating with or phagocytosing 

bacteria. Data presented here depicts a 4-fold reduction in the percentage of 

amebocytes phagocytosing bacteria or fungi, in the absence of hemolymph plasma or in 

the presence of heat-treated plasma (Fig. 4.12). These preliminary data suggest that 

HSC proteins analogous to complement-like proteins or other humoral components (E.g. 

opsonins) may co-facilitate the recognition and subsequent ingestion of pathogens by 

amebocytes in vivo (similar to such processes in mammals). 

The mechanisms of pathogen internalisation and subsequent termination are well 

characterised in mammals and many arthropod species (crustaceans, insects; Table 4.1) 

but not in HSC amebocytes. Amebocyte pseudopod formation, cytoskeletal 

rearrangements (polymerisation of G-actin into F-actin) and intracellular Camp levels 

during phagocytosis (Gupta and Campenot, 1996, Gupta, 1997) and exocytosis (Conrad 

et al., 2004) all share a high degree of similarity with mammalian macrophages, 

platelets and neutrophils. Furthermore, during immune challenge L. polyphemus 

amebocytes are known to produce nitric oxide (via nitric oxide synthase) (Radomski et 

al., 1991) and to up-regulate the expression of amine oxidase which generates H2O2 

(Ding et al., 2005). Respiratory burst associated with phagocytosis is ubiquitous among 

vertebrate neutrophils and invertebrate hemocytes studied so far (chapter 1.2.5), and 

may be conserved in HSCs.  
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Table 4.1 Phagocytic properties of selected immune cells 

Species Phagocytic 
cellsϮ 

Phagocytic 
Index* 

Targets Reference 

Aedes aegypti 41.8 % - carboxylate-latex 
microspheres (1µm) 

[1] 

Acanthoscurria gomesiana  < 10 % - S. cerevisiae  
 

[2] 

Amblyomma americanum 20.7 % - carboxylate-latex 
microspheres (1µm) 

[1] 

Carcinus maenas 
 

~ 2.5 -15% ~ 2 - 3 B. cereus, G. homari and 
Moraxella sp.  

[3] 

Dermacentor variablis 14.1 % - carboxylate-latex 
microspheres (1µm) 

[1] 

Galleria mellonella ~  60 % 1.18 Candida albicans 
 

[4] 

Ixodes scapularis 26.2 % - carboxylate-latex 
microspheres (1µm) 

[1] 

Limulus polyphemus  ~  15- 55% - 1 µm latex microspheres, 
chicken erythrocytes 

[5] 

Litopenaeus vannamei 7.5 % - carboxylate-latex 
microspheres (1µm) 

[1] 

Litopenaeus vannamei - 1.2 – 2 Bacillus subtilis and 
Vibrio spp.  

[6] 

Macrobrachium rosenbergii ~  18 % - Aeromonas hydrophila, 
Enterococcus faecium and 

Debaryomyces hansenii 

[7] 

Manduca sexta 9.1 % - carboxylate-latex 
microspheres (1µm) 

[1] 

Mammalian neutrophil - 1.25 Candida albicans 
 

[4] 

Penaeus monodon 9.5 % - 1 µm latex microspheres 
 

[8] 

Polistes dominulus  15 % - latex microspheres  
 

[9] 

Rhodnius prolixus   60 % - 0.3 µm latex 
microspheres, E. coli and 

S. aureus 

[10] 

References; 1) Oliver et al., (2011), 2) Fukuzawa et al., (2008), 3) Smith and Ratcliffe (1978), 4) Bergin et 

al., (2005), 5) Gupta & Campenot, (1996), 6) Pope et al., 2011, 7) Hsu et al., (2005), 8) Xian et al., (2010), 

9) Manfredini et al., (2010), 10) Borges et al., (2008). *Phagocytic index values are expressed as the mean 

number of internalised target per phagocyte. ϮPhagocytic cells represent the proportion of active cells in a 

population. 
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4.6 Conclusion  

The method developed in this study, preserved viability and importantly, functionality 

of HSC amebocytes in vitro. The phagocytic capacity of amebocytes in the presence of 

microbes and synthetic microspheres was monitored successfully using membrane 

probes and quenching of fluorescence. This methodology may be applied to further 

characterise the phagocytic capacity of HSC amebocytes, and other invertebrate 

immune cells (hemocytes, coelomocytes).   
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Chapter 5:  

Phagocytosis-induced cell death of amebocytes: A 

potential mechanism for the activation of hemocyanin-

derived phenoloxidase, in vivo        

 

 

 

 

 

 

 

 

 

A version of this chapter is in preparation for publication;  

Christopher J. Coates and Jacqueline Nairn. 2013. A putative link between 

phagocytosis-induced cell death and hemocyanin-derived phenoloxidase activation in 

Limulus polyphemus. Intended submission to Innate Immunity.  
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5.1 Abstract 

Cell death is an essential process required for developmental and immunological 

homeostasis in flora and fauna. Properties of cell death in mammalian leukocytes and to 

a lesser extent in arthropod hemocytes have been well documented. Conversely, such 

processes have received little attention in horseshoe crab amebocytes. This chapter 

explores the cell death characteristics displayed by amebocytes upon phagocytosis of 

microbial targets in vitro. The observed cellular modifications associated with 

phagocytosis-induced cell death of amebocytes are reminiscent of apoptosis-related 

processes. Phagocytosis-induced cell death was accompanied by extracellularisation of 

phosphatidylserine, the fragmentation of nuclear DNA and increases in caspase-3 

activity. Interestingly, an increase in hemocyanin-derived phenoloxidase activity, 

coinciding with cell death patterns of phagocytically active amebocytes, has been 

detected. These findings not only provide further evidence to suggest that properties of 

programmed cell death are conserved amongst eukaryotes, but identify a potentially 

novel mechanism which may contribute to the activation of hemocyanin into an 

immune-enzyme, in vivo.  
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5.2 Introduction 

Cell death processes are widely considered to be conserved amongst vertebrates and 

invertebrates, involved in essential processes for shaping development (phagoptosis), 

disposal of compromised/defective cells (apoptosis), recycling cellular components 

(autophagy) and deterring microbial infections (Brown and Neher, 2012; Kroemer et al., 

2009; Wang et al., 2006). Cell death phenomena, particularly apoptosis, have been 

studied in great detail in mammalian (Elmore, 2007), insect (Cooper and Mitchell-

Foster, 2011), crustacean (Menze et al., 2010) and mollusc (Sokolova, 2009) systems. 

When cells undergo apoptosis, a tightly regulated sequence of events eventually leads to 

the formation of microvesicles (apoptotic bodies) containing processed cytosolic 

components. The dying cell advertises its defective condition via the extracellularisation 

of phosphatidylserine (PS) and the release of ‘’eat me’’ chemo-attractants; patrolling 

phagocytes recognise these signals and subsequently ingest the apoptotic corpse in a 

process known as efferocytosis (Martin et al., 2012; Wu et al., 2006; Grimsley and 

Ravichandran, 2003). Dysfunctional apoptotic regulation can lead to oncosis and 

numerous other degenerative disorders, both in mammals and arthropods (Hanahan 

and Weinberg, 2000).  

Phagocytosis-induced cell death (PICD) is a process that occurs when immune cells 

ingest microbes and subsequently undergo apoptosis. In neutrophils and mollusc 

hemocytes, evidence suggests that ROS generation is the main inducer of PICD 

(Sokolova, 2009; Zhang et al., 2003). It is thought that PICD deters the systemic spread 

of pathogens while alerting other leukocytes to its compromised state (i.e. the presence 

of an internalised pathogen). In data presented here, horseshoe crab amebocytes 

display a number of apoptotic signals after ingesting B. bassiana spores, in vitro. PICD of 

amebocytes was monitored using a series of fluorescence microscopy techniques: 
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Annexin V-FITC/propidium iodide, TUNEL and MitoTracker Orange CMTMRos staining. 

Caspase-3 activity of phagocytic and non-phagocytic amebocytes was also recorded.   

Upon exposure of amebocytes to microbes, an increase in PO activity derived from Hc 

was observed. Hc-d PO activity broadly correlated with apoptotic patterns of 

phagocytically active amebocytes. Hc can be activated into a PO-like enzyme upon 

exposure to PS (Chapter 2) and other amebocyte-derived components (Nagai et al., 

2001; Nagai and Kawabata, 2000; Nellaiappan and Sugumaran, 1996). Results from a 

series of experiments suggest that Hc may interact with redistributed PS (or some other 

unknown membrane structure) present on dying amebocytes, and be converted into an 

immune enzyme. This chapter describes, for the first time, cell death characteristics of 

horseshoe crab amebocytes, and provides evidence to further support PS as a putative 

activator of Hc-d PO, in vivo.  
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5.3 Materials and methods 

5.3.1 Chemicals, reagents and detection kits 

All chemicals and reagents used in this chapter were purchased from Sigma Aldrich 

chemical company (Dorset, UK), unless otherwise stated. Annexin-V FITC/propidium 

iodide apoptosis detection reagents were purchased from Calibiochem. Caspase-3 and 

TUNEL assay components were purchased from Invitrogen and Milipore, respectively. 

Courmarin (AMCA-X, SE) and MitoTracker Orange CMTMRos were purchased from 

Molecular probes, Invitrogen, A6118 and M7510, respectively. Vectashield Mounting 

Medium containing DAPI was supplied by Vector Laboratories (H-1200). 

5.3.2 Maintenance of Limulus polyphemus 

L. polyphemus were maintained as outlined in chapter 4, section 4.3.2. Briefly, animals 

were housed in a closed circulation tank (at ~ 14oC) and fed on mussels/shrimp every 

second day. Approximately 35 % of water was exchanged weekly, in addition to using 

external filters, siphoning of particulates and regular assessments of water quality 

(Appendix C).  

5.3.3 Hemolymph extraction and amebocyte properties 

Hemolymph was removed via the arthroidal sinus, as described in section 4.3.5. No 

more than 500 µL of hemolymph was removed per HSC per extraction. Amebocytes 

were pelleted, 200 x g for 5 min, and subsequently washed in 3% NaCl-20 mM HEPES, 

pH 7.5. Washed amebocytes (~ 1 x105) were then seeded into each well of a sterile 24-

well culture plate containing NaHEP (3 % NaCl- 20 mM HEPES, pH 7.5, 10 mM CaCl2, 10 

mM MgCl2, 5 mM KCl2, and 10 mM NaHCO3), supplemented with 5 % v/v HSC plasma to 

a final volume of 500 µL per well.   
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Viability of amebocytes in vitro was assessed using the trypan-blue method (section 

3.3.3, and a number of fluorescence microscopy techniques. Amebocyte degranulation, 

in the absence of endotoxin, was monitored both in the presence and absence of 

courmarin labelled spores.  

5.3.4 Microbial cultures and preparation of fluorescent targets 

Beauveria bassiana, Bascillus megaterium and Saccharomyces cerevisiae were cultured, 

enumerated and labelled fluorescently with FITC and/or Rhodamine B as stated 

previously (sections 4.3.3/4.3.4). Dried B. bassiana spores (10 mg mL-1) and 1 mL each 

of B. megaterium and S. cerevisiae cultures were pelleted (10,000 x g for 5 min), washed 

four times in 100 mM NaHCO3, pH 9, and re-suspended in the same buffer containing 

coumarin (AMCA-X, SE; 0.1 mg mL-1). Spores and cultured cells were incubated in 

coumarin for 2 h at room temperature, in the dark. Subsequently, labelled-microbes 

were pelleted and washed in100 mM NaHCO3, pH 9 until a clear supernatant was 

observed. The final pellet was re-suspended in 1 mL PBS, pH 7.3 and stored at 4oC for no 

more than a week. 2 µm blue-fluorescent latex microspheres, purchased pre-labelled 

from Sigma (L0280), were also used in phagocytosis assays (conditions similar to those 

outlined in sections 4.3.4 and 4.3.8) 

5.3.5 Phagocytosis assays 

Extracted amebocytes (1x 105 per well) were added to pre-prepared culture wells 

containing fluorescent-labelled targets (amebocyte : target ratio, 1:20)(quantitative 

methods are outlined in sections 4.3.3 and 4.3.5). Amebocytes were allowed to settle for 

30 min to promote monolayer formation. Assays were monitored over a 1 h period and 

stopped by the addition of 2.5% neutral formaldehyde. Confirmation of target 
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internalisation was achieved using crystal violet quenching of fluorescence (chapter 4, 

section 4.3.8). Cells were viewed and quantified using the appropriate filters 

(DAPI/Coumarin were detected with a blue-filter set; excitation 365-395 nm and 

emission 420-460 nm) on an Axiovert 135 epifluorescence inverted microscope. 

Randomly chosen fields of view were selected until ~ 300 individual cells had been 

assessed per well (this method of analysis was used for sections 5.3.6 to 5.3.8, also).  

5.3.6 Staining amebocyte mitochondria, in vitro 

Viability of amebocytes in vitro, in the absence and presence of microbes, was assessed 

using MitoTracker Orange CMTMRos (MT-Orange). Amebocytes maintained in NaHEP, 

for 4 h, were assessed for intact mitochondrial membrane potential (viable cells) by 

labelling with 0.1 µM MT-Orange for 30 min at room temperature. Labelled cells were 

washed using LPS-free saline and subsequently fixed in 3.7% neutral-formaldehyde (in 

PBS, pH 7.3) for 10 min. Fixed amebocytes were washed and counterstained using DAPI 

(1 µM) to locate the nucleus. Negative controls consisted of amebocytes incubated at 

40oC for 1.5 h, in the absence and presence of labelled targets. 

5.3.7 Annexin V-FITC and propidium iodide staining of amebocytes 

Amebocytes in the absence and presence of microbes (phagocytosis assays) were 

assessed for signs of cell death, in vitro. NaHEP was removed from the culture wells, via 

aspiration, and replaced with 3% NaCl-20 mM HEPES, pH 7.5 supplemented with 10 

mM CaCl2 (final volume; 500 µL).  Media binding reagent3 (10 µL) and 0.5 µg Annexin V-

FITC were added to each well and incubated at room temperature for 30 min, in the 

dark. Culture plates were centrifuged at 500 x g for 5 min; supernatant was removed by 

aspiration and replaced with pre-chilled 1X binding buffer3 (final volume; 500 µL) 

containing 0.3 µg propidium iodide. Samples were immediately placed on ice and 



P a g e  | 165 

 

 
 

analysed using fluorescence microscopy. Positive controls consisted of amebocytes 

incubated at 40oC for 1.5 h, in the absence and presence of labelled targets.  

5.3.8 TUNEL staining of amebocytes 

Amebocytes in the absence and presence of microbes (phagocytosis assays), in situ, 

were assessed for signs of nuclear DNA fragmentation. NaHEP was removed from the 

culture wells; amebocytes were washed twice in PBS, pH 7.3 and then fixed in 100 mM 

NaH2PO4, pH 7.4 containing 4% paraformaldehyde4, for 25 min at room temperature. 

After fixing, amebocytes were washed twice in PBS, pH 7.3 (200 x g for 2 min) and 

incubated in 0.5% Tween®-20/0.2% BSA (in PBS) for 30 min. Again, amebocytes were 

washed twice in PBS, pH 7.3 and incubated with terminal deoxynucleotidyl transferase 

(TdT) end-labelling cocktail (containing ~  12.5 µM biotin-dUTP; purchased pre-

prepared from Milipore) for 1 hr. TdT end-labelling was stopped by removal of TdT 

cocktail and incubation of amebocytes in 1X termination buffer (TB)3 for 10 min. TB was 

removed and washed amebocytes were  covered with blocking buffer (BB)3 for 30 min. 

BB was then removed and amebocytes were labelled with avidin-FITC (0.25 µg mL-1) 

solution, for 45 min in the dark. Finally, amebocytes were washed and analysed using 

fluorescence microscopy. All incubation steps were performed at room temperature 

unless stated otherwise. A positive control consisted of fixed-amebocytes treated with 5 

µg mL-1 DNAse, at 37oC for 1 hr, in the absence and presence of labelled targets, and 

subsequently processed as stated above. A negative control (monitoring non-specific 

binding of avidin-FITC) consisted of the above protocol, omitting TdT end-labelling.  

In some cases, samples were counterstained by incubation in PBS, pH 7.3 containing ~ 

240 mM Eriochrome Blue-Black for 10 min at room temperature. Counter-stained 

samples were washed and analysed. 

 

Footnote 3; All buffers marked are purchased fully prepared from 
their respective manufacturers, section 5.3.1.  
Footnote 4; Fixative was prepared by adding the appropriate 
amount of paraformaldehyde to a heated (60oC) solution of 100 
mM NaH2PO4 and adding drops of 2 M NaOH until clear. A final pH 
of 7.2 was achieved using HCL. Store at 4oC (Ausubel et al., 2002). 
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5.3.9 Caspase-3 activity assay 

Caspase-3 activity was assessed in amebocytes incubated in the presence and absence 

of microbes for 4 h, in vitro. Amebocytes were dissociated from the substratum of 

culture wells by trypsinization (0.1 mM trypsin, prepared in PBS, pH 7.3), pelleted (500 

x g for 2 min), re-suspended in cell lysis buffer3 and incubated on ice for 15 min. Lysed 

amebocytes were centrifuged at 10,000 x g for 2  min. The supernatant was removed 

and stored on ice. Estimates of protein concentrations present in supernatant were 

performed using a BSA standard curve as previously stated (section 4.3.7).  

Photometric determination of caspase-3 activity was carried out at 37°C in a 96-well 

plate (MDS VERSA max microplate reader). Assays consisted of 100-500 µg mL-1 cytosol 

extract and 1X reaction buffer3 containing 10 mM DTT and 0.2 mM DEVD-pNA 

(substrate); final assay volume was ~  100 µL (per well). Activity was monitored by an 

increase in absorbance at 405 nm, over a period of 2 h. At each time point, potential 

caspase activity values derived from spores alone were deducted from 

amebocyte/spore assays. Controls consisted of assays in the absence of amebocyte-

lysate.  

Positive controls consisted of amebocytes incubated at 40oC for 4 h, in the absence and 

presence of labelled targets. 

5.3.10 Measurements of hemocyanin-derived phenoloxidase activity in vitro 

A)  In situ Hc-d PO activity_(total membrane bound and cell-free) 

Amebocytes were maintained in vitro in the presence and absence of microbes for 4 h. 

Total in situ Hc-d PO activity was assessed by addition of substrate (2 mM dopamine) 

directly into culture wells. After 10 mins, the supernatant containing HSC 
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plasma/NaHEP (including Hc) was removed (via aspiration) and centrifuged at 1000 x g 

for 5 min at room temperature. Supernatant was removed and diluted immediately 

(1:1) in 100 mM Tris-HCl, pH 7, and the pellet discarded. Hc-d PO activity was assessed 

by taking measurements of dopamine oxidation at 475 nm using an Ultrospec 2100 pro 

UV/Visible spectrophotometer.  

B) Ex situ Hc-d PO assay_(cell-free only) 

Amebocytes were maintained as stated above. Supernatant (~ 500 µL) was removed 

directly from each culture well, centrifuged and placed in a cuvette with either 1) 500 

µL 100 mM Tris-HCl, pH 7 containing 2 mM dopamine or 2) treated with 0.1% SDS (in 

100 mM Tris-HCl ) for 5 min prior to addition of dopamine. Assays were initiated with 

the addition of substrate and PO activity was monitored as stated above (over a period 

of 10 min).  

In experiments A and B, cell numbers per well was assessed across the range 1x 105 to 

5x 105. Cell maintenance buffer, NaHEP, is supplemented with 5% HSC plasma (section 

5.3.3). Protein concentration of HSC hemolymph was calculated at ~ 40 mg mL-1 (> 90% 

is Hc; Ding et al., 2005), therefore, each well was supplemented with ~ 1 mg of protein 

(25 µL HSC plasma plus 475 µL NaHEP). As the ratio of amebocytes to microbes was 

maintained at 1: 20, it was technically challenging to conduct assays with amebocyte 

concentrations above 5 x105 cells per well, as spore numbers would exceed 1 x107. The 

auto-oxidation of dopamine into dopachrome was deducted from assay values, 

therefore, data represent activity due to Hc-d PO only. One unit is defined as 1 μmol of 

dopachrome formed per minute, with an absorption coefficient for dopachrome at this 

wavelength (475 nm) of 3600 M−1 cm−1. Labelled-targets in the absence of amebocytes 

failed to elicit PO activity in Hc. 
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5.3.11 Data handling 

A total of six horseshoe crabs were used in this study. Four HSCs were bled on four 

independent occasions and two HSCs were bled on three independent occasions. HSCs 

were bled no more than once a week. Data were pooled together and values are 

represented by the mean ± standard deviation. The Ryan-Joiner normality test and 

Levene’s test for homoscedasticity were applied to all percentage data sets. Data were 

arcsine transformed successfully. ANOVA (with Bonferroni post hoc tests) were applied 

to assess rates of phagocytosis, degranulation, FITC/propidium iodide staining and 

caspase activity data. Two sample t-tests were applied to TUNEL and MT-Orange data 

sets. Analysis was performed using Minitab analytical software version 16.  
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5.4 Results 

5.4.1 Functional properties of amebocytes in the absence and presence of coumarin-

labelled microbes 

 

Upon exposure of amebocytes to coumarin-labelled microbes in vitro, approximately 

8.8% of amebocytes display phagocytic properties, irrespective of the target used (Fig. 

5.1A). Furthermore, phagocytic indices of amebocytes determined for each target, B. 

bassiana, B. megaterium and S. cerevisiae, displayed similar levels of inclusion, between 

1.3 and 1.6 (Fig 5.1B). Crystal violet (CV) quenching of microbial fluorescence was 

successful in distinguishing between phagocytosed and non-internalised amebocyte 

associated coumarin-labelled spores (Fig. 5.1C). Blue-fluorescent 2 µm latex-

microspheres were also used as targets for amebocyte phagocytosis, however, it was 

difficult to confirm microsphere internalisation due to rapid photo-bleaching. 

Previously, amebocytes have been shown to undergo spontaneous degranulation in the 

absence of endotoxin, in vitro (Armstrong 1980; Conrad et al., 2006). The proportions of 

degranulated amebocytes in the absence and presence of labelled-spores were 13.2% 

and 16% after 24 h, respectively (Fig. 5.2).  
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Figure 5.1 Phagocytic properties of amebocytes in the presence of coumarin-labelled 

microbes. A) Proportion of phagocytically active amebocytes. B) The number of 

internalised targets per active amebocyte. Symbols:  B. bassiana,  S. cerevisiae, ♦ B. 

megaterium. C) Images depicting an internalised coumarin-labelled B. bassiana spore. 1, 

brightfield view of amebocytes and spores, 2, fluorescent spores post quenching using 

crystal violet and 3, a merged image showing the location of the internalised spore.. 

Image J software was used to prepare images. Values are mean ± SD, n = 5. No 

significant differences were detected. 
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Figure 5.2 Exocytosis of amebocyte cytosolic granules in the absence of endotoxin, in 

vitro.  Amebocytes were maintained in NaHEP (supplemented with 5% v/v HSC plasma) 

and monitored at various time points over a period of 24h. Amebocytes having released 

>50% of cytosolic content were considered degranulated. Values are mean ± SD, n = 5. 

No significant differences in percentage degranulation were detected between 

amebocytes incubated in the presence of absence of spores.  
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5.4.2 Apoptotic modalities of amebocytes, in vitro  

PICD is a phenomenon that occurs when phagocytes internalise pathogens and 

subsequently ‘terminate themselves’ in order to prevent pathogen dissemination. 

Phagocytically active amebocytes studied here, having internalised coumarin-labelled 

spores, demonstrated a number of morphological and biochemical hallmarks of 

apoptotic cell death (Fig. 5.3 to Fig. 5.8).  

Mitochondrial membrane potential of amebocytes in the presence of coumarin-labelled 

spores was significantly reduced (p < 0.05) in comparison to amebocytes maintained 

without spores (Fig. 5.3). PS extracellularisation (Annexin V-FITC +; Fig. 5.4), loss of 

plasma membrane integrity (Annexin V-FITC +/propidium iodide +; Fig. 5.5), nuclear 

DNA fragmentation (TUNEL +; Fig.5.6 and Fig. 5.7) and an increase in caspase-3 activity 

were observed in amebocytes. Caspase activity detected was proportional to the 

amount of protein used (Fig. 5.7). In all experiments, amebocytes in the absence of 

spores demonstrated significantly lower rates of cell death compared to those exposed 

to spores. The proportions of apoptotic/dying amebocytes in the absence of spores and 

non-phagocytic amebocytes in the presence of spores were highly comparable, between 

4.5 % and 6.5 %.  

Annexin V-FITC and propidium iodide staining of amebocytes at 1, 2, 3 and 4 h post 

incubation with spores, suggested a significant increase in PS extracellularisation and 

concurrent loss of plasma membrane potential of phagocytically active amebocytes (Fig. 

5.4 and Fig. 5.5). By subtracting the percentage of FITC/propidium iodide positive 

amebocytes in the absence of spores from those in the presence of spores, the average 

difference is 8.97 % for the duration of the experiment. Results indicate that all 

phagocytic cells (8.8 %; Fig. 5.1) exposed PS within 2 h of ingesting spores (Fig. 5.4), in 
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vitro. Cell death rates in non-phagocytic amebocytes are in agreement with previously 

recorded rates of amebocyte mortality when maintained in NaHEP (chapter 4; Fig. 4.1, -

≤6% at 4 h). 

Positive controls for all assays consisted of incubating amebocytes at or above 37oC for 

1.5 to 4 h.  Between 85% and 95% of control amebocytes stained positive for all 

apoptotic signals measured, with no differences detected between amebocyte 

populations incubated with, or without spores (Fig. 5.4B, Fig. 5.6B and Fig. 5.8B). Other 

markers of apoptotic cell death were recorded in amebocytes maintained in vitro, 

including, cytosol vacuolisation and membrane blebbing. However, due to the 

changeable and highly motile nature of amebocytes and the appearance of multiple 

vacuoles post exocytosis, these features were not used as quantitative markers of cell 

death.  
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Figure 5.3 MitoTracker Orange CMTMRos staining of mitochondria present in Limulus 
polyphemus amebocytes. A) Amebocytes in the presence and absence of labelled spores 
(for 4 h) were assessed for mitochondrial potential. B) Negative controls (loss of 
function) consisted of amebocytes incubated at 40oC for 1.5 h, in the absence and 
presence of labelled targets. C) Viable amebocytes, in vitro, were stained successfully. 
MitoTracker Orange CMTMRos only fluoresces in the presence of functioning 
mitochondria. Images; 1)  Brightfield view of an amebocyte in vitro, 2) positively stained 
mitochondria dispersed throughout the cytosol, 3) DAPI staining of an intact nucleus 
and 4) merged images 3 and 4. Scale bar represents 10 µm. Images were prepared using 
Image J software.  A significant decrease in amebocyte mitochondrial membrane 
potential at p < 0.05 is represented by *. Values are mean ± SD, n = 5. 
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Figure 5.4 Using Annexin V-FITC and propidium iodide staining to monitor amebocyte 

cell death, in vitro. A) amebocytes maintained in NaHEP for 24h at 18oC in the presence 

or absence of labelled-spores were assessed for signs of phosphatidylserine (PS) 

extracellularisation (Annexin V-FITC positive) and loss of plasma membrane potential 

(propidium iodide positive). B) Positive controls consisted of incubating amebocytes in 

the presence or absence of labelled-spores at 40oC for 1.5 hours. A significant increase 

in proportions of FITC/propidium iodide positive amebocytes at p < 0.05 is represented 

by *. Values are mean ± SD, n = 5. 
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 Figure 5.5 A series of images depicting phosphatidylserine exposure and loss of 

plasma membrane integrity of dying amebocytes. Annexin V-FITC positive/propidium 

iodide negative detection of PS: 1, 2 and 3 (early apoptotic). Annexin V-FITC positive 

and propidium iodide positive amebocytes: 4, 5 and 6 (late apoptotic or necrotic). 7a-

c) Annexin-V/FITC positive amebocyte with an internalised coumarin-labelled spore. 

8a-c) Annexin-V/FITC and propidium iodide positive amebocyte with a coumarin-

labelled spore. Pink arrows indicate the location of phagosomes and the broken white 

line in images 7a and 7b highlight the location of the nucleus. The time scale is 

depicted in each set of images. Images were prepared using Image J software. 
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Figure 5.6 Using TUNEL staining to monitor amebocyte cell death, in vitro. A) 

Amebocytes maintained in NaHEP for 4 h at 18oC in the presence or absence of labelled-

spores were assessed for signs of nuclear DNA fragmentation (TUNEL positive). B) 

Positive controls consisted of treating amebocytes in the presence or absence of 

labelled-spores with DNAse for 1 h at 37oC. C) Images demonstrating TUNEL staining of 

amebocytes. 1) Bright field view of amebocytes, 2) TUNEL-positive amebocytes (biotin-

dUTP is transferred to cleaved DNA and visualised using avidin-FITC) and 3) a merging 

of images 2 and 3. Blue arrows indicate TUNEL positive amebocytes and broken lines 

highlight a TUNEL negative amebocyte. A significant increase in proportions of TUNEL 

positive amebocytes at p < 0.05 is represented by *. Values are mean ± SD, n = 5. 
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Figure 5.7 TUNEL staining of phagocytically active amebocytes, in vitro.  A) A series of 

images depicting a TUNEL positive (green) amebocyte having internalised or associated 

with coumarin- labelled B. bassiana spores (pink arrows). B) A TUNEL positive 

amebocyte after ingesting two Rhodamine B-labelled spores (red). 1) TUNEL stained 

nuclear DNA, 2) DAPI staining of the nucleus, 3) Rhodamine B-labelled spores, 4) 

images 1-3 merged, 5) the edges of the labelled cellular components, 6) & 7) brighfield 

views of amebocytes and 8) An image consisting of 5 and 7 merged.  Yellow circles 

highlight the location of the internalised spores.  
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Figure 5.8 Caspase-3 activities of amebocytes in the presence and absence of spores, 

in vitro. Assays consisted of 100-500 µg mL-1 cytosol extract (from 1 x105 cells), 1X 

reaction buffer3 containing 10 mM DTT and 0.2 mM DEVD-pNA (substrate); final 

assay volume was ~ 100 µL (per well). Activity was monitored by an increase in 

absorbance at 405 nm, over a period of 2 h at 37oC. A) Amebocytes in the presence of 

labelled spores, in vitro. B) Amebocytes only. C) Positive controls consisted of 

incubating amebocytes in the absence or presence of spores, over a period of 4 h at 

40oC. The negative control consisted of substrate (0.2 mM DEVD-pNA) in the absence 

of amebocytes. Assays were performed in triplicate on three independent occasions 

(n = 3) and are represented as mean values. 
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5.4.3 Hemocyanin activation in the presence of phagocytically active amebocytes  

Previously, it has been demonstrated that membrane phospholipids, especially PS, are 

potent activators of PO activity in Hc (chapter 2; Coates et al., 2011). After documenting 

a substantial increase in PS exposure on phagocytic amebocytes undergoing apoptosis 

(Fig 5.4), PO activity of Hc was subsequently monitored in culture wells (Fig. 5.9). Hc-d 

PO activity was detected in wells containing amebocytes that had been maintained in 

the presence and absence of spores for 4h (Fig. 5.9).  Total Hc-d PO activity (in situ) was 

recorded at ~ 0.73 U in the presence of 5 x105 amebocytes per well, including spores 

(Fig. 5.9A). In contrast, Hc-d PO activity in wells containing amebocytes (5 x105) in the 

absence of spores was significantly less (p < 0.05), with ~ 0.25 U observed.  

Soluble (acellular) Hc-d PO activity was investigated by removing supernatant and 

adding substrate (ex situ) in the absence of amebocytes. Activity was recorded as ~ 0.17 

U from wells containing both amebocytes and spores, and 0.051 U with amebocytes 

only (Fig. 5.9B). Total potential PO activity of soluble Hc (ex situ) was assessed by 

treatment with SDS micelles for 5 min prior to addition of substrate. 3.5 U and 3.96 U of 

dopachrome formation were observed in samples taken from culture wells containing 

amebocytes with and without spores, respectively (Fig. 5.9C).   

 

 

Furthermore, inducible PO activity of purified Hc, and Hc present in hemolymph were 

highly comparable. Hc present in hemolymph displayed 92% and 93% of PO activity 

levels detected for purified Hc in the presence of PS and SDS, respectively (Fig. 5.10). 

Microbial proteases have been shown previously to induce PO activity of C. 

rotundicauda Hc (Jiang et al., 2007). Control experiments conducted here indicate that 

no measureable induction of PO activity derived from L. polyphemus Hc in the presence 

of B. bassiana spores. In the absence of amebocytes, PS and/or SDS, no Hc-d PO activity 

could be detected.   
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Figure 5.9 Inducible phenoloxidase activity of hemocyanin in the presence of dying 
amebocytes. Amebocytes were maintained (in NaHEP) in the presence and absence of 
coumarin-labelled spores for 4 h. PO activity, derived from hemocyanin was measured 
A) in situ (culture wells) by addition of substrate (2 mM dopamine) and B) ex situ, by 
removal of supernatant and addition of substrate. C) Potential PO activity of 
hemocyanin (positive control) was measured by treating ex situ supernatant with 0.1% 
SDS for 5 min prior to addition of substrate. Hc-d PO activity was detected by an 
increase in absorbance at 475 nm, due to dopamine oxidation. A significant difference in 
Hc-d PO activity at p < 0.05 is represented by *. Values are mean ± SD, n = 5. 
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Figure 5.10 Inducible phenoloxidase activity of Limulus polyphemus hemocyanin. 

Assays included 2 mM dopamine and 1 mg mL-1 purified hemocyanin or 1 mg mL-1 

hemolymph protein. Assays were carried out in 100 mM Tris–HCl, pH 7.5. Samples were 

pre-incubated for 10 min with either phosphatidylserine or SDS. Phenoloxidase activity 

was initiated by the addition of substrate (dopamine). The histogram illustrates an 

increase in absorbance at 475 nm resulting from the formation of dopachrome and its 

derivatives, over a period of 10 minutes. Assays were conducted in triplicate on three 

independent occasions (n = 3). Values represent mean ± SD.  
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5.5 Discussion 

5.5.1 Phagocytosis-induced cell death in invertebrates 

Type 1 programmed cell death, also known as apoptosis, is a crucial process required 

for development, immunomodulation and pathogen deterrence (Sokolova, 2009). Using 

mammalian and selected invertebrate model organisms (D. melanogaster and 

Caenorhabditis elegans), phagocytes have been shown to undergo apoptosis after 

pathogen internalisation, notably viruses (Menze et al., 2010; Franc, 2002). It is 

suggested that apoptosis is an essential innate immune mechanism required to block 

the replication and subsequent systemic dissemination of hazardous microorganisms 

(Cooper and Mitchell-Foster, 2011). The importance of apoptosis in antimicrobial 

immunity is evident from the number of apoptotic modulating strategies employed by 

obligate intracellular pathogens (Menze et al., 2010; De Leo, 2004). Many pathogens are 

known to secrete a battery of anti-apoptotic molecules in order to avoid detection in 

vivo, including, preventing PS relocation by disabling flippases and interfering with p53, 

mitochondrial and caspase activities (McLean et al., 2008; Hilleman, 2004). On the other 

hand, certain bacteria are known to promote apoptosis in vertebrate macrophages in 

order to suppress pro-inflammatory signalling (De Leo, 2004; Frankenberg et al., 2008). 

Over the last decade, research has focussed predominantly on characterising proteolytic 

cascades and apoptotic machinery present in invertebrates, and their similarities with 

mammalian counterparts (Menze et al., 2010; Sokolova, 2009), however, relatively few 

studies have investigated episodes of PICD.  

M. rosenbergii hemocytes displayed PICD after internalising bacteria and yeast, 

however, phagocytosis of latex microspheres did not lead to apoptosis (Hsu et al., 

2005).  Hemocyte apoptosis was identified by TUNEL staining and membrane blebbing 
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depicted in electron micrographs. Similarly, phagocytically active amebocytes observed 

here in the presence of fungal spores (Fig. 5.6) shared comparable levels of TUNEL 

staining with M. rosenbergii hemocytes. Whether PICD in M. rosenbergii was self-

induced for host protection or pathogen induced for immune-suppression purposes 

remains unclear. The complex relationships between crustacean hemocyte PICD and 

apoptosis avoidance strategies used by viruses have gained substantial attention due to 

the economic importance of shellfish. However, opinion is divided on whether PICD 

during viremia in crustaceans is beneficial or detrimental to the host, as convincing 

evidence exists for both arguments (Smith, 2010; Menze et al., 2010).  

Phagocytosis rates of L. polyphemus amebocytes in the presence of coumarin-labelled 

spores were comparable to rates observed previously with FITC and/or Rhodamine-B 

labelled targets (chapter 4, Fig. 4.10 and Fig. 5.1). Internalisation of coumarin-labelled 

spores by amebocytes in vitro induces morphological and biochemical changes 

consistent with apoptosis. Hallmarks of apoptosis recorded for phagocytic amebocytes 

included: loss of mitochondrial and plasma membrane integrity (Fig. 5.3 and Fig. 5.5), 

redistribution of PS (Fig. 5.4 and Fig. 5.5), nuclear DNA fragmentation (Fig. 5.6 and Fig. 

5.7) and an increase in caspase-3 activity. The substrate used for caspase-3 activity 

assays, DEVD-pNA, can be processed by a number of different caspases, notably 

caspase-7 (Krzyzowska et al., 2002), therefore, DEVDase activity detected here may be 

due to a number of activated caspase-like proteins present in amebocytes.  In all 

instances, levels of amebocyte cell death were highest in the presence of spores, with 

the majority of these amebocytes being confirmed as phagocytically active. The 

remaining proportion of dying cells (non-phagocytic) in the presence of spores shared 
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great similarities with the proportion of non-viable amebocytes in the absence of 

spores, over the duration of the experiment (4 h).   

During sepsis by P. aeruginosa, 13 apoptosis-related ESTs, including cytochrome c-

oxidase (COX) and sensitive to apoptosis gene (SAG) were identified in the chelicerate, 

Carcinoscorpius rotundicauda (Ding et al., 2005). Such apoptosis-related ESTs were 

recorded at higher levels 3 h post infection. Likewise, all phagocytically active 

amebocytes recorded here for L. polyphemus, stained positive for extracellular PS (Fig. 

5.4) and demonstrate a 10- fold increase in caspase activity (Fig. 5.8) within 3 h of 

exposure to fungal spores.  Additionally, nuclear DNA fragmentation (Fig. 5.7) was 

noted in phagocytic amebocytes at 4 h post incubation. COX subunits have been 

identified in L. polyphemus and are known to be involved in apoptosis (Lavrov et al., 

2000).  The presence of amine oxidase (AOx) was also observed in challenged C. 

rotundicauda. AOx, like COX proteins, is involved in ROS production and apoptosis (Ding 

et al., 2005). Zhang et al., (2003) determined ROS production to be the main cause of 

PICD in murine and human neutrophils. Whether ROS generation in HSC amebocytes 

also influences PICD remains to be confirmed.    

5.5.2 Activation of hemocyanin into a phenoloxidase in vivo 

Exposure of PS onto the external leaflet of plasma membrane is the most  commonly 

observed feature of apoptotic cells (across all phyla) and is mediated by ATP-dependent 

aminophospholipid translocases (i.e. flippases) (Wu et al., 2006). Interestingly, recent 

work carried out by Lee et al., (2012) demonstrated that cell shrinkage during apoptosis 

of human Jurkat cells leads to the redirection of cytosolic plasma membrane derived 

vesicles back to the plasma membrane, whereby they fuse and expose more PS. In L. 

polyphemus, PS exposure by phagocytic amebocytes (amongst other markers of cell 
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death) was recorded concurrently with Hc-d PO activity (Fig. 5.4 and Fig. 5.9). Levels of 

Hc-d PO were significantly higher in culture wells containing both amebocytes and 

spores. Importantly, control experiments indicated that spores alone did not lead to 

detectable Hc-d PO activity.   

PS has been shown to interact with L. polyphemus Hc and induce a conformational 

change leading to PO activity (chapter 2/Coates et al., 2011). Evidence suggests that PS 

is also involved in the activation of D. melanogaster proPO into PO, during injury (Bilda 

et al., 2009). It is postulated that PICD of amebocytes during immune challenge could 

potentially provide Hc with a mode of activation via the presentation of redistributed 

PS. Purified Hc (1 mg mL-1) displayed ~ 4 U of activity in the presence of 20 µg mL-1 

liposomal PS  (Fig. 5.10). While such an amount of PS is unlikely to be available in HSC 

hemolymph, total Hc-d PO in the presence of ~ 50,000 apoptotic amebocytes was 

recorded at ~ 0.7 U (Fig. 5.3 to Fig. 5.8). It is possible that Hc could interact with other 

membrane components, together with PS.  For example, phosphatidylethanolamine 

(PE) is known to be relocated to the external side of plasma membrane during 

apoptosis (Lee et al., 2012).  Although not as effective as PS or SDS, PE has been shown 

to induce PO activity in Hc (Nagai and Kawabata, 2000; Nellaiappan and Sugumaran, 

1996). PO activity of Hc associated with apoptotic amebocytes made up 78% of the of 

total PO activity recorded, while soluble Hc-d PO (in the absence of amebocytes), 

accounted for the remaining 22% (Fig. 5.9). Even though no differences were detected 

in the degranulation rates of amebocytes in either the presence or absence of spores 

(Fig. 5.2), the release of immune effectors such as clotting factors and anti-microbial 

peptides by amebocytes (Nagai et al., 2001; Nagai and Kawabata, 2000; Nellaiappan and 
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Sugumaran, 1996) may be responsible for the activation of soluble (acellular) Hc-d PO 

recorded here.  

Across all phyla, cell death events are broadly correlated with the progression of many 

debilitating diseases, influencing both hypersensitive and suppressive immune 

mechanisms. Although present in an archaic species, L. polyphemus amebocytes share 

many functional and mechanistic properties with mammalian and arthropod immune 

cells, including, phagocytosis, release of eicosanoids, diapedesis and AMP synthesis 

(Kawabata et al., 2009; MacPherson et al., 1998; Armstrong and Levin, 1979). Now, 

evidence presented here suggests that PICD is also conserved. 

PS is a potent immune effector: ‘branding’ defective cells for phagocytosis (Martin et al., 

2012), activating clotting proteins in mammals (Zwaal et al., 1998; Stace and Ktistakis, 

2006) and inducing PO activity in fruit flies (Bilda et al., 2009). The concept of Hc being 

converted into an immune enzyme via an interaction with PS or by some other 

unknown plasma membrane component on apoptotic amebocytes is intriguing.  

Evidence provided here suggests the need to further explore PS as a likely putative 

activator of Hc-d PO in vivo.  

 

5.6 Conclusion 

Amebocytes that have phagocytosed microbial targets, in vitro, appear to undergo cell 

death, characterised by traditional hallmarks of type-1 programmed cell death, 

apoptosis. The extracellularisation of PS onto the plasma membrane during PICD could 

potentially activate Hc-d PO activity, in vivo, providing an alternative function for 

infected amebocytes.  
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Chapter 6:  

Monitoring the Effect of Temperature on the Health Status 

of Captive Limulus polyphemus; Biochemical and Cellular 

Properties of Hemolymph 

 

 

 

 

 

 

 

 

 

A version of this chapter has been published;  

Christopher J. Coates, Emma L. Bradforda, Carsten A. Kromeb and Jacqueline Nairn. 

2012. Effect of temperature on biochemical and cellular properties of captive Limulus 

polyphemus. Aquaculture. 334-337, 30-38.  
 

 

 

a E. L. Bradford aided quantitative analysis of hemolymph properties.  

b C.A. Krome set-up tanks and weighed the horseshoe crabs on two sampling days.  
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6.1 Abstract  

The maintenance of horseshoe crabs in culture is being explored to address the recent 

decline of the species. While a number of indicators have been used to monitor the 

health status of the horseshoe crabs, the limited success of culture methods suggests 

that an alternative approach is required. In this chapter, the effect of temperature on 

physiological, biochemical and cellular characteristics of hemolymph were used to 

assess the health status of the Atlantic horseshoe crab, Limulus polyphemus. L. 

polyphemus were maintained across the temperature range, 8 °C to 23 °C, for a period of 

56 days. Mean body weight, hemocyanin concentration and function, amebocyte 

numbers and morphology were monitored. Results showed a general decrease in 

hemocyanin concentration and amebocyte numbers across the temperature range. The 

decreased amebocyte numbers was accompanied by a shift in amebocyte morphology 

with increasing temperature. The percentage of hemocyanin with bound dioxygen and 

the specific activity of phenoloxidase, derived from hemocyanin, changed little during 

the experiment and these data are corroborated with in vitro analysis of purified Hc 

exposed to similar temperature conditions. The immune-competence of horseshoe 

crabs appeared to be adversely affected by captivity induced stress and this was 

exacerbated by higher temperatures. 
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6.2 Introduction 

The Atlantic horseshoe crab Limulus polyphemus (Linnaeus, 1758) is one of four extant 

species of horseshoe crab (HSC) and the only one to inhabit the east coast of the U.S.A. 

The remaining three species; Tachypleus tridentatus (Leach, 1819), Tachypleus gigas 

(Müller, 1785) and Carcinoscorpius rotundicauda (Latreille, 1802) inhabit distinct 

coastal waters of southern Asia (Walls et al., 2002) (Fig. 6.1). For over a century, L. 

polyphemus has been utilised by the fishing industry as bait (for eel and whelk) and by 

the farming industry as fertiliser for soil (Berkson and Shuster, 1999 and Walls et al., 

2002). For example, 165,000 individual HSCs are taken as bait to support the local 

whelk industry in the state of Massachusetts alone.  In addition, biomedical companies 

harvest HSCs from natural populations and bleed them for the production of LAL. LAL is 

derived from the proteins stored in the cytoplasmic granules of L. polyphemus blood 

cells, enabling the detection of picogram levels of endotoxins present in 

biopharmaceuticals. It is estimated that LAL production is worth approximately 50 

million dollars worldwide, equating to bleeding and processing ~ 250,000 animals 

annually. Mortality rates are estimated to be between 10 to 15%, i.e. 20,000 to 37,500 

HSCs (Anon, 2013; http://www.horseshoecrab.org/info/conservation.html).  

HSCs possess a primitive yet highly effective biological defence system; including, the 

multi-functional protein hemocyanin (Hc) and the granular amebocyte. Hc is a type 

three copper protein which functions primarily as a carrier of molecular oxygen in 

arthropods and molluscs. Over the last decade, it has become evident that Hc plays 

multiple roles in invertebrate immunity (Cerenius et al., 2010 and Coates et al., 2011]). 

For example, the conversion of Hc from a respiratory protein into an enzyme displaying 

phenoloxidase (PO) activity in crustaceans, chelicerates and molluscs has been well 
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documented (Decker and Jaenicke, 2004). Amebocytes comprise approximately 99% of 

circulating blood cells present in the hemolymph of L. polyphemus (Suhr-Jessen et al., 

1989). Amebocytes are highly refractile cells containing an abundance of large and 

small cytoplasmic granules. These granules are released in response to the presence of 

microbial ligands, especially lipopolysaccharide (LPS) found in the cell wall of 

pathogens (basis of the LAL test), thus releasing a battery of immune molecules into the 

surrounding milieu (Iwanaga and Lee, 2005). A primary function of the amebocyte 

appears to be the exocytosis of immune effectors, however, amebocytes also exhibit 

phagocytic properties and are involved in hemostasis (Armstrong and Levin, 1979 and 

Zhu et al., 2005; chapter 4). L. polyphemus amebocytes appear to exist in a number of 

morphological states in culture. Spherical contracted cells are the most viable in culture 

and this morphological state may represent most closely the state of healthy 

amebocytes in vivo (Chen et al., 1986, Chen et al., 1989 and Hurton et al., 2005). 

 

 

 

Exposure of invertebrates to a variety of stressors, including temperature, can have 

deleterious impacts on health; affecting fecundity, immune competence, metabolite 

homeostasis and survival (Le Moullac and Haffner, 2000). Recent studies indicate that 

temperature is an important effector of development in the native habitats of HSCs 

(Faurby et al., 2010, Lee and Morton, 2009 and Tzafrir-Prag et al., 2010). Temperature is 

also an important factor in L. polyphemus aquaculture (Schreibman and Zarnoch, 2009). 

Temperature shock (acute increase or decrease) can lead to up-regulation of the immune 

response in decapods (Truscott and White, 1990), however, prolonged or chronic 

exposure can lead to a reduction in immune cell numbers, phagocytic ability and 

alterations in PO activity (Pascual et al., 2003, Paterson and Stewart, 1973 and Vargas-

Albores et al., 1998). The aim of this study was to establish the effects of temperature on 

L. polyphemus Hc concentration and function as well as changes in amebocyte numbers 

and morphology with a view to optimising aquaculture conditions and evaluating 

captivity induced stress. 
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Figure 6.1 Geographical distributions of the four extant species of horseshoe crabs.  
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6.3 Materials and Methods  

All chemicals and reagents used were of the highest quality and purity, purchased from 

Sigma Aldrich Chemical Company (Dorset, UK) unless otherwise stated.  

6.3.1 L. polyphemus and culture conditions  

Fifty intermolt male horseshoe crabs were used in total. 48 HSCs were used for the 

temperature trials - 12 per trial; 8 °C, 13 °C, 18 °C and 23 °C (with 3 crabs per 

temperature acting as controls) (Fig. 6.2). All trial values represent the mean (n = 9, 3 

HSCs per replicate) ± standard deviation. The remaining 2 HSCs were used to purify 

hemocyanin from. HSCs were weighed, tagged (with a Parkside PFBS 9.6 etching drill, 

using numerical nomenclature) and inspected thoroughly for any signs of external 

physical damage (Fig. 6.2). HSC hemolymph samples and swabs from the gill flaps were 

tested for the presence of pathogenic bacteria by incubation on sterile Tryptic Soy Agar-

2% NaCl at 20 °C for 48 h. HSCs were housed in closed circulation tanks (at 15 °C) 

containing prepared sea water (3%-Red Sea salt) at a stocking density of no more than 

three crabs per 1 m2 floor space and fed approximately 2% of their body weight in 

mussels, 2 to 3 times per week. Approximately 25% to 35% of seawater was exchanged 

per week, in addition to using internal submerged filter pumps (Fluval U2 and Hailea 

HL-BT1000) and siphoning of faeces, to maintain water quality. Assessments of salinity, 

nitrite/nitrate, ammonia/ammonium and pH levels were performed routinely (Tropic 

Marin, Expert test kit). HSCs were placed in their experimental tanks (3 animals per 

tank, 200 L) and acclimated to their treatment temperatures over a period of 48 h, with 

the water temperature increasing/decreasing gradually. HSCs were housed across the 

temperature range 8 °C to 23 °C for the duration of the experiment (56 days). External 

water chillers (D-D Refrigerant cooler DC750) and internal heaters (Eheim Jager 3616 
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(150w) and Hagen Elite (200w)) were placed in their respective tanks in order to 

maintain the various experimental temperatures. 

 

6.3.2 Bleeding regime  

Before extraction of hemolymph, HSCs were weighed and a physical inspection was 

carried out to note any damage or signs of infection/disease (Fig. 6.2). Experimental 

HSCs were bled on day 0 and subsequently bled every fortnight for the duration of the 

experiment. A total of 5 mL of hemolymph was extracted per HSC on each day: 0, 14, 28, 

42, 56 and collected into pre-chilled sterile 15 mL falcon tubes. The arthroidal 

membrane was cleaned with 70% ethanol prior to and post bleeding in order to avoid 

sepsis. Half of the extracted hemolymph was used for protein analysis and the 

remaining half was used for cellular analysis. Approximately 20 μL of hemolymph was 

retained per HSC (inclusive of controls), on each bleeding occasion, and tested for 

microbial growth. Control HSCs were cultured under the same conditions as the 

experimental animals but were bled on day 0 and day 56 only, to determine the effects 

of the bleeding process.  



P a g e  | 195 

 

 
 

 

Figure 6.2 A) Experimental set-up of horseshoe crabs (50 in total). Each box 
(containing HSCs) represents an individual tank. B; 1) and 2) Anatomy of intermoult-
adult female L. polyphemus; damage/signs of deterioration of external body segments 
were monitored throughout the period of research. C) L. polyphemus specimens with 
severe fractures (1 and 2) and aggressive colonisation of the carapace by barnacles and 
other epibionts (3). Image 3 was sourced, and modified, from 
http://matthewwills.com/tag/horseshoe-crab/ on 4th August 2012). 

http://matthewwills.com/tag/horseshoe-crab/
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6.3.3 Estimation of hemocyanin concentration and the percentage of hemocyanin with 

dioxygen bound  

Half of the extracted hemolymph (2.5 mL) was centrifuged immediately at 500 × g for 5 

min at 4 °C; the pellet was discarded and the acellular fraction was decanted and stored 

on ice until analysis. Cell-free hemolymph was diluted in 100 mM Tris–HCl buffer, pH 

7.5 and protein concentration estimates were performed using an Ultrospec 2100 pro 

spectrophotometer. UV absorbance measurements were taken at 280 nm; using the 

value of 1.39 for the absorbance of a 1 mg mL− 1 Hc solution from L. polyphemus in a 

quartz cuvette of 1 cm pathlength. The absorbance at 350 nm (indicative of type 3 

copper proteins with dioxygen bound) was used to calculate the percentage of Hc with 

dioxygen bound, with an absorption coefficient at this wavelength of 20,000 M− 1 cm− 1. 

6.3.4 Purification of Limulus polyphemus hemocyanin 

Hemocyanin was purified from L. polyphemus hemolymph according to the protocol 

outlined in 2.3.1 (Coates et al., 2011). Hemolymph was processed from two individual 

horseshoe crabs housed separately from the trial animals (48 HSCs). 

6.3.5 Phenoloxidase assay measurements  

Spectrophotometric analysis of hemocyanin-derived phenoloxidase (Hc-d PO) activity 

was performed at various temperatures, in a 96 well plate (MDS VERSA max microplate 

reader).  

I. Whole hemolymph Hc-d PO assays were performed at 20oC, in 100 mM Tris-

HCl, pH 7.5. Samples were pre-incubated with SDS for 10 min, before assays 

were initiated by addition of substrate. 
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II. Hc purified from L. polyphemus was pre-incubated across the temperature 

range, 5oC – 50oC, for 10 mins, in the presence of SDS. PO assays were 

performed in 100 mM NaPi, pH 7.5. 

Each assay (100 μL volume) assay consisted of Hc at a concentration of 1 mg mL− 1, 2 

mM dopamine hydrochloride and 0.1% (3.5 mM) SDS. PO activity was monitored as 

outlined in section 2.3.4. Values for the auto-oxidation of dopamine into dopachrome 

were subtracted from the final Hc-d PO values, thus, values presented here represent PO 

activity attributed to Hc-d PO only. PO assays were performed in triplicate. 

 

6.3.6 Circular dichroism 

CD spectra were recorded on a Jasco J-810 spectropolarimeter, previously calibrated 

with 1S-(+)-10-camphorsulphonic acid. Spectral measurements were carried out in 100 

mM NaPi buffer, pH 7.5. In all near and far UV measurements, each spectrum recorded 

was corrected by the subtraction of a spectrum of buffer alone. 

Spectra in the far UV region (180 nm to 260 nm) were recorded in a quartz cylindrical 

cell of pathlength 0.02 cm at a protein concentration of 0.3 mg mL-1. Hc was pre-

incubated for 10 min at each temperature (5oC to 25oC) prior to spectral analysis. In 

each case, 4 scans were recorded (and averaged) at a scan rate of 50 nm min-1 with a 

time constant of 0.5 s.  

Spectra in the near UV region (250nm to 400 nm) were recorded in a quartz rectangular 

cell of pathlength 1 cm at a protein concentration of 0.4 mg mL-1. Hc was pre-incubated 

for 10 min at each temperature (5oC to 25oC) prior to spectral analysis. In each case, 1 

scan was recorded at a scan rate of 10 nm min-1 with a time constant of 2 s.  
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6.3.7 Fluorescence spectroscopy 

All experiments were recorded on a Perkin Elmer LS50 spectrofluorimeter. Intrinsic 

tryptophan fluorescence and histidine fluorescence were recorded using a quartz 

cuvette of 1 cm pathlength at a protein concentration of 0.1 mg mL-1 in 100 mM NaPi 

buffer, pH 7.5. The excitation wavelengths used for tryptophan and histidine residues 

were 290 nm and 330 nm respectively, with a 5 nm bandwidth for the excitation and 

emission. Hc was incubated at various temperatures (5oC to 25oC) for 10 min prior to 

measurements. All scans were recorded at a scan rate of 50 nm min-1 and were 

corrected by subtraction of a spectrum of buffer alone.  

6.3.8 Absorption spectroscopy 

Absorption spectra of Hc samples were recorded on an Ultrospec 2100 pro UV/Visible 

spectrophotometer over the range 240 nm to 380 nm. Properties of the di-copper active 

site of Hc were monitored via the absorption peak at 350 nm (indicative of type three 

copper enzymes). The effects of various temperatures on the di-copper active site were 

determined by pre- incubating 0.3 mg mL-1 Hc for 10 min in 100 mM NaPi buffer, pH 7.5, 

across the temperature range 5oC to 50oC, prior to spectral measurements 

6.3.9 Determination of L. polyphemus amebocyte numbers and morphology  

All glassware and salts were baked for a period no less than 4 h at 180 °C to deter 

endotoxin contamination. Extracted hemolymph (2.5 mL) was diluted immediately in 

pre-chilled marine anticoagulant (see section 4.3.5) and supplemented with 2.5% 

neutral formaldehyde. This method retained the morphological state of amebocytes 

assumed to be representative of cells in vivo (Armstrong, 1979). Amebocytes were 

stored at 4 °C until analysis. Serial dilutions were carried out in LPS-free saline (3% 

NaCl, 10 mM NaHCO3, pH 7.5) and amebocyte concentration was estimated using an 
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improved Neubauer haemocytometer. Amebocyte morphology was examined using 

brightfield optics of an Olympus M081 inverted microscope. Amebocyte morphologies 

were identified using the categories outlined by Hurton et al. (2005) (also described in 

5.3.6). 

6.3.10 Statistical analysis  

Fifty male horseshoe crabs were used in total. It should be noted that between sample 

day 28 and day 42, 2 mortalities occurred at 23 °C (n = 7, for day 42 and day 56). 

Phenoloxidase assays, amebocyte number and amebocyte morphology studies were all 

performed in duplicate. Repeated measure analysis of variance (ANOVA) was utilised 

for measurements made over time (e.g. Hc concentration and amebocyte numbers). 

This was followed by Tukey post-hoc tests for multiple comparisons when necessary. 

Hc concentration, percentage dioxygen bound and granular-spherical amebocyte data 

sets were transformed using Natural log, Exponential square root and Square root 

functions, respectively. Unpaired 2-sample t-tests were used to assess differences 

between trial and control data sets. Statistical analysis was carried out using Minitab 

analytical software version 16. Differences were considered significant at p ≤ 0.05. 

All PO assays of purified hemocyanin were performed in triplicate on two independent 

occasions. Values are represented by the mean ± standard deviation. 
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6.4 Results 

6.4.1 Physical evaluation; mortality and weight   

Thorough physical examinations of HSCs were carried out prior to each sampling 

session, encompassing: the carapace (prosoma, opisthosoma and telson), the gills 

(including gill flaps) and appendages (Fig. 6.2). No signs of parasites and/or epibionts 

were found. All HSC hemolymph and gill flap swabs were devoid of detectable microbial 

growth. Cosmetic damages noted on day 0 were monitored throughout the experiment 

and were found to remain unchanged. 

Hemolymph clotting was observed in the gills of two individuals on sample day 28; HSC 

46 and HSC 48 (23 °C). HSC 46 subsequently died before day 42 sampling, however, HSC 

48 appeared to recover and had no noticeable ailments for the remainder of the 

experiment. A second HSC (23 °C) died between sampling days 28 and 42, however, all 

previous physical examinations of this organism showed no signs of damage and/or 

infection. In total, two mortalities were recorded over the 56-day period, both occurring 

at 23 °C. No deaths and/or signs of physical damage were recorded in the control HSCs. 

Overall, a subtle decrease in HSC body weight was recorded over the 56-day period (Fig. 

6.3), with HSCs housed at 23 °C suffering the largest decrease, − 8.2%. Repeated 

measure analysis of variance revealed time to have a significant effect, whereas 

temperature did not (Time; F(4,124) = 62.81, p < 0.001, Temp; F(3,32) = 0.28, p = 0.84, 

Temp*Time; F(12,124) = 2.76, p = 0.002). Control HSC mean body weight demonstrated 

almost identical trends to experimental HSCs. 
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Figure 6.3 Effect of temperature on mean body weight of captive horseshoe crabs. A) 

Average horseshoe crab weights (g) are represented by the mean ± standard deviation 

for different temperatures (8 °C, 13 °C, 18 °C, 23 °C) over a trial period of 56 days with 

hemolymph extractions on days 0, 14, 28, 42 and 56. Significant (p ≤ 0.05) time effect 

compared to day 0 weights are indicated by * (n = 9 per trial; total 36). 
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6.4.2 Quantitative analysis of hemocyanin across the temperature range 8°C to 23°C 

Hc concentration decreased continually across the temperature range for the duration 

of the experiment (Fig. 6.4). Temperature and time were both found to have a 

significant effect on Hc concentration (Temp; F(3,32) = 88.95, p < 0.001, Time; F(4,124) = 

106.09, p < 0.001, Temp*Time; F(12,124) = 13.33, p < 0.001). Tukey post hoc analysis 

revealed significant differences between the lower experimental temperatures, 8 °C and 

13 °C and the higher temperatures, 18°C and 23°C, at day 56 (Fig. 6.4). Over the 

duration of the experiment, the largest decreases in Hc concentration, with a decrease 

of 43.9% and 69.3%, occurred at 18 °C and 23 °C, respectively (Table 6.1). Hc 

concentrations recorded for the control HSCs decreased throughout the experimental 

period, in all temperature treatments, with no significant differences detected between 

trial and control data (Table 6.1), indicating that additional hemolymph extractions had 

no measureable effect on Hc concentrations.  
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Figure 6.4 Effect of temperature on hemocyanin concentrations (mg mL−1) present in 

the hemolymph of L. polyphemus. The concentration of hemocyanin from horseshoe 

crabs maintained across the temperature range 8°C to 23°C for a period of 56 days was 

deduced from UV absorbance measurements at 280 nm following dilution of 

hemolymph into 100 mM Tris–HCl buffer, pH 7.5. Values represent the mean ± standard 

deviation. A significant decrease in Hc concentration compared to sample day 0 (at p ≤ 

0.05) is indicated by * (n = 9 per trial; total 36). Tukey post hoc comparisons are 

represented by 1 (8 °C and 18 °C), 2 (8 °C and 23 °C), 3 (13 °C and 18 °C) and 4 (13 °C 

and 23 °C) are significant, p < 0.001. 
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Table 6.1 Biochemical, immunological and cellular measurements of control and trial 
horseshoe crabs. Hemocyanin concentration, Hc-d PO activity and amebocyte numbers 
were determined as outlined in section 6.3.    

Temperature Experimental Day 0 Day 56 
Decrease 

(%) 

Trial vs. 

control 

Hemocyanin (mg mL− 1) 

8 °C 
Trial 108 ± 14.2 71 ± 4.2 34.3 

 
Control 135 ± 27 90 ± 14.9 33.3 p = 0.239 

13 °C 
Trial 99 ± 7.1 68 ± 5.9 31.3 

 
Control 95 ± 5.8 69 ± 10 27.4 p = 0.787 

18 °C 
Trial 91 ± 10.9 51 ± 9.2 43.9 

 
Control 80 ± 13.7 41 ± 10 48.8 p = 0.488 

23 °C 
Trial 101 ± 6.6 31 ± 4.5 69.3 

 
Control 80 ± 24 28 ± 4.1 65 p = 0.396 

Hc-d PO activity (μmol min-1) 

8 °C 
Trial 4 ± 1 2.6 ± 0.52 35 

 
Control 2.5 ± 0.34 1.6 ± 0.35 36 p = 0.286 

13 °C 
Trial 3.4 ± 0.9 2.6 ± 0.52 23.5 

 
Control 2.6 ± 0.52 1.9 ± 0.17 26.9 p = 0.278 

18 °C 
Trial 4.4 ± 1 2.4 ± 0.35 45.5 

 
Control 2.6 ± 0.17 1.4 ± 0.35 46.2 p = 0.967 

23 °C 
Trial 5 ± 0.69 2.1 ± 0.28 58 

 
Control 2.5 ± 0.69 1.1 ± 0.28 56 p = 0.968 

Amebocytes (× l07 mL− 1) 

8 °C 
Trial 3.5 ± 0.69 2.4 ± 0.51 31.4 

 
Control 3.7 ± 1.7 2.4 ± 0.9 35.1 p = 0.963 

13 °C 
Trial 3.8 ± 0.86 2.5 ± 0.76 34.2 

 
Control 2.6 ± 0.35 1.6 ± 0.35 34.6 p = 0.058 

18 °C 
Trial 3.3 ± 1.4 1.7 ± 0.35 48.5 

 
Control 3.8 ± 0.52 1.8 ± 0.35 52.6 p = 0.242 

23 °C 
Trial 4.6 ± 1.8 1.3 ± 0.28 71.7 

 
Control 2.9 ± 0.17 1 ± 0.14 65.5 p = 0.507 

 

All values are expressed as the mean ± standard deviation. 2 sample t-tests were carried 
out on trial and control data sets. No significant differences were detected as p > 0.05 in 
all cases (n = 48). 
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6.4.3 Hemocyanin with dioxygen bound and inducible phenoloxidase activity 

The proportion of Hc with dioxygen bound and the level of Hc-d PO activity were used 

to infer the functionality of Hc present in HSC hemolymph. With the exception of day 14 

samples, the percentage of Hc with dioxygen bound appeared to be > 90% across the 

temperature range (Fig. 6.5). Overall, temperature did not have an effect (F(3,32) = 2.68,p 

= 0.063) on the percentage of dioxygen bound. Analysis revealed a marginal significant 

difference between sample day 14 and day 28 at 8 °C (p = 0.046) (Fig. 6.5).  

Hc-d PO assays were standardised (activity determined per mg protein) in order to 

infer the immune functionality of Hc. Overall, temperature and time appeared to have a 

significant effect on Hc-d PO activity (F(3,32) = 294, p = 0.036, F(4,124) = 24.19, p < 0.001, 

respectively) (Fig. 6.6). HSCs incubated at 8 °C and 13 °C demonstrated a small decrease 

in Hc-d PO activity over time (Fig. 6.6), however, no significant differences were 

detected between day 0 and day 56 measurements for the 8 °C or 13 °C treatments (p = 

0.126, p = 0.962, respectively). Conversely, a more pronounced decrease was observed 

for HSCs at 18 °C and 23 °C (Fig. 6.6), with significant differences detected between day 

0 and day 56 measurements (p = 0.002, p < 0.001, respectively). The most dramatic 

decrease in Hc-d PO activity measurements occurred at day 14 (across the entire 

temperature range), this coincides with the decrease in percentage of Hc with dioxygen 

bound noted at day 14 (Fig. 6.5). As Hc-d PO activity is an oxygen dependent reaction, a 

significant reduction in the percentage of Hc with dioxygen bound could affect Hc-d PO 

activity. 

Control samples demonstrated similar trends to experimental samples, inferring that 

neither the percentage of Hc with dioxygen bound or Hc-d PO activity was affected by 

additional hemolymph extractions (Table 6.1). 
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Figure 6.5 Effect of temperature on the percentage of L. polyphemus hemocyanin with 

dioxygen bound. The percentage of hemocyanin with dioxygen bound in the di-copper 

centre [CuII-O22-CuII] was determined using the characteristic absorption peak at 350 

nm. A) Percentage hemocyanin with dioxygen bound from horseshoe crabs maintained 

at four different temperatures (8°C, 13°C, 18°C, 23°C) over a trial period of 56 days, with 

hemolymph extractions on days 0, 14, 28, 42 and 56. B) Percentage hemocyanin with 

dioxygen bound from horseshoe crab control specimens with hemolymph extraction on 

days 0 and 56 only. Trial and control values represent the mean ± standard deviation. 

Significant (p≤0.05) time effect compared to day 0 data are indicated by * (n = 9 per 

trial; total 36). 
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Figure 6.6 Effect of temperature on hemocyanin-derived phenoloxidase activity. 

Hemocyanin derived phenoloxidase activity from horseshoe crab hemolymph was 

assessed from crabs maintained across the temperature range 8°C to 23°C. Cell free 

hemolymph samples were diluted in 100 mM Tris–HCl buffer, pH 7.5 and subsequently 

incubated with SDS for 10 min prior to spectral readings. The assay was initiated with 

the addition of substrate. Assays were recorded over a 10 min period. The increase in 

absorbance at 475 nm is indicative of the formation of dopachrome and its derivatives. 

Values are represented by the mean ± standard deviation. Significant (p ≤0.05) time 

effect compared to day 0 data are indicated by * (n = 9 per trial; total 36). 
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6.4.4 Alterations in amebocyte number and morphology across the temperature range 

8°C to 23°C  

The number of immune cells in the hemolymph of invertebrates has been used as an 

indicator of immune status, particularly in insect systems, with a decrease in the cell 

numbers indicating an unhealthy/stressed organism (Bergin et al., 2003 and Le Moullac 

and Haffner, 2000). Amebocyte numbers decreased across all temperatures over the 

experimental period (Fig. 6.7), with the most pronounced decrease of 71.7% occurring 

at 23 °C (Table 6.1). Overall, both temperature and time were found to have a significant 

effect on amebocyte number (F(3,32) = 3.36, p = 0.021, F(4,124) = 28.71, p < 0.001 ).Control 

HSC amebocyte concentrations demonstrated a similar trend to trial HSCs (Table 6.1) 

with no significant differences found, indicating that additional hemolymph extractions 

did not influence amebocyte numbers. 

It has been observed previously that invertebrate immune cells suffer a loss of 

functionality caused by prolonged exposure to various environmental stresses (Le 

Moullac and Haffner, 2000). HSC amebocytes, in vitro, demonstrate three distinct 

morphological states, granular-spherical (GS), granular flattened (GF) and degranulated 

dendritic-like (D-L) (Fig. 6.8) (Armstrong, 1979 and Hurton et al., 2005). There is 

evidence to suggest that amebocytes take on these different morphological states in vivo 

(Armstrong, 1979). Temperature and time were both found to affect GS cell numbers 

(Temp; F(3,32) = 4.41, p = 0.006, Time; F(4,124) = 42.91, p < 0.001, Temp*Time; F(12,124) = 

1.86, p < 0.045). The largest decrease in GS cell levels of 54.9% was recorded at 23 °C 

(Fig. 6.8A). GS cell representation decreased 24.6%, 29.6%, 51.4% and 54.9% at 8 °C, 13 

°C, 18 °C and 23 °C, respectively. The proportion of GS amebocytes from HSCs incubated 

at the lower temperatures, 8 °C and 13 °C, recovered at day 56, whereas the population 
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of GS amebocytes at 23 °C decreased constantly over time (Fig. 6.8A). As GS levels 

decreased, GF levels increased by 47.1%, 72.4%, 90.6% and 110.3% at 8 °C, 13 °C, 18 °C 

and 23 °C, respectively. An increase in the proportion of amebocytes exhibiting D-L 

morphology was observed at the higher temperatures (18 °C and 23 °C) between days 

28 and 56 (Fig. 6.8A). Overall, temperature and time were shown to have a significant 

effect on D-L cell levels (Temp; F(3,32) = 7.55, p < 0.001, Time; F(4,124) = 3.97, p = 0.005, 

Temp *Time; F(12,124) = 4.13, p < 0.001). Tukey post hoc analysis revealed that changes 

in D-L cell numbers were only significant at day 28 and day 56 for HSCs at 23 °C (p = 

0.0448, p = 0.0017, respectively), in comparison to day 0 D-L cell levels. Control samples 

demonstrated a similar decreasing trend in the proportion of amebocytes with GS 

morphology coupled with a concomitant increase in GF cell abundance (Fig. 6.8B). 

Moreover, no differences in the morphological state of the amebocytes (GS, GF and D-L) 

were detected between trial and control sample sets, suggesting that additional 

hemolymph extractions in trial experiments had no detectable effects on amebocyte 

function. 
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Figure 6.7 Effect of temperature on the numbers of amebocytes from L. polyphemus 

hemolymph. Amebocyte numbers present in hemolymph from horseshoe crabs housed 

at four different temperatures (8°C, 13°C, 18°C, 23°C) over a trial period of 56 days with 

hemolymph extractions on days 0, 14, 28, 42 and 56. Values represent the mean ± 

standard deviation. Significant (p ≤ 0.05) time effect compared to day 0 data are 

indicated by *(n = 9 per trial; total 36). 
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Figure 6.8 Effect of temperature on the morphological status of amebocytes present in 

L. polyphemus hemolymph. A) Morphology of amebocytes present in the hemolymph of 

horseshoe crabs housed at four different temperatures (8 °C, 13 °C, 18 °C, 23 °C) over a 

trial period of 56 days with hemolymph extractions on days 0, 14, 28, 42 and 56. B) 

Morphology of amebocytes present in the hemolymph of horseshoe crabs housed at 

four different temperatures (8 °C, 13 °C, 18 °C, 23 °C) over a trial period of 56 days with 

hemolymph extraction on days 0 and 56 only. Cell morphologies are categorised as (GS) 

granular spherical cells which are highly retractile, with no visible nucleus (N); (GF) 

granular flattened cells which lack refractility but have a visible nucleus (N); (DL) 

dendritic-like cells which appear de-granulated with large vacuoles (V) in the cytoplasm 

and pseudopodia like projections. Each value is represented by the mean percentage. 

Significant (p ≤ 0.05) time effect compared to day 0 data are indicated by *(n = 9 per 

trial and n =  3 per control; total 48). 
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6.4.5 Influence of increasing temperature on inducible phenoloxidase activity of purified 

hemocyanin  

Exposure of Hc to increasing temperatures failed to elicit PO activity in the absence of 

the exogenous activator SDS (data not shown). In the presence of micellar forms of SDS, 

PO activity of Hc was detected (Fig. 6.9), with an increase in catalytic activity of Hc 

concomitant with increasing temperature (8oC to 40oC). For every 10oC increase in 

temperature, there was an approximate doubling of enzyme activity observed.  

 

6.4.6 Effect of increasing temperature on the secondary structure of purified 

hemocyanin 

Far UV spectra (Fig. 6.10) indicate that temperatures up to 25oC failed to induce any 

measureable changes in Hc conformation (in the absence of SDS). Analysis of the Hc 

secondary structural content over the wavelength range (195 nm to 240 nm) using 

DICHROWEB, suggested that increasing temperature had no detectable effect on Hc 

(Table 6.2).  
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Figure 6.9 Phenoloxidase activity of hemocyanin from Limulus polyphemus upon 

exposure to increasing temperatures. Hemocyanin (1 mg mL-1) in the presence of 3.5 

mM SDS was pre-incubated for 10 min across the temperature range, 8oC to 40oC. 

Assays were carried out in 100 mM sodium phosphate, pH 7.5 and initiated with the 

addition of substrate (dopamine, 2 mM). The histogram illustrates an increase in 

absorbance at 475 nm resulting from the formation of dopachrome and its derivatives. 

Values for the auto-oxidation of dopamine into dopachrome in the absence of 

hemocyanin were deducted; therefore, data presented here represents phenoloxidase 

activity derived from hemocyanin only. Values are represented by the mean ± standard 

deviation.  
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Figure 6.10 Far-UV CD spectra of 0.3 mg mL-1 Limulus polyphemus hemocyanin across 

the temperature range 5 oC to 25oC.  Hemocyanin in 100 mM sodium phosphate buffer, 

pH 7.5, was incubated at each temperature for 10 min prior to the spectral analysis. 
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Table 6.2 Percentage change in secondary structural content of L. polyphemus 

hemocyanin across the temperature range, 5oC to 25oC 

Hemocyanin Temperature Experimental 

conditions* 

Helix 

(%) 

Sheet 

(%) 

Turns 

(%) 

Unordered 

(%) 

       

0.3 mg mL-1 50C 10 min 27.01 25.06 19.45 28.46 

0.3 mg mL-1 100C 10 min 24.68 24.13 21.03 30.13 

0.3 mg mL-1 150C 10 min 29.08 21.63 21.48 27.78 

0.3 mg mL-1 200C 10 min 24.52 26.17 20.67 28.62 

0.3 mg mL-1 250C 10 min 22.33 26.63 19.99 31.43 

Secondary structures predictions were conducted using DICHROWEB, using CONTIN 

and reference set 4. * indicates the amount of time hemocyanin was incubated at each 

temperature before the spectra were recorded.  
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6.4.7 Effect of temperature on hemocyanin tertiary structure 

Intrinsic tryptophan fluorescence (Fig. 6.11) and near-UV CD (Fig. 6.12) measurements 

suggest that increasing temperatures have little effect on the tertiary structural 

integrity of L. polyphemus Hc. A minor increase in the fluorescence emission maxima of 

Hc with increasing temperatures was observed (Fig. 6.11A), however, temperature 

appeared to have a similar effect on the model compound N-acetyl-L-tryptophan (Fig. 

6.11B). This suggests that changes in Hc fluorescence are potentially due to the subtle 

effect of temperature on exposed tryptophan side changes and not due to a 

conformational change of the enzyme.  

Near UV CD spectra (Fig. 6.12) indicate that temperatures up to 20oC have little effect on 

Hc structure. A reduction of approximately 19o cm-1 dmol-1 at the 340 nm absorption 

band is observed as temperature is increased from 20oC to 25oC. A reduction in the near 

UV spectrum at ~ 340 nm has been previously associated with a conformational change 

and subsequent induction of PO activity in Hc (Baird et al., 2007; Chapter 2, Fig 2.7). 

Moreover, Hc did not display any detectable PO activity across the temperature range in 

the absence of SDS (data not shown). It has been demonstrated previously that removal 

of copper atoms from Hc or preparation of deoxygenated Hc, displays near UV and 

absorption spectra absent an absorption peak at 340 nm (Erker et al., 2004).  
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Figure 6.11 Effect of temperature on the tertiary structure of Limulus polyphemus 

hemocyanin. A) Fluorescence emission spectra of 0.1 mg mL-1 L. polyphemus 

hemocyanin across the temperature range 5oC to 25oC. Hemocyanin was pre-incubated 

for 10 min at each temperature prior to spectral readings Experiments were conducted 

in 100mM sodium phosphate buffer, pH 7.5. Samples were excited at 290 nm 

(tryptophan residues) and the subsequent fluorescent spectrum was recorded. B) 

Fluorescence emission spectrum of 2 µM N-acetyl-l-tryptophan, in 100mM sodium 

phosphate buffer, pH 7.5 across the temperature range 5oC to 25oC.  
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Figure 6.12 Near-UV CD spectra of 0.4 mg mL-1 Limulus polyphemus hemocyanin across 

the temperature range 5 oC to 25oC.  Hemocyanin in 100mM sodium phosphate buffer, 

pH 7.5, was incubated at each temperature for 5 min prior to the spectral analysis. 
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6.4.8 Effect of temperature on the dicopper active site 

The dicopper active sites of type three copper proteins such as Hc and PO possess a 

characteristic absorption peak at ~ 340 nm (ε ~ 20,000M-1 cm-1) which is also observed 

in the near UV CD spectrum (Decker et al., 2001). Increasing temperatures up to 50oC 

had little effect on the absorption band that occurs at ~ 340 nm (Table 7.3). A small 

reduction of - 9 % in absorption peak intensity between 340 nm and 350 nm was 

observed. 

 

In addition to the characteristic fluorescence emission peak observed between 340 nm 

and 350 nm due to aromatic residues, type three copper proteins also exhibit a 

characteristic fluorescence emission peak between 415 nm to 430 nm caused by the 

presence of six highly conserved histidine residues that coordinate the copper atoms in 

the active site. Increasing temperatures up to 25 oC did not result in any detectable 

change in the environment of the dicopper active site (Fig. 6.13). The subtle changes at 

~ 340 nm in the absorption spectra and fluorescence intensity at ~  430 nm suggests 

that the arrangement around the Cu(II) ions are not altered by increasing temperatures.  
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Table 6.3 Absorbance peak values for  Limulus polyphemus hemocyanin across the 

temperature range 5oC to 50oC 

 Absorbance readings 

 At 280 nm At 340 nm 

Temperature   

5 oC 0.446 0.113 

8 oC 0.447 0.113 

13 oC 0.445 0.112  

18 oC 0.444 0.112 

20 oC 0.445 0.11 

23 oC 0.446 0.109 

25 oC 0.447 0.105 

30 oC 0.447 0.103 

35 oC 0.446 0.102 

40 oC 0.446 0.1 

45 oC 0.445 0.099 

50 oC 0.445 0.099 

Decrease           -12 % 

 

Hemocyanin (0.3 mg mL-1) was pre-incubated for 10 min at each temperature across 

the range 5oC to 50o C. Values at 280 nm (total protein content) and at 340 nm (copper 

centre with dioxygen bound) were monitored on the subsequent spectra. 
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Figure 6.13 Fluorescence emission spectra of 0.1 mg mL-1 Limulus polyphemus 

hemocyanin across the temperature range 8oC to 23oC. Hemocyanin was pre-incubated 

for 10 min at each temperature prior to spectral readings Experiments were conducted 

in 100 mM sodium phosphate buffer, pH 7.5. Samples were excited at 330 nm (histidine 

residues) and the subsequent fluorescent spectrum was recorded 
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6.5 Discussion  

6.5.1 Health status  

Fluctuations in environmental parameters such as temperature, salinity and pH can 

influence the health status of invertebrates, an effect noted recently in a number of 

crustaceans (Matozzo et al., 2011 and Mydlarz et al., 2006). In the present study, 

physiological, cellular, biochemical and immunological indicators are used for the first 

time in combination to assess the effects of housing the chelicerate L. polyphemus at 

varying temperatures. Exposure of HSCs to increasing temperatures (8 °C, 13 °C, 18 °C 

and 23 °C) led to an overall decrease in Hc concentration, amebocyte concentration and 

a change in cell morphology ratios ( Fig. 6.4, Fig. 6.7 and Fig. 6.8). Temperature did not 

appear to affect the viability (95.8%) of the HSCs, indicating that the highest 

temperatures used were sub-lethal. It should be noted that two mortalities occurred at 

23 °C in the trial samples, however, no mortalities were recorded in the control samples. 

These results are not entirely unexpected given that HSCs have been reported living in 

native habitats which span the temperature range − 5 °C to 35 °C (Smith and Berkson, 

2005). HSCs housed at 23 °C suffered the greatest loss in body weight (− 8.2%). Loss of 

body weight in crustaceans can be modulated via an influx of water in order to maintain 

tissue and cellular integrity (Hu et al., 2011). HSCs in this study (in which approximately 

0.5% of body weight was collected at each bleeding) could use this mechanism to 

compensate for the volume of hemolymph extracted throughout the experiment. These 

observations are in good agreement with results obtained by Novitsky (1984), in which 

a return to pre-extraction levels of hemolymph was observed within 3–7 days post 

removal.  
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6.5.2 Effect of increasing temperature on hemocyanin concentration and functionality  

The protein concentration of the hemolymph of invertebrates is routinely used as an 

indicator of health in crustaceans (Le Moullac and Haffner, 2000). In many 

invertebrates, Hc is the most abundant protein present in the hemolymph. In the case of 

L. polyphemus, Hc accounts for > 90% of the total hemolymph protein content (Ding et 

al., 2005), therefore, the protein concentration estimates presented here provide a good 

measure of the Hc concentration. Aside from its primary function as a respiratory 

protein, Hcs have demonstrated multiple roles associated with physiological and 

homeostatic processes in invertebrates, such as, moulting (Adachi et al., 2005a and 

Adachi et al., 2005b), hormone transport (Jaenicke et al., 1999), protein storage and 

osmoregulation (Paul and Pirow, 1998). Furthermore, over the last decade it has 

become evident that Hc plays a role in innate immune defence: conversion of Hc to a PO 

activity (Decker and Jaenicke, 2004), anti-microbial peptides (AMPs) resulting from 

proteolytic processing of Hc (Destoumieux-Garzón et al., 2001 and Lee et al., 2003), 

production of reactive oxygen species (ROS) (Jiang et al., 2007), 

opsonisation/agglutination of microorganisms (Alpuche et al., 2010, Pan et al., 2008 and 

Zhang et al., 2006), haemolytic activity (Zhang et al., 2009) and anti-viral defence (Lei et 

al., 2008 and Zhang et al., 2004). In this study, Hc concentration decreased over the 56-

day period in HSCs incubated across all experimental temperatures (8 °C to 23 °C) (Fig. 

6.4). Higher temperatures appeared to exacerbate the decline in Hc concentration, with 

Hc concentration decreasing by 69.3% in HSCs housed at 23 °C compared to a decrease 

of 31.3% in HSCs housed at 13 °C (Table 6.1). It has been noted previously that HSCs 

maintained in captivity for an extended period of time (≥ 6 months) suffer from a non-

infectious hypoproteinemic disease which has been attributed to a number of factors 
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including captivity stress (Smith and Berkson, 2005). The multiple physiological and 

immunological roles of Hc, along with the high proportion of Hc normally present in the 

hemolymph (Ding et al., 2005) suggest that Hc concentration is a useful biomarker for 

the health status of cultured HSCs. 

The percentage of Hc with dioxygen bound and Hc-d PO activity was also monitored 

throughout the course of this study. The percentage of Hc with dioxygen bound was 

high (> 90%) across the temperature range for the duration of the 56-day study (Fig. 

6.5), while a continuous decline in Hc concentration was observed (Fig. 6.4). Biophysical 

assessment of purified Hc exposed to similar temperature regimes indicates that 

temperature has little effect on the structural conformation of the enzyme. No 

measureable changes in the far-UV CD spectrum (Fig. 6.10) or the fluorescence emission 

maximum (Fig. 6.11) were recorded. Both the near-UV CD and absorption spectra 

displayed a reduction around the 340 nm signal (CuII-O22-CuII). Previous studies on Hc 

have detailed a reduction in 340 nm signal in the presence of SDS (Baird et al., 2007; 

Coates et al., 2011) which is indicative of conformational changes in Hc which coincide 

with inducible PO activity. However, irrespective of incubation temperature used here, 

purified Hc failed to display PO activity in the absence of SDS. Further analysis of the 

dicopper active centre was performed using histidine fluorescence intensities (Fig. 

6.13). No changes around the 430 nm signal were detected; the 430 nm signal of Hc is 

usually quenched due the close proximity of the Cu atoms to the histidine residues, a 

lack of change in this region suggests that the copper atoms are not lost with increasing 

temperature and the subtle changes observed in the near UV CD data (Fig. 6.12) and the 

absorption spectra (Table 7.3) are possibly due to a reduction in oxygen concentration 

of the solvent, with increasing temperature.  
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Crustacean and chelicerate Hcs have demonstrated a high resistance to thermal 

denaturing in vitro, with tarantula Hc retaining structural integrity up to 90 °C (Sterner 

et al., 1995). L. polyphemus Hc exists as an octamer of hexameric subunits (Decker et al., 

2007), which retains structural integrity across extreme temperatures (0 °C to 68 °C) 

and pH shifts due to the complex structural oligomerization of the protein. Our 

indicators of Hc structure and function across the temperature range 8 °C to 23 °C 

reflect these earlier findings and imply similar stability in vivo. The percentage of Hc 

with di-oxygen bound presents a useful indicator of environmental stress in 

aquaculture and this has been used to assess successfully the effects of nitrites in 

aquaculture (Cheng and Chen, 1999): as oxygen will be displaced at the active site. The 

percentage of Hc with dioxygen bound remained consistently high across the 

temperature range 8 °C to 23 °C (Fig. 6.5) suggesting that HSCs were not in the presence 

of deleterious levels of nitrites for the duration of the experiment. 

PO enzymes and the associated proPO activation cascade in invertebrates play an 

essential part in innate immune defence (Cerenius et al., 2010). In HSCs, no true PO 

enzyme has been characterised (Terwilliger, 2007), therefore, any PO activity observed 

is assumed to be hemocyanin-derived PO (Hc-d PO) activity. In this study incubation of 

HSCs at higher temperatures (18 °C and 23 °C) yielded significant decreases in Hc-d PO 

activity (Fig. 6.6). In contrast to Hc concentration and amebocyte numbers, Hc-d PO 

activity varied little across the temperature range, mirroring the limited effect of 

temperature on the percentage of Hc with dioxygen bound. Hc-d PO activity 

measurements using hemolymph extracts and purified Hc (Fig. 6.9) exhibited similar 

specific Hc-d PO activity to previous studies (~ 3 U/mg) (Baird et al., 2007); an 

observation which supports the assumption that Hc accounts for > 90% of HSC 
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hemolymph protein. An increase in PO activity is often used to gauge stress responses in 

invertebrates (Cheng and Chen, 2000, Goimier et al., 2006 and Le Moullac and Haffner, 

2000). The limited change in Hc-d PO levels across the temperature range in this study 

is indicative of the absence of severe stress, however, the subtle decrease over time 

suggests that other factors such as captivity stress may be influencing Hc-d PO activity 

and this response is exacerbated by the highest experimental temperature, 23 °C.   

6.5.3 Effect of temperature on amebocyte number and morphology  

In the present study, a significant decrease in amebocyte numbers were recorded in L. 

polyphemus maintained across the temperature range, 8°C to 23°C. Higher temperatures 

appeared to exacerbate the trend in decreasing amebocyte numbers (Fig. 6.7). 

According to Levin and Bang (1968), a healthy HSC should contain between 2 to 6 ×107 

amebocytes mL− 1 of hemolymph. Although a reduction in amebocyte numbers was 

observed across all temperatures in this study, amebocyte concentrations never went 

below 2 ×107 cells mL− 1 in HSCs incubated at 8 °C and 13 °C. In contrast, amebocyte 

concentrations recorded for HSCs incubated at 23 °C were lower than 2 ×107 cells mL− 1 

at day 28 and continued to decrease for the remainder of the experiment (Fig. 6.7). 

Exposure of invertebrates to stressors, especially temperature, can lead to a decrease in 

immune cell numbers (Le Moullac and Haffner, 2000). Matozzo et al. (2011) observed a 

significant decrease in total hemocyte numbers in Carcinus aestuarii hemolymph in 

response to an increase in temperature, likewise, reductions in hemocyte numbers have 

been recorded in Macrobrachium rosenbergii, Litopenaeus vannamei and Litopenaeus 

setiferus as a result of thermal stress (Cheng and Chen, 2000, Cheng et al., 2003, Cheng 

et al., 2005 and Pascual et al., 2003). 
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HSC amebocytes display a number of morphological states in culture. A spherical-

granular state appears to be the most common cell morphology, with studies from 

Hurton et al. (2005) indicating this cellular state as the most viable in vitro. 

Furthermore, work carried out by Chen et al., (1986), Chen et al., (1989) and Armstrong 

(1979) indicated that spherical constricted states of amebocytes in culture may 

represent the morphology of amebocytes in vivo. We observed a change in the ratio of 

amebocyte morphologies (from granular-spherical to granular-flattened) in the 

hemolymph of HSCs crabs housed across the temperature range 8 °C to 23 °C (Fig. 6.8A 

and B). This change in amebocyte morphology may represent a change in cell 

functionality or membrane fluidity. It has been well documented that invertebrate 

immune cells display compromised functionality including reduced phagocytic 

performance, anti-bacterial activity and alterations in the proPO activation cascade, in 

response to thermal stress (Cheng and Chen, 2000, Cheng et al., 2003, Cheng et al., 2005 

and Vargas-Albores et al., 1998). 

Overall, the cellular properties measured in this study altered more than the 

biochemical properties monitored (Fig. 6.14). As amebocyte numbers decreased, the 

remaining amebocytes present in the hemolymph displayed a shift in morphology. 

Interestingly, as Hc levels declined, the proportion of bound dioxygen and Hc-d PO 

activity units remained relatively stable.  
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Figure 6.14 Direct comparison of the biochemical and cellular properties of captive 

Limulus polyphemus across the temperature range, 8oC to 23oC. The radar-graph 

represents the % change between Day 0 and Day 56 recordings. Hc-d PO data were 

omitted as units of activity per mg of Hc were very similar across the temperature range at 

Day 56 (2.1 to 2.6 U: 8oC to23oC). 
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6.6 Conclusion  

Results suggest that HSCs maintained in captivity are sensitive to the highest 

temperature (23 °C) in this study. Increasing temperatures led to a decrease in Hc 

concentration, amebocyte number and a change in the ratio of amebocyte 

morphological states. Temperature had little effect on the level of Hc with dioxygen 

bound and the associated Hc-d PO activity levels. The combination of cellular, 

biochemical and immunological indicators used in this study could be used to assess the 

health status of HSCs in captivity and in natural populations, and their response to 

environmental pressures. These findings suggest that an increase in temperature 

results in a reduction in the concentration of hemolymph Hc while Hc functionality is 

retained. Furthermore, an increased rate of PO Hc-d PO activity is observed with 

increasing temperatures, however, Hc structural conformation remains intact at the 

highest temperature used in this study.  

 

6.7 Acknowledgements  

Special thanks to Alex Mühlhölzl, Managing Director, Marine Biotech Limited for 

providing access to L. polyphemus. Many thanks to Kate Howie (C&MS, University of 

Stirling) for guidance through statistical analysis, Brain Craig for his technical assistance 

and Dr. Tim Whalley (BES, University of Stirling) for his helpful discussions on the 

cellular aspects of this study. Also, to James Weir and Ronald Balfour (BES, School of 

Natural Sciences) for their advice on experimental set-up and to Bill Jamieson (BES 

Cartography Unit) for preparation of Fig. 6.1. With thanks to Liam Cavin for his 

assistance with photography (Fig. 6.2). 



P a g e  | 230 

 

 
 

Chapter 7:  

Overall Summary and General Discussion 

 

The purpose of this chapter is to contextualise the research findings discussed within all 

previous chapters.  

 

 

7.1 A pro-Hemocyanin activation cascade? 

Unlike the proPO activation cascade in arthropods (Fig. 1.8), the induction of PO activity 

in Hc in vivo has received little attention; therefore, the overall aim of this research was 

to characterise the physiological circumstances in which hemocyanin is converted into 

an immune enzyme. Research presented in chapters 2, 4 and 5 have addressed 

successfully a number of key objectives:  

1. to test the ability of natural phospholipids to induce PO activity in Hc 

2. to characterise the structural changes associated with the induction of PO 

activity in Hc by natural activator(s) 

3. to isolate invertebrate immune cells and maintain them in vitro 

4. to monitor phagocytic activity and apoptosis of invertebrate immune cells during 

microbial challenge  

5. to monitor Hc-derived PO activity in the presence of quiescent and active 

immune cells 
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In chapter 2 it was demonstrated that the acidic phospholipid, PS, can induce PO activity 

in Hc, through subtle secondary and tertiary structural changes which appear more 

stable when compared to those observed in the presence of the exogenous lipid mimic, 

SDS. Exposure of Hc to 20 µg mL-1 liposomal PS achieved >90% of the activity observed 

in the presence of micellar SDS. Even though solubility issues with higher 

concentrations of PS hindered further investigation, attempts to characterise the PS-Hc 

interactions suggested that electrostatics play a role in the protein-phospholipid 

complex. Incubation of Hc/PS with increasing concentrations of NaCl appeared to 

interfere with the structural conformation of activated Hc and this was accompanied by 

a reduction in enzyme activity (Fig. 2.15 and Fig. 2.16). Interestingly, work carried out 

by Li et al., (2009) highlighted also, the importance of changes in electrostatic surface 

potential of M. sexta proPO, pre and post activation. Additional optimisation of 

phospholipid liposome composition/structure would permit further investigation on 

putative phospholipid binding sites present on L. polyphemus Hc.  

In order to monitor the behaviour of L. polyphemus amebocytes during immune 

challenge, it was necessary to optimise their maintenance in vitro. Historically, attempts 

to culture and/or maintain arthropod hemocytes ex vivo, particularly crustaceans, have 

proven relatively ineffective (Rinkevich, 2011). While insect cell lines are readily 

maintained in laboratories, significant investment is required to develop cell lines from 

marine arthropods. Reports focussing on the maintenance of HSC amebocytes in vitro 

are contradictory. Such reports cite cell viability rather than functionality as a measure 

of success for the maintenance of HSC amebocytes. In chapter 4, the short term 

maintenance of L. polyphemus amebocytes in vitro was achieved using media which is 

assumed to imitate most closely, the physiological properties of HSC hemolymph 
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(NaHEP). Viability of the amebocytes was ~84% after 24h in vitro. Amebocyte 

morphology and LPS-induced exocytosis were used favourably as markers of retained 

functionality. Although 24 h is not an extensive period of time, these data nevertheless 

provide a method to investigate amebocyte functionality, and may assist in the design of 

future systems for the maintenance of cells from other marine organisms. Consequently, 

the phagocytic properties of L. polyphemus amebocytes were determined, in vitro. 

Employing a number of membrane probes and quenchers of fluorescence (enabling the 

visualisation of internalised targets), rates of phagocytosis and phagocytic indices of 

active amebocytes were recorded using fungal, bacterial and synthetic targets.  

Building on data presented in chapter 4, the nature of amebocyte phagocytosis would 

benefit from subsequent investigations focussing on modes of pathogen killing, once 

internalisation has occurred. The uptake of microspheres by amebocytes enables 

phagosomes to be isolated (using differential centrifugation) and studied in greater 

detail. Monitoring differences in protein expression profiles of phagocytically active 

amebocytes versus non-phagocytic amebocytes would provide insight into phagosome 

biogenesis and pathogen clearance abilities in invertebrates. It should be noted that the 

task of maintaining marine arthropod immune cells in vitro for extended periods of time 

(> 14 days) is on-going, with current efforts focussing on characterising hematopoietic 

tissues. 

Data presented in chapter 5 further supports PS as an endogenous activator of Hc-d PO 

in L. polyphemus. Phagocytosis of spores by amebocytes was accompanied by a series of 

cell death characteristics, associated conventionally with apoptosis. PICD is a 

phenomenon that has been characterised in a number of species previously, but this is 

the first demonstration of PICD in a chelicerate. In the presence of apoptotic 
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amebocytes, a measureable increase in Hc-d PO was observed. The majority of Hc-d PO 

activity was detected in Hc that was most likely associated with extracellular 

amebocyte-derived components.  While data attests to a feasible PS-Hc activation 

complex, it cannot be ruled out that other unidentified membrane components may be 

involved in the conversion of Hc into an immune-enzyme. 

Hc purified from the HSCs, T. tridentatus and C. rotundicauda, can be converted into a 

PO-like enzyme upon incubation with amphiphilic molecules similar to PS and SDS: 

microbial proteases (Jiang et al., 2007), amebocyte-derived clotting components (Nagai 

and Kawabata, 2000) and chitin-binding antimicrobial peptides (tachyplesins) (Nagai et 

al., 2001). The authors proposed that upon infection, microbial proteases cleave Hc in a 

manner that initiates PO activity and the accompanying generation of ROS. Additionally, 

when microbial ligands are detected by amebocytes, the release of immune-bioactives, 

including tachyplesins, could induce PO activity in Hc while anchoring the protein to 

exposed chitin within the proximity of the wound that facilitated the microbial invasion. 

Using Hc in such a manner provides the host with a pro-clotting and simultaneous anti-

microbial response.  

Based on data gathered in chapters 2 and 5, a third mode of Hc activation is proposed. 

During an infection, patrolling amebocytes present in L. polyphemus hemolymph could 

recognise opsonised-microbes and ingest them. Following the redistribution of PS 

caused by PICD, Hc could interact with exposed PS, thus resulting in its conversion into 

a PO-like enzyme. As Hcs are known to display a high level of cooperativity, it is possible 

that upon binding of Hc to the amebocyte plasma membrane, structural changes 

induced by such interactions may promote further Hc recruitment, leading to enhanced 

PO activity. The activation of Hc upon association with amebocytes undergoing 
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apoptosis also provides a mechanism to switch-off and/or limit such activity.  Apoptotic 

cells are eventually phagocytosed by other leukocytes/hemocytes in mammal/insect 

systems, and in theory, L. polyphemus amebocytes would ingest activated Hc in the same 

process. This mode of immune-silencing would deter unwanted/excess PO activity.  

In mammals, the expression of PS on activated platelet membranes is vital to the 

conversion of the prothrombin zymogen into thrombin, a central molecule in blood 

clotting (Vance and Steenbergen, 2005). PS is known also to possess a high affinity for 

the LPS-sensitive Factor C protease, involved in complement, microbe recognition, 

hemostasis and endogenous feedback that stimulates degranulation in HSC amebocytes 

during sepsis and mycosis (Kawabata et al., 2009, Kurata et al., 2006). Interestingly, 

apoptosis in mammalian leukocytes is known to induce the expression of the clotting 

protein, transglutaminase (Volokhina et al., 2003). Transglutaminases are also 

conserved in HSCs and an increase in the expression of its substrate has been recorded 

in apoptotic amebocytes during bacterial infection (Ding et al., 2005). Furthermore, the 

concept of a PO-like enzyme interacting with cell membrane components to necessitate 

activation is not unheard of, as membrane bound POs are known to exist in a number of 

plant species, and play a role in immune defence (Zaini et al., 2013).  

Although data presented in chapters 2 and 5 suggest a role for apoptotic cells in the 

activation of Hc into a PO-like enzyme, further work involving the use of synthetic 

peptides and/or site directed mutagenesis to inhibit/interfere with the PS-Hc 

association is required. SDS-PAGE and western blot analysis can be applied to assess 

whether alternative cell-derived compounds (such as tachyplesin) are being released in 

vitro, and potentially activating Hc-d PO in co-operation with PS. Also, the endogenous 

phenolic substrate that would be essential for Hc-d PO activity, in vivo, remains 
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unknown and requires investigation. Additional factors, similar to those associated with 

the proPO activation complex, may also be required for optimal activation of Hc. 

Considering many factors, such as the abundance of Hc in invertebrate hemolymph, the 

lack of a true-PO in chelicerates (Terwilliger and Ryan, 2006), the many immune-

functions of Hc (Table 1.2) and findings from research undertaken here, it is suggested 

that Hc is an integral component of innate immunity. 

 

7.2 Applications of research  

7.2.1 Pigmentation and commercially important invertebrates 

In general, the study of type-3 copper proteins is important for biomedical and 

economic reasons, including:  vaccine design, food sustainability, cosmetics and bio-fuel 

production. PO enzymes (both tyrosinases and catecholoxidases) present in flora and 

fauna, catalyse the initial reactions involved in the biogenesis of melanin (Cerenius and 

Soderhall, 2004). Melanin, aside from immune defence, plays an essential role in the 

integumentary system by ameliorating the effects of solar radiation on skin, but, has 

been linked to many disorders. Melasma is a facial discolouration disorder associated 

with the overproduction of eumelanin caused by tyrosinases (Jones et al., 2002). 

Equally, an autoimmune disease in humans known as vitiligo, involves the destruction 

of melanocytes by oxidative stress and the abnormal expression of tyrosinase caused by 

auto-antibodies, leading to chronic de-pigmentation (Trouba et al., 2002). The 

congenital disorder, albinism, is directly associated with defective tyrosinases. 

Oculocutaneous Albinism type 1 can be caused by any one of the 100 currently 

identified mutations found on the human tyrosinase gene (Wang et al., 2012).  
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The over- accumulation of melanin, known as hyperpigmentation, is an undesirable and 

costly occurrence in fruit crops, shellfish and mushrooms during storage. 

Hyperpigmentation in farmed and fresh caught shellfish (notably shrimp) is a non-

infectious condition that causes cuticular darkening, resulting in reduced market value 

and large accumulation of waste (Fig. 3.1).  Traditionally, sulfiting compounds have 

been used to inhibit hyperpigmentation, however, such compounds display allergenic 

properties and are linked to occupational illness (Steiner et al., 2008). Therefore, the 

development of safe and effective alternatives to sulphiting compounds is needed in 

order to alleviate FDA concerns and importantly, retain the nutritional integrity of 

farmed and fresh-caught shellfish. Although a number of inhibitors are currently used to 

prevent hyperpigmentation, the true target remains poorly characterised. Using N. 

norvegicus, experiments detailed in chapter 3 tackled the final objective of this thesis;  

‘to explore the role of Hc-d PO in shellfish hyperpigmentation’ 

Upon exposure of cellular-PO and Hc-d PO to freezing and thawing conditions that 

mimic in situ handling of shrimp, almost all cellular-PO activity was eliminated. 

Conversely, Hc-d PO not only retained activity but demonstrated an increase after 72 h. 

Overall, Hc is a more stable protein, is more abundant in shrimp hemolymph than PO 

and can be inhibited by commonly used PO inhibitors (Wright et al., 2012). 4-HR proved 

to be the most appropriate compound for reducing the unwanted PO activity of shrimp 

Hc, and fortunately, is FDA approved.   

Future studies employing both inhibition and structural data will enable the 

development of specific inhibitors of Hc-d PO which may prevent hyperpigmentation. 

Immunohistochemistry and scanning electron microscopy may be used to correlate 

pigmentation patterns of the carapace with the location of Hc/PO within tissues. The 
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inhibition of all sources of shellfish hyperpigmentation, including PO and Hc-d PO, is 

vital for the enhancement of shellfish sustainability and the food security agenda. 

7.2.2 Biomedical applications 

The HSC, L. polyphemus, is a multi-resource species, having existed for over 250 million 

years in a microbiologically harsh environment.  Initially used in the study of vision, L. 

polyphemus is most famously known for the cell-derived pyrogen detection assay kit, 

LAL. A number of anthropogenic practices currently threaten the existence of the four 

remaining extant species of HSC, habitat loss due to pollution and the biannual bleeding 

of over 250,000 HSCs for the production of biopharmaceuticals (Anon, 2012). For 

example, Hc purified from L. polyphemus and the keyhole limpet (KL) are used in 

biomedicine due to their extraordinary immunostimulatory properties. KL-Hc is 

commonly used as a vaccine adjuvant, for the generation of antibodies against hapten 

molecules and as an immunotherapeutic/prophylactic agent in patients suffering from a 

range of cancers (Arancibia et al., 2012). Little success has been achieved in rearing 

HSCs in captivity and a synthetic alternative for pyrogen detection has only been 

developed recently (Ding and Ho, 2010). 

In chapter 6, the health status of captive-HSCs across the temperature range, 8oC to 

23oC, was investigated with a view to improving success in maintaining HSCs in 

captivity. By monitoring a number of biochemical and cellular properties, HSC 

deterioration was found to correlate directly with increasing temperatures. While a 

decrease in Hc concentration was observed, the structural and functional integrity of 

the protein remained intact. Amebocyte numbers also decreased, with the remaining 

amebocyte populations changing morphology.  
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Amebocytes are the sole immune cell type present in HSC hemolymph, impairment in 

amebocyte effectiveness would almost certainly result in an enhanced susceptibility to 

disease. The changes observed in amebocytes will require subsequent work to establish 

the functional differences between the three distinct morphologies observed. 

Optimising the temperature at which captive HSCs are housed is one of many conditions 

that need to be evaluated further. Exposing amebocytes, in vitro, to similar temperature 

regimes and monitoring protein expression profiles, may provide insight into the 

response of HSCs to environmental stressors (such as pollution, temperature and pH 

shifts), both in captivity and in situ natural populations. Conservation of HSCs is not only 

important for species diversity but for the biomedical properties of its hemolymph. For 

future work, it may be judicious to make adjustments to the experimental design 

detailed in chapter 6:  

 to enhance statistical robustness, equal sample numbers for both the 

experimental and control groups could be used 

 increasing the period of acclimation >48 hours for those organisms at 

temperature extremes may avoid additional stress, and 

 using longer periods of incubation time for detecting microbial pathogens on gill 

swabs and screening for viruses would ensure the inclusion of healthy HSCs only 

 

 

 

 

Cumulatively, the study of type-three copper proteins, their structure-function 

relationships and their activities influencing host immunity have many 

applications, ranging from anti-cancer therapeutics to species conservation. 

Importantly, investment and research in these areas can be translated for the 

benefit of society.  
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APPENDICES 

 

Appendix A-Mass spectrometry 

Table A1 Data from peptide mass fingerprint analysis of proteins purified from Limulus polyphemus and Nephrops norvegicus 

A) Limulus polyphemus hemocyanin (Fig. 2.1B) 

Accession No. MW Sequence Protein name Taxonomy score e-value 
gi/122696646 73.2 kDa      
  R.FIDNMFQEYK.A Hemocyanin subunit IV L. polyphemus 74 0.00044 
  R.FIDNMFQEYK.A Hemocyanin subunit IV L. polyphemus 57 0.018 
  R.DLNDVSLQEMER.W Hemocyanin subunit IV L. polyphemus 56 0.03 
  R.DLNDVSLQEMER.W Hemocyanin subunit IV L. polyphemus 58 0.018 
  R.DLNDVSLQEMER.W Hemocyanin subunit IV L. polyphemus 56 0.028 
  R.ILVLFEHLTSLTK.H Hemocyanin subunit IV L. polyphemus 57 0.011 
  K.GLAVPPIQEIFPDR.F Hemocyanin subunit IV L. polyphemus 55 0.055 
gi/122696648 74.2 kDa      
  K.YDELGNELDTK.N Hemocyanin subunit VI L. polyphemus 63 0.0067 
  R.VLPLFEYASIPTK.E Hemocyanin subunit VI L. polyphemus 64 0.0052 
gi/71738535 73.2 kDa      
  K.YDELGNLLTPEQQR.R Hemocyanin subunit IIIb C. rotundicauda 61 0.02 
  K.YDELGNLLTPEQQR.R Hemocyanin subunit IIIb C. rotundicauda 82 0.00016 
gi/71738533 73.4 kDa      
  R.TLDNLFQEYK.E Hemocyanin subunit IIIa C. rotundicauda/ L. polyphemus 65 0.0071 
  R.TLDNLFQEYK.E Hemocyanin subunit IIIa C. rotundicauda/ L. polyphemus 74 0.00078 
gi/122791 73.1 kDa      
  R.DLGDIEISEMVR.M Hemocyanin subunit II L. polyphemus 58 0.036 
  R.DLGDIEISEMVR.M Hemocyanin subunit II L. polyphemus 53 0.099 
  R.DLGDIEISEMVR.M Hemocyanin subunit II L. polyphemus 58 0.03 
gi/28569688 71.8 kDa      
  R.FIDNIFQDYK.Q Hemocyanin subunit E  N. inaurata-madagascariensis* 58 0.031 
       

Notes; Underlined amino acids indicate oxidation. *Nephila inaurata-madagascariensis. 
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B) Limulus polyphemus C-reactive protein (Fig. 2.1B) 

Accession No. MW Sequence Protein name Taxonomy score e-value 
       
UniRef100_P06205 27.2 kDa      
  R.HIYGNIIQWDK.T C-reactive protein L. polyphemus 41 3.3 
  K.VKFPPSSSPSFPR.L C-reactive protein L. polyphemus 41 4.3 
  K.VKFPPSSSPSFPR.L C-reactive protein L. polyphemus 48 0.92 
  K.VKFPPSSSPSFPR.L C-reactive protein L. polyphemus 70 0.0053 
  K.VKFPPSSSPSFPR.L C-reactive protein L. polyphemus 40 5 
  K.VKFPPSSSPSFPR.L C-reactive protein L. polyphemus 47 1 
  K.VKFPPSSSPSFPR.L C-reactive protein L. polyphemus 43 2.8 
  K.VKFPPSSSPSFPR.L C-reactive protein L. polyphemus 45 1.9 
  K.AYDGVVLSPNEICA.- C-reactive protein L. polyphemus 44 1.2 
  K.AYDGVVLSPNEICA.- C-reactive protein L. polyphemus 43 1.5 
UniRef100_P02744 9.6 kDa      
  -.LEEGEITSK.V Limulin (C-reactive protein) L. polyphemus 55 0.18 
  -.LEEGEITSK.V Limulin (C-reactive protein) L. polyphemus 48 0.8 
  -.LEEGEITSK.V + acetyl Limulin (C-reactive protein) L. polyphemus 46 0.98 
  K.VKFPPSSSPSFPR.L Limulin (C-reactive protein) L. polyphemus 41 4.3 
  K.VKFPPSSSPSFPR.L Limulin (C-reactive protein) L. polyphemus 48 0.92 
  K.VKFPPSSSPSFPR.L Limulin (C-reactive protein) L. polyphemus 70 0.0053 
  K.VKFPPSSSPSFPR.L Limulin (C-reactive protein) L. polyphemus 40 5 
  K.VKFPPSSSPSFPR.L Limulin (C-reactive protein) L. polyphemus 47 1 
  K.VKFPPSSSPSFPR.L Limulin (C-reactive protein) L. polyphemus 43 2.8 
  K.VKFPPSSSPSFPR.L Limulin (C-reactive protein) L. polyphemus 45 1.9 
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C) Nephrops norvegicus hemocyanin (Fig. 3.3B) 

Accession No. MW Sequence Protein name Taxonomy score e-value 
gi/7105883 77.5 kDa      
  R.IIHEGFAPHTSYK.Y Hemocyanin α-subunit H. americanus 58 0.073 
  K.SWECFVDNAAFFR.E Hemocyanin α-subunit H. americanus 58 0.021 
  K.SWECFVDNAAFFR.E Hemocyanin α-subunit H. americanus 79 0.00017 
  R.EEALMLFDVLMHCK.S Hemocyanin α-subunit H. americanus 76 0.00087 
  R.EEALMLFDVLMHCK.S Hemocyanin α-subunit H. americanus 68 0.005 
  K.FNMPPGVMEHFETATR.D Hemocyanin α-subunit H. americanus 68 0.0047 
  K.FNMPPGVMEHFETATR.D Hemocyanin α-subunit H. americanus 70 0.0025 
  R.QREEALMLFDVLMHCK.S Hemocyanin α-subunit H. americanus 63 0.021 
  R.QREEALMLFDVLMHCK.S Hemocyanin α-subunit H. americanus 64 0.016 
  R.QREEALMLFDVLMHCK.S Hemocyanin α-subunit H. americanus 70 0.0049 
  R.VAYFGEDIGLNIHHVTWHMDFPFWWK.D Hemocyanin α-subunit H. americanus 60 0.04 
gi/119487825 76.5 kDa      
  K.SWECFVDNAAFFR.E Hemocyanin β-subunit H. americanus 58 0.021 
  K.SWECFVDNAAFFR.E Hemocyanin β-subunit H. americanus 79 0.00017 
  R.EEALMLFDVLMHCK.S Hemocyanin β-subunit H. americanus 76 0.00087 
  R.EEALMLFDVLMHCK.S Hemocyanin β-subunit H. americanus 68 0.005 
  R.LLEQHHWFSLFNPR.Q Hemocyanin β-subunit H. americanus 60 0.06 
  R.LLEQHHWFSLFNPR.Q Hemocyanin β-subunit H. americanus 64 0.024 
  R.LLEQHHWFSLFNPR.Q Hemocyanin β-subunit H. americanus 81 0.0005 
  R.LLEQHHWFSLFNPR.Q Hemocyanin β-subunit H. americanus 75 0.0017 
  R.LLEQHHWFSLFNPR.Q Hemocyanin β-subunit H. americanus 58 0.092 
  R.LLEQHHWFSLFNPR.Q Hemocyanin β-subunit H. americanus 60 0.06 
  R.LLEQHHWFSLFNPR.Q + acetyl Hemocyanin β-subunit H. americanus 58 0.09 
  R.QREEALMLFDVLMHCK.S Hemocyanin β-subunit H. americanus 63 0.021 
  R.QREEALMLFDVLMHCK.S Hemocyanin β-subunit H. americanus 64 0.016 
  R.QREEALMLFDVLMHCK.S Hemocyanin β-subunit H. americanus 70 0.0049 
  R.VAYFGEDIGLNIHHVTWHMDFPFWWK.D Hemocyanin β-subunit H. americanus 60 0.04 
gi/6118551 70.8 kDa      
  R.IIHEGFAPHTSYK.Y Hemocyanin I, partial N. norvegicus 58 0.073 
  R.LSNYLDPVDELHWER.I Hemocyanin I, partial N. norvegicus 62 0.03 
  R.LSNYLDPVDELHWER.I + acetyl Hemocyanin I, partial N. norvegicus 58 0.07 
  R.LSNYLDPVDELHWER.I + acetyl Hemocyanin I, partial N. norvegicus 87 0.000089 
  R.IRDAIAHGYVTDTEGHHINIR.N Hemocyanin I, partial N. norvegicus 59 0.077 
  R.VAYFGEDIGLNIHHVTWHMDFPFWWK.D Hemocyanin I, partial N. norvegicus 60 0.04 
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Table A1 C) continued      
gi/15528531A 78.8 kDa      
  K.GELFFWVHHQLTAR.F Hemocyanin subunit III P. vulgaris  63 0.028 
  K.GELFFWVHHQLTAR.F Hemocyanin subunit III P. vulgaris  61 0.04 
  K.FNMPPGVMEHFETATR.D Hemocyanin subunit III P. vulgaris  68 0.0047 
  K.FNMPPGVMEHFETATR.D Hemocyanin subunit III P. vulgaris  70 0.0025 
gi/262072532 79.4 kDa      
  K.YGTPPGVMEHFETATR.D + acetyl Hemocyanin subunit I 

(precursor) 
S. tulumensis 62 0.018 

gi/7414468B 76.6 kDa      
  K.YALPPGVLEHFETATR.D + acetyl Hemocyanin L. vannamei 58 0.088 
       
 

Notes; Underlined amino acids indicate oxidation. Sequences highlighted in blue are unique. Homarus americanus, Nephrops norvegicus, Palinurus vulgaris, 

Litopenaeus vannamei, Speleonectes tulumensis . 

A Protein matching same set of peptides; gi|32363480; Mass: 75912 Score: 132 Matches: 4(4) Sequences: 2(2); Full=Hemocyanin.  
 
B Protein matching same set of peptides; gi|222476500 ; Mass: 77595 Score: 58 Matches: 1(0) Sequences: 1(0); Hemocyanin [Fenneropenaeus chinensis] 
 

 

 

 

 

 

 

http://mascot.proteomics.dundee.ac.uk/cgi/protein_view.pl?file=../data/20120831/F179080.dat&hit=gi%7c32363480&db_idx=1&px=1&ave_thresh=57&_ignoreionsscorebelow=57&report=0&_sigthreshold=0.05&_msresflags=1033&_msresflags2=2&percolate=-1&percolate_rt=0
http://mascot.proteomics.dundee.ac.uk/cgi/protein_view.pl?file=../data/20120831/F179080.dat&hit=gi%7c222476500&db_idx=1&px=1&ave_thresh=57&_ignoreionsscorebelow=57&report=0&_sigthreshold=0.05&_msresflags=1033&_msresflags2=2&percolate=-1&percolate_rt=0
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Appendix B- Dynamic light scattering 

 
Figure B1 Dynamic light scattering measurements of Limulus polyphemus hemocyanin and phospholipid liposomes. 

Calculating the radius of gyration for A) Hemocyanin (1 mg mL-1) and B) Phosphatidylserine lysosomes (10 µg mL-1) in 

100 mM Tris-HCl, pH 7.5.   
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Figure B2 Dynamic light scattering measurements of Nephrops norvegicus hemocyanin. A) Raw correlation data, B) correlation data 

of hemocyanin with temperature melting cuvrves overlaid, C) and D) represent the average size distribution by volume and density, 

respectively. Measurements were carried out in 100 mM Tris-HCl, pH 7.5.  
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Appendix C- Water quality properties 

 

Table C1 Assessment of water quality 

Water quality parameters Measurements Recommendations 
   
Ammonia (NH3) ~  0- 0.1 mg L-1 * 
Calcium (Ca) ~  420 mg L-1 400-500 mg L-1 
Carbonate hardness (KH) ~  162 mg L-1 150-190 mg L-1 
Iron (Fe)_Non chelated 0 mg L-1 < 3 mg L-1 
Iron (Fe)_Chelated 0 mg L-1 * 
Nitrate (NO3-) ~  5 mg L-1 < 20 mg L-1 
Nitrite (NO2) ~  0.1 mg L-1 ≤ 0.3 mg L-1 
pH 8.1 ± 0.19 ~  8.1 – 8.3 
Phosphate (PO4) 0 – 0.25 mg L-1 ≤ 1mg L-1 
Salinity (NaCl) 33.4 ± 1.5 ppm 33 – 35 ppmϮ 
   
   

*Levels should not be detectable in saltwater. Ϯ Horseshoe crabs live in water bodies 

with varying salinities, the presented value is a recommendation for saltwater 

aquariums, in general. Measurements are representative of the period February 2011 to 

August 2012.  

 

 

Figure C1 Typical tank set-up for housing horseshoe crabs, Limulus polyphemus.  

 


