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Biped walking remains a difficult problem and robot models can greatly facilitate our

understanding of the underlying biomechanical principles as well as their neuronal control.

The goal of this study is to specifically demonstrate that stable biped walking can be

achieved by combining the physical properties of the walking robot with a small, reflex-

based neuronal network, which is governed mainly by local sensor signals. This study

shows that human-like gaits emerge without specific position or trajectory control and

that the walker is able to compensate small disturbances through its own dynamical

properties. The reflexive controller used here has the following characteristics, which

are different from earlier approaches: (1) Control is mainly local. Hence, it uses only

two signals (AEA=Anterior Extreme Angle and GC=Ground Contact) which operate at

the inter-joint level. All other signals operate only at single joints. (2) Neither position

control nor trajectory tracking control is used. Instead, the approximate nature of the

local reflexes on each joint allows the robot mechanics itself (e.g., its passive dynamics)

to contribute substantially to the overall gait trajectory computation. (3) The motor

control scheme used in the local reflexes of our robot is more straightforward and has more

biological plausibility than that of other robots, because the outputs of the motorneurons

in our reflexive controller are directly driving the motors of the joints, rather than working

as references for position or velocity control. As a consequence, the neural controller and

the robot mechanics are closely coupled as a neuro-mechanical system and this study

emphasises that dynamically stable biped walking gaits emerge from the coupling between

neural computation and physical computation. This is demonstrated by different walking

experiments using two real robot as well as by a Poincaré map analysis applied on a

model of the robot in order to assess its stability. In addition, this neuronal control

structure allows the use of a policy gradient reinforcement learning algorithm to tune the

parameters of the neurons in real-time, during walking. This way the robot can reach a

record-breaking walking speed of 3.5 leg-lengths per second after only a few minutes of

online learning, which is even comparable to the fastest relative speed of human walking.
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Chapter 1

Introduction

1.1 Neural control in animal locomotion

1.1.1 Central pattern generator

Neurophysiological studies have revealed that, in most animals’ locomotion (walking,

swimming, flying, etc.), motor-neurons are driven by central networks referred to as

Central Pattern Generators (CPGs). CPGs generate the rhythm and form the pattern of

the locomotor bursts of the motor-neurons (Duysens et al., 2002)

CPGs were first discovered by Donald Wilson in 1961 (Purves, 2004). It was demonstrated

in his experiments that the oscillatory output of the locust wing beat CPG was maintained

in the complete absence of sensory input. Main features of Wilson’s model of the CPG

were: (1) two neurons reciprocally inhibit each other; (2) they both receive the same

constant input; (3) one neuron is more sensitive than the other; (4) both neurons fatigue.

Wilson’s CPG (see figure 1.1) produces an oscillatory pattern as follows (Purves, 2004):

1. the constant input comes on and excites the more sensitive neuron first;

2. that neuron fires and inhibits the second neuron;

3. after a short while the first neuron fatigues and releases the second neuron from

inhibition;

4. the second neuron is now free to respond to the constant input; the second neuron

fires and inhibits the first;

1



Chapter 1 Introduction 2

5. then the second neuron fatigues and releases the first from inhibition;

6. again the first neuron fires and inhibits the second, and the cycle repeats.

Figure 1.1: Wilson’s CPG model reproduced from (Purves, 2004).

In the cat, the CPGs are located in the spinal cord. There is at least one such CPG for

each limb. Compelling evidence for the existence of such spinal locomotor CPG is that

the output pattern can persist even when the cats have a transected spinal cord and are

motionless (Duysens et al., 2002).

In humans, there is indirect evidence for the existence of CPGs. In the case of incomplete

SCI (Spinal Cord Injury), the human lumbar cord isolated from brain influence can

be trained to respond with rhythmic, locomotor-like electromyography (EMG) activity

to peripheral afferents, which are activated by externally-induced stepping movements

where the subject was suspended over a moving treadmill (Printer and Dimitrijevic,

1999; Vaughan, 2003).

While not necessary for rhythm generation, sensory feedback is essential for properly

coordinating the actual movements of joints and limbs during locomotion. The main

sensory feedback to the CPGs is provided by sensory receptors in joints and muscles

(Ijspeert, 2001). For example, the hip joint angle of the cat can trigger a new step cycle

as the body is propelled over its respective limb on the ground. Activation of muscle

stretch receptors can also trigger a new step cycle through contraction of several limb

muscles (Cohen and Boothe, 1999). Similarly, the bending of the tail-fin in dogfish or

lamprey entrains the swimming cycle to have a length appropriate for the environmental

conditions (Grillner and Wallen, 1982). In summary, all CPGs must be entrained by

sensory signals to ensure the adaptivity of the CPG-controlled locomotion.
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1.1.2 Reflexes in locomotion control

Unlike a CPG, a reflex is a local motor response to a local sensation. In the locomotion

of human and animals, various reflexes act together in an integrative manner to control

the limbs and also contribute to the regulation of the locomotive cycle (Zehr and Stein,

1999).

1.1.2.1 Cruse’s model of reflexive walking control in a stick insect

There is little evidence for the existence of a strong central pattern generator for walking

control in stick insects(Cruse and Warnecke, 1992; Cruse et al., 1998). Cruse developed a

reflexive controller model to understand the locomotion control of a slowly-walking stick

insect (Carausius morosus).

Cruse’s model can be divided into two parts according to their functions; one for the

control in the leg level, the other for the inter-leg coordination. At the leg level, there are

six modules, each for one leg. Each module is composed of several agents or subnetworks

(e.g., swing net, selector net). For example, the swing net is for the swing movement

control, the stance net for the control in stance phases. The selector net is triggered by

the GC (Ground Contact signal) and PEP (Posterior Extreme Position), and determines

which movement (swing or stance) is to be performed in the leg. At the inter-leg level,

some mechanisms found in the behavioral experiments of insects are used for the coordi-

nation between legs. The beginning of a swing phase and the end point of a stance phase

are modulated by three influences arising from ipsilateral legs: (1) a rostrally-directed

inhibition during the swing movement of the next caudal leg; (2) a rostrally-directed exci-

tation when the next caudal leg begins active retraction; (3) a caudally-directed influence

depending on the position of the next rostral leg. Influence (2) and (3) are also active

between contralateral legs. At the end of the swing phase, the AEP (Anterior Extreme

Position) is modulated by a single, caudally directed influence, which depends on the

position of the next rostral leg (Cruse et al., 1998).

1.1.2.2 The function of various reflexes in mammals walking control

Although CPGs play a fundamental role in the rhythm generation in most animals,

various reflexes work in a harmonic way for adaptivity and robustness of walking gaits.

Akazawa et al. (1982) studied stretch reflexes during locomotion in the mesencephalic cat

preparation and observed that stretch and H-reflexes were deeply modulated throughout
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the step cycle such that they were large during stance and small during swing phases. It

was concluded that stretch reflexes assist in load compensation during gait, particularly

during the extension or stance phase (Zehr and Stein, 1999). Dietz et al. (1992) suggested

that the regulation of stance during human gait depends strongly on load receptors in

the extensor muscles.

Forssberg (1979) evaluated the functional role of cutaneous reflexes by measuring both

neural responses and kinematics. Via both electrical and mechanical stimulation of the

dorsal surface of the paw in the cat’s distal hind-limb during locomotion, a coordinated

reflex forming a “stumbling corrective response” was found. This reflex consisted of a se-

quential neural activation of the hind-limb musculature to allow the perturbed swing limb

to continue past the encountered obstacle and maintain stability of ongoing locomotion

(Zehr and Stein, 1999).

1.1.2.3 Stepping reflex in infants

When held in a standing position on a firm flat surface, a newborn baby will make stepping

movements, alternating flexion and extension of each leg, which looks like “walking”. This

is called “stepping reflex”, elicited by the foot’s touching of a flat surface. This reflex is

controlled by the stepping circuit, which sits in the spinal cord and programs the alternate

flexion and extension of each leg.

Normal human walking involves moving the lower limbs alternately, supporting body

weight and propelling the body forward, being able to control balance of the whole body.

The automatic stepping reflex in infants is essentially the first component, moving the

limbs alternately, while supporting some of the body weight and generating some propul-

sion. However, there is considerable evidence that automatic stepping eventually develops

into independent walking (Yang et al., 1998). Presumably, with maturation, there is in-

creased control from the brain that allows the other components of walking control to

develop.

1.2 Physical computation in animal locomotion

While neural systems modelled as CPGs or reflexive controllers explicitly or implicitly

compute walking gaits, the special properties and the mechanics of the musculo-skeletal

system also “compute” a large part of the walking movements (Lewis, 2001). This is

called physical computation, namely exploiting the system’s physics, rather than explicit
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models, for global trajectory generation and control. Thus, in all animals, locomotion

control is shared between neural computation and physical computation. The muscu-

loskeletal system performs a large part of the gait computation by using its segment

mass, length, inertia, elasticity, and damping.

1.2.1 Preflex responds rapidly to disturbances

One distinct example of physical computation in animal locomotion is the “preflex”, the

nonlinear, passive visco-elastic properties of the musculoskeletal system itself (Brown and

Loeb, 1999). Due to the physical nature of the preflex, the system can respond rapidly

to disturbances (Cham et al., 2000).

Mechanical reactions to landing, caused by preflex and passive dynamics of the linked

segments, may respond to and adjust for new surfaces more rapidly than reflexes. Analytic

models reveal that preflexes can stabilize human posture, knee bends, and arm flexion

after perturbations. Passive dynamics of the linked segments also help stabilise humans

after perturbations. For example, passive dynamics play key roles when walking humans

step over an obstacle or recover from tripping. In these cases, active knee flexion results

in passive hip flexion due to the mechanical interaction of adjacent segments. Muscle

preflexes play a key role in fast adjustments to surface changes especially during rapid

locomotion (Moritz and Farley, 2004).

1.2.2 Muscle properties simplify the locomotion controller

In human and animal locomotion, the muscle plays more roles than an activator or a

motor does in a walking robot. The intrinsic properties of active muscle tissue may

be sufficient to produce smooth motions even in the absence of specifically programmed

neural inputs (Andrew and Rymer, 1997). The force-length-velocity properties of muscles

make them rapidly respond to disturbances (Gerritsen, 1998), facilitating stability during

walking. These properties of muscles have tremendously simplified the control demands

of the nervous system for walking.

Wagner and Blickhan (2003) investigated in which way minor perturbations to the stable

patterns of walking or running can be compensated in a smooth way without disrupting

the cycle, and found that pairs of antagonistic muscles are able to stabilise the movement

without neuronal feedback. In animals’ locomotion control, in order to guarantee a self-

stabilising ability of the muscle-skeletal system, the muscle properties such as force-length
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relationship, force-velocity relationship and the muscle geometry have been tuned to the

geometric properties of the linkage system (Morasso et al., 2005).

1.2.3 Smooth movements in animals’ locomotion

The inertia inherent in the mass of the limbs and the intrinsic properties of active muscle

tissue may, in themselves, be sufficient to produce smooth motion, even in the absence

of specifically programmed neural inputs. These so-called mechanical filtering proper-

ties of muscles can filter out the high frequency components of the externally-imposed

positional perturbations and the neural signal delivered to the muscle. In a simulation

study (Andrew and Rymer, 1997), a model incorporating only simple muscle properties

and constant excitation generates substantial trajectory smoothing that is quantitatively

comparable to the predictions of the minimum-jerk optimisation model.

1.3 Biped robots

During the past 20 years, research on biped robots is increasingly gaining interest. An

important motivation for some researchers to build biped robots is to understand the me-

chanics and control of human walking. Human/animal walking involves huge numbers of

sensors, actuators (muscles, tendons), and many redundant degree-of-freedoms as well as

complex neural systems, which are difficult to measure or analyse. Instead, a biped robot

can be regarded as a mechanical counterpart of human that has a tremendously reduced

complexity but is still able to represent the essence of the biped locomotion problem. Such

a reduced model can help us to obtain some essential insights in biomechanics of human

walking. These insights could be particularly useful in the field of rehabilitation (e.g.,

designing proper protheses to help disabled people to recover their walking capacity).

1.3.1 Physical computation in passive biped robots

Passive dynamic walkers can walk down a shallow slope, demonstrating a smooth and

stable gait with out any sensing, control, or actuation. Their gait generation completely

depends on physical computation involving the foot-impacting, inertial effects and gravity

of the mechanical structure.

McGeer was the first to analyse the dynamics and stability of this kind of passive biped

with Poincaré map method. Using a variant of McGeer’s original method, some people
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studied bifurcations and chaos of the gaits of various 2D and 3D passive biped models

(Garcia, 1999). Ruina’s group extended McGeer’s 2D model to 3D passive biped model

and have built several biped robots. One of them is shown in figure 1.2. Some researchers

have proposed approaches to improve the performance of passive biped robots (e.g., being

able to walk on flat ground) (see figure 1.2). Linde made a biped robot walk on level

ground by pumping energy into a passive biped at each step (Linde, 1998). Tedrake

applied reinforcement learning on a 3D half-passive biped to get dynamic stable gaits

(Collins et al., 2005)(see figure 1.2).

Figure 1.2: (A). A copy of McGeer’s planar passive biped robot walking down a slope
(Wisse and van Frankenhuyzen, 2003). (B). “Mike”, similar to McGeer’s robot, but
equipped with pneumatic actuators at its hip joints. Thus it can walk half-passively
on level ground (Wisse and van Frankenhuyzen, 2003). (C).“Denis”, 3D robot with
knees and an upper body built by Biorobotics Lab, Technical University of Delft. It
uses artificial muscles to provide minimal actuation to walk on a flat floor. Passive
springy ankles help to provide stability in the frontal plane and horizontal plane using
a lean-yaw coupling mechanism. (D). A non-kneed 3D biped built by Tedrake (Collins
et al., 2005). It is equipped with curved feet to facilitate ground clearance of the swing
foot and to ensure the stability in frontal plane. (E). A 3D biped robot built by Ruina’s
group (Collins et al., 2005). It has actuated hips and passive knee. Arms are used for

balance in the frontal plane.

1.3.2 Various control strategies in powered biped robots

By contrast to passive bipeds, powered biped robots (especially 3D powered bipeds)

usually use various model-based controllers that do not take into account the natural

dynamics of the robot (see figure 1.3).

Powered biped robots of the early date (e.g., the SD-2 biped in figure 1.3) used an archi-

tecture involving conventional trajectory planning and tracking (Zheng and Shen, 1990).

First, the desired joint angles are obtained off-line using the robot’s inverse dynamics



Chapter 1 Introduction 8

Figure 1.3: Powered biped robots. Upper: WABIAN-2/LL from Aseda, ASIMO from
Honda, Toddler from UNH, Johnnie from the Technical University of Munich. Lower:
SD-2 from Clemson and Ohio State, Biper from University of Tokyo, Meltran II from

Tsukuba, and Timmy from Harvard.

model according to the required walking pattern. Then, a linear feedback controller

drives the robot joints to follow the desired trajectories. In order to improve the robust-

ness of the robot’s gait, some robots used online trajectory planning and a simplified

dynamics model which is usually an inverted pendulum model (Park and Kim, 1998).

Nevertheless, the most significant progress in the area of biped robots has been made

in the last decade. Since 2001, Honda has presented several versions of ASIMO (see

figure 1.3), a humanoid robot of human-size. Using sophisticated sensor and control

technologies, ASIMO can demonstrate smooth walking gaits on fat ground and stairs

(Chestnutt et al., 2005). “Johnnie” is another humanoid robot that has a performance

comparable to ASIMO (see figure 1.3). The control system of “Johnnie” is designed such

that the orientation of the upper body is controlled throughout all phases of the gait

pattern. Furthermore, a sophisticated measurement and control of the foot torques has

been implemented (Loffler et al., 2003). In summary, to tackle the huge challenges and

difficulties in dynamic biped walking control, sophisticated modern robot control tech-

nologies have been applied in biped walking robots, e.g., posture stabilization, inverted

pendulum stabilization, contact torque control, foot vertical force control, and torque

distribution control.
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While most of the controllers of 3D powered biped robots described above ignore or even

fight the natural dynamics of the robot, some planar biped robots have been designed

with an intention to exploit the natural dynamics at least to some extent. The first to

incorporate natural dynamics in powered biped robots was Raibert and Hodgins (1993).

Their biped robot used pneumatic cylinders as a spring to exploit the passive dynamics

in the vertical direction. “Flamingo”, a planar biped (Pratt, 2000), also exploited the

natural dynamics by implementing an intuitive controller and series elastic actuators

which were composed of a motor connected in series with a linear elastic element. Passive

dynamics generated from spring or elastic legs are not the only form of natural dynamics

demonstrated in biped robots. Some biped robots employed mechanical designs that

allow the stance leg to pivot freely as an inverted pendulum (Yamaguchi et al., 1999).

1.4 Objective

The aim of this study is to understand the coupling of neural computation and physical

computation in walking control using a biped robot. Two legs coupled to each other is

the minimal mechanical structure from which realistic bipedal walking gaits can emerge.

Moreover, the biped model has its special significance. Quadruped gaits usually use legs

in pairs: trotting (diagonal legs as pairs), pacing (lateral pairs), and bounding (front pair

and rear pair). Thus quadruped control can be reduced to the control of an equivalent

virtual biped (Raibert and Hodgins, 1993). When insects are walking fast, they take the

form of an alternating tripod gait wherein the first and third ipsi-lateral legs move in

phase with the contra-lateral middle leg, all three in anti-phase to the opposite tripod.

In this fashion, a tripod acts as a virtual single leg, and the tripod pair is coordinated in

the manner of a virtual biped (Full and Tu, 1990; Klavins et al., 2002). Just as stated

by Full and Tu 1990, “one human leg works like two dog legs, three cockroach legs, and

four crab legs”.

On the other hand, dynamic biped walking is the most difficult to control among vari-

ous forms of legged locomotion. While multi-legged animals can have at least two legs

supporting their bodies at any moment in their locomotion, a biped has only one foot

touching the ground during most time of a gait cycle. This poses huge difficulties for the

control mechanism as the biped is always tending to fall or trip. One particular objective

of this thesis is to show that, even in the most difficult form of walking mechanism, a min-

imal neural controller coupled with physical computation can generate fast and somewhat

adaptive biped walking gaits.

We will show how a dynamically-stable biped walking gait emerges as a result of a com- R1

↓−−−−−−−−
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bination of neural- and physical computation. Several issues are addressed in this theses

which we believe are of relevance for the understanding of biologically-motivated walk-

ing control. Specifically we will show that it is possible to realise fast dynamic biped

walking with a very sparse set of input signals and with a controller that operates in an

approximate and self-regulating way. Both aspects may be of importance in biological

systems too, because they allow for a much more limited structure of the neural network

and reduce the complexity of the required information processing. Furthermore, in our

robot the controller is directly linked to the robot’s motors (its “muscles”) leading to a

more realistic, reflexive sensor-motor coupling than implemented in related approaches.

These mechanisms allowed us for the first time to arrive at a dynamically stable artificial

biped combining physical computation with a pure reflexive controller. ↓−−−−−−

The experimental part of this study is complemented by a dynamical model and the R7

assessment of its stability using the Poincaré map approach. Although the simulation

analysis has provided insight for our design of the real robot, robot simulations have been

recently criticized, raising the issue that complex systems, like a walking robot, cannot

be fully simulated because of uncontrollable contingencies in the design and in the world

in which it is embedded. This notion, known as the ”embodiment problem” has been

discussed to a large extent in the robotics literature in the last years (Porr and Wörgötter,

2005). In contrast to simulated robots in a computer, “embodiment refers to the physical

existence of a robot. With his robot experiments, Brooks (1986) argued that embodiment

is vital to the development of artificial intelligence in a robot. This issue reappears also

in our case of biped walking robots. On the one hand, no simulation can exactly simulate

the real world. Some transient stages of a walking gait, for example, the impact between

the ground and the landing foot, are difficult to model, but are critical to the physical

computation in the gait generation. The best way to simulate the function of physical

computation is to use a physical model instead of a computational model. On the other

hand, in human and animals’ walking, stable gaits emerge from the global entrainment

between the neuro-musculo-skeletal system and the environment (Taga, 1995). Therefore,

it makes sense to try to understand biped walking control using a real robot in the real R7

world rather than using a simulated model only. ↑−−−−−
↑−−−−−−−

R1

1.5 Thesis Contributions

The contributions of this thesis are:

1. The biomechatronic design of two biped walking robots, which are used in experiments

to show the critical role physical computation can play in stable dynamic walking control.
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2.The design of a reflexive neuronal controller, which requires a minimal set of sensor

signals at the inter-joint level.

3. The demonstration of record-breaking fast dynamic biped walking gaits in these biped

robots.

4. The design of a control algorithm implementing a simple muscle model at the motors

of the robot.

5. The implementation of reinforcement learning in fast biped walking control.

1.6 Thesis Outline

This thesis proceeds as follows:

Chapter 2 presents the design and experiments of a biped robot and the reflexive con-

troller. Simulation results using Poincaré map are also given in this chapter to analyse

the stability of the gaits.

Chapter 3 focuses on one question: how to realise fast biped walking comparable to the

relative walking speed of human. It presents a simplified version of the reflexive controller

and a redesign of the robot that facilitates fast biped walking.

Chapter 4 presents the implementation of a simple muscle model on the joints of the

robot.

Chapter 5 briefly concludes the thesis.



Chapter 2

Design of the reflexive controller

2.1 Introduction

Reflexive controllers such as Cruse’s model involve no central processing unit that de-

mands information on the real-time state of every limb and computes the global trajec-

tory explicitly. Instead, local reflexes of every limb require only very little information

concerning the state of the other limbs. Coordinated locomotion emerges from the in-

teraction between local reflexes and the ground. Thus, such a distributed structure can

immensely decrease the computational burden of the locomotion controller. With these

eminent advantages, Cruse’s reflexive controller and its variants have been implemented

on some multi-legged robots (Ferrell, 1995).

There existed biped robots exploiting some form of reflexive mechanisms. However, their

reflexes usually work as an auxiliary function or as infrastructural units for other non-

reflexive high-level or parallel controllers. For example, on a simulated 3D biped robot

(Boone and Hodgins, 1997), specifically-designed reflexive mechanisms were used to re-

spond to two types of ground surface contact errors of the robot, slipping and tripping,

while the robot’s hopping height, forward velocity, and body attitude were separately

controlled by three decoupled conventional controllers. On a real biped robot (Funabashi

et al., 2001), two pre-wired reflexes are implemented to compensate for two distinct types

of disturbances representing an impulsive force and a continuous force, respectively. To

date, no real biped robot has existed that depends exclusively on reflexive controllers for

walking control. This may be because of the intrinsic instability specific to bipedwalking,

which makes the dynamic stability of biped robots much more difficult to control than

that of multi-legged robots. After all, a pure local reflexive controller itself involves no

mechanisms to ensure the global stability of the biped.

12
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In this chapter, we present the design of a novel reflexive neural controller that has been

implemented on a planar biped robot. This chapter is organised as follows. First we

describe the mechanical design of our biped robot. Next, we present our neural model of

a reflexive network for walking control. Then we demonstrate the result of several biped

walking experiments and apply Poincaré map analysis on the robot model. Finally, we

compare our reflexive controller with other walking control mechanisms.

2.2 Mechanical design of the robot

While the controllers of biped walking robots generally require some kind of continuous

position feedback for trajectory computation and stability control, some animals’ fast

locomotion is largely self-stabilised due to the passive, visco-elastic properties of their

musculoskeletal system (Full and Tu, 1990). Not surprisingly, some robots (e.g., passive

bipeds) can display a similar self-stabilisation property (Iida and Pfeifer, 2004).

Passive biped robots are usually equipped with circular feet, which can increase the basin

of attraction of stable walking gaits, and can make the motion of the stance leg look

smoother. Instead, powered biped robots typically use flat feet so that their ankles can

effectively apply torque to propel the robot to move forward in the stance phase, and to

facilitate its stability control. Although our robot is a powered biped, it has no actuated

ankle joints, rendering its stability control even more difficult than that of other powered

bipeds. Since we intended to exploit our robot’s passive dynamics during some stages of

its gait cycle, similarly to the passive biped, its foot bottom also follows a curved form

with a radius equal to the leg-length.

As for the mechanical design of our robot, it is 23 cm high, foot to hip. It has four

joints: left hip, right hip, left knee, and right knee. Each joint is driven by an RC servo

motor. A hard mechanical stop is installed on the knee joints, thus preventing the knee

joint from going into hyperextension, similar to the function of knee caps on animals’

legs. The built-in PWM (Pulse Width Modulation) control circuits of the RC motors

are disconnected while its built-in potentiometer is used to measure joint angles. Its

output voltage is sent to a PC through a DA/AD board. Each foot is equipped with

a modified Piezo transducer (DN 0714071 from Farnell) to sense ground contact events.

We constrain the robot only in the saggital plane by a boom. All three axes (pitch, roll,

and yaw) of the boom can rotate freely (see figure 2.1 C), thus having no influence on

the dynamics of the robot in the sagittal plane. Note that the robot is not supported by

the boom in the saggittal plane. In fact, it is always prone to trip and fall.
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Figure 2.1: A) The robot and B) a schematic of the joint angles of one leg. C) The
structure of the boom. All its three orthogonal axes (pitch, roll and yaw) rotate freely,

thus having no influence on the robot dynamics in its saggittal plane.

The most important consideration in the mechanical design of our robot is the location of

its centre of mass. Its links are made of aluminium alloy, which is light and strong enough.

The motor of each hip joint is a HS-475HB from Hitec. It weighs 0.04 Kg and can output

a torque up to 0.55 Kgcm. Due to the effect of the mechanical stop, the motor of the knee

joint bears a smaller torque than the hip joint in stance phases, but must rotate quickly

during swing phases for foot clearance. We use a PARK HPXF from Supertec on the

knee joint, which is light (0.019 Kg) but fast with 21rad/s. Thus, about seventy percent

of the robot’s weight is concentrated on its trunk. The parts of the trunk are assembled

in such a way that its centre of mass is located as far forward as possible (see figure 2.2).

The effect of this design is illustrated in figure 2.2. As shown, one walking step includes

two stages, the first from (A) to (B), the second from (B) to (C). During the first stage,

the robot has to use its own momentum to rise up on the stance leg. When walking at

a low speed, the robot may have not enough momentum to do this. So, the distance the

centre of mass has to cover in this stage should be as short as possible, which can be

fulfilled by locating the center of mass of the trunk far forward. In the second stage, the

robot just falls forward naturally and catches itself on the next stance leg (see figure 2.2).

Then the walking cycle is repeated. The figure also shows clearly the movement of the
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curved foot of the stance leg. A stance phase begins with the heel touching the ground,

and terminates with the toe leaving the ground.

Figure 2.2: Illustration of a walking step of the robot.
↓−−−−−−

Aside from the consideration described above, the central issue in the mechanical design

is how to determine the exact size and mass distribution of the various parts of the robot.

The final design we obtained is a result of several rounds of trial and improvement. At R2

the first round, we built two legs supported by two wheels that can avoid its falling.

With this structure, we tested the torques of the motors at different voltages and thus

chose a proper leg-length for the robot. At the second round, the supporting wheels were

removed. We test the robot’s performance by changing the location of the mass centre

of each links. However, it is impossible and much time-consuming to try all the various

locations by repetitively changing the mechanical parts. So, we went to the third round

to find the a good design by simulation analysis. This process of trial and improvement

cost about six months. ↑−−−−−

2.3 The neural structure of reflexive controller

As described in chapter 1, the reflexive controller model of Cruse et al. (1998) that has

been used to understand the walking control of a stick insect can be roughly divided into

two levels: the single leg level and the inter-leg level. Figure 2.3 shows how Cruse’s model

creates a single leg movement pattern. A protracting leg switches to retraction as soon as

it attains the AEP (Anterior Extreme Position). A retracting leg switches to protraction

when it attains the PEP (Posterior Extreme Position). On the inter-leg level, six different

mechanisms have been described (Cruse et al., 1998), which coordinate leg movements

via modifying the AEP and PEP of a receiving leg according to the state of a sending

leg.

Although Cruse’s model, as a reflexive controller, is for hexapod locomotion, where the
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Figure 2.3: Single leg movement pattern of Cruse’s reflexive controller model (Cruse
et al., 1998).

problem of inter-leg coordination is much more complex than in biped walking, we can still

compare its mechanism for the generation of single leg movement patterns with that of

our reflexive controller. Cruse’s model depends on PEP, AEP and GC (Ground Contact)

signals to generate the movement pattern of the individual legs. Whereas our reflexive

controller presented here uses only GC and AEA (Anterior Extreme Angle of hip joints)

to trigger switching between stance and swing phases of each leg. Creation of the single

leg movement pattern for our model is illustrated in figure 2.4.

Figure 2.4: Illustration of single leg movement pattern generation.

Fig. 2.4 (A)-(E) represents a series of snapshots of the robot configuration while it is

walking. At the time of figure 2.4 B, the left foot (black) has just touched the ground.

This event triggers four local joint reflexes at the same time: flexor of left hip, extensor of

left knee, extensor of right hip, and flexor of right knee. At the time of figure 2.4 E, the

right hip joint attains its AEA, which triggers only the extensor reflex of the right knee.

When the right foot (grey) contacts the ground, a new walking cycle will begin. Note

that on the hip joints and knee joints, extensor means forward movement while flexor

means backward movement.

The reflexive walking controller of our robot follows a hierarchical structure (see fig-

ure 2.5). The bottom level is the reflex circuit local to the joints, including motor neu-

rons and angle sensor neurons involved in joint reflexes. The top level is a distributed

neural network consisting of hip stretch receptors, ground contact sensor neurons, and

inter-neurons for reflexes. Neurons are modelled as non-spiking neurons simulated on a

Linux PC, and communicated to the robot via the DA/AD board. Though somewhat
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AL, (AR) Stretch receptor for anterior angle of left (right) hip
GL, (GR) Sensor neuron for ground contact of left (right) foot
EI, (FI) Extensor (Flexor) reflex inter-neuron

EM, (FM) Extensor (Flexor) reflex motor-neuron
ES, (FS) Extensor (Flexor) reflex sensor neuron

Table 2.1: Some abbreviations used in this thesis.

simplified, they still retain some of the prominent neuronal characteristics.

Figure 2.5: The neuron model of reflexive controller on our robot. Grey circles
are Sensor-neurons or Receptors, Vertical ovals are Inter-neurons, horizontal ovals are
Motor-neurons. Synapses: black circle means excitatory, black triangle means in-

hibitory. For meanings of EI, FI, EM, FM, etc. see Table 2.1.

2.3.1 Model neuron circuit of the top level

The joint coordination mechanism in the top level is implemented with the neuron cir-

cuit illustrated in figure 2.5. Each of the ground contact sensor neurons has excitatory

connections to the inter-neurons of the ipsi-lateral hip flexor and knee extensor as well

as to the contra-lateral hip extensor and knee flexor. The stretch receptor of each hip

has excitatory connections to its ipsi-lateral inter-neuron of the knee extensor, and in-

hibitory connection to its ipsi-lateral inter-neuron of the knee flexor. Detailed models
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of the inter-neuron, stretch receptor, and ground contact sensor neuron are described in

following subsections.

2.3.1.1 Inter-neuron model

The inter-neuron model is adapted from one used in the neural controller of a hexapod

simulating insect locomotion (Beer and Chiel, 1992). The state of each model neuron is

governed by equations 2.1 and 2.2 (Gallagher et al., 1996):

τi
dyi

dt
= −yi +

∑
ωi,juj (2.1)

uj = (1 + eΘj−yj)−1 (2.2)

where yi represents the mean membrane potential of the neuron. Equation 2.2 is a

sigmoidal function (see figure 2.6) that can be interpreted as the neuron’s short-term

average firing frequency, Θj is a bias constant that controls the firing threshold, τi is

a time constant associated with the passive properties of the cell membrane (Gallagher

et al., 1996), and ωi,j represents the connection strength from the jth neuron to the ith

neuron.

Figure 2.6: The output function of the inter-neuron model.

2.3.1.2 Stretch receptors

Stretch receptors play a crucial role in animal locomotion control. When the limb of an

animal reaches an extreme position, its stretch receptor sends a signal to the controller,

resetting the phase of the limbs. There is also evidence that phasic feedback from stretch

receptors is essential for maintaining the frequency and duration of normal locomotive

movements in some insects (Chiel and Beer, 1997).

While other biologically-inspired locomotive models and robots use two stretch receptors

on each leg to signal the attaining of the leg’s AEP and PEP respectively, our robot has
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only one stretch receptor on each leg to signal the AEA of its hip joint. Furthermore, the

function of the stretch receptor on our robot is only to trigger the extensor reflex on the

knee joint of the same leg, rather than explicitly (in the case of CPG models) or implicitly

(in the case of reflexive controllers) to reset the phase relations between different legs.

As a hip joint approaches the AEA, the output of the stretch receptors for the left (AL)

and the right hip (AR) are increased as:

ρAL =
1

1 + eαAL(ΘAL−φ)
(2.3)

ρAL =
1

1 + eαAR(ΘAR−φ)
(2.4)

where φ is the real time angular position of the hip joint, ΘAL and ΘAR are the hip ↓−−−−−−

anterior extreme angles whose values are crucial to the stability and speed of the gait and R10

are tuned according to the result of simulation analysis that will be described later in this

chapter, mistuned values of these parameters can cause instable gait, αAL and αAR are ↑−−−−−
positive constants. This model is inspired by a sensor neuron model presented in Wadden

and Ekeberg (1998) that is thought capable of emulating the response characteristics of

populations of sensor neurons in animals.

2.3.1.3 Ground contact sensor neurons

Another kind of sensor neuron incorporated in the top level is the ground contact sensor

neuron, which is active when the foot is in contact with the ground. Its output, similar

to that of the stretch receptors, changes according to:

ρGL =
1

1 + eαGL(ΘGL−VL+VR)
(2.5)

ρGR =
1

1 + eαGR(ΘGR−VR+VL)
(2.6)

where VL and VR are the output voltage signals from piezo-sensors of the left foot and

right foot respectively, ΘGL and ΘGR work as thresholds, and αGL and αGR are positive

constants.

While AEP and PEP signals account for switching between stance phase and swing phase

in other walking control structures, ground contact signals play a crucial role in phase

transition control of our reflexive controller. This emphasised role of the ground contact

signal has some biological plausibility. When held in a standing position on a firm flat

surface, a newborn baby will make stepping movements, alternating flexion and extension
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of each leg, which looks like “walking”. This is called “stepping reflex”, elicited by the

foot’s touching of a flat surface. There is considerable evidence that the stepping reflex,

though different from actual walking, eventually develops into independent walking (Yang

et al., 1998).

Concerning its non-linear dynamics, the biped model is hybrid in nature, containing

continuous (in swing phase and stance phase) and discrete (at the ground contact event)

elements. Hurmuzlu (1993) applied discrete mapping techniques to study the stability of

bipedal locomotion . It was found that the timing of ground contact events has a crucial

effect on the stability of biped walking.

Our preference for using a ground contact signal instead of PEP or AEP signals also has

other reasons. In PEP/AEP models, the movement pattern of a leg will break down as

soon as the AEP or PEP can not be reached, which may happen as a consequence of

an unexpected disturbance from the environment or due to intrinsic failure. This can

be catastrophic for a biped, though tolerable for a hexapod due to its high degree of

redundancy.

2.3.2 Neural circuit of the bottom level

In animals, a reflex is a local motor response to a local sensation. It is triggered in response

to a suprathreshold stimulus. The quickest reflex in animals is the “monosynaptic reflex”,

in which the sensor neuron directly contacts the motor-neuron. The bottom-level reflex

system of our robot consists of reflexes local to each joint (see figure 2.5). The neuron

module for one reflex is composed of one angle sensor neuron and the motor neuron it

contacts (see figure 2.5). Each joint is equipped with two reflexes: extensor reflex and

flexor reflex. Both are modelled as a monosynaptic reflex; that is, whenever its threshold

is exceeded, the angle sensor neuron directly excites the corresponding motor neuron.

This direct connection between angle sensor neuron and motor neuron is inspired by

a reflex described in cockroach locomotion (Beer et al., 1997). In addition, the motor

neurons of the local reflexes also receive an excitatory synapse and an inhibitory synapse

from the inter-neurons of the top level, by which the top level can modulate the bottom

level reflexes.

Each joint has two angle sensor neurons, one for the extensor reflex, and the other for

the flexor reflex (see figure 2.5). Their models are similar to that of the stretch receptors

described above. The extensor angle sensor neuron changes its output according to:

ρES =
1

1 + eαES(φ−ΘES)
(2.7)
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where φ is the real time angular position obtained from the potentiometer of the joint

(see figure 2.1 B). ΘES is the threshold of the extensor reflex (see figure 2.1 B) and αES

a positive constant.

Likewise, the output of the flexor sensor neuron is modelled as:

ρFS =
1

1 + eαFS(ΘFS−φ)
(2.8)

with ΘFS and αFS similar to above.

It should be particularly noted that the thresholds of the sensor neurons in the reflex

modules do not work as desired positions for joint control, because our reflexive controller

does not involve any exact position control algorithms that would ensure that the joint

positions converge to a desired value. In fact, as will be shown in the next section, the

joints often pass these thresholds in swing and stance phase, and begin their passive

movement thereafter.

The sensor neurons involved in the local reflex module of each joint can only affect the

movements of the joint they belong to, having no direct or indirect connection to other

joints. This is different for the phasic feedback signal, AEA, which works at the top level

(i.e., the inter-joint level), sensing the position of the hip joints and contacting the motor

neurons of the knee joints.

The model of the motor neuron is the same as that of the inter-neurons presented in 2.3.1.

Note that, on this robot, the output value of the motor neurons, after multiplication by

a gain coefficient, is sent to the servo amplifier to drive the joint motor. In this way, the

neural dynamics are directly coupled with the motor dynamics, and furthermore, with

the biped walking dynamics. Thus, the robot and its neural controller constitute a closely

coupled neuro-mechanical system.

The voltage of joint motor is determined by

V = M(GEUE +GFUF ), (2.9)

where V is the input voltage of the motor, M represents the magnitude of the servo

amplifier, GE and GF are output gains of the motor neurons of the extensor- and flexor

reflex respectively, UE and UF are the outputs of the motor neurons.
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ΘEI ΘFI ΘEM ΘFM αES αFS

Hip Joints 5 5 5 5 4 1
Knee Joints 5 5 5 5 4 4

Table 2.2: Parameters of neurons for hip and knee joints. For meaning of the sub-
scripts, see table 2.1.

ΘGL (v) ΘGR (v) ΘAL (◦) ΘAR (◦) αGL αGR αAL αAR

2 2 = ΘES = ΘES 4 4 4 4

Table 2.3: Parameters of stretch receptors and ground contact sensor neurons.

2.4 Robot walking experiments

The model neuron parameters chosen jointly for all experiments are listed in Tables 2.2

and 2.3. Only the thresholds of the sensor neurons and the output gain of the motor

neurons are changed in different experiments. The time constants τi of all neurons take

the same value of 5 ms. The weights of all the inhibitory connections are set to −10.

The weights of all excitatory connections are 10, except those between inter-neurons and

motor neurons, which are 0.1.

We encourage readers to watch the video clips of the robot walking experiments at:

Walking fast on a flat floor,

http://www.cn.stir.ac.uk/˜tgeng/robot/walkingfast.mpg

Walking with a medium speed,

http://www.cn.stir.ac.uk/˜tgeng/robot/walkingmedium.mpg

Walking slowly

http://www.cn.stir.ac.uk/˜tgeng/robot/walkingslow.mpg

Climbing a shallow slope,

http://www.cn.stir.ac.uk/˜tgeng/robot/climbingslope.mpg

These videos can be viewed with Windows Media Player (www.microsoft.com).

2.4.1 Passive movements of the robot

In a walking experiment with specific parameters as given in table 2.6 the passive part of

the movement of the robot is shown most clearly. (The sign of gEM and gFM depend on

the hardware configurations of the motors on the left and right leg).
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ΘES (◦) ΘFS (◦) gEM gFM

Hip Joints 115 70 ±2 ±2
Knee Joints 180 100 ±1.8 ±1.8

Table 2.4: Specific parameters for walking experiments.

Figure 2.7 shows the motor voltage and the angular movement of one of its hip joints

while the robot is walking. During roughly more than half of every gait cycle, the hip

joint is moving passively.

Figure 2.7: Real time data of one hip joint. (A) Hip joint angle. (B) Motor voltage
measured directly at the motor neurons of the hip joint. During some periods (the grey

areas), the motor voltage remains zero, and the hip joint moves passively.

As shown in figure 2.8, during some period of every gait cycle (e.g., grey area in figure 2.8),

the motor voltages of the motor neurons on all four joints remain zero, so all joints move

passively until the swing leg touches the ground (see figure 2.9). During this time, which

is roughly one third of a gait cycle (see figure 2.8 and figure 2.9), the movement of

the whole robot is exclusively under the control of “physical computation” following its

passive dynamics; no feedback based active control acts on it. This demonstrates very

clearly how neurons and mechanical properties work together to generate the whole gait

trajectory. This is also analogous to what happens in animal locomotion. Muscle control

of animals usually exploits the natural dynamics of their limbs. For instance, during the

swing phase of the human walking gait, the leg muscles first experience a power spike to

begin leg swing and then remain limp throughout the rest of the swing phase, similar to

what is shown in figure 2.9. Note that, in figure 2.9 and the corresponding stick diagrams

of walking gait, we omitted the detailed movement of the curved foot, in order to show

clearly the leg movements. The point on which the stance leg stands is the orthographic
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projection of the mid-point of the foot and not its exact ground-contact point.

Figure 2.8: Motor voltages of the four joints measured directly at the motor neurons,
while the robot is walking: (A) left hip; (B) right hip; (C) left knee; (D) right knee.
Note that during one period of every gait cycle (grey area), all four motor voltages
remain zero, and all four joints (i.e., the whole robot) move passively (see figure 2.9).

2.4.2 Walking at different speeds and a perturbed gait

The walking speed of the robot can be changed easily by adjusting only the thresholds

of the reflex sensor neurons and the output gain of the motor neurons (see table 2.5).

Figure 2.10 A and B show two phase plots of the hip and knee joint positions, which were

recorded while the robot was walking with different speeds on a flat floor.

Figure 2.10 C shows a perturbed walking gait. The bulk of the trajectory represents

the normal orbit of the walking gait, while the few outlying trajectories are caused by

external disturbances induced by small obstacles such as thin books (less than four percent

of robot size) obstructing the robot path. After a disturbance, the trajectory returns to its

normal orbit quickly, demonstrating that the walking gaits are stable and to some degree

robust against external disturbances. Here robustness is defined as rapid convergence to

a steady-state behavior despite unexpected perturbations (Lewis, 2001).
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Figure 2.9: A). A series of sequential frames of a walking gait cycle. The interval
between every two adjacent frames is 33 ms. Note that, during the time between
frame (10) and frame (15), which is nearly one third of the time length of a gait cycle
(corresponding to the grey area in figure 2.8), the robot is moving passively. At the
time of frame (15), the swing leg touches the floor and a new gait cycle begins. (B).
Stick diagram of the gait drawn from the frames in (A). The interval between any two

consecutive snapshots is 67 ms.

ΘES (◦) ΘFS (◦) gEM gFM

Low speed walking Hip Joints 120 70 ±1.4 ±1.3
see Fig. 2.10 A Knee Joints 180 100 ±1.5 ±1.5

High speed walking Hip Joints 110 85 ±2.5 ±2.5
see Fig. 2.10 B Knee Joints 180 100 ±1.8 ±1.8

Perturbed walking gait Hip Joints 115 90 ±2.5 ±2.5
see Fig. 2.10 C Knee Joints 180 100 ±1.5 ±1.5

Table 2.5: The different values of neuron parameters chosen to generate different
speeds (see figure 2.10).

With neuron parameters changed in the cases of fast walking and slow walking, walking

dynamics are implicitly drawn into a different gait cycle. Figure 2.10 D shows an ex-

periment in which the neuron parameters are changed abruptly online while the robot

is walking at a slow speed (33 cm/s, the big orbit). After a short transient stage (the

outlying trajectories), the gait cycle of the robot is automatically transferred into an-

other stable, high-speed orbit (the small one, 57 cm/s). In other words, when the neuron

parameters are changed, physical computation closely coupled with neural computation

can autonomously shift the system into another global trajectory that is also dynamically
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Figure 2.10: Phase diagrams of hip joint position and knee joint position of one leg.
Robot speed: (A) 28 cm/s; (B) 63 cm/s. (C) A perturbed walking gait. For values of
the neuron parameters chosen in these experiments, see table 2.6. Note that the hip
joint angle in these figures is an absolute value, not the angle relative to the robot body

as shown in Fig. 2.1 B. (D) The walking speed is changed online.

stable. This experiment shows that our biped robot, as a neuro-mechanical system, is

stable in a relatively large domain of its neuron parameters.

With other real-time biped walking controllers based on biologically inspired mechanisms

(e.g., CPG) or conventional trajectory preplanning and tracking control, it is still a puz-

zling problem how to change walking speed on the fly without undermining dynamical

stability at the same time. However, this experiment shows that the walking speed of our

robot can be drastically changed (nearly doubled) on the fly while the stability is still

retained due to physical computation.

2.4.3 Walking up a shallow slope

Figure 2.11 is a stick diagram of the robot when it is walking up a shallow slope of about

4 degrees. Steeper slopes could not be mastered. In figure 2.11, we can see that, when

the robot is climbing the slope, its step length is becoming smaller, and the movement

of its stance leg is becoming slower (its stick snapshots are becoming denser). Note

that these adjustments of its gait take place autonomously due to the robot’s physical

properties (physical computation), not relying on any pre-planned trajectory or precise
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control mechanism. This experiment demonstrates that such a closely coupled neuro-

mechanical system can to some degree autonomously adapt to an unstructured terrain.

Figure 2.11: The robot is climbing a shallow slope. The interval between any two
consecutive snapshots is 67 ms.

2.5 Stability analysis of the walking gaits

2.5.1 Dynamic model of the robot

The dynamics of our robot are modelled as shown in figure 2.12. With the Lagrange

method, the equations that govern the motion of the robot are:

D(q)q̈ + C(q, q̇) +G(q) = τ (2.10)

Figure 2.12: Model of the dynamics of our robot. Sizes and masses are the same as
those of the real robot.
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where q = [φ, θ1, θ2, ψ]T is a vector describing the configuration of the robot (for definition

of φ, θ1, θ2, ψ, see figure 2.12), D(q) is the 4× 4 inertia matrix, C(q, q̇) is the 4× 1 vector

of centripetal and coriolis forces, G(q) is the 4 × 1 vector representing gravity forces,

τ = [0, τ1, τ2, τ3]
T , τ1, τ2, τ3 are the torques applied on the stance hip (the hip joint of the

stance leg in figure 2.12), the swing hip, and the swing knee joints, respectively. Details

of this equation can be found in Appendix A.

The dynamics of the dc motor (including gears) of each joint can be described with the

following equations (here, the hip of the stance leg is taken as an example. The models

of other joints are likewise):

La
dia
dt

+Raia + nk3θ̇1 = V1 (2.11)

τ1 + I1θ̈1 + kf θ̇1 = nk2ia (2.12)

where, V1 is the applied armature voltage of the stance hip motor, which is obtained from

the output of the motor neurons according to equation 2.9, ia is the armature current,

La the armature inductance, Ra the armature resistance, k3 is the emf constant, k2 is the

motor torque constant, I1 is the combined moment of inertial of the stance-hip motor

and gear train referred to the gear output shaft, kf is the vicious-friction coefficient of

the combination of the motor and the gear and n is the gear ratio.

Considering that the electrical time-constant of the motor is much smaller than the me-

chanical time-constant of the robot, we neglect the dynamics of the electrical circuits of

the motor, which leads to dia
dt

= 0. Thus equation 2.11 is reduced to,

ia =
1

Ra

(V1 − nk3θ̇1) (2.13)

Combining equations 2.10, 2.12 and 2.13, we can get the dynamics model of the robot

with the applied motor voltages as its control input.

The heel strike at the end of swing phase and the knee strike at the end of knee extensor

reflex are assumed to be inelastic impacts, which is in accordance with observations on our

real robot and existing passive biped robots. This assumption implies the conservation

of angular momentum of the robot just before and after the strikes, with which the value

of q̇ just after the strikes can be computed using its value just before the strikes. Because

the transient double support phase is very short in our robot walking (usually less than

40 ms), it is neglected in our simulation as often done in the analysis of other passive

bipeds (Garcia, 1999).



Chapter 2 Design of the reflexive controller 29

2.5.2 Stability analysis with Poincaré maps
↓−−−−−−

In dynamical systems, a Poincaré map, named after Henri Poincaré, is the intersection of

a periodic orbit in the state space of a dynamical system with a certain lower dimensional

subspace (called the Poincaré section) transversal to the flow of the system. The method

of Poincaré maps is a particularly useful tool for stability analysis of passive bipeds

(Garcia, 1999). That is because: R6

1. The movement of the biped robot is cyclic and nonlinear.

2. Due to the impact of the landing foot on the ground, the biped robot is a hybrid

dynamic system, which makes it difficult to apply other analytical methods in its

stability analysis.

Because our reflexive controller exploits natural dynamics for the robot’s motion gener-

ation, and no trajectory planning or tracking control are used, thus the Poincaré map

approach can also be applied to the dynamics model of our robot together with the

reflexive network as its controller. ↑−−−−−

We choose the Poincaré section to be right after the heel strike of the swing leg. Each

cyclic walking gait is a limit cycle in the state space, corresponding to a fixed point on

the Poincaré section. Fixed points can be found by solving the roots of the mapping

equation:

P (xn)− xn = 0 (2.14)

where xn = [q, q̇]T = [φ, θ1, θ2, ψ, φ̇, θ̇1, θ̇2, ψ̇]
T

is a state vector on the Poincaré section at

the beginning of the nth gait cycle. P (xn) is a map function mapping xn to xn+1, which

is built by combining the reflexive controller and the robot dynamics model described

above.

Near a fixed point, x∗, the map function P (x∗) can be linearised as:

P (x∗ + x̂) ≈ P (x∗) + Jx̂ (2.15)

where J is the 8× 8 Jacobian matrix of partial derivatives of P

J =
∂P

∂x
(2.16)
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Table 2.6: Fixed parameters of the knee joints.

ΘES,k (◦) ΘFS,k (◦) GM,k

Knee Joints 180 110 0.9GM,h

With any fixed point, J can be obtained by numerically evaluating P eight times in a

small neighborhood of the fixed point. According to equation 2.15, small perturbations

x̂i to the limit cycle x∗ at the start of ith step will grow or decay from the ith step to the

i+ 1th step approximately according to x̂i+1 ≈ Jx̂i. So, if all eigenvalues of J lie within

the unit cycle, any small perturbation will decay to 0 and the perturbed walking gait will

return to its limit cycle, which means the limit cycle is asymptotically stable (Garcia,

1999).

The movements of the knee joints are needed mainly for timely ground clearance without

much influence on the stability of the walking gait. Therefore, in the simulation analysis

and real experiment below we set the knees’ neuron parameters to fixed values (see

Table 2.6) that can ensure fast movements of the knee joints, preventing any possible

scuff of the swing leg.

For simplicity, we also fix the threshold of the flexor sensor neurons of the hips (ΘFS,h) to

85◦ in simulation and real experiments below. This will not damage the generality of the

results, because similar results can be obtained provided that ΘFS,h is in the interval 70

– 90◦. For values outside this range the robot will either fall or produce gaits which are

very unnatural. Thus, now we only need to tune two parameters of the hip joints: the

threshold of the extensor sensor neurons (ΘES,h) and the gain of the motor neurons of

hip joints (GM,h), which work together to determine the gait properties. GM,h determines

the amplitude of the applied voltage of the motors on the hip joint. Since these two

parameters have such clear physical interpretations, their tuning is straightforward.

With each set of the controller parameter ΘES,h and GM,h, we use a Newton-Raphson

method solving equation éPoincaréo find the fixed point (Garcia, 1999). Then we compute

the Jacobian matrix J of the fixed point using the approach described above, and evaluate

the stability of the fixed point according to its eigenvalues. The result of this Poincaré

map analysis is shown in figure 2.13. We have found that asymptotically stable fixed

points exist in a considerably large range of the controller parameters ΘES,h and GM,h

(see figure 2.13). For comparison, figure 2.13 also shows the stable range of these two

parameters obtained in real robot experiments. In the real robot, because no definite

stability criterion, like using eigenvalues, is applicable, we regard a walking gait as stable

if the robot does not fall.
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Figure 2.13: Stable domain of the controller parameter, ΘES,h and GM,h. The big
area enclosed by the outer curve represents the range obtained with simulations in
which fixed points are stable. The shaded area is the range of the two parameters,
in which stable gaits will appear in experiments performed with the real robot. The
maximum permitted value of GM,h is 2.95 (higher values will destroy the motor of the
hip joint). The two closed curves are a manual, continuous interpolation of the discrete

boundaries obtained in simulations and real experiments, respectively.

The best way to visualise the properties of a limit cycle is using the phase plane, which

can be easily obtained in the simulations, but is not available in our real robot due to

the lack of absolute position and speed sensors. Figure 2.14 shows two phase plane plots

of the absolute angular position of one hip joint, φ (see figure 2.12) and its derivative, φ̇.

After being perturbed, the walking gait returns to its limit cycle quickly in only a few

steps, which is in accordance with the experiment results of the real robot presented in

the last section.

Figure 2.14: Two limit cycles in the phase plan of φ and φ̇. (A) is corresponding to
a fixed point found with this set of controller parameters, ΘES,h = 125◦, GM,h = 2.8,

(B) corresponding to ΘES,h = 110◦, GM,h = 2.5.
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Because some details of the robot dynamics such as uncertainties of the ground contact,

nonlinear frictions in the joints and the inevitable noise and lag of the sensors are difficult,

if not impossible, to model precisely, the results of simulation and real experiments are

not exactly equivalent (see figure 2.13). However, stability analysis and experiments with

our real robot have in general shown that our biped robot under control of the reflexive

network will demonstrate stable walking gaits in a wide range of the critical controller

parameters and that it will return to its normal orbit quickly after a disturbance.

2.6 Discussion

2.6.1 Minimal set of phasic feedbacks

The aim of locomotion control structures (modelled either with CPG or with reflexive

controllers) is to control the phase relations between limbs or joints, attaining a stable

phase locking that leads to a stable gait. Therefore, the locomotion controller needs

phasic feedback from the legs or joints. In the case of reflexive controllers like Cruse’s

model (Cruse et al., 1998), the phasic feedback signals sent to the controller are AEP and

PEP signals, which can provide sufficient information on phase relations at least between

adjacent legs. It is according to this information that the reflexive controller adjusts the

PEP value of the leg, thus effectively changing the period of the leg, synchronizing it in,

or out of phase with its adjacent legs (Klavins et al., 2002).

On the other hand, in the case of a CPG model, which can generate rhythmic move-

ment patterns even without sensory feedback, it must nonetheless be entrained to phasic

feedback from the legs in order to achieve realistic locomotion gaits. In some animals,

evidence exists that every limb involved in cyclic locomotion has its own CPG (Delcomyn,

1980), and phasic feedback from muscles is indispensable to keep its CPGs in phase with

the real time movement of the limbs. Not surprisingly, CPG mechanisms used on various

locomotive robots also require phasic feedback. Lewis et al. (2003) implemented a CPG

oscillator circuit to control a simple biped. AEP and PEP signals from its hip joints

define the feedback to the CPG, resetting its oscillator circuit. Removal of the AEP or

PEP signals caused rapid deterioration of this biped’s gait. On another quadruped robot

(Fukuoka et al., 2003), instead of discrete AEP and PEP signals, continuous position

signals of the hip joints provide feedback to the neural oscillators of the CPG. The neural

oscillator parameters were tuned in such a way that the minimum and maximum of the

hip positions would reset the flexor and extensor oscillator respectively. Apparently, this

scheme functions identically with AEP/PEP feedback.
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In summary, because AEP and PEP provide sufficient information about phase relations

between legs, walking control structures usually depend on them (or their equivalents) as

phasic feedback from the legs. However, the top level of the reflexive controller on our

robot requires only AEA signals as phasic feedback. Furthermore, this AEA signal is only

for triggering the flexor reflex on the knee joint of the robot, rather than triggering stance

phases as in other robots. In this sense, the role (and number) of the phasic feedback

signals is much reduced in our reflexive controller.

In spite of the fact that the AEA signal is by itself not sufficient to control the phase rela-

tions between legs, stable walking gaits have appeared in our robot walking experiments

(see section 4). This is because reflexive controller and physical computation cooperate to

accomplish the task of phasic walking gait control. This shows that physical computation

can help to simplify the controller structure.

As described above, CPGs have been successfully applied on some quadruped, hexapod

and other multi-legged robots. However, in biped walking control based on CPG models,

most of the current studies are performed with computer simulations. To our knowledge,

no one has successfully realised real-time dynamic biped walking using a CPG model as a

single controller, because the CPG model itself can not ensure stability of the biped gait.

A considerably well-known biped robot controlled by a CPG chip has been developed

by Lewis et al. (2003). Its walking/running gaits look very nice, though on a treadmill

instead of on a floor. But this biped robot has a fatally weak point in that its hips are

fixed on a boom (not rotating freely around the boom axes as in our robot). So it is

actually supported by the boom. The boom is greatly facilitating its control, avoiding

the most difficult problem of dynamic stability control that is specific to biped robots.

Thus, this robot is indeed not a dynamic biped in its real sense. Instead, it is rather more

equivalent to one pair of legs of a multi-legged robot.

Using computer simulations, Taga (1995) found that stable biped gaits can be generated

by combining CPGs and human biomechanics. In animals, a CPG is a neural structure

which is much more complex than the local reflex in anatomy and function. There is

evidence that, in mammal and human locomotion, CPGs work on top of reflexes and

take their effects via modulating them. In evolution, simple monosynaptic reflexes must

have appeared much earlier than the much more complex CPG structures. Not only

with simulation analysis, but also with our real system experiments, the current study

has shown that local neuronal reflexes connected by a simple network are sufficient as

a controller for dynamic biped walking, the most difficult form of legged locomotion in

view of dynamic stability.
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2.6.2 Physical computation and approximation

In contrast to exact representations and world models, physical computation often implies

approximation. Approximation in control mechanism gives more room and possibility for

physical computation. While conventional robots rely on precise trajectory planning and

tracking control, biologically-inspired robots rarely use preplanned or explicitly computed

trajectories. Instead, they compute their movements approximately by exploiting physical

properties of their self and the world, thus avoiding the accurate calibration and modelling

required by conventional robotics. But, in order to achieve real time walking gaits in a real

world, even these biological inspired robots often have to depend on some kind of position

or velocity control on their joints. For example, on a hexapod, simulating the distributed

locomotion control of insects (Beer et al., 1997), outputs of motor neurons were integrated

to produce a trajectory of joint positions that was tracked using proportional feedback

position control. On a quadruped, built by Kimura’s group, that implemented CPGs

(neural oscillators) and local reflexes, all joints are controlled to move to their desired

angles (Fukuoka et al., 2003). Even on a half passive biped, controlled by a CPG chip,

position control worked on its hip joints, although passive dynamics of its knee joints was

exploited for physical computation (Lewis, 2001).

The principle of approximation embodied in the reflexive controller of our robot, however,

goes even one step further, in the sense that there is no position or velocity control

implemented on our robot. The neural structure of our reflexive controller does not

depend on, or ensure the tracking of, any desired position. Indeed, it is this approximate

nature of our reflexive controller that allows the physical properties of the robot itself,

especially the passive dynamics of the robot (see figure 2.9), to contribute implicitly to

generation of overall gait trajectories, and ensures its stability and robustness to some

extent. Just as argued by Raibert and Hodgins (1993), “Many researchers in neural motor

control think of the nervous system as a source of commands that are issued to the body

as direct orders. We believe that the mechanical system has a mind of its own, governed

by the physical structure and the laws of physics. Rather than issuing commands, the

nervous system can only make suggestions which are reconciled with the physics of the

system and the task.”

2.6.3 Is CPG a necessitate in biped walking control?

This work has shown that a series of mono-synaptic reflexes can generate stable and

robust biped walking gait, not needing more complex neural structures like CPG.
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2.7 Conclusions

In this chapter, we presented our design and some walking experiments performed by a

novel neuro-mechanical structure for reflexive walking control. We demonstrated with

a closely coupled neuro-mechanical system how physical computation can be exploited

to generate a dynamically-stable biped walking gait. In the experiments of walking at

different speeds and climbing a shallow slope, it was also shown that the coupled dynamics

of this neuro-mechanical system are sufficient to induce an autonomous, albeit limited,

adaptation of the gait.



Chapter 3

Fast dynamic biped walking

3.1 Introduction

Building and controlling fast biped robots demands a deeper understanding of biped

walking than for slow robots (Pratt, 2000). While slow robots may walk statically, fast

biped walking has to be dynamically balanced and more robust as less time is available

to recover from disturbances (Pratt, 2000). Although many biped robots have been

developed using various technologies in the past 20 years (see figure 1.3), their walking

speeds are still not comparable to that of their counterpart in nature, humans. While

the fastest biped robot today can cover 1.5 leg-lengths per second, the Olympic record

of human walking is equivalent to more than 4 leg-lengths/s. Now the question is, why

biped robots are so slow.

Most of the successful biped robots have commonly used the ZMP (Zero Moment Point)

as the criterion for stability control and motion generation (Hirai, 1997; Yamaguchi et al.,

1999; Inoue and Tachi, 2000; Nishiwaki et al., 2000; Kuroki et al., 2001; Miyakoshi and

Cheng, 2002). The ZMP is the point on the ground where the total moment generated

by gravity and inertia equals zero (Vukobratovic et al., 1990). This measure has two

deficiencies in the case of high-speed walking. First, the ZMP must always reside in

the convex hull of the stance foot, and the stability margin is measured by the minimal

distance between the ZMP and the edge of the foot. To ensure an appropriate stability

margin, the foot has to be flat and large, which will reduce the robot’s performance and

pose great difficulty during fast walking. This difficulty can be seen clearly when humans

try to walk with skis or swimming fins. Second, the ZMP criterion does not permit

rotation of the stance foot at the heel or the toe, which, however, can amount to up

to eighty percent of a normal human walking gait (Hardt and von Stryk, 2002), and is

36
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important and inevitable in fast biped walking (see figure 3.1). Just try whether you can

walk fast without rolling your feet on the ground.

Figure 3.1: (A). The rolling movement of the stance foot around the heel and the
toe in human walking. (B). ZMP-based controller does not permit foot-rolling in biped

robots (Azevedo et al., 2004).

Of course, not all powered biped robots employed ZMP in their controller. Some biped

robots employ various types of model-based control of an inverted pendulum model of the

upper body (Kajita and Kobayashi, 1987; Miyazaki and Arimoto, 1987; Sano and Furusho,

1990). Chevallereau et al. (2003) designed a trajectory tracking controller based on the

zero dynamics of a planar biped robot with unactuated ankles, by which asymptotically

stable walking gaits were realised. However, these robots are also very slow because their

trajectory planning and tracking control usually more or less fight rather than exploit the

natural dynamics of the robots.

On the other hand, sometimes dynamic biped walking can be achieved simply without

explicitly considering any stability criterion. Specific trajectories and precise trajectory

tracking are not indispensable for biped walking. For example, passive biped robots can

walk stably down a shallow slope with no sensing or control. Usually equipped with point

feet or curved feet, only one point of the foot touches the ground at any time, which would
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be unstable when applying the ZMP criterion. However, compared with powered bipeds,

passive biped robots have obvious drawbacks, e.g., their need for walking down a slope

and their inability to control the speed (Pratt, 2000). Some researchers have proposed

approaches to equip a passive biped with actuators to improve its performance. Never-

theless, no one has yet built a passive biped robot that can walk at a speed comparable to

humans’, though humans also exploit passive movements in some stages of their walking

gaits. ↓−−−−−−

Unlike the robots using controllers based on the ZMP criterion, humans’ stable and robust

gaits can emerge from the global entrainment between the neuro-musculo-skeletal system

and the environment (Taga, 1995). In this study, we will realise fast planar biped walking

with a simple neuro-mechanical system, which involves a simplified version of the reflexive

neuronal controller and a redesign of the robot. The basic components required by ZMP R14

control (e.g., dynamics models, position and trajectory control) will not be employed in

our neural controller. Instead, It will be shown in our experiments that fast and stable

biped walking can emerge from the interaction between such a neuro-mechanical system

and the ground without needing intensive feedback control as in the case ZMP-based

control. ↑−−−−−

This chapter is organised as follows. First we describe the mechanical design of our

new biped robot named “RunBot”. Next, we present the structure of the newly designed

neuronal controller. Then we demonstrate the result of several biped walking experiments.

3.2 The robot

RunBot is a mechanical redesign of our previous robot (Geng et al., 2006) with a simplified

controller and specific properties to allow for fast walking. RunBot (see figure 3.2) is 23

cm high, foot to hip joint axis. Its thigh is 11 cm long, and shank (including the foot)

12 cm. It also uses the same model of motors as the previous robot. The mass of its

trunk is 130 g. The mass of the two legs is 60 g. Similar to the previous robot, RunBot is

constrained in the sagittal plane by a boom of one meter length. The robot is attached to

the boom via a freely-rotating joint while the boom is attached to the central column with

a universal joint (see figure 3.2). Thus, its movements are constrained on the surface of a

sphere. However, considering that the length of the boom is more than 4 times RunBot’s

height, we think that the influence of the boom on its dynamics in the sagittal plane is

very small. The boom is still allowing it to freely trip or fall.

Similar to the previous design, RunBot also has unactuated feet, which can be very light,
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Figure 3.2: The robot, RunBot, and its boom structure. The three orthogonal axes
of the boom indicated with curved arrows rotate freely.

being more efficient for fast walking. Since we intended to exploit its natural dynamics

during some stages of its gait cycle, similar to passive bipeds and the previous design,

its foot bottom is also curved with a radius equal to half the leg-length (with a too

large radius, the tip of the foot may strike the ground during its swing phase). During

the stance phase of such a curved foot, always only one point touches the ground, thus

allowing the robot to roll passively around the contact point, which is similar to the rolling

action of human feet. Therefore, with curved feet the difficulties caused by flat feet in

fast walking can be avoided. However, how long should such a foot be? In theory, larger

curved feet bring more stability for passive biped walking. In practice, however, large feet

make foot clearance of the swing leg difficult, and tremendously limit the walking speed

of the robot. In order to achieve a fast speed, RunBot is equipped with small feet (4.5

cm long) whose relative length, the ratio between the foot-length and the leg-length, is

0.20, less than that of humans (about 0.30) and that of other biped robots (powered or

passive).

In fast human walking and running, the mass centre of the upper body is located a little
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forward of the legs. As in the previous design, RunBot’s mass centre is also located

forward. To evaluate the effect of the location of the mass center on the walking speed,

I have performed an additional simulation analysis (see Appendix B). According to the

simulation results described in Appendix B, the mass centre of RunBot should be located

3 cm ahead of the hip joints.

In summary, our mechanical design of RunBot has the following special features that

distinguish it from other powered biped robots and facilitate high-speed walking and

exploitation of natural dynamics.

1. Small curved feet allowing for rolling action.

2. Unactuated, hence, light ankles.

3. Light-weight structure.

4. Light and fast motors.

5. Proper mass distribution of the limbs.

6. Properly positioned mass centre of the trunk.

3.3 The neural structure of RunBot’s controller
↓−−−−−−

The controller of RunBot is a simplified version of the previous design in figure 2.5. The

R15(1)main difference between this design and the previous one is that the eight inter-neurons

have been removed. The model and synapses of the angle sensor neurons have also been

changed, which will be described below. Despite of these changes, the controller can still

realise the same logic function. The new design still follows a hierarchical structure (see ↑−−−−−
figure 3.3). The bottom level represents the neuron modules local to the joints, including

motor neurons and angle sensor neurons. The top level is a distributed neural network

consisting of hip stretch receptors and ground contact sensor neurons, which modulate

the motor neurons of the bottom level.

The directions of the extensor (flexor) movements and the thresholds of the sensor neurons

are illustrated in figure 3.4. At the bottom level, the function of the thresholds of the

sensor neurons (ΘES,h, ΘFS,h, ΘES,k, ΘFS,k, see figure 3.3 and figure 3.4) in each neuron

module is to limit the extensor and flexor movements of the joint. At the top level, the

functions of the AEA signal and the ground contact signal are shown in figure 3.5.
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Figure 3.3: The neuron model of the controller on RunBot. The small numbers give
the values of the connection weights.

Figure 3.4: Control parameters for the joint angles.

The joint coordination mechanism in the top level is implemented with the neuron circuit

illustrated in figure 3.3. The ground contact sensor neuron of each leg has excitatory

connections to the motor neurons of the hip flexor and knee extensor of the same leg

as well as to the hip extensor and knee flexor of the other leg. The stretch receptor of

each hip has excitatory (inhibitory) connections to motor neuron of the knee extensor

(flexor) in the same leg. Detailed models of the stretch receptor, and ground contact

sensor neuron are the same as those described in the last chapter.
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Figure 3.5: Series of frames of one walking step. At the time of frame (3), the stretch
receptor (AEA signal) of the swing leg is activated, which triggers the extensor of the
knee joint in this leg. At the time of frame (7), the swing leg begins to touch the ground.
This ground contact signal triggers the hip extensor and knee flexor of the stance leg,
as well as the hip flexor and knee extensor of the swing leg. Thus the swing leg and the

stance leg swap their roles thereafter.

The neuron module for each joint is composed of two angle sensor neurons and the motor

neurons they contact (see figure 3.3). Whenever its threshold is exceeded, the angle sensor

neuron directly inhibits the corresponding motor neuron (see figure 3.3).

The model of angle sensor neurons is a little different from that of the previous design.

The extensor angle sensor neuron changes its output according to:

ρES =
1

1 + eαES(ΘES−φ)
(3.1)

where φ is the real time angular position obtained from the potentiometer of the joint

(see figure 3.4), ΘES is the threshold of the extensor motor neuron (see figure 3.4) and

αES a positive constant.

Likewise, the output of the flexor sensor neuron is modelled as:

ρFS =
1

1 + eαFS(φ−ΘFS)
(3.2)

with ΘFS and αFS similar as above.

The definition and direction of the joint angles is illustrated in figure 3.4. The direction

of extensor on both hip and knee joints is forward while that of flexors is backward.

The motor neuron model is the same as that of the previous design. For convenience,

we reproduce it below. The state and output of each extensor motor neuron is governed

by equations 3.3 and 3.4 (Gallagher et al., 1996). Those of the flexor motor neurons are

similar.

τ
dy

dt
= −y +

∑
ωXρX (3.3)

uEM =
(
1 + eΘM−y

)−1
(3.4)
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where y represents the mean membrane potential of the neuron. Equation 3.4 is a sig-

moidal function that can be interpreted as the neuron’s short-term average firing fre-

quency, ΘM is a bias constant that controls the firing threshold, τ is a time constant

associated with the passive properties of the cell membrane (Gallagher et al., 1996), ωX

represents the connection strength from the sensor neurons and stretch receptors to the

motor neuron (figure 3.3), ρX represents the output of the sensor neurons and stretch

receptors that contact this motor neuron (e.g., ρES, ρAL, ρGL, etc.)

Note that, in RunBot, the output value of the motor neurons, after multiplication by a

gain coefficient, is sent to the servo amplifier to drive the joint motors.

The voltage of the motor in each joint is determined by:

V = MGM(SEuE + SFUF ), (3.5)

where M represents the magnitude of the servo amplifier, which is 3 on RunBot, G stands

for the output gain of the motor neurons in the joint, SE and SF are signs for the motor

voltage of flexor and extensor in the joint, being +1 or −1, depending on the polarity of

the motors, UE and UF are the outputs of the motor neurons (see figure 3.3).

3.3.1 Tuning the neuron parameters

Most of the values for the neuron parameters are chosen by trial and error. In this

subsection, we address the tuning of the various neuron parameters except two parameters

at the hip joints, ΘES,h (see figure 3.4) and GM,h (the gain of the motor neurons in hip

joints), which will be tuned in the experiments below.

The positive constants of the sensor neurons and the stretch receptors (αES, αFS, αAL,

αAR, αGL, αGR) affect their response speed. We set these constants to 2, ensuring a quick

response of these neurons.

The threshold of the sensor neurons for the extensor (flexor) in the neuron module roughly

limits the movement range of the joint. The thresholds of these sensor neurons in the

neuron modules of the knee joints are chosen as: ΘFS,k = 110◦, ΘES,k = 175◦ (see

figure 3.4), which is in accordance with the observation of humans’ normal gaits. The

movements of the knee joints are needed mainly for timely ground clearance without

big contributions to the walking speed. After some trials, we set the gain of the motor

neurons in knee joints to be GM,k = 0.9GM,h. The threshold of the stretch receptors

is simply chosen to be the same as that of the sensor neurons for the hip extensor,

ΘAL(AR) = ΘES,h.
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The threshold of the ground contact sensor neurons is chosen to be 2 volt according to

test results on the piezo sensors. In a certain range, the output voltage of the piezo sensor

is roughly proportional to the pressure acted on the foot bottom when it is touching the

ground. The time constant of the motor neurons, τ (see equation 3.4), is chosen as 10

ms, which is in the normal range of data in biology.

To simplify the problem, we also fix the threshold of the flexor sensor neurons of the

hips (ΘFS,h) to 85◦. There are three kinds of synapses in the neuronal controller (see

figure 3.3). Here we use following symbols to represent the absolute value of the weights

of these synapses: WGM is weights of the synapses between the ground contact sensor

neurons and the motor neurons, WAM is weights of the synapses between the stretch

receptors and the motor neurons, WSM is weights of the synapses between the angle

sensor neurons and the motor neurons in the neuron modules of the joints.

The threshold of the motor neurons, ΘM (see equation 3.4), can be any positive value as

long as following conditions are satisfied:

WGM ≥ ΘM + 4

WAM −WGM ≥ ΘM + 4

WSM −WAM −WGM ≥ ΘM + 4

The function of these rules is to make sure that, among all the neurons which contact the

motor neurons, the angle-sensor neurons in the neuron modules of each joint have the first

priority while the stretch receptors have second priority and the ground contact sensor

neurons have the lowest priority. So, we simply choose them as: ΘM = 1, WGM = 10,

WAM = 15, WSM = 30 (see figure 3.3).

Obviously, the function of this neuronal controller can also be realised with a simple mode- ↓−−−−−−

switching controller. We prefer using model neurons for two reasons: first, the passive

properties of the cell membrane (see equation 3.4) can naturally make the output of the

neuronal controller smoother, thus reducing the jerk in the joint movement. Second, our R9(2)

long-term aim is to investigate the effect of neuronal plasticity on the walking behavior

with a biped robot. Neuronal plasticity will be embodied by a high-level neural structure,

which then can be seamlessly connected with this neuronal controller. ↑−−−−−

3.4 Runbot walking experiments

In the experiments described below, we now only need to tune the two parameters of

the hip joints: the threshold of the extensor sensor neurons (ΘES,h) and the gain of the
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motor neurons (GM,h). They work together to determine the walking speed and the gait

properties of RunBot. In experiments on walking on a flat floor, we have found that

stable gaits can appear in a considerably large range of the parameters ΘES,h and GM,h

(see figure 3.6).

Figure 3.6: The shaded areas are the range of the two parameters, in which stable
gaits appear. The maximum permitted value of GM,h is 3.45 (higher values will destroy

the motor of the hip joint). For the meanings of points S and F, see the text.

3.4.1 Changing speed on the fly

RunBot’s walking speed can be changed on the fly without problems by tuning ΘES,h

and GM,h as long as they still remain in the stable area shown in figure 3.6. Figure 3.7

shows the gait when the parameters are changed greatly and abruptly from point S to

F (see figure 3.6) at time t (indicated with a line in figure 3.7). The walking speed is

immediately changed from slow (0.38m/s) to fast (0.70m/s). By exploiting the natural

dynamics, the neuronal controller is robust to such drastic parameter variations as shown

in figure 3.6. The video clip of this experiment can be seen at,

http://www.cn.stir.ac.uk/˜tgeng/runbot/speedchange.mpg

3.4.2 Walking on irregular terrain

With parameters in the central area in figure 3.6, the walking gait shows more robustness.

As shown in figure 3.8, RunBot can walk over a low obstacle with a height of 0.9 cm.

Figure 3.9 shows a stick diagram of RunBot’s gait walking down a shallow slope of 5

degree. Note that RunBot can neither detect the disturbance nor adjust any parameters
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Figure 3.7: (A) Series of sequential frames of the walking gait. The neuron parameter
is changed at the time of frame (4). The interval between two adjacent frames is 133
ms. (B) Real-time data of the angular position (in trunk coordinates as illustrated in
figure 3.4) of hip joint and knee joint of one leg (indicated with an arrow in frame (4)

of (A)) while the walking speed is changed at time t.

of its controller to address it. Nonetheless, after the disturbance, the walking gait returns

soon to its normal orbit, demonstrating that the walking gait is to some degree robust

against disturbances.

Figure 3.8: Stick diagram of RunBot walking over a low obstacle (9mm high, higher
ones cannot be tackled). The interval between any two consecutive snapshots is 100

ms.

Figure 3.9: Stick diagram of RunBot walking down a shallow slope of 5 degree. The
interval between any two consecutive snapshots is 67 ms.
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3.5 Fast walking with online policy searching
↓−−−−−−

Because there is no position or trajectory tracking control in RunBot, it is impossible to

control its walking speed directly. Moreover, the neuronal controller does not employ any

form of dynamics model of the robot, ruling out the possibility to analytically describe

the relationship between neuronal parameters and the walking speed. On the other hand,

as the robot’s walking is stable in a quite large range of its controller parameters, it is

not a good idea to evaluate its speed in the entire space of the controller parameters.

However, knowing that RunBot’s walking gait is determined almost exclusively by two

R18(1)parameters, ΘES,h and GM,h (see figure 3.10), we can formulate RunBot’s fast walking

control as a policy gradient reinforcement learning problem by considering each point in

the parameter space (figure 3.10) as an open-loop policy that can be executed by RunBot

in real-time. While walking continuously, RunBot can evaluate the policies selected by

this online learning algorithm and finally find the optimal policy that generates the fastest

walking speed. ↑−−−−−

Our approach is similar to that of Kohl and Stone (2004), except for the algorithms for

adaptive step size and for local optimum avoiding, which are designed particularly for the

biped walking in RunBot. Learning starts from an initial parameter vector π0 = (θ1, θ2)

(here θ1 and θ2 represent GM,h and ΘES,h, respectively) and proceeds to evaluate the

following five polices at or near π:

R1 = (θ1, θ2)

R2 = (θ1, θ2 − ε2)

R3 = (θ1 − ε1, θ2)

R4 = (θ1, θ2 + ε2)

R5 = (θ1 + ε1, θ2)

where each εj is a fixed value that is small relative to θj. Each policy represents a point ↓−−−−−−

in the parameter space (see figure 3.10), which corresponds to a specific gait of the robot. R16

Thus, R2, R3, R4, R5 are four points around R1 in the parameter space. The evaluation

of each policy generates a score, SRi, that is a measure of the speed of the gait described

by that policy (Ri). We use these scores to construct an adjustment vector A (Kohl and

Stone, 2004): ↑−−−−−

A1 = 0 if SR1 > SR3 and SR1 > SR5

A1 = SR5 − SR3 otherwise

Similarly,
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A2 = 0 if SR1 > SR2 and SR1 > SR4

A2 = SR4 − SR2 otherwise

If A = 0, this means a possible local optimum is encountered. In this case, we replace A

with a stochastically generated vector. Although this is a very simple strategy, our ex-

periments show that it can effectively prevent the real-time learning from getting trapped

locally.

Then A is normalised and multiplied by an adaptive step-size:

η = η0(vmax − smax)/vmax (3.6)

where vmax stands for the maximum speed RunBot has ever attained during the time

before, smax is the maximum value of SRi of this current iteration, η0 is a constant

(η0 = 3). If η < ηmin (or η > ηmax), it is set to be ηmin (or ηmax), ηmin and ηmax are

predefined lower and upper limits for η (ηmin = 0.5, ηmax = 5).

We use a sensor at the central axis of the boom to measure the angular speed of the

boom when RunBot is walking, from which the walking speed can be calculated. To get

an accurate speed, each policy is executed for Ncyc gait cycles (one gait cycle includes two

steps). Because the speed of the first gait cycle of each policy is still influenced by the

last policy, it is neglected and the average speed of these Ncyc−1 cycles is regarded as the

speed of the gait corresponding to this policy. At the beginning of the learning process,

Ncyc is set to be 2. Then Ncyc is recalculated at the end of each iteration according to

the following rule:

Ncyc = (int)((vmax − vmin)/3)

where vmin stands for the minimum speed RunBot has ever attained during previous gait

cycles.

Finally, A is added to π0, obtaining a new parameter vector, π1, and the next iteration

begins. Results are shown in figure 3.10A and figure 3.11. RunBot starts walking with pa-

rameters at point S in figure 3.10A corresponding to a speed of 41 cm/s (see figure 3.11C).

After 240 seconds of continuous walking with the learning algorithm and no human in-

tervention, RunBot attains a walking speed of about 80 cm/s (see figure 3.11C), which

is equivalent to 3.5 leg-lengths per second. Figure 3.12 shows video frames of walking

gaits at a fast and a medium speed, respectively, in which we can clearly see the change

of gaits during the process of the learning.

In the second experiment, RunBot starts walking with different parameters corresponding
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Figure 3.10: Changing of the controller parameters, GM,h and ΘES,h, during two
experiments of online learning. See text for more information.

Figure 3.11: Real-time data of one experiment. Changes of the controller parameters
((A) and (B)) and the walking speed (C) during the entire process of learning.

to point S in figure 3.10B. The data of this experiment are shown in figure 3.13. In 280

seconds, the robot also attains a speed of around 80 cm/s (see figure 3.13).

In the two experiments on online learning reported above, learning started from policies

located in the upper or middle part of the stable area (see figure 3.10). In this case,

the subsequent policies usually do not exceed the boundaries of the stable area. But, in

some cases, if learning starts from a policy near the lower boundary of the stable area,

subsequent policies can indeed sometimes leave the stable area. To prevent this, we use

the following strategy: At the beginning of a iteration (e.g., the ith iteration), if any of

the five policies that will be evaluated at or near πi is located outside the stable area, the

vector πi is replaced with another vector in the stable area, π̂i, which is nearest to πi on

the coordinate of θ1 (θ2), and has a distance of ε1 (ε2) to the boundary of the stable area
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Figure 3.12: Series of sequential frames of two walking gaits. The interval between
two adjacent frames is 33 ms. (A). Gait of a medium speed (53 cm/s), the parameter
values of which are indicated as T1 in figure 3.11. Note that, during the time between
frame 8 and frame 13, which is nearly one third of the duration of a step, the whole
robot is moving unactuatedly. At the time of frame 13, the swing leg touches the floor
and a next step begins. (B). Gait of a fast speed (80cm/s), the parameter values of

which are indicated as T2 in figure 3.11.

Figure 3.13: Real-time data of another experiment. Changes of the controller pa-
rameters ((A) and (B)) and the walking speed (C)during the entire process of learning.

(see figure 3.14).

In the experiments, self-stabilising properties as a result of increasing speed, such as

those suggested by Seyfarth and Blickhan (2002) and Poulakakis and Buehler (2003) in
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Figure 3.14: If the parameter vector πi is not appropriate, it will be “pushed” back
into the stable area. See text for more information.

monopod and quadruped walking, only seem to happen to a limited degree when starting

the learning from a policy near the upper boundary or middle of the stable area. It

is usually a puzzling problem how to measure the stability of the walking robots (like

RunBot) that do not use any kind of dynamic model. The eigenvalues of the linearised

Poincaré map are often used for stability analysis of walking robots (Garcia, 1999). In

simulations, the eigenvalues of the linearized Poincaré map can be calculated by minutely

perturbing the robot from the fixed point in each dimension. In real robots, however,

the lack of sufficient and accurate sensor signals make this kind of idealized analysis very

difficult (if not impossible). To build the Poincaré map of RunBot’s gait, we need both

the position and the speed data of the four actuated joints and the unactuated stance

ankle joint. But, only the position data of the four actuated joints is available. Even on

these four joints, due to the noise and inaccuracy of the potentiometers, measuring tiny

perturbations is almost impossible.

3.6 An improved design of RunBot to climb slopes
↓−−−−−−

The biggest slope that can be overcome by RunBot and the previous design is at around

4 degree, which is quite small. This limitation of their performance is due to the lack R12

of an upper body and actuated ankle joints. When climbing up a slop, humans usually

lean their upper body forward to maintain the balance of the gait. In our recent work,

we have added a upper body in RunBot’s design (see figure 3.15). The upper body is

controlled by a reflex module triggered by the accelerometer sensor that can sense the
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lean movement of the robot. With this new design, it can overcome a slope of 7.5 degree

(see figure 3.15).

Figure 3.15: With a upper body, the robot can climb up a slope of 7.5 degree.
R12

↑−−−−−

3.7 Comparing the speed of robots and humans

To compare the walking speed of various biped robots whose sizes are quite different

from each other, we use the relative speed, speed divided by the leg-length. Maximum

relative speeds of RunBot and some typical planar biped robots (passive or powered) are
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shown in figure 3.16. We know of no other biped robot attaining such a fast relative

speed. The world record for human walking is equivalent to about 4.0–4.5 leg-lengths per

second. So, RunBot’s highest walking speed is comparable to that of humans. To get a

feeling of how fast it can walk, we strongly encourage readers to watch a video clip at,

http://www.cn.stir.ac.uk/˜tgeng/runbot/learning.mpg

Figure 3.16: Relative leg-length and Maximum relative speed of various planar biped
robots. (a) A copy of McGeer planar passive biped robot walking down a slope (Wisse
and van Frankenhuyzen, 2003). (b) “Mike”, similar to McGeer’s robot, but equipped
with pneumatic actuators at its hip joints. Thus it can walk half-passively on level
ground (Wisse and van Frankenhuyzen, 2003). (c) “Spring Flamingo”, a powered planar
biped robot with actuated ankle joints (Pratt, 2000). (d) “Rabbit”, a powered biped
with 4 degree-of-freedom and point feet. (e) RunBot. (f). Olympic record of human’s

walking speed.

3.8 Froude number

Biped robots can help us to understand the biomechanics of human walking if their

gaits are dynamically similar. The Froude number, Fr, has been used to describe the

dynamical similarity of legged locomotion over a wide range of animal sizes and speeds

on earth (Alexander and Jayes, 1983).

Fr = v2/gl (3.7)

where v is the walking speed, g gravity acceleration and l leg-length. The Froude number ↓−−−−−−

R17is only a prerequisite for dynamic similarity between the locomotion of different animals.

Aside from having the same Froude number, dynamically similar animals must also meet

the following conditions (Donelan and Kram, 1997):

1. They must move their legs with the same phase.
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2. Their corresponding feet must have equal duty factors.

3. They must have equal relative stride length.

4. Their corresponding feet must exert forces that are equal multiples of body weight

at corresponding points in the stride.

5. They must have mechanical power outputs proportional to the product of body

weight and forward speed.

The Froude number of some typical biped robots are listed in figure 3.16, most of which

are far below the normal value of the adult human’s value of 0.20 (Vaughan and O‘Malley,

2005), indicating that they are indeed not dynamically similar to adult humans, though

some of them have been designed to mimic human walking. However, 0.20 is in the

attainable range of RunBot’s Froude number, implying that its walking gait, when at

an appropriate speed (0.67m/s), could with some confidence be regarded as dynamically

similar to that of an adult human. But, to precisely measure the similarity between

RunBot and human gait using the conditions described above, we need many additional

speed and force information, which are currently unavailable in the robot. We will deal R17

with this question in our future work. ↑−−−−−

3.9 Conclusion

In this study, we have shown that, with a properly designed mechanical structure and a

simple neuronal controller, our biped robot can attain a fast relative walking speed of 3.5

leg-lengths per second, which is not only faster than any other biped walking robot we

know, but also comparable to human’s fastest walking speed. ↓−−−−−−

To deal with the difficulty in RunBot’s speed control cased by the lack of dynamics model

R18(2)in the neural controller, we have successfully applied an online reinforcement learning on

top of the neural controller, and thus make RunBot attain its fast speed in an autonomous

way by itself. ↑−−−−−



Chapter 4

Biped walking with a

neuromuscular-like controller

4.1 Introduction

While biped robots usually depend on position control or trajectory tracking control

at least in some stages of their walking gaits, humans and animals use a totally dif-

ferent “technology”, neuromuscular control, by which stable walking gaits emerge from

the global entrainment between the neuro-musculo-skeletal system and the environment

(Taga, 1995). Moreover, as introduced in the first chapter, muscle properties can simplify

the control structure and smooth the movements.

A growing number of simulation studies have focused on dynamic models of the neuro-

musculo-skeletal systems (Taga, 1995), which combine CPGs and musculo-skeletal models

of different degrees of complexity and fidelity. However, complex systems, like a dynamic

biped under neuromuscular control, cannot be fully simulated because of uncontrollable

contingencies in its biomechanics and in the world in which it is embedded. In this

chapter, we will implement a simple muscle model in RunBot’s controller, investigating

what improvements the muscle model can bring for RunBot’s walking gaits.

4.2 Implementing a muscle model in the robot
↓−−−−−−

R15(2)RunBot’s controller and neuronal parameters remain unchanged from its previous version

(figure 3.3) except:

55
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1. In order to make the movements of the thighs symmetric around the trunk like

human’s walking gaits, we add this constraint,

ΘES,h + ΘFS,h = 180◦ (4.1)

where ΘES,h(ΘFS,h) is the threshold of the extensor (flexor) sensor neurons of the

hip joints.

2. Now the outputs of the motor neurons directly drive a muscle model instead of the

motors of the joints (see figure 4.1). The muscle model is realised with a control

R15(2)algorithm implemented on the motors of the joints, which will be described below.

↑−−−−−

Figure 4.1: The neuron model of reflexive controller on RunBot. Only the muscle
pair of one joint is illustrated. Other joints are omitted.

We use a linear viscous elastic muscle model composed of a spring in parallel with a viscous

damper, directly controlled by the motor neuron output (Wadden and Ekeberg, 1998).

Each joint has an antagonistic muscle pair of flexor and extensor, which are activated by

extensor and flexor motor neuron, respectively (see Fig 4.1). The torque exerted by the

muscle pair on one joint, T1, can be described as (Wadden and Ekeberg, 1998),
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T1 = K(φ1 − L)− δφ̇1 (4.2)

K = β(ME +MF + γ) (4.3)

L = α(ME −MF )/K + L0 (4.4)

where K = 6 is the effective stiffness of the muscle pair, L = 90◦ the resting angle of the

muscle pair, and L0 = 10◦ an offset, α = 4 and β = 1.5 are gains, γ = 0.1 is a base level

of stiffness, δ = 11 the damping coefficient. For details of this muscle model, see Wadden

and Ekeberg (1998). Before we can implement this muscle model in RunBot, we have to

do some analysis on the dynamics of the robot and its joint motors.

The dynamics of RunBot are modelled as shown in Fig 4.2, which are similar to those

used in the simulation analysis of previous chapters. For convenience, we reproduce them

below.

Figure 4.2: Dynamics model of RunBot and the definitions of its joint angles.

With the Lagrange method, the equations that govern the motion of the robot are:

D(q)q̈ + C(q, q̇) +G(q) = τ (4.5)

where q = [φ1, φ2, φ3, φ4, ψ]T is a vector describing the configuration of the robot (for

definition of ψ, φ1, φ2, φ3, φ4, see Fig 4.2). D(q) is the 5× 5 inertia matrix, C(q, q̈) is the

5×1 vector of centripetal and coriolis forces, G(q) is the 5×1 vector representing gravity

forces, τ = [τ1, τ2, τ3, τ4, 0]T , τ1, τ2, τ3, τ4 are the torques applied on the joints.

The dynamics of the DC motor (including gears) of each joint can be described with the

following equations. The joint indicated with φ1 in Fig 4.2 is taken as an example. The
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models of other joints are likewise:

La
dia
dt

+Raia + nk3φ̇1 = V1 (4.6)

τ1 + I1φ̈1 + kf φ̇1 = nk2ia (4.7)

where, V1 is the applied armature voltage of the motor, ia is the armature current, La the

armature inductance, Ra the armature resistance, k3 is the emf constant, k2 is the motor

torque constant, I1 is the combined moment of inertial of the joint motor and gear train

referred to the gear output shaft, kf is the vicious-friction coefficient of the combination

of the motor and the gear, n is the gear ratio.

Considering that the electrical time-constant of the motor is much smaller than the me-

chanical time-constant of the robot, we neglect the dynamics of the electrical circuits of

the motor, which leads to dia
dt

= 0. Thus equation 4.6 is reduced to,

ia =
1

Ra

(V1 − nk3φ̇1) (4.8)

We suppose

τ̂ = τ + Iq̈ (4.9)

where τ̂ =


τ̂1

τ̂2

τ̂3

τ̂4

0

, I =


I1 0 0 0 0

0 I2 0 0 0

0 0 I3 0 0

0 0 0 I4 0

0 0 0 0 0


Ii is the combined moment of inertial of the joint motors and gear trains referred to the

gear output shaft.

Combining equations 4.5 and 4.9, we can describe the dynamics of the robot in a new

form with τ̂ as the torque input.

(D(q) + I)q̈ + C(q, q̇) +G(q) = τ̂ (4.10)

Combining equations 4.7, 4.8, and 4.9,

τ̂1 =
nk2

Ra

V1 − (
n2k2k3

Ra

+ kf )φ̇1 (4.11)
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We apply following control algorithm on the input voltage of this joint motor,

V1 =
RaK

nk2

(φ1 − L)− (
Ra(δ − kf )

nk2

− nk3)φ̇1 (4.12)

Combining equations 4.11 and 4.12,

τ̂1 = K(φ1 − L)− δφ̇1 (4.13)

Now from equations 4.2, 4.3, 4.4, 4.10, and 4.13, we can see that the muscle model

has been implemented on this joint. Likewise, we can obtain the control algorithm for

applying the muscle model on other joints.

4.3 Robot walking

With the muscle model implemented at its motors, RunBot’s walking speed can be

changed on the fly by tuning ΘES,h (of course, ΘFS,h is also changed accordingly with

equation 4.1). Fig 4.3 shows the relationship between ΘES,h and the walking speed.

Figure 4.3: The change of walking speed while ΘES,h is tuned manually. If ΘES,h <
94◦, the robot tends to fall forward in a few steps. If ΘES,h > 112◦, the robot ends to

fall backward in a few steps.

Figure 4.4A shows the gait when ΘES,h is changed greatly and abruptly from 110◦

to 95◦ at a time t (indicated with a line in figure 4.4B). The walking speed is im-

mediately changed from 57 cm/s to 82 cm/s. Although there is no specifically de-

signed controller in charge of the sensing and control of the transient stage of speed-

changing, the natural dynamics of the robot itself and the muscle model properties
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ensure stability during the change. The video clip of this experiment can be seen at,

http://www.cn.stir.ac.uk/˜tgeng/smc/speedchange.mpg

Figure 4.4: (A) Series of sequential frames of the walking gait, ΘES,h is changed from
110◦ to 95◦ at the time of frame 10. The interval between two adjacent frames is 100 ms.
(B) Real-time data of the angular position of one hip joint while the ΘES,h is changed
at time t. (C) The position of RunBot’s left hips joint without using the muscle model

(copied from Fig 3.7).

As shown in figure 4.5, with a small value of ΘES,h (95◦), RunBot can walk up a shallow

slope. Figure 4.5 shows a series of frames of RunBot’s gait walking up a shallow slope

of 0.05 rad (any bigger slope cannot be overcome). Note, RunBot can neither detect the

slope nor adjust any parameters of its controller to address it. For the video footage of

this experiment, see http://www.cn.stir.ac.uk/˜tgeng/smc/slope.mpg

Comparing the trajectory curves in figure 4.4(B) and 4.4(C), we can see the movement
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Figure 4.5: (A). Runbot is walking up a shallow slope of 0.05 rad. The time interval
is 100 ms. Frames 1-9 are the normal gait on the flat floor. Frames 10-16 are the gait
on the slope. The fames after 16 shows that the gaits return to normal on a flat surface.
(B). Real-time data of the angular position of one hip joint while Runbot is walking up

the slope (shaded area).

with the muscle model is a little smoother than before. But, the improvements in other

aspects (e.g., the adaptivity on irregular terrain) are not evident. This can be attributed

to the high gear-ratio of the RC motors used on the robot, which has caused difficulties

in emulating the spring-damper property of the muscle model.

4.4 Conclusion

Using real-time experiments, this study has shown that fast dynamic biped walking can be

achieved via neuromuscular-like reflexive controller without needing any trajectory control
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a mechanisms. The natural dynamics of the robot and the viscous elastic muscle model

implemented on its joints have contributed to the motion generation and smoothness of

the walking gaits, thus simplifying the controller structure.



Chapter 5

Conclusions

5.1 Achievements

In this study, dynamic biped walking was realised with a simple neuronal controller using

local reflexes and a minimal set of sensor signals. By means of real-time experiments, this

thesis revealed the potential functions that physical computation can provide in biped

locomotion control when coupled with a minimal neuronal controller, e.g., simplifying the

computation for gait generation, smoothing the movements, and producing adaptivity in

the gaits. In addition, a record-breaking fast walking speed has been achieved with a new

design of our robot.

One common thread running through this thesis is the notion of physical computation,

whereby a controller takes advantage of the natural dynamics in biped walking. In order

to facilitate physical computation in our biped robots, we developed new structures in

two aspects. First, in the controller design, we employed a minimal set of sensor signals

triggering local reflexes. Unlike the sophisticated controller of other powered biped robots,

the reflexive controller only has influence at some critical time of the walking gait cycle,

leaving most of the gait generation tasks to the natural dynamics of the robot. Second,

in the mechanical structure, we used some special designs (e.g., properly located centre

of mass, small curved feet) that can enhance the stability and function of the natural

dynamics. Although the design of the robot is very simple, it has immensely outperformed

other biped robots in some aspects, e.g., the fast walking speed and the ability to change

speed drastically.

One aim of this study was to understand human walking with a reduced mechanical

structure rather than pure computer simulations. The question is, how much does the

63
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robot walking resemble human walking? In the videos, the walking gait of the RunBot

looks very natural, quite like human walking. Moreover, RunBot’s gait can have the same

Froude number as humans’ normal walking gait. This means, RunBot is more likely to

resemble human walking than other biped robots.

Another important issue addressed in this thesis is fast biped walking. While other robots

using sophisticated modern control technologies have failed in their attempt to achieve

high speed biped walking, RunBot’s walking has demonstrated a record-breaking fast

speed that is even comparable to human fast walking. This is another attestation of the

argument made by Full and Tu (1990), that is, in fast locomotion, mechanical properties

(physical computation) are more important than the adjustment of the neural system,

and play a dominant role in gait generation.

5.2 Potential extensions

5.2.1 Extending the robot design to 3D

We used planar biped robots in our study because, in straight forward walking, the main

characteristics and control problems of the gaits can be observed in the sagittal plane.

The simplified planar biped walking in the sagittal plane can represent the essence of the

biped walking. However, if we want to understand more realistic biped locomotion in the

real world, we will have to use a 3D model or robot. The reflexive controller designed for

RunBot can be used on a 3D biped robot in its sagittal plane as long as there is another

controller in the frontal plane ensuring the lateral balance of the robot. A simple design

is to use springy passive ankles in the frontal plane. The movements of the robot in the

sagittal plane and frontal plane can both be regarded as something like an oscillation. If

the oscillation in the frontal plane and the oscillation in the sagittal plane match each

other well, the 3D gait will be stable. We can reach such a match between the two planes

by adjusting the passive property in the frontal plane and the neuronal parameters in the

sagittal plane.

5.2.2 Extending the learning capability

One good property of RunBot’s reflexive controller is that it allows changing the walking

gait by tuning just two neuronal parameters. This makes it easy to add a high level

implementing autonomy or learning functions on top of the reflexive neuronal controller.
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It is known that neurons can change their synaptic strength according to the temporal

relation between their inputs and outputs. If the presynaptic signal arrives before the

post-synaptic neuron fires, such a synapse gets strengthened, but it will get weakened if

the order is reversed. Hence this form of plasticity depends on the timing of correlated

spikes (STDP, spike timing-dependent plasticity). Other people in our group have used his

property of STDP on top of the reflexive controller to stabilise the speed of the robot at a

pre-set, desired value employing a plasticity rule which simulates spike timing-dependent

plasticity.

5.2.3 Scaling up the robot design
↓−−−−−−

Before building a aeroplane, engineers use a small model of the design to test its aerody-

namics in a wind tunnel because the small model is dynamically similar to the aeroplane

that will be build. Likewise, RunBot’s design can be scaled up (at leat in theory) to

build a human-size fast biped robot as long as the dynamical similarity between them

is retained. However, the current mechanical properties (e.g., mass distribution at legs

R19(2)and the location of the mass centre of the trunk) could be not optimal in a scaled-up

design. To deal with this problem, we can use optimisation in simulation analysis to find

a suitable design before we build the robot. The criterion for the optimisation will be the

attainable fast speed and the stable range of the controller parameters. ↑−−−−−

5.3 Future work
↓−−−−−−

In this work, we have shown that the natural dynamics integrated with a minimal neural

R19(1)controller can generate tremendously fast walking speed in a biped robot. In the future

work, we will extend RunBot’s neuro-mechanical design to realise fast biped running.

Various sophisticated control technologies have been used in biped running robots, e.g.,

posture stabilization, inverted pendulum stabilization, contact torque control, foot ver-

tical force control, torque distribution control. However, today’s dynamic biped running

robots are still well outperformed by their counterpart, humans, especially in speed and

adaptivity. RunBot’s success in fast walking is attributed to its properly designed me-

chanical structure that facilitates self-stabilising fast walking and the minimal neuronal

controller that leaves most of the gait generation task to the natural dynamics. Simi-

lar to what we have demonstrated in RunBot’s walking, the goal of our future work is

to achieve fast biped running using a minimal neuronal controller coupled with natural
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dynamics, which will be very different from many other biped robots based on various

dynamic models and intensive feedback controls. Thus, the questions raised are: Is there

any natural dynamics in biped running that can be exploited to tremendously simplify

the control structure (just as in the case of RunBot’s walking control)? What is the

minimal controller that can generate stable and changeable running gaits?

We can find some cues to these questions in biomechanics literature. Biological ex-

periments have shown that, in animals’ high speed running, sensory signals are simply

returned to the central nervous system too late to be effective. Mechanical properties

of the musculoskeletal system play a dominant role (Dickinson and Farley, 2000). The

spring-mass model has been proved to be an accurate tool for modelling animals’ fast run-

ning, which can exhibit self-stabilizing running without any feedback control (Full and

Tu, 1990). In fast running, the system has less time to recover from disturbances. The

nonlinear, passive visco-elastic properties of the musculoskeletal system itself can respond

rapidly to disturbances (Brown and Loeb, 1999). All these findings lead to a conclusion

that the natural dynamics of the musculoskeletal system accounts for a large part of the

gait generation in animals’ fast running. What we need to do is to build a mechanical

structure that can emulate at least some of the basic properties of a musculoskeletal

system exhibited in Animals’ running.

While the minimal neuronal controller used for RunBot’s walking is completely reflexive,

we think the running controller has to be anticipative. For example, the foot-landing

event is critical to the stability of biped running. For this reason, human adjusts the

stiffness of his whole body and retracts his swing leg just before the foot-landing in his

running (Seyfarth et al., 2003). In its essence, cyclic walking/running gaits are a result of

coordinated oscillations of the involved joints. To predict the dynamics of an oscillating

system, the minimally required is its frequency and phase. These anticipative information

are represented in the Central Pattern Generator (CPG) that has been found existing

in most of the animals’ neural systems for locomotion control (Duysens and Van de

Crommert, 1998). Therefore, the minimal neuronal controller for biped running should

involve CPG, which can be modelled with neuron-oscillators.

R19(1)

↑−−−−−
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Dynamics equations of the robot

In the following we list the terms of the equation used in the simulation to build the

Poincaré map function. For definitions of l1, l2, l3, l4, l5, φ, θ1, θ2, ψ, see figure 2.12, r is the

radius of the curved foot, mt is the mass of the trunk, mh the mass of the thigh, mk the

mass of the shank with foot, g is the gravity acceleration.

l1 = 0.11m

l2 = 0.12m

l3 = 0.08m

l4 = 0.09m

l5 = 0.022m

r = 0.12m

mt = 0.12Kg

mk = 0.03Kg

g = 9.8m/s2

D11 = −4mk cos (φ) r2 − 2mkl4l2 + 2mkrl4 + 2mk

(
l1

2 + l2
2
)

+ 2mtl1l2 − 2l1r − 2mtrl2

+ 4mkr cos (φ) l2 − 2mkr cos (φ) l4 + 2mkl4
2 + 2mtr cos (φ) l2

+ 2mtl2l5 cos (θ1)− 2mtrl5 cos (θ1)

+ 2mtr cos (φ) l1 + 2mtrl5 cos (θ1 − φ) + 2mtl1l5 cos (θ1)

− 2mt cos (φ) r2 +mtl5
2

− 4mh cos (φ) r2 − 2mhl1l3 − 2mhl2l3

67
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+ 2mhrl3 + 2mkl1l2 − 2mkl1r − 4mkrl2 + 4mkr
2

+ 2mkl2
2 + 4mhl1l2 − 4mhl1r − 4mhrl2

+ 2mhl1
2 + 4mhr

2 + 2mhl2
2

− 2mhrl3 cos (−θ2 + φ)

− 2mhl1l3 cos (−θ1 + θ2)− 2mhl2l3 cos (−θ1 + θ2)

+ 2mhrl3 cos (−θ1 + θ2)− 2mkrl4 cos (−θ2 + ψ)

+ 2mkrl4 cos (−θ1 + θ2 + ψ + φ)

− 2mkrl1 cos (−θ1 + θ2 + φ)

− 2mkl1l4 cos (ψ) + 2mkl4l2 cos (−θ1 + θ2 + ψ)

+ 2mkl1l4 cos (−θ1 + θ2 + ψ)

+ 2mkrl1 cos (−θ1 + θ2) + 4mhr cos (φ) l2

− 2mhr cos (φ) l3 + 4mhr cos (φ) l1

− 2mkl1
2 cos (−θ1 + θ2)

+ 2mhl3
2 +mtl1

2 + 2mtr
2

D12 = −mtrl5 cos (θ1 − φ) +mtrl5 cos (θ1)

−mt(l1 + l2)l5 cos (θ1)

−mtmhrl3 cos (−θ1 + θ2 + φ)

−mhrl3 cos (−θ1 + θ2) +mhl2l3 cos (−θ1 + θ2)

+mhl1l3 cos (−θ1 + θ2)−mhl3
2

+mkrl1 cos (−θ1 + θ2 + φ)−mkrl4 cos (−θ1 + θ2 + ψ + φ)

+mkl2l1 cos (−θ1 + θ2)−mkrl1 cos (−θ1 + θ2)

+ 2mkl1l4 cos (ψ)

+mkl1
2 cos (−θ1 + θ2)

+mkl1l4 cos (−θ1 + θ2 + ψ)
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−mkl4l2 cos (−θ1 + θ2 + ψ)

+mkrl4 cos (−θ1 + θ2 + ψ)

−mkl1
2 −mkl4

2

D13 = −mhrl3 cos (−θ1 + θ2 + φ)

+mhrl3 cos (−θ1 + θ2)−mhl2l3 cos (−θ1 + θ2)

−mhl1l3 cos (−θ1 + θ2) +mhl3
2 +mkl1

2 −mkrl1 cos (−θ1 + θ2)

+mkrl4 cos (−θ1 + θ2) +mkl2l1 cos (−θ1 + θ2)

+mkrl1 cos (−θ1 + θ2)

− 2mkl1l4 cos (ψ)−mkl1
2 cos (−θ1 + θ2)

+mkl1l4 cos (−θ1 + θ2 + ψ)

+mkl4l2 cos (−θ1 + θ2 + ψ)

−mkrl4 cos (−θ1 + θ2 + ψ) +mkl1
2 +mkl4

2

D14 = mkrl4 cos (−θ1 + θ2 + ψ + φ)

−mkrl4 cos (−θ1 + θ2 + ψ)

+mkl4 (l1 + l2) cos (−θ1 + θ2 + ψ)

−mkl1l4 cos (ψ) +mkl4
2

D21 = D12

D22 = mtl5
2 +mhl3

2 +mkl1
2 − 2mkl1l4 cos (ψ) +mkl4

2

D23 = −mhl3
2 −mkl1

2 + 2mkl1l4 cos (ψ)−mkl4
2

D24 = mkl1l4 cos (ψ)−mkl4
2

D31 = D13

D32 = D23
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D33 = mhl3
2 +mkl1

2 − 2l1l4 cos (ψ) +mkl4
2

D34 = −mkl1l4 cos (ψ) +mkl4
2

D41 = D14

D42 = D24

D43 = D34

D44 = mkl4
2

C1 = 2mk sin (φ) φ̇2r2 − 4mk sin (φ) φ̇2l2r

− 2mt sin (φ) φ̇2(l1 + l2)r

+ 2mtl5 sin (θ1 − φ) φ̇2r

− 2mtl5 cos (θ1 − φ) θ̇1 sin (φ) φ̇l1

+mtl5 sin (θ1 − φ) θ̇1
2
r

+ 2mt sin (φ) φ̇2r2 + 4mh sin (φ) φ̇2r2

− 3mtl5 sin (θ1 − φ) θ̇1φ̇r

+ 2mtl5 sin (θ1 − φ) θ̇1φ̇ cos (φ) r

+ 2mhl3 sin (φ) φ̇2r

+mhl3 sin (−θ1 + θ2 + φ) θ̇1
2
r

+ 2mhl3 cos (−θ1 + θ2 + φ) θ̇2 sin (φ) φ̇r

+ 2mhl3 cos (−θ1 + θ2 + φ) θ̇1θ̇2 sin (φ) l2

+ 2mhl3 cos (−θ1 + θ2 + φ) θ̇1θ̇2 sin (φ) l1

−mhl3 cos (−θ1 + θ2 + φ) θ̇1
2
sin (φ) l2

+ 3mhl3 sin (−θ1 + θ2 + φ) θ̇2φ̇r

−mkl1 sin (−θ1 + θ2 + φ) θ̇1
2
cos (φ) r

+ 2mkl1 sin (−θ1 + θ2 + φ) θ̇1θ̇2 cos (φ) r
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− 2mkl1
2 sin (−θ1 + θ2 + φ) θ̇1θ̇2 cos (φ)

− 2mkl1 sin (−θ1 + θ2 + φ) θ̇1θ̇2 cos (φ) l2

− 2mkl1 sin (−θ1 + θ2 + φ) θ̇2φ̇ cos (φ) r

+ 2mkl4 cos (−θ1 + θ2 + ψ + φ) θ̇2ψ̇ sin (φ) l2

− 2mkl1 sin (−θ1 + θ2 + φ) θ̇1φ̇ cos (φ) l2

− 2mkl1
2 sin (−θ1 + θ2 + φ) θ̇1φ̇ cos (φ)

+mkl1
2 sin (−θ1 + θ2 + φ) θ̇1

2
cos (φ)

+mkl4 cos (−θ1 + θ2 + ψ + φ) ψ̇2 sin (φ) l1

− 2mkl4 cos (−θ1 + θ2 + ψ + φ) θ̇2ψ̇ sin (φ) r

+mkl4 cos (−θ1 + θ2 + ψ + φ) θ̇2
2
sin (φ) l1

+ 2mkl4 cos (−θ1 + θ2 + ψ + φ) θ̇2ψ̇ sin (φ) l1

+mkl4 cos (−θ1 + θ2 + ψ + φ) θ̇2
2
sin (φ) l2

−mkl4 cos (−θ1 + θ2 + ψ + φ) ψ̇2l1 sin (−θ1 + θ2 + φ)

−mkl4 cos (−θ1 + θ2 + ψ + φ) θ̇2
2
sin (φ) r

− 2mkl4 cos (−θ1 + θ2 + ψ + φ) θ̇1θ̇2 sin (φ) l1

+ 2l4 cos (−θ1 + θ2 + ψ + φ) θ̇1θ̇2 sin (φ) r

+ 2mkl4 cos (−θ1 + θ2 + ψ + φ) θ̇1ψ̇ sin (φ) r

+ 2mkl1
2 cos (−θ1 + θ2 + φ) θ̇1θ̇2 sin (φ)

−mkl1 cos (−θ1 + θ2 + φ) θ̇1
2
sin (φ) l2

−mkl1
2 cos (−θ1 + θ2 + φ) θ̇1

2
sin (φ)

+mkl1 cos (−θ1 + θ2 + φ) θ̇1
2
sin (φ) r

+mkl4 cos (−θ1 + θ2 + ψ + φ) θ̇1
2
sin (φ) l2

+ 2mkl4 cos (−θ1 + θ2 + ψ + φ) ψ̇ sin (φ) φ̇l2

− 2mkl4 cos (−θ1 + θ2 + ψ + φ) θ̇1ψ̇ sin (φ) l1

− 2l1 cos (−θ1 + θ2 + φ) θ̇1θ̇2 sin (φ) r
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− 2mkl4 cos (−θ1 + θ2 + ψ + φ) ψ̇l1 sin (−θ1 + θ2 + φ) θ̇2

− 2mkl4 cos (−θ2 + ψ + φ) ψ̇l1 sin (−θ1 + θ2 + φ) φ̇

− 2mkl4 cos (−θ1 + θ2 + ψ + φ) ψ̇ sin (φ) φ̇r

−mkl4 cos (−θ1 + θ2 + ψ + φ) θ̇1
2
sin (φ) r

− 2mkl4 cos (−θ1 + θ2 + ψ + φ) θ̇1ψ̇ sin (φ) l2

− 2mkl4 cos (−θ1 + θ2 + ψ + φ) θ̇1θ̇2 sin (φ) l2

−mkl1
2 cos (−θ1 + θ2 + φ) θ̇2

2
sin (φ)

+mkl1 cos (−θ1 + θ2 + φ) θ̇2
2
sin (φ) r

−mhl3 sin (−θ1 + θ2 + φ) θ̇2
2
cos (φ) r

− 2mhl3 sin (−θ1 + θ2 + φ) θ̇2φ̇ cos (φ) r

−mkl1 cos (−θ1 + θ2 + φ) θ̇2
2
sin (φ) l2

+mhl3 sin (−θ1 + θ2 + φ) θ̇2
2
cos (φ) l2

+mhl3 sin (−θ1 + θ2 + φ) θ̇2
2
cos (φ) r

+mhl3 sin (−θ1 + θ2 + φ) θ̇1φ̇r

+ 2mhl3 sin (−θ1 + θ2 + φ) θ̇2φ̇ cos (φ) l2

+mhl3 sin (−θ1 + θ2 + φ) θ̇2
2
r

− 2mkl1 cos (−θ1 + θ2 + φ) θ̇1 sin (φ) φ̇r

+ 2mkl1 cos (−θ1 + θ2 + φ) θ̇1 sin (φ) φ̇l2

+ 2mkl1 cos (−θ1 + θ2 + φ) θ̇1θ̇2 sin (φ) l2

−mhl3 cos (−θ1 + θ2 + φ) θ̇2
2
sin (φ) l2

−mhl3 cos (−θ1 + θ2 + φ) θ̇2
2
sin (φ) l1

−mhl3 sin (−θ1 + θ2 + φ) θ̇1
2
cos (φ) r

− 2mhl3 cos (−θ1 + θ2 + φ) θ̇1θ̇2 sin (φ) r

+mhl3 cos (−θ1 + θ2 + φ) θ̇2
2
sin (φ) r

− 2mhl3 sin (−θ1 + θ2 + φ) θ̇1φ̇ cos (φ) l1
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−mhl3 cos (−θ1 + θ2 + φ) θ̇1
2
sin (φ) l1

+ 2mhl3 sin (−θ1 + θ2 + φ) θ̇1θ̇2 cos (φ) r

+ 2mhl3 sin (−θ1 + θ2 + φ) θ̇1φ̇ cos (φ) r

− 2mhl3 sin (−θ2 + φ) θ̇1φ̇ cos (φ) l2

+mhl3 sin (−θ1 + θ2 + φ) θ̇1
2
cos (φ) l2

+mhl3 sin (−θ1 + θ2 + φ) θ̇1
2
cos (φ) l1

− 2mhl3 sin (−θ1 + θ2 + φ) θ̇1θ̇2 cos (φ) l2

+ 2mhl3 cos (−θ1 + θ2 + φ) θ̇1 sin (φ) φ̇l2

+ 2mhl3 cos (−θ1 + θ2 + φ) θ̇1 sin (φ) φ̇l1

+ 2mhl3 sin (−θ1 + θ2 + φ) θ̇2φ̇ cos (φ) l1

− 2mhl3 cos (−θ1 + θ2 + φ) θ̇2 sin (φ) φ̇l1

− 4mh sin (φ) φ̇2l2r

− 4mh sin (φ) φ̇2l1r

+ 2mhl3 sin (−θ1 + θ2 + φ) φ̇2r

− 2mtl5 cos (θ1 − φ) θ̇1 sin (φ) φ̇l2

+mtl5 cos (θ1 − φ) θ̇1
2
sin (φ) l2

+mtl5 cos (θ1 − φ) θ̇1
2
sin (φ) l1

−mtl5 cos (θ1 − φ) θ̇1
2
sin (φ) r

+mhl3 cos (−θ1 + θ2 + φ) θ̇1
2
sin (φ) r

−mtl5 sin (θ1 − φ) θ̇1
2
cos (φ) r

− 2mtl5 sin (θ1 − φ) θ̇1φ̇ cos (φ) l2

+ 2mtl5 cos (θ1 − φ) θ̇1 sin (φ) φ̇r

+mtl5 sin (θ1 − φ) θ̇1
2
cos (φ) l2

+mtl5 sin (θ1 − φ) θ̇1
2
cos (φ) l1

− 2mtl5 sin (θ1 − φ) θ̇1φ̇ cos (φ) l1
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+ 2mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇1θ̇2r

− 3mkl4 sin (−θ1 + θ2 + ψ + φ) ψ̇φ̇r

−mkl4 sin (−θ1 + θ2 + ψ + φ) ψ̇2 cos (φ) l2

+ 2mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇1ψ̇r

− 3mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇2φ̇r

+ 3mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇1φ̇r

−2mkl4 sin (−θ1 + θ2 + ψ + φ) ψ̇φ̇ cos (φ) l2

−mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇2
2
r

−mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇1
2
r

− 2mkl4 cos (−θ1 + θ2 + ψ + φ) θ̇1 sin (φ) φ̇l2

− 2mk sin (φ) φ̇2l1r

+mkl1 sin (−θ1 + θ2 + φ) θ̇1
2
r

+ 2mkl1 sin (−θ1 + θ2 + φ) φ̇2r

+ 3mkl1 sin (−θ1 + θ2 + φ) θ̇2φ̇r

− 2mkl1 sin (−θ1 + θ2 + φ) θ̇1θ̇2r

− 2mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇2φ̇ cos (φ) l2

− 2mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇2φ̇ cos (φ) l1

+ 2mkl4 sin (−θ1 + θ2 + ψ + φ) ψ̇φ̇ cos (φ) r

+ 2mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇2φ̇ cos (φ) r

+ 2mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇1ψ̇ cos (φ) l1

+ 2mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇2ψ̇l1 cos (−θ1 + θ2 + φ)

−mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇1
2
cos (φ) l2

− 3mkl1 sin (−θ1 + θ2 + φ) θ̇1φ̇r

+mkl1 sin (−θ1 + θ2 + φ) θ̇2
2
r

−mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇1
2
cos (φ) l1
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− 2mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇2ψ̇ cos (φ) l2

− 2mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇2ψ̇ cos (φ) l1

+mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇2
2
cos (φ) r

+ 2mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇2ψ̇ cos (φ) r

−mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇2
2
cos (φ) l2

+ 4mk sin (φ) φ̇2r2

+ 2mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇1φ̇ cos (φ) l1

−mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇2
2
cos (φ) l1

+ 2mkl1 sin (−θ1 + θ2 + φ) θ̇2φ̇ cos (φ) l2

+ 2mkl1
2 sin (−θ1 + θ2 + φ) θ̇2φ̇ cos (φ)

− 2mkl4 sin (−θ1 + θ2 + ψ + φ) φ̇2r

+ 2mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇1θ̇2 cos (φ) l2

+ 2mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇1ψ̇ cos (φ) l2

− 2mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇1θ̇2 cos (φ) r

− 2mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇1ψ̇l1 cos (−θ1 + θ2 + φ)

− 2mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇1φ̇ cos (φ) r

+ 2mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇1φ̇ cos (φ) l2

+mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇1
2
cos (φ) r

+mkl1 sin (−θ1 + θ2 + φ) θ̇2
2
cos (φ) l2

+ 2mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇1θ̇2 cos (φ) l1

− 2mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇1ψ̇ cos (φ) r

+mkl1
2 sin (−θ1 + θ2 + φ) θ̇2

2
cos (φ)

−mkl4 sin (−θ1 + θ2 + ψ + φ) ψ̇2r

−mkl4 cos (−θ1 + θ2 + ψ + φ) ψ̇2 sin (φ) r

+mkl4 cos (−θ1 + θ2 + ψ + φ) ψ̇2 sin (φ) l2



Appendix A Dynamics equations of the robot 76

+ 2mkl1 sin (−θ1 + θ2 + φ) θ̇1φ̇ cos (φ) r

+mkl1 sin (−θ1 + θ2 + φ) θ̇1
2
cos (φ) l2

− 2mkl4 cos (−θ1 + θ2 + ψ + φ) θ̇1 sin (φ) φ̇l1

+ 2mkl4 cos (−θ1 + θ2 + ψ + φ) ψ̇ sin (φ) φ̇l1

+ 2mkl4 cos (−θ1 + θ2 + ψ + φ) ψ̇l1 sin (−θ1 + θ2 + φ) θ̇1

− 2mhl3 cos (−θ1 + θ2 + φ) θ̇2 sin (φ) φ̇l2

− 2mhl3 cos (−θ1 + θ2 + φ) θ̇1 sin sin (φ) φ̇r

+ 2mkl4 cos (−θ1 + θ2 + ψ + φ) θ̇1 sin (φ) φ̇r

+ 2mkl4 cos (−θ1 + θ2 + ψ + φ) θ̇2 sin (φ) φ̇l2

+ 2mkl4 cos (−θ1 + θ2 + ψ + φ) θ̇2 sin (φ) φ̇l1

− 2mkl4 cos (−θ1 + θ2 + ψ + φ) θ̇2 sin (φ) φ̇r

+ 2mkl1
2 cos (−θ1 + θ2 + φ) θ̇1 sin (φ) φ̇

+mkl4 sin (−θ1 + θ2 + ψ + φ) ψ̇2 cos (φ) r

− 2mkl4 sin (−θ1 + θ2 + ψ + φ) ψ̇φ̇ cos (φ) l1

+ 2mkl1 cos (−θ1 + θ2 + φ) θ̇2 sin (φ) φ̇r

− 2mkl1
2 cos (−θ1 + θ2 + φ) θ̇2 sin (φ) φ̇

− 2mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇2ψ̇r

+ 2mkl4 sin (−θ1 + θ2 + ψ + φ) ψ̇φ̇l1 cos (−θ1 + θ2 + φ)

C2 = −mtl5 sin (θ1 − φ) φ̇2r

+mtl5 cos (θ1 − φ) θ̇1 sin (φ) φ̇l1

+mtl5 sin (θ1 − φ) θ̇1φ̇r

−mtl5 sin (θ1 − φ) θ̇1φ̇ cos (φ) r

+mkl1 sin (−θ1 + θ2 + φ) θ̇2φ̇ cos (φ) r

+mkl1 sin (−θ1 + θ2 + φ) θ̇1φ̇ cos (φ) l2
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+mkl1
2 sin (−θ1 + θ2 + φ) θ̇1φ̇ cos (φ)

+mkl4 cos (−θ1 + θ2 + ψ + φ) ψ̇2l1 sin (−θ1 + θ2 + φ)

−mkl4 cos (−θ1 + θ2 + ψ + φ) ψ̇ sin (φ) φ̇l2

+ 2mkl4 cos (−θ1 + θ2 + ψ + φ) ψ̇l1 sin (−θ1 + θ2 + φ) θ̇2

+ 2mkl4 cos (−θ1 + θ2 + ψ + φ) ψ̇l1 sin (−θ1 + θ2 + φ) φ̇

+mkl4 cos (−θ1 + θ2 + ψ + φ) ψ̇ sin (φ) φ̇r

+mhl3 sin (−θ1 + θ2 + φ) θ̇2φ̇ cos (φ) r

−mhl3 sin (−θ1 + θ2 + φ) θ̇2φ̇ cos (φ) l2

−mkl1 cos (−θ1 + θ2 + φ) θ̇1 sin (φ) φ̇l2

+mhl3 sin (−θ1 + θ2 + φ) θ̇1φ̇ cos (φ) l1

−mhl3 sin (−θ1 + θ2 + φ) θ̇1φ̇ cos (φ) r

+mhl3 sin (−θ1 + θ2 + φ) θ̇1φ̇ cos (φ) l2

−mhl3 cos (−θ1 + θ2 + φ) θ̇1 sin (φ) φ̇l2

−mhl3 cos (−θ1 + θ2 + φ) θ̇1 sin (φ) φ̇l1

−mhl3 sin (−θ1 + θ2 + φ) θ̇2φ̇ cos (φ) l1

−mhl3 sin (−θ1 + θ2 + φ) φ̇2r

+mtl5 cos (θ1 − φ) θ̇1 sin (φ) φ̇l2

+mtl5 sin (θ1 − φ) θ̇1φ̇ cos (φ) l2

−mtl5 cos (θ1 − φ) θ̇1 sin (φ) φ̇r

+mtl5 sin (θ1 − φ) θ̇1φ̇ cos (φ) l1

+mkl4 sin (−θ1 + θ2 + ψ + φ) ψ̇φ̇r

+mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇2φ̇r

−mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇1φ̇r

+mkl4 sin (−θ1 + θ2 + ψ + φ) ψ̇φ̇ cos (φ) l2

+mkl4 cos (−θ1 + θ2 + ψ + φ) θ̇1 sin (φ) φ̇l2
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−mkl1 sin (−θ1 + θ2 + φ) φ̇2r

−mkl1 sin (−θ1 + θ2 + φ) θ̇2φ̇r

−mkl4 sin (−θ1 + θ2 + ψ + φ) ψ̇2l1 cos (−θ1 + θ2 + φ)

−mkl4 sin (−θ1 + θ2 + ψ + φ) ψ̇φ̇ cos (φ) r

−mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇2φ̇ cos (φ) r

− 2mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇2ψ̇l1 cos (−θ1 + θ2 + φ)

+mkl1 sin (−θ1 + θ2 + φ) θ̇1φ̇r

−mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇1φ̇ cos (φ) l1

−mkl1 sin (−θ1 + θ2 + φ) θ̇2φ̇ cos (φ) l2

−mkl1
2 sin (−θ1 + θ2 + φ) θ̇2φ̇ cos (φ)

+mkl4 sin (−θ1 + θ2 + ψ + φ) φ̇2r

+ 2mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇1ψ̇l1 cos (−θ1 + θ2 + φ)

+mkl4 sin (−θ1 + θ2 + ψ + φ) φ̇ cos (φ) r

−mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇1φ̇ cos (φ) l2

−mkl1 sin (−θ1 + θ2 + φ) θ̇1φ̇ cos (φ) r

+mkl1 cos (−θ1 + θ2 + φ) θ̇2 sin (φ) φ̇l2

+mkl4 cos (−θ2 + ψ + φ) θ̇1 sin (φ) φ̇l1

−mkl4 cos (−θ1 + θ2 + ψ + φ) sin (φ) φ̇l1

− 2mkl4 cos (−θ1 + θ2 + ψ + φ) ψ̇l1 sin (−θ1 + θ2 + φ) θ̇1

+mhl3 cos (−θ1 + θ2 + φ) θ̇2 sin (φ) φ̇l2

+mhl3 cos (−θ1 + θ2 + φ) θ̇1 sin (φ) φ̇r

−mkl4 cos (−θ1 + θ2 + ψ + φ) θ̇1 sin (φ) φ̇r

−mkl4 cos (−θ1 + θ2 + ψ + φφ) φ̇l1

+mkl4 cos (−θ1 + θ2 + ψ + φ) θ̇2 sin (φ) φ̇r

−mkl1
2 cos (−θ1 + θ2 + φ) θ̇1 sin (φ) φ̇
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+mkl4 sin (−θ1 + θ2 + ψ + φ) ψ̇φ̇ cos (φ) l1

−mkl1 cos (−θ1 + θ2 + φ) θ̇2 sin (φ) φ̇r

+mkl1
2 cos (−θ1 + θ2 + φ) θ̇2 sin (φ) φ̇

− 2mkl4 sin (−θ1 + θ2 + ψ + φ) ψ̇φ̇l1 cos (−θ1 + θ2 + φ)

C3 = mhl3 cos (−θ1 + θ2 + φ) θ̇2 sin (φ) φ̇r

+mhl3 sin (−θ1 + θ2 + φ) θ̇2φ̇r

−mkl1 sin (−θ1 + θ2 + φ) φ̇ cos (φ) r

−mkl1 sin (−θ1 + θ2 + φ) θ̇1φ̇ cos (φ) l2

−mkl4 cos (−θ1 + θ2 + ψ + φ) ψ̇2l1 sin (−θ1 + θ2 + φ)

−mkl4 cos (−θ1 + θ2 + ψ + φ) ψ̇ sin (φ) φ̇r

+mhl3 sin (−θ1 + θ2 + φ) θ̇2φ̇ cos (φ) l2

−mkl1 cos (−θ1 + θ2 + φ) θ̇1 sin (φ) φ̇r

+mkl1 cos (−θ1 + θ2 + φ) θ̇1 sin (φ) φ̇l2

−mhl3 sin (−θ1 + θ2 + φ) θ̇1φ̇ cos (φ) l1

+mhl3 sin (−θ1 + θ2 + φ) θ̇1φ̇ cos (φ) r

−mhl3 sin (−θ1 + θ2 + φ) θ̇1φ̇ cos (φ) l2

+mhl3 cos (−θ1 + θ2 + φ) θ̇1 sin (φ) φ̇l2

+mhl3 cos (−θ1 + θ2 + φ) θ̇1 sin (φ) φ̇l1

−mhl3 cos (−θ1 + θ2 + φ) θ̇2 sin (φ) φ̇l1

+mhl3 sin (−θ1 + θ2 + φ) φ̇2r

−mkl4 sin (−θ1 + θ2 + ψ + φ) ψ̇φ̇r

−mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇2φ̇r

+mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇1φ̇r

−mkl4 sin (−θ2 + ψ + φ) ψ̇φ̇ cos (φ) l2
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−mkl4 cos (−θ1 + θ2 + ψ + φ) θ̇1 sin (φ) φ̇l2

+mkl1 sin (−θ1 + θ2 + φ) φ̇2r

+mkl1 sin (−θ1 + θ2 + φ) θ̇2φ̇r

−mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇2φ̇ cos (φ) l2

+mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇2φ̇ cos (φ) l1

+mkl4 sin (−θ1 + θ2 + ψ + φ) ψ̇φ̇ cos (φ) r

+mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇2φ̇ cos (φ) r

+ 2mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇2ψ̇l1 cos (−θ1 + θ2 + φ)

−mkl1 sin (−θ1 + θ2 + φ) θ̇1φ̇r

+mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇1φ̇ cos (φ) l1

+mkl1 sin (−θ1 + θ2 + φ) θ̇2φ̇ cos (φ) l2

+mkl1
2 sin (−θ1 + θ2 + φ) θ̇2φ̇ cos (φ)

−mkl4 sin (−θ1 + θ2 + ψ + φ) φ̇2r

− 2mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇1ψ̇l1 cos (−θ1 + θ2 + φ)

−mkl4 sin (−θ1 + θ2 + ψ + φ) φ̇ cos (φ) r

+mkl4 sin (−θ1 + θ2 + ψ + φ) θ̇1φ̇ cos (φ) l2

+mkl1 sin (−θ1 + θ2 + φ) θ̇1φ̇ cos (φ) r

−mkl1 cos (−θ1 + θ2 + φ) θ̇2 sin (φ) φ̇l2

−mkl4 cos (−θ1 + θ2 + ψ + φ) θ̇1 sin (φ) φ̇l1

+mkl4 cos (−θ1 + θ2 + ψ + φ) ψ̇ sin (φ) φ̇l1

+ 2mkl4 cos (−θ1 + θ2 + ψ + φ) ψ̇l1 sin (−θ1 + θ2 + φ) θ̇1

−mhl3 cos (−θ1 + θ2 + φ) θ̇2 sin (φ) φ̇l2

−mhl3 cos (−θ1 + θ2 + φ) θ̇1 sin (φ) φ̇r

+mkl4 cos (−θ1 + θ2 + ψ + φ) θ̇1 sin (φ) φ̇r

+mkl4 cos (−θ1 + θ2 + ψ + φ) θ̇2 sin (φ) φ̇l2
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+mkl4 cos (−θ1 + θ2 + ψ + φ) θ̇2 sin (φ) φ̇l1

−mkl4 cos (−θ1 + θ2 + ψ + φ) θ̇2 sin (φ) φ̇r

+mkl1
2 cos (−θ1 + θ2 + φ) θ̇1 sin (φ) φ̇

−mkl4 sin (−θ1 + θ2 + ψ + φ) ψ̇φ̇ cos (φ) l1

+mkl1 cos (−θ1 + θ2 + φ) θ̇2 sin (φ) φ̇r

−mkl1
2 cos (−θ1 + θ2 + φ) θ̇2 sin (φ) φ̇

+ 2mkl4 sin (−θ1 + θ2 + ψ + φ) ψ̇φ̇l1 cos (−θ1 + θ2 + φ)

C4 = −mkl4 sin (−θ1 + θ2 + ψ + φ) rφ̇2

+mkl4 cos (−θ1 + θ2 + ψ + φ) sin (φ) φ̇l1ψ̇

+mkl4 cos (−θ1 + θ2 + ψ + φ) sin (φ) φ̇l2ψ̇

−mkl4 cos (−θ1 + θ2 + ψ + φ) sin (φ) φ̇rψ̇

−mkl4 cos (−θ1 + θ2 + ψ + φ) l1 sin (−θ1 + θ2 + φ) φ̇ψ̇

+mkl4 cos (−θ1 + θ2 + ψ + φ) sin (φ) φ̇rθ̇1

+mkl4 sin (−θ1 + θ2 + ψ + φ) cos (φ) φ̇rψ̇

+mkl4 cos (−θ1 + θ2 + ψ + φ) l1 sin (−θ1 + θ2 + φ) θ̇1ψ̇

−mkl4 sin (−θ1 + θ2 + ψ + φ) cos (φ) φ̇l1ψ̇

+mkl4 sin (−θ1 + θ2 + ψ + φ) l1 cos (−θ1 + θ2 + φ) φ̇ψ̇

−mkl4 cos (−θ1 + θ2 + ψ + φ) sin (φ) φ̇l2θ̇1

−mkl4 cos (−θ1 + θ2 + ψ + φ) sin (φ) φ̇rθ̇2

+mkl4 cos (−θ1 + θ2 + ψ + φ) sin (φ) φ̇l1θ̇2

−mkl4 sin (−θ1 + θ2 + ψ + φ) cos (φ) φ̇l2θ̇2

+mkl4 sin (−θ1 + θ2 + ψ + φ) cos (φ) φ̇l2θ̇1

+mkl4 sin (−θ1 + θ2 + ψ + φ) cos (φ) φ̇rθ̇2

−mkl4 sin (−θ1 + θ2 + ψ + φ) cos (φ) φ̇rθ̇1
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−mkl4 sin (−θ1 + θ2 + ψ + φ) cos (φ) φ̇l1θ̇2

−mkl4 sin (−θ1 + θ2 + ψ + φ) cos (φ) φ̇l2ψ̇

+mkl4 sin (−θ1 + θ2 + ψ + φ) cos (φ) φ̇l1θ̇1

+mkl4 sin (−θ1 + θ2 + ψ + φ) rφ̇θ̇1

−mkl4 sin (−θ1 + θ2 + ψ + φ) rφ̇ψ̇

−mkl4 sin (−θ1 + θ2 + ψ + φ) rφ̇θ̇2

G1 = mtg sin (φ) r −mtg sin (φ) l2

−mtg sin (φ) l1 +mtgl5 sin (θ1 − φ)

+ 2mhg sin (φ) r − 2mhg sin (φ) l2

− 2mhg sin (φ) l1

+mhgl3 sin (φ)

+mhgl3 sin (−θ1 + θ2 + φ)

+ 2mkg sin (φ) r +mkg sin (φ) l4

− 2mkg sin (φ) l2

−mkg sin (φ) l1 +mkgl1 sin (−θ1 + θ2 + φ)

−mkgl4 sin (−θ1 + θ2 + ψ + φ)

G2 = −mtgl5 sin (θ1 − φ)

−mhgl3 sin (−θ1 + θ2 + φ)

−mkgl1 sin (−θ1 + θ2 + φ)

+mkgl4 sin (−θ1 + θ2 + ψ + φ)

G3 = mhgl3 sin (−θ1 + θ2 + φ)

+mkgl1 sin (−θ1 + θ2 + φ)

−mkgl4 sin (−θ1 + θ2 + ψ + φ)

G4 = −mkgl4 sin (−θ1 + θ2 + ψ + φ)
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Simulation analysis

The dynamics of RunBot are modelled as shown in figure B.1, in which, L1 = 0.11m,

L2 = 0.12m, L3 = 0.09m, L4 = 0.08m. For detailed dynamics equations of the robot and

Poincaré map method, see chapter 2.

Figure B.1: Model of the dynamics of our robot. Sizes and masses are the same as
those of the real robot.

The values of the neuron parameters in the simulation are chosen to be identical to those

in the real robot. Moreover, to simplify the problem, we also fix the gain of the motor

neurons of the hip joints, i.e., GM,h = 2.5 (at the middle of the stable area in figure 3.6).

Thus, we only need to adjust the value of ΘES,h to change the properties of the gaits.

To see how the location of the mass centre (L5 in figure B.1) of the trunk affects the

stability and the speed of the gaits, we also change the value of L5 in the simulation.

With each set of L5 and ΘES,h, we use a multi-dimensional Newton-Raphson method

83
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solving equation éPoincaréo find the fixed point (Garcia, 1999). Then we compute the

Jacobian matrix J of the fixed point using the approach described in Garcia (1999), and

evaluate the stability of the fixed point according to its eigenvalues. The simulation

results are shown in figure B.2.

Figure B.2: Change of walking speed while GM,h is fixed at 2.5 and ΘES,h is changed
in its stable range. Each curve corresponds to a different location of the mass center of

the trunk (see figure B.1), i.e., L5 = 0.5cm, 1cm, 3cm, 5cm, 7cm.

Because some details of the robot dynamics such as uncertainties of the ground contact,

nonlinear frictions in the joints and the inevitable noise and lag of the sensors cannot be

modelled precisely, the results of the simulation suggest a larger stable range than the

real experiments. For example, in the real robot, the mass centre of the trunk is located

about 3 cm forward. With GM,h = 2.5, stable gaits can appear when ΘES,h is in the range

of 95◦−122◦ (see figure 3.6). But in the simulation, the stable range of ΘES,h is somewhat

bigger, 90◦ − 136◦ (see the curve indicated with L5 = 3cm in figure B.2). However, the

simulation results have shown that the location of the mass center of the trunk does have

a drastic influence on the stability and the speed of the gaits:

1. A small value of L5 (see figure B.1 and B.2) is helpful to the stability of the gaits

at slow walking speeds.

2. If the mass center of the trunk is located appropriately forward (e.g., L5 = 3cm, 5cm
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in figure B.2), stable range and walking speed can both be improved.

3. But, if the mass center is located too far forward (e.g., L5 = 7cm in figure B.2), the

stable range for the neuron parameters will become quite small, though the walking

speed can be very high.
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