
 

 
 
 
 

Aspects of the Atlantic 

salmon immune response 

during infection with the 

salmon louse, 

Lepeophtheirus salmonis 

(Krøyer, 1837) 
 

 

A THESIS SUBMITTED TO THE UNIVERSITY OF STIRLING FOR THE DEGREE 
OF MASTER OF PHILOSOPHY 

 

by 

 

KEITH WALTON 

 

INSTITUTE OF AQUACULTURE, UNIVERSITY OF STIRLING, STIRLING, 
SCOTLAND 

 

MARCH 2008



   Declaration 

 

 
1 

Declaration 

I hereby declare that this thesis has been composed by myself, and has not been accepted, 

in full or part, in any previous application for a higher degree.  The work of this thesis is a 

record of my own work; any collaborative work has been specifically acknowledged, as 

have all sources of information.  

  

  

Keith Walton 



   Abstract 

 

 
2 

Abstract  

Atlantic salmon (Salmo salar) were experimentally infected with Lepeophtheirus salmonis 

copepodids and aspects of the host’s immune response investigated.  Copepodid 

secretory/excretory product (SEP) produced during early settlement was analysed using 

fast-protein liquid chromatography (FPLC), sodium dodecyl sulphate (SDS)- 

electrophoresis and zymography.  Following establishment and the appearance of the 

chalimus stages, the expression of the chemokine interleukin-8 (IL-8) in the heart, spleen, 

head kidney, fins, liver and pyloric cæca was investigated using real-time (quantitative) 

PCR (qPCR).  Furthermore, the secretions of L. salmonis chalimus were analysed for the 

presence of the prostanoid PGE2 using commercially available enzyme-linked 

immunoassay (EIA) kits.  

  

Analysis of copepodid secretory/excretory product suggested that any immunosuppressive 

component is not proteinaceous in nature.  Whilst there was a definite increase in protein 

concentration of SEP relative to control SEP, further analysis using subtractive 

chromatographic analysis did not reveal any unique fraction present in either SEP or CSEP 

that was absent in the other.  Interleukin-8 expression levels in tissues changed following 

L. salmonis infection, with heart and spleen showing significant increases in IL-8 gene 

expression, whilst the head kidney, fins, liver and pyloric cæca showed no significant 

increase.  The increase in splenic IL-8 expression may be linked to its role as one of the 

major secondary lymphoid organs.  However, this is the first record of increase in IL-8 

expression in cardiac tissue.  The secretions of L. salmonis chalimus were found to contain 

quantifiable levels of PGE2, albeit in highly variable quantities.  This concurs with already 

published findings for adult L. salmonis (see Fast, et al. 2004).  It is proposed that the 

chalimus states us the PGE2 to modulate the hosts’ immune response at the site of 

attachment and feeding. 
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1.1  Lepeophtheirus salmonis (Krøyer 1837) 

Lepeophtheirus salmonis (Copepoda: Caligidae) is an economically important parasite of 

sea farmed and wild Atlantic salmon (Salmo salar). However, much of the host-parasite 

interactions remains unknown (Finstad et al., 2000; Ross et al., 2000). Indeed, in an 

industry that quadrupled its production output between 1988 and 1998 (data from Pike & 

Wadsworth, 1999) sea lice are the most important pathogen of farmed salmon in the 

northern hemisphere, costing the Scottish economy between £25 and £30 million per 

annum, which is approximately 10% of the first sale value (Johnson et al., 2004; Johnson 

& Fast, 2004).   

 

L. salmonis are dioecious, crustacean, obligate, oviparous ectoparasites of the salmonids, 

with a direct, holometabolous life cycle. This means that once a population of L. salmonis 

has become established in a fishery, the infestation is maintained by self-infestation and/or 

cross-infestation (Branson et al., 2000). The life cycle of L. salmonis has been described 

by Johnson and Albright (1991) and Schram (1993).  Briefly, the parasite has ten separate 

life cycle stages: two planktonic naupliar stages, an infective copepodid stage, four 

chalimus larval stages, two pre-adult stages (where the sexes become macroscopically 

distinct) and one adult stage. In total there are 8 parasitic stages of L. salmonis on the host 

fish (Johnson and Albright, 1992). Mature females carry fertilised eggs in a pair of egg 

sacs, each of which can contain between 350 and 500 eggs (Wootten et al., 1982; 

Johannessen, 1978; Heuch et al., 2000). A female can produce up to 11 pairs of eggstrings 

in a lifetime (Heuch et al., 2000). The transmission of L. salmonis is dependent on the 

copepodid stage and environmental factors such as temperature and salinity, and is time 

limited since the copepodid does not feed and relies on endogenous energy supplies (cited 

Pike and Wadsworth, 1999). This has resulted in a suite of behaviours that maximise the 

likelihood of finding a suitable host. The behaviours can be split into two separate aspects: 
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(i) those that aid in the orientation of the copepodid towards their hosts’ natural 

environment and (ii) those that assist in host recognition (cited Pike and Wadsworth, 

1999). 

 

1.2  Parasitic settlement, attachment & moulting 

The successful settlement of L. salmonis copepods is of crucial importance in its 

transmission (Tucker et al., 2000a). Tucker et al. (2000a) investigated the effects of 

temperature and salinity on the settlement and survival of L. salmonis on Atlantic salmon 

and found a clear, positive relationship between water temperature and salinity and the 

settlement and survival of L. salmonis. They reported an increase in survival of greater 

than 31% with an increase of 5 °C in water temperature from approximately 7 °C to 12 °C 

and a decrease in salinity of 10 parts per thousand resulted in a 30% decrease in settlement 

and survival. Tucker et al. (2000a) proposed that the change in temperature had a direct 

effect on the metabolic rate of the copepodid, suggesting that the colder water caused the 

copepods to be less active than those in the warmer water. This concurs with the findings 

of Conley and Curtis (1993), who observed increased temperature had a significant effect 

on the swimming activity and survival of Salmincola edwardsii. 

 

Once a suitable host is encountered, initial attachment of the copepodid is by its 

maxillipeds (Bron et al., 1991).  The maxillipeds allow the copepodid to hold on to the fish 

surface whilst it moves over a small area, probing the surface with the anterior end of the 

cephalothorax. This allows the first and second antennae to be brought into close contact 

with the host surface (Bron et al., 1991). Butler (2001) proposed that, if the copepodid 

settles on a sub-optimal host, it may detach and resettle and attach on an alternative host 

within a theoretical window period. This is in agreement with the studies of Bron et al. 
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(1991) and Kabata (1979).  If settlement occurs outwith this theoretical period then the 

parasite may not be able to detach but is able to continue the life cycle successfully (Butler, 

2001). Once attached, a more durable attachment is formed when the copepodid pierces the 

fish epithelium with its prehensile second antennae, then producing a frontal filament via a 

secretion that acts to anchor the parasite to the fish (Bron et al., 1991; Kabata, 1981). 

 

The presence of a frontal filament in the copepodid phase is a feature of most, if not all, 

siphostomatoid Copepoda (Pike et al., 1993). The frontal filament is present in all 

chalimus stages and Johnson and Albright (1991) state that some pre-adults of Caligus 

clemensi, C. spinosus and most species of Lepeophtheirus, are reported to be attached prior 

to moulting into the adult stage. Anstensrud (1990) reported a similar situation in the pre-

adult stages of Lepeophtheirus pectoralis. Heegaard (1947 cited by Pike et al., 1993) stated 

that the frontal filament is formed de novo at each moult of the chalimus of L. salmonis. 

This has been supported more recently by evidence from Anstensrud (1990) and Johnson 

and Albright (1991). Pike et al. (1993) therefore surmised that the frontal filament may 

fulfil a role in temporary attachment of the pre-adult stages as well as its primary role in 

chalimus attachment. 

 

The structural morphology of the filament has been shown to vary between copepod 

genera. The appearance of filaments of C. elongatus and L. salmonis is distinctly different 

and reflects a seemingly different mode of production and attachment to the host (Pike et 

al., 1993). The filament of C. elongatus is long and slender and fixes directly to the fish 

scale by a large basal plate. The surface of the filament is smooth and straight for most of 

its length, forming an almost S-shaped bend as it arises from the anteroventral surface of 

the cephalothorax and proximally decreasing in diameter (Pike et al., 1993). In 

comparison, the filament of L. salmonis is short and stumpy and inserted into the epidermis 
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covering the scales where it actively secretes an adhesive along the basement membrane 

and the epidermal layer (Bron et al., 1991). Like C. elongatus the surface of the L. 

salmonis filament is usually smooth but it is occasionally contoured. However, unlike C. 

elongatus the frontal filament of L. salmonis is considered an integral part of the chalimus’ 

body (Pike et al., 1993; Gonzalez-Alanis et al., 2001). 

 

Once anchored, the copepodid undergoes a series of moults, passing through four chalimus 

stages before moulting into a motile pre-adult stage (Kabata, 1972; Pike, 1989; Johnson & 

Albright, 1991). The chalimus stages are fixed, such that their grazing causes a limited area 

of erosion that is confined to the site of attachment. The erosion causes a local cellular 

reaction that can be seen as a small black spot to the naked eye due to the presence of 

melanocytes (Jones et al., 1990). 

 

1.3  Parasite distribution on host 

Following experimental infections, Tucker et al. (2000a; 2000b) and Tucker et al. (2002) 

reported that the preferential settlement sites in L. salmonis infections are the pectoral and 

dorsal fins. Tucker et al. (2000a; 2000b) showed a settlement preference for the pectoral 

and dorsal fins whilst Tucker et al. (2002) found the dorsal fin had a higher parasite 

density than the pectoral and most other fins, despite its relatively small comparative 

surface area. 

 

Boxshall (1976) suggested that preferential settlement of Lepeophtheirus pectoralis on fins 

is due to these sites being associated with water currents and that the copepodids move 

towards the water currents. As such, settlement distribution reflects the attraction of water 

currents produced by the host and particularly the fins of a fish, which are dynamic zones 
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of flow, pressure, distribution and thrust (Bone, et al., 1995; Bond, 1996). Tucker et al. 

(2002) propose that fins, with their fin rays, may also provide increased protection as 

microhabitats for copepodid settlement. 

 

Once settled the copepodid undergoes a series of moults until the transformation from the 

anchored chalimus IV stage into the pre-adult stage induces a significant change in louse 

activities and distribution on the host (Mustafa et al., 2000; Grimnes and Jakobsen, 1996). 

The pre-adults and adults tend to aggregate on the head, dorsal surface and post anal areas 

where they graze on the epithelial cells and mucus of the host (Branson et al., 2000; 

Finstad et al., 2000; Grimnes and Jakobsen, 1996). Blood is taken opportunistically if 

epithelial capillaries are damaged via extensive grazing (cited Pike and Wadsworth, 1999). 

Mustafa et al. (2000) hypothesise that the cephalic and external opercular regions are 

preferred by the mobile stages of L. salmonis as they have thin epidermis with little, if any, 

scaling. Bron et al. (1991) put forward two alternative theories for the distribution of the 

sea lice. They suggested that the parasites settle on specific areas by homing in on the 

water currents or, alternatively, attempt to shelter from the water currents in these areas. 

 

1.4  Effects of parasitism with L. salmonis  

Two forces broadly control infection intensity with L. salmonis and the subsequent 

pathology. The first is the length exposure to the infectious copepodids and the second is 

the susceptibility of the fish to infection (MacKinnon, 1998). The parameters that affect the 

host susceptibility include stress levels, nutrition and immunocompetency, all of which 

have a genetically determined component and are highly interactive (MacKinnon, 1998). 

 

Nolan et al. (1999) propose that the damage caused to S. salar by L. salmonis can be split 
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into two distinct categories: (i) direct physical damage caused by the parasite feeding on 

the epithelial cells, blood and mucus and (ii) indirect damage caused by the integrated 

stress response of the skin and gill epithelia, osmoregulatory consequences and the host’s 

immune system. 

 

)NAN)(( ( 5&2"#,32#-(0#:#G&(

All of the stages that are attached to the host cause damage by grazing (Branson et al., 

2000), with Finstad et al. (2000) reporting as few as thirty pre-adult lice being able to kill a 

post-smolt Atlantic salmon (however, this number may be closer to 60 once mortality and 

differing effects at different ontogenetic stages (Wagner et al., 2008)).  Wells et al. (2006) 

have shown that the stress of initial entry into seawater exacerbates the physiological 

impact of L. salmonis infection on sea trout (Salmo trutta) smolts, so that even infection 

levels of 13 lice per fish (approximately 0.35 lice.g-1 fish) can increase the chance of 

morbidity.  Grimnes and Jakobsen (1996), however, report limited pathological 

consequences to the fish, even in high infection intensities, until the lice moult into the pre-

adult stage. As the lice moult into pre-adults there is an increase in mechanical damage and 

a concurrent osmoregulatory breakdown (Grimnes and Jakobsen, 1996). Finstad et al. 

(2000) estimated that between thirty and fifty percent of migrating sea trout post-smolts in 

areas of intensive salmon farming are killed by grazing L. salmonis. Extensive epidermal 

and submucosal erosion and haemorrhaging are common effects of L. salmonis infestation 

and occasionally there may be sub-epidermal oedema associated with infection (Johnson et 

al., 1996). In extreme cases severe grazing around the cranium can lead to exposure and 

erosion of the underlying myotomes, sometimes reaching the cranium (Mustafa et al., 

2000; Wootten et al., 1982). 

 

As the lice graze on the fish epithelium, body fluids such as blood, lymph and proteins are 
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lost to the environment, disrupting the osmoregulatory homeostasis between the milieu 

interior and the external marine environment (cited Pike and Wadsworth, 1999) causing an 

increase in chloride levels as well as a decrease in haematocrit, total protein and albumin 

levels. The decreased haematocrit may be due to an increase in the plasma ions and a 

shrinking of erythrocytes and resulting in anaemia. The decrease in total protein and 

albumin (known as hypoproteinaemia) suggests that anaemia is probably caused by 

membrane damage and the leakage of blood components into the environment (Grimnes 

and Jakobsen, 1996). All of the above cause an increase in physiological and osmotic 

stress (Davies and Rodger, 2000; Grayson et al., 1995; Finstad et al., 2000). 

 

1.5   Stress 

When an animal is placed in a stressful situation, such as being parasitised, it actively 

produces two types of endocrine response: the hypothalmo-pituitary-interrenal (HPI) 

response that culminates with an increase in plasma cortisol concentration (a primary 

indicator of stress) and the adrenergic response that leads to an increase in the 

concentration of the catecholamines, adrenaline and noradrenaline (Mustafa et al., 2000; 

Sumpter, 1997). 

 

Chronically stressed fish are more susceptible to infection with pathogens than non-

stressed fish (MacKinnon, 1998; Roberts and Rodger, 2001). A possible explanation 

proposed by Mustafa et al. (2000) is that stress can cause neuroendocrine and autonomic 

changes that modulate both the specific and non-specific immune defence mechanisms. 

Other investigations have also indicated that there is a positive correlation between 

elevated plasma cortisol concentrations due to stress and immunosuppression (MacKinnon, 

1998). The best definition of stress related to fish disease was given by Brett (1958 cited 
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by Roberts and Rodger, 2001) as "…a stage produced by an environmental or other factor 

which extends the adaptive responses of an animal beyond the normal range, or which 

disturbs the normal functioning to such an extent that the chances of survival are 

significantly reduced". The changes that occur in response to environmental stress, such as 

parasitism, are termed the general adaptation syndrome (GAS). The events comprising 

GAS are mediated by a hormonal and nervous reaction. 
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The HPI axis is a hormonal cascade reaction that results in the production and secretion of 

cortisol.  Corticotrophin-releasing hormone is the first hormone in the cascade and it 

controls the release of adrenocorticotrophin (ACTH) from the anterior pituitary. In turn, 

ACTH stimulates inter-renal tissue to release corticosteroids, particularly cortisol. 

 

Cortisol is a pluripotent hormone whose effects can be advantageous at moderately 

elevated levels, such as increasing leukocyte migration (Balm, 1997) and plasma glucose 

concentration (Pankhurst and Van Der Kraak, 1997), but deleterious at highly elevated 

levels, e.g. promoting apoptosis (cell death) (Nolan et al., 1999). Barton (1997) has 

reviewed the stress process in fish and describe the following effects: the corticosteroids 

increase the susceptibility of fish to disease by decreasing the numbers and activity of 

circulating lymphocytes; elevated concentrations of cortisol cause a reduction in the 

release of interleukins needed for lymphocyte precursors to differentiate; and cortisol can 

also alter the affinity of corticosteroid receptors on lymphocytes. 
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The adrenergic response to stress sees chromaffin cells in the kidneys and walls of the 
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posterior cardinal vein secrete catecholamines. Various physiological stimuli can trigger 

the mobilisation of catecholamines but acute stress does not appear to deplete 

catecholamine stores. It is believed that stress stimulates the biosynthesis of replacement 

catecholamines at a rate equal to its mobilisation (Sumpter, 1997). On the other hand, 

chronic stress does decrease catecholamine-storing capacity.  Fast et al. (2008) propose 

that changes in catecholamine levels observed in L. salmonis experimental infections may 

be caused by an attenuated cortisol response under chronic stress.  The purpose of the 

catecholamines is to lessen the potentially disruptive effects of stress on the animal’s 

physiology via optimisation of cardiovascular and respiratory functions (Sumpter, 1997). 

Furthermore, stress leads to an increase in the energy demand of the animal as it attempts 

to resolve the stressor (Barton, 1997). This energy is mobilised by the catecholamines in 

the form of plasma glucose, a secondary indicator of stress. Plasma glucose concentration 

increases significantly in lice infestations with a peak in concentration coinciding with the 

peak in plasma cortisol concentration (Dawson et al., 1999; Mustafa et al., 2000). In fish 

farms there is no scope to resolve the stressor and this results in a prolonged period of 

increased metabolism (Pankhurst and Van Der Kraak, 1997). The ultimate consequence of 

this prolonged increased metabolism is that there is little or no energy for growth (Barton, 

1997; Pankhurst and Van Der Kraak, 1997). 

 

1.6   Stress & immunosuppression 

The skin epithelium of fish offers good possibilities for evaluating indirect stress effects of 

ectoparasites on their host (Nolan et al., 1999). Responses such as increased apoptosis of 

branchial chloride cells and pavements cells of the skin have been shown to be under the 

control of cortisol and therefore occur in areas not directly affected by the parasite (Nolan 

et al., 1999). 
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Nolan et al. (1999) concluded from their experiments that many of the epithelial changes 

witnessed during infection of Atlantic salmon with L. salmonis are similar to those 

described for general stress. They hypothesised that these effects were likely to be 

mediated by hormones, and in particular, cortisol and catecholamines. Increase in 

catecholamines in the gill increases branchial blood flow resulting in increased perfusion 

and blood pressure. It is possible that the lamellar swelling associated with infestation may 

reflect the action of high levels of catecholamines released as a result of parasite-induced 

stress (Nolan et al., 1999). Nolan et al. (1999) do not believe that the effects associated 

with the gills are caused by any direct action of the parasite as mobile stages have not been 

found in these areas. 

 

In the short-term, fish are able to regulate the resultant plasma osmolality and electrolyte 

concentration imbalance of direct damage by physiological adaptation (cited Pike and 

Wadsworth, 1999). However, this is energetically demanding and induces further stress. 

Finstad et al. (2000) found that the circulating levels of stress hormones in infected fish are 

significantly higher than in uninfected fish. Over a prolonged period the multifactorial 

perturbations to the fish’s physiology eventually exceed its limited homeostatic capabilities 

and result in morbidity and subsequent mortality (cited Pike and Wadsworth, 1999). 

However, Pike and Wadsworth (1999) do not believe that stress is the sole reason for 

mortalities in infected fish as the skin only represents approximately twenty percent of the 

total surface area over which osmoregulation occurs; the other eighty percent is performed 

by the gills. 

 

Although the majority of pathology associated with L. salmonis infestation is caused by the 

motile stages, Grimnes et al. (1996, cited by Finstad et al., 2000) reported changes in the 

behaviour of Atlantic salmon post-smolts during exposure to L. salmonis copepodids. 
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Finstad et al. (2000) interpreted this as anecdotal evidence that sea lice infestations also 

stress fish at earlier ontogenetic stages. Furthermore, Grimnes and Jakobsen (1996) 

reported a six-fold increase in ‘leaping and rolling activity’ in Atlantic salmon during 

exposure to L. salmonis copepodids. Following exposure the authors also reported an 

epidermal reaction showing as black spots. No such spots were noted on the fish in the 

control group. From their studies, Grimnes and Jakobsen (1996) concluded that L. 

salmonis copepodids and chalimus stages have almost no effect on the long-term survival 

of Atlantic salmon post-smolts. They were unable to detect any physiological effects in 

terms of increased chloride level, and decreased protein and haematocrit levels were found 

in fish infected with early chalimus stages of the lice. However, they do note that in spite 

of the limited physiological consequences for post-smolts infected with chalimus larvae, 

the stress caused seems to be the causal agent for the mortality of at least some of the 

infected fish. 

 

An up-to-date summary on fish immunity and parasite infections can be found in Alvarez-

Pellitero (2008) and a review of the physiological and immunological interactions of L. 

salmonis and their hosts can be found in Wagner et al. (2008). 
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The damage caused by the mechanical actions of the lice and the damage caused by stress 

are coupled and the overall pathology of L. salmonis infection is a combination of the two. 

The stress is caused by the presence of the lice feeding and by the loss of exudate and 

proteins into the environment from the lesions caused by the lice. 
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1.7   Vaccines 

Although the current chemotherapeutic techniques employed against L. salmonis on 

Atlantic salmon are curative, preventative measures are preferable. Thus, 

immunoprophylaxis (vaccination), is potentially the most efficacious strategy against L. 

salmonis (Jenkins et al., 1993). There are a number of problems associated with 

chemotherapeutants that can be overcome with vaccines (Ellis, 2001; Raynard et al., 

2002): 

 

• As vaccines are prophylactic there are fewer losses from disease 

• There is sustained protection 

• There are no toxic side-effects to the fish 

• There is no accumulation of toxic residues in the tissues of the fish 

• There is no withdrawal period 

• Adaptation to the vaccine is unlikely but, if it does happen, it can be overcome by 

incorporating new antigenic components into the vaccine or by modifying existing 

ones 

• There are no environmental implications once the fish have been immunised as no 

chemicals are discharged into the water. 

 

Furthermore, any vaccine would specifically target salmon parasites whereas 

chemotherapeutants do not discriminate between its targets. From a financial perspective, 

the cost of vaccination would be lower than the cost of buying and storing 

chemotherapeutants, assuming antigens could be expressed as recombinant proteins or 

DNA vaccines were used (Raynard et al., 2002). For a review of DNA vaccines in 

aquaculture see Heppell and Davis (2000). 
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Encouragement for the development of a L. salmonis vaccine has come from the 

development of a vaccine for cattle against the Australian cattle tick Boophilus microplus 

(Andrade-Salas et al., 1993; Jenkins et al., 1993). Molecular components of the parasite, 

which do not usually come into contact with the host’s immune system during an infection, 

can elicit a protective immunological response when incorporated into a vaccine. 

Vaccination of the cattle with the antibody derived from the membrane bound molecule 

Bm86 induced specific immunity that was successful in reducing parasite burden (Jenkins 

et al., 1993). 

 

Although the teleost immune system is less evolved when compared to that of mammals, 

the production of an effective vaccine against L. salmonis has been slow (Costello, 1993). 

Most of the work has attempted to determine whether or not vaccines are a feasible option 

rather than developing practical versions (Costello, 1993). The major focus of these studies 

has been on potential targets in the form of concealed antigens. The ideal way of delivering 

a potential vaccine to lice would be via the circulatory blood or mucus secretions of the 

host. Once ingested one of the first tissues that would come into contact with the 

antibodies would be the gut epithelium (Andrade-Salas et al., 1993). An important 

consideration in the development of a vaccine is whether or not sea lice have a peritrophic 

membrane. This is formed from successive delaminations of material at the apices of the 

gut epithelial cells (Brunet et al., 1994).  They form envelopes that surround the luminal 

contents of the midgut or hepatopancreas and appear necessary to the digestive process. It 

is hypothesised that they: (i) protect the epithelium against mechanical abrasion, (ii) 

support enzymes, (iii) perform a filter function for osmotic regulation and (iv) act as a 

selectively permeable barrier against macromolecules (Brunet et al., 1994; Raynard et al., 

2002).  This may prevent an antibody binding to an antigen (Raynard et al., 2002). Brunet 

et al. (1994) stated that all marine crustacea produce a periotrophic membrane however its 
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presence in L. salmonis is unclear.  Neither Nylund et al. (1992 cited by Raynard et al., 

2002) or Bron et al. (1993b) found evidence in their respective studies on gut morphology, 

although Scott (1901 cited Raynard et al., 2002) reported a thin layer of fragmented chitin 

lining the gut wall of Lepeophtheirus pectoralis. If it does exist in L. salmonis it may 

prevent antibodies from reaching their target antigen. 

 

Grayson et al. (1991) analysed the serum antibody response of rainbow trout and rabbits 

immunised with whole body lice protein and Atlantic salmon naturally infected with L. 

salmonis. Immunohistochemical studies revealed that the sera bound to regions of the adult 

louse gut, suggesting that this serological recognition of louse antigens was a specific 

antibody response to antigens within the gut epithelium of the louse. Andrade-Salas et al. 

(1993) used monoclonal antibodies developed from mice immunised with louse extract to 

select individual antigens from louse recombinant DNA. They found that antigens bound 

to several areas but particularly the brush border of the gut epithelium and the cytoplasm of 

gut epithelial cells. This provided strong immunohistochemical support for the existence of 

potential target antigens in the gut. Grayson et al. (1995) immunised and then 

experimentally challenged Atlantic salmon with L. salmonis. They found that the response 

was variable and apparently directed only at adult females and the number of viable eggs 

they produced. Due to the presence of antigens in the brush border they believe that it is 

possible that the host response interferes with them, having a knock-on effect on feeding, 

which lowers the nutrition available for egg development. Although there were no obvious 

effects against the other stages Grayson et al. (1995) do not discount the possibility that 

there were sub-clinical effects. 

 

Research carried out by Grayson et al. (1991; 1995) and Andrade-Salas et al. (1993) 

appears to contradict Brunet et al.’s findings that all crustacea have peritrophic 
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membranes. However, a substantial difference exists between finding potential targets and 

the development of a suitable vaccine. The underlying principle behind developing a 

vaccine similar to that used against B. microplus is based on the lice ingesting antibodies 

that then bind to the gut epithelium and impair its function. This approach requires a 

degree of similarity between the host-parasite interaction and digestive physiology of L. 

salmonis and B. microplus that may not exist. For example, although both parasites are 

haematophagous, the tick feeds exclusively on blood from its host whereas sea lice only 

take blood when they are in the adult stage and then only in small quantities relative to 

their size (Costello, 1993; Raynard et al., 2002). This means that the potential for 

developing an antibody that targets the gut may be lower for L. salmonis than it was for B. 

microplus and that if a successful antigen is to be developed it must produce a significant 

amount of damage from a low exposure (Raynard et al., 2002). 

 

The morphology of the gut and the digestive processes of the sea lice are both important in 

the development of any vaccine. If the gut lumen contains proteolytic enzymes the half-life 

of any vaccine will be short. Further to this, the pH and osmolarity of the gut and its 

contents will have an effect on antibody function. Bricknell et al. (2002) found that salmon 

antibodies have a reduced binding ability when the osmolarity of the surrounding medium 

is greater than 500 mOsmol. The osmolarity of the gut contents of L. salmonis has not been 

measured but its haemolymph is iso-osmotic with seawater. As L. salmonis is an 

osmoconformer this indicates that the gut contents should be similar in osmolarity to 

seawater. If this is indeed the case, it is predicted that the efficacy of any vaccine would be 

significantly impaired (Bricknell et al., 2002). 
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1.8   Research aims and objectives 

The aim of the work presented in this thesis was to further our understanding of 

immunomodulation of Atlantic salmon by the copepodid and chalimus stages of the 

important parasitic ectoparasite, Lepeophtheirus salmonis. Butler (2001) did some 

preliminary investigations into the biochemical nature of the secretory/excretory product 

(SEP) of L. salmonis following settlement on an artificial salmon skin equivalent (ASSE) 

and reported a tangible product, most likely to be proteinaceous in nature. The present 

study investigated the proteomic nature of L. salmonis SEP further using a variety of 

biochemical techniques such as fast protein liquid chromatography (FPLC), 2-dimensional 

electrophoresis and zymography.  Due to difficulties recreating the ASSE, however, an in 

vitro culture system was used to harvest the SEP prior to analysis on composition. This 

work is presented in Chapter 3.  Chapter 4 examines the role that the chemokine 

interleukin-8 (IL-8) plays in the early stages of infection between L. salmonis and Atlantic 

salmon and Chapter 5 presents an analysis of the possible role that prostaglandin E2 

(PGE2) plays in the settlement and early stages of L. salmonis infection. 
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2.1   Sea lice collection 

Eggstrings were collected from ovigenerous female lice on caged-salmon from fish farms 

on the West coast of Scotland and from wild salmon from Montrose Netting Station, 

Scotland using watchmaker’s forceps and scalpels. Eggstrings were also supplied by the 

Marine Environmental Research Laboratory, Machrihanish and the FRS Marine 

Laboratory Fish Cultivation Unit, Aultbea. 

2.2   Fish 

The fish used in all experiments were supplied by either FRS Marine Laboratory Fish 

Cultivation Unit, Aultbea or the Marine Environmental Research Laboratory, University of 

Stirling, Machrihanish.  Fish were maintained in aerated 1 m2 pale circular tanks in 

seawater and fed ad lib twice a day. 

 

2.3   Infection protocol 

Copepodids were cultured in the apparatus shown in Figure 1. As live nauplii and 

copepodids usually aggregated within the upper third of the water column in response to 

light stimulus, the water was mixed thoroughly with air to obtain a uniform distribution. 

To determine the number of the different stages the air supply was switched off and an 

intense light source (fibre optic light) focused on the top third of the water column and left 

for 10 minutes. All lice around this area were collected into a 250 mL beaker using a 

sterile pastette. Five 5 mL sub-samples were taken from the beaker and placed in an open 

Petri dish and the number of live copepodids counted with the aid of a dissecting 

microscope and hand counter. The density of copepodids within the suspension was then 

calculated and the numbers required for infection determined. 



   Chapter 2: General Materials & Methods 

 

 
35 

4N7N)(( ( S3$(3,;&2%3/,(:&%"/0(

As low lice numbers were required experimental infection was carried out using a 

modified version of Sevatdal’s (2001) tank method. This method gives a distribution over 

the surface of the fish similar to that seen in natural infections, and minimal gill settlement 

compared to the bath method (O'Shea, 2005). 

 

Fish were anaesthetised using MS222 (Sigma) at 0.1 g.L-1 seawater before being rinsed 

with clean seawater to prevent the anaesthetic contaminating the suspension of L. 

salmonis. Two fish were infected simultaneously by holding them for 60 seconds in 1 L 

seawater containing L. salmonis copepodids (less than 72 hours post hatching) at a 

concentration of 1.5 lice.mL-1 seawater (starting concentration of approximately 1500 lice). 

Once infected, fish were transferred to full volume aerated tanks with the flow stopped for 

recovery. The inflow was restarted 18 hours post infection. 

 

The appearance of small black spots, particularly on the surface of the fish, within 5 

minutes of exposure to the L. salmonis copepodids indicated successful infection. The 

spots are thought to be an accumulation of melanocytes caused by a local cellular response 

to the copepodids (Grimnes and Jakobsen, 1996). Lice numbers were not limiting during 

the infection as actively swimming copepodids were observed in the infection chamber at 

the end of the treatment. 
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Figure 1: In vitro L. salmonis culture system.  Eggstrings from ovigenerous females were removed and 

suspended in (0.2 µm) sterile-filtered seawater in the above apparatus at 10 °C until the eggs hatched 

into naupliar stages and then these moulted into copepodids. 
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3.1   Introduction 

Weston-Davies and Nuttall (2002) reported that haematophagous parasites secrete a large 

number of molecules in their saliva, most of which are peptides and proteins. The authors 

go on to suggest that these substances have evolved to counteract the immune response of 

the host, as well as having other functions such as anticoagulation. 

 

A tick bite should result in strong haemostatic, immune and inflammatory responses from 

the host defence system but tick saliva has evolved components to counter these responses 

(Steen et al., 2006). In fact, the tick responses allow them to feed for days to weeks at one 

site (Ribeiro and Francischetti, 2003) compared to minutes to hours for other 

haematophagous parasites such as terrestrial lice and leeches. The added components have 

been found to exist in numerous forms including enzymes, enzyme inhibitors, Ig-binding 

proteins, amine-binding lipocalins and integrin inhibitors (Steen et al., 2006). 

 

The saliva of ticks has been shown to contain anti-clotting enzymes presumably that assist 

in maintaining the flow of blood. An example of such an enzyme is apyrase, which is 

almost ubiquitous in haematophagous arthropods. Apyrase hydrolyses adenosine 

diphosphate (ADP) released by damaged cells at the feeding site and thereby inhibits ADP-

induced platelet aggregation (Ribeiro et al., 1991, Ribeiro et al., 1985, Mans et al., 1998). 

 

Furthermore, the physical presence of parasites can cause the host irritation thereby 

inducing grooming behaviour (Paesen et al., 1999). Therefore it is very important that the 

parasite develop methods that enable them to overcome both responses. Depending on 

their environment, different types of parasite have evolved different methods for 

overcoming the host’s immune system. These methods include the addition of 
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antihaemostatic (anti-clotting), vasoactive and immunomodulative substances in their 

saliva which either counteract the host’s immune system or mask the parasite’s presence 

(Volf et al., 2000).  Many of these compounds are thought to be proteinaceous in nature. 

 

Butler (2001) studied the preliminary biochemistry of a substance he proposed L. salmonis 

produced to modulate its host’s immune system. Working on the principle that some of the 

material produced will leach into the environment as the lice feed, Butler (2001) 

constructed an artificial salmon skin equivalent (ASSE) on which he settled L. salmonis 

copepodids and then collected the seawater for analysis. His analysis showed there was a 

tangible substance, which he called louse immunomodulatory factor (LIF), that warranted 

investigation. Butler (2001) found that heating LIF to 80 ºC had a significant negative 

effect on its activity/effectiveness, indicating it was not heat stable, and that the effect of 

LIF on macrophage chemotaxis could be diluted out. The inhibition of activity by heating 

and dilution are common properties of proteins. Butler (2001) also reported an increase in 

protein concentration when compared to control culture solutions. Further evidence of the 

proteinaceous nature of LIF was demonstrated by digesting it with the endopeptidase, 

proteinase K. Digested LIF-containing supernatants did not reduce the rate of macrophage 

chemotaxis, thereby indicating the inaction of the immunomodulatory component by the 

enzyme. Whilst proteinase K is a broad-spectrum protease with little cleave specificity, 

Worthington (1988, cited by Butler, 2001) reports no documented effect of proteinase K on 

non-proteins. Butler (2001) did, however, propose a second possibility as to the nature of 

LIF: it is only active in the presence of a protein or amino acid and that it is not a protein 

itself. 

 

Chromatography has been used in many aspects of piscine and parasite research. For 

example, Abelseth et al. (2003) used anion exchange chromatography to isolate 
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complement component C3 from the serum of the spotted wolfish (Anarhichas minor 

Olafsen). Mañanós et al. (1997) used ion exchange chromatography in concert with FLPC 

to purify gonadotrophin from a hybrid striped bass (Morone sp.) and Neumann et al. 

(2000) used FPLC to characterise macrophage activating factor (MAF) from goldfish 

leucocytes. 

 

Chromatography has previously been used to study L. salmonis and their infection of 

salmonids. Grayson et al. (1995) and Roper et al. (1995) looked for potential L. salmonis 

antigens with the possibility of using them to develop a vaccine, whilst Fast et al. (2004) 

used reverse phase high pressure liquid chromatography (RP-HPLC) and mass 

spectrometry to characterise prostaglandin E2 in the secretory products of L. salmonis. 

Firth et al. (2000) analysed the integumental biochemistry of salmon during an infection 

with L. salmonis using protein and enzymological techniques. 

 

Avilan et al. (2000), Barbieri (1992) and Etges (1992) have all used zymography to study 

different aspects of Leishmania species. Ectoparasites studied using zymography include 

the mosquito Anopheles stephensi (Rosenfeld and Vanderberg, 1998) and L. salmonis 

(Firth et al., 2000). Díaz-López et al. (1998) used zymography to characterise fish acid 

proteases and Lødemel and Olsen (2003) used the technique to study gelatinases in fish 

muscle. 

 

The aim of this chapter was to identify and characterise the nature of the biomolecules 

present within the secretory/excretory product (SEP) produced by L. salmonis copepodids 

during settlement on Atlantic salmon. The SEP was cultured using Ussing’s chambers (see 

section 3.2.1.1). Preliminary analysis measured the total protein content (section 3.2.2) 

whilst gel filtration was used to collect and characterise the size of proteins and peptides 
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(section 3.2.4). Two-dimensional electrophoresis (section 3.2.5) was used to compare SEP 

with controls whilst further analysis used zymography to examine the effect of various 

protease inhibitors (see section 3.2.6). 

 

3.2   Materials and methods 

 

7N4N)(( ( )(*+),-'(61$&',#%#,%(21-%1'&(

Ussing’s chambers (Ussing et al., 1950) were modified to allow the culture of copepodids 

in vitro. 

 

7N4N)N)(( T663,GU6(2"#:M&'6(

As is shown in Figure 2 the chamber is split into 2 by a 12 mm diameter disk of fish tail and 

2 silicon washers. These form a watertight barrier between the chambers. The tail was 

taken from a freshly-euthanised Atlantic salmon. The lower chamber was supplied with 

circulating "1 Hanks balanced salts solution (HBSS) to nourish the tissue whilst the upper 

chamber contains sterile seawater at 10 °C (collected from Montrose netting station and 

vacuum filtered across a 0.2 µm filter) plus the copepodids. 

 

7N4N)N4(( 9'/012%3/,(/;(61$&',#%#,%(

Twenty copepodids (all less than 72 hours post hatching) were added to the upper chamber 

of the Ussing’s apparatus in 1 mL of sterile-filtered seawater (see section 3.2.1.1). The 

seawater had been vigorously aerated prior to use. 

 



   Chapter 3: The Proteomics of SEP 

 

 
43 

7N4N)N7(( !/--&2%3/,(/;(61$&',#%#,%(;'/:(T663,GU6(2"#:M&'6(

After the copepodids had been in the upper chamber of the Ussing’s apparatus for 8 hours 

the supernatant was removed using a pastette. Samples from chambers using skin from the 

same fish and of the same type, i.e. with lice or without lice, were pooled and centrifuged 

at 20,000 g for 10 minutes to pellet particulates. Supernatant was aliquoted into 1 mL 

cryotubes, labelled and stored at -80 ºC. 

 

Figure 2: Ussing's chamber used to collect L. salmonis SEP.  A = upper reservoir; B = silicon washer 

for watertight seal; C = fish tail; D = HBSS entrance; E = lower reservoir; F = HBSS exhaust 
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The protein content of samples was determined using a commercially available 

bicinchoninic acid (BCA) kit following manufacturer’s instructions (Pierce, Rockford IL 

USA). Briefly, 200 µL working reagent was added to diluted BSA standards, ddH2O 

blanks and duplicate serial dilutions of supernatant made in ddH2O in a 96-well flat 

bottomed microtitre plate (Nunc). All standards, samples and blanks were prepared in 
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triplicate. The plate was incubated for 30 minutes at 37 ºC. Following incubation plates 

were allowed to cool to room temperature and the absorbance measured at 562 nm using a 

Dynex Dias plate reader with Dynex Revelation V 3.1 analysis software. 
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The protein composition of supernatants was analysed using SDS-PAGE. A mini Protean 3 

system (Bio-Rad) was used for all electrophoresis. Briefly, two 0.75 mm spacer plates and 

2 short plates were cleaned with Virkon and scrubbed with ethanol. The clean plates were 

placed into the casting frame, short plate at the front, which in turn was placed in the 

casting stand. Double distilled water was added to test for leaks and then discarded. 

 

The separating gel was prepared (see Appendix 1) and 3.7 mL added between the spacer 

and short plates. One millilitre water-saturated butanol (see Appendix 1) was slowly added 

to ensure the top of the gel set level and the solution was left for 60 minutes to polymerise. 

Once set, the water-saturated butanol was removed and the surface washed with ddH2O. 

The electrophoresis stacking gel (see Appendix 1) was prepared and added along with an 

appropriate well comb. Gels were left for 30 minutes to polymerise.  Once set the gels 

were transferred to the electrode assembly, locked into place and 500 mL "1 SDS 

electrophoresis buffer (see Appendix 1) added. 

 

Protein samples were prepared by mixing 12 µL reducing sample buffer (see Appendix 1) 

with 12 µL sample and boiled on a dri-block for 5 minutes (Techne Dri-block® DB-2A). 

Fifteen microlitres of sample-buffer mix was loaded into each well and run at 200 V for 5 

minutes, or until the samples had passed through the stacking gel, and then run at 130 V 

until the dye front reached the bottom of the gel. Following electrophoresis gels were 

removed from the apparatus and stained as necessary. 
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Following electrophoresis, gels were incubated overnight in 100 mL silver stain fixative 

solution (see Appendix 1). The following day gels were rinsed for 10 minutes in ddH2O 

and then soaked in silver stain fixative/sensitisation solution (see Appendix 1) for 5 

minutes. The sensitised gels were rinsed for 20 minutes in 100 mL 40% ethanol followed 

by 20 minutes in ddH2O. Gels were incubated for 1 minute in 100 mL ddH2O + 20 mg 

sodium thiosulphate (Sigma) before being washed twice for 1 minute in ddH2O. The rinsed 

gels were then soaked in 100 mL 0.1% silver nitrate solution (100 mg silver nitrate + 100 

mL ddH2O) for 20 minutes. Again gels were rinsed in ddH2O for 1 minute then incubated 

in 100 mL silver stain sodium carbonate/formalin solution (see Appendix 1). Once the 

solution turned yellow it was immediately replaced with fresh solution and staining 

allowed to develop until the desired level attained. The reaction was stopped by adding 100 

mL 5% acetic acid. 
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Following electrophoresis, gels were incubated overnight in 100 mL ddH2O.  The 

following day gels were soaked in Coomassie stain (see Appendix 1) for 30 minutes and 

then transferred to Coomassie destain (see Appendix 1) for 45 minutes. After this time the 

destain was replaced and gels left until the desired level of staining was attained. 
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In gel filtration, samples are loaded into the top of columns packed with gels of cross-lined 

polymers with a known and controllable pore size, such as dextran. An elution buffer with 

pH and ionic strength suitable for sample preservation is pumped from the top of the 

column with large molecules being eluted first with smaller molecules hindered by the 
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pores. Therefore, molecules with a high molecular weigh are eluted first. The speed of 

elution directly affects the effectiveness of separation with slower speeds giving better 

resolution. An ÄKTA# FPLC (fast performance liquid chromatography; Amersham 

Pharmacia Biotech) was used to simultaneously analyse the eluent for conductivity, pH 

and UV absorbance, plot the results on chromatograms and collect the eluent fractions. 

 

One hundred microlitre samples of SEP/CSEP were loaded on a Superdex S200 HR 10/30 

gel filtration column (Amersham Pharmacia Biotech) connected to an ÄKTA# FPLC. 

Samples were eluted at 400 µL.minute-1 in 2 column volumes of eluent (~48 mL). Eluent 

was passed through a UV monitor at 254 nm and 500 µl fractions collected (Frac-901, 

Amersham Pharmacia Biotech). Changes in UV absorbance were plotted on a 

chromatogram (absorption (mAU) vs. Eluent.sample volume-1 (mL)). 

 

Chromatographic peaks were discriminated using Unicorn# version 3.0 software 

(Amersham Pharmacia Biotech). Peaks were defined as a minimum change in height of the 

absorbance curve of 0.01 mAU per 0.001 mL sample volume. As a result peaks may 

register on computer analysis that are undetectable by eye alone. 

 

The column was calibrated by loading a 100 µL sample containing 0.7 mg.mL-1 ferritin 

(440 kilo Dalton, kDa), 2 mg.mL-1 aldolase (150 kDa), 2 mg.mL-1 albumin (66 kDa), 2 

mg.mL-1 ovalbumin (43 kDa) and 2 mg.mL-1 ribonuclease A (13.7 kDa). The calibration 

curve was applied to the absorbance curve and Unicorn# version 3.0 software used to 

determine the molecular weights of the peaks in the chromatogram. Block analysis of 

chromatographic data was done using Excel (Microsoft Corporation, USA). 
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Supernatants were analysed by 2-D electrophoresis in addition to 1-dimensional 

electrophoresis (see section 3.2.3). Prior to the first dimension the supernatants were 

concentrated using a ReadyPrep 2-D Cleanup Kit (Amersham Biosciences) according to 

manufacturer’s instructions. Briefly, 300 µL precipitating agent 1 were added to 100 µL 

supernatant, mixed well and incubated on ice for 15 minutes. Following incubation 300 µL 

precipitating agent 2 were added and mixed well. The supernatant/precipitating agent 

mixture was centrifuged for 5 minutes at 29,000 g at 4 ºC after which the tube was 

promptly removed and the liquid phase was discarded. The tube was respun for 30 seconds 

and the liquid phase again discarded. Forty microlitres wash reagent 1 were added, the tube 

respun for 5 minutes at 29,000 g at 4 ºC and the liquid phase removed and discarded. 

Twenty-five microlitres ddH2O were added and the tube mixed well. One millilitre (pre-

chilled) wash reagent 2 and 5 µL wash 2 additive were added and the tubes mixed for 1 

minute and then incubated at -20 ºC for 30 minutes. Tubes were vortexed for 30 seconds 

every 10 minutes during the incubation period. Following incubation tubes were 

centrifuged for 5 minutes at 29,000 g at 4 ºC. The liquid phase was removed and the pellet 

air-dried at room temperature until translucent. 

 

Once dry the pellet was suspended in 125 µL ReadyPrep 2-D Starter Kit 

Rehydration/Sample Buffer (Bio-Rad). The tube was vortexed for 30 seconds, incubated 

for 5 minutes at room temperature and vortexed again for 1 minute. The tubes were respun 

for 5 minutes at 29,000 g at room temperature to clarify the sample. 

 

A ready-made 3 – 10 immobilised pH gradient (IPG) strip (Amersham Biosciences) was 

passively rehydrated overnight at 20 ºC using the clarified sample and a dedicated first 

dimension system (Protean IEF cell; Bio-Rad). The IPG strip was overlaid with 3 mL of 
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mineral oil (Bio-Rad) to minimize evaporation and urea crystallisation during rehydration. 

Temperatures lower than 20 ºC can cause the urea within the rehydration/sample buffer to 

crystallise whereas above 20 ºC can cause carbamoylation of proteins (transfer of a 

carbamoyl moiety, NH2CO-, to the amino group of an acceptor compound, Westermeier 

and Naven, 2002). Following rehydration of the strips and uptake of the sample, the first 

dimension was performed by running the IEF cell at 200 V for 60 seconds, 3,500 V for 90 

minutes. 

 

Following the first dimension IPG strips were soaked in SDS Equilibration buffer I (with 

DTT) (Bio-Rad) for 10 minutes followed by 10 minutes in SDS Equilibration buffer II 

(Bio-Rad). Once equilibrated IPG strips were dipped in "1 SDS electrophoresis buffer (see 

Appendix 1) and transferred to a 10% SDS gel. IPG strips were sealed in place with 

agarose solution (see Appendix 1). Once sealed gels were run at 10 mA for 15 minutes and 

then 20 mA until the dye front was approximately 2 mm from end of the gel. 

 

7N4NH(( ( W=:/G'#$"=(

Further assessment of the peaks of interest from the ÄKTA FPLC was performed using 

zymography. Protein content of peaks was estimated using a Pierce BCA kit (see section 

3.2.2). Peaks were diluted with artificial seawater (Marin Tropic made up following 

manufacturer’s instructions) to get 10 µL solution containing 4 µg protein. One microlitre 

of protease inhibitor (see Table 1) was added to each peak fraction, briefly vortexed and 

incubated at 30 ºC for 60 minutes. Following incubation 11 µL Å~2 sample buffer (see 

Appendix 1) was added and the mixture vortexed. Eleven microlitres of each mixture was 

loaded on a 12% SDS separating gel with added gelatine and 4% stacking gel (see 

Appendix 1).  Gels were run for 120 minutes at 150 V. 
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The substrate used in the separating gel was dependent on the protease of interest: aspartic 

proteases exhibit high activity on !-casein (Sánchez-Chiang et al., 1997 cited by Castillo-

Yáñez et al. 2004; Squires et al., 1986 cited by Castillo-Yáñez et al. 2004) whereas 

gelatinase proteases exhibit high activity on gelatine. 

 

Table 1: Protease inhibitors using in zymography 

Protease inhibitor Concentration 
Volume 

(µL) 
Control (None) - - 

Aprotinin 1 mg.mL-1 ddH2O 50 
Pepstatin 1 mg.mL-1 9@1 v/v ethanol:acetic acid 50 

O-phenanthroline 0.5 µ in methanol 100 
Leupeptin 1 mg.mL-1 ddH2O 50 

Iodoacetamide 0.5 M in ddH2O 100 
EDTA 0.5 M in ddH2O 100 

 

 

After electrophoresis, gels were removed from the cell and soaked in 25 mL wash buffer 

(see Appendix 1) for 10 minutes. This was repeated twice more. Following the final wash 

the well containing EDTA was separated from the other wells and soaked for 2 hours on a 

shaker at 30 ºC at 70 rpm (Unimax 100 with Inkubator 1000, Heidolph Instruments, 

Germany) in 25 mL incubation buffer (see Appendix 1).  After the development of enzyme 

activity, gels were stained using Coomassie brilliant blue R-250 (Bio-Rad). 

 

3.3   Results 
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Protein concentration analysis of SEP and CSEP showed a significant increase in the total 

protein content of SEP compared to CSEP (ANOVA, P<0.01, F = 2.61, see Figure 3). 

Although the average protein content was higher at 10 ºC than at 4 ºC in both SEP and 
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CSEP, the observed differences were not sufficiently large to attain statistical significance 

at the 5% level (ANOVA, P>0.05). The concentration of protein in CSEP suggests that the 

excised disks of skin released protein into the surrounding environment. However, the 

increased protein concentration between SEP and CSEP suggests that the copepodids were 

also releasing protein into the surrounding environments. 

 

 

Figure 3: Protein content of SEP and CSEP plus standard deviation (n = 4) following analysis with 

BCA assay kit showing a significant increase in the total protein content.  Although the mean protein 

content is higher at 10 °C than 4 °C the observed differences were not statistically significant. 
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As can be seen in Figure 4, there is a lot of noise in both the SEP and CSEP gels following 

2-D analysis. The most likely source of noise is due to the non-sterile nature of the culture 

system, i.e. as well as proteins derived from L. salmonis, proteins from the degrading fish 

skin as well as air contaminants will also be have been detected. Due to the level of noise 

displayed in the gels it was decided not to pursue this approach further as it would have 

proved very time consuming and expensive to analyse every dot. 
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Figure 4: 2-D PAGE analysis of SEP (top picture) and CSEP (bottom picture).  Due to background 

noise and non-sterile nature of the culture system there is a lot of contamination of both samples 

making it impossible to identify unique spots in the samples. 
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The analysis of SEP using FPLC is shown in Figure 5 peaks using the criteria defined in 

section 3.2.4 is displayed in Table 2. The table indicates the total number of peaks 

identified on the chromatogram and the volumes at which these peaks started, reached their 

maxima and ended. All SEP chromatograms analysed produced similar chromatographic 

outputs. 
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Figure 5: Typical chromatogram of SEP following analysis using FPLC.  There are a total of 17 peaks 

defined using the criteria in section 3.2.4, the details of which are shown in the table below. 

 

Table 2: Total number of peaks identified from SEP chromatograms and the volumes at which the 

peaks started, reached their maxima and ended. 

Peak number Peak start (mL) Peak end (mL) Peak max (mL) 

1 0.08 1.31 .015 
2 1.56 1.66 1.61 
3 4.24 4.43 4.29 
4 5.90 6.69 6.65 
5 6.69 7.70 7.44 
6 7.70 8.03 7.85 
7 8.03 9.55 8.32 
8 13.30 14.11 13.69 
9 14.69 15.80 15.08 

10 16.35 17.46 16.91 
11 18.58 20.97 20.15 
12 20.97 22.59 21.90 
13 22.59 23.49 23.15 
14 23.49 24.84 24.00 
15 24.84 26.71 25.38 
16 28.20 28.68 28.44 
17 41.84 41.92 41.88 
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The analysis of CSEP using FPLC is shown in Figure 6. A summary of all of the peaks 

using the criteria defined in section 3.2.4 is displayed in Table 3. The table indicates the 

total number of peaks identified on the chromatogram and the volumes at which these 
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peaks started, reached their maxima and ended. All CSEP samples analysed produced 

similar chromatographic output. 

 

 

Figure 6: Typical chromatogram of CSEP following analysis using FPLC.  There are a total of 13 

peaks defined using the criteria in section 3.2.4, the details of which are shown in the table below. 

 

Table 3: Total number of peaks identified from CSEP chromatograms and the volumes at which the 

peaks started, reached their maxima and ended. 

Peak number Peak start (mL) Peak end (mL) Peak max (mL) 

1 0.07 0.98 0.13 
2 7.82 9.56 8.29 
3 11.26 12.83 12.19 
4 12.83 12.93 12.9 
5 12.93 14.26 13.67 
6 14.26 15.97 14.92 
7 15.97 18.48 16.86 
8 18.48 20.92 20.15 
9 20.92 22.62 21.9 

10 22.62 23.47 23.15 
11 23.47 24.84 23.99 
12 24.84 26.33 25.38 
13 31.78 31.84 31.8 
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The analysis of sterile-filtered seawater using FPLC is shown in Figure 7. A summary of 

all of the peaks using the criteria defined in section 3.2.4 is displayed in Table 4. The table 

indicates the total number of peaks identified on the chromatogram and the volumes at 

which these peaks started, reached their maxima and ended. All SW samples analysed 

produced comparable chromatographic output. 

 

 

Figure 7: The molecular size of sterile filtered seawater (SW) following analysis using FPLC.  There 

are a total of 15 peaks defined using the criteria in section 3.2.4, the details of which are shown in the 

table below. 
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Table 4: Total number of peaks identified from SW chromatograms and the volumes at which the 

peaks started, reached their maxima and ended. 

Peak number Peak start (mL) Peak end (mL) Peak max (mL) 

1 0 0.06 0 
2 0.06 1.94 0.14 
3 7.6 8.27 7.69 
4 13.73 16.81 15.56 
5 16.81 19.28 18.54 
6 19.75 20.16 19.96 
7 20.16 22.92 20.61 
8 22.92 23.91 23.43 
9 23.91 25.23 24.55 

10 26.4 27.09 26.47 
11 27.5 28.39 27.95 
12 29.81 29.96 29.89 
13 31.57 36.64 33.74 
14 45.19 45.51 45.27 
15 47.53 47.62 47.62 
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Chromatographic analysis of four separate SEP samples is shown in Figure 8. The blocks 

represent peaks that were identified using the criteria in section 3.2.4.  There are nine 

volumes at which a peak is present in all four samples (or in adjacent fractions): 0, 8.0, 

13.5, 16.5, 20.0, 21.5, 23.0, 23.5 and 25.0 mL. The other peaks do not appear in all of the 

samples (or in close proximity). Possible sources for these proteins are the same as those 

identified in section 3.3.2. 
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Figure 8: Graphical representation of SEP chromatographic analysis.  The blocks of colour represent 

individual peaks.  Orange blocks denote 2 peaks in adjacent fractions whilst pink blocks denote 

multiple peaks occurring within a single fraction.  There are 9 volumes in which a peak is present in all 

samples (or in adjacent fractions) 
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Chromatographic analysis of four separate CSEP samples is shown in Figure 9.  The 

individual blocks represent peaks identified using the criteria defined in section 3.2.4. 

There are nine volumes at which a peak is present in all four samples (or in adjacent 

fractions): 0.0, 8.0, 13.5 16.5, 20.0, 21.5, 22.5, 23.5, 24.5 mL. The other peaks do not 

appear in all of the samples (or in close proximity). Possible sources for these proteins are 

the same as those identified in section 3.3.2. 
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Comparative chromatographic analysis of SEP and CSEP samples is shown in Figure 10. 

Data is given for four separate pairs of samples. If a substance was present in all four SEP 

samples but not in the CSEP, this would suggest that L. salmonis was producing an 

immunomodulatory substance. Subtractive chromatographic analysis between SEP and 

CSEP demonstrates that there are no peaks present in SEP (blue blocks) that are not 

present in CSEP.  However, there is no peak in SEP sample 2 at 24.5 mL but there is a 

peak at 25.0 mL.  It is possible that the peak at 25.0 mL may have eluted slightly later than 

the rest and should be included in the earlier fraction.   Should this be the case then all SEP 

samples contained peaks at 24.5 mL that were absent from the similar CSEP.  Further 

analysis of the relevant fraction using 2-D electrophoresis is recommended. 

 

If a compound was present in CSEP but not in SEP this would suggest that L. salmonis 

produce a substance that breaks down or inhibits a substance within the skin (hence it 

would not appear in SEP analysis).  There were no peaks present in CSEP (red blocks) that 

was not present in SEP.  However, should the SEP peak at 25.0 mL in sample 2 be 

recategorised as belonging in fraction 24.5 mL then all CSEP samples contained peaks at 
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25.0 mL that were absent from the similar SEP.  Further analysis of the relevant fraction 

using 2-D electrophoresis is recommended. 

 

 

Figure 9: Graphical representation of CSEP chromatographic analysis.  The blocks of colour represent 

individual peaks.  Purple blocks denote 2 peaks in adjacent fractions whilst green blocks denote 

multiple peaks occurring within a single fraction.  There are 9 volumes in which a peak is present in all 

samples (or adjacent fractions). 
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Figure 10: Graphical representation of SEP/CSEP chromatographic analysis.  Red blocks denote 

fractions present only in SEP, blue blocks denote CSEP-only peaks and purple blocks denote peaks 

present in both SEP and CSEP.  Subtractive chromatographic analysis shows no peaks consistently 

present in SEP or CSEP that is absent from CSEP or SEP respectively. 
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The analysis of freshly prepared SEP and SEP stored at -20 °C for 60 days is shown in 

Figure 11. A summary of all of the peaks using the criteria defined in section 3.2.4 is 

displayed in Table 5. The table indicates the total number of peaks identified on the 

chromatogram and the volumes at which these peaks started, reached their maxima and 

ended.  All stored and fresh SEP chromatograms produced comparable chromatographic 

output. 

 

 

Figure 11: Chromatogram of fresh SEP and SEP stored at -20 °C for 60 days.  The peaks present in 

the stored SEP very closely match those present in fresh SEP, however, they have a much reduced 

magnitude. 

 

Table 5 shows that the pattern of peaks in fresh and frozen SEP is similar. Comparative 

analysis of the data from the chromatograms for fresh and frozen SEP shows a decrease in 

the magnitude of the peaks in the frozen SEP compared to the fresh SEP. 

 

 

-5

0

5

10

15

20

0 5 10 15 20 25 30 35 40 45 50

Eluent (ml)

m
A

U
 (

@
2
5
4
 n

m
)

Fresh SN Stored SN



   Chapter 3: The Proteomics of SEP 

 

 
61 

Table 5: Peak table comparing fresh SEP and stored SEP 

Peak table from fresh SEP  Peak table from stored SEP 
Peak 

Number 

Peak 

Start 

(mL) 

Peak 

End 

(mL) 

Peak 

Max 

(mL) 

 Peak 

Number 

Peak 

Start 

(mL) 

Peak 

End 

(mL) 

Peak 

Max 

(mL) 

1 0.00 0.09 0.00  1 0.00 0.01 0.00 
2 0.09 0.74 0.16  2 0.07 0.77 0.14 
3 0.74 2.78 1.61  3 0.77 2.41 1.27 
4 2.78 4.24 3.25  4 2.41 3.66 2.87 
5 6.61 7.84 7.07  5 6.27 6.82 6.73 
6 8.30 8.67 8.37  6 6.82 8.60 7.67 
7 14.83 19.30 18.66  7 17.18 18.09 17.75 
8 19.63 21.29 20.49  8 18.09 19.02 18.59 
9 21.29 22.78 21.99  9 19.81 20.22 20.03 

10 22.78 23.85 23.42  10 20.22 21.97 20.67 
11 23.85 25.22 24.42  11 21.97 23.14 22.27 
12 25.22 26.66 25.48  12 24.62 25.42 25.03 
13 27.10 27.22 27.16  13 32.95 33.95 33.23 
14 27.22 28.49 27.85  14 36.48 36.98 36.54 
15 29.86 31.70 31.10      
16 33.93 34.88 34.27      
17 45.90 45.98 45.94      
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A typical result of zymograms using a gelatin substrate (at 2 mg.mL-1) is shown in Figure 

12 with bands of SEP and CSEP highlighted in red and the marker bands highlighted in 

yellow. The various inhibitors used are indicated in the table below the image. The results 

show there is no difference between CSEP and SEP when run on a gelatin-based 

zymogram, except when the inhibitor o-phenanthroline is used, in which case there is 

disappearance of gelatinase proteases approximately 60 kDa and 17 kDa in size and the 

appearance of a protease approximately 20 kDa. 
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Number Description 
1 Low range marker 
2 CSEP 
3 SEP 
4 SEP + aprotinin 
5 SEP + iodoacetamide 
6 SEP + EDTA 
7 SEP + leupeptin 
8 SEP + o-phenanthroline 
9 SEP + pepstatin 

10 Broad range marker 
 

Figure 12: Gelatin zymogram of SEP and CSEP with bands highlighted.  The table identifies the 

protease inhibitors used.  When SEP is incubated with o-phenanthroline the proteases at 

approximately 60 kDa and 17 kDa disappear and a protease at approximately 20 kDa appears. 
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A typical result of zymograms using a !-casein substrate (at 2 mg.mL-1) is shown in Figure 

13 with bands of SEP and CSEP highlighted in red and the marker bands highlighted in 

yellow. The table identifies the protein inhibitors used. The results show there is no 

difference between CSEP and SEP when run on a !-casein-based zymogram, except when 

the inhibitor o-phenanthroline is used, in which case there is disappearance of proteases 

approximately 45 kDa in size disappear. However, there is the appearance of a protease 
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approximately 20 kDa in size when SEP is incubated with o-phenanthroline. 

 

 

Number Description 
1 Low range marker 
2 CSEP 
3 SEP 
4 SEP + aprotinin 
5 SEP + iodoacetamide 
6 SEP + EDTA 
7 SEP + leupeptin 
8 SEP + o-phenanthroline 
9 SEP + pepstatin 

10 Broad range marker 
 

Figure 13: !-casein zymogram of SEP and CSEP with bands highlighted.  The table identifies the 

protein inhibitors used.  When the SEP is incubated with o-phenanthroline the protease at 

approximately 20 kDa appears. 

 

3.4   Discussion 

The results of the protein concentration analysis clearly show that SEP of Lepeophtheirus 

salmonis contains more protein than the CSEP at both 4 and 10 °C. The results from 2-D 

electrophoresis demonstrated that both SEP and CSEP are comprised of a complex mixture 

of proteinaceous material.  However, due to the non-sterile nature of the Ussing’s chamber 

culture system, it was not possible to identify which components were derived from the 
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lice and those derived from the environment or the fish skin. As a result the nature of the 

elevated protein is unknown and was, therefore, subjected to further analysis. 

 

Comparison of the results for SEP, CSEP, SW and lice-containing water show no 

differences between protein profiles. Subtractive chromatographic analysis between SEP 

and CSEP demonstrated there are no peaks consistently present in either sample that are 

absent from CSEP and SEP respectively. This is not consistent with the results of Butler 

(2001) who used the ASSE to culture SEP as opposed to using freshly excised salmon 

skin. Butler (2001) found multiple unique peaks within SEP compared to control SEP, 

suggesting possible dimers, trimers and quadruples of a single molecule. The detection 

criteria used by Butler (2001) for identifying peaks were the same as those used in this 

study. Therefore, the peaks seen by Butler should also appear in this work. It is possible 

that the peaks seen by Butler were masked by background proteins derived from fish skin. 

Alternatively, there may have been an interaction between the ASSE and parasite leading 

to a compound being released from the skins. Butler (2001) noted that the breakdown of 

ASSE in seawater when incubated with copepodids liberated protein and, as the culture 

cycle progressed, the protein concentration of all samples (except seawater control) 

increased with time.  An alternative hypothesis, as noted in section 3.3.8, is that there may 

be a unique peak around 24.5 mL in the SEP and at 25.0 in the CSEP but elution times 

from the FPLC may have partially hidden them.  Whilst there does not appear to be the 

dimers, trimers or quadruples as reported by Butler (2001), further investigation of these 

fractions is recommended.  Additionally, analysis of SEP and CSEP at different 

wavelengths may highlight substances that were undetectable at 254 nm due to different 

sensitivities. 

 

Proteins in the SEP of haematophagous parasites are not uncommon. When they start 
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feeding the parasite triggers an immune response in their host. Don et al. (2004) reported 

the common dog hookworm (Ancylostoma caninum) expresses a detergent soluble, 

haemolytic factor to lyse ingested erythrocytes. The activity of the substance was heat-

stable and unaffected by the addition of protease inhibitors, metal ions, chelators and 

reducing agents. Trypsin ablated lysis indicating that the haemolysin is a protein (Don et 

al., 2004). 

 

Enzymes that may have evolved to modulate other host responses include the tick salivary 

kininases, which hydrolyse circulating kinins such as bradykinin, resulting in smooth 

muscle contraction (Steen et al., 2006). An example is the angiotensin-converting enzyme 

like protein (ACE-like protein) found in the salivary glands of the hard tick Rhipicephalus 

(Boophilus) microplus (Riding et al., 1994, Jarmey et al., 1995). Steen et al. (2006) 

suggest that ACE-like protein is produced by Rhipicephalus (Boophilus) microplus as a 

host cardiovascular system modulator or anti-inflammatory agent through non-specific 

kininases activity. 

 

Work by Ribero and Mather (1998) demonstrated that saliva and salivary gland extract of 

Ixodes scapularis had activity suggestive of a metalloprotease with kininase activity. Steen 

et al. (2006) suggest that ticks might secrete enzymes like this to reduce host inflammatory 

response. 

 

The vertebrate coagulation system involves a series of enzyme-catalysed zymogen 

activation steps.  Therefore, a common finding amongst haematophagous parasites is saliva 

with coagulation inhibiting properties (Valenzuela, 2004). Hirudin (found in the saliva of 

leeches) is known to inhibit host anticoagulant enzymes of the serine endoproteinase 

family, particularly thrombin, by a mechanism including competitive substrate inhibition 
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(Naski et al., 1990). Serine proteinase inhibitors are also produced in the salivary glands of 

several tick species and in most cases are anticoagulants and/or immunomodulators (Steen 

et al., 2006). 

 

Tick host homologues, i.e. proteins produced by ticks that mimic host proteins, have been 

shown to be modulators of the host immune and inflammatory responses. Tick macrophage 

inhibitor factor is a peptide produced by the salivary glands of Amblyomma americanum 

and has the ability to inhibit the migration of macrophages, thereby protecting the tick 

from macrophage attack (Jaworski et al., 2001). 

 

Ticks have also been shown to produce amine-binding proteins in their saliva. Steen et al. 

(2006) propose that the role of such proteins is to counter the inflammatory and vasoactive 

amines produced during the host’s response to parasitism. 

 

Paesen et al. (1999) reported the presence of a histamine-binding protein (Ra-HBP3) in the 

saliva of nymphs and larvae of the tick Rhipicephalus appendicularus. The authors 

propose that Ra-HBP3 subverts the host’s system by sequestering histamine. Histamine is 

crucial in the inflammatory response. Weston-Davies and Nuttall (2002) believe that 

histamine may be used by mammals as a response to ectoparasites, aiding detection and 

removal. 

 

Should a protein be present in the 24.5 mL fraction of the SEP it may play a role similar to 

that found by Don et al. (2004) in A. caninum or by Naski et al. (1990) in leeches as L. 

salmonis are known to feed opportunistically on blood (Bricknell et al., 2003).  

Alternatively, the limited immune response shown by S. salar in response to L. salmonis 

infection could be explained if a protein in the SEP fraction inhibits salmon macrophage 
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migration, as found in ticks by Jaworski et al. (2001) or ameliorates inflammation in 

response to ticks (Steen et al. 2006). 

 

The decrease in magnitude of the peaks in SEP samples stored at -20 ºC for 60 days in the 

current study suggest that protein degradation has occurred. It is proposed that proteases 

from either the lice or the fish skin were contained in the supernatants; however, the source 

cannot be ascertained from these results.  

 

From the results of this study, SEP run on a zymogram with gelatine substrate showed no 

difference from CSEP, except when the inhibitor o-phenanthroline was present. Likewise, 

the zymogram run on a !-casein substrate found no differences between the SEP and CSEP 

except when o-phenanthroline was present. When run on a gelatine substrate and treated 

with o-phenanthroline there was a disappearance of gelatinase proteases approximately 60 

kDa and 17 kDa in size. However, a protease approximately 20 kDa appeared when SEP 

was incubated with o-phenanthroline. On the !-casein substrate a protease approximately 

45 kDa disappears but a band at 20 kDa appeared.  

 

O-phenanthroline is a metalloprotease inhibitor, chelating the divalent metal atom of the 

protease. The disappearance of bands suggests that the proteases are being inhibited. The 

appearance of a band, however, suggests that the large protease may have been cleaved to 

produce a new protease that is not inhibited by o-phenanthroline, and hence not a 

metalloprotease. As the results for SEP and CSEP on both substrates were the same, the 

appearance of a new protease was not investigated further. However, future work could 

involve combining protease inhibitors to determine the nature of the new protease as well 

as repeating the experiment using fresh solutions of o-phenanthroline. 
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It is possible that the potential protein seen in the 24.5 mL SEP fraction from the FPLC 

could be a protease, possibly a metalloprotease.  Williamson, et al. (2003) note that 

parasite peptidases facilitate the invasion of host tissues, aid in the digestion of host 

proteins and play a role in host immune system evasion.  In hypodermosis (the disease 

associated with the cattle parasite Hypoderma lineatum (warble fly)) the adult flies pass 

through the skin of the cattle’s back, lay eggs and become bee-like flies after pupation. For 

the 8 months prior to emergence, the parasite migrates through the host’s tissues (myiasis) 

causing no inflammation (Chabaudie and Boulard, 1992). Bouldard (1970 cited by Wikel 

and Alarcon-Chaidez, 2001) proposed that the effect of hypodermosis was linked to the 

host’s humoral immune response but subsequent work by Bouldard and Bencharif (1984) 

demonstrated that serine proteases of H. lineatum deplete activity of both alternative 

complement pathway and classical complement pathway of the bovine host. Taylor et al. 

(1998) found that targeting the C3 inhibits the common activation point where the 

alternative and classical complement pathways converge. 

 

The A1 family of aspartic proteases includes the lysosomal processing enzyme cathepsin D 

and digestive enzymes from blood-feeding parasites including Plasmodium falciparum 

plasmepsins and schistosome cathepsins D (Banerjee et al., 2002, Brindley et al., 2001, 

Williamson et al., 2003). The aspartic proteases are thought to be responsible for the first 

step in degradation of host haemoglobin. Another group of proteases, the cysteine 

proteases, are involved in haemoglobin digestion in S. mansoni (Wasilewski et al., 1996), 

Plasmodium falciparum, Haemonchus contortus (Knox et al., 1993) and N. americanus 

(Brown et al., 1995). 

 

A second family of aspartic proteases has been identified from the intestines of the 

haematophagous strongyle nematodes, the nemepsins (Williamson, 2003). This second 
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family includes Na-APR-2 from adult Necator americanus, Haemonchus Pep1 and a 

similar protease from the infective larvae of Strongyloides stercoralis (Williamson, 2003, 

Longbottom et al., 1997, Gallego et al., 1998).  

 

It should be noted that the suite of behaviours the lice use to find a suitable attachment site 

might cause damage to the host epidermis thereby eliciting protein release. Once the 

copepodid makes initial contact with the skin it undergoes a period of close searching for a 

suitable attachment site. During this phase it uses its maxillipeds to grip the fish’s surface 

(Bron et al., 1991). During the next phase of attachment the louse drives its hooked second 

antennae into the epidermis, usually with repeated stabbing action. The anterior edge of the 

dorsal cephalic shield is drawn down and forwards causing the epithelium to lift 

andaggregate in front of it. During this process, the epidermal cells are compressed (Bron 

et al., 1991). Tully et al. (1993) and Dawson (1998) both report aggregations of 

copepodids around the base of the dorsal fin of sea trout (Salmo trutta) causing epidermal 

erosion sufficient to expose the fin rays.  It is possible that the increased protein levels in 

SEP compared to CSEP seen in the present study could be attributed to the burrowing 

behaviours of the settling copepodids rather than as a result of secretions by the lice. 

 

The final stage of copepodid attachment is the formation of the frontal filament (Bron et 

al., 1991). The filament anchors the larvae to the hose prior to moulting to the chalimus I 

stage. Bron et al. (1991) reported that the parasite adheres to the basement membrane of 

the host’s epidermis using a glue-like secretion. The secretion is injected under the 

epithelium where it spreads along the basement membrane with the epidermal cells 

overlaying to form a ‘basal plate’ (Bron et al., 1991). The authors found that this structure 

contains proteinaceous components. Further analysis of the formed frontal filament 

demonstrated that it also contains proteins, with the internal structure appearing to be 
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composed of densely-packed protein fibres (Bron et al., 1991). It is possible that the 

increase in total protein of SEP seen in the present study is the result of the beginnings of 

frontal filament formation. Using ASSE, Butler (2001) was unable to get L. salmonis 

copepodids to extrude the frontal filament, although they did demonstrate the other 

settlement behaviours. Therefore it is proposed that a potential reason for the difference 

between Butler’s results and those obtained in this research may be the lack of frontal 

filament formation in the former study. 

 

From the results obtained in this part of the study it would appear that proteins can be 

discounted as being part of the SEP of L. salmonis. It should be noted, however, that 

further analysis of the eluent from the FPLC column at 24.5 – 25.0 mL may provide 

contrary information.  Furthermore,  that should there be a protein with a very high 

efficacy for modulating the host’s immune system, it could be presents in amounts 

undetectable using FPLC. Biological assays are more sensitive than chemical assays (Dr. 

Tony Ellis, Pers. Comm.). 
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4.1  Introduction 

Cytokines are low molecular weight, cell-derived glycoproteins that control inter-cellular 

communication of a variety of target cells responsible for immune responses (Savan and 

Sakai, 2006). The term cytokine is frequently used to refer to interleukins, tumour necrosis 

factors, interferons, colony stimulating factors and chemotactic cytokines (chemokines). 

The genes responsible for cytokines act locally in an autocrine (the target and secretory 

cell are the same) and paracrine (the target cells are in the vicinity of the secretory cell) 

manner (Savan and Sakai, 2006). 

 

Chemokines are important mediators of innate immunity; they attract, recruit and activate a 

variety of leukocyte types towards inflammatory foci (Baggiolini, 1998, Chen et al., 2005, 

Savan and Sakai, 2006; Gonzalez et al. 2007).  Chemokines are categorised into one of 

four groups based on the arrangement of two invariant cysteine residues: CXC, C, CC and 

CX3C (Bacon et al., 2002). CXC chemokines can be further classified into two sub-groups 

based on the presence of a glutamate-leucine-arginine (ELR) motif preceding the CXC 

sequence (Chen et al., 2005). Although there is an abundance of work done on mammalian 

cytokines, there is a dearth of equivalent piscine work (Chen et al., 2005) and as such only 

CC and CXC chemokines have been isolated from fish to date (Savan and Sakai, 2006). 

 

The first CXC chemokine that has been isolated and cloned from fish is interleukin-8 (IL-

8), also known as CXCL8 (Najakshin et al., 1999, Savan and Sakai, 2006). IL-8 is an 

ELR-containing chemokine that is produced by numerous cell types. In mammals it is 

produced by macrophages/monocytes, epithelial cells, neutrophils, fibroblasts and 

endothelial cells upon infection or stimulation by cytokines such as IL-1! and TNF" 

(Jimenez et al., 2006). Being a CXC chemokine, IL-8 predominantly promotes the 
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recruitment of neutrophils (Jimenez et al., 2006, Sigh et al., 2004), inducing their 

activation of the leukotriene pathway by releasing their granular content and by their 

increased adherence to endothelial cells and nitric oxide production (Jimenez et al., 2006). 

In mammals IL-8 is also a chemoattractant for other cell types such as basophils, T 

lymphocytes and NK cells, as well as enhancing the permeability of endothelial cells 

(Jimenez et al., 2006). 

 

Table 6 shows species of fish where IL-8 has been successfully characterised. It must be 

noted, however, that an understanding of the biological role of IL-8 has not been achieved 

in any of these species. 

 
Table 6: IL-8 cloned species 

Species/Phyla References 

Japanese flounder 
(Paralichthys olivaceous) 

Lee et al., 2001 

Rainbow trout 
(Oncorhynchus mykiss) 

Laing et al. , 2002,  Fujiki et al., 2003 

Lamprey 
(Lampetra fluviatilis) 

Najakshin et al., 1999 

Banded dogfish 
(Triakis scyllia) 

Inoue et al., 2003b 

Channel catfish 
(Ictalurus punctatus) 

Chen et al., 2005 

Silver chimaera 
(Chimaera phantasma) 

Inoue, et al., 2003a 

 

Fish and humans share a degree of synteny (being on the same chromosome) in genomes 

and Savan and Sakai (2006) state that by phylogenetic analyses, piscine IL-8 genes closely 

resemble mammalian CXCL8 genes and cluster in a single monophyletic group. 

 

Amoebic gill disease (AGD) is a protozoan ectoparasitic disease associated with infection 

by Neoparamoeba species. It is characterised by epithelial hyperplasia that manifests as 

gill lesions. Bridle et al. (2006) report that besides the epithelial hyperplasia that presents 

as grossly visible, pale, multifocal gill lesions, there is a less apparent infiltration of 

leukocytes and oedema associated with a local inflammatory response. The lesion- 
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associated leukocytes are predominantly found in the central venous system (CVS) where 

they extravasate into the lesion and are thought to participate in lesion repair. 

 

Bridle et al. (2006) found that following infection with Neoparamoeba, the expression 

levels of IL-8 in the liver of rainbow trout were significantly increased at 7 days post 

infection (PI) relative to controls, but there was no difference between groups by 14 days 

PI. In the anterior kidney, however, the authors reported no AGD-induced up-regulation of 

IL-8; indeed they reported a (statistically non-significant) down-regulation of IL-8 at 7 

days PI that was absent by 14 days PI. 

 

Histological examination of AGD gill lesions by Bridle et al. (2006) revealed a lack of any 

great leukocyte infiltration to the infected gills. This, coupled with the significant increase 

in liver IL-8 gene expression, as well as apparent up-regulation of iNOS (inducible nitric 

oxide synthase) and IL-1"1 gene expression at 7 days PI suggests the involvement of a 

systemic response to the AGD infection (Bridle et al., 2006). Likewise, the authors 

attribute the (non-significant) down-regulation of immune-regulatory gene expression 

levels in the anterior kidney at 7 days PI to a possible migration of leukocytes from the 

kidney, thus suggesting the involvement of a systemic response. 

 

Following infection of rainbow trout (Onchorhynchus mykiss) with Gyrodactylus 

derjavini, a monogenean ectoparasite, Lindenstrøm et al. (2004) reported no changes in the 

expression patterns of IL- 8. The authors found the lack of IL-8 induction surprising taking 

into account the clear indication of other pro-inflammatory mediators in the study. They do 

acknowledge, however, that it cannot be precluded that other chemokines could be 

involved or that IL-8 may be induced at time points other than those sampled (0, 4 and 8 

days PI). The latter possibility is supported by the results of Bridle et al. (2006). 
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The aim of this chapter was to investigate whether or not the chemokine interleukin-8 was 

one of the secreted substances hypothesised by Jones et al. (2007) and Johnson et al. 

(2002) as being involved in the observations of limited tissue responses to L. salmonis in 

Atlantic salmon during the early stages of infection. 

 

4.2   Materials and methods 

Twelve Atlantic salmon post-smolts were infected with L. salmonis copepodids following 

the protocol defined in section 2.3. The lice were left to develop on the fish until they 

reached the chalimus I stage. At an ambient water temperature of 12 ºC this took 

approximately 5 days. Following infection, the fish were examined every 2 days for the 

presence of the parasite. The chalimus stages were found around the base of the fins and on 

the tail. Twelve Atlantic salmon that were not exposed to L. salmonis were used as control 

fish. 

 

Once the lice were at the appropriate stage the fish were euthanised by MS222 overdose 

and the areas of louse attachment excised using a 5 mm cork borer. Heart, liver, kidney, 

spleen and pyloric cæca were sampled aseptically and all samples were transferred to pre-

labelled microcentrifuge tubes (Eppendorf) containing RNALater for qPCR analysis (see 

section 4.2.1). 

 

AN4N)(( ( B&#-D%3:&(PL1#,%3%#%3V&Q($/-=:&'#6&(2"#3,('&#2%3/,(PL9!BQ(

The polymerase chain reaction (PCR) has revolutionised the detection of DNA and RNA. 

A single copy of a particular sequence can be specifically amplified and detected. 

Theoretically there is a quantitative relationship between the amount of starting target 

sequence and the amount of PCR product at any given cycle. In practice, however, it is 
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common for replicate reactions to yield different amounts of PCR products. The 

development of real-time (quantitative) PCR (qPCR) has eliminated the variability 

traditionally associated with quantitative PCR thereby allowing routine and reliable 

quantification of PCR products. 

 

AN4N4(( ( L9!B(2"&:36%'=(

qPCR is the most sensitive and reproducible method for quantifying DNA target 

concentration in biological solutions by means of the polymerase chain reaction. 

Fluorescent probes (fluorescent dyes with quenchers in close proximity; see Figure 14) are 

used preferentially to intercalating agents. The principal drawback to intercalator-based 

detection is that both specific and non-specific products generate signal. Whilst the probe 

is intact, the proximity of the quencher reduces the fluorescence emitted by the reporter 

dye by Förster resonance energy transfer (FRET) through space. The probe is sited 

between forward and reverse primers, with the fluorescence dye at the 5’ end and the 

quencher at the 3’ end. During amplification the dye and quencher are physically separated 

resulting in ‘de-quenching’ and an increase in the reporter dye signal. Cleavage of the 

probe removes it from the target strand allowing primer extension to continue to the end of 

the template strand. Therefore, inclusion of the probe does not inhibit the overall PCR 

process. Additional reporter dye molecules are cleaved from their respective probes with 

each cycle, effecting an increase in fluorescence intensity proportional to the amount of 

amplicon produced. The advantage of fluorogenic probes over DNA binding dyes is that 

specific hybridisation between probe and target is required to generate the fluorescent 

signal. As all three primers must bind correctly to produce an amplification plot, signals 

are highly unlikely to result from mispriming events. 
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qPCR reactions are characterised by the point in time during cycling when amplification of 

a PCR product is first detected rather than the amount of PCR product accumulated after a 

fixed number of cycles. The higher the starting copy number of target, the sooner a 

significant increase in fluorescence is observed. An amplification plot is the plot of 

fluorescence signal versus cycle number and in the initial cycles there is little change in 

signal. This defines the baseline for the plot. An increase in fluorescence above the 

baseline indicates the detection of accumulated PCR product. The parameter cycle 

threshold (Ct) is defined as the factional cycle number at which the fluorescence passes the 

fixed threshold with a plot of the log of initial target copy number for a set of standards 

versus Ct being a straight line. Quantification of the amount of target in unknown samples 

is accomplished by measuring Ct and using the standard curve to determine starting copy 

number. 

 
 
Figure 14: Principles of qPCR (modified from Powell, 2003) 
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The RNA of samples was extracted using a commercially available kit (RNeasy® Mini, 
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Qiagen) and following the manufacturer’s instructions. All tissue samples were stored at -

20 ºC in RNAlater® (Sigma) prior to RNA extraction. Briefly, 10 µL !-mercaptoethanol 

(Sigma) was added to 1 mL RLT buffer and thoroughly vortexed. One stainless steel tissue 

lyser bead (5 mm, Qiagen) and 600 µL of RLT/!-mercaptoethanol were added to the 

required number of 2 mL Safelock tubes followed by the tissue sample. The tissue was 

disrupted using a Qiagen Tissue Lyser (60 seconds at 30 1/S) and the lysate centrifuged at 

12,000 g for 2 minutes. Following centrifugation the supernatant was transferred to a fresh 

1.5 mL microcentrifuge tube, 600 µL 70% ethanol added and the solution aspirated with a 

pipette.  Rapidly, 600 µL of sample was added to an RNeasy column fitted in a 2 mL 

collection tube and centrifuged for 15 seconds at 12,000 g. The flow-through was 

discarded and the process repeated with the remaining sample. Once all of the sample had 

been passed through RNeasy column 700 µL RW1 was added to the column and 

centrifuged for 15 seconds at 12,000 g. The flow-through was discarded and the column 

transferred to a fresh 2 mL collection tube. Five hundred microlitres RPE were added to 

the column and centrifuged for 15 seconds at 12,000 g. The flow-through was discarded 

and a further 500 µL RPE added to the column and centrifuged for 2 minutes at 12,000 g. 

To elute the RNA the column was transferred to a fresh 1.5 mL microcentrifuge tube (with 

lid removed) and 200 µL DEPC-dH2O added directly on to the silica membrane and 

centrifuged for 120 seconds at 12,000 g. The eluate was transferred to a fully labelled 1.5 

mL tube for storage at -80 ºC. Negative extraction controls (designated A control) were 

conducted by performing a blank extraction. Controls were taken through subsequent RT 

and PCR steps. 

 

AN4NF( ( B&V&'6&(%'#,62'3$%3/,(

Complementary DNA (cDNA) was synthesised using the Taqman® RT kit (Applied 

Biosystems) in a final reaction volume of 25 µL. Firstly, 9.625 µL extracted RNA (see 
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section 4.2.4) + 1.25 µL 50 µM oligo d(T)16 were mixed in an RNase-free tube, denatured 

at 70 ºC for 10 minutes before being chilled on ice. In a separate tube 2.5 µL "10 reverse 

transcriptase (RT) buffer + 5.5 µL magnesium chloride (MgCl2) + 5.0 µL deoxynucleotide 

triphosphates (DNTPs) + 0.5 µL Rnase inhibitor and 0.625 µL Multiscribe reverse 

transcriptase were mixed. To the RNA/oligo dT mix, 14.125 µL of the mix were added and 

incubated at 48 ºC for 90 minutes followed by 95 ºC for 5 minutes. Negative RT controls 

were conducted by performing reactions containing no target (designated B control). 

Controls were taken through subsequent PCR steps. 

 

AN4NH( ( L9!B(

qPCR assays were performed on an ABI Prism® 7000 Sequence Detection System 

(Applied Biosystems) running Sequence Detection System (SDS) software Version 1.1 

(Applied Biosystems). Primer and probe sets were obtained for Atlantic salmon translation 

elongation factor 1" ("-elf; Magnus Devold, Pers. Comm.) or designed using ABI Primer 

Express software (see Table 7). All primers and probes were specifically designed and 

tested to sit at a splicing site (see Figure 15). This prevented amplification of genomic 

DNA (gDNA) from complementary DNA (cDNA) made from RNA contaminated with 

gDNA. The efficiency of the primers and probes were tested using a 10-fold serial dilution 

of known template to produce a standard curve. The critical threshold (Ct) values were 

determined and expression values normalised against the reference gene, ELF, were 

calculated using standard curve method (AMI User Manual). 
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Figure 15: Primer and probe sites for IL-8 in Atlantic salmon (Blue = forward primer, yellow = probe, 

red = reverse primer) 

 

In an RNAse-free tube, the reaction mix was prepared by mixing 10 µL of TaqMan® 

Universal PCR Master Mix, No AmpErase® UNG ("2) (Applied Biosystems) with 1 µL 

"20 assay mix + 8 µL DEPC-dH2O. Nineteen microlitres of reaction mix was added to 

each well of a 96-well plate (ABI). One microlitre of cDNA (see section 4.2.5) was added 

to each well, the plate covered with an adhesive lid (ABI) and centrifuged at 20,000 g for 

30 seconds to pellet well contents. Following centrifugation plates were transferred to the 

detection system and processed using the cycling conditions shown Table 8.  Controls 

were conducted for each primer and probe set containing no target (designated C control). 

 

Table 7: Primers and probes used for real-time PCR analysis 

Atlantic 

salmon 

gene 

target 

Upstream 

primer 

Downstream 

primer 
Taqman

®
 probe 

Amplicon 

size 

Genbank 

accession 

number 

"-elf-1" CCCCTCCAGGA 
CGTTTACAAA 

CACACGGCCCA 
CAGGTACA 

FAM-ATCGGT# 
GGTATTGGAA 

C 
57 AF321836 

IL-8 
CCACCCTCTTCA 
AGCTGCAATGC 

AA 

TGACTTCCAAGC 
AAATCTCTTGAC 

FAM-
TGCGGAGGTTATTGCA 

ACTCTGAAGACG 
79 CA061522 

 

Table 8: Thermal cycler conditions for qPCR 

Each of 45 cycles 
Initial setup 

Denature Anneal/Extend 

HOLD CYCLE  
2 minuate @ 50 °C (AmpErase uracil N-

clycosylase incubation) 
  

10 minutes @ 95 °C (AmpliTaq Gold 
polymerase activation) 

15 seconds @ 95 °C 60 seconds @ 60 °C 
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The results of qPCR were analysed according to manufacturers’ instructions (AMI 

Manual). However, before analysis could take place the efficiency of the probes had to be 

determined (see section 4.2.8). 

 

AN4NE( ( `#-30#%3/,(/;('&#2%3/,(&;;323&,23&6(#,0('&-#%3V&(L1#,%3;32#%3/,(

In order to determine if the salmon host cell endogenous sELF-1" assay control might 

permit the relative quantification of IL-8 as well as ensure efficient performance of each 

assay, the Molecular Genetics department, FRS Marine Laboratory conducted a validation 

experiment (see section 4.2.6 for method).  The results of the validation experiment have 

been published by Snow et al. (2006). 

 

For each assay triplicate reactions were conducted on each dilution of a 10-fold serial 

dilution of cDNA prepared from concentrated standards. Standard curves were generated 

by plotting the relative dilution of RNA versus the cycle number required to elevate the 

fluorescence signal above the threshold of sELF assays Figure 16). The equations of the 

best-fit lines were derived from linear regression and the values for sELF and IL-8 (Table 

9) applied to Equation 1 for comparison of results. Reaction conditions with respect to 

probe and primer concentrations were independently evaluated as described in the Applied 

Biosystems literature. 

 

Equation 1: Calculations for qPCR.  qt = converted number equivalent; b = y-intercept; ct = critical 

threshold; a = PCR efficiency (from gradient of slope) ) 
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Figure 16: Standard curve of relative RNA dilution required to elevate fluorescence above threshold.  

Equations were derived from linear regression (data courtesy of M. Snow FRS Marine Laboratory, 

Aberdeen). 

 

Table 9: Values for qPCR equation taken from Figure 15 

Probe a (PCR efficiency) b Reference 

sELF 3.3636 16.466 Snow et al., 2006 
 
 
 

4.3  Results 

The results of the assays are shown in Figure 17 through to Figure 22. This study has 

demonstrated that during infection with L. salmonis there is a change in the expression 

levels of the chemokine interleukin-8 in the tissues of Atlantic salmon: heart (Figure 17) 

and spleen tissue (Figure 18) both show a statistically significant increase in expression 

levels relative to controls (two-tailed T-test, T = 2.31, p = 0.015, DF = 21; two-tailed T-

test, T = 4.47, p < 0.001, DF = 22 respectively).  Tissue from the head kidney (Figure 19) 

show a statistically significant decrease in expression levels relative to controls (two-tailed 

T-test, T = -2.37, p = 0.032, DF = 15). The results for fins (Figure 20), liver (Figure 21) 

and pyloric cæca (Figure 22) do not show a significant difference in expression levels 
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(two-tailed T-test, p>0.05). 

 

 

Figure 17: IL-8 gene expression in heart tissue samples from 12 uninfected (control) fish compared to 

11 infected (positive) fish that survived long enough to be sampled.  There is a statistically significant 

increase in expression levels in tissues from fish infected with L. salmonis relative to controls (two-

tailed T-test T = 2.31, p = 0.015, DF = 21) 

 

Hearts from fish infected with L. salmonis show increased levels of IL-8 expression 

relative to controls.  Without the assumption of equal variances, the value of the test 

statistic comparing control and sample hearts is 2.56 (with 22 degrees of freedom). The p 

value given by MINITAB is 0.009. Therefore there is very strong evidence against the null 

hypothesis that the levels of IL-8 gene expression are equal. 

 

Spleens from fish infected with L. salmonis show increased levels of IL-8 expression 

relative to controls.  Without the assumption of equal variances, the value of the test 

statistic comparing control and sample spleens is 5.86 (with 22 degrees of freedom). The p 

value given by MINITAB is less than 0.001. Therefore there is very strong evidence 

against the null hypothesis that the levels of IL-8 gene expression are not equal. 
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Figure 18: IL-8 gene expression in spleen tissue samples from 12 uninfected (control) fish compared to 

11 infected (positive) fish that survived long enough to be sampled.  There is a statistically significant 

increase in expression levels in tissues from fish infected with L. salmonis relative to controls (two-

tailed T-test, T = 4.47, p < 0.001, DF = 22). 

 

 

Figure 19: IL-8 gene expression in head-kidney tissue samples from 12 uninfected (control) fish 

compared to 11 positive (infected) fish that survived long enough to be sampled.  There is a statistically 

significant decrease in expression levels in tissues from fish infected with L. salmonis relative to 

controls (two-tailed T-test, T = -2.37 p = 0.032, DF = 15). 

 

Anterior kidney from fish infected with L. salmonis show decreased levels of IL-8 

expression relative to controls. Without the assumption of equal variances, the value of the 
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test statistic comparing control and sample anterior kidney is -2.37 (with 15 degrees of 

freedom). The p value given by MINITAB is 0.032. Therefore there is moderate evidence 

against the null hypothesis that the levels of IL-8 gene expression are not equal. 

 

Fins from fish infected with L. salmonis do not show altered levels of IL-8 expression 

relative to controls.  Without the assumption of equal variances, the value of the test 

statistic comparing control and sample fins is -0.79 (with 21 degrees of freedom). The p 

value given by MINITAB is 0.780. Therefore there is little evidence against the null 

hypothesis that the levels of IL-8 gene expression are not equal. 

 

 

Figure 20: IL-8 gene expression in fin tissue samples from the 12 uninfected (control) fish compared to 

the 10 samples from infected (positive) fish that survived long enough to be sampled.  There is no 

significant difference between infected and uninfected samples (two-tailed T-test, p > 0.05). 

 

IL-8 Gene Expression in Fin Tissue

0

0.0005

0.001

0.0015

0.002

0.0025

Sample

q
tI

L
-8

:q
ts

E
L

F

Control Positive



   Chapter 4: The Role of IL-8 

 

 
91 

 

Figure 21: IL-8 gene expression in liver tissue samples from 12 uninfected (control) fish compared to 

11 infected (positive) fish that survived long enough to be sampled.  There is no significant difference 

between infected and uninfected samples (two-tailed T-test, p > 0.05). 

 

Livers from fish infected with L. salmonis do not show altered levels of IL-8 expression 

relative to controls. Without the assumption of equal variances, the value of the test 

statistic comparing control and sample livers is 0.36 (with 22 degrees of freedom). The p 

value given by MINITAB is 0.360. Therefore there is little evidence against the null 

hypothesis that the levels of IL-8 gene expression are not equal. 
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Figure 22: IL-8 gene expression levels in pyloric cæca tissue samples from 12 uninfected (control) fish 

compared to 11 infected (positive) fish that survived long enough to be sampled.  There is no 

significant difference between infected and uninfected samples (two-tailed T-test, p > 0.05). 

 

Pyloric cæca from fish infected with L. salmonis do not show altered levels of IL-8 

expression relative to controls. Without the assumption of equal variances, the value of the 

test statistic comparing control and sample pyloric cæca is -0.36 (with 22 degrees of 

freedom). The p value given by MINITAB is 0.638. Therefore there is little evidence 

against the null hypothesis that the levels of IL-8 gene expression are not equal. 

 

4.4  Discussion  

Interleukin-8 is a chemokine that directs inflammatory and immune cells to sites of injury 

and infection in mammals. The principal role of IL-8 is to control the movement and 

activity of neutrophils (Hajnická et al., 2001). In Atlantic salmon the major secondary 

lymphoid organs are the spleen and anterior kidney. Therefore it is not unreasonable to 

have assumed that both organs would respond to the sea lice in the same manner. This is 

not the case as there is a significant difference between the spleens of infected and non-
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infected but not in kidney expression levels. Differences in the tissue of the spleen and 

kidney may account for the differences in IL-8 expression. Leknes (2001b) reports free, 

single macrophages and large accumulations of macrophages, i.e. melanomacrophage 

centres (MMCs), occur regularly in the spleen, trunk kidney and liver of platies 

(Xiphophorus maculates L.). However, when stained with Mayer’s haemalum-eosin these 

cells in the spleen and liver are packed with a dense, yellow material whereas the 

corresponding cells in the trunk kidney were filled with a dense, grey material (Leknes, 

2001b). 

 

The MMCs have been also observed in the spleen, kidney or liver of several teleostean 

species but, with the exception of platies, they have not been studied and compared 

intraspecifically (Tsujii and Seno, 1990, Meseguer et al., 1994, Leknes, 2001b). 

Furthermore, the morphology of the teleostean MMCs and the intracellular structure differ 

between individuals, species and organs (Agius, 1985, Haaparanta et al., 1996). For 

example the MMCs within the kidney of goldfish (Carassius auratus L.) contain much 

more melanin than spleen MMCs of the same fish (Herraez and Zapata, 1991). Work by 

Leknes (2001b) revealed that macrophages in the MMCs of platy kidney often contain 

melanin-like granules that are lacking in splenic MMCs. 

 

The MMCs in teleosts contain lipofuschin (aka lipofuscin, a polymer of lipids and 

proteins) and some haemosiderin, a protein that stores iron (Herraez and Zapata, 1991, 

Meseguer et al., 1994, Press and Evensen, 1999). Herraez and Zapata (1991) and 

Meseguer et al. (1994) both report that splenic MMCs in goldfish contain more 

haemosiderin than those found in the kidney. Leknes’ (2001b) study showed that the 

MMCs of platy spleen and liver normally contain large quantities of iron(III) ions, whereas 

the MMCs of kidney do not contain this type of iron ion. 
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As well as structural differences, there is evidence from other studies that the kidney and 

spleen respond differently when challenged with pathogens. Falk et al. (1995) investigated 

the distribution and phenotype of splenic- and anterior kidney-derived leukocytes from 

Atlantic salmon that were developing infectious salmon anaemia (ISA). The authors 

concluded that the earliest changes associated with experimental ISA infection could be 

identified in the leukocyte populations of the spleen rather than the head kidney. Work by 

Irwin and Kaattari (1986) indicated that the spleen is an important immune responsive 

organ, whilst Zapata and Cooper (1990) noted that the head kidney is important for the 

elaboration of an immune response. Thus, an interpretation of the findings of the present 

study is that macrophages activated in the spleen during the early immune response (hence 

the increased IL-8 expression levels) migrate to the head kidney to elaborate an immune 

response. Ackermann et al. (2004) report the expression of IL-8 mRNA in buffy coat cells, 

suggesting that infiltrating leukocytes may contribute significantly to IL-8 levels detected 

in other tissue samples. This could, therefore, explain the results of the tissues that did not 

show a significant change in levels of IL-8 expression.  An alternative explanation for the 

decrease in IL-8 expression levels in the kidney may be due to a restriction in the time 

points selected for sampling.  It is unlikely that sampling occurred too early, however it is 

possible that samples were taken too late in the infection.  Therefore, a down regulation in 

head kidney expression levels may be due to the migration of leukocytes out of the kidney. 

 

The heart tissue of Atlantic salmon infected with L. salmonis showed increased expression 

of the IL-8 gene. In Atlantic salmon foreign organic substances are mainly taken up by the 

kidney (Smedsrød et al., 1993, Dalmo et al., 1996). However, in cod (Gadus morhua L.) 

such substances are cleared from the circulation mainly by the heart endothelium whilst the 

kidney plays a relatively small role (Sørensen et al., 1998, Dalmo et al., 1996, Smedsrød et 

al., 1995). In the platy, it has been shown that the heart endothelium, and in particular the 
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atrium, is able to take up and store large quantities of foreign ferritin from the circulation 

and thus have a similarly important role in clearance of the circulation as the 

corresponding cells in cod (Leknes, 2001a). If the heart muscle of the Atlantic salmon is 

removing components of the lice secretions from the blood it may be stimulating IL-8 

production in a role similar to those cells in the heart of the cod and platy. 

 

Whilst this is the first record of a general, systemic response in IL-8 expression in response 

to infection with L. salmonis, the presence of anti-IL-8 substances has previously been 

recorded in other animals.  Hajnická et al. (2001) showed that salivary gland extracts from 

several ixodid tick species (Dermacentor reticulates, Amblyomma variegatum, 

Rhipicephalus appendiculatus, Haemaphysalis inermis and Ixodes ricinus) possess anti-IL-

8 activity. The activity appears to be mediated by one or more molecules present in 

salivary glands. By binding IL-8, these molecules inhibit binding of the chemokine to its 

receptors thereby inhibiting chemotaxis of neutrophils (Hajnická et al., 2001). Infiltrating 

neutrophils release chemokines, such as IL-8, which serve to reinforce the recruitment of 

additional neutrophils to the developing inflammation (Fast et al.). Therefore anti-IL-8 

activity may also facilitate bloodfeeding, which forms a minor component of L. salmonis’ 

diet (Bricknell et al., 2003). Furthermore, Hajnická et al. (2001) propose that by producing 

IL-8 binders as opposed to IL-8 receptor antagonists the ticks may have found the most 

efficient means of controlling IL-8 activity in a range of different host species. This 

mechanism may also explain the ability of L. salmonis to parasitise more species than just 

Atlantic salmon (see Pike and Wadsworth, 1999 for a more extensive list). 

 

It should be noted that whilst it is possible to say that L. salmonis leads to a significant 

increase in IL-8 gene expression in heart and spleen tissues, and a significant decrease of 

expression in anterior kidney it cannot be concluded that those tissues that do not show a 
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significant change relative to controls are unaffected. It was predicted that the local site 

(i.e. fins) would have shown increased expression even if none of the others did. If there is 

no significant difference between positive (infected) samples and negative (uninfected) 

controls this could suggest an immunosuppressive effect, but not one severe enough to 

show a statistically significant effect. In order to test this hypothesis a known positive 

sample is required. To this author’s knowledge no known sample currently exists. 

 

In summary, I propose that structural differences in the tissue of the spleen and kidney, as 

described by Leknes (2001b), and the movement of activated macrophages from the spleen 

to the head kidney, account for the differences in IL-8 expression levels. Furthermore, it is 

proposed that the heart muscle of the Atlantic salmon removes components of the lice 

secretions from the circulating blood, thereby stimulating IL-8 production in a role similar 

to that seen in the hearts of cod and platys. Clearly further investigations into the 

expression of the IL-8 gene are needed. Not only would it be beneficial to chart the 

changes in IL-8 expression over a defined period of time, but it would also be interesting to 

sample circulating macrophages at these time points. This would allow testing of 

Ackermann et al.’s (2004) proposition that the levels of IL-8 expression detected in tissues 

are as a result of infiltrating buffy coat cells. 
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5.1  Introduction 

Eicosanoids comprising mainly of prostaglandins (PGs), thromboxanes (TXs) and 

leukotrienes (LTs), are lipid based mediators with a short half-life that act in an autocrine 

and paracrine manner (Smith, 1989, Daugschies and Joachim, 2000). They are synthesised 

de novo from polyunsaturated fatty acids (PUFAs; see Figure 23) and share a chain length 

of 20 carbon atoms (C-20) as a common feature (Cayman Chemical Company, 2005). The 

prefix eicosa- or icosa- (from the Greek for 20) denotes the C-20 (Beare-Rogers et al., 

2001). According to their biochemical properties and biosynthetic pathways eicosanoids 

are classified into epoxids, hydroxyeicosatetraenic acids (HETEs), hydroxyoctadecadienic 

acids (HODEs), hydroxyperoxyeicosatetraenic acids (HPETEs), lipoxins, prostaglandins 

(PGs), thromboxanes (TXs) and hepoxilins (Smith, 1989, Kühn and Borngräber, 1998). 

PGs have a cyclopentane structure whereas TXs are characterised by an oxane ring; both 

are collectively named prostanoids (Slater and McDonald-Gibson, 1987). 

 

Figure 23: Simplified scheme of pathways of eicosanoid synthesis (Calder, 2005) 

 

In vertebrates cyclooxygenase (COX) is the key enzyme for prostanoid synthesis (see 
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Figure 23), catalysing the conversion of arachidonic acid first to the intermediate PGG2, 

which is subsequently peroxidised to PGH2 (Belley and Chadee, 1995). This is then 

enzymatically converted to the various bioactive prostanoids (Smith, 1989). 

 

In mammals there are 2 isoforms of COX: COX-I, which is expressed constitutively 

(synthesised in the absence of any particular stimulus) and is slightly upregulated by 

hormones, and COX-II, which is highly inducible (Belley and Chadee, 1995, Kühn and 

Borngräber, 1998). COX-I is a glycoprotein complex of two identical haem-containing sub 

units of 70 kDa and is a monotopic membrane protein found primarily in the endoplasmic 

reticulum of mammalian cells. In contrast, COX-II is believed to be a glycoprotein doublet 

containing several N-linked glycosylation sites with a molecular mass of up to 74 kDa 

(Belley and Chadee, 1995). N-linked glycosylation is required for maximum activity of 

both isoforms (Belley and Chadee, 1995). Belley and Chadee (1995) report that arthropod-

derived COX acts primarily in a constitutive manner (COX-I), however, the discovery of 

COX-II in mammals has led to a renewed interest in the possibility that to whether 

parasites may produce a similar enzyme that can be used in pathogenesis and/or 

immunoregulation (Belley and Chadee, 1995). 

 

Weinheimer and Spraggins (1969) were the first to discover eicosanoids in an invertebrate 

animal, the octocoral Plexaura homomella. Since that time eicosanoid synthesis has been 

demonstrated to occur in other invertebrate species (Daugschies and Joachim, 2000), 

playing important roles in ion transport, neurobiology and reproduction (Smith, 1989, 

Stanley-Samuelson, 1991, De Petrocellis and Di Marzo, 1994, Stanley and Miller, 1998, 

Ogg and Stanley-Samuelson, 1992). Whilst mammalian eicosanoids are synthesised de 

novo, it is unknown whether this is true for invertebrates. De Petrocellis and Di Marzo 

(1994) reported that non-parasitic invertebrates are able to store eicosanoids as lipoxin 
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derivates in certain tissues. 

 

Prostaglandins are very important in the biology of invertebrate animals, regulating events 

within tissues and cells (Stanley-Samuelson, 1994b). The presence and significance of 

eicosanoids in invertebrates has been presented from various perspectives in several 

reviews (Brady, 1983; 1985; Stanley-Samuelson and Loher, 1986; Stanley-Samuelson, 

1987; 1993; 1994a; 1994b, Sauer et al., 1993; Lamacka and Sajbidor, 1995; Stanley-

Samuelson and Pedibhotla, 1996; De Petrocellis and Di Marzo, 1994). Most of the work 

focusing on COX-II expression in parasites has concentrated on those parasites of public 

importance such as Schistosoma mansoni (Salafsky and Fusco, 1985; Fusco et al., 1993; 

Salafsky et al., 1984; Salafsky and Fusco, 1987b;a), Entamoeba histolytica (Belley and 

Chadee, 1995), Trichobilharzia ocellata (Nevhutalu et al., 1993) and Taenia taeniaeformis 

(Leid and McConnell, 1983). Recently, however, more resources have gone into studying 

haematophagous arthropods such as ticks and the effects that PGs can have on their 

feeding. 

 

The saliva of many tick species has been shown to contain a complex cocktail of 

pharmacologically active compounds such as immunosuppressants, analgesics, 

anticoagulants and anti-platelet aggregatory compounds that facilitate feeding (Bowman et 

al., 1996). Normally a host’s haemostatic processes would stop leakage from a blood 

vessel damaged through haematophagous parasite feeding. This would involve circulating 

platelets adhering to the damaged vessel wall, being activated and then aggregating to form 

a plug in the gap and to provide a scaffold for the coagulation process and fibrin clot. Most 

of the haematophagous arthropods studied to date, however, inhibit platelet aggregation by 

secreting the enzyme apyrase (Bowman et al., 1996). Those arthropods that do not secrete 

apyrase instead secreted other anti-platelet aggregatory compounds such as PGI2 and PGD2 
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(Bowman et al., 1996). 

 

The PGs have been detected in the saliva of the cattle tick, Boophilus microplus, and the 

dog tick Amblyomma americanum by bioassay and chromatography techniques (Stanley-

Samuelson, 1994a) and in the saliva of L. salmonis (Fast et al., 2004). There are reports of 

PGs in other tick tissues; however, the physiological roles of these compounds remains to 

be elucidated (Stanley-Samuelson, 1994a). Kemp and Bourne (1980) report that histamine 

causes ticks to detach from their host but other mediators such as bradykinin, PGE2 and 5-

HT (serotonin) have no behavioural effect. The authors conclude that PGs alter the 

behaviour of the tick to increase the likelihood of finding a suitable host. 

 

The prostaglandins PGE2 and PGI2, and to a lesser extent PGD2, are potent vasodilators 

that cause dilation of the vascular smooth muscle thereby increasing blood flow (Bowman 

et al., 1996). In general PGs are able to induce vasodilation without increasing plasma 

leakage and the associated pain by preventing mast cell degranulation. Furthermore, potent 

vasoconstriction peptides that are released by the vascular endothelium in response to 

mechanical injury, shear, stretch, turbulent flow or inflammatory mediators at the site of 

insult are countered by PGs and in particular PGE2. The saliva of the tick Ixodes dammini  

(Ixodes scapularis) contains substantial quantities of 6-keto-PGF1", the stable degradation 

product of PGI2 (Ribeiro et al., 1988). Fezza et al. (2003) report that PGE2 within the 

salivary gland of ixodid ticks can act in either an autocrine or paracrine manner through its 

interactions with PGE2 receptors. This induces exocytosis (secretion) of bioactive proteins. 

 

Despite prolonged and continuous attachment of many haematophagous arthropods natural 

hosts mount immune responses that are ineffective (Bowman et al., 1996). Experimental 

evidence from Wikel (1996) has suggested that rather than evading the host’s immune 
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system, haematophagous arthropods suppress it via components of their saliva. The 

salivary homogenates of several tick species have been shown to impair T-cell function, 

possibly due to a reduction in the production of cytokines that are vital for ontogeny of the 

immune response, including recruitment, activation and proliferation of immune cells and 

also the inflammatory response (Bowman et al., 1996). Ribeiro et al. (1985) report the 

PGE2 content of I. dammini saliva has an inhibitory effect on IL-2 production by T-cells. 

Further experiments by Inokuma et al. (1994) indicate that that PGE2 content of Boophilus 

microplus saliva was responsible for the inhibition of T-cell proliferation. A conflicting 

report from Urioste et al. (1994), however, reported a similar T-cell suppression from I. 

dammini saliva which lacked PGE2. This led the authors to conclude that salivary PGE2 

plays a minor role in the immunosuppressive activity of tick saliva. Bowman (1996) 

proposes that factors other than PGE2 are potentially immunosuppressive but PGs may 

exert a limited immunosuppressive effect. 

 

The PGs are intricately involved with pain and inflammation (Bowman et al., 1996). It 

would be logical to assume that during feeding haematophagous arthropods cause pain to 

the host thereby increasing the likelihood that grooming will dislodge the parasite. 

Examination of the process of pain and inflammatory events, however, suggests that ticks 

not only render the pro-inflammatory properties of PGs ineffective but saliva-derived PGs 

exhibit anti-inflammatory actions at the feeding site (Bowman et al., 1996). 

 

Lepeophtheirus salmonis infections of susceptible hosts, e.g. Atlantic salmon, are notable 

in that no significant inflammatory response is elicited (Johnson and Albright, 1992a). 

However, a well-developed inflammatory response is associated with resistance to 

infection in coho salmon (Oncorhynchus kisutch) (Johnson and Albright, 1992a). Fast et 

al. (2004) and Johnson and Fast (2004) both propose that immunomodulation of the host in 
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the absence of high cortisol levels is responsible for the lack of response in Atlantic 

salmon. The identification of trypsin and PGE2 in adult L. salmonis secretions by Fast et al. 

(2004, 2003) and Firth et al. (2000) have given validity to this hypothesis. 

 

The aim of this study was to determine if secretions of L. salmonis chalimus stages contain 

the prostanoid PGE2. This chapter describes the commercial enzyme-linked immunoassay 

(EIA) technique used to measure PGE2 levels in Lepeophtheirus salmonis. 

 

5.2  Materials and methods 

Once the lice had developed to the first chalimus stage fish were euthanised and samples 

taken (see section 5.2.1) and analysed using a commercially available PGE2 assay kit (see 

section 5.2.4) 

 

FN4N)( ( .,;&2%3/,(/;(;36"(

Twelve Atlantic salmon were infected following Sevatdal’s 2001 method (see section 2.3). 

The lice were left to develop on the fish until they reached the chalimus I stage. At an 

ambient water temperature of 10 ºC this took 10 days. Following infection the fish were 

examined every 2 days for the presence of the parasite. The chalimus stages were found 

around the base of the pectoral, pelvic, anal and dorsal fins as well as on the tail (see 

Figure 24). 
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Figure 24: Sampling areas on salmon 

!
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The chalimus were stimulated to produce PGE2 using a modified version of the protocol 

used by Fast et al. (2004). Briefly, fish were euthanised using MS-222-overdose once the 

lice were at the appropriate stage and placed under a dissecting microscope (Wyld). Discs 

of skin containing the attached lice were removed using a gauge 6 needle (Biomark) and 

transferred to sterile filtered (0.22 µm) seawater. Discs of skin that did not contain lice 

were taken as controls. 

 

Once in the laboratory the discs containing lice were separated into groups of 5 and 

allocated to either a treatment or control group using a random number table (see Table 

10). The groups were incubated in either 1 mL of 0.05 mM dopamine solution (Pers. 

Comm. Mark Fast; Sigma dissolved in 0.22 µm sterile-filtered seawater) or 1 mL sterile-

filtered seawater for 60 minutes at 10 ºC. 

 

Table 10: Treatment groups for lice from PGE2 assay experiment, based on a predicted total of 105 

discs of skin.  Groups of 5 discs of skin were incubated in either 1 mL of 0.05 mM dopamine solution 

(DA) or 1 mL sterile-filtered seawater (C) 

Group 1 DA Group 7 C Group 13 DA Group 19 DA 
Group 2 DA Group 8 DA Group 14 C Group 20 DA 
Group 3 DA Group 9 DA Group 15 DA Group 21 DA 
Group 4 DA Group 10 C Group 16 C   
Group 5 DA Group 11 C Group 17 C   
Group 6 C Group 12 C Group 18 DA   
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Following incubation, tubes were centrifuged briefly to pellet the lice and the liquid phase 

harvested into fresh microcentrifuge tubes (Scientific Laboratory Supplies). To prevent 

metabolism or breakdown of the eicosanoids, 5% (50 µL) formic acid were added per 

millilitre to reduce the pH to approximately 3. One hundred and fifty microlitres of 

absolute ethanol was added to solubilise the eicosanoids and allow for easier extraction. 

 

FN4N7( ( </-30($"#6&(&@%'#2%3/,(

In the laboratory samples were centrifuged for 5 minutes to pellet debris. The eicosanoids 

were then extracted as follows. A Sep-pak C18 cartridge was pre-washed with 5 mL 

methanol followed by 10 mL ddH2O. The sample was loaded onto the cartridge and 

washed drip-wise with 10 mL ddH2O followed by 5 mL 15% ethanol and then 5 mL 

hexane:chloroform (65:35 v/v). The eicosanoids were eluted into a stoppered test tube by 

pushing through 10 mL ethyl acetate, evaporated to dryness under nitrogen (Nevap) and 

re-suspended in 1 mL 100% methanol. Samples were stored at -20 ºC until assayed (see 

section 5.2.4). Used cartridges were regenerated by washing with 10 mL methanol and 10 

mL ddH2O. 

 

FN4NA( ( 9+?4(#66#=(

Prostaglandin E2 concentration was measured using a commercially available kit following 

the manufacturer’s instructions (Cayman Chemicals). The assay works on the principle 

that in vivo PGE2 is rapidly converted into an inactive metabolite (13,14-dihydro-15-keto 

PGE2) by the prostaglandin 15-dehydrogenase pathway (see Figure 25) (Hamberg and 

Samuelsson, 1971; Granström et al., 1980). 
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Figure 25: The metabolism of PGE2 through the prostaglandin 15-dehydrogenase pathway 

 

The plate layout for the ELISA is shown in Figure 26. Throughout the procedure different 

tips were used to pipette the buffer, standards, samples, tracers and antibodies. 

Furthermore, each pipette tip was equilibrated prior to use by slowly filling the tip and 

gently expelling the contents several times. 

 

 

Figure 26: Prostaglandin E2 assay plate layout.  NSB = non-specific binding; ST = standard; S = 

sample; BLK = blank 
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Briefly, the contents of one vial of EIA Buffer Concentrate were diluted with 90 mL 

ddH2O. Care was taken to rinse the vial to remove any salts that may have precipitated. 

The contents of a 5 mL vial of Wash Buffer Concentrate were diluted to a total volume of 

2 litres with ddH2O and then 1 mL Tween 20 added. 

 

The contents of the PGE2 standard were reconstituted with 1 mL EIA buffer (bulk 

standard) and stored at 4 ºC until used. To prepare the standard for use in EIA 8 clean test 

tubes were labelled 1 through 8 and 900 µL EIA buffer added to the first test tube and 500 

µL each of the others. One hundred microlitres (100 µL) of the bulk standard was added to 

tube 1 and vortexed thoroughly. The standard was then serially diluted by transferring 500 

µL from tube 1 to tube 2 and mixing thoroughly. This process was repeated for tubes 3 – 8. 

 

The PGE2 acetylcholine esterase (AChE) tracer was reconstituted with 6 mL EIA buffer to 

give 100 determinations (dtns). A red tracer dye was included at 1 part per 100 to aid 

visualisation of the tracercontaining wells. Similarly, 100 dtns PGE2 antibody were 

reconstituted in 6 mL EIA buffer with a blue tracer dye added at a final dilution of 1:100 to 

aid visualisation of anti-serum containing wells. 

 

One hundred microlitres of EIA buffer was added to each of the NSB wells and 50 µL 

added to the maximum binding wells (B0). Fifty microlitres from standard tube 8 were 

added to both of the lowest standard wells (S8) and then 50 µL from tube 7 added to each 

of the next two standard wells (S7). This was repeated until all the standards were 

aliquoted. Next, 5 µL of sample and 45 µL EIA buffer were added per well. Fifty 

microlitres of PGE2 AChE tracer were added to each well except the blank (BLK) wells 

and finally 50 µL PGE2 monoclonal antibody added to each well except the non-specific 

binding (NSB) and BLK wells. A quick reference pipetting summary is shown in Table 11. 
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Table 11: Quick reference pipetting summary for PGE2 assay 

Well EIA Buffer Standard/Sample Tracer Antibody 

BLK - - - - 
NSB 100 µL - 50 µL - 
B0 50 µL - 50 µL 50 µL 

Standard/Sample - 50 µL 50 µL 50 µL 

 

Once all reagents had been added the plate was covered with a plastic film lid and 

incubated for 18 hours at 4 ºC. When the plate was ready to develop 100 dtns Ellman’s 

Reagent were reconstituted in 20 mL ddH2O. The wells of the plate were emptied over a 

sink, and rinsed 5 times with wash buffer before adding 200 µL Ellman’s Reagent to each 

well. The plate was re-covered with its plastic film lid, placed in a dark box and incubated 

at room temperature for 80 minutes on an orbital shaker. Once incubated the plate was read 

at 405 nm on a plate reader and the percent bound for each standard and sample was 

calculated using Equation 2: 

 
Equation 2: Calculating percentage bound to non-bound in PGE2 assay 

 

5.3  Results 

The results from the EIA used to measure PGE2 levels from salmon skins infected with lice 

incubated in dopamine show a wide spread of concentrations ranging from 411.883 pg.mL-

1 to 9085.962 pg.mL-1.  The mean concentration was 3023 ± 2987.417 pg.mL-1. This was 

based on a total of 11 samples, each of 5 skins, after 2 anomalous results were discounted. 

The anomalous results were discounted as one was a negative value (-902.896 pg.mL-1) 

and the second was almost fivefold the next highest concentration (45996.948 pg.mL-1 

compared to 9085.962 pg.mL-1).  Graphical representation of the results for these 11 

samples and their mean is shown in Figure 27. The results from the EIA used to measure 

PGE2 levels from salmon skins not infected with lice incubated in dopamine also show a 
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wide spread of concentrations ranging from 4275.590 pg.mL-1 to 5783.053 pg.mL-1. The 

mean concentration was 5090 ± 761.123 pg.mL-1. This was based on a total of 3 samples, 

each of 5 skins, after 1 anomalous result was discounted. The result that was discounted 

was over 150 times the concentration of the next highest value (1025331.007 pg.mL-1 

compared to 5783.052 pg.mL-1).  Graphical representation of the results for these 3 

samples and their mean is shown in Figure 28. Comparing the mean results from both 

assays suggest that the presence of L. salmonis chalimus on the skin reduces the production 

of PGE2. 

 

 
 

Figure 27: Concentration of PGE2 from 11 groups of 5 skins, each with lice attached, after incubation for 60 

minutes at 10 °C in 0.05 mM dopamine.  There is a wide range of concentrations ranging from 411.8 pg.mL-1.  The 

mean concentration across all samples taken was 3023 ± 2987.4 pg.mL-1. 
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5.3  RESULTS 

The results from the EIA used to measure PGE2 levels from salmon skins infected with lice incubated in 

dopamine show a wide spread of concentrations ranging from 411.883 pg.mL
-1

 to 9085.962 pg.mL
-1

.  

The mean concentration was 3023 + 2987.417 pg.mL
-1

.  This was based on a total of 11 samples, each of 

5 skins, after 2 anomalous results were discounted.  Graphical representation of the results for these 11 

samples and their mean is shown in Figure 27.  The results from the EIA used to measure PGE2 levels 

from salmon skins not infected with lice incubated in dopamine also show a wide spread of 

concentrations ranging from 4275.590 pg.mL
-1

 to 5783.053 pg.mL
-1

.  The mean concentration was 5090 

+ 761.123 pg.mL
-1

.  This was based on a total of 3 samples, each of 5 skins, after 1 anomalous result was 

discounted.  Graphical representation of the results for these 3 samples and their mean is shown in Figure 

28.  Comparing the mean results from both assays suggest that the presence of L. salmonis chalimus on 

the skin reduces the production of PGE2. 

 Concentration of PGE 2 from skins with lice incubated in dopamine

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 2 3 4 5 6 7 8 9 10 11 Mean

Sample

C
o

n
c
e
n

tr
a
ti

o
n

 (
p

g
.m

L
-1

)

 

Figure 27: Concentration of PGE2 from 11 groups of 5 skins, each with lice attached, after 

incubation for 60 minutes at 10 °C in 0.05 mM dopamine.  There is a wide range of concentrations 

ranging from 411.8 pg.mL
-1

 to 9086.0 pg.mL
-1

.  The mean concentration across all samples taken 

was 3023 + 2987.4 pg.mL
-1

. 
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Figure 28: Concentration of PGE2 from 3 groups of 5 skins, each without lice attached, after incubation for 60 

minutes at 10 °C in 0.05 mM dopamine.  The concentrations range from 4275.6 to 5783.1 pg.mL-1.  The mean 

concentration across all samples taken was 5090 ± 761.1 pg.mL-1. 

 

The results from the EIA used to measure PGE2 levels from salmon skins infected with lice 

incubated in sterile-filtered seawater show a wide spread of concentrations ranging from 

692.948 pg.mL-1 to 2988.791 pg.mL-1. The mean concentration was 1419.946 ± 972.592 

pg.mL-1. This was based on a total of 5 samples, each of 5 skins, after 3 anomalous results 

were discounted. The three discounted values ranged from between 5 to 12 times the 

concentration of the other samples.  Graphical representation of the results for these 5 

samples and their mean shown in Figure 29. Likewise, the results from the EIA used to 

measure PGE2 levels from salmon skins not infected with lice incubated in sterile-filtered 

seawater show a wide spread of concentrations ranging from 4345.105 pg.mL-1 to 

7434.833 pg.mL-1. The mean concentration was 4543 ± 1453.959 pg.mL-1. This was based 

on a total of 4 samples, each of 5 skins. Graphical representation of the results for the 

samples and their mean is shown in Figure 30. 
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Figure 28: Concentration of PGE2 from 3 groups of 5 skins, each without lice attached, after 

incubation for 60 minutes at 10 °C in 0.05 mM dopamine.  The concentrations range from 4275.6 

pg.mL
-1

 to 5783.1 pg.mL
-1

.  The mean concentration across all samples taken was 5090 + 761.1 

pg.mL
-1

. 

 

The results from the EIA used to measure PGE2 levels from salmon skins infected with lice incubated in 

sterile-filtered seawater show a wide spread of concentrations ranging from 692.948 pg.mL
-1

 to 2988.791 

pg.mL
-1

.  The mean concentration was 1419.946 + 972.592 pg.mL
-1

.  This was based on a total of 5 

samples, each of 5 skins, after 3 anomalous results were discounted.  Graphical representation of the 

results for these 5 samples and their mean shown in Figure 29.  Likewise, the results from the EIA used 

to measure PGE2 levels from salmon skins not infected with lice incubated in sterile-filtered seawater 

show a wide spread of concentrations ranging from 4345.105 pg.mL
-1

 to 7434.833 pg.mL
-1

.  The mean 

concentration was 4543 + 1453.959 pg.mL
-1

.  This was based on a total of 4 samples, each of 5 skins.  

Graphical representation of the results for the samples and their mean is shown in Figure 30.   
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Figure 29: Concentration of PGE2 from 5 groups of 5 skins, each with lice attached, after incubation for 60 

minutes at 10 °C in 0.22 µm sterile-filtered seawater.  The concentrations range from 692.948 pg.mL-1 to 2988.791 

pg.mL-1.  The mean concentration across all samples taken was 1419.946 ± 972.592 pg.mL-1. 

 

 

Figure 30: Concentration of PGE2 from 4 groups of 5 skins each without lice attached, after incubation for 60 

minutes at 10 °C in 0.22 µm sterile-filtered seawater.  The concentrations range from 4345.1 to 7434.8 pg.mL-1.  

The mean concentration across all samples taken was 4543.105 ± 1453.959 pg.mL-1. 

 

The results from the EIA used to measure PGE2 levels from lice incubated in dopamine 

show a wide spread of concentrations ranging from 8.221 pg.mL-1 to 19.373 pg.mL-1. The 

mean concentration was 13.873 ± 5.578 pg.mL-1. This was based on a total of 3 samples, 
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Figure 29: Concentration of PGE2 from 5 groups of 5 skins, each with lice attached, after 

incubation for 60 minutes at 10 °C in 0.22 µm sterile-filtered seawater.  The concentrations range 

from 692.9 pg.mL
-1

 to 2988.8 pg.mL
-1

.  The mean concentration across all samples taken was 1420.0 

+ 972.6 pg.mL
-1

. 
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Figure 30: Concentration of PGE2 from 4 groups of 5 skins, each without lice attached, after 

incubation for 60 minutes at 10 °C in 0.22 µm sterile-filtered seawater.  The concentrations range 

from 4345.1 pg.mL
-1

 to 7434.8 pg.mL
-1

.  The mean concentration across all samples taken was 4543 

+ 1454 pg.mL
-1

. 

 

 

The results from the EIA used to measure PGE2 levels from lice incubated in dopamine show a wide 

spread of concentrations ranging from 8.221 pg.mL
-1

 to 19.373 pg.mL
-1

.  The mean concentration was 

13.873 + 5.578 pg.mL
-1

.  This was based on a total of 3 samples, each of 5 lice, after 1 anomalous result 
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each of 5 lice, after 1 anomalous result was discounted for concentration levels that 

suggested contamination. Graphical representation of the results for these 3 samples and 

their mean is shown in Figure 31. The results from the EIA used to measure PGE2 levels 

from lice incubated in sterile-filtered seawater show a spread of concentrations ranging 

from 8.525 pg.mL-1 to 12.788 pg.mL-1. The mean concentration was 10.657 ± 3.014 

pg.mL-1. This was based on a total of 2 samples, each of 5 lice, after 2 anomalous results 

were discounted due to concentrations ranging from 12 to 200 times the concentration of 

the other results. Graphical representation of the results for these 2 samples and their mean 

is shown in Figure 32. 

 

 

Figure 31: Concentration of PGE2 from 3 groups of 5 lice, after incubation for 60 minutes at 10 °C in 0.05 mM 

dopamine.  The concentrations range from 8.2 to 19.4 pg.mL-1.  The mean concentration across all samples taken 

was 13.9 ± 5.6 pg.mL-1. 
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was discounted.  Graphical representation of the results for these 3 samples and their mean is shown in 

Figure 31.  The results from the EIA used to measure PGE2 levels from lice incubated in sterile-filtered 

seawater show a spread of concentrations ranging from 8.525 pg.mL
-1

 to 12.788 pg.mL
-1

.  The mean 

concentration was 10.657 + 3.014 pg.mL
-1

.  This was based on a total of 2 samples, each of 5 lice, after 2 

anomalous results were discounted.  Graphical representation of the results for these 2 samples and their 

mean is shown in Figure 32. 
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Figure 31: Concentration of PGE2 from 3 groups of 5 lice, after incubation for 60 minutes at 10 °C 

in 0.05 mM dopamine.  The concentrations range from 8.2 pg.mL
-1

 to 19.4 pg.mL
-1

.  The mean 

concentration across all samples taken was 13.9 + 5.6 pg.mL
-1

. 

 

A summary of all of the results from the EIA assay is shown in Table 12. 
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Figure 32: Concentration of PGE2 from 2 groups of 5 lice, after incubation for 60 minutes at 10 °C in 0.22 µm 

sterile-filtered seawater.  The concentration range from 8.5 to 12.7 pg.mL-1.  The mean concentration across all 

samples taken was 10.7 ± 3.0 pg.mL-1. 

 

A summary of all of the results from the EIA assay is shown in Table 12. 

 

Table 12: Summary of results for all PGE2 assays 

Sample PGE2 Mean Concentration (± SD) 

Skin with lice incubated in dopamine 3023.76 ± 2987.42 pg.mL-1.louse 
Skin without lice incubated in dopamine 5090.44 ± 761.13 pg.mL-1 
Skin with lice incubated in seawater 1419.95 ± 972.59 pg.mL-1.louse 
Skin without lice incubated in seawater 4543.95 ± 1453.96 pg.mL-1 
Lice incubated in dopamine 13.873 ± 5.578 pg.mL-1.louse 
Lice incubated in seawater 10.657 ± 3.014 pg.mL-1.louse 

 

5.4  Discussion 

Prostaglandin E2 (PGE2) is an eicosanoid that is known to play a variety of roles in the 

feeding and avoidance of host immune responses in arthropod parasites. The present study 

has demonstrated that L. salmonis chalimus stages do indeed produce quantifiable levels of 

PGE2. 

 

Fast et al. (2004) confirmed the presence of PGE2 in dopamine-induced secretions of L. 
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Figure 32: Concentration of PGE2 from 2 groups of 5 lice, after incubation for 60 minutes at 10 °C 

in 0.22 µm sterile-filtered seawater.  The concentrations range from 8.5 pg.mL
-1

 to 12.7 pg.mL
-1

.  

The mean concentration across all samples taken was 10.7 + 3.0 pg.mL
-1

. 

 

Table 12: Summary of results for all PGE2 assays 

Sample PGE2 Mean Concentration (+ SD) 

Skin with lice incubated in dopamine 3023.76 + 2987.42 pg.mL
-1

.louse 

Skin without lice incubated in dopamine 5090.44 + 761.13 pg.mL
-1

 

Skin with lice incubated in seawater 1419.95 + 972.59 pg.mL
-1

.louse 

Skin without lice incubated in seawater 4543.95 + 1453.96 pg.mL
-1

 

Lice incubated in dopamine 13.873 + 5.578 pg.mL
-1

.louse 

Lice incubated in seawater 10.657 + 3.014 pg.mL
-1

.louse 

 

5.4  DISCUSSION 

Prostaglandin E2 (PGE2) is an eicosanoid that is known to play a variety of roles in the feeding and 

avoidance of host immune responses in arthropod parasites.  The present study has demonstrated that L. 

salmonis chalimus stages do indeed produce quantifiable levels of PGE2.  

 

Fast et al. (2004) confirmed the presence of PGE2 in dopamine-induced secretions of L. salmonis at 

concentrations in the same range as those in the saliva of several other arthropod parasites.  The authors 

also recorded the absence of any other type of PG, which correlates with the results for most the saliva of 

most tick species (Aljamali et al., 2002).  During the present study, no type of PG other than PGE2 was 

detected, which agrees with the findings of Aljamali et al. (2002) and Fast et al. (2004).  However, it 

must be noted that EIA kits used in this study have a high specificity for PGE2.  Therefore, the likelihood 

of detecting non-PGE2 prostaglandins was minimal.  
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salmonis at concentrations in the same range as those in the saliva of several other 

arthropod parasites. The authors also recorded the absence of any other type of PG, which 

correlates with the results for most the saliva of most tick species (Aljamali et al., 2002). 

During the present study, no type of PG other than PGE2 was detected, which agrees with 

the findings of Aljamali et al. (2002) and Fast et al. (2004). However, it must be noted that 

EIA kits used in this study have a high specificity for PGE2. Therefore, the likelihood of 

detecting non- PGE2 prostaglandins was minimal. 

 

This study also found a high level of variation in PGE2 production by L. salmonis even 

within groups that had been off the host for the same amount of time. This concurs with 

the findings of Fast et al. (2004), who reported similar variation in adult lice. Aljamali et 

al. (2002) reported a fivefold variability in levels of prostaglandin in the saliva of 

Amblyomma americanum from the same population following dopamine stimulation. The 

authors also noted that prostaglandin production can also vary depending on the length of 

time since the most recent feeding. Based on the results of this study it is proposed that the 

variation seen in the levels of PGE2 production of L. salmonis chalimus stages are the 

result of minor ontogenetic differences between the chalimus on the samples. Furthermore, 

as chalimus stages feed a minimal amount compared to the later developmental stages, this 

suggests that length of time since feeding can be discounted as a possible explanation. 

 

Fast et al. (2005) demonstrated that PGE2 at physiologically meaningful levels, and in the 

absence of a stress response, was able to inhibit expression of IL-1!, COX-II and MH class 

I and II genes and Pinge-Filho et al. (1999) reported PGE2 down-regulates the pro-

inflammatory cytokines IL-1! and TNF". Furthermore, Fast et al. (2006) concluded that, 

as blood constitutes a (minor) component of the sea louse’s diet (Brandal et al., 1976; 

Bricknell et al., 2003; Haji Hamid et al., 1998) PGE2 could be used by L. salmonis to 
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increase blood to the feeding site but also to prevent leukocyte recruitment and 

presentation of parasitic antigens to T lymphocytes. This concurs with the findings of 

Papadogiannakis et al. (1984), Papadogiannakis and Johnsen (1987) and To and Schrieber 

(1990) who all propose that PGE2 may also adversely affect site-specific leukocyte 

recruitment and function. Fast et al. (2004) propose that the role of PGE2 as a systemic 

modulator is unlikely, citing its high instability, which leads to it losing its activity 

following one passage through the circulatory system in mammalian models. The findings 

of Fast et al. (2004) and the findings of the present study may explain Jónsdóttir et al.’s 

1992 and Johnson and Albright’s 1992b findings that there is minimal tissue response in 

Atlantic salmon to L. salmonis beneath the site of active feeding and attachment yet an 

inflammatory response in tissues surrounding the lesion. 

 

Down-regulation of host inflammatory cytokines has been observed in several other host-

parasite relationships such as Rhipicephalus sanguineus (Ferreira and Silva, 2001), ixodid 

ticks (Fuchsberger et al., 1995), Rhipicephalus appendiculatus (Gwakiska et al., 2001), 

Ixodes ricinus (Kopecky et al., 1999) and Ixodes scapularis (Schoeler et al., 1999; 2000). 

Ferreira and Silva (1998) report that the saliva from Rhipicephalus sanguineus ticks also 

impairs T cell proliferation and IFN-#-induced macrophage microbial activity. 

Prostaglandin E2 can cause polarisation towards a Th2 lymphocyte response by 

downregulating pro-inflammatory cytokines (Betz and Fox, 1991), which has also been 

observed in other arthropod parasites hosts (Ramachandra and Wikel, 1992; Schoeler and 

Wikel, 2001) and can delay the clearance of secondary bacterial infections (Dalton and 

O'Neill, 2002). 

 

It cannot be discounted that the production of host mucus may also be increased due to the 

presence of PGE2 (Fast et al., 2004). This is of particular importance in L. salmonis 
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infections as it forms part of their diet. Nettesheim and Bader (1996) and Tani et al. (2002) 

report that PGE2 encourages mucin secretion from rat tracheal and gastric epithelial cells. 

Furthermore, Nolan et al. (1999) observed increased mucus production by Atlantic salmon 

skin epithelia following infection with low numbers of L. salmonis adults. However, the 

potential role of PGE2 in this observation has yet to be elucidated. 

 

In artificial infections in the laboratory, infection with high numbers of L. salmonis 

commonly results in host mortality at the moult from chalimus to pre-adult stage without 

the development of lesions (Bjorn and Finstad, 1997; Grimnes and Jakobsen, 1996; Ross et 

al., 2000). Additionally, Fast et al. (2002) and Mustafa et al. (2000b) both report reduced 

macrophage function and increased susceptibility to secondary infection in infected fish 

without the presence of a cortisol response. PGE2 or other L. salmonis-derived compounds 

may be responsible at least in part for these observations (Fast et al., 2004). For example 

the sudden and high level of host mortalities reported at the moult from chalimus to the 

pre-adult stage has parallels with a toxic shock response. Whilst the role of PGE2 in toxic 

shock is unknown, prostanoids release has been demonstrated to occur early in the course 

of shock. The inhibition of such a release has been shown to significantly increase survival 

in mammalian toxic shock models (Ball et al., 1986; Lefer, 1983). 

 

In conclusion there is a good body of evidence to support the hypothesis that L. salmonis 

immunomodulates its hosts by producing substances such as prostaglandin E2. Fast et al. 

(2004) reported adult L. salmonis are capable of producing PGE2, which they propose 

modulates the host’s immune system. The present study has demonstrated that the 

chalimus stages of L. salmonis are also capable of producing PGE2 and whilst its exact 

purpose has not been investigated, many of the observations reported during the early 

stages of L. salmonis can be attributed to PGE2. 
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6.1  General conclusions 

The aims of this study were to further our understanding of the immunomodulation of 

Atlantic salmon by the copepodid and chalimus stages of Lepeophtheirus salmonis, 

focusing on three specific areas: i) investigating the proteomic nature of copepodid 

secretory/excretory product, ii) examining the role of the chemokine interleukin-8 (IL-8) 

and iii) analysing the possible role of prostaglandin E2 (PGE2) in the settlement and early 

stages of L. salmonis infection. 

 

The skin of fish acts as the first line of defence, protecting the animal against both the 

environment and infectious pathogens.  Therefore, before an ectoparasite can establish 

itself on a host it must first disrupt the skin (Tosi, 2005).  L. salmonis produce physical and 

enzymatic damage at the site of their attachment and feeding to which Atlantic salmon 

hosts appear not to mount an immune response (for a summary of the pathological effects 

of L. salmonis attachment and feeding see the review by Johnson & Fast, 2004).  Several 

studies have suggested that various stages of the L. salmonis life cycle secrete and/or 

excrete immunomodulatory compounds that are at least in part responsible for the lack of 

the host response seen at their sites of attachment and feeding (Bell et al., 2000, Fast et al., 

2002, 2003, Johnson et al., 2002, Ross et al., 2000).  The findings of the present research 

suggest that any such compounds are not proteinaceous in nature.  However, further 

investigation is recommended of the FPLC fractions eluted at between 24.0 and 25.5 mL.   

 

The present study also found that IL-8 expression levels in tissues change following 

infection with L. salmonis.  Both the heart and spleen showed significant increases in IL-8 

gene expression whilst the anterior (head) kidney, fins, liver and pyloric cæci showed no 

significant increase.  As the spleen is one of the major secondary lymphoid organs in 
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Atlantic salmon it would not be unreasonable to have predicted this result.  However, the 

author cannot find any record of the heart playing a similar role in Atlantic salmon.  

Gonzalez et al. (2007c) believe that molecules secreted by parasites could alter the 

expression of immune-related genes in fish, although the authors do concede that there is a 

dearth of current knowledge in this area.  The first response of the innate immune system 

to infection or tissue damage is inflammation and it is characterised by an increased blood 

supply to the affected area.  This is followed by the extravasation of leukocytes from 

capillaries into the affected tissue (Gonzalez et al., 2007a). It is proposed that molecules 

within the SEP of L. salmonis enter the circulatory system of the host and are transported 

through the heart and spleen, stimulating an increase in IL-8 gene expression.  This would 

agree with the theories of Gonzalez et al. (2007a) who suggest that the presence of high 

numbers of leukocytes, most probably neutrophilic granulocytes, at sites of mechanically 

induced skin damage are directly related to the up-regulation of gene expression similar to 

those shown in this study.  Based on this observation it is concluded that L. salmonis is 

capable of modulating the immune response of Atlantic salmon with regards to IL-8. 

 

The full extent of how much modulation takes place remains unclear, however.  Whilst it is 

possible to investigate the up-regulation of IL-8 gene expression, it is not currently 

possible to investigate if there is a concurrent down-regulation of IL-8 gene expression.  

Gonzalez et al. (2007c) hypothesise that down-regulation of immune-related genes could 

be related with host signals released after the disruption of epithelial cells caused by 

parasites and Hajnická et al. (2001) reported several ixodid tick species produce 

compounds with anti-IL-activity, which the authors propose may facilitate feeding. 

Furthermore, Gonzalez et al. (2007b) found, amongst other things, that there was a 

significant down-regulation in C-lection (CL) expression in tissues including the liver.  
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The authors propose that this pronounced down-regulation could be due to the fast 

migration of CL-expressing cells, probably neutrophilic granulocytes from the blood to the 

site of inflammation.  Furthermore, the authors propose that the systemic down-regulation 

of the CL molecule is probably a control mechanism related to the acute phase response (a 

systemic reaction to tissue injury and/or infection). 

 

In order to test the hypothesis that IL-8 expression levels are suppressed during L. salmonis 

infection it is necessary to have a positive sample – a compound that is known to suppress 

IL-8 production.  At present this author cannot find a record of such a sample. Any future 

work in this area should investigate whether or not there is anti-IL-8 modulation of 

Atlantic salmon by L. salmonis.  Further investigation should also be carried out as to the 

role and function of the heart in L. salmonis infections. 

 

Determining the levels of prostaglandin E2 produced by chalimus stages of L. salmonis 

demonstrated that quantifiable amounts were produced, albeit in highly variable in 

concentrations.  This concurs with the findings of Fast et al. (2004) who reported similar 

findings in adult L. salmonis.  There is a substantial body of evidence to support the 

hypothesis that L. salmonis modulates its hosts at the site of attachment and feeding.  Fast 

et al. (2004) propose that immunomodulation is most likely achieved by compounds 

secreted by the parasite including PGE2, trypsin and as yet unidentified substances. 

 

Although the aims of this investigation have been met, an extensive list of further work has 

been noted throughout. The main findings can be summarised as follows: 

 

• Any compounds secreted by the lice are unlikely to be proteinaceous in nature; 
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however, further investigation of FPLC eluent at 24 – 26 mL is recommended. 

• L. salmonis are capable of modulating the immune response of Atlantic salmon 

with regards to IL-8, however, the full extent to which this is possible is not 

currently known. 

• Chalimus L. salmonis are capable of producing quantifiable levels of prostaglandin 

E2 and this can be further used to modulate the hosts’ immune response at the site 

of attachment and feeding. 
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Appendix 1 Solutions 

IG#'/6&(6&#-3,G(6/-1%3/,(

Reagent Quantity 

SDS electrophoresis buffer 100 mL 
Agarose 0.5 g 
Bromophenol blue 200 µL of a 1% solution 

I::/,31:($&'61-$"#%&(PI9<a()[bQ(

Reagent Quantity 

Ammonium persulphate 0.1 g 
ddH2O Make up to 1 mL 
 

?-&2%'/$"/'&636(6&$#'#%3,G(G&-(P)[bQ(

Reagent Quantity 

ddH2O 4.1 mL 
Tris buffer (1.5 M, pH 8.8) 2.5 mL 
10% SDS 100 µL 
30% acrylamide/bis solution 3.33 mL 
10% APS 50 µL 
TEMED 10 µL 
 

?-&2%'/$"/'&636(6&$#'#%3,G(G&-(R3%"(61M6%'#%&(P)4bQ(

Reagent Quantity 

ddH2O 2.35 mL 
Tris buffer (1.5 M, pH 8.8) 2.5 mL 
10% SDS 100 µL 
30 % acrylamide/bis solution 4.0 mL 
Substrate solution 1 mL 
10% APS 50 µL 
TEMED 5 µL 
*The substrate can be either gelatine, !-casein or haemoglobin 
 

?-&2%'/$"/'&636(6%#2C3,G(G&-(PAbQ(

Reagent Quantity 

ddH2O 6.1 mL 
Tris buffer (0.5 M, pH 6.8) 2.5 mL 
10% SDS 100 µL 
30% acrylamide/bis solution 1.3 mL 
10% APS 50 µL 
TEMED 10 µL 
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+&-#%3,&(6/-1%3/,(

Reagent Quantity 

Gelatine 50 mg 
ddH2O 5 mL 
 

B8cD9!B(5=6%&'=(53@(

Reagent Quantity 

"10 RT buffer 2.5 µL 
Magnesium chloride 5.5 µL 
DNTPs 5.0 µL 
RNase inhibitor 0.5 µL 
Multiscribe RT 0.625 µL 
 

<S<(P)[bQ(

Reagent Quantity 

Sodium dodecyl sulphate (SDS) 5 g 
ddH2O Make up to 50 mL 
 

<S<(&-&2%'/$"/'&636(M1;;&'(

Reagent Quantity 

Tris base 30.3 g 
Glycine 144 g 
SDS 10 g 
ddH2O Make up to 10 L 
 

<S<(&L13-3M'#%3/,(M1;;&'(P6%/2C(6/-1%3/,Q(

Reagent Quantity 

Tris buffer (1.5 M, pH 8.8) 10 mL 
Urea 72.07 g 
Glycerol 69 mL 
SDS 4 g 
Bromophenol blue 400 µL of a 1% solution 
ddH2O Make up to 200 mL 
 

<3-V&'(6%#3,(;3@#%3V&(6/-1%3/,(

Reagent Quantity 

Ethanol 40 mL 
Acetic acid 10 mL 
ddH2O 50 mL 
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<3-V&'(6%#3,(;3@#%3V&>6&,63%36#%3/,(6/-1%3/,(

Reagent Quantity 

Gluteraldehyde 0.05% 
Formalin 0.01% 
Ethanol 40 mL 
ddH2O 60 mL 
 

<3-V&'(6%#3,(6/031:(2#'M/,#%&>;/':#-3,(6/-1%3/,(

Reagent Quantity 

Sodium carbonate 2.5 g 
ddH2O 100 mL 
Formalin 0.04% 
ddH2O 100 mL 
The sodium carbonate solution is make up separately from the formalin solution.  Just 
before use the two solutions should be mixed together. 
 

8'36(M1;;&'(P[NF(5a($O(HNEQ(

Reagent Quantity 

Tris base 6 g 
ddH2O 80 mL 
ddH2O Make up to 100 mL 
pH to 6.8 with NaOH 
 

8'36(M1;;&'(P)NF(5a($O(ENEQ(

Reagent Quantity 

Tris base 27.23 g 
ddH2O 100 mL 
ddH2O Make up to 150 mL 
pH to 8.8 with HCl 
 

8'3%/,(dD)[[(P)[bQ(

Reagent Quantity 

Triton X-100 10 mL 
ddH2O 90 mL 
 

X#%&'(6#%1'#%&0(M1%#,/-(

Reagent Quantity 

Butan-2-ol 100 mL 
ddH2O 100 mL 
Allow to settle into 2 layers.  Use from the top layer and add more butan-2-ol when 
necessary. 
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W=:/G'#$"=("4(6#:$-&(M1;;&'(

Reagent Quantity 

Tris buffer (0.5 M, pH 6.8) 1 mL 
ddH2O 400 µL 
Glycerol 800 µL 
10% SDS 1.6 mL 
0.2% Bromophenol blue 200 µL 
 

W=:/G'#$"=(3,21M#%3/,(M1;;&'(

Reagent Quantity 

Zymography wash buffer 25 mL 
Magnesium chloride (MgCl2, FW = 95.21) 0.12 g 
Calcium chloride (CaCl2, FW = 111.0)* 0.18 g 
*CaCl2 inhibits EDTA.  Incubation buffer should be made without MgCl2 for EDTA gels 
 

W=:/G'#$"=(R#6"(M1;;&'(

Reagent Quantity 

50 mM Tris base, pH 7.5 0.61 g in 50 mL ddH2O 
ddH2O 25 mL 
10% Triton X-100 25 mL 
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Appendix 2 Fish species 

Latin binomial Common name 

Anguilla Anguilla European eel 
Atheresthes stomias Pacific arrowtooth flounder 

Chimaera phantasma Silver chimaera 
Clupea harengus Atlantic herring 

Ctenolabrus rupestris Goldsinny wrasse 
Cyprinus carpio Common carp 

Danio rerio Zebrafish 
Dicentrarchus labrax European sea bass 
Helostoma temmincki Kissing gourami 
Ictalurus punctatus Channel catfish 
Lampetra fluviatilis Lamprey 

Leiostomus xanthurus Spot croaker 
Oncohynchus mykiss Rainbow trout 

Oryzias latipes Japanese medaka (rice) fish 
Paralichthys olivaceous Japanese flounder 
Pimephales promaelas Fathead minnow 

Salmo salar Atlantic salmon 
Salvelinus alpinus Arctic charr 

Sparus aurata Gilthead sea bream 
Trachinotus marginatus Plata pompano 

Triakis scyllia Banded dogfish 


